
Machine Learning
A Bayesian and Optimization Perspective

Academic Press, 2015

Sergios Theodoridis1

1Dept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Spring 2017, Version III

Chapter 18
Neural Networks and Deep Learning

Sergios Theodoridis University of Athens Machine Learning 1/162

Neural Networks

• Neural networks have a long history which goes back to the first
attempts to understand how the human and mamal brain works
and how what we call intelligence is formed.

• From a physiological point of view, one can trace the beginning
of the field back to the work of Santiago Ramon y Cajal, who
discovered that the basic building element of the brain is the
neuron. The brain comprises approximately 60-100 billions
neurons; that is, a number of the same order as the number of
stars in our galaxy!

Sergios Theodoridis University of Athens Machine Learning 2/162

Neural Networks

• Neural networks have a long history which goes back to the first
attempts to understand how the human and mamal brain works
and how what we call intelligence is formed.

• From a physiological point of view, one can trace the beginning
of the field back to the work of Santiago Ramon y Cajal, who
discovered that the basic building element of the brain is the
neuron. The brain comprises approximately 60-100 billions
neurons; that is, a number of the same order as the number of
stars in our galaxy!

Sergios Theodoridis University of Athens Machine Learning 2/162

Neural Networks

• Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

• The most common type of synapses are the chemical ones, which
convert electric pulses, produced by a neuron, to a chemical
signal and then back to an electrical one.

• Depending on the input pulse(s), a synapse is either activated or
inhibited. Via these links, each neuron is connected to other
neurons and this happens in a hierarchical way, in a layer-wise
fashion.

Sergios Theodoridis University of Athens Machine Learning 3/162

Neural Networks

• Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

• The most common type of synapses are the chemical ones, which
convert electric pulses, produced by a neuron, to a chemical
signal and then back to an electrical one.

• Depending on the input pulse(s), a synapse is either activated or
inhibited. Via these links, each neuron is connected to other
neurons and this happens in a hierarchical way, in a layer-wise
fashion.

Sergios Theodoridis University of Athens Machine Learning 3/162

Neural Networks

• Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

• The most common type of synapses are the chemical ones, which
convert electric pulses, produced by a neuron, to a chemical
signal and then back to an electrical one.

• Depending on the input pulse(s), a synapse is either activated or
inhibited. Via these links, each neuron is connected to other
neurons and this happens in a hierarchical way, in a layer-wise
fashion.

Sergios Theodoridis University of Athens Machine Learning 3/162

The Neuron

Drawing of neurons in the pigeon cerebellum, by Santiago Ramón y Cajal in 1899 (http://en.wikipedia.org/wiki/Neuron).

Sergios Theodoridis University of Athens Machine Learning 4/162

The Neuron

A signal propagating down an axon to the cell body and dendrites of the next cell (http://en.wikipedia.org/wiki/Neuron).

Sergios Theodoridis University of Athens Machine Learning 5/162

Neural Networks

• A milestone from the learning theory’s point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

• They showed that given a sufficient number of neurons and
adjusting appropriately the synaptic links, each one represented
by a weight, one can compute, in principle, any computable
function.

• As a matter of fact, it is generally accepted that this is the paper
that gave birth to the fields of neural networks and artificial
intelligence.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks

• A milestone from the learning theory’s point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

• They showed that given a sufficient number of neurons and
adjusting appropriately the synaptic links, each one represented
by a weight, one can compute, in principle, any computable
function.

• As a matter of fact, it is generally accepted that this is the paper
that gave birth to the fields of neural networks and artificial
intelligence.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks

• A milestone from the learning theory’s point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

• They showed that given a sufficient number of neurons and
adjusting appropriately the synaptic links, each one represented
by a weight, one can compute, in principle, any computable
function.

• As a matter of fact, it is generally accepted that this is the paper
that gave birth to the fields of neural networks and artificial
intelligence.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks

• Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

• In the most basic version of operation, he used a single neuron
and adopted a rule that can learn to separate data, which belong
to two linearly separable classes. That is, he built a Pattern
Recognition system.

• He called the basic neuron a perceptron and developed a
rule/algorithm, the perceptron algorithm, for the respective
training. The perceptron will be the kick-off point for our tour in
this series of lectures.

Sergios Theodoridis University of Athens Machine Learning 7/162

Neural Networks

• Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

• In the most basic version of operation, he used a single neuron
and adopted a rule that can learn to separate data, which belong
to two linearly separable classes. That is, he built a Pattern
Recognition system.

• He called the basic neuron a perceptron and developed a
rule/algorithm, the perceptron algorithm, for the respective
training. The perceptron will be the kick-off point for our tour in
this series of lectures.

Sergios Theodoridis University of Athens Machine Learning 7/162

Neural Networks

• Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

• In the most basic version of operation, he used a single neuron
and adopted a rule that can learn to separate data, which belong
to two linearly separable classes. That is, he built a Pattern
Recognition system.

• He called the basic neuron a perceptron and developed a
rule/algorithm, the perceptron algorithm, for the respective
training. The perceptron will be the kick-off point for our tour in
this series of lectures.

Sergios Theodoridis University of Athens Machine Learning 7/162

The Perceptron And The Perceptron Rule

• Our starting point is the simple problem of a linearly separable
two-class (ω1, ω2) classification task. In other words, we are
given a set of training samples, (yn,xn), n = 1, 2, . . . , N , with
yn ∈ {−1,+1}, and it is assumed that there exists a hyperplane,

θT∗ x = 0 : such that,

θT∗ x > 0, if x ∈ ω1

θT∗ x < 0, if x ∈ ω2.

• In other words, such a hyperplane classifies correctly all the
points in the training set. For notational simplification, the bias
term of the hyperplane has been absorbed in θ∗.

Sergios Theodoridis University of Athens Machine Learning 8/162

The Perceptron And The Perceptron Rule

• Our starting point is the simple problem of a linearly separable
two-class (ω1, ω2) classification task. In other words, we are
given a set of training samples, (yn,xn), n = 1, 2, . . . , N , with
yn ∈ {−1,+1}, and it is assumed that there exists a hyperplane,

θT∗ x = 0 : such that,

θT∗ x > 0, if x ∈ ω1

θT∗ x < 0, if x ∈ ω2.

• In other words, such a hyperplane classifies correctly all the
points in the training set. For notational simplification, the bias
term of the hyperplane has been absorbed in θ∗.

Sergios Theodoridis University of Athens Machine Learning 8/162

The Perceptron And The Perceptron Rule

• The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the
patterns from both classes. To this end, a cost function must first
be adopted.

• Let the available estimate at the current iteration step of the
unknown parameters be θ. Then, there are two possibilities:

all points are classified correctly; this means that a solution has
been obtained.
θ classifies correctly some of the points and the rest are
misclassified.

Let Y be the set of all misclassified samples.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule

• The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the
patterns from both classes. To this end, a cost function must first
be adopted.

• Let the available estimate at the current iteration step of the
unknown parameters be θ. Then, there are two possibilities:

all points are classified correctly; this means that a solution has
been obtained.
θ classifies correctly some of the points and the rest are
misclassified.

Let Y be the set of all misclassified samples.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule

• The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the
patterns from both classes. To this end, a cost function must first
be adopted.

• Let the available estimate at the current iteration step of the
unknown parameters be θ. Then, there are two possibilities:

all points are classified correctly; this means that a solution has
been obtained.
θ classifies correctly some of the points and the rest are
misclassified.

Let Y be the set of all misclassified samples.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule

• The perceptron cost: This is defined as

J(θ) = −
∑

n:xn∈Y
ynθ

Txn (1)

where,

yn =

{
+1, if x ∈ ω1

−1, if x ∈ ω2
. (2)

• The cost function is non-negative. Indeed, since the sum is over
the misclassified points, if xn ∈ ω1 (ω2) then θTxn < (>) 0
rendering the product −ynθTxn > 0. The cost function becomes
zero, if there are no misclassified points, i.e., Y = ∅, which
corresponds to a solution.

Sergios Theodoridis University of Athens Machine Learning 10/162

The Perceptron And The Perceptron Rule

• The perceptron cost: This is defined as

J(θ) = −
∑

n:xn∈Y
ynθ

Txn (1)

where,

yn =

{
+1, if x ∈ ω1

−1, if x ∈ ω2
. (2)

• The cost function is non-negative. Indeed, since the sum is over
the misclassified points, if xn ∈ ω1 (ω2) then θTxn < (>) 0
rendering the product −ynθTxn > 0. The cost function becomes
zero, if there are no misclassified points, i.e., Y = ∅, which
corresponds to a solution.

Sergios Theodoridis University of Athens Machine Learning 10/162

The Perceptron And The Perceptron Rule

• The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

J(θ) =

(
−

∑
n:xn∈Y

ynx
T
n

)
θ,

This is a linear function with respect to θ, as long as the number
of misclassified points remains the same.

• However, as one slowly changes the value of θ, which corresponds
to a change of the (direction/position of the hyperplane), there
will be a point where the number of misclassified samples in Y
suddenly changes; this is the time, where a sample changes its
relative position with respect to the (moving) hyperplane. Hence,
the set Y is modified.

• After this change, J(θ) will correspond to a new linear function.

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

• The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

J(θ) =

(
−

∑
n:xn∈Y

ynx
T
n

)
θ,

This is a linear function with respect to θ, as long as the number
of misclassified points remains the same.

• However, as one slowly changes the value of θ, which corresponds
to a change of the (direction/position of the hyperplane), there
will be a point where the number of misclassified samples in Y
suddenly changes; this is the time, where a sample changes its
relative position with respect to the (moving) hyperplane. Hence,
the set Y is modified.

• After this change, J(θ) will correspond to a new linear function.

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

• The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

J(θ) =

(
−

∑
n:xn∈Y

ynx
T
n

)
θ,

This is a linear function with respect to θ, as long as the number
of misclassified points remains the same.

• However, as one slowly changes the value of θ, which corresponds
to a change of the (direction/position of the hyperplane), there
will be a point where the number of misclassified samples in Y
suddenly changes; this is the time, where a sample changes its
relative position with respect to the (moving) hyperplane. Hence,
the set Y is modified.

• After this change, J(θ) will correspond to a new linear function.

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

• The Perceptron Algorithm: It can be shown that, starting from
an arbitrary point, θ(0), the following iterative update,

θ(i) = θ(i−1) + µi
∑

n:xn∈Y
ynxn

converges after a finite number of steps. The parameter µi is the
user-defined step-size, judicially chosen to guarantee convergence.

• Besides the previous scheme, another version of the algorithm
considers one sample per iteration in a cyclic fashion, till the
algorithm converges.

Sergios Theodoridis University of Athens Machine Learning 12/162

The Perceptron And The Perceptron Rule

• The Perceptron Algorithm: It can be shown that, starting from
an arbitrary point, θ(0), the following iterative update,

θ(i) = θ(i−1) + µi
∑

n:xn∈Y
ynxn

converges after a finite number of steps. The parameter µi is the
user-defined step-size, judicially chosen to guarantee convergence.

• Besides the previous scheme, another version of the algorithm
considers one sample per iteration in a cyclic fashion, till the
algorithm converges.

Sergios Theodoridis University of Athens Machine Learning 12/162

The Perceptron And The Perceptron Rule

• Let us denote by y(i), x(i), (i) ∈ {1, 2, . . . , N}, the training pair
that is presented in the algorithms at the ith iteration step.

• Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

θ(i) =

{
θ(i−1) + µiy(i)x(i), if x(i) is misclassified by θ(i−1),

θ(i−1), otherwise.

• In other words, starting from an initial estimate, e.g., taken to be
equal to zero, θ(0) = 0, we test each one of the samples,
xn, n = 1, 2, . . . , N . Once all samples have been considered, we
say that one epoch has been completed.

• If no convergence has been attained, all samples are reconsidered
in a second epoch and so on.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule

• Let us denote by y(i), x(i), (i) ∈ {1, 2, . . . , N}, the training pair
that is presented in the algorithms at the ith iteration step.

• Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

θ(i) =

{
θ(i−1) + µiy(i)x(i), if x(i) is misclassified by θ(i−1),

θ(i−1), otherwise.

• In other words, starting from an initial estimate, e.g., taken to be
equal to zero, θ(0) = 0, we test each one of the samples,
xn, n = 1, 2, . . . , N . Once all samples have been considered, we
say that one epoch has been completed.

• If no convergence has been attained, all samples are reconsidered
in a second epoch and so on.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule

• Let us denote by y(i), x(i), (i) ∈ {1, 2, . . . , N}, the training pair
that is presented in the algorithms at the ith iteration step.

• Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

θ(i) =

{
θ(i−1) + µiy(i)x(i), if x(i) is misclassified by θ(i−1),

θ(i−1), otherwise.

• In other words, starting from an initial estimate, e.g., taken to be
equal to zero, θ(0) = 0, we test each one of the samples,
xn, n = 1, 2, . . . , N . Once all samples have been considered, we
say that one epoch has been completed.

• If no convergence has been attained, all samples are reconsidered
in a second epoch and so on.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule

• The previous algorithm is known as pattern-by-pattern or online
mode of operation. Note that, the term “online” here indicates
that the total number of data samples is fixed and the algorithm
considers them in a cyclic fashion, epoch after epoch.

• After a successive finite number of epochs, the algorithm is
guaranteed to converge. Note that for convergence, the sequence
µi must be appropriately chosen. For the case of the perceptron
algorithm, convergence is still guaranteed even if µi is a positive
constant, µi = µ > 0, usually taken to be equal to one.

Sergios Theodoridis University of Athens Machine Learning 14/162

The Perceptron And The Perceptron Rule

• The previous algorithm is known as pattern-by-pattern or online
mode of operation. Note that, the term “online” here indicates
that the total number of data samples is fixed and the algorithm
considers them in a cyclic fashion, epoch after epoch.

• After a successive finite number of epochs, the algorithm is
guaranteed to converge. Note that for convergence, the sequence
µi must be appropriately chosen. For the case of the perceptron
algorithm, convergence is still guaranteed even if µi is a positive
constant, µi = µ > 0, usually taken to be equal to one.

Sergios Theodoridis University of Athens Machine Learning 14/162

The Perceptron And The Perceptron Rule

• The following figure provides a geometric interpretation of the
perceptron rule. The sample x is misclassified by the hyperplane,
θ(i−1). Since x lies in the (−) side of the hyperplane and it is
misclassified, it belongs to class ω1. Hence, assuming µ = 1, the applied
correction by the algorithm is

θ(i) = θ(i−1) + x,

and its effect is to turn the hyperplane to the direction towards x so
that to place it in the (+) side of the new hyperplane, which is defined
by the updated estimate θ(i).

Sergios Theodoridis University of Athens Machine Learning 15/162

The Artificial Neuron

• Once the perceptron algorithm has run and converged, we have
available the weights, θi, i = 1, 2, . . . , l, of the synapses of the
associated neuron/perceptron as well as the bias term θ0. These can
now be used to classify unknown patterns.

• Basic neuron element: The features, xi, i = 1, 2, . . . , l, are applied to
the input nodes. In turn, each feature is multiplied by the respective
synapse (weight) and then the bias term is added on their linear
combination. The outcome of this operation then goes through a
nonlinear function, f(·), known as the activation function. In the more
classical version, known as the McCulloch-Pitts neuron the activation
function is the Heaviside one, i.e.,

f(z) =

{
1 if z > 0,
0 if z ≤ 0.

Sergios Theodoridis University of Athens Machine Learning 16/162

The Artificial Neuron

• Once the perceptron algorithm has run and converged, we have
available the weights, θi, i = 1, 2, . . . , l, of the synapses of the
associated neuron/perceptron as well as the bias term θ0. These can
now be used to classify unknown patterns.

• Basic neuron element: The features, xi, i = 1, 2, . . . , l, are applied to
the input nodes. In turn, each feature is multiplied by the respective
synapse (weight) and then the bias term is added on their linear
combination. The outcome of this operation then goes through a
nonlinear function, f(·), known as the activation function. In the more
classical version, known as the McCulloch-Pitts neuron the activation
function is the Heaviside one, i.e.,

f(z) =

{
1 if z > 0,
0 if z ≤ 0.

Sergios Theodoridis University of Athens Machine Learning 16/162

Feed-Forward Multilayer Neural Networks

• A single neuron realizes a hyperplane,

θ1x1 + θ2x2 + . . .+ θlxl + θ0 = 0,

in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

• As a staring point, we consider classes, in the feature space, which are
formed by unions of polyhedral regions, as shown in the figure below,

Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks

• A single neuron realizes a hyperplane,

θ1x1 + θ2x2 + . . .+ θlxl + θ0 = 0,

in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

• As a staring point, we consider classes, in the feature space, which are
formed by unions of polyhedral regions, as shown in the figure below,

Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks

• A single neuron realizes a hyperplane,

θ1x1 + θ2x2 + . . .+ θlxl + θ0 = 0,

in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

• As a staring point, we consider classes, in the feature space, which are
formed by unions of polyhedral regions, as shown in the figure below,

Classes are formed by union of polyhedral regions. Regions are labeled according to the side they lie, with respect
to the three lines, H1, H2, H3. The number “1” indicates the (+) side and the “0” the (-) side. The class

ω1 consists of the union of the (000) and (111) regions.

Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks

• The figure below shows three neurons, realizing the three hyperplanes,
H1, H2, H3, of the previous figure, respectively.

• The corresponding outputs, denoted as y1, y2, y3, form the label of the
region associated with the input pattern, which is applied on the input
nodes. Indeed, if the weights of the synapses have been appropriately
set, then if a pattern originates from the region, say, (010), then the
first neuron on the left will fire a zero (y1 = 0), the second an one
(y2 = 1) and the rightmost a zero (y3 = 0).

• In other words, this layer of neurons forms a mapping of the input space
into the 3-D (three neurons) one. We refer to this as the first hidden
layer.

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks

• The figure below shows three neurons, realizing the three hyperplanes,
H1, H2, H3, of the previous figure, respectively.

• The corresponding outputs, denoted as y1, y2, y3, form the label of the
region associated with the input pattern, which is applied on the input
nodes. Indeed, if the weights of the synapses have been appropriately
set, then if a pattern originates from the region, say, (010), then the
first neuron on the left will fire a zero (y1 = 0), the second an one
(y2 = 1) and the rightmost a zero (y3 = 0).

• In other words, this layer of neurons forms a mapping of the input space
into the 3-D (three neurons) one. We refer to this as the first hidden
layer.

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks

• The figure below shows three neurons, realizing the three hyperplanes,
H1, H2, H3, of the previous figure, respectively.

• The corresponding outputs, denoted as y1, y2, y3, form the label of the
region associated with the input pattern, which is applied on the input
nodes. Indeed, if the weights of the synapses have been appropriately
set, then if a pattern originates from the region, say, (010), then the
first neuron on the left will fire a zero (y1 = 0), the second an one
(y2 = 1) and the rightmost a zero (y3 = 0).

• In other words, this layer of neurons forms a mapping of the input space
into the 3-D (three neurons) one. We refer to this as the first hidden
layer.

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks

• More specifically, the mapping is performed on the vertices of the unit
cube in R3, as shown below

• The neurons of the first hidden layer perform a mapping from the input
feature space to the vertices of a unit hypercube. Each region is
mapped into a single vertex. Each vertex of the hypercube is now
linearly separable from all the rest and can be separated by a
(hyper)plane realized by a neuron.

• If p instead of three neurons are used, the mapping is on the vertices of
the p-dimensional unit cube.

Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

• More specifically, the mapping is performed on the vertices of the unit
cube in R3, as shown below

• The neurons of the first hidden layer perform a mapping from the input
feature space to the vertices of a unit hypercube. Each region is
mapped into a single vertex. Each vertex of the hypercube is now
linearly separable from all the rest and can be separated by a
(hyper)plane realized by a neuron.

• If p instead of three neurons are used, the mapping is on the vertices of
the p-dimensional unit cube.

Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

• More specifically, the mapping is performed on the vertices of the unit
cube in R3, as shown below

• The neurons of the first hidden layer perform a mapping from the input
feature space to the vertices of a unit hypercube. Each region is
mapped into a single vertex. Each vertex of the hypercube is now
linearly separable from all the rest and can be separated by a
(hyper)plane realized by a neuron.

• If p instead of three neurons are used, the mapping is on the vertices of
the p-dimensional unit cube.

Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

• An alternative way to view this mapping is as a new
representation of the input patterns in terms of code words. For
three neurons, we can form 23 binary code-words, each
corresponding to a vertex of the unit cube, which can represent
23 − 1 = 7 regions (there is one remaining vertex, i.e., (110),
which does not correspond to any region).

• Moreover, this mapping encodes information concerning some
structure of the input data; that is, information relating on how
the input patterns are grouped together in the feature space in
different regions.

Sergios Theodoridis University of Athens Machine Learning 20/162

Feed-Forward Multilayer Neural Networks

• An alternative way to view this mapping is as a new
representation of the input patterns in terms of code words. For
three neurons, we can form 23 binary code-words, each
corresponding to a vertex of the unit cube, which can represent
23 − 1 = 7 regions (there is one remaining vertex, i.e., (110),
which does not correspond to any region).

• Moreover, this mapping encodes information concerning some
structure of the input data; that is, information relating on how
the input patterns are grouped together in the feature space in
different regions.

Sergios Theodoridis University of Athens Machine Learning 20/162

Feed-Forward Multilayer Neural Networks

• We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

• We choose all regions which belong to one class. Assume that
regions (000) and (111) define class ω1. Recall that, each of the
two corresponding vertices is now linearly separable from the rest.

• This means that we can use a neuron/perceptron in the
transformed space, which will place one vertex in the (+) side and
the rest in the (-) one, as shown in the last figure. The resulting
structure/network is shown in the figure in the next slide.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

• We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

• We choose all regions which belong to one class. Assume that
regions (000) and (111) define class ω1. Recall that, each of the
two corresponding vertices is now linearly separable from the rest.

• This means that we can use a neuron/perceptron in the
transformed space, which will place one vertex in the (+) side and
the rest in the (-) one, as shown in the last figure. The resulting
structure/network is shown in the figure in the next slide.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

• We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

• We choose all regions which belong to one class. Assume that
regions (000) and (111) define class ω1. Recall that, each of the
two corresponding vertices is now linearly separable from the rest.

• This means that we can use a neuron/perceptron in the
transformed space, which will place one vertex in the (+) side and
the rest in the (-) one, as shown in the last figure. The resulting
structure/network is shown in the figure in the next slide.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

• The resulting network has a second layer of hidden neurons. The
output z1 of the left neuron will fire an “1” only if the input
pattern originates from the region 000 and it will be at “0” for all
other patterns. For the neuron on the right, the output z2 will be
“1” for all the patterns coming from region (111) and zero for all
the rest.

Sergios Theodoridis University of Athens Machine Learning 22/162

Feed-Forward Multilayer Neural Networks

• Note that, this second layer of neurons has performed a second
mapping, this time to the unit rectangle in the R2. This mapping
provides a new representation of the input patterns, and this
representation encodes information related to the classes of
the regions.

Sergios Theodoridis University of Athens Machine Learning 22/162

Feed-Forward Multilayer Neural Networks

• The following figure shows the last reported mapping to the corners of
the unit rectangle in the (z1, z2) space.

Patterns form class ω1 are mapped either to (01) or to (10) and patterns from class ω2 are mapped to (00).
Thus the classes have now become linearly separable and can be separated via a straight line realized by a neuron.

• This is very interesting; by successive mappings, we have transformed
our originally nonlinearly separable task, to one which is linearly
separable. Indeed, the point (00) can be linearly separated from (01)
and (10) and this can be realized by an extra neuron operating in the
(z1, z2) space. The latter is known as the output neuron, since it
provides the final classification decision. The final network is shown in
the next figure.

Sergios Theodoridis University of Athens Machine Learning 23/162

Feed-Forward Multilayer Neural Networks

• The following figure shows the last reported mapping to the corners of
the unit rectangle in the (z1, z2) space.

Patterns form class ω1 are mapped either to (01) or to (10) and patterns from class ω2 are mapped to (00).
Thus the classes have now become linearly separable and can be separated via a straight line realized by a neuron.

• This is very interesting; by successive mappings, we have transformed
our originally nonlinearly separable task, to one which is linearly
separable. Indeed, the point (00) can be linearly separated from (01)
and (10) and this can be realized by an extra neuron operating in the
(z1, z2) space. The latter is known as the output neuron, since it
provides the final classification decision. The final network is shown in
the next figure.

Sergios Theodoridis University of Athens Machine Learning 23/162

Feed-Forward Multilayer Neural Networks

A three layer feedforward neural network. It comprises the input (non-processing) layer, two hidden layers and one output
layer of neurons. Such a three layer NN can solve any classification task, where classes are formed by unions of

polyhedral regions.

• We say that this network of neurons is a feed-forward one, since
information flows in the forward direction from the input to the output
layer. It comprises the input layer, which is a non-processing one, two
hidden layers (the term hidden is self-explained) and one output layer.
We call such a Neural Network (NN) a three layer network, without
counting the input layer of non-processing nodes.

Sergios Theodoridis University of Athens Machine Learning 24/162

Feed-Forward Multilayer Neural Networks

• We have constructively shown that a three layer feed-forward NN
can, in principle, solve any classification task whose classes are
formed by union of polyhedral regions. The generalization to
multiclass cases is straightforward, by employing more output
neurons depending on the number of classes.

• Note that in some cases, one hidden layer of nodes may be
sufficient. For example, this would be the case if class ω1 was the
union of (000) and (100) regions. Then these two vertices could
be separated from the rest via a single plane and a second hidden
layer of neurons would not be required (check why).

Sergios Theodoridis University of Athens Machine Learning 25/162

Feed-Forward Multilayer Neural Networks

• We have constructively shown that a three layer feed-forward NN
can, in principle, solve any classification task whose classes are
formed by union of polyhedral regions. The generalization to
multiclass cases is straightforward, by employing more output
neurons depending on the number of classes.

• Note that in some cases, one hidden layer of nodes may be
sufficient. For example, this would be the case if class ω1 was the
union of (000) and (100) regions. Then these two vertices could
be separated from the rest via a single plane and a second hidden
layer of neurons would not be required (check why).

Sergios Theodoridis University of Athens Machine Learning 25/162

Feed-Forward Multilayer Neural Networks

• What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

• In practice, when the data “live” in high dimensional spaces,
there is no way of implementing neurons analytically so as to
realize the hyperplanes. Furthermore, in real life, classes are not
necessarily formed by union of polyhedral regions and more
important classes do overlap.

• Hence, one needs to devise a training procedure based on a cost
function.

Sergios Theodoridis University of Athens Machine Learning 26/162

Feed-Forward Multilayer Neural Networks

• What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

• In practice, when the data “live” in high dimensional spaces,
there is no way of implementing neurons analytically so as to
realize the hyperplanes. Furthermore, in real life, classes are not
necessarily formed by union of polyhedral regions and more
important classes do overlap.

• Hence, one needs to devise a training procedure based on a cost
function.

Sergios Theodoridis University of Athens Machine Learning 26/162

Feed-Forward Multilayer Neural Networks

• What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

• In practice, when the data “live” in high dimensional spaces,
there is no way of implementing neurons analytically so as to
realize the hyperplanes. Furthermore, in real life, classes are not
necessarily formed by union of polyhedral regions and more
important classes do overlap.

• Hence, one needs to devise a training procedure based on a cost
function.

Sergios Theodoridis University of Athens Machine Learning 26/162

The Backpropagation Algorithm

• A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

• From this point of view, a NN realizes a nonlinear parametric
function, ŷ = fθ(x), where θ stands for all the weights present in
the network. Thus, training a NN seems not to be any different
than training any other parametric prediction model.

• All is needed is a) a set of training samples, b) a loss function,
L(y, ŷ), and c) an iterative scheme, e.g., gradient descent, to
perform the optimization of the associated empirical loss
function,

J(θ) =
N∑

n=1

L
(
yn, fθ(xn)

)
.

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm

• A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

• From this point of view, a NN realizes a nonlinear parametric
function, ŷ = fθ(x), where θ stands for all the weights present in
the network. Thus, training a NN seems not to be any different
than training any other parametric prediction model.

• All is needed is a) a set of training samples, b) a loss function,
L(y, ŷ), and c) an iterative scheme, e.g., gradient descent, to
perform the optimization of the associated empirical loss
function,

J(θ) =

N∑
n=1

L
(
yn, fθ(xn)

)
.

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm

• A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

• From this point of view, a NN realizes a nonlinear parametric
function, ŷ = fθ(x), where θ stands for all the weights present in
the network. Thus, training a NN seems not to be any different
than training any other parametric prediction model.

• All is needed is a) a set of training samples, b) a loss function,
L(y, ŷ), and c) an iterative scheme, e.g., gradient descent, to
perform the optimization of the associated empirical loss
function,

J(θ) =

N∑
n=1

L
(
yn, fθ(xn)

)
.

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm

• A difficulty with training NNs lies in their multilayer structure
that complicates the computation of the involved gradients,
which are needed for the optimization. Moreover, the
McCulloch-Pitts neuron involves the discontinuous Heaviside
activation function, which is not differentiable.

• A first step in developing a practical algorithm for training a NN
is to replace the Heaviside activation function with a
differentiable one.

Sergios Theodoridis University of Athens Machine Learning 28/162

The Backpropagation Algorithm

• A difficulty with training NNs lies in their multilayer structure
that complicates the computation of the involved gradients,
which are needed for the optimization. Moreover, the
McCulloch-Pitts neuron involves the discontinuous Heaviside
activation function, which is not differentiable.

• A first step in developing a practical algorithm for training a NN
is to replace the Heaviside activation function with a
differentiable one.

Sergios Theodoridis University of Athens Machine Learning 28/162

The Backpropagation Algorithm

• A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

• The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z) = σ(z) :=
1

1 + exp (−az)
.

• Hyperbolic tangent function: Another alternative is

f(z) = a tanh
(cz

2

)
, where c and a are controling parameters.

Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

• A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

• The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z) = σ(z) :=
1

1 + exp (−az)
.

• Hyperbolic tangent function: Another alternative is

f(z) = a tanh
(cz

2

)
, where c and a are controling parameters.

Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

• A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

• The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z) = σ(z) :=
1

1 + exp (−az)
.

• Hyperbolic tangent function: Another alternative is

f(z) = a tanh
(cz

2

)
, where c and a are controling parameters.

Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

• A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

• The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z) = σ(z) :=
1

1 + exp (−az)
.

• Hyperbolic tangent function: Another alternative is

f(z) = a tanh
(cz

2

)
, where c and a are controling parameters.

Logistic sigmoid function Hyperbolic tangent function

Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

• The Gradient Descent Scheme: Having adopted a differentiable
activation function, we are ready to proceed with developing the
gradient descent iterative scheme for the minimization of the cost
function. We will formulate the task in a general framework.

• What is more important is to grasp the rationale behind the
algorithm and not the details.

Sergios Theodoridis University of Athens Machine Learning 30/162

The Backpropagation Algorithm

• The Gradient Descent Scheme: Having adopted a differentiable
activation function, we are ready to proceed with developing the
gradient descent iterative scheme for the minimization of the cost
function. We will formulate the task in a general framework.

• What is more important is to grasp the rationale behind the
algorithm and not the details.

Sergios Theodoridis University of Athens Machine Learning 30/162

The Backpropagation Algorithm

• Let (yn,xn), n = 1, 2, . . . , N , be the set of training samples.
Note that we have assumed multiple output variables, assembled
as a vector. We assume that the network comprises L layers;
L− 1 hidden and one output layers. Each layer consists of
kr, r = 1, 2, . . . , L, neurons. Thus, the output vectors are:

yn = [yn1, yn2, . . . , ynkL]T ∈ RkL , n = 1, 2, . . . , N.

For the sake of the mathematical derivations, we also denote the
number of input nodes as k0; i.e., k0 = l, where l is the
dimensionality of the input feature space.

• Let θrj denote the synaptic weights associated with the jth
neuron in the rth layer, with j = 1, 2, . . . , kr and r = 1, 2, . . . , L ,
where the bias term is included in θrj , i.e.,

θrj := [θrj0, θ
r
j1, . . . , θ

r
jkr−1

]T .

Sergios Theodoridis University of Athens Machine Learning 31/162

The Backpropagation Algorithm

• Let (yn,xn), n = 1, 2, . . . , N , be the set of training samples.
Note that we have assumed multiple output variables, assembled
as a vector. We assume that the network comprises L layers;
L− 1 hidden and one output layers. Each layer consists of
kr, r = 1, 2, . . . , L, neurons. Thus, the output vectors are:

yn = [yn1, yn2, . . . , ynkL]T ∈ RkL , n = 1, 2, . . . , N.

For the sake of the mathematical derivations, we also denote the
number of input nodes as k0; i.e., k0 = l, where l is the
dimensionality of the input feature space.

• Let θrj denote the synaptic weights associated with the jth
neuron in the rth layer, with j = 1, 2, . . . , kr and r = 1, 2, . . . , L ,
where the bias term is included in θrj , i.e.,

θrj := [θrj0, θ
r
j1, . . . , θ

r
jkr−1

]T .

Sergios Theodoridis University of Athens Machine Learning 31/162

The Backpropagation Algorithm

The links and the associated variables of the jth neuron at the rth layer.

Sergios Theodoridis University of Athens Machine Learning 32/162

The Backpropagation Algorithm

• The basic iterative step for the gradient decent scheme is written
as

θrj (new) = θrj (old) + ∆θrj ,

where

∆θrj = −µ ∂J
∂θrj

∣∣∣
θrj (old)

.

The parameter µ is the user-defined step size (it can also be
iteration-dependent) and J denotes the cost function.

Sergios Theodoridis University of Athens Machine Learning 33/162

The Backpropagation Algorithm

• For example, if the squared error loss is adopted, we have

J(θ) =

N∑
n=1

Jn(θ),

and

Jn(θ) =
1

2

kL∑
k=1

(ŷnk − ynk)2 ,

where ŷnk, k = 1, 2, . . . , kL, are the estimates provided at the
corresponding output nodes of the network. We will consider
them as the elements of a corresponding vector, ŷn.

Sergios Theodoridis University of Athens Machine Learning 34/162

The Backpropagation Algorithm

• The main difficulty in the backpropagation algorithm lies in the
computation of the gradients. Note that the output of the
network relates directly to the parameters associated with the
neurons of the last (output) layer. Thus, the computation of the
corresponding gradients poses no problems. Business as usual.

• However, the output of the network is related indirectly with the
parameters of the neurons comprising the hidden layers. This is
because the outputs/responses of the hidden layers are
transformed by the neurons of the layers above. The closer to the
input is a layer, the more transformations the respected neuron
responses undergo, as they propagate through the layers higher in
the hierarchy.

Sergios Theodoridis University of Athens Machine Learning 35/162

The Backpropagation Algorithm

• The main difficulty in the backpropagation algorithm lies in the
computation of the gradients. Note that the output of the
network relates directly to the parameters associated with the
neurons of the last (output) layer. Thus, the computation of the
corresponding gradients poses no problems. Business as usual.

• However, the output of the network is related indirectly with the
parameters of the neurons comprising the hidden layers. This is
because the outputs/responses of the hidden layers are
transformed by the neurons of the layers above. The closer to the
input is a layer, the more transformations the respected neuron
responses undergo, as they propagate through the layers higher in
the hierarchy.

Sergios Theodoridis University of Athens Machine Learning 35/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

• Forward Computations: For a given input, xn, employ the
currently available estimates of the parameters and compute the
output of the network, say, ŷn, which depends of the current
estimates.

• Backward Computations: Using the desired response, yn, and the
predicted one, ŷn, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

Compute the gradients of the parameters of the neurons of the last
layer, L.

Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L− 1.

The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

• Forward Computations: For a given input, xn, employ the
currently available estimates of the parameters and compute the
output of the network, say, ŷn, which depends of the current
estimates.

• Backward Computations: Using the desired response, yn, and the
predicted one, ŷn, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

Compute the gradients of the parameters of the neurons of the last
layer, L.

Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L− 1.

The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

• Forward Computations: For a given input, xn, employ the
currently available estimates of the parameters and compute the
output of the network, say, ŷn, which depends of the current
estimates.

• Backward Computations: Using the desired response, yn, and the
predicted one, ŷn, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

Compute the gradients of the parameters of the neurons of the last
layer, L.

Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L− 1.

The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

• Forward Computations: For a given input, xn, employ the
currently available estimates of the parameters and compute the
output of the network, say, ŷn, which depends of the current
estimates.

• Backward Computations: Using the desired response, yn, and the
predicted one, ŷn, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

Compute the gradients of the parameters of the neurons of the last
layer, L.

Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L− 1.

The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

• Forward Computations: For a given input, xn, employ the
currently available estimates of the parameters and compute the
output of the network, say, ŷn, which depends of the current
estimates.

• Backward Computations: Using the desired response, yn, and the
predicted one, ŷn, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

Compute the gradients of the parameters of the neurons of the last
layer, L.

Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L− 1.

The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

• Computation of the gradients: Let zrnj denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern xn appears at the input nodes. Then, we can write
that

zrnj =

kr−1∑
m=1

θrjmy
r−1
nm + θrj0 =

kr−1∑
m=0

θrjmy
r−1
nm = θrTj yr−1

n , (3)

where by definition

yr−1
n := [1, yr−1n1 , . . . , yr−1nkr−1

]T ,

and yrn0 ≡ 1, ∀ r, n. For the neurons at the output layer, r = L,
yLnm = ŷnm, m = 1, 2, . . . , kL, and for r = 1, we have
y0nm = xnm, m = 1, 2, . . . , k0; that is, y0nm are set equal to the input
feature values.

• Hence, we can now write that

∂Jn
∂θrj

=
∂Jn
∂zrnj

∂zrnj
∂θrj

=
∂Jn
∂zrnj

yr−1
n , and δrnj :=

∂Jn
∂zrnj

.

• Then we have

∆θrj = −µ
N∑

n=1

δrnjy
r−1
n , r = 1, 2, . . . , L. (4)

Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm

• Computation of the gradients: Let zrnj denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern xn appears at the input nodes. Then, we can write
that

zrnj =

kr−1∑
m=1

θrjmy
r−1
nm + θrj0 =

kr−1∑
m=0

θrjmy
r−1
nm = θrTj yr−1

n , (3)

where by definition

yr−1
n := [1, yr−1n1 , . . . , yr−1nkr−1

]T ,

and yrn0 ≡ 1, ∀ r, n. For the neurons at the output layer, r = L,
yLnm = ŷnm, m = 1, 2, . . . , kL, and for r = 1, we have
y0nm = xnm, m = 1, 2, . . . , k0; that is, y0nm are set equal to the input
feature values.

• Hence, we can now write that

∂Jn
∂θrj

=
∂Jn
∂zrnj

∂zrnj
∂θrj

=
∂Jn
∂zrnj

yr−1
n , and δrnj :=

∂Jn
∂zrnj

.

• Then we have

∆θrj = −µ
N∑

n=1

δrnjy
r−1
n , r = 1, 2, . . . , L. (4)

Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm

• Computation of the gradients: Let zrnj denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern xn appears at the input nodes. Then, we can write
that

zrnj =

kr−1∑
m=1

θrjmy
r−1
nm + θrj0 =

kr−1∑
m=0

θrjmy
r−1
nm = θrTj yr−1

n , (3)

where by definition

yr−1
n := [1, yr−1n1 , . . . , yr−1nkr−1

]T ,

and yrn0 ≡ 1, ∀ r, n. For the neurons at the output layer, r = L,
yLnm = ŷnm, m = 1, 2, . . . , kL, and for r = 1, we have
y0nm = xnm, m = 1, 2, . . . , k0; that is, y0nm are set equal to the input
feature values.

• Hence, we can now write that

∂Jn
∂θrj

=
∂Jn
∂zrnj

∂zrnj
∂θrj

=
∂Jn
∂zrnj

yr−1
n , and δrnj :=

∂Jn
∂zrnj

.

• Then we have

∆θrj = −µ
N∑

n=1

δrnjy
r−1
n , r = 1, 2, . . . , L. (4)

Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm

• Computation of δrnj : Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, δrnj , one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this
philosophy justifies the name given to the algorithm.

r = L: We have that
δLnj =

∂Jn
∂zLnj

.

For the squared error loss function,

Jn =
1

2

kL∑
k=1

(
f(zLnk)− ynk

)2
.

Hence,

δLnj = (ŷnj − ynj)f
′
(zLnj),

= enjf
′
(zLnj), j = 1, 2, . . . , kL. (5)

where f
′
(·) denotes the derivative of f(·), and enj is the error

associated with the jth output variable at time n. Note that for
the last layer, the computation of the gradient is straightforward.

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

• Computation of δrnj : Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, δrnj , one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this
philosophy justifies the name given to the algorithm.

r = L: We have that
δLnj =

∂Jn
∂zLnj

.

For the squared error loss function,

Jn =
1

2

kL∑
k=1

(
f(zLnk)− ynk

)2
.

Hence,

δLnj = (ŷnj − ynj)f
′
(zLnj),

= enjf
′
(zLnj), j = 1, 2, . . . , kL. (5)

where f
′
(·) denotes the derivative of f(·), and enj is the error

associated with the jth output variable at time n. Note that for
the last layer, the computation of the gradient is straightforward.

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

• Computation of δrnj : Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, δrnj , one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this
philosophy justifies the name given to the algorithm.

r = L: We have that
δLnj =

∂Jn
∂zLnj

.

For the squared error loss function,

Jn =
1

2

kL∑
k=1

(
f(zLnk)− ynk

)2
.

Hence,

δLnj = (ŷnj − ynj)f
′
(zLnj),

= enjf
′
(zLnj), j = 1, 2, . . . , kL. (5)

where f
′
(·) denotes the derivative of f(·), and enj is the error

associated with the jth output variable at time n. Note that for
the last layer, the computation of the gradient is straightforward.

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

• Computation of δrnj (continued):
r < L: Due to the successive dependence between the layers, the
value of zr−1nj influences all the values zrnk, k = 1, 2, . . . , kr of the
next layer. Employing the chain rule for differentiation, we get

δr−1nj =
∂Jn

∂zr−1nj

=

kr∑
k=1

∂Jn
∂zrnk

∂zrnk
∂zr−1nj

, (6)

or
∂Jn

∂zr−1nj

=

kr∑
k=1

δrnk
∂zrnk
∂zr−1nj

. (7)

However,

∂zrnk
∂zr−1nj

=
∂
(∑kr−1

m=0 θ
r
kmy

r−1
nm

)
∂zr−1nj

, where yr−1nm = f(zr−1nm),

which leads to, ∂zrnk
∂zr−1nj

= θrkjf
′
(zr−1nj

)
,

and combining with (6)-(7), we obtain for j = 1, 2, . . . , kr−1,

δr−1nj =
(kr∑

k=1

δrnkθ
r
kj

)
f
′
(zr−1nj) := δr−1nj = er−1nj f

′
(zr−1nj). (8)

Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

• Computation of δrnj (continued):
r < L: Due to the successive dependence between the layers, the
value of zr−1nj influences all the values zrnk, k = 1, 2, . . . , kr of the
next layer. Employing the chain rule for differentiation, we get

δr−1nj =
∂Jn

∂zr−1nj

=

kr∑
k=1

∂Jn
∂zrnk

∂zrnk
∂zr−1nj

, (6)

or
∂Jn

∂zr−1nj

=

kr∑
k=1

δrnk
∂zrnk
∂zr−1nj

. (7)

However,

∂zrnk
∂zr−1nj

=
∂
(∑kr−1

m=0 θ
r
kmy

r−1
nm

)
∂zr−1nj

, where yr−1nm = f(zr−1nm),

which leads to, ∂zrnk
∂zr−1nj

= θrkjf
′
(zr−1nj

)
,

and combining with (6)-(7), we obtain for j = 1, 2, . . . , kr−1,

δr−1nj =
(kr∑

k=1

δrnkθ
r
kj

)
f
′
(zr−1nj) := δr−1nj = er−1nj f

′
(zr−1nj). (8)

Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

• Computation of δrnj (continued):
r < L: Due to the successive dependence between the layers, the
value of zr−1nj influences all the values zrnk, k = 1, 2, . . . , kr of the
next layer. Employing the chain rule for differentiation, we get

δr−1nj =
∂Jn

∂zr−1nj

=

kr∑
k=1

∂Jn
∂zrnk

∂zrnk
∂zr−1nj

, (6)

or
∂Jn

∂zr−1nj

=

kr∑
k=1

δrnk
∂zrnk
∂zr−1nj

. (7)

However,

∂zrnk
∂zr−1nj

=
∂
(∑kr−1

m=0 θ
r
kmy

r−1
nm

)
∂zr−1nj

, where yr−1nm = f(zr−1nm),

which leads to, ∂zrnk
∂zr−1nj

= θrkjf
′
(zr−1nj

)
,

and combining with (6)-(7), we obtain for j = 1, 2, . . . , kr−1,

δr−1nj =
(kr∑

k=1

δrnkθ
r
kj

)
f
′
(zr−1nj) := δr−1nj = er−1nj f

′
(zr−1nj). (8)

Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

• Computation of δrnj (continued):
r < L: Due to the successive dependence between the layers, the
value of zr−1nj influences all the values zrnk, k = 1, 2, . . . , kr of the
next layer. Employing the chain rule for differentiation, we get

δr−1nj =
∂Jn

∂zr−1nj

=

kr∑
k=1

∂Jn
∂zrnk

∂zrnk
∂zr−1nj

, (6)

or
∂Jn

∂zr−1nj

=

kr∑
k=1

δrnk
∂zrnk
∂zr−1nj

. (7)

However,

∂zrnk
∂zr−1nj

=
∂
(∑kr−1

m=0 θ
r
kmy

r−1
nm

)
∂zr−1nj

, where yr−1nm = f(zr−1nm),

which leads to, ∂zrnk
∂zr−1nj

= θrkjf
′
(zr−1nj

)
,

and combining with (6)-(7), we obtain for j = 1, 2, . . . , kr−1,

δr−1nj =
(kr∑

k=1

δrnkθ
r
kj

)
f
′
(zr−1nj) := δr−1nj = er−1nj f

′
(zr−1nj). (8)

Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

• Computation of δrnj (continued):
r < L: Due to the successive dependence between the layers, the
value of zr−1nj influences all the values zrnk, k = 1, 2, . . . , kr of the
next layer. Employing the chain rule for differentiation, we get

δr−1nj =
∂Jn

∂zr−1nj

=

kr∑
k=1

∂Jn
∂zrnk

∂zrnk
∂zr−1nj

, (6)

or
∂Jn

∂zr−1nj

=

kr∑
k=1

δrnk
∂zrnk
∂zr−1nj

. (7)

However,

∂zrnk
∂zr−1nj

=
∂
(∑kr−1

m=0 θ
r
kmy

r−1
nm

)
∂zr−1nj

, where yr−1nm = f(zr−1nm),

which leads to, ∂zrnk
∂zr−1nj

= θrkjf
′
(zr−1nj

)
,

and combining with (6)-(7), we obtain for j = 1, 2, . . . , kr−1,

δr−1nj =
(kr∑

k=1

δrnkθ
r
kj

)
f
′
(zr−1nj) := δr−1nj = er−1nj f

′
(zr−1nj). (8)

Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm
• The Gradient Descent Backpropagation Algorithm

Initialization

Initialize all synaptic weights and biases randomly with small, but not very small, values. Select µ
Set y0nj = xnj , j = 1, 2, . . . , k0 = l, n = 1, 2, . . . , N .

Repeat; Each repetition completes an epoch.

For n = 1, 2, . . . , N, Do
- For r = 1, 2, . . . , L, Do; Forward computations.
- For j = 1, 2, . . . , kr , Do
- Compute zrnj from (3).

- Compute yrnj = f(zrnj).

- End For
- End For
End For
For j = 1, 2, . . . , kL, Do

- Compute δLnj from (5).

End For
For r = L,L− 1, . . . , 2, Do; Backward computations.
- For j = 1, 2, . . . , kr , Do

- Compute δr−1
nj from (8).

- End For

End For

End For

For r = 1, 2, . . . , L, Do; Update the weights.

For j = 1, 2, . . . , kr , Do
- Compute ∆θrj from (4)

- θrj = θrj + ∆θrj

End For

End For
Until a stop criterion is met.

Sergios Theodoridis University of Athens Machine Learning 40/162

The Backpropagation Algorithm

Some Remarks on the Backpropagation Algorithm

• One possibility to terminate the algorithm is to track the value of
the cost function, and stop the algorithm when this gets smaller
than a preselected threshold. An alternative path is to check for
the gradient values and stop when these become small.

• As it is the case with all gradient descent schemes, the choice of
the step size, µ, is very critical; it has to be small to guarantee
convergence, but not too small, otherwise convergence speed
slows down. Adaptive values of µ, whose value depends on the
iteration are more appropriate. Soon, such techniques will be
discussed.

Sergios Theodoridis University of Athens Machine Learning 41/162

The Backpropagation Algorithm

Some Remarks on the Backpropagation Algorithm

• One possibility to terminate the algorithm is to track the value of
the cost function, and stop the algorithm when this gets smaller
than a preselected threshold. An alternative path is to check for
the gradient values and stop when these become small.

• As it is the case with all gradient descent schemes, the choice of
the step size, µ, is very critical; it has to be small to guarantee
convergence, but not too small, otherwise convergence speed
slows down. Adaptive values of µ, whose value depends on the
iteration are more appropriate. Soon, such techniques will be
discussed.

Sergios Theodoridis University of Athens Machine Learning 41/162

The Backpropagation Algorithm

• Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

• If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

• However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

• In practice, random initialization of the weights is carried out.
Yet, initialization remains a critical part of the algorithm.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

• Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

• If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

• However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

• In practice, random initialization of the weights is carried out.
Yet, initialization remains a critical part of the algorithm.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

• Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

• If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

• However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

• In practice, random initialization of the weights is carried out.
Yet, initialization remains a critical part of the algorithm.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

• Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

• If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

• However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

• In practice, random initialization of the weights is carried out.
Yet, initialization remains a critical part of the algorithm.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

• Pattern-by-pattern operation: The previous scheme is of the
batch type of operation, where the weights are updated once per
epoch. The alternative route is the pattern-by-pattern/online
mode of operation; the weights are updated at every time instant
when a new pattern appears in the input.

• Mini-batch operation: There are also intermediate ways, where
the update is performed every N1 < N samples; this technique is
also referred as mini-batch mode of operation. Batch and
mini-batch modes have an averaging effect on the the
computation of the gradients.

Sergios Theodoridis University of Athens Machine Learning 43/162

The Backpropagation Algorithm

• Pattern-by-pattern operation: The previous scheme is of the
batch type of operation, where the weights are updated once per
epoch. The alternative route is the pattern-by-pattern/online
mode of operation; the weights are updated at every time instant
when a new pattern appears in the input.

• Mini-batch operation: There are also intermediate ways, where
the update is performed every N1 < N samples; this technique is
also referred as mini-batch mode of operation. Batch and
mini-batch modes have an averaging effect on the the
computation of the gradients.

Sergios Theodoridis University of Athens Machine Learning 43/162

Vanishing, Exploding and Unstable Gradients

• Due to the hierarchical computations of the gradients, it turns
out that their computation involves a sequence of products of
parameters with derivatives of the activation function (e.g., Eq.
(8)). The closer to the input layer we are, the more products the
computation of the respected gradients involve.

• Taking into account that the derivatives of the activation
function can be less than one (e.g., for sigmoid functions can be
very small), and if the parameters values are not very large, this
can make the gradients, associated to the parameters in the lower
layers, vanishingly small, especially if networks with many layers
are involved. This can make learning extremely slow.

Sergios Theodoridis University of Athens Machine Learning 44/162

Vanishing, Exploding and Unstable Gradients

• Due to the hierarchical computations of the gradients, it turns
out that their computation involves a sequence of products of
parameters with derivatives of the activation function (e.g., Eq.
(8)). The closer to the input layer we are, the more products the
computation of the respected gradients involve.

• Taking into account that the derivatives of the activation
function can be less than one (e.g., for sigmoid functions can be
very small), and if the parameters values are not very large, this
can make the gradients, associated to the parameters in the lower
layers, vanishingly small, especially if networks with many layers
are involved. This can make learning extremely slow.

Sergios Theodoridis University of Athens Machine Learning 44/162

The Backpropagation Algorithm

• On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

• Another related problem is that gradients in different layers can
take values of different scales. Thus, some layers can learn faster
that others, and this can make the learning process unstable.

• To cope with such difficulties, a number of modifications of the
basic gradient scheme and a number of practical hints have been
proposed.

Sergios Theodoridis University of Athens Machine Learning 45/162

The Backpropagation Algorithm

• On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

• Another related problem is that gradients in different layers can
take values of different scales. Thus, some layers can learn faster
that others, and this can make the learning process unstable.

• To cope with such difficulties, a number of modifications of the
basic gradient scheme and a number of practical hints have been
proposed.

Sergios Theodoridis University of Athens Machine Learning 45/162

The Backpropagation Algorithm

• On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

• Another related problem is that gradients in different layers can
take values of different scales. Thus, some layers can learn faster
that others, and this can make the learning process unstable.

• To cope with such difficulties, a number of modifications of the
basic gradient scheme and a number of practical hints have been
proposed.

Sergios Theodoridis University of Athens Machine Learning 45/162

Beyond The Basic Gradient Descent Scheme

• Gradient descent with a momentum term: One way to improve
the convergence rate is to employ the so called momentum term,
a. The correction term is now modified as

∆θrj (new) = a∆θrj (old) + ∆θrj

The effect is to increase the step size in regions, where the cost
function exhibits low curvature.

• Indeed, assume that the gradient is approximately constant over a
number of steps, say I. Then, it can be shown that

∆θrj (I) ≈ − µ

1− α
g,

where g is the gradient over the I steps. That is, the use of the
momentum term increases the correction by a factor 1− α. Note
that adaptive versions for the momentum term a are possible and
popular.

Sergios Theodoridis University of Athens Machine Learning 46/162

Beyond The Basic Gradient Descent Scheme

• Gradient descent with a momentum term: One way to improve
the convergence rate is to employ the so called momentum term,
a. The correction term is now modified as

∆θrj (new) = a∆θrj (old) + ∆θrj

The effect is to increase the step size in regions, where the cost
function exhibits low curvature.

• Indeed, assume that the gradient is approximately constant over a
number of steps, say I. Then, it can be shown that

∆θrj (I) ≈ − µ

1− α
g,

where g is the gradient over the I steps. That is, the use of the
momentum term increases the correction by a factor 1− α. Note
that adaptive versions for the momentum term a are possible and
popular.

Sergios Theodoridis University of Athens Machine Learning 46/162

Beyond The Basic Gradient Descent Scheme

• A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

Newton-type and related simplified versions for computing the
associated Hessian matrix.

A number of versions, using more recent results on optimization,
have also been suggested; for example, schemes based on the
ADAGARD or on the Nesterov rationale, which have been
considered and discussed in the text in Chapter 8.

Sergios Theodoridis University of Athens Machine Learning 47/162

Beyond The Basic Gradient Descent Scheme

• A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

Newton-type and related simplified versions for computing the
associated Hessian matrix.

A number of versions, using more recent results on optimization,
have also been suggested; for example, schemes based on the
ADAGARD or on the Nesterov rationale, which have been
considered and discussed in the text in Chapter 8.

Sergios Theodoridis University of Athens Machine Learning 47/162

Beyond The Basic Gradient Descent Scheme

• A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

Newton-type and related simplified versions for computing the
associated Hessian matrix.

A number of versions, using more recent results on optimization,
have also been suggested; for example, schemes based on the
ADAGARD or on the Nesterov rationale, which have been
considered and discussed in the text in Chapter 8.

Sergios Theodoridis University of Athens Machine Learning 47/162

Selecting A Cost Function

• The choice of a loss function for the optimization is tightly
related with the choice of the output activation function. A
wrong combination can severely affect the learning performance
of a network.

• A wrong combination: Let us select the squared error loss
function and the logistic sigmoid function as the output
nonlinearity, i.e.,

f(z) = σ(z) =
1

1 + exp(−az)
, J(e) =

1

2
(y − ŷ)2,

where a single output neuron is considered and the time index has
been suppressed.

Sergios Theodoridis University of Athens Machine Learning 48/162

Selecting A Cost Function

• The choice of a loss function for the optimization is tightly
related with the choice of the output activation function. A
wrong combination can severely affect the learning performance
of a network.

• A wrong combination: Let us select the squared error loss
function and the logistic sigmoid function as the output
nonlinearity, i.e.,

f(z) = σ(z) =
1

1 + exp(−az)
, J(e) =

1

2
(y − ŷ)2,

where a single output neuron is considered and the time index has
been suppressed.

Sergios Theodoridis University of Athens Machine Learning 48/162

Selecting A Cost Function

• Assume L layers and let the vector of the parameters, associated
with the single output neuron, be θL. The vector of the outputs
of the previous (L− 1) layer is denoted as
yL := [yL−11 , yL−12 , . . . , yL−1kL−1

], see figure below. Then, the
output of the network will be

ŷ = σ(zL), zL := θL
T
yL−1,

where the bias term has been included in the vector of
parameters.

Sergios Theodoridis University of Athens Machine Learning 49/162

Selecting A Cost Function

• For the specific combination of loss and activation functions, it
turns out that

∂J

∂θL
= (y − ŷ)σ

′
(zL)yL−1.

• Observe that for values of zL not close to zero, the derivative of
the logistic sigmoid function takes very small values, due to its
saturating nature. However, very small values of the gradient lead
to considerable slow down of the convergence of the gradient
descent type algorithms.

• In contrast, this is not the case, if the squared error loss function
is combined with a linear activation function. This is a perfectly
good combination (try it).

Sergios Theodoridis University of Athens Machine Learning 50/162

Selecting A Cost Function

• For the specific combination of loss and activation functions, it
turns out that

∂J

∂θL
= (y − ŷ)σ

′
(zL)yL−1.

• Observe that for values of zL not close to zero, the derivative of
the logistic sigmoid function takes very small values, due to its
saturating nature. However, very small values of the gradient lead
to considerable slow down of the convergence of the gradient
descent type algorithms.

• In contrast, this is not the case, if the squared error loss function
is combined with a linear activation function. This is a perfectly
good combination (try it).

Sergios Theodoridis University of Athens Machine Learning 50/162

Selecting A Cost Function

• For the specific combination of loss and activation functions, it
turns out that

∂J

∂θL
= (y − ŷ)σ

′
(zL)yL−1.

• Observe that for values of zL not close to zero, the derivative of
the logistic sigmoid function takes very small values, due to its
saturating nature. However, very small values of the gradient lead
to considerable slow down of the convergence of the gradient
descent type algorithms.

• In contrast, this is not the case, if the squared error loss function
is combined with a linear activation function. This is a perfectly
good combination (try it).

Sergios Theodoridis University of Athens Machine Learning 50/162

Cross-Entropy Loss Function

• If one adopts as target values, in a classification task, the 0, 1
values, i.e., yn ∈ {0, 1}, and assuming kL output nodes, the
cross-entropy cost is defined as

J = −
N∑

n=1

kL∑
k=1

(ynk ln ŷnk + (1− ynk) ln(1− ŷnk)) ,

where N is the number of the training points.

• The minimum of this cost function is achieved when ynk = ŷnk.
Viewing ŷnk as the probability of observing an “1” at the
respective node, then the probability P (yn) is equal to

P (yn) =

kL∏
k=1

(ŷnk)ynk(1− ŷnk)1−ynk .

Thus, the cross entropy can be interpreted as the negative
log-likelihood function over the training samples.

Sergios Theodoridis University of Athens Machine Learning 51/162

Cross-Entropy Loss Function

• If one adopts as target values, in a classification task, the 0, 1
values, i.e., yn ∈ {0, 1}, and assuming kL output nodes, the
cross-entropy cost is defined as

J = −
N∑

n=1

kL∑
k=1

(ynk ln ŷnk + (1− ynk) ln(1− ŷnk)) ,

where N is the number of the training points.

• The minimum of this cost function is achieved when ynk = ŷnk.
Viewing ŷnk as the probability of observing an “1” at the
respective node, then the probability P (yn) is equal to

P (yn) =

kL∏
k=1

(ŷnk)ynk(1− ŷnk)1−ynk .

Thus, the cross entropy can be interpreted as the negative
log-likelihood function over the training samples.

Sergios Theodoridis University of Athens Machine Learning 51/162

Cross-Entropy Loss Function

• It turns out that, combining the cross entropy with the logistic
sigmoid activation in the output nodes renders the associated
gradients independent of the respective derivative and the
gradients depend solely on the errors committed.

Sergios Theodoridis University of Athens Machine Learning 52/162

Softmax Output Activation Function

• Softmax activation function: Although we have interpreted the
outputs as probabilities, there is no guarantee that these add to
one. This can be enforced if the activation function takes the
form

ŷnk =
exp(zLnk)∑kL

m=1 exp(zLnm)
,

which is known as the softmax function.

• It turns out that, combining the softmax activation with the
cross-entropy loss makes the gradients equal to

∂J

∂θL
= (y − ŷ)yL−1,

where time and node indices have been suppressed. Thus, the
gradients depend on the error and no derivative is involved.

Sergios Theodoridis University of Athens Machine Learning 53/162

Softmax Output Activation Function

• Softmax activation function: Although we have interpreted the
outputs as probabilities, there is no guarantee that these add to
one. This can be enforced if the activation function takes the
form

ŷnk =
exp(zLnk)∑kL

m=1 exp(zLnm)
,

which is known as the softmax function.

• It turns out that, combining the softmax activation with the
cross-entropy loss makes the gradients equal to

∂J

∂θL
= (y − ŷ)yL−1,

where time and node indices have been suppressed. Thus, the
gradients depend on the error and no derivative is involved.

Sergios Theodoridis University of Athens Machine Learning 53/162

Simulation Examples

• Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with a = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

• The momentum and the adaptive momentum algorithms, as explained
in the book, were used. The weights were initialized by a uniform
pseudorandom distribution between 0 and 1. The obtained results are
shown in the following figures.

Sergios Theodoridis University of Athens Machine Learning 54/162

Simulation Examples

• Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with a = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

• The momentum and the adaptive momentum algorithms, as explained
in the book, were used. The weights were initialized by a uniform
pseudorandom distribution between 0 and 1. The obtained results are
shown in the following figures.

Sergios Theodoridis University of Athens Machine Learning 54/162

Simulation Examples

• Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with a = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

• The momentum and the adaptive momentum algorithms, as explained
in the book, were used. The weights were initialized by a uniform
pseudorandom distribution between 0 and 1. The obtained results are
shown in the following figures.

(a) Error convergence curves for the adaptive momentum (red line) and the momentum algorithms. Note that
the adaptive momentum leads to faster convergence. (b) The classifier formed by the multilayer perceptron.

Sergios Theodoridis University of Athens Machine Learning 54/162

The Rectified Linear Unit (ReLU)

• Besides the two already mentioned activation functions, more
recently, a new one has become very popular for use in the hidden
layers, especially in the context of deep networks. The rectified
linear unit (ReLU) is defined as

f(z) := max (0, z)

and it is shown in the figure

Sergios Theodoridis University of Athens Machine Learning 55/162

The Rectified Linear Unit (ReLU)

• It has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

• Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

• Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., θ0 = 0.1; this increases the probability
the the input to the activation has positive values.

• Note that at z = 0, the derivative is not defined; yet, in the
extreme case that z is exactly zero, one can set the derivative
either equal to zero or to one (for those familiar with the notion
of subgradient, this makes sense!)

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

• It has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

• Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

• Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., θ0 = 0.1; this increases the probability
the the input to the activation has positive values.

• Note that at z = 0, the derivative is not defined; yet, in the
extreme case that z is exactly zero, one can set the derivative
either equal to zero or to one (for those familiar with the notion
of subgradient, this makes sense!)

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

• It has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

• Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

• Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., θ0 = 0.1; this increases the probability
the the input to the activation has positive values.

• Note that at z = 0, the derivative is not defined; yet, in the
extreme case that z is exactly zero, one can set the derivative
either equal to zero or to one (for those familiar with the notion
of subgradient, this makes sense!)

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

• It has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

• Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

• Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., θ0 = 0.1; this increases the probability
the the input to the activation has positive values.

• Note that at z = 0, the derivative is not defined; yet, in the
extreme case that z is exactly zero, one can set the derivative
either equal to zero or to one (for those familiar with the notion
of subgradient, this makes sense!)

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

• The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

• Consider the function:

f(z) = max(0, z) + αmin(0, z).

When α = −1, the resulting is known as the absolute value
rectification.
When α is assigned a fixed small value, e.g., α = 0.01, the
resulting function is coined as the leaky ReLU.
When α is left as a parameter to be learned during the training, it
is known as the parametric ReLU.
Maxout unit: In this variant, a fixed number of, say k, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

Sergios Theodoridis University of Athens Machine Learning 57/162

Which Activation Function Then?

• Which nonlinearity is the best? Unfortunately, there is not a
universal answer to that. It depends on the data and the problem
at hand. At the time of developing these slides, it seems that the
ReLU versions are the preferable choice, for a number of
mainstream applications.

Sergios Theodoridis University of Athens Machine Learning 58/162

Pruning a Network

• Pruning a Network: A crucial factor in training NNs is to decide
the size of the network. The size is directly related to the number
of weights to be estimated and we know that, in any parametric
modeling method, if the number of free parameters is large
enough with respect to the number of training data, overfitting
is bound to happen.

• In practice, the classical approach is to start with a large enough
number of neurons and then use a regularization technique to
push the less informative weights to low values, which are then
removed. To this end, there exists a number of different
regularization approaches, which have been proposed over the
years.

Sergios Theodoridis University of Athens Machine Learning 59/162

Pruning a Network

• Pruning a Network: A crucial factor in training NNs is to decide
the size of the network. The size is directly related to the number
of weights to be estimated and we know that, in any parametric
modeling method, if the number of free parameters is large
enough with respect to the number of training data, overfitting
is bound to happen.

• In practice, the classical approach is to start with a large enough
number of neurons and then use a regularization technique to
push the less informative weights to low values, which are then
removed. To this end, there exists a number of different
regularization approaches, which have been proposed over the
years.

Sergios Theodoridis University of Athens Machine Learning 59/162

Pruning a Network-Regularization

• Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(θ), its regularized version is used,
i.e.,

J
′
(θ) = J(θ) + λ‖θ‖2.

• In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

• Moreover, it is even better if one groups the parameters of
different layers together and employs different regularizing
constants for each group.

• More recently, the use of the sparsity promoting `1 norm has been
proposed in places of the Euclidean norm.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

• Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(θ), its regularized version is used,
i.e.,

J
′
(θ) = J(θ) + λ‖θ‖2.

• In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

• Moreover, it is even better if one groups the parameters of
different layers together and employs different regularizing
constants for each group.

• More recently, the use of the sparsity promoting `1 norm has been
proposed in places of the Euclidean norm.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

• Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(θ), its regularized version is used,
i.e.,

J
′
(θ) = J(θ) + λ‖θ‖2.

• In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

• Moreover, it is even better if one groups the parameters of
different layers together and employs different regularizing
constants for each group.

• More recently, the use of the sparsity promoting `1 norm has been
proposed in places of the Euclidean norm.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

• Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(θ), its regularized version is used,
i.e.,

J
′
(θ) = J(θ) + λ‖θ‖2.

• In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

• Moreover, it is even better if one groups the parameters of
different layers together and employs different regularizing
constants for each group.

• More recently, the use of the sparsity promoting `1 norm has been
proposed in places of the Euclidean norm.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

• Weight elimination: Another path is include other functions than
norms. An example is,

J ′(θ) = J(θ) + λ

K∑
k=1

θ2k
θ2h + θ2k

.

where K is the number of the weights involved and θh is a
preselected threshold value.

• A careful look at this function reveals that, if θk < θh the penalty
term goes to zero very fast. In contrast, for values θk > θh, the
penalty term tends to unity. In this way, less significant weights
are pushed towards to zero.

Sergios Theodoridis University of Athens Machine Learning 61/162

Pruning a Network-Regularization

• Weight elimination: Another path is include other functions than
norms. An example is,

J ′(θ) = J(θ) + λ

K∑
k=1

θ2k
θ2h + θ2k

.

where K is the number of the weights involved and θh is a
preselected threshold value.

• A careful look at this function reveals that, if θk < θh the penalty
term goes to zero very fast. In contrast, for values θk > θh, the
penalty term tends to unity. In this way, less significant weights
are pushed towards to zero.

Sergios Theodoridis University of Athens Machine Learning 61/162

Simulation Examples

• Pruning of the network: The samples of the two classes are denoted by
black and red “◦” respectively. Figure (a) on the left corresponds to a
multilayer perceptron with two hidden layers and 20 neurons in each of
them, amounting to a total of 480 weights. Training was performed via
the backpropagation algorithm. The overfitting nature of the resulting
curve is readily observed. Figure (b) on the right corresponds to the
same multilayer perceptron trained with a pruning algorithm. Finally,
only 25 of the 480 weights have survived, and the curve is simplified to
a straight line.

Sergios Theodoridis University of Athens Machine Learning 62/162

Pruning a Network-Regularization Via Noise Injection

• Adding some small noise to the input data turns out to be
equivalent with modifying the cost function by adding an extra
term, which acts as a regularizer.

• Adding some small noise to the unknown parameters, during their
training, pertubes the solution. Using Taylor series expansion
arguments around this perturbation, it turns out that this
procedure is equivalent with regularizing the cost function via the
norm of the gradient of the w.r. to the parameters.

Sergios Theodoridis University of Athens Machine Learning 63/162

Pruning a Network-Regularization Via Noise Injection

• Adding some small noise to the input data turns out to be
equivalent with modifying the cost function by adding an extra
term, which acts as a regularizer.

• Adding some small noise to the unknown parameters, during their
training, pertubes the solution. Using Taylor series expansion
arguments around this perturbation, it turns out that this
procedure is equivalent with regularizing the cost function via the
norm of the gradient of the w.r. to the parameters.

Sergios Theodoridis University of Athens Machine Learning 63/162

Regularization-Artificially Expanding The Data Set

• The source of overfitting is the relatively limited number of the
training data compared to the size of the network. Thus,
increasing the data size has an equivalent effect as regularization.
It decreases overfitting.

• In certain applications, one can artificially generate more data.
For example, in an OCR task, one can generate many characters
in different rotations. Similar arguments hold for object
recognition tasks.

• Soon, we will discuss ways of generating fake data.

Sergios Theodoridis University of Athens Machine Learning 64/162

Regularization-Artificially Expanding The Data Set

• The source of overfitting is the relatively limited number of the
training data compared to the size of the network. Thus,
increasing the data size has an equivalent effect as regularization.
It decreases overfitting.

• In certain applications, one can artificially generate more data.
For example, in an OCR task, one can generate many characters
in different rotations. Similar arguments hold for object
recognition tasks.

• Soon, we will discuss ways of generating fake data.

Sergios Theodoridis University of Athens Machine Learning 64/162

Regularization-Artificially Expanding The Data Set

• The source of overfitting is the relatively limited number of the
training data compared to the size of the network. Thus,
increasing the data size has an equivalent effect as regularization.
It decreases overfitting.

• In certain applications, one can artificially generate more data.
For example, in an OCR task, one can generate many characters
in different rotations. Similar arguments hold for object
recognition tasks.

• Soon, we will discuss ways of generating fake data.

Sergios Theodoridis University of Athens Machine Learning 64/162

Dropout

• This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

• One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P .

Train the remaining nodes according to the selected algorithm.

Sergios Theodoridis University of Athens Machine Learning 65/162

Dropout

• This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

• One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P .

Train the remaining nodes according to the selected algorithm.

Sergios Theodoridis University of Athens Machine Learning 65/162

Dropout

• This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

• One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P .

Train the remaining nodes according to the selected algorithm.

Sergios Theodoridis University of Athens Machine Learning 65/162

Dropout

• This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

• One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P .

Train the remaining nodes according to the selected algorithm.

Sergios Theodoridis University of Athens Machine Learning 65/162

Dropout

• Thus, at each iteration step, a different subnetwork is trained. In
other words, at each iteration step, only the parameters of one
subnetwork are updated. The parameters of the “removed” nodes
are left unchanged, frozen at their current estimates.

Sergios Theodoridis University of Athens Machine Learning 66/162

Full Network And Subnetwork For The Dropout Method

Full network

Sergios Theodoridis University of Athens Machine Learning 67/162

Full Network And Subnetwork For The Dropout Method

Full network Red nodes and connections

to be removed

Sergios Theodoridis University of Athens Machine Learning 67/162

Full Network And Subnetwork For The Dropout Method

Full network Red nodes removed

Sergios Theodoridis University of Athens Machine Learning 67/162

Dropout

• Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P .

• Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2K). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

• This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

• Typical values for the probabilities are: For hidden layers P = 0.5
and for input units P = 0.8.

Sergios Theodoridis University of Athens Machine Learning 68/162

Dropout

• Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P .

• Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2K). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

• This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

• Typical values for the probabilities are: For hidden layers P = 0.5
and for input units P = 0.8.

Sergios Theodoridis University of Athens Machine Learning 68/162

Dropout

• Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P .

• Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2K). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

• This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

• Typical values for the probabilities are: For hidden layers P = 0.5
and for input units P = 0.8.

Sergios Theodoridis University of Athens Machine Learning 68/162

Dropout

• Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P .

• Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2K). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

• This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

• Typical values for the probabilities are: For hidden layers P = 0.5
and for input units P = 0.8.

Sergios Theodoridis University of Athens Machine Learning 68/162

Dropout

• Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

• In other words, the network is forced to learn while parts of the
network are missing at random.

• Some more theoretically pleasing arguments have been given via a
Bayesian inference view of a neural network.

Sergios Theodoridis University of Athens Machine Learning 69/162

Dropout

• Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

• In other words, the network is forced to learn while parts of the
network are missing at random.

• Some more theoretically pleasing arguments have been given via a
Bayesian inference view of a neural network.

Sergios Theodoridis University of Athens Machine Learning 69/162

Dropout

• Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

• In other words, the network is forced to learn while parts of the
network are missing at random.

• Some more theoretically pleasing arguments have been given via a
Bayesian inference view of a neural network.

Sergios Theodoridis University of Athens Machine Learning 69/162

Simulation Example

• Data Base used MNIST with 55000 handwritten digits for the
training and 10000 handwritten digits for testing.

• A feedforward NN was used with 784-2000-2000-10 neurons.

• ReLU units were used for the hidden layers and ten softmax
output units were employed.

• Cross entropy was used as a cost function, the mini batch size
was 100 and the learning rate for the gradient backpropagation
algorithm was set equal to 0.01.

0 100 200 300 400 500 600
Epochs

100

120

140

160

180

200

220

240

N
u
m

b
e
r

o
f

E
rr

o
rs

Test Error

no Dropout
Dropout 50% in hidden layers
Dropout 50% in hidden layers and 20% in input layer

Sergios Theodoridis University of Athens Machine Learning 70/162

Universal Approximation Property of Feed-Forward Neural Networks

• So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

• To this end, some strong theoretical results have been developed
and are still being developed.

• Let us consider a two-layer network, with one hidden layer and
with a single output linear node. The output of the network is
then written as

ĝ(x) =

K∑
k=1

θokf(θhTk x) + θo0,

where θhk denotes the synaptic weights and bias term defining the
kth hidden neuron and the superscript “o” refers to the output
neuron. Then, the following theorem holds true.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

• So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

• To this end, some strong theoretical results have been developed
and are still being developed.

• Let us consider a two-layer network, with one hidden layer and
with a single output linear node. The output of the network is
then written as

ĝ(x) =

K∑
k=1

θokf(θhTk x) + θo0,

where θhk denotes the synaptic weights and bias term defining the
kth hidden neuron and the superscript “o” refers to the output
neuron. Then, the following theorem holds true.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

• So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

• To this end, some strong theoretical results have been developed
and are still being developed.

• Let us consider a two-layer network, with one hidden layer and
with a single output linear node. The output of the network is
then written as

ĝ(x) =

K∑
k=1

θokf(θhTk x) + θo0,

where θhk denotes the synaptic weights and bias term defining the
kth hidden neuron and the superscript “o” refers to the output
neuron. Then, the following theorem holds true.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

• So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

• To this end, some strong theoretical results have been developed
and are still being developed.

• Let us consider a two-layer network, with one hidden layer and
with a single output linear node. The output of the network is
then written as

ĝ(x) =

K∑
k=1

θokf(θhTk x) + θo0,

where θhk denotes the synaptic weights and bias term defining the
kth hidden neuron and the superscript “o” refers to the output
neuron. Then, the following theorem holds true.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

• Theorem: Let g(x) be a continuous function defined in a
compact (closed and bounded) subset S ⊂ Rl and any ε > 0.
Then there exists a K(ε) and a two-layer network of the previous
form, so that

|g(x)− ĝ(x)| < ε, ∀x ∈ S.

It has been shown that the approximation error decreases
according to an O(1

K) rule.

• In other words, the input dimensionality does not enter into the
scene and the error depends on the number of neurons used. The
theorem states that a two-layer NN network is sufficient to
approximate any continuous function.

Sergios Theodoridis University of Athens Machine Learning 72/162

Universal Approximation Property of Feed-Forward Neural Networks

• Theorem: Let g(x) be a continuous function defined in a
compact (closed and bounded) subset S ⊂ Rl and any ε > 0.
Then there exists a K(ε) and a two-layer network of the previous
form, so that

|g(x)− ĝ(x)| < ε, ∀x ∈ S.

It has been shown that the approximation error decreases
according to an O(1

K) rule.

• In other words, the input dimensionality does not enter into the
scene and the error depends on the number of neurons used. The
theorem states that a two-layer NN network is sufficient to
approximate any continuous function.

Sergios Theodoridis University of Athens Machine Learning 72/162

Universal Approximation Property of Feed-Forward Neural Networks

• However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

• This is where the use of more layers can be advantageous. Using
more layers, the overall number of neurons, needed to achieve
certain approximation, may be much smaller.

• This is point that ignites our the interest for deep networks,
involving many hidden layers.

Sergios Theodoridis University of Athens Machine Learning 73/162

Universal Approximation Property of Feed-Forward Neural Networks

• However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

• This is where the use of more layers can be advantageous. Using
more layers, the overall number of neurons, needed to achieve
certain approximation, may be much smaller.

• This is point that ignites our the interest for deep networks,
involving many hidden layers.

Sergios Theodoridis University of Athens Machine Learning 73/162

Universal Approximation Property of Feed-Forward Neural Networks

• However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

• This is where the use of more layers can be advantageous. Using
more layers, the overall number of neurons, needed to achieve
certain approximation, may be much smaller.

• This is point that ignites our the interest for deep networks,
involving many hidden layers.

Sergios Theodoridis University of Athens Machine Learning 73/162

The Need for Deep Architectures

• We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

The input layer described each pattern as a point in the feature
space.

The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

The second hidden layer of nodes, based on the information
provided by the previous layer, encoded information related to the
classes; this is a further representation abstraction, which carries
some type of semantic meaning. For example, it could provide
information of whether a tumor is malignant or benign, in a
related a medical application.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

• We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

The input layer described each pattern as a point in the feature
space.

The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

The second hidden layer of nodes, based on the information
provided by the previous layer, encoded information related to the
classes; this is a further representation abstraction, which carries
some type of semantic meaning. For example, it could provide
information of whether a tumor is malignant or benign, in a
related a medical application.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

• We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

The input layer described each pattern as a point in the feature
space.

The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

The second hidden layer of nodes, based on the information
provided by the previous layer, encoded information related to the
classes; this is a further representation abstraction, which carries
some type of semantic meaning. For example, it could provide
information of whether a tumor is malignant or benign, in a
related a medical application.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

• We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

The input layer described each pattern as a point in the feature
space.

The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

The second hidden layer of nodes, based on the information
provided by the previous layer, encoded information related to the
classes; this is a further representation abstraction, which carries
some type of semantic meaning. For example, it could provide
information of whether a tumor is malignant or benign, in a
related a medical application.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

• It turns out that, the previous reported hierarchical type of
representations of the input patterns mimics the way that a
mammal’s brain follows in order to understand and sense the
world around us; in the case of humans, this is the physical
mechanism in the brain, which intelligence is built upon.

• The brain of the mammals is organized in a number of layers of
neurons and each layer provides a different representation of the
input percept. In this way, different levels of abstraction are
formed, via a hierarchy of transformations.

Sergios Theodoridis University of Athens Machine Learning 75/162

The Need for Deep Architectures

• It turns out that, the previous reported hierarchical type of
representations of the input patterns mimics the way that a
mammal’s brain follows in order to understand and sense the
world around us; in the case of humans, this is the physical
mechanism in the brain, which intelligence is built upon.

• The brain of the mammals is organized in a number of layers of
neurons and each layer provides a different representation of the
input percept. In this way, different levels of abstraction are
formed, via a hierarchy of transformations.

Sergios Theodoridis University of Athens Machine Learning 75/162

The Need for Deep Architectures

• For example, in the primate visual system, this hierarchy involves
first detection of edges, then formation of primitive shapes and
every subsequent stage forms more complex visual shapes, till
finally a semantics concept is formed; e.g., a car moving in a
video scene, a person sitting in an image. The cortex of our brain
can be seen as a multilayer architecture with 5-10 layers
dedicated only to our visual system.

• An issue that is now raised is whether one can obtain an
equivalent input-output representation via a relatively simple
functional formulation, e.g., via networks with less than three
layers of neurons/processing elements, maybe at the expense of
more elements per layer.

Sergios Theodoridis University of Athens Machine Learning 76/162

The Need for Deep Architectures

• For example, in the primate visual system, this hierarchy involves
first detection of edges, then formation of primitive shapes and
every subsequent stage forms more complex visual shapes, till
finally a semantics concept is formed; e.g., a car moving in a
video scene, a person sitting in an image. The cortex of our brain
can be seen as a multilayer architecture with 5-10 layers
dedicated only to our visual system.

• An issue that is now raised is whether one can obtain an
equivalent input-output representation via a relatively simple
functional formulation, e.g., via networks with less than three
layers of neurons/processing elements, maybe at the expense of
more elements per layer.

Sergios Theodoridis University of Athens Machine Learning 76/162

The Need for Deep Architectures

• The answer to the first of the previously stated two point is yes,
as long as the input-output dependence relation is simple enough.
However, for more complex tasks, where more complex concepts
have to be learned, e.g., recognition of a scene in a video
recording, language and speech recognition, the underlying
functional dependence is of very a complex nature that we are
unable to express it analytically in a simple way.

Sergios Theodoridis University of Athens Machine Learning 77/162

The Need for Deep Architectures

• The answer to the second point, concerning networks, lies in what
is known as compactness of representation. We say that a
network, realizing an input-output functional dependence, is
compact if it consists of relatively few free parameters (few
computational elements) to be learned/tuned during the training
phase. Thus, for a given number of training points, we expect
compact representations to result in better generalization
performance.

Sergios Theodoridis University of Athens Machine Learning 78/162

The Need for Deep Architectures

• Using networks with more layers can lead to more compact
representations of the input-output relation. Results from the
theory of circuits of Boolean functions suggest that a function,
which can compactly be realized by, say, k layers of logic
elements, may need an exponentially large number of elements if
it is realized via k − 1 layers.

• Some of these results have been generalized and are valid for
learning algorithms in some special cases. For example, it has
been shown that, for a class of deep networks and target
functions, one needs a substantially smaller number of nodes to
achieve a predefined accuracy compared to a shallow one.

Sergios Theodoridis University of Athens Machine Learning 79/162

The Need for Deep Architectures

• Using networks with more layers can lead to more compact
representations of the input-output relation. Results from the
theory of circuits of Boolean functions suggest that a function,
which can compactly be realized by, say, k layers of logic
elements, may need an exponentially large number of elements if
it is realized via k − 1 layers.

• Some of these results have been generalized and are valid for
learning algorithms in some special cases. For example, it has
been shown that, for a class of deep networks and target
functions, one needs a substantially smaller number of nodes to
achieve a predefined accuracy compared to a shallow one.

Sergios Theodoridis University of Athens Machine Learning 79/162

Learning Deep Networks

• A major drawback of multilayer NNs is that their training can
become difficult. This drawback becomes more severe if more
than two hidden layers are used. The more layers one uses, the
more difficult the training becomes. Historically, in the 1990’s,
the effort to train large networks was, practically, abandoned.

• For a long time, it was believed that, this was due to the
existence of many local minima, which caused the learning
algorithm to be trapped in a shallow one. To remedy such a
drawback, the algorithm was randomly initialized from different
points a number of times, hoping for the best result.

Sergios Theodoridis University of Athens Machine Learning 80/162

Learning Deep Networks

• A major drawback of multilayer NNs is that their training can
become difficult. This drawback becomes more severe if more
than two hidden layers are used. The more layers one uses, the
more difficult the training becomes. Historically, in the 1990’s,
the effort to train large networks was, practically, abandoned.

• For a long time, it was believed that, this was due to the
existence of many local minima, which caused the learning
algorithm to be trapped in a shallow one. To remedy such a
drawback, the algorithm was randomly initialized from different
points a number of times, hoping for the best result.

Sergios Theodoridis University of Athens Machine Learning 80/162

Learning Deep Networks

• The view point concerning local minima is now challenged, as
new results started coming out around 2015. Theoretical as well
as experimental evidence point out that the major drawback lies
not in the local minima but in the saddle points. At the time
these slides are being developed, this is an ongoing and active
research area.

-1

-0.5

 0

 0.5

 1-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1

Sergios Theodoridis University of Athens Machine Learning 81/162

Learning Deep Networks

• Under some simplifications, it has been shown that in large size
networks most local minima yield low cost function values and
result to similar performance. Moreover, the probability of finding
a poor local minimum decreases fast as the size of the network
increases ([Choromanska, et.al. 2015]).

• In high dimensional spaces, the major drawback seems to be
posed by the proliferation of the saddle points. The existence of
such points can slow down the convergence of the training
algorithms dramatically (Dauphin, et.al, 2014]).

Sergios Theodoridis University of Athens Machine Learning 82/162

Learning Deep Networks

• Under some simplifications, it has been shown that in large size
networks most local minima yield low cost function values and
result to similar performance. Moreover, the probability of finding
a poor local minimum decreases fast as the size of the network
increases ([Choromanska, et.al. 2015]).

• In high dimensional spaces, the major drawback seems to be
posed by the proliferation of the saddle points. The existence of
such points can slow down the convergence of the training
algorithms dramatically (Dauphin, et.al, 2014]).

Sergios Theodoridis University of Athens Machine Learning 82/162

Learning Deep Networks

• Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

• A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Under certain assumptions, there are no spurious local minima
points.
If the squared norm of the gradient matrix is bounded by an ε, then
the (squared) error on the training set is also bounded by O(ε).
The generalization error is bounded by O(ε+ 1√

N
), where N is

the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

• Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

• A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Under certain assumptions, there are no spurious local minima
points.
If the squared norm of the gradient matrix is bounded by an ε, then
the (squared) error on the training set is also bounded by O(ε).
The generalization error is bounded by O(ε+ 1√

N
), where N is

the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

• Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

• A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Under certain assumptions, there are no spurious local minima
points.
If the squared norm of the gradient matrix is bounded by an ε, then
the (squared) error on the training set is also bounded by O(ε).
The generalization error is bounded by O(ε+ 1√

N
), where N is

the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

• Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

• A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Under certain assumptions, there are no spurious local minima
points.
If the squared norm of the gradient matrix is bounded by an ε, then
the (squared) error on the training set is also bounded by O(ε).
The generalization error is bounded by O(ε+ 1√

N
), where N is

the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

• Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

• A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Under certain assumptions, there are no spurious local minima
points.
If the squared norm of the gradient matrix is bounded by an ε, then
the (squared) error on the training set is also bounded by O(ε).
The generalization error is bounded by O(ε+ 1√

N
), where N is

the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

• The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

• Currently, the success of the neural networks seems to lie in the
available computational power combined with the availability of
large training data sets. The combination of ReLU activation
functions with the dropout technique, together with some
practical hints, concerning initialization, seem to offer the secret
of their success.

• The use of appropriate pre-training techniques, as we will soon
see, can also be beneficial in certain cases.

Sergios Theodoridis University of Athens Machine Learning 84/162

Learning Deep Networks

• The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

• Currently, the success of the neural networks seems to lie in the
available computational power combined with the availability of
large training data sets. The combination of ReLU activation
functions with the dropout technique, together with some
practical hints, concerning initialization, seem to offer the secret
of their success.

• The use of appropriate pre-training techniques, as we will soon
see, can also be beneficial in certain cases.

Sergios Theodoridis University of Athens Machine Learning 84/162

Learning Deep Networks

• The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

• Currently, the success of the neural networks seems to lie in the
available computational power combined with the availability of
large training data sets. The combination of ReLU activation
functions with the dropout technique, together with some
practical hints, concerning initialization, seem to offer the secret
of their success.

• The use of appropriate pre-training techniques, as we will soon
see, can also be beneficial in certain cases.

Sergios Theodoridis University of Athens Machine Learning 84/162

Features Via Convolutions

• A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

• The input to any classifier/learner is presented with a set of
features. Each input vector, xn, in the training set is a point in
the feature space. The features should encode, in a compact way,
information that resides in the raw/sensed data and it is related
to the learning task at hand.

• If, instead, the input to a neural network were the pixels of a
256× 256 image, this would correspond to a vector in a space of
dimension equal to 65536. If the first hidden layer had, say,
20000 nodes, this would amount to approximately 1.3 billion
synapses! Adding more layers, this number would explode further.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

• A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

• The input to any classifier/learner is presented with a set of
features. Each input vector, xn, in the training set is a point in
the feature space. The features should encode, in a compact way,
information that resides in the raw/sensed data and it is related
to the learning task at hand.

• If, instead, the input to a neural network were the pixels of a
256× 256 image, this would correspond to a vector in a space of
dimension equal to 65536. If the first hidden layer had, say,
20000 nodes, this would amount to approximately 1.3 billion
synapses! Adding more layers, this number would explode further.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

• A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

• The input to any classifier/learner is presented with a set of
features. Each input vector, xn, in the training set is a point in
the feature space. The features should encode, in a compact way,
information that resides in the raw/sensed data and it is related
to the learning task at hand.

• If, instead, the input to a neural network were the pixels of a
256× 256 image, this would correspond to a vector in a space of
dimension equal to 65536. If the first hidden layer had, say,
20000 nodes, this would amount to approximately 1.3 billion
synapses! Adding more layers, this number would explode further.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

• One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run” a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

• Example: Edge detection

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

• One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run” a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

• Example: Edge detection

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

• One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run” a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

• Example: Edge detection

H =

 −1 −1 −1
−1 8 −1
−1 −1 −1



Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

• One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run” a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

• Example: Edge detection

H =

 −1 −1 −1
−1 8 −1
−1 −1 −1



Original imageSergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

• Example: Edge detection

0 100 200 300 400 500

0

100

200

300

400

500

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

• Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

• Let us assume, for simplicity, that,

H =

[
h11 h12
h21 h22

]
and I =

 I(1, 1) I(1, 2) I(1, 3)
I(2, 1) I(2, 2) I(2, 3)
I(3, 1) I(3, 2) I(3, 3)

 .
• The convolution between the kernel matrix, H, and the image, I,

will be the 2× 2 feature map array, O, with elements

O(n,m) =

2∑
i=1

2∑
j=1

hijI(n+ i− 1,m+ j − 1), n,m = 1, 2.

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

• Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

• Let us assume, for simplicity, that,

H =

[
h11 h12
h21 h22

]
and I =

 I(1, 1) I(1, 2) I(1, 3)
I(2, 1) I(2, 2) I(2, 3)
I(3, 1) I(3, 2) I(3, 3)

 .
• The convolution between the kernel matrix, H, and the image, I,

will be the 2× 2 feature map array, O, with elements

O(n,m) =
2∑

i=1

2∑
j=1

hijI(n+ i− 1,m+ j − 1), n,m = 1, 2.

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

• Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

• Let us assume, for simplicity, that,

H =

[
h11 h12
h21 h22

]
and I =

 I(1, 1) I(1, 2) I(1, 3)
I(2, 1) I(2, 2) I(2, 3)
I(3, 1) I(3, 2) I(3, 3)

 .
• The convolution between the kernel matrix, H, and the image, I,

will be the 2× 2 feature map array, O, with elements

O(n,m) =
2∑

i=1

2∑
j=1

hijI(n+ i− 1,m+ j − 1), n,m = 1, 2.

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

 h11 · I(1, 1) h12 · I(1, 2) I(1, 3)
h21 · I(2, 1) h22 · I(2, 2) I(2, 3)
I(3, 1) I(3, 2) I(3, 3)

 , O =

[
O(1, 1) ∗
∗ ∗

]

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

 I(1, 1) h11 · I(1, 2) h12 · I(1, 3)
I(2, 1) h21 · I(2, 2) h22 · I(2, 3)
I(3, 1) I(3, 2) I(3, 3)

 , O =

[
O(1, 1) O(1, 2)
∗ ∗

]

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

 I(1, 1) I(1, 2) I(1, 3)
h11 · I(2, 1) h22 · I(2, 2) I(2, 3)
h21 · I(3, 1) h22 · I(3, 2) I(3, 3)

 , O =

[
O(1, 1) O(1, 2)
O(2, 1) ∗

]

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

 I(1, 1) I(1, 2) I(1, 3)
I(2, 1) h11 · I(2, 2) h21 · I(2, 3)
I(3, 1) h12 · I(3, 2) h22 · I(3, 3)

 , O =

[
O(1, 1) O(1, 2)
O(2, 1) O(2, 2)

]

Sergios Theodoridis University of Athens Machine Learning 88/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

• A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

• Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

• Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

• The basic steps performed in the front end convolution layers are:

The convolution step.
The nonlinearity step.
The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

CNN: The Convolution Step

• The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

• Thus, the parameters comprise the kernel array and they are
shared among the input pixels; moreover, in place of the
multiply-add operations convolutions are performed, instead.

• However, instead of a single kernel matrix, multiple ones are used;
each one is expected to extract different type of information, to
be encoded via a different feature map array. In the figure, three
such kernel arrays are shown to “scan” the input image, searching
for “hidden information”.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

• The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

• Thus, the parameters comprise the kernel array and they are
shared among the input pixels; moreover, in place of the
multiply-add operations convolutions are performed, instead.

• However, instead of a single kernel matrix, multiple ones are used;
each one is expected to extract different type of information, to
be encoded via a different feature map array. In the figure, three
such kernel arrays are shown to “scan” the input image, searching
for “hidden information”.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

• The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

• Thus, the parameters comprise the kernel array and they are
shared among the input pixels; moreover, in place of the
multiply-add operations convolutions are performed, instead.

• However, instead of a single kernel matrix, multiple ones are used;
each one is expected to extract different type of information, to
be encoded via a different feature map array. In the figure, three
such kernel arrays are shown to “scan” the input image, searching
for “hidden information”.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

Input Image

Feature Map 3

Feature Map 2

Feature Map 1
H3

H2

H1

Sergios Theodoridis University of Athens Machine Learning 91/162

CNN: The Convolution Step

• There is strong evidence from the visual neuroscience that, similar
computations are performed in the human brain. The idea of
employing convolutions was first exploited in the neogognitron
([Fukushima]).

• Translation invariance: A welcome byproduct of the convolution
step is that in this way, the network becomes invariant to
translations. The same kernel matrix is slided all over the input
image array. Thus, if an object has been moved within in an
image, the only difference is that, in the feature map, the
corresponding activity will move by the same amount of pixels.

Sergios Theodoridis University of Athens Machine Learning 92/162

CNN: The Convolution Step

• There is strong evidence from the visual neuroscience that, similar
computations are performed in the human brain. The idea of
employing convolutions was first exploited in the neogognitron
([Fukushima]).

• Translation invariance: A welcome byproduct of the convolution
step is that in this way, the network becomes invariant to
translations. The same kernel matrix is slided all over the input
image array. Thus, if an object has been moved within in an
image, the only difference is that, in the feature map, the
corresponding activity will move by the same amount of pixels.

Sergios Theodoridis University of Athens Machine Learning 92/162

CNN: The Convolution Step

Bit of the jargon:

• Receptive field: Each pixel in the feature map array receives input
from within a specific region of the previous (input) layer.This is
known as the corresponding receptive field.

Sergios Theodoridis University of Athens Machine Learning 93/162

CNN: The Convolution Step

Bit of the jargon:

• Receptive field: Each pixel in the feature map array receives input
from within a specific region of the previous (input) layer.This is
known as the corresponding receptive field.

• Depth: This refers to the number of kernel matrices (filters) that
are employed. For each filter, a corresponding feature map image
array results.

Input Image

Feature Map 3

Feature Map 2

Feature Map 1
H3

H2

H1

The depth of the feature map array is three

Sergios Theodoridis University of Athens Machine Learning 93/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 1:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


The resulting feature map array has size 9× 9.

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 2:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 2:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 2:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

• Example for a 3× 3 kernel matrix:

Stride 2:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


The resulting feature map array has size 4× 4.

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Zero-padding: Sometimes, we pad the input matrix with zeros
around the border pixels, so that we can apply the filter to the
bordering elements of the input image matrix.

Sergios Theodoridis University of Athens Machine Learning 95/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Zero-padding: Sometimes, we pad the input matrix with zeros
around the border pixels, so that we can apply the filter to the
bordering elements of the input image matrix.

Original array:


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



Sergios Theodoridis University of Athens Machine Learning 95/162

CNN: The Convolution Step

Bit of the jargon (continued):

• Zero-padding: Sometimes, we pad the input matrix with zeros
around the border pixels, so that we can apply the filter to the
bordering elements of the input image matrix.

After padding:



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Sergios Theodoridis University of Athens Machine Learning 95/162

CNN: The Nonlinearity Step

• Once the convolution step has been completed and feature maps
have been produced, a nonlinearity is applied to each
pixel/element of each feature map array. Typical nonlinearities
used are the sigmoid functions or the ReLUs. The latter seem to
be the preferable choice currently.

• Note that after convolution, some of the matrix elements can
become negative. These are set equal to zero, after, e.g., the
application of the ReLU.

Sergios Theodoridis University of Athens Machine Learning 96/162

CNN: The Nonlinearity Step

• Once the convolution step has been completed and feature maps
have been produced, a nonlinearity is applied to each
pixel/element of each feature map array. Typical nonlinearities
used are the sigmoid functions or the ReLUs. The latter seem to
be the preferable choice currently.

• Note that after convolution, some of the matrix elements can
become negative. These are set equal to zero, after, e.g., the
application of the ReLU.

Sergios Theodoridis University of Athens Machine Learning 96/162

CNN: The Nonlinearity Step

0 100 200 300 400 500

0

100

200

300

400

500

Feature map

Sergios Theodoridis University of Athens Machine Learning 97/162

CNN: The Nonlinearity Step

0 100 200 300 400 500

0

100

200

300

400

500

Feature map after the ReLU nonlinearity

Sergios Theodoridis University of Athens Machine Learning 97/162

CNN: The Pooling Step

• Pooling reduces the size of the feature map. To this end, one
slides a window, e.g, 2× 2, over the feature map, and for each
location of the window a single value is selected. This is a
downsampling operation. Pooling is also contributing in building
into the network shift invariance properties [Bruna, et. al. 2013].

• There are different scenarios. In the max pooling, the maximum
value is selected. In the average pooling, the average value is
selected. Other variants do, also, exist.

• The max pooling for a window of size 2× 2 is shown below:

2 3 7 1 4 5
4 5 0 6 7 1
6 2 1 3 2 3
4 5 6 8 4 5
5 3 2 1 2 1
4 2 1 8 6 3


︸ ︷︷ ︸

before pooling

 5 7 7
6 8 5
4 8 6


︸ ︷︷ ︸
after pooling

Sergios Theodoridis University of Athens Machine Learning 98/162

CNN: The Pooling Step

• Pooling reduces the size of the feature map. To this end, one
slides a window, e.g, 2× 2, over the feature map, and for each
location of the window a single value is selected. This is a
downsampling operation. Pooling is also contributing in building
into the network shift invariance properties [Bruna, et. al. 2013].

• There are different scenarios. In the max pooling, the maximum
value is selected. In the average pooling, the average value is
selected. Other variants do, also, exist.

• The max pooling for a window of size 2× 2 is shown below:

2 3 7 1 4 5
4 5 0 6 7 1
6 2 1 3 2 3
4 5 6 8 4 5
5 3 2 1 2 1
4 2 1 8 6 3


︸ ︷︷ ︸

before pooling

 5 7 7
6 8 5
4 8 6


︸ ︷︷ ︸
after pooling

Sergios Theodoridis University of Athens Machine Learning 98/162

CNN: The Pooling Step

• Pooling reduces the size of the feature map. To this end, one
slides a window, e.g, 2× 2, over the feature map, and for each
location of the window a single value is selected. This is a
downsampling operation. Pooling is also contributing in building
into the network shift invariance properties [Bruna, et. al. 2013].

• There are different scenarios. In the max pooling, the maximum
value is selected. In the average pooling, the average value is
selected. Other variants do, also, exist.

• The max pooling for a window of size 2× 2 is shown below:

2 3 7 1 4 5
4 5 0 6 7 1
6 2 1 3 2 3
4 5 6 8 4 5
5 3 2 1 2 1
4 2 1 8 6 3


︸ ︷︷ ︸

before pooling

 5 7 7
6 8 5
5 8 6


︸ ︷︷ ︸
after pooling

Sergios Theodoridis University of Athens Machine Learning 98/162

CNN: The Pooling Step

0 100 200 300 400 500

0

100

200

300

400

500

Feature map after the ReLU nonlinearity

Sergios Theodoridis University of Athens Machine Learning 99/162

CNN: The Pooling Step

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Feature map after the ReLU+ max 8× 8 pooling

Sergios Theodoridis University of Athens Machine Learning 99/162

The Full CNN

• The three stages discussed before, i.e, the convolution, the
nonlinearity and the pooling steps, comprise a single layer of a
convolutional network.

• In practice, a CNN comprises a series of such convolution layers.
The first one is presented with the input image array. The second
one receives as inputs the pooled features maps of the previous
layer, and so on. Networks with 20-25 layers have been reported
in practical applications.

• Finally, the feature map arrays of the last convolution layer are
provided as inputs to a classifier. A softmax output NN is a
popular choice, yet SVMs or other predictors can also be
employed.

• Training of the full CNN takes place via a modified
backpropagation algorithm. The modification is due to the weight
sharing of the convolutional layers.

Sergios Theodoridis University of Athens Machine Learning 100/162

The Full CNN

• The three stages discussed before, i.e, the convolution, the
nonlinearity and the pooling steps, comprise a single layer of a
convolutional network.

• In practice, a CNN comprises a series of such convolution layers.
The first one is presented with the input image array. The second
one receives as inputs the pooled features maps of the previous
layer, and so on. Networks with 20-25 layers have been reported
in practical applications.

• Finally, the feature map arrays of the last convolution layer are
provided as inputs to a classifier. A softmax output NN is a
popular choice, yet SVMs or other predictors can also be
employed.

• Training of the full CNN takes place via a modified
backpropagation algorithm. The modification is due to the weight
sharing of the convolutional layers.

Sergios Theodoridis University of Athens Machine Learning 100/162

The Full CNN

• The three stages discussed before, i.e, the convolution, the
nonlinearity and the pooling steps, comprise a single layer of a
convolutional network.

• In practice, a CNN comprises a series of such convolution layers.
The first one is presented with the input image array. The second
one receives as inputs the pooled features maps of the previous
layer, and so on. Networks with 20-25 layers have been reported
in practical applications.

• Finally, the feature map arrays of the last convolution layer are
provided as inputs to a classifier. A softmax output NN is a
popular choice, yet SVMs or other predictors can also be
employed.

• Training of the full CNN takes place via a modified
backpropagation algorithm. The modification is due to the weight
sharing of the convolutional layers.

Sergios Theodoridis University of Athens Machine Learning 100/162

The Full CNN

• The three stages discussed before, i.e, the convolution, the
nonlinearity and the pooling steps, comprise a single layer of a
convolutional network.

• In practice, a CNN comprises a series of such convolution layers.
The first one is presented with the input image array. The second
one receives as inputs the pooled features maps of the previous
layer, and so on. Networks with 20-25 layers have been reported
in practical applications.

• Finally, the feature map arrays of the last convolution layer are
provided as inputs to a classifier. A softmax output NN is a
popular choice, yet SVMs or other predictors can also be
employed.

• Training of the full CNN takes place via a modified
backpropagation algorithm. The modification is due to the weight
sharing of the convolutional layers.

Sergios Theodoridis University of Athens Machine Learning 100/162

The Full CNN

First layer

Convolution + ReLU Convolution + ReLU

Pooling Pooling

NN

Second layer

Output

Sergios Theodoridis University of Athens Machine Learning 101/162

The Full CNN-An Example

Output Layer

Feeforward NN

Pooling Stage 1

Convolution + ReLu Stage 1

Input Image

Convolution + ReLu Stage 2

Pooling Stage 2

Sergios Theodoridis University of Athens Machine Learning 102/162

The Full CNN

• Some “famous” CNNs:

Lanet: [Lecun] 1990’s. The LeNet architecture was used mainly for
character recognition tasks such as reading zip codes, digits, etc.
Alexnet: [Krizhevsky, et. al.] 2012. The network has 60 million
parameters and 500,000 neurons and it consists of five
convolutional layers, and a two-layer NN with a softmax output.
ZF Net: [Zeidler-Fergus] 2013. It was an improvement on AlexNet
by tweaking the architecture hyperparameters.
GoogLeNet: [Szegedy et al.] 2014.
ResNets [He, et.al.] 2015.
DenseNet: [Huang et.al.] 2016.

• Other succesful applications, besides machine vision and image
recognition, CNNs have succefully been used in natural language
processing, e.g., [Zhang, et.al, 2016].

Sergios Theodoridis University of Athens Machine Learning 103/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• Recall that at the heart of the success of CNNs lies the concept
of weight sharing.

• Without having to assign specific weights to each individual pixel,
scaling to different sizes of images can be readily done.

• The concept of weight sharing will now be applied to the case of
sequential data. That is, the input data a) are not independent,
b) they occur in sequence and more important c) the specific
order in which they occur carries important information.

• Some typical examples of such applications are speech
recognition, language modeling, machine translation, where the
order in which phonemes or words occur carry important
information.

Sergios Theodoridis University of Athens Machine Learning 104/162

Recurrent Neural Networks (RNN)

• RNNs are built around the concept of the state.

• The concept of a state vector is at the heart of many dynamical
systems, such as hidden Markov models (HMM) and Kalman
filters. The state vector comprises the memory of the system up
to time n. That is, it encodes the history of the system. The
response-output of the system at time n, depends on the state
vector as well as the input at time n.

• The idea in RNNs is to apply the same type of operations (weight
sharing) at each time instant (reccurency) by involving the state
as well as the currently available input vectors.

Sergios Theodoridis University of Athens Machine Learning 105/162

Recurrent Neural Networks (RNN)

• RNNs are built around the concept of the state.

• The concept of a state vector is at the heart of many dynamical
systems, such as hidden Markov models (HMM) and Kalman
filters. The state vector comprises the memory of the system up
to time n. That is, it encodes the history of the system. The
response-output of the system at time n, depends on the state
vector as well as the input at time n.

• The idea in RNNs is to apply the same type of operations (weight
sharing) at each time instant (reccurency) by involving the state
as well as the currently available input vectors.

Sergios Theodoridis University of Athens Machine Learning 105/162

Recurrent Neural Networks (RNN)

• RNNs are built around the concept of the state.

• The concept of a state vector is at the heart of many dynamical
systems, such as hidden Markov models (HMM) and Kalman
filters. The state vector comprises the memory of the system up
to time n. That is, it encodes the history of the system. The
response-output of the system at time n, depends on the state
vector as well as the input at time n.

• The idea in RNNs is to apply the same type of operations (weight
sharing) at each time instant (reccurency) by involving the state
as well as the currently available input vectors.

Sergios Theodoridis University of Athens Machine Learning 105/162

Recurrent Neural Networks (RNN)

The variables involved in an RNN are:

• The state vector at time n, denoted as hn. The symbol reminds
us that the state variables correspond to the hidden layer, in a
NN terminology.

• The input vector, xn.

• The output vector, ŷn, and the desired output vector, yn, used
during training.

• The RNN model is described in term of a set of parameters, to be
learned during training; namely, the matrices U,W, V and the
vectors b, c.

• The basic RNN model is described by:

hn = f(Uxn +Whn−1 + b)

ŷn = g(V hn + c).

Sergios Theodoridis University of Athens Machine Learning 106/162

Recurrent Neural Networks (RNN)

The variables involved in an RNN are:

• The state vector at time n, denoted as hn. The symbol reminds
us that the state variables correspond to the hidden layer, in a
NN terminology.

• The input vector, xn.

• The output vector, ŷn, and the desired output vector, yn, used
during training.

• The RNN model is described in term of a set of parameters, to be
learned during training; namely, the matrices U,W, V and the
vectors b, c.

• The basic RNN model is described by:

hn = f(Uxn +Whn−1 + b)

ŷn = g(V hn + c).

Sergios Theodoridis University of Athens Machine Learning 106/162

Recurrent Neural Networks (RNN)

The variables involved in an RNN are:

• The state vector at time n, denoted as hn. The symbol reminds
us that the state variables correspond to the hidden layer, in a
NN terminology.

• The input vector, xn.

• The output vector, ŷn, and the desired output vector, yn, used
during training.

• The RNN model is described in term of a set of parameters, to be
learned during training; namely, the matrices U,W, V and the
vectors b, c.

• The basic RNN model is described by:

hn = f(Uxn +Whn−1 + b)

ŷn = g(V hn + c).

Sergios Theodoridis University of Athens Machine Learning 106/162

Recurrent Neural Networks (RNN)

The variables involved in an RNN are:

• The state vector at time n, denoted as hn. The symbol reminds
us that the state variables correspond to the hidden layer, in a
NN terminology.

• The input vector, xn.

• The output vector, ŷn, and the desired output vector, yn, used
during training.

• The RNN model is described in term of a set of parameters, to be
learned during training; namely, the matrices U,W, V and the
vectors b, c.

• The basic RNN model is described by:

hn = f(Uxn +Whn−1 + b)

ŷn = g(V hn + c).

Sergios Theodoridis University of Athens Machine Learning 106/162

Recurrent Neural Networks (RNN)

The variables involved in an RNN are:

• The state vector at time n, denoted as hn. The symbol reminds
us that the state variables correspond to the hidden layer, in a
NN terminology.

• The input vector, xn.

• The output vector, ŷn, and the desired output vector, yn, used
during training.

• The RNN model is described in term of a set of parameters, to be
learned during training; namely, the matrices U,W, V and the
vectors b, c.

• The basic RNN model is described by:

hn = f(Uxn +Whn−1 + b)

ŷn = g(V hn + c).

Sergios Theodoridis University of Athens Machine Learning 106/162

Recurrent Neural Networks (RNN)

• Typical choices of the nonlinear functions are: for the state
equation f = tanh or f = ReLU and for the output one
g = softmax.

• Note that the parameters are shared across all time instants; thus
scaling to different sequence lengths can be readily done.

Sergios Theodoridis University of Athens Machine Learning 107/162

Recurrent Neural Networks (RNN)

• Typical choices of the nonlinear functions are: for the state
equation f = tanh or f = ReLU and for the output one
g = softmax.

• Note that the parameters are shared across all time instants; thus
scaling to different sequence lengths can be readily done.

Sergios Theodoridis University of Athens Machine Learning 107/162

Recurrent Neural Networks (RNN)

• Typical choices of the nonlinear functions are: for the state
equation f = tanh or f = ReLU and for the output one
g = softmax.

• Note that the parameters are shared across all time instants; thus
scaling to different sequence lengths can be readily done.

Graphical RNN model

Sergios Theodoridis University of Athens Machine Learning 107/162

Recurrent Neural Networks (RNN)

• Typical choices of the nonlinear functions are: for the state
equation f = tanh or f = ReLU and for the output one
g = softmax.

• Note that the parameters are shared across all time instants; thus
scaling to different sequence lengths can be readily done.

Graphical RNN model Unfolded RNN graphical model

Sergios Theodoridis University of Athens Machine Learning 107/162

Backpropagation Through Time (BPTT)

• Training an RNN is similar to training feedforward NNs. It turns
out that the required gradients of the cost function, w.r. to the
unknown parameters, takes place recursively, by starting at the
latest time instant, say N , and go backwards in time,
n = N − 1, N − 2, This is the reason that the algorithm is
known as Backpropagation Through Time (BPTT).

• At the heart of the algorithm lies the computation of the gradient
of the cost function w.r. to the state vectors. This computation
follows a backpropagation rationale.

Sergios Theodoridis University of Athens Machine Learning 108/162

Backpropagation Through Time (BPTT)

• Training an RNN is similar to training feedforward NNs. It turns
out that the required gradients of the cost function, w.r. to the
unknown parameters, takes place recursively, by starting at the
latest time instant, say N , and go backwards in time,
n = N − 1, N − 2, This is the reason that the algorithm is
known as Backpropagation Through Time (BPTT).

• At the heart of the algorithm lies the computation of the gradient
of the cost function w.r. to the state vectors. This computation
follows a backpropagation rationale.

Sergios Theodoridis University of Athens Machine Learning 108/162

Backpropagation Through Time (BPTT)

• The cost function is the sum over time, n, of the loss function
contributions, that depend on the corresponding values of hn, xn.

• That is,

J =
N∑
n=1

Jn(yn, ŷn), ŷn = g(hn, V, c), and hn = f(hn−1, U,W, b,xn).

• In words, each hn affects J in two ways:

Directly, through Jn.
Indirectly, via the chain that is imposed by the RNN structure:

hn → hn+1 → . . .→ hN , n = 1, 2, . . . , N − 1.

• The above leads to the following recursive computation, that
propagates backwards:

∂J

∂hn
=
∂hn+1

∂hn

∂J

∂hn+1
+

(
∂ŷn
∂hn

)T ∂J

∂ŷn
.

Sergios Theodoridis University of Athens Machine Learning 109/162

Backpropagation Through Time (BPTT)

• The cost function is the sum over time, n, of the loss function
contributions, that depend on the corresponding values of hn, xn.

• That is,

J =
N∑
n=1

Jn(yn, ŷn), ŷn = g(hn, V, c), and hn = f(hn−1, U,W, b,xn).

• In words, each hn affects J in two ways:

Directly, through Jn.
Indirectly, via the chain that is imposed by the RNN structure:

hn → hn+1 → . . .→ hN , n = 1, 2, . . . , N − 1.

• The above leads to the following recursive computation, that
propagates backwards:

∂J

∂hn
=
∂hn+1

∂hn

∂J

∂hn+1
+

(
∂ŷn
∂hn

)T ∂J

∂ŷn
.

Sergios Theodoridis University of Athens Machine Learning 109/162

Backpropagation Through Time (BPTT)

• The cost function is the sum over time, n, of the loss function
contributions, that depend on the corresponding values of hn, xn.

• That is,

J =
N∑
n=1

Jn(yn, ŷn), ŷn = g(hn, V, c), and hn = f(hn−1, U,W, b,xn).

• In words, each hn affects J in two ways:

Directly, through Jn.
Indirectly, via the chain that is imposed by the RNN structure:

hn → hn+1 → . . .→ hN , n = 1, 2, . . . , N − 1.

• The above leads to the following recursive computation, that
propagates backwards:

∂J

∂hn
=
∂hn+1

∂hn

∂J

∂hn+1
+

(
∂ŷn
∂hn

)T ∂J

∂ŷn
.

Sergios Theodoridis University of Athens Machine Learning 109/162

Recurrent Neural Networks (RNN)

Forward pass:

• Starting at n = 1, compute in sequence,

(h1, ŷ1) → (h2 ŷ2)→ . . . → (hN , ŷN).

Backward pass:

• Starting at n = N , compute in sequence,

∂J

∂hN
→ ∂J

∂hN−1
→ . . . → ∂J

∂h1
.

Sergios Theodoridis University of Athens Machine Learning 110/162

Recurrent Neural Networks (RNN)

Forward pass:

• Starting at n = 1, compute in sequence,

(h1, ŷ1) → (h2 ŷ2)→ . . . → (hN , ŷN).

Backward pass:

• Starting at n = N , compute in sequence,

∂J

∂hN
→ ∂J

∂hN−1
→ . . . → ∂J

∂h1
.

Sergios Theodoridis University of Athens Machine Learning 110/162

Diminishing And Expanding Gradients

• For the same reasons as for the backpropagation for the
feedforward NNs, the BPTT version also suffers from the
diminishing/expanding values of the gradients, due a) to the
products introduced by the chain differentiation and b) the
saturating nature of the gradient of the tanh function.

• Moreover, in the case of RNN, this is usually more serious, since
for long enough sequences, the number of involved backward
steps can be quite large.

• There are two paths to bypass this problem. One is to involve the
ReLU nonlinearity. The other one is more clever and it comprises
in modifying the basic structure of the RNN.

Sergios Theodoridis University of Athens Machine Learning 111/162

Diminishing And Expanding Gradients

• For the same reasons as for the backpropagation for the
feedforward NNs, the BPTT version also suffers from the
diminishing/expanding values of the gradients, due a) to the
products introduced by the chain differentiation and b) the
saturating nature of the gradient of the tanh function.

• Moreover, in the case of RNN, this is usually more serious, since
for long enough sequences, the number of involved backward
steps can be quite large.

• There are two paths to bypass this problem. One is to involve the
ReLU nonlinearity. The other one is more clever and it comprises
in modifying the basic structure of the RNN.

Sergios Theodoridis University of Athens Machine Learning 111/162

Diminishing And Expanding Gradients

• For the same reasons as for the backpropagation for the
feedforward NNs, the BPTT version also suffers from the
diminishing/expanding values of the gradients, due a) to the
products introduced by the chain differentiation and b) the
saturating nature of the gradient of the tanh function.

• Moreover, in the case of RNN, this is usually more serious, since
for long enough sequences, the number of involved backward
steps can be quite large.

• There are two paths to bypass this problem. One is to involve the
ReLU nonlinearity. The other one is more clever and it comprises
in modifying the basic structure of the RNN.

Sergios Theodoridis University of Athens Machine Learning 111/162

Diminishing And Expanding Gradients

• For the same reasons as for the backpropagation for the
feedforward NNs, the BPTT version also suffers from the
diminishing/expanding values of the gradients, due a) to the
products introduced by the chain differentiation and b) the
saturating nature of the gradient of the tanh function.

• Moreover, in the case of RNN, this is usually more serious, since
for long enough sequences, the number of involved backward
steps can be quite large.

• There are two paths to bypass this problem. One is to involve the
ReLU nonlinearity. The other one is more clever and it comprises
in modifying the basic structure of the RNN.

Sergios Theodoridis University of Athens Machine Learning 111/162

Diminishing And Expanding Gradients

• For the same reasons as for the backpropagation for the
feedforward NNs, the BPTT version also suffers from the
diminishing/expanding values of the gradients, due a) to the
products introduced by the chain differentiation and b) the
saturating nature of the gradient of the tanh function.

• Moreover, in the case of RNN, this is usually more serious, since
for long enough sequences, the number of involved backward
steps can be quite large.

• There are two paths to bypass this problem. One is to involve the
ReLU nonlinearity. The other one is more clever and it comprises
in modifying the basic structure of the RNN.

Sergios Theodoridis University of Athens Machine Learning 111/162

The Long Short-Term Memory Network (LSTM)

• The key idea behind the LSTM networks, proposed by [Hochreiter
and Scmidhuber, 91] is the so called cell state; they have been
explicitly designed to overcome the diminishing/expanding
gradient problem in RNNs.

• The LSTM networks have the build in ability to control the
information flow into and out the system’s memory, via nonlinear
elements known as gates.

• The gates are implemented via the logistic sigmoid nonlineariy,
whose output varies between zero and one. Their imposed control
is equivalent with a respective weighting on the involved time
updates. More important, this weighting (large or small) is
dictated, in context; that is, it depends on the current input as
well as the state (memory) vectors.

Sergios Theodoridis University of Athens Machine Learning 112/162

The Long Short-Term Memory Network (LSTM)

• The key idea behind the LSTM networks, proposed by [Hochreiter
and Scmidhuber, 91] is the so called cell state; they have been
explicitly designed to overcome the diminishing/expanding
gradient problem in RNNs.

• The LSTM networks have the build in ability to control the
information flow into and out the system’s memory, via nonlinear
elements known as gates.

• The gates are implemented via the logistic sigmoid nonlineariy,
whose output varies between zero and one. Their imposed control
is equivalent with a respective weighting on the involved time
updates. More important, this weighting (large or small) is
dictated, in context; that is, it depends on the current input as
well as the state (memory) vectors.

Sergios Theodoridis University of Athens Machine Learning 112/162

The Long Short-Term Memory Network (LSTM)

• The key idea behind the LSTM networks, proposed by [Hochreiter
and Scmidhuber, 91] is the so called cell state; they have been
explicitly designed to overcome the diminishing/expanding
gradient problem in RNNs.

• The LSTM networks have the build in ability to control the
information flow into and out the system’s memory, via nonlinear
elements known as gates.

• The gates are implemented via the logistic sigmoid nonlineariy,
whose output varies between zero and one. Their imposed control
is equivalent with a respective weighting on the involved time
updates. More important, this weighting (large or small) is
dictated, in context; that is, it depends on the current input as
well as the state (memory) vectors.

Sergios Theodoridis University of Athens Machine Learning 112/162

The Long Short-Term Memory Network (LSTM)

• In LSTM networks, besides the state vector hn, the cell state
vector is propagated through time. The basic cell/module that
comprises an LSTM is shown below:

f = σ(Ufxn +W fhn−1 + bf)

i = σ(U ixn +W ihn−1 + bi)

o = σ(Uoxn +W ohn−1 + bo)

s̃ = tanh(Usxn +W shn−1 + bs)

sn = sn−1 � f + i� s̃

hn = o� tanh(sn)

Sergios Theodoridis University of Athens Machine Learning 113/162

The Long Short-Term Memory Network (LSTM)

• RNNs, mainly via the LSTM implementation, have been applied
and successfully used in a number of areas, such as language
processing, machine translation, speech processing, visual
semantic alignment for generating image descriptions in machine
vision.

• For example in language modeling, the input is typically a
sequence of words. Each word is represented as a number
(one-hot vectors). This is basically a pointer to the available
vocabulary of words. The output is the sequence of predicted
words. During training, we set yn = xn+1. That is, the RNN is
trained as a nonlinear predictor.

Sergios Theodoridis University of Athens Machine Learning 114/162

The Long Short-Term Memory Network (LSTM)

• RNNs, mainly via the LSTM implementation, have been applied
and successfully used in a number of areas, such as language
processing, machine translation, speech processing, visual
semantic alignment for generating image descriptions in machine
vision.

• For example in language modeling, the input is typically a
sequence of words. Each word is represented as a number
(one-hot vectors). This is basically a pointer to the available
vocabulary of words. The output is the sequence of predicted
words. During training, we set yn = xn+1. That is, the RNN is
trained as a nonlinear predictor.

Sergios Theodoridis University of Athens Machine Learning 114/162

Deep and Bi-directional RNNs

• Deep RNNs: Instead of computing one layer of states, one can
stack a number of RNNs, one on top of the other and form deep
RNNs. In a deep RNN, the state vector of the previous layer
becomes the input to the next layer. The output of the network is
provided in terms of the states of last layer.

• Bi-directional RNNs: As the term reveals, in a bidirectional RNN,
there are two sets of state vectors, namely hf

n that propagates in
the forward direction and hb

n that runs in the backward direction.
Thus, the output vector, yn, at time n is made to depend both
on the past as well as on the future.

Sergios Theodoridis University of Athens Machine Learning 115/162

Deep and Bi-directional RNNs

• Deep RNNs: Instead of computing one layer of states, one can
stack a number of RNNs, one on top of the other and form deep
RNNs. In a deep RNN, the state vector of the previous layer
becomes the input to the next layer. The output of the network is
provided in terms of the states of last layer.

• Bi-directional RNNs: As the term reveals, in a bidirectional RNN,
there are two sets of state vectors, namely hf

n that propagates in
the forward direction and hb

n that runs in the backward direction.
Thus, the output vector, yn, at time n is made to depend both
on the past as well as on the future.

Sergios Theodoridis University of Athens Machine Learning 115/162

Attention

• As the name suggests, the concept of attention draws heavily on
the attention mechanism found in humans.

• For example in our visual system, the “attention” provides us
with the ability to focus on the most important information that
resides in the scene; important information is always in context,
that is, in relation to what we are looking for.

• In machine learning, one of the most popular ways to implement
attention is via a weighting (linear transformation) on variables
that the output depends on. The weights of such a
transformation are learned during training (various algorithms
have been suggested).

Sergios Theodoridis University of Athens Machine Learning 116/162

Attention

• As the name suggests, the concept of attention draws heavily on
the attention mechanism found in humans.

• For example in our visual system, the “attention” provides us
with the ability to focus on the most important information that
resides in the scene; important information is always in context,
that is, in relation to what we are looking for.

• In machine learning, one of the most popular ways to implement
attention is via a weighting (linear transformation) on variables
that the output depends on. The weights of such a
transformation are learned during training (various algorithms
have been suggested).

Sergios Theodoridis University of Athens Machine Learning 116/162

Attention

• As the name suggests, the concept of attention draws heavily on
the attention mechanism found in humans.

• For example in our visual system, the “attention” provides us
with the ability to focus on the most important information that
resides in the scene; important information is always in context,
that is, in relation to what we are looking for.

• In machine learning, one of the most popular ways to implement
attention is via a weighting (linear transformation) on variables
that the output depends on. The weights of such a
transformation are learned during training (various algorithms
have been suggested).

Sergios Theodoridis University of Athens Machine Learning 116/162

Attention

• In the framework of RNNs, recall that the output, yn, at time n is
given in terms of the state values at the respective time, i.e., hn.
In other words, the most recent information related to the whole
past history (as this is encoded in the state vector) is used.

• However, it is rather unreasonable to assume that the long history
of a sequence is sufficiently represented in the last state vector.
For example in a sentence (and depending on the structure of a
language), the next word may depend mostly on the meaning of a
word that appeared some time earlier in the sequence of the
words, or on a combination of words.

Sergios Theodoridis University of Athens Machine Learning 117/162

Attention

• In the framework of RNNs, recall that the output, yn, at time n is
given in terms of the state values at the respective time, i.e., hn.
In other words, the most recent information related to the whole
past history (as this is encoded in the state vector) is used.

• However, it is rather unreasonable to assume that the long history
of a sequence is sufficiently represented in the last state vector.
For example in a sentence (and depending on the structure of a
language), the next word may depend mostly on the meaning of a
word that appeared some time earlier in the sequence of the
words, or on a combination of words.

Sergios Theodoridis University of Athens Machine Learning 117/162

Attention

• In this context, one path to implement attention is to employ (in
place of ŷn = g(V hn + c)) the weighted sum

yn = g

(
n∑

i=1

αnihi

)
,

where g is a nonlinearity.

• In words, the output is left to be computed as a function of all
the previous states; the weighting coefficients are learned during
training. αni expresses the degree that the available information
at time i affects the word at time n. In this way, the system
learns to attend on the most important information in the
available history.

Sergios Theodoridis University of Athens Machine Learning 118/162

Attention

• In this context, one path to implement attention is to employ (in
place of ŷn = g(V hn + c)) the weighted sum

yn = g

(
n∑

i=1

αnihi

)
,

where g is a nonlinearity.

• In words, the output is left to be computed as a function of all
the previous states; the weighting coefficients are learned during
training. αni expresses the degree that the available information
at time i affects the word at time n. In this way, the system
learns to attend on the most important information in the
available history.

Sergios Theodoridis University of Athens Machine Learning 118/162

Attention

Example 1:

• An interesting aspect of the previous model is that one can follow
what the model in doing and, thus, exploit it accordingly.

Sergios Theodoridis University of Athens Machine Learning 119/162

Attention

Example 1:

• An interesting aspect of the previous model is that one can follow
what the model in doing and, thus, exploit it accordingly.

• An example from [Badhanau D., et.al., 2016]. While translating
from French to English, the network attends sequentially to each
input state; however from time to time, the network attends to
two words at time to produce an output.

	

Sergios Theodoridis University of Athens Machine Learning 119/162

Attention

Example 2:

• In [Xu K., et. al., 2016], the attention mechanism is applied to
generate image descriptions. First, a variant of a CNN is used to
encode the original image in terms of a set of feature vectors,
ai, i = 1, 2, . . . , L. Each feature vector corresponds to a different
region in the original image.

• Each one of these feature vectors is associated with an attention
related weight, αi, and it is provided as an input to an RNN.

• The network is trained so that to compute the output word
probability given the state of the LSTM.

Sergios Theodoridis University of Athens Machine Learning 120/162

Attention

Example 2:

• In [Xu K., et. al., 2016], the attention mechanism is applied to
generate image descriptions. First, a variant of a CNN is used to
encode the original image in terms of a set of feature vectors,
ai, i = 1, 2, . . . , L. Each feature vector corresponds to a different
region in the original image.

• Each one of these feature vectors is associated with an attention
related weight, αi, and it is provided as an input to an RNN.

• The network is trained so that to compute the output word
probability given the state of the LSTM.

Sergios Theodoridis University of Athens Machine Learning 120/162

Attention

Example 2:

• In [Xu K., et. al., 2016], the attention mechanism is applied to
generate image descriptions. First, a variant of a CNN is used to
encode the original image in terms of a set of feature vectors,
ai, i = 1, 2, . . . , L. Each feature vector corresponds to a different
region in the original image.

• Each one of these feature vectors is associated with an attention
related weight, αi, and it is provided as an input to an RNN.

• The network is trained so that to compute the output word
probability given the state of the LSTM.

Sergios Theodoridis University of Athens Machine Learning 120/162

Attention

• By visualizing the attention weights, as in the previous example,
one can interpret what the model is focusing at while generating
a word:

	

Sergios Theodoridis University of Athens Machine Learning 121/162

Adversarial Examples

• Having built and trained networks that achieve accuracies,
sometimes, close to what humans achieve, does it mean that the
networks truly understand what they have learned?

• The answer is NO, in spite of the fact that they can predict with
very high accuracies data in the test set.

• It turns out that, one can easily construct examples, by slightly
perturbing input data in a specific way, which can consistently
fool the network with high probability. Such examples are known
as adversarial examples.

• Moreover, the difference between the adversarial examples and
the original patterns, from which they are generated, is hardly
perceptible. No human could ever classify them as being different.

Sergios Theodoridis University of Athens Machine Learning 122/162

Adversarial Examples

• Having built and trained networks that achieve accuracies,
sometimes, close to what humans achieve, does it mean that the
networks truly understand what they have learned?

• The answer is NO, in spite of the fact that they can predict with
very high accuracies data in the test set.

• It turns out that, one can easily construct examples, by slightly
perturbing input data in a specific way, which can consistently
fool the network with high probability. Such examples are known
as adversarial examples.

• Moreover, the difference between the adversarial examples and
the original patterns, from which they are generated, is hardly
perceptible. No human could ever classify them as being different.

Sergios Theodoridis University of Athens Machine Learning 122/162

Adversarial Examples

• Having built and trained networks that achieve accuracies,
sometimes, close to what humans achieve, does it mean that the
networks truly understand what they have learned?

• The answer is NO, in spite of the fact that they can predict with
very high accuracies data in the test set.

• It turns out that, one can easily construct examples, by slightly
perturbing input data in a specific way, which can consistently
fool the network with high probability. Such examples are known
as adversarial examples.

• Moreover, the difference between the adversarial examples and
the original patterns, from which they are generated, is hardly
perceptible. No human could ever classify them as being different.

Sergios Theodoridis University of Athens Machine Learning 122/162

Adversarial Examples

• Having built and trained networks that achieve accuracies,
sometimes, close to what humans achieve, does it mean that the
networks truly understand what they have learned?

• The answer is NO, in spite of the fact that they can predict with
very high accuracies data in the test set.

• It turns out that, one can easily construct examples, by slightly
perturbing input data in a specific way, which can consistently
fool the network with high probability. Such examples are known
as adversarial examples.

• Moreover, the difference between the adversarial examples and
the original patterns, from which they are generated, is hardly
perceptible. No human could ever classify them as being different.

Sergios Theodoridis University of Athens Machine Learning 122/162

Adversarial Examples

• Examples taken from [Szegedy, et. al., 2014]. Adversarial
examples generated for AlexNet. All images in the right column
are predicted to be an “ostrich, Struthio camelus”!!!

Sergios Theodoridis University of Athens Machine Learning 123/162

Adversarial Examples

How adversarial examples are generated?: Some examples.

• In [Szegedy, et. al., 2014], for a given input data point x, one
solves an optimization task, that finds the minimum norm
perturbation, v, such as the label of x and the label of x+ v to
be different.

• In [Goodfellow, et.al., 2015], the perturbation is made in the
direction of the sign of the gradient of the cost function w.r. to
an input point, i.e., v = εsign {∇xJ(θ,x,y)}, ε > 0.

• In [Moosavi-Dezfooli, et.al. 2016], an optimization method is
used to compute a single-universal minimum norm perturbation
that fools all images in the input data base with high probability.

• Adversarial examples are highly uncommon to be found in the
input data bases, and it seems that they reside in regions of very
low probability and are, somehow, hard to find by randomly
sampling around an input point.

Sergios Theodoridis University of Athens Machine Learning 124/162

Adversarial Examples

How adversarial examples are generated?: Some examples.

• In [Szegedy, et. al., 2014], for a given input data point x, one
solves an optimization task, that finds the minimum norm
perturbation, v, such as the label of x and the label of x+ v to
be different.

• In [Goodfellow, et.al., 2015], the perturbation is made in the
direction of the sign of the gradient of the cost function w.r. to
an input point, i.e., v = εsign {∇xJ(θ,x,y)}, ε > 0.

• In [Moosavi-Dezfooli, et.al. 2016], an optimization method is
used to compute a single-universal minimum norm perturbation
that fools all images in the input data base with high probability.

• Adversarial examples are highly uncommon to be found in the
input data bases, and it seems that they reside in regions of very
low probability and are, somehow, hard to find by randomly
sampling around an input point.

Sergios Theodoridis University of Athens Machine Learning 124/162

Adversarial Examples

How adversarial examples are generated?: Some examples.

• In [Szegedy, et. al., 2014], for a given input data point x, one
solves an optimization task, that finds the minimum norm
perturbation, v, such as the label of x and the label of x+ v to
be different.

• In [Goodfellow, et.al., 2015], the perturbation is made in the
direction of the sign of the gradient of the cost function w.r. to
an input point, i.e., v = εsign {∇xJ(θ,x,y)}, ε > 0.

• In [Moosavi-Dezfooli, et.al. 2016], an optimization method is
used to compute a single-universal minimum norm perturbation
that fools all images in the input data base with high probability.

• Adversarial examples are highly uncommon to be found in the
input data bases, and it seems that they reside in regions of very
low probability and are, somehow, hard to find by randomly
sampling around an input point.

Sergios Theodoridis University of Athens Machine Learning 124/162

Adversarial Examples

How adversarial examples are generated?: Some examples.

• In [Szegedy, et. al., 2014], for a given input data point x, one
solves an optimization task, that finds the minimum norm
perturbation, v, such as the label of x and the label of x+ v to
be different.

• In [Goodfellow, et.al., 2015], the perturbation is made in the
direction of the sign of the gradient of the cost function w.r. to
an input point, i.e., v = εsign {∇xJ(θ,x,y)}, ε > 0.

• In [Moosavi-Dezfooli, et.al. 2016], an optimization method is
used to compute a single-universal minimum norm perturbation
that fools all images in the input data base with high probability.

• Adversarial examples are highly uncommon to be found in the
input data bases, and it seems that they reside in regions of very
low probability and are, somehow, hard to find by randomly
sampling around an input point.

Sergios Theodoridis University of Athens Machine Learning 124/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

• In [Goodfellow, et.al., 2015], the phenomenon is highlighted
around the involved linear operations. Take as an example a linear
classifier, θ, and two points, the original one, x and its perturbed
adversarial version x

′
= x+ v. Let v = εsign {θ} , ε > 0.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

• In [Goodfellow, et.al., 2015], the phenomenon is highlighted
around the involved linear operations. Take as an example a linear
classifier, θ, and two points, the original one, x and its perturbed
adversarial version x

′
= x+ v. Let v = εsign {θ} , ε > 0.

• Then,
θTx

′
= θTx+ ε

l∑
i=1

|θi|.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

• In [Goodfellow, et.al., 2015], the phenomenon is highlighted
around the involved linear operations. Take as an example a linear
classifier, θ, and two points, the original one, x and its perturbed
adversarial version x

′
= x+ v. Let v = εsign {θ} , ε > 0.

• Then,
θTx

′
= θTx+ ε

l∑
i=1

|θi|.

• Note that even if ε can be very small, if l is very large then the
terms θTx

′
and θTx can be very different.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How adversarial examples phenomenon is justified?: Some attempts.

• It seems that at the heart of the problem lies the high
dimensionality of the input space.

• In [Goodfellow, et.al., 2015], the phenomenon is highlighted
around the involved linear operations. Take as an example a linear
classifier, θ, and two points, the original one, x and its perturbed
adversarial version x

′
= x+ v. Let v = εsign {θ} , ε > 0.

• Then,
θTx

′
= θTx+ ε

l∑
i=1

|θi|.

• Note that even if ε can be very small, if l is very large then the
terms θTx

′
and θTx can be very different.

• Of course, NN are not linear classifiers but linear operations are
involved as, for example, in ReLU. Also, if sigmoid activations are
involved, an effort is made to operate in their linear regions.

Sergios Theodoridis University of Athens Machine Learning 125/162

Adversarial Examples

How the adversarial examples phenomenon is justified?: Some
attempts.

• In [Fawzi, et. al., 2016], a more theoretically pleasing explanation
is provided by showing that adversarial examples have distinct
geometric characteristics, in the input space, compared to
completely random perturbations. The former, in connection with
some underlying geometric properties of the decision surface, are
causing the problem.

• This is a hot topic and more results are expecting to appear in
the near future.

Sergios Theodoridis University of Athens Machine Learning 126/162

Adversarial Examples

How the adversarial examples phenomenon is justified?: Some
attempts.

• In [Fawzi, et. al., 2016], a more theoretically pleasing explanation
is provided by showing that adversarial examples have distinct
geometric characteristics, in the input space, compared to
completely random perturbations. The former, in connection with
some underlying geometric properties of the decision surface, are
causing the problem.

• This is a hot topic and more results are expecting to appear in
the near future.

Sergios Theodoridis University of Athens Machine Learning 126/162

Adversarial Examples

Adversarial training: Some techniques.

• To robustify a network against adversarial examples a number of
techniques have already been suggested.

• One way is to involve adversarial examples in the training set
during the training phase. This is equivalent to regularization via
artificially extending the data set ([Szegedy, et. al., 2014])

• Another path is to modify the loss function for taking special care
of the adversarial examples. For example, in [Goodfellow, et.al.
2015], it is suggest to use

J
′
(θ,x,y) = αJ(θ,x,y) + (1− α)J(θ,x+ ∆x,y),

where
∆x := εsign {∇xJ(θ,x,y)} .

Sergios Theodoridis University of Athens Machine Learning 127/162

Adversarial Examples

Adversarial training: Some techniques.

• To robustify a network against adversarial examples a number of
techniques have already been suggested.

• One way is to involve adversarial examples in the training set
during the training phase. This is equivalent to regularization via
artificially extending the data set ([Szegedy, et. al., 2014])

• Another path is to modify the loss function for taking special care
of the adversarial examples. For example, in [Goodfellow, et.al.
2015], it is suggest to use

J
′
(θ,x,y) = αJ(θ,x,y) + (1− α)J(θ,x+ ∆x,y),

where
∆x := εsign {∇xJ(θ,x,y)} .

Sergios Theodoridis University of Athens Machine Learning 127/162

Adversarial Examples

Adversarial training: Some techniques.

• To robustify a network against adversarial examples a number of
techniques have already been suggested.

• One way is to involve adversarial examples in the training set
during the training phase. This is equivalent to regularization via
artificially extending the data set ([Szegedy, et. al., 2014])

• Another path is to modify the loss function for taking special care
of the adversarial examples. For example, in [Goodfellow, et.al.
2015], it is suggest to use

J
′
(θ,x,y) = αJ(θ,x,y) + (1− α)J(θ,x+ ∆x,y),

where
∆x := εsign {∇xJ(θ,x,y)} .

Sergios Theodoridis University of Athens Machine Learning 127/162

Adversarial Examples

Adversarial training: Some techniques.

• Another way to look at adversarial examples is that they violate
the smoothness condition. That is, we expect that, for small
enough ε > 0, the input patterns x and x+ v, for any
v : ‖v‖ ≤ ε, to have the same label, with high probability.

• In this vein, in [Miyato, et.al., 2016], a regularizer is used that
rewards smoothness of the model distribution w.r. to the input
around every input data point.

• In [Shaham, et. al. 2016] a robust optimization method is
proposed , which builds around a min-max formulation, where the
cost function is optimized w.r. to a worst-case realization of a
perturbation.

• This is also a new field and many more results is anticipated to
come up in the near future.

Sergios Theodoridis University of Athens Machine Learning 128/162

Adversarial Examples

Adversarial training: Some techniques.

• Another way to look at adversarial examples is that they violate
the smoothness condition. That is, we expect that, for small
enough ε > 0, the input patterns x and x+ v, for any
v : ‖v‖ ≤ ε, to have the same label, with high probability.

• In this vein, in [Miyato, et.al., 2016], a regularizer is used that
rewards smoothness of the model distribution w.r. to the input
around every input data point.

• In [Shaham, et. al. 2016] a robust optimization method is
proposed , which builds around a min-max formulation, where the
cost function is optimized w.r. to a worst-case realization of a
perturbation.

• This is also a new field and many more results is anticipated to
come up in the near future.

Sergios Theodoridis University of Athens Machine Learning 128/162

Adversarial Examples

Adversarial training: Some techniques.

• Another way to look at adversarial examples is that they violate
the smoothness condition. That is, we expect that, for small
enough ε > 0, the input patterns x and x+ v, for any
v : ‖v‖ ≤ ε, to have the same label, with high probability.

• In this vein, in [Miyato, et.al., 2016], a regularizer is used that
rewards smoothness of the model distribution w.r. to the input
around every input data point.

• In [Shaham, et. al. 2016] a robust optimization method is
proposed , which builds around a min-max formulation, where the
cost function is optimized w.r. to a worst-case realization of a
perturbation.

• This is also a new field and many more results is anticipated to
come up in the near future.

Sergios Theodoridis University of Athens Machine Learning 128/162

Adversarial Examples

Adversarial training: Some techniques.

• Another way to look at adversarial examples is that they violate
the smoothness condition. That is, we expect that, for small
enough ε > 0, the input patterns x and x+ v, for any
v : ‖v‖ ≤ ε, to have the same label, with high probability.

• In this vein, in [Miyato, et.al., 2016], a regularizer is used that
rewards smoothness of the model distribution w.r. to the input
around every input data point.

• In [Shaham, et. al. 2016] a robust optimization method is
proposed , which builds around a min-max formulation, where the
cost function is optimized w.r. to a worst-case realization of a
perturbation.

• This is also a new field and many more results is anticipated to
come up in the near future.

Sergios Theodoridis University of Athens Machine Learning 128/162

Deep Generative Models

• So far, we have been involved with supervised learning techniques
of various types of multilayer networks. Our focus now turns on
unsupervised learning of deep networks.

• The goal of such networks is to grasp regularities and structure
hidden in the input data. In this way, one can achieve their
efficient representation in terms of a layer-wise feature
generation via the use of unlabelled data only.

• In this way, one can use the learned representation of the input in
various subsequent supervised learning tasks. Such techniques
can be useful in what is known as transfer learning or multitask
learning.

• Furthermore, supervised learning techniques of deep networks
require a large number of labelled data. In some cases, this may
not be possible and the use of unlabelled data can facilitate the
learning of the input representation, which can then be exploited
in a subsequent supervised learning tasks.

Sergios Theodoridis University of Athens Machine Learning 129/162

Deep Generative Models

• So far, we have been involved with supervised learning techniques
of various types of multilayer networks. Our focus now turns on
unsupervised learning of deep networks.

• The goal of such networks is to grasp regularities and structure
hidden in the input data. In this way, one can achieve their
efficient representation in terms of a layer-wise feature
generation via the use of unlabelled data only.

• In this way, one can use the learned representation of the input in
various subsequent supervised learning tasks. Such techniques
can be useful in what is known as transfer learning or multitask
learning.

• Furthermore, supervised learning techniques of deep networks
require a large number of labelled data. In some cases, this may
not be possible and the use of unlabelled data can facilitate the
learning of the input representation, which can then be exploited
in a subsequent supervised learning tasks.

Sergios Theodoridis University of Athens Machine Learning 129/162

Deep Generative Models

• So far, we have been involved with supervised learning techniques
of various types of multilayer networks. Our focus now turns on
unsupervised learning of deep networks.

• The goal of such networks is to grasp regularities and structure
hidden in the input data. In this way, one can achieve their
efficient representation in terms of a layer-wise feature
generation via the use of unlabelled data only.

• In this way, one can use the learned representation of the input in
various subsequent supervised learning tasks. Such techniques
can be useful in what is known as transfer learning or multitask
learning.

• Furthermore, supervised learning techniques of deep networks
require a large number of labelled data. In some cases, this may
not be possible and the use of unlabelled data can facilitate the
learning of the input representation, which can then be exploited
in a subsequent supervised learning tasks.

Sergios Theodoridis University of Athens Machine Learning 129/162

Deep Generative Models

• So far, we have been involved with supervised learning techniques
of various types of multilayer networks. Our focus now turns on
unsupervised learning of deep networks.

• The goal of such networks is to grasp regularities and structure
hidden in the input data. In this way, one can achieve their
efficient representation in terms of a layer-wise feature
generation via the use of unlabelled data only.

• In this way, one can use the learned representation of the input in
various subsequent supervised learning tasks. Such techniques
can be useful in what is known as transfer learning or multitask
learning.

• Furthermore, supervised learning techniques of deep networks
require a large number of labelled data. In some cases, this may
not be possible and the use of unlabelled data can facilitate the
learning of the input representation, which can then be exploited
in a subsequent supervised learning tasks.

Sergios Theodoridis University of Athens Machine Learning 129/162

Deep Generative Models

• Deep generative models can be used to artificially generate input
data, which is a form of “regularization” by expanding the
training data set. This leads to a reduction of overfitting by
artificially increasing the number of training points w.r to the
number of unknown parameters to be estimated.

• Deep generative networks are inspired by the notion of
probabilistic graphical models, which have been dealt in Chapters
15 and 16.

Sergios Theodoridis University of Athens Machine Learning 130/162

Deep Generative Models

• Deep generative models can be used to artificially generate input
data, which is a form of “regularization” by expanding the
training data set. This leads to a reduction of overfitting by
artificially increasing the number of training points w.r to the
number of unknown parameters to be estimated.

• Deep generative networks are inspired by the notion of
probabilistic graphical models, which have been dealt in Chapters
15 and 16.

Sergios Theodoridis University of Athens Machine Learning 130/162

Deep Generative Models

• When the training set is very small and supervised learning
techniques cannot be employed, the hidden layers can be thought
of as part of a deep generative model, which builds the equivalent
representation of the input. Unsupervised training in a layer-wise
greedy-type approach can then be used as a pre-training phase.
The obtained values of the parameters can be used as initial
values of a subsequent supervised fine tuning of the parameters

• As a matter of fact, such techniques led to the revival of deep
networks, although they are rarely used these days.

Sergios Theodoridis University of Athens Machine Learning 131/162

Deep Generative Models

• When the training set is very small and supervised learning
techniques cannot be employed, the hidden layers can be thought
of as part of a deep generative model, which builds the equivalent
representation of the input. Unsupervised training in a layer-wise
greedy-type approach can then be used as a pre-training phase.
The obtained values of the parameters can be used as initial
values of a subsequent supervised fine tuning of the parameters

• As a matter of fact, such techniques led to the revival of deep
networks, although they are rarely used these days.

Sergios Theodoridis University of Athens Machine Learning 131/162

Restricted Boltzmann Machines

• A Restricted Boltzmann Machine (RBM) is a special type of the
more general class of Boltzmann Machines (BM). The figure
below shows the probabilistic graphical model corresponding to
an RBM.

• It is an undirected graphical model with no connections among
nodes of the same layer. Moreover, the upper level comprises
nodes corresponding to hidden variables and the lower level
consists of visible nodes. That is, observations are applied to the
nodes of the lower layer only.

Sergios Theodoridis University of Athens Machine Learning 132/162

Restricted Boltzmann Machines

• A Restricted Boltzmann Machine (RBM) is a special type of the
more general class of Boltzmann Machines (BM). The figure
below shows the probabilistic graphical model corresponding to
an RBM.

• It is an undirected graphical model with no connections among
nodes of the same layer. Moreover, the upper level comprises
nodes corresponding to hidden variables and the lower level
consists of visible nodes. That is, observations are applied to the
nodes of the lower layer only.

Sergios Theodoridis University of Athens Machine Learning 132/162

Restricted Boltzmann Machines

• Following the general definition of a Boltzmann machine, the
joint distribution of the involved random variables is of the form,

P (v1, . . . , vJ , h1, . . . , hI) =
1

Z
exp

(
− E(v,h)

)
,

where different symbols for the J visible (vj , j = 1, . . . , J) and
the I hidden variables (hi, i = 1, . . . , I) have been used. E is the
energy of the system, which is defined next.

• The energy is defined in terms of a set of unknown parameters, θ,

E(v,h) = −
I∑

i=1

J∑
j=1

θijhivj −
I∑

i=1

bihi −
J∑

j=1

cjvj , (9)

where bi and cj are the bias terms for the hidden and visible
nodes, respectively. The normalizing constant is obtained as,

Z =
∑
v

∑
h

exp
(
− E(v,h)

)
.

Sergios Theodoridis University of Athens Machine Learning 133/162

Restricted Boltzmann Machines

• Following the general definition of a Boltzmann machine, the
joint distribution of the involved random variables is of the form,

P (v1, . . . , vJ , h1, . . . , hI) =
1

Z
exp

(
− E(v,h)

)
,

where different symbols for the J visible (vj , j = 1, . . . , J) and
the I hidden variables (hi, i = 1, . . . , I) have been used. E is the
energy of the system, which is defined next.

• The energy is defined in terms of a set of unknown parameters, θ,

E(v,h) = −
I∑

i=1

J∑
j=1

θijhivj −
I∑

i=1

bihi −
J∑

j=1

cjvj , (9)

where bi and cj are the bias terms for the hidden and visible
nodes, respectively. The normalizing constant is obtained as,

Z =
∑
v

∑
h

exp
(
− E(v,h)

)
.

Sergios Theodoridis University of Athens Machine Learning 133/162

Restricted Boltzmann Machines

• The goal now is to derive a scheme for training an RBM; that is,
to learn the set of the unknown parameters, θij , bi, cj , which will
be collectively denoted as Θ, b and c, respectively.

• We will focus on discrete variables, hence the involved
distributions are probabilities. More specifically, we will focus on
variables of a binary nature, i.e., vj , hi ∈ {0, 1}, j = 1, . . . , J ,
i = 1, . . . , I.

• The goal of learning is to maximize the log-likelihood, using N
observations of the visible variables, denoted as vn, n = 1, . . . , N ,
where

vn := [v1n, . . . , vJn]T ,

is the vector of the corresponding observations at time n. We will
say that the visible nodes are clamped on the respective
observations.

Sergios Theodoridis University of Athens Machine Learning 134/162

Restricted Boltzmann Machines

• The goal now is to derive a scheme for training an RBM; that is,
to learn the set of the unknown parameters, θij , bi, cj , which will
be collectively denoted as Θ, b and c, respectively.

• We will focus on discrete variables, hence the involved
distributions are probabilities. More specifically, we will focus on
variables of a binary nature, i.e., vj , hi ∈ {0, 1}, j = 1, . . . , J ,
i = 1, . . . , I.

• The goal of learning is to maximize the log-likelihood, using N
observations of the visible variables, denoted as vn, n = 1, . . . , N ,
where

vn := [v1n, . . . , vJn]T ,

is the vector of the corresponding observations at time n. We will
say that the visible nodes are clamped on the respective
observations.

Sergios Theodoridis University of Athens Machine Learning 134/162

Restricted Boltzmann Machines

• The goal now is to derive a scheme for training an RBM; that is,
to learn the set of the unknown parameters, θij , bi, cj , which will
be collectively denoted as Θ, b and c, respectively.

• We will focus on discrete variables, hence the involved
distributions are probabilities. More specifically, we will focus on
variables of a binary nature, i.e., vj , hi ∈ {0, 1}, j = 1, . . . , J ,
i = 1, . . . , I.

• The goal of learning is to maximize the log-likelihood, using N
observations of the visible variables, denoted as vn, n = 1, . . . , N ,
where

vn := [v1n, . . . , vJn]T ,

is the vector of the corresponding observations at time n. We will
say that the visible nodes are clamped on the respective
observations.

Sergios Theodoridis University of Athens Machine Learning 134/162

Contrastive Divergence

• In order to train an RBM, one has to compute the normalizing
constant, Z, which turns out to be a computationally intractable
task. A way to bypass it to approach it is via Gibbs sampling
techniques.

• Contrastive divergence (CD): The idea behind this method is to
generate the missing samples of the hidden variables via Gibbs
sampling, starting the chain from the observations available for
the visible nodes. The most important feature is that, in practice,
only a few iterations of the chain are sufficient.

• Theoretically, the CD method can be justified by relying on an
approximation of the the maximum likelihood loss function as a
difference of two Kullback-Leibler divergences. It can also be
conceived as a stochastic approximation attempt, where
expectations are replaced by samples, which are generated by the
Gibbs sampling.

Sergios Theodoridis University of Athens Machine Learning 135/162

Contrastive Divergence

• In order to train an RBM, one has to compute the normalizing
constant, Z, which turns out to be a computationally intractable
task. A way to bypass it to approach it is via Gibbs sampling
techniques.

• Contrastive divergence (CD): The idea behind this method is to
generate the missing samples of the hidden variables via Gibbs
sampling, starting the chain from the observations available for
the visible nodes. The most important feature is that, in practice,
only a few iterations of the chain are sufficient.

• Theoretically, the CD method can be justified by relying on an
approximation of the the maximum likelihood loss function as a
difference of two Kullback-Leibler divergences. It can also be
conceived as a stochastic approximation attempt, where
expectations are replaced by samples, which are generated by the
Gibbs sampling.

Sergios Theodoridis University of Athens Machine Learning 135/162

Contrastive Divergence

• In order to train an RBM, one has to compute the normalizing
constant, Z, which turns out to be a computationally intractable
task. A way to bypass it to approach it is via Gibbs sampling
techniques.

• Contrastive divergence (CD): The idea behind this method is to
generate the missing samples of the hidden variables via Gibbs
sampling, starting the chain from the observations available for
the visible nodes. The most important feature is that, in practice,
only a few iterations of the chain are sufficient.

• Theoretically, the CD method can be justified by relying on an
approximation of the the maximum likelihood loss function as a
difference of two Kullback-Leibler divergences. It can also be
conceived as a stochastic approximation attempt, where
expectations are replaced by samples, which are generated by the
Gibbs sampling.

Sergios Theodoridis University of Athens Machine Learning 135/162

Contrastive Divergence-The Algorithmic Steps

• Following this rationale, a first primitive version of this algorithmic
scheme can be cast as:

Step 1: Start the Gibbs sampler at v(1) := vn, i.e., observations,
and generate samples for the hidden variables as,

h(1) ∼ P (h|v(1)).

Step 2: Use h(1) to generate samples for the visible nodes,

v(2) ∼ P (v|h(1)).

These are known as fantasy data.

Step 3: Use v(2) to generate the next set of hidden variables,

h(2) ∼ P (h|v(2)).

• The scheme based on these steps is known as CD-1, since only one
up-down-up Gibbs sweep is used. If k such steps are employed, the
resulting scheme is referred to as CD-k. Once the samples have been
generated, the parameter update can be written as

θij(n) = θij(n− 1) + µ
(
h
(1)
i vjn − h(2)i v

(2)
j

)
.

Sergios Theodoridis University of Athens Machine Learning 136/162

Contrastive Divergence-The Algorithmic Steps

• Following this rationale, a first primitive version of this algorithmic
scheme can be cast as:

Step 1: Start the Gibbs sampler at v(1) := vn, i.e., observations,
and generate samples for the hidden variables as,

h(1) ∼ P (h|v(1)).

Step 2: Use h(1) to generate samples for the visible nodes,

v(2) ∼ P (v|h(1)).

These are known as fantasy data.

Step 3: Use v(2) to generate the next set of hidden variables,

h(2) ∼ P (h|v(2)).

• The scheme based on these steps is known as CD-1, since only one
up-down-up Gibbs sweep is used. If k such steps are employed, the
resulting scheme is referred to as CD-k. Once the samples have been
generated, the parameter update can be written as

θij(n) = θij(n− 1) + µ
(
h
(1)
i vjn − h(2)i v

(2)
j

)
.

Sergios Theodoridis University of Athens Machine Learning 136/162

Contrastive Divergence-The Algorithmic Steps

• Following this rationale, a first primitive version of this algorithmic
scheme can be cast as:

Step 1: Start the Gibbs sampler at v(1) := vn, i.e., observations,
and generate samples for the hidden variables as,

h(1) ∼ P (h|v(1)).

Step 2: Use h(1) to generate samples for the visible nodes,

v(2) ∼ P (v|h(1)).

These are known as fantasy data.

Step 3: Use v(2) to generate the next set of hidden variables,

h(2) ∼ P (h|v(2)).

• The scheme based on these steps is known as CD-1, since only one
up-down-up Gibbs sweep is used. If k such steps are employed, the
resulting scheme is referred to as CD-k. Once the samples have been
generated, the parameter update can be written as

θij(n) = θij(n− 1) + µ
(
h
(1)
i vjn − h(2)i v

(2)
j

)
.

Sergios Theodoridis University of Athens Machine Learning 136/162

Contrastive Divergence-The Algorithmic Steps

• Following this rationale, a first primitive version of this algorithmic
scheme can be cast as:

Step 1: Start the Gibbs sampler at v(1) := vn, i.e., observations,
and generate samples for the hidden variables as,

h(1) ∼ P (h|v(1)).

Step 2: Use h(1) to generate samples for the visible nodes,

v(2) ∼ P (v|h(1)).

These are known as fantasy data.

Step 3: Use v(2) to generate the next set of hidden variables,

h(2) ∼ P (h|v(2)).

• The scheme based on these steps is known as CD-1, since only one
up-down-up Gibbs sweep is used. If k such steps are employed, the
resulting scheme is referred to as CD-k. Once the samples have been
generated, the parameter update can be written as

θij(n) = θij(n− 1) + µ
(
h
(1)
i vjn − h(2)i v

(2)
j

)
.

Sergios Theodoridis University of Athens Machine Learning 136/162

Contrastive Divergence-The Algorithmic Steps

• A more refined scheme results if the estimates of the gradients are
not obtained via a single observation sample, but they are instead
averaged over a number of observations. The training input
examples are presented in terms of mini-batches of length L. The
previous reported steps are performed for each observation, but
now the update is carried out only once per block of L samples,
by averaging out the obtained estimates of the gradient, i.e.,

θ
(t)
ij = θ

(t−1)
ij +

µ

L

L∑
l=1

g
(l)
ij , i = 1, . . . , I, j = 1, . . . J, (10)

where
g
(l)
ij := h

(1)
i vj(l) − h

(2)
i v

(2)
j ,

denotes the gradient approximation associated with the
corresponding observation vj(l), (l) ∈ {1, 2, . . . , N}, which is
currently considered by the algorithm (and gives birth to the
associated Gibbs samples).

Sergios Theodoridis University of Athens Machine Learning 137/162

Contrastive Divergence-The Algorithmic Steps

• A more refined scheme results if the estimates of the gradients are
not obtained via a single observation sample, but they are instead
averaged over a number of observations. The training input
examples are presented in terms of mini-batches of length L. The
previous reported steps are performed for each observation, but
now the update is carried out only once per block of L samples,
by averaging out the obtained estimates of the gradient, i.e.,

θ
(t)
ij = θ

(t−1)
ij +

µ

L

L∑
l=1

g
(l)
ij , i = 1, . . . , I, j = 1, . . . J, (10)

where
g
(l)
ij := h

(1)
i vj(l) − h

(2)
i v

(2)
j ,

denotes the gradient approximation associated with the
corresponding observation vj(l), (l) ∈ {1, 2, . . . , N}, which is
currently considered by the algorithm (and gives birth to the
associated Gibbs samples).

Sergios Theodoridis University of Athens Machine Learning 137/162

Contrastive Divergence-The Algorithmic Steps

• Recursion (10) can be written in a more compact form as

Θ(t) = Θ(t−1) +
µ

L

L∑
l=1

G
(l)
ij ,

where
G

(l)
ij := h(1)vT(l) − h

(2)v(2)T .

Once all blocks have been considered, this corresponds to one epoch of
training. The process continues for a number of successive epochs until
a convergence criterion is met.

• Another version of the scheme results if we replace the obtained samples
of the hidden variables with their respective mean values. This turns
out to lead to estimates with lower variance. In our current context,
where the variables are of a binary nature, it is readily seen that

E[h
(1)
i] = P

(
hi = 1|vj(l)

)
= sigm

(J∑
j=1

θij(t− 1)vj(l) + bi(t− 1)
)
,

E[h
(2)
i] = P

(
hi = 1|v(2)j

)
= sigm

(J∑
j=1

θij(t− 1)v
(2)
j + bi(t− 1)

)
.

Sergios Theodoridis University of Athens Machine Learning 138/162

Contrastive Divergence-The Algorithmic Steps

• Recursion (10) can be written in a more compact form as

Θ(t) = Θ(t−1) +
µ

L

L∑
l=1

G
(l)
ij ,

where
G

(l)
ij := h(1)vT(l) − h

(2)v(2)T .

Once all blocks have been considered, this corresponds to one epoch of
training. The process continues for a number of successive epochs until
a convergence criterion is met.

• Another version of the scheme results if we replace the obtained samples
of the hidden variables with their respective mean values. This turns
out to lead to estimates with lower variance. In our current context,
where the variables are of a binary nature, it is readily seen that

E[h
(1)
i] = P

(
hi = 1|vj(l)

)
= sigm

(J∑
j=1

θij(t− 1)vj(l) + bi(t− 1)
)
,

E[h
(2)
i] = P

(
hi = 1|v(2)j

)
= sigm

(J∑
j=1

θij(t− 1)v
(2)
j + bi(t− 1)

)
.

Sergios Theodoridis University of Athens Machine Learning 138/162

Contrastive Divergence-The Algorithmic Steps

• In this case, the updates become

Θ(t) = Θ(t−1) +
µ

L

L∑
l=1

G
(l)
ij ,

G
(l)
ij := E[h(1)]vT(l) − E[h(2)]v(2)T .

• The updates of the bias terms are derived in a similar way (one can also
assume that there are fictitious extra nodes of a fixed value +1, and
incorporate the bias terms in θij) and we get

b(t) = b(t−1) +
µ

L

L∑
l=1

g
(l)
b ,

g
(l)
b := E[h(1)]− E[h(2)],

and

c(t) = c(t−1) +
µ

L

L∑
l=1

g(l)c ,

g(l)c := v(l) − v(2).

Sergios Theodoridis University of Athens Machine Learning 139/162

Contrastive Divergence-The Algorithmic Steps

• In this case, the updates become

Θ(t) = Θ(t−1) +
µ

L

L∑
l=1

G
(l)
ij ,

G
(l)
ij := E[h(1)]vT(l) − E[h(2)]v(2)T .

• The updates of the bias terms are derived in a similar way (one can also
assume that there are fictitious extra nodes of a fixed value +1, and
incorporate the bias terms in θij) and we get

b(t) = b(t−1) +
µ

L

L∑
l=1

g
(l)
b ,

g
(l)
b := E[h(1)]− E[h(2)],

and

c(t) = c(t−1) +
µ

L

L∑
l=1

g(l)c ,

g(l)c := v(l) − v(2).

Sergios Theodoridis University of Athens Machine Learning 139/162

The RBM Learning Algorithm via CD-1 for Binary Variables

• The resulting algorithm is summarized below:

Initialization

Initialize Θ(0), b(0), c(0), randomly.

For each epoch DO

For each block of size L Do
- G = O, gb = 0, gc = 0; set gradients to zero.
- For each vn in the block Do
* h(1) ∼ P (h|vn)
* v(2) ∼ P (v|h(1))
* h(2) ∼ P (h|v(2))
* G = G+ E[h(1)]vTn − E[h(2)]v(2)

* gb = gb + E[h(1)]− E[h(2)]
* gc = gc + vn − v(2)

- End For
- Θ = Θ + µ

L
G

- b = b + µ
L
gb

- c = c + µ
L
gc

End for
If a convergence criterion is met, Stop

End For

Sergios Theodoridis University of Athens Machine Learning 140/162

An Example of Pre-training Deep Feedforward Networks

• We provide an example of how unsupervised pre-training can be
used in the context of a supervised learning task.

• Such an approach enjoys a historical symbolism, since such a
pretraing was first used and made it possible to train deep
networks. This revived the subsequent interest in neural networks
and led to their current ”reign”.

• In this context, given a set of training examples,
(yn,xn), n = 1, 2, . . . , N , training a deep multilayer NN involves
two major phases:

1 pre-training

2 supervised fine tuning.

Sergios Theodoridis University of Athens Machine Learning 141/162

An Example of Pre-training Deep Feedforward Networks

• We provide an example of how unsupervised pre-training can be
used in the context of a supervised learning task.

• Such an approach enjoys a historical symbolism, since such a
pretraing was first used and made it possible to train deep
networks. This revived the subsequent interest in neural networks
and led to their current ”reign”.

• In this context, given a set of training examples,
(yn,xn), n = 1, 2, . . . , N , training a deep multilayer NN involves
two major phases:

1 pre-training

2 supervised fine tuning.

Sergios Theodoridis University of Athens Machine Learning 141/162

An Example of Pre-training Deep Feedforward Networks

• We provide an example of how unsupervised pre-training can be
used in the context of a supervised learning task.

• Such an approach enjoys a historical symbolism, since such a
pretraing was first used and made it possible to train deep
networks. This revived the subsequent interest in neural networks
and led to their current ”reign”.

• In this context, given a set of training examples,
(yn,xn), n = 1, 2, . . . , N , training a deep multilayer NN involves
two major phases:

1 pre-training

2 supervised fine tuning.

Sergios Theodoridis University of Athens Machine Learning 141/162

An Example of Pre-training Deep Feedforward Networks

• Pre-training the weights, associated with hidden nodes, involves
unsupervised learning via the RBM rationale. Assuming K hidden
layers, hk, k = 1, 2, . . . ,K, we look at them in pairs, i.e.,
(hk−1,hk), k = 1, 2, . . . ,K, with h0 := x, being the input layer.

• Each pair is treated as an RBM, in a hierarchical manner, with
the outputs of the previous one becoming the inputs to the next
(black boxes in the following figure):

Sergios Theodoridis University of Athens Machine Learning 142/162

An Example of Pre-training Deep Feedforward Networks

• Pre-training the weights, associated with hidden nodes, involves
unsupervised learning via the RBM rationale. Assuming K hidden
layers, hk, k = 1, 2, . . . ,K, we look at them in pairs, i.e.,
(hk−1,hk), k = 1, 2, . . . ,K, with h0 := x, being the input layer.

• Each pair is treated as an RBM, in a hierarchical manner, with
the outputs of the previous one becoming the inputs to the next
(black boxes in the following figure):

Sergios Theodoridis University of Athens Machine Learning 142/162

An Example of Pre-training Deep Feedforward Networks

• Pre-training the weights, associated with hidden nodes, involves
unsupervised learning via the RBM rationale. Assuming K hidden
layers, hk, k = 1, 2, . . . ,K, we look at them in pairs, i.e.,
(hk−1,hk), k = 1, 2, . . . ,K, with h0 := x, being the input layer.

• Each pair is treated as an RBM, in a hierarchical manner, with
the outputs of the previous one becoming the inputs to the next
(black boxes in the following figure):

Sergios Theodoridis University of Athens Machine Learning 142/162

Deep Feedforward Networks Pre-raining

• Pre-training of the weights leading to the output nodes (red box
in previous figure) is performed via a supervised learning
algorithm.

• To stress it out, the last hidden layer together with the output
layer are NOT treated as an RBM, but as an one layer
feed-forward network. In other words, the input to this supervised
learning task are the features formed in the last hidden layer.

Sergios Theodoridis University of Athens Machine Learning 143/162

Deep Feedforward Networks Pre-raining

• Pre-training of the weights leading to the output nodes (red box
in previous figure) is performed via a supervised learning
algorithm.

• To stress it out, the last hidden layer together with the output
layer are NOT treated as an RBM, but as an one layer
feed-forward network. In other words, the input to this supervised
learning task are the features formed in the last hidden layer.

Sergios Theodoridis University of Athens Machine Learning 143/162

Deep Feedforward Networks With Pre-training

• Finally, the fine tuning involves retraining in a typical
backpropagation algorithm rationale, using the values obtained
during pre-training for initialization. This is very important in
getting a better feeling and understanding on how deep learning
works. The label information is used in the hidden layers only at
the fine tuning stage.

• During pre-training, the feature values in each layer grasp
information related to the input distribution and the underlying
regularities. The label information modifies the features at fine
tuning stage. It does not participate in the process of discovering
the features. Most of this part is left to the unsupervised phase,
during pre-training.

Sergios Theodoridis University of Athens Machine Learning 144/162

Deep Feedforward Networks With Pre-training

• Finally, the fine tuning involves retraining in a typical
backpropagation algorithm rationale, using the values obtained
during pre-training for initialization. This is very important in
getting a better feeling and understanding on how deep learning
works. The label information is used in the hidden layers only at
the fine tuning stage.

• During pre-training, the feature values in each layer grasp
information related to the input distribution and the underlying
regularities. The label information modifies the features at fine
tuning stage. It does not participate in the process of discovering
the features. Most of this part is left to the unsupervised phase,
during pre-training.

Sergios Theodoridis University of Athens Machine Learning 144/162

Algorithm For Training Deep Feedforward Networks

• The methodology is summarized in the Algorithm given below:

Initialization.

Initialize randomly all the weights for the hidden nodes, Θk , bk , ck , k = 1, 2, . . . , K.
Initialize randomly the weights leading to the output nodes.

Set h0(n) := xn, n = 1, 2, . . . , N .

Phase I: Unsupervised Pre-training of Hidden Units

For k = 1, 2, . . . , K, Do;

Treat hk−1 as visible nodes and hk as hidden nodes to an RBM.
Train the RBM with respect to Θk , bk , ck , via the RBM Algorithm.

Use the obtained values of the parameters to generate for each node in the layer, hk , N values,

corresponding to the N observations.

- Option 1:

* hk(n) ∼ P (h|hk−1(n)), n = 1, 2, . . . , N ; Sample from the distribution.

- Option 2:

* hk(n) = [P (hk
1 |h

k−1(n), . . . , P (hk
Ik
|hk−1(n)]T , n = 1, 2, . . . , N ;

Propagate probabilities. Ik is the number of nodes in the layer.

End For

Phase II: Supervised Pre-Training of Output Nodes

Train the parameters of the pair (hK ,y), associated with the output layer, via any supervised learning

algorithm. Treat (yn,h
K(n)), n = 1, 2, . . . , N , as the training data.

Phase III: Fine-Tuning of All Nodes via Supervised Training

Use the obtained values for all the parameters as initial values and train the whole network via the
backpropagation, using (yn,xn), n = 1, 2, . . . , N as training examples.

Sergios Theodoridis University of Athens Machine Learning 145/162

Deep Belief Networks

• So far, our focus was on an information flow in the feedforward or
bottom-up direction. However, this is only part of the whole
story.

• The other part concerns training generative models. The goal of
such learning tasks is to “teach” the model to generate data.
This is basically equivalent with learning probabilistic models that
relate a set of variables, which can be observed, with another set
of hidden ones.

• Deep networks have so far been viewed as models that form in
layer by layer rationale features of features, i.e., more and more
abstract representations of the input data are produced.

• The issue now becomes whether one can start from the last layer,
and follow a top-down path with the new goal being that of
generating data.

Sergios Theodoridis University of Athens Machine Learning 146/162

Deep Belief Networks

• So far, our focus was on an information flow in the feedforward or
bottom-up direction. However, this is only part of the whole
story.

• The other part concerns training generative models. The goal of
such learning tasks is to “teach” the model to generate data.
This is basically equivalent with learning probabilistic models that
relate a set of variables, which can be observed, with another set
of hidden ones.

• Deep networks have so far been viewed as models that form in
layer by layer rationale features of features, i.e., more and more
abstract representations of the input data are produced.

• The issue now becomes whether one can start from the last layer,
and follow a top-down path with the new goal being that of
generating data.

Sergios Theodoridis University of Athens Machine Learning 146/162

Deep Belief Networks

• So far, our focus was on an information flow in the feedforward or
bottom-up direction. However, this is only part of the whole
story.

• The other part concerns training generative models. The goal of
such learning tasks is to “teach” the model to generate data.
This is basically equivalent with learning probabilistic models that
relate a set of variables, which can be observed, with another set
of hidden ones.

• Deep networks have so far been viewed as models that form in
layer by layer rationale features of features, i.e., more and more
abstract representations of the input data are produced.

• The issue now becomes whether one can start from the last layer,
and follow a top-down path with the new goal being that of
generating data.

Sergios Theodoridis University of Athens Machine Learning 146/162

Deep Belief Networks

• So far, our focus was on an information flow in the feedforward or
bottom-up direction. However, this is only part of the whole
story.

• The other part concerns training generative models. The goal of
such learning tasks is to “teach” the model to generate data.
This is basically equivalent with learning probabilistic models that
relate a set of variables, which can be observed, with another set
of hidden ones.

• Deep networks have so far been viewed as models that form in
layer by layer rationale features of features, i.e., more and more
abstract representations of the input data are produced.

• The issue now becomes whether one can start from the last layer,
and follow a top-down path with the new goal being that of
generating data.

Sergios Theodoridis University of Athens Machine Learning 146/162

Deep Belief Networks

• Besides the need for artificially generating data in some practical
applications, there is a further urge to look at this reverse
direction of information flow.

• There are studies which suggest that such top-down connections
exist in our visual system in order to generate lower level features
of images starting from higher level representations. Such a
mechanism can explain the creation of vivid imagery, dreaming as
well as the disambiguating effect on the interpretation of local
image regions by providing contextual prior information from
previous frames.

Sergios Theodoridis University of Athens Machine Learning 147/162

Deep Belief Networks

• Besides the need for artificially generating data in some practical
applications, there is a further urge to look at this reverse
direction of information flow.

• There are studies which suggest that such top-down connections
exist in our visual system in order to generate lower level features
of images starting from higher level representations. Such a
mechanism can explain the creation of vivid imagery, dreaming as
well as the disambiguating effect on the interpretation of local
image regions by providing contextual prior information from
previous frames.

Sergios Theodoridis University of Athens Machine Learning 147/162

Deep Belief Networks

• A popular way to represent statistical generative models is via the
use of probabilistic graphical models. A typical example of a
generative model is that of sigmoidal networks. A sigmoidal
network is illustrated in the figure below. It is a directed acyclic
graph (Bayesian).

Sergios Theodoridis University of Athens Machine Learning 148/162

Deep Belief Networks

• Following the theory, the joint probability of the observed (x) and
hidden variables, distributed in K layers, is given by,

P (x,h1, . . . ,hK) = P (x|h1)

(
K−1∏
k=1

P
(
hk|hk+1

))
P (hK),

where the conditionals for each one of the Ik nodes of the kth
layer are defined as,

P (hki |hk+1) = σ
(Ik+1∑

j=1

θk+1
ij hk+1

j

)
, k = 1, 2, . . . ,K − 1,

i = 1, 2, . . . , Ik.

Sergios Theodoridis University of Athens Machine Learning 149/162

Deep Belief Networks

• A variant of the sigmoidal network was proposed is known as
Deep Belief Network. The difference with a sigmoidal one is that
the top two layers comprise an RBM. Thus, it is a mixed type of
network consisting of both, directed as well as undirected edges,
as shown below:

• The respective joint probability of all the involved variables is
given by

P (x,h1, . . . ,hK) = P (x|h1)

(
K−2∏
k=1

P
(
hk|hk+1

))
P
(
hK−1,hK

)
.

Sergios Theodoridis University of Athens Machine Learning 150/162

Deep Belief Networks

• A variant of the sigmoidal network was proposed is known as
Deep Belief Network. The difference with a sigmoidal one is that
the top two layers comprise an RBM. Thus, it is a mixed type of
network consisting of both, directed as well as undirected edges,
as shown below:

• The respective joint probability of all the involved variables is
given by

P (x,h1, . . . ,hK) = P (x|h1)

(
K−2∏
k=1

P
(
hk|hk+1

))
P
(
hK−1,hK

)
.

Sergios Theodoridis University of Athens Machine Learning 150/162

Deep Belief Networks

• It is known that learning Bayesian networks of relatively large size
is intractable, due to the presence of converging edges.

• A way out is to employ the Algorithm for training RBMs. In other
words, all hidden layers, starting form the input one, are treated
as RBMs, and a greedy layer by layer pre-training bottom-up
philosophy is adopted.

Sergios Theodoridis University of Athens Machine Learning 151/162

Deep Belief Networks

• It is known that learning Bayesian networks of relatively large size
is intractable, due to the presence of converging edges.

• A way out is to employ the Algorithm for training RBMs. In other
words, all hidden layers, starting form the input one, are treated
as RBMs, and a greedy layer by layer pre-training bottom-up
philosophy is adopted.

Sergios Theodoridis University of Athens Machine Learning 151/162

Deep Belief Networks

• Once the bottom-up pass has been completed, the estimated
values of the unknown parameters are used for initializing another
fine-tuning training algorithm, in place of the Phase III step of
the Algorithm for training deep networks; however, this time the
fine-tuning algorithm is an unsupervised one, since no labels are
available.

• Such a scheme has been developed for training sigmoidal
networks and it is known as wake-sleep algorithm. The scheme
has a variational approximation flavor, and if initialized randomly
takes a long time to converge. The objective behind the
wake-sleep scheme is to adjust the weights during the top-down
pass, so as to maximize the probability of the network to generate
the observed data.

Sergios Theodoridis University of Athens Machine Learning 152/162

Deep Belief Networks

• Once the bottom-up pass has been completed, the estimated
values of the unknown parameters are used for initializing another
fine-tuning training algorithm, in place of the Phase III step of
the Algorithm for training deep networks; however, this time the
fine-tuning algorithm is an unsupervised one, since no labels are
available.

• Such a scheme has been developed for training sigmoidal
networks and it is known as wake-sleep algorithm. The scheme
has a variational approximation flavor, and if initialized randomly
takes a long time to converge. The objective behind the
wake-sleep scheme is to adjust the weights during the top-down
pass, so as to maximize the probability of the network to generate
the observed data.

Sergios Theodoridis University of Athens Machine Learning 152/162

Generating Samples via a DBN

• Once training of the weights has been completed, data generation is
achieved by the scheme summarized below:

Obtain samples hK−1, for the nodes at level K − 1. This can be
done via running a Gibbs chain, by alternating samples,
hK ∼ P (h|hK−1) and hK−1 ∼ P (h|hK). The convergence of
the Gibbs chain can be speeded up by initializing the chain with a
feature vector formed at the K − 1 layer by one of the input
patterns; this can be done by following a bottom-up pass to
generate features in the hidden layers, as the one used during
pre-training.

For k = K − 2, . . . , 1, Do; Top-down pass.

For i = 1, 2, . . . , Ik, Do
- hk−1

i ∼ P
(
hi|hk

)
; Sample for each one of the nodes.

End For

End For
x = h0; Generated pattern.

Sergios Theodoridis University of Athens Machine Learning 153/162

Example For Optical Character Recognition (OCR)

• This examples demonstrates the use of a deep network as a classifier in
an OCR application. The characters (classes) which are involved are the
Greek letters α, ν, o and τ , extracted from old historical documents.
The respective class volumes are 1735, 1850, 2391 and 2264.

• Each binary image is converted to a binary feature vector by scanning it
row-wise and concatenating the rows to form a 28× 28 = 784
dimensional binary representation. In the sequel, 80% of the resulting
patterns, per class, are randomly chosen to form the training set and
the remaining patterns serve testing purposes. The class labels are
represented by 4-digit binary codewords. For example, the first class
(letter α) is given the binary code [1 0 0 0 0], the second class is given
the codeword [0 1 0 0 0] and so on.

• Due to the binary nature of the patterns, the use of RBMs with binary
stochastic units as the building blocks of a deep network is a natural
choice.

Sergios Theodoridis University of Athens Machine Learning 154/162

Example For Optical Character Recognition (OCR)

• This examples demonstrates the use of a deep network as a classifier in
an OCR application. The characters (classes) which are involved are the
Greek letters α, ν, o and τ , extracted from old historical documents.
The respective class volumes are 1735, 1850, 2391 and 2264.

• Each binary image is converted to a binary feature vector by scanning it
row-wise and concatenating the rows to form a 28× 28 = 784
dimensional binary representation. In the sequel, 80% of the resulting
patterns, per class, are randomly chosen to form the training set and
the remaining patterns serve testing purposes. The class labels are
represented by 4-digit binary codewords. For example, the first class
(letter α) is given the binary code [1 0 0 0 0], the second class is given
the codeword [0 1 0 0 0] and so on.

• Due to the binary nature of the patterns, the use of RBMs with binary
stochastic units as the building blocks of a deep network is a natural
choice.

Sergios Theodoridis University of Athens Machine Learning 154/162

Example For Optical Character Recognition (OCR)

• This examples demonstrates the use of a deep network as a classifier in
an OCR application. The characters (classes) which are involved are the
Greek letters α, ν, o and τ , extracted from old historical documents.
The respective class volumes are 1735, 1850, 2391 and 2264.

• Each binary image is converted to a binary feature vector by scanning it
row-wise and concatenating the rows to form a 28× 28 = 784
dimensional binary representation. In the sequel, 80% of the resulting
patterns, per class, are randomly chosen to form the training set and
the remaining patterns serve testing purposes. The class labels are
represented by 4-digit binary codewords. For example, the first class
(letter α) is given the binary code [1 0 0 0 0], the second class is given
the codeword [0 1 0 0 0] and so on.

• Due to the binary nature of the patterns, the use of RBMs with binary
stochastic units as the building blocks of a deep network is a natural
choice.

Sergios Theodoridis University of Athens Machine Learning 154/162

Example For Optical Character Recognition (OCR)

• The chosen deep network consists of five layers in total: an input layer,
x, of 784 binary visible units, 3 layers, namely h1, h2 and h3, of hidden
binary units (consisting of 500, 500 and 2000 nodes respectively) and,
finally, an output layer, y. The activation function of the four neurons
of the output layer is the so called softmax. The output of the kth
output neuron, k = 1, 2, . . . ,M , is given by:

ŷk =
exp(zk)∑M

m=1 exp(zm)
, k = 1, 2, . . . ,M

where zm denotes the input to the activation function of the mth
neuron. This can easily be shown to provide the posterior probability
estimates of the patterns for each one of the classes.

• During the testing stage, each unknown pattern is “clamped” on the
visible nodes of the input layer, x, and the network operates in a
feed-forward mode to propagate the results until the output layer, y,
has been reached. During this feed-forward operation, the nodes of the
hidden layers propagate activation outputs, i.e, the probabilities at the
output of their logistic functions. For each input pattern, the softmax
node corresponding to the maximum value is chosen as the winner and
the pattern is assigned to the respective class.

Sergios Theodoridis University of Athens Machine Learning 155/162

Example For Optical Character Recognition (OCR)

• The chosen deep network consists of five layers in total: an input layer,
x, of 784 binary visible units, 3 layers, namely h1, h2 and h3, of hidden
binary units (consisting of 500, 500 and 2000 nodes respectively) and,
finally, an output layer, y. The activation function of the four neurons
of the output layer is the so called softmax. The output of the kth
output neuron, k = 1, 2, . . . ,M , is given by:

ŷk =
exp(zk)∑M

m=1 exp(zm)
, k = 1, 2, . . . ,M

where zm denotes the input to the activation function of the mth
neuron. This can easily be shown to provide the posterior probability
estimates of the patterns for each one of the classes.

• During the testing stage, each unknown pattern is “clamped” on the
visible nodes of the input layer, x, and the network operates in a
feed-forward mode to propagate the results until the output layer, y,
has been reached. During this feed-forward operation, the nodes of the
hidden layers propagate activation outputs, i.e, the probabilities at the
output of their logistic functions. For each input pattern, the softmax
node corresponding to the maximum value is chosen as the winner and
the pattern is assigned to the respective class.

Sergios Theodoridis University of Athens Machine Learning 155/162

Example For Optical Character Recognition (OCR)

• The figure below presents the training and testing error curves, at the
end of each training epoch. Note that, due to the small number of
classes and network size, the resulting errors become really small after
just a few epochs. In this case, the errors are mainly due to seriously
distorted characters. Furthermore, observe that the training error (as a
general tend) decreases monotonically. In contrast, the test error curve,
settles at around 1% of error probability.

Sergios Theodoridis University of Athens Machine Learning 156/162

Stacked Autoencoders

• Instead of building a deep network architecture by hierarchically
training layers of, say, RBMs, in order to capture a representtation
of the input data, one can alternatively employ autoencoders.

• The latter have been proposed as methods for dimensionality
reduction. An autoencoder consists of two parts, the encoder and
the decoder.

Sergios Theodoridis University of Athens Machine Learning 157/162

Stacked Autoencoders

• Instead of building a deep network architecture by hierarchically
training layers of, say, RBMs, in order to capture a representtation
of the input data, one can alternatively employ autoencoders.

• The latter have been proposed as methods for dimensionality
reduction. An autoencoder consists of two parts, the encoder and
the decoder.

Sergios Theodoridis University of Athens Machine Learning 157/162

Stacked Autoencoders

• Encoder: The output of the encoder is the reduced representation
of the input pattern, and it is defined in terms of a vector
function,

f : x ∈ Rl 7−→ h ∈ Rm, hi := fi(x) = φe(θ
T
i x+ bei), i = 1, 2, . . . ,m,

with φe(·) being the activation function; the latter is usually
taken to be the logistic sigmoid function, φe(·) = σ(·).

• Decoder: The decoder is another function g,

g : h ∈ Rm 7−→ x̂ ∈ Rl, x̂j = gj(h) = φd(θ
′T
j h+ βd

j), j = 1, 2, . . . , l.

The activation φd(·) is, usually, taken to be either the identity
(linear reconstruction) or the logistic sigmoid one.

Sergios Theodoridis University of Athens Machine Learning 158/162

Stacked Autoencoders

• Encoder: The output of the encoder is the reduced representation
of the input pattern, and it is defined in terms of a vector
function,

f : x ∈ Rl 7−→ h ∈ Rm, hi := fi(x) = φe(θ
T
i x+ bei), i = 1, 2, . . . ,m,

with φe(·) being the activation function; the latter is usually
taken to be the logistic sigmoid function, φe(·) = σ(·).

• Decoder: The decoder is another function g,

g : h ∈ Rm 7−→ x̂ ∈ Rl, x̂j = gj(h) = φd(θ
′T
j h+ βd

j), j = 1, 2, . . . , l.

The activation φd(·) is, usually, taken to be either the identity
(linear reconstruction) or the logistic sigmoid one.

Sergios Theodoridis University of Athens Machine Learning 158/162

Stacked Autoencoders

• The task of training is to estimate the parameters,

Θ := [θ1, . . . ,θm,], b
e, Θ

′
:= [θ

′
1, . . . ,θ

′
l], b

d.

It is common to assume that Θ
′

= ΘT . The parameters are
estimated so as the reconstruction error, e = x− x̂, over the
available input samples, to be minimum in some sense, e.g., least
squares.

Sergios Theodoridis University of Athens Machine Learning 159/162

Example: A Deep Autoencoder

• The goal of the encoder is to gradually reduce the dimensionality of the
input vectors and this will be achieved by using a multilayer neural
network, where the hidden layers decrease in size. We are going to
demonstrate the method via an example, using the database of the
Greek letters discussed before and following the same procedure
concerning the partition in training and test data.

• The block diagram of the encoder part of the autoencoder is shown
below:

Sergios Theodoridis University of Athens Machine Learning 160/162

Example: A Deep Autoencoder

• The goal of the encoder is to gradually reduce the dimensionality of the
input vectors and this will be achieved by using a multilayer neural
network, where the hidden layers decrease in size. We are going to
demonstrate the method via an example, using the database of the
Greek letters discussed before and following the same procedure
concerning the partition in training and test data.

• The block diagram of the encoder part of the autoencoder is shown
below:

Sergios Theodoridis University of Athens Machine Learning 160/162

Example: A Deep Autoencoder

• The first three hidden layers consist of binary units, whereas the last
layer consists of linear (Gaussian) units. We then proceed by
pre-training the weights connecting every pair of successive layers using
the contrastive divergence algorithm (for 20 epochs), starting from
(x,h1) and proceeding with (h1,h2) and so on. This is in line with what
we discussed so far for training deep networks. For the RBM training
stage, we use the whole training data set and divide it into mini-batches
(consisting of 100 patterns), as it is common practice.

• The decoder is the reverse structure, i.e., its input layer receives the
30-dimensional representation at the output of h4 and consists of four
hidden layers of increasing size, whose dimensions reflect exactly the
hidden layers of the encoder, plus an output layer.

Sergios Theodoridis University of Athens Machine Learning 161/162

Example: A Deep Autoencoder

• The first three hidden layers consist of binary units, whereas the last
layer consists of linear (Gaussian) units. We then proceed by
pre-training the weights connecting every pair of successive layers using
the contrastive divergence algorithm (for 20 epochs), starting from
(x,h1) and proceeding with (h1,h2) and so on. This is in line with what
we discussed so far for training deep networks. For the RBM training
stage, we use the whole training data set and divide it into mini-batches
(consisting of 100 patterns), as it is common practice.

• The decoder is the reverse structure, i.e., its input layer receives the
30-dimensional representation at the output of h4 and consists of four
hidden layers of increasing size, whose dimensions reflect exactly the
hidden layers of the encoder, plus an output layer.

Sergios Theodoridis University of Athens Machine Learning 161/162

Example: A Deep Autoencoder

• After all the weights have been initialized as described before, the
whole encoder-decoder network is treated as amultilayer
feed-forward network and its weights are fine-tuned via the
backpropagation algorithm (for 200 epochs); for each input
pattern, the desired output is the pattern itself. In this way, the
backpropagation algorithm tries to minimize the reconstruction
error.

Sergios Theodoridis University of Athens Machine Learning 162/162

Example: A Deep Autoencoder

• After all the weights have been initialized as described before, the
whole encoder-decoder network is treated as amultilayer
feed-forward network and its weights are fine-tuned via the
backpropagation algorithm (for 200 epochs); for each input
pattern, the desired output is the pattern itself. In this way, the
backpropagation algorithm tries to minimize the reconstruction
error.

Input patterns and respective reconstructions. The top row shows the original patterns. The bottom row shows
the corresponding reconstructed patterns a) Left block, prior to the application of the backpropagation algorithm

for fine-tuning and b) Right block, after the fine tuning.

Sergios Theodoridis University of Athens Machine Learning 162/162

