Machine Learning

A Bayesian and Optimization Perspective

Academic Press, 2015

Sergios Theodoridis?

IDept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Spring 2017, Version Il

Chapter 18
Neural Networks and Deep Learning

Sergios Theodoridis University of Athens Machine Learning 1/162

Neural Networks I

e Neural networks have a long history which goes back to the first
attempts to understand how the human and mamal brain works
and how what we call intelligence is formed.

Sergios Theodoridis University of Athens Machine Learning 2/162

Neural Networks

e Neural networks have a long history which goes back to the first
attempts to understand how the human and mamal brain works
and how what we call intelligence is formed.

e From a physiological point of view, one can trace the beginning
of the field back to the work of Santiago Ramon y Cajal, who
discovered that the basic building element of the brain is the
neuron. The brain comprises approximately 60-100 billions
neurons; that is, a number of the same order as the number of
stars in our galaxy!

Sergios Theodoridis University of Athens Machine Learning 2/162

Neural Networks

e Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

Sergios Theodoridis University of Athens Machine Learning 3/162

Neural Networks

e Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

e The most common type of synapses are the chemical ones, which
convert electric pulses, produced by a neuron, to a chemical
signal and then back to an electrical one.

Sergios Theodoridis University of Athens Machine Learning 3/162

Neural Networks

e Each neuron is connected with other neurons via elementary
structural and functional units/links, known as synapses. It is
estimated that there are 50-100 trillions of synapses. These links
mediate information between connected neurons.

e The most common type of synapses are the chemical ones, which
convert electric pulses, produced by a neuron, to a chemical
signal and then back to an electrical one.

e Depending on the input pulse(s), a synapse is either activated or
inhibited. Via these links, each neuron is connected to other
neurons and this happens in a hierarchical way, in a layer-wise
fashion.

Sergios Theodoridis University of Athens Machine Learning 3/162

Drawing of neurons in the pigeon cerebellum, by Santiago Ramén y Cajal in 1899 (http://en.wikipedia.org/wiki/Neuron).

v

Sergios Theodoridis University of Athens Machine Learning 4/162

A signal propagating down an axon to the cell body and dendrites of the next cell (http://en.wikipedia.org/wiki/Neuron).

Sergios Theodoridis University of Athens Machine Learning 5/162

Neural Networks

e A milestone from the learning theory's point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks

e A milestone from the learning theory's point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

e They showed that given a sufficient number of neurons and
adjusting appropriately the synaptic links, each one represented
by a weight, one can compute, in principle, any computable
function.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks

e A milestone from the learning theory's point of view occurred in
1943, when Warren McCulloch and Walter Pitts, developed a
computational model for the basic neuron. Moreover, they
provided results that tie neurophysiology with mathematical logic.

e They showed that given a sufficient number of neurons and
adjusting appropriately the synaptic links, each one represented
by a weight, one can compute, in principle, any computable
function.

e As a matter of fact, it is generally accepted that this is the paper
that gave birth to the fields of neural networks and artificial
intelligence.

Sergios Theodoridis University of Athens Machine Learning 6/162

Neural Networks I

e Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

Sergios Theodoridis University of Athens Machine Learning 7/162

Neural Networks

e Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

e In the most basic version of operation, he used a single neuron
and adopted a rule that can learn to separate data, which belong
to two linearly separable classes. That is, he built a Pattern
Recognition system.

Sergios Theodoridis University of Athens Machine Learning 7/162

Neural Networks

e Frank Rosenblatt, borrowed the idea of a neuron model, as
suggested by McCulloch and Pitts, and proposed a true learning
machine, which learns from a set of training data.

e In the most basic version of operation, he used a single neuron
and adopted a rule that can learn to separate data, which belong
to two linearly separable classes. That is, he built a Pattern
Recognition system.

e He called the basic neuron a perceptron and developed a
rule/algorithm, the perceptron algorithm, for the respective
training. The perceptron will be the kick-off point for our tour in
this series of lectures.

Sergios Theodoridis University of Athens Machine Learning 7/162

The Perceptron And The Perceptron Rule

e Qur starting point is the simple problem of a linearly separable
two-class (w1, we) classification task. In other words, we are
given a set of training samples, (y,,x,), n=1,2,..., N, with
yn € {—1,+1}, and it is assumed that there exists a hyperplane,

0z =0: such that,
0lx > 0, if xew
0fx < 0, if € ws.

Sergios Theodoridis University of Athens Machine Learning 8/162

The Perceptron And The Perceptron Rule

e Qur starting point is the simple problem of a linearly separable
two-class (w1, we) classification task. In other words, we are
given a set of training samples, (y,, ®,), n =1,2,..., N, with
yn € {—1,+1}, and it is assumed that there exists a hyperplane,

0z =0: such that,
0lx > 0, if xew
0fx < 0, if € ws.
e In other words, such a hyperplane classifies correctly all the

points in the training set. For notational simplification, the bias
term of the hyperplane has been absorbed in 6,.

Sergios Theodoridis University of Athens Machine Learning 8/162

The Perceptron And The Perceptron Rule I

e The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the

patterns from both classes. To this end, a cost function must first
be adopted.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule

e The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the

patterns from both classes. To this end, a cost function must first
be adopted.

e Let the available estimate at the current iteration step of the
unknown parameters be 6. Then, there are two possibilities:
o all points are classified correctly; this means that a solution has
been obtained.

e 0O classifies correctly some of the points and the rest are
misclassified.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule

e The goal now becomes that of developing an algorithm that
iteratively computes a hyperplane that classifies correctly all the
patterns from both classes. To this end, a cost function must first
be adopted.

e Let the available estimate at the current iteration step of the
unknown parameters be 6. Then, there are two possibilities:
o all points are classified correctly; this means that a solution has
been obtained.

e 0O classifies correctly some of the points and the rest are
misclassified.

Let) be the set of all misclassified samples.

Sergios Theodoridis University of Athens Machine Learning 9/162

The Perceptron And The Perceptron Rule I

e The perceptron cost: This is defined as
J0)=—= > y.0'x, (1)
n:xn €Y

where,

n =

+1, ifx € w
-1, ifx € ws

Sergios Theodoridis University of Athens Machine Learning 10/162

The Perceptron And The Perceptron Rule

e The perceptron cost: This is defined as

JO)=— > 6Tz, (1)

n:xn €Y

where,
(2)

e The cost function is non-negative. Indeed, since the sum is over
the misclassified points, if &, € wi (w2) then 87z, < (>) 0
rendering the product —y,0%x,, > 0. The cost function becomes
zero, if there are no misclassified points, i.e.,) = (3, which
corresponds to a solution.

1, ifrzew
" -1, ifx € ws

Sergios Theodoridis University of Athens Machine Learning 10/162

The Perceptron And The Perceptron Rule

e The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

JO)=(- > wazl]e,

n:xe, €Y

This is a linear function with respect to 0, as long as the number
of misclassified points remains the same.

V.

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

e The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

J(G) = <_ Z anBZ) 0,

n:xp €)Y

This is a linear function with respect to 0, as long as the number
of misclassified points remains the same.

e However, as one slowly changes the value of 6, which corresponds
to a change of the (direction/position of the hyperplane), there
will be a point where the number of misclassified samples in Y
suddenly changes; this is the time, where a sample changes its
relative position with respect to the (moving) hyperplane. Hence,
the set)V is modified.

V.

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

e The perceptron cost function is not differentiable at all points. It
is a continuous piece-wise linear function. Indeed, let us write it
in a slightly different way,

J(B) = <_ Z anBZ) 0,

n:xp €)Y

This is a linear function with respect to 0, as long as the number
of misclassified points remains the same.

e However, as one slowly changes the value of 6, which corresponds
to a change of the (direction/position of the hyperplane), there
will be a point where the number of misclassified samples in Y
suddenly changes; this is the time, where a sample changes its
relative position with respect to the (moving) hyperplane. Hence,
the set)V is modified.

o After this change, J(€) will correspond to a new linear function.

y

Sergios Theodoridis University of Athens Machine Learning 11/162

The Perceptron And The Perceptron Rule

e The Perceptron Algorithm: It can be shown that, starting from
an arbitrary point, 89, the following iterative update,

09 =00~ +p; > oy

n:xn €Y

converges after a finite number of steps. The parameter p; is the
user-defined step-size, judicially chosen to guarantee convergence.

Sergios Theodoridis University of Athens Machine Learning 12/162

The Perceptron And The Perceptron Rule

e The Perceptron Algorithm: It can be shown that, starting from
an arbitrary point, 89, the following iterative update,

n:xn €Y

converges after a finite number of steps. The parameter p; is the
user-defined step-size, judicially chosen to guarantee convergence.

e Besides the previous scheme, another version of the algorithm
considers one sample per iteration in a cyclic fashion, till the
algorithm converges.

Sergios Theodoridis University of Athens Machine Learning 12/162

The Perceptron And The Perceptron Rule

e Let us denote by y(;), (), (1) € {1,2,..., N}, the training pair
that is presented in the algorithms at the ith iteration step.

e Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

o) — 0(171) T HiY6) T (i) if T(;) is misclassified by 0(1;1),
o1, otherwise.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule

e Let us denote by y(;), (), (1) € {1,2,..., N}, the training pair
that is presented in the algorithms at the ith iteration step.

e Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

o) — 9(171) T HiY6) T (i) if T(;) is misclassified by H(ifl),
o1, otherwise.

e In other words, starting from an initial estimate, e.g., taken to be
equal to zero, () = 0, we test each one of the samples,
x,, n=1,2,...,N. Once all samples have been considered, we
say that one epoch has been completed.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule

e Let us denote by y(;), (), (1) € {1,2,..., N}, the training pair
that is presented in the algorithms at the ith iteration step.

e Pattern-by-Pattern Perceptron Algorithm: In this formulation, the
algorithm becomes,

o) — 9(171) T HiY6) T (i) if T(;) is misclassified by H(ifl),
o1, otherwise.

e In other words, starting from an initial estimate, e.g., taken to be
equal to zero, () = 0, we test each one of the samples,
x,, n=1,2,...,N. Once all samples have been considered, we
say that one epoch has been completed.

e If no convergence has been attained, all samples are reconsidered
in a second epoch and so on.

Sergios Theodoridis University of Athens Machine Learning 13/162

The Perceptron And The Perceptron Rule I

e The previous algorithm is known as pattern-by-pattern or online
mode of operation. Note that, the term “online” here indicates
that the total number of data samples is fixed and the algorithm
considers them in a cyclic fashion, epoch after epoch.

Sergios Theodoridis University of Athens Machine Learning 14/162

The Perceptron And The Perceptron Rule

e The previous algorithm is known as pattern-by-pattern or online
mode of operation. Note that, the term “online” here indicates
that the total number of data samples is fixed and the algorithm
considers them in a cyclic fashion, epoch after epoch.

e After a successive finite number of epochs, the algorithm is
guaranteed to converge. Note that for convergence, the sequence
1; must be appropriately chosen. For the case of the perceptron
algorithm, convergence is still guaranteed even if y; is a positive
constant, u; = p > 0, usually taken to be equal to one.

Sergios Theodoridis University of Athens Machine Learning 14/162

The Perceptron And The Perceptron Rule

e The following figure provides a geometric interpretation of the
perceptron rule. The sample x is misclassified by the hyperplane,
00~ Since x lies in the (—) side of the hyperplane and it is
misclassified, it belongs to class w;. Hence, assuming u = 1, the applied
correction by the algorithm is

0% =9l~Y 4 g
and its effect is to turn the hyperplane to the direction towards x so

that to place it in the (+) side of the new hyperplane, which is defined
by the updated estimate 8(*).

.

Sergios Theodoridis University of Athens Machine Learning 15/162

The Artificial Neuron

e Once the perceptron algorithm has run and converged, we have
available the weights, 6;, i = 1,2,...,[, of the synapses of the
associated neuron/perceptron as well as the bias term 6. These can
now be used to classify unknown patterns.

V.

Sergios Theodoridis University of Athens Machine Learning 16/162

The Artificial Neuron

e Once the perceptron algorithm has run and converged, we have
available the weights, 6;, i = 1,2,...,[, of the synapses of the
associated neuron/perceptron as well as the bias term 6. These can
now be used to classify unknown patterns.

e Basic neuron element: The features, x;, i =1,2,...,1, are applied to
the input nodes. In turn, each feature is multiplied by the respective
synapse (weight) and then the bias term is added on their linear
combination. The outcome of this operation then goes through a
nonlinear function, f(-), known as the activation function. In the more
classical version, known as the McCulloch-Pitts neuron the activation
function is the Heaviside one, i.e.,

if z>0,
if z<0.

xy 00

(b))

Sergios Theodoridis University of Athens Machine Learning 16/162

Feed-Forward Multilayer Neural Networks

e A single neuron realizes a hyperplane,
Orx1 + oo + ...+ 602+ 6y =0,

in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

o
Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks

e A single neuron realizes a hyperplane,
Orx1 + oo + ...+ 602+ 6y =0,
in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

e As a staring point, we consider classes, in the feature space, which are
formed by unions of polyhedral regions, as shown in the figure below,

v
Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks
e A single neuron realizes a hyperplane,
Orx1 + oo + ...+ 602+ 6y =0,
in the input (feature) space. We will now see how to combine neurons,
in a layer-wise fashion, in order to construct nonlinear classifiers. We
will follow a simple constructive proof, which unveils certain aspects of
neural networks.

e As a staring point, we consider classes, in the feature space, which are
formed by unions of polyhedral regions, as shown in the figure below,

Hj
A+ 7
(100)
w2
(000) (101)
w1 wa
(001)
woy -
H.
(010) ary * ’
wa wy
(011)
way H,

Classes are formed by union of polyhedral regions. Regions are labeled according to the side they lie, with respect
to the three lines, Hy, Ha, Hs. The number “1" indicates the (+) side and the “0” the (-) side. The class
wj consists of the union of the (000) and (111) regions.

y

Sergios Theodoridis University of Athens Machine Learning 17/162

Feed-Forward Multilayer Neural Networks I

e The figure below shows three neurons, realizing the three hyperplanes,
H,, Hy, H3, of the previous figure, respectively.

n Y2 Y3
H, H, Hj

V.

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks

e The figure below shows three neurons, realizing the three hyperplanes,
H,, Hy, H3, of the previous figure, respectively.

n Y2 Y3
H, H, Hsy

1 T2

e The corresponding outputs, denoted as y1, Y2, ys, form the label of the
region associated with the input pattern, which is applied on the input
nodes. Indeed, if the weights of the synapses have been appropriately
set, then if a pattern originates from the region, say, (010), then the
first neuron on the left will fire a zero (y; = 0), the second an one
(y2 = 1) and the rightmost a zero (y3 = 0).

V.

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks

e The figure below shows three neurons, realizing the three hyperplanes,
H,, Hy, H3, of the previous figure, respectively.

n Y2 Y3
H,y Hs Hjy

&y T2

e The corresponding outputs, denoted as y1, Y2, ys, form the label of the
region associated with the input pattern, which is applied on the input
nodes. Indeed, if the weights of the synapses have been appropriately
set, then if a pattern originates from the region, say, (010), then the
first neuron on the left will fire a zero (y; = 0), the second an one
(y2 = 1) and the rightmost a zero (y3 = 0).

e In other words, this layer of neurons forms a mapping of the input space
into the 3-D (three neurons) one. We refer to this as the first hidden
layer.

4

Sergios Theodoridis University of Athens Machine Learning 18/162

Feed-Forward Multilayer Neural Networks I

e More specifically, the mapping is performed on the vertices of the unit
cube in R?3, as shown below

010 #- 110

100 u

V.
Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

e More specifically, the mapping is performed on the vertices of the unit
cube in R?3, as shown below

001 < 101

010 #- 110

000 100 un

e The neurons of the first hidden layer perform a mapping from the input
feature space to the vertices of a unit hypercube. Each region is
mapped into a single vertex. Each vertex of the hypercube is now
linearly separable from all the rest and can be separated by a
(hyper)plane realized by a neuron.

v
Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

e More specifically, the mapping is performed on the vertices of the unit
cube in R?3, as shown below

001 < 101

010 #- 110

000 100 un

e The neurons of the first hidden layer perform a mapping from the input
feature space to the vertices of a unit hypercube. Each region is
mapped into a single vertex. Each vertex of the hypercube is now
linearly separable from all the rest and can be separated by a
(hyper)plane realized by a neuron.

e If p instead of three neurons are used, the mapping is on the vertices of
the p-dimensional unit cube.

vy

Sergios Theodoridis University of Athens Machine Learning 19/162

Feed-Forward Multilayer Neural Networks

e An alternative way to view this mapping is as a new
representation of the input patterns in terms of code words. For
three neurons, we can form 23 binary code-words, each
corresponding to a vertex of the unit cube, which can represent
23 — 1 = 7 regions (there is one remaining vertex, i.e., (110),
which does not correspond to any region).

Sergios Theodoridis University of Athens Machine Learning 20/162

Feed-Forward Multilayer Neural Networks

e An alternative way to view this mapping is as a new
representation of the input patterns in terms of code words. For
three neurons, we can form 23 binary code-words, each
corresponding to a vertex of the unit cube, which can represent
23 — 1 = 7 regions (there is one remaining vertex, i.e., (110),
which does not correspond to any region).

e Moreover, this mapping encodes information concerning some
structure of the input data; that is, information relating on how
the input patterns are grouped together in the feature space in
different regions.

Sergios Theodoridis University of Athens Machine Learning 20/162

Feed-Forward Multilayer Neural Networks I

e We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

e We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

e We choose all regions which belong to one class. Assume that
regions (000) and (111) define class wy. Recall that, each of the
two corresponding vertices is now linearly separable from the rest.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

e We will now use this new representation as input, which feeds the
neurons of a second layer, which is constructed as follows.

e We choose all regions which belong to one class. Assume that
regions (000) and (111) define class wy. Recall that, each of the
two corresponding vertices is now linearly separable from the rest.

e This means that we can use a neuron/perceptron in the
transformed space, which will place one vertex in the (+) side and
the rest in the (-) one, as shown in the last figure. The resulting
structure/network is shown in the figure in the next slide.

Sergios Theodoridis University of Athens Machine Learning 21/162

Feed-Forward Multilayer Neural Networks

21 22

1 T

e The resulting network has a second layer of hidden neurons. The
output z; of the left neuron will fire an “1" only if the input
pattern originates from the region 000 and it will be at “0" for all
other patterns. For the neuron on the right, the output 29 will be
“1" for all the patterns coming from region (111) and zero for all
the rest.

Sergios Theodoridis University of Athens Machine Learning 22/162

Feed-Forward Multilayer Neural Networks

21 22

1 T

e Note that, this second layer of neurons has performed a second
mapping, this time to the unit rectangle in the R%. This mapping
provides a new representation of the input patterns, and this
representation encodes information related to the classes of
the regions.

Sergios Theodoridis University of Athens Machine Learning 22/162

Feed-Forward Multilayer Neural Networks I

e The following figure shows the last reported mapping to the corners of
the unit rectangle in the (21, 22) space.

01

00 10 21

Patterns form class w1 are mapped either to (01) or to (10) and patterns from class wo are mapped to (00).
Thus the classes have now become linearly separable and can be separated via a straight line realized by a neuron.

V.

Sergios Theodoridis University of Athens Machine Learning 23/162

Feed-Forward Multilayer Neural Networks

e The following figure shows the last reported mapping to the corners of
the unit rectangle in the (21, 22) space.

01

00 10 21

Patterns form class wq are mapped either to (01) or to (10) and patterns from class wo are mapped to (00).
Thus the classes have now become linearly separable and can be separated via a straight line realized by a neuron.

e This is very interesting; by successive mappings, we have transformed
our originally nonlinearly separable task, to one which is linearly
separable. Indeed, the point (00) can be linearly separated from (01)
and (10) and this can be realized by an extra neuron operating in the
(21, 22) space. The latter is known as the output neuron, since it
provides the final classification decision. The final network is shown in
the next figure.

o
Sergios Theodoridis University of Athens Machine Learning 23/162

Feed-Forward Multilayer Neural Networks

A three layer feedforward neural network. It comprises the input (non-processing) layer, two hidden layers and one output
layer of neurons. Such a three layer NN can solve any classification task, where classes are formed by unions of
polyhedral regions.

e We say that this network of neurons is a feed-forward one, since
information flows in the forward direction from the input to the output
layer. It comprises the input layer, which is a non-processing one, two
hidden layers (the term hidden is self-explained) and one output layer.
We call such a Neural Network (NN) a three layer network, without
counting the input layer of non-processing nodes.

v

Sergios Theodoridis University of Athens Machine Learning 24/162

Feed-Forward Multilayer Neural Networks

e We have constructively shown that a three layer feed-forward NN
can, in principle, solve any classification task whose classes are
formed by union of polyhedral regions. The generalization to
multiclass cases is straightforward, by employing more output
neurons depending on the number of classes.

Sergios Theodoridis University of Athens Machine Learning 25/162

Feed-Forward Multilayer Neural Networks

e We have constructively shown that a three layer feed-forward NN
can, in principle, solve any classification task whose classes are
formed by union of polyhedral regions. The generalization to
multiclass cases is straightforward, by employing more output
neurons depending on the number of classes.

e Note that in some cases, one hidden layer of nodes may be
sufficient. For example, this would be the case if class w; was the
union of (000) and (100) regions. Then these two vertices could
be separated from the rest via a single plane and a second hidden
layer of neurons would not be required (check why).

Sergios Theodoridis University of Athens Machine Learning 25/162

Feed-Forward Multilayer Neural Networks

e What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

Sergios Theodoridis University of Athens Machine Learning 26/162

Feed-Forward Multilayer Neural Networks

e What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

e In practice, when the data “live” in high dimensional spaces,
there is no way of implementing neurons analytically so as to
realize the hyperplanes. Furthermore, in real life, classes are not
necessarily formed by union of polyhedral regions and more
important classes do overlap.

Sergios Theodoridis University of Athens Machine Learning 26/162

Feed-Forward Multilayer Neural Networks

e What we have said so far was a theoretical construction in order
to highlight some analogies to the multilayer neural architecture
of our brain and the concept of different representations of the
input patterns via the various layers.

e In practice, when the data “live” in high dimensional spaces,
there is no way of implementing neurons analytically so as to
realize the hyperplanes. Furthermore, in real life, classes are not
necessarily formed by union of polyhedral regions and more
important classes do overlap.

e Hence, one needs to devise a training procedure based on a cost
function.

Sergios Theodoridis University of Athens Machine Learning 26/162

The Backpropagation Algorithm

e A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm

e A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

e From this point of view, a NN realizes a nonlinear parametric
function, § = fg(x), where 6 stands for all the weights present in
the network. Thus, training a NN seems not to be any different
than training any other parametric prediction model.

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm

e A feed-forward neural network (NN) consists of a number of
layers of neurons and each neuron is determined by the
corresponding set of synaptic weights and its bias term. Networks
with more than two hidden layers, are known as deep networks.

e From this point of view, a NN realizes a nonlinear parametric
function, § = fg(x), where 6 stands for all the weights present in
the network. Thus, training a NN seems not to be any different
than training any other parametric prediction model.

e All is needed is a) a set of training samples, b) a loss function,
L(y,y), and c) an iterative scheme, e.g., gradient descent, to
perform the optimization of the associated empirical loss
function,

N
J(0) = Zﬁ(yna fo(zn)).

n=1

Sergios Theodoridis University of Athens Machine Learning 27/162

The Backpropagation Algorithm I

e A difficulty with training NNs lies in their multilayer structure
that complicates the computation of the involved gradients,
which are needed for the optimization. Moreover, the
McCulloch-Pitts neuron involves the discontinuous Heaviside
activation function, which is not differentiable.

Sergios Theodoridis University of Athens Machine Learning 28/162

The Backpropagation Algorithm

e A difficulty with training NNs lies in their multilayer structure
that complicates the computation of the involved gradients,
which are needed for the optimization. Moreover, the
McCulloch-Pitts neuron involves the discontinuous Heaviside
activation function, which is not differentiable.

e A first step in developing a practical algorithm for training a NN
is to replace the Heaviside activation function with a
differentiable one.

Sergios Theodoridis University of Athens Machine Learning 28/162

The Backpropagation Algorithm I

e A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

V.
Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

e A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

e The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z) =0(z) := Wl(—az)'

v
Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

e A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.
e The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,
1
1) =ola) = T ey
e Hyperbolic tangent function: Another alternative is

cz :
f(z) = atanh (5) , where ¢ and a are controling parameters.

v
Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

e A first step in developing a practical algorithm for training a NN is to
replace the Heaviside activation function with a differentiable one.

e The logistic sigmoid neuron: One possibility is to adopt the logistic
sigmoid function, i.e.,

f(z)=a(2):

e Hyperbolic tangent function: Another alternative is

1
~ 1+exp(—az)’

cz :
f(z) = atanh (5) , where ¢ and a are controling parameters.

f(z)
1)

e 2 b f(2) = atanh(%)

1|

-10 -8 -6 -4 -2 0 2 4 6 8 10

1L

-2

Logistic sigmoid function Hyperbolic tangent function
v

Sergios Theodoridis University of Athens Machine Learning 29/162

The Backpropagation Algorithm

e The Gradient Descent Scheme: Having adopted a differentiable
activation function, we are ready to proceed with developing the
gradient descent iterative scheme for the minimization of the cost
function. We will formulate the task in a general framework.

Sergios Theodoridis University of Athens Machine Learning 30/162

The Backpropagation Algorithm

e The Gradient Descent Scheme: Having adopted a differentiable
activation function, we are ready to proceed with developing the
gradient descent iterative scheme for the minimization of the cost
function. We will formulate the task in a general framework.

e What is more important is to grasp the rationale behind the
algorithm and not the details.

Sergios Theodoridis University of Athens Machine Learning 30/162

The Backpropagation Algorithm

o Let (yn,xn), n=1,2,..., N, be the set of training samples.
Note that we have assumed multiple output variables, assembled
as a vector. We assume that the network comprises L layers;

L — 1 hidden and one output layers. Each layer consists of
k., r=1,2,..., L, neurons. Thus, the output vectors are:

Yn = [Yni, Yn2s - - - Unky)L ER¥ n=1,2,... N.

For the sake of the mathematical derivations, we also denote the
number of input nodes as kg; i.e., kg = [, where [is the
dimensionality of the input feature space.

Sergios Theodoridis University of Athens Machine Learning 31/162

The Backpropagation Algorithm

o Let (yn,xn), n=1,2,..., N, be the set of training samples.
Note that we have assumed multiple output variables, assembled
as a vector. We assume that the network comprises L layers;

L — 1 hidden and one output layers. Each layer consists of
k., r=1,2,..., L, neurons. Thus, the output vectors are:

Yn = [Yni, Yn2s - - - Unky)L ER¥ n=1,2,... N.

For the sake of the mathematical derivations, we also denote the
number of input nodes as kg; i.e., kg = [, where [is the
dimensionality of the input feature space.

o Let 0;7 denote the synaptic weights associated with the jth
neuron in the rth layer, with j =1,2,...)k, and r=1,2,..., L,
where the bias term is included in 67, i.e.,

T . [QT T T T
ej = [9]‘07 GICEREE: jk,_l] 0

Sergios Theodoridis University of Athens Machine Learning 31/162

The Backpropagation Algorithm

The links and the associated variables of the jth neuron at the rth layer.

4

Sergios Theodoridis University of Athens Machine Learning 32/162

The Backpropagation Algorithm

e The basic iterative step for the gradient decent scheme is written
as
0’ (new) = 67 (old) + A8,
where
aJ
007 07 (old)

AG; = —p

The parameter p is the user-defined step size (it can also be
iteration-dependent) and J denotes the cost function.

Sergios Theodoridis University of Athens Machine Learning 33/162

The Backpropagation Algorithm

e For example, if the squared error loss is adopted, we have

N
J(0) = Ju(0),

and
1 &)
In(0) = 5 D (Gt = yni)”
k=1
where g1, k=1,2,..., kg, are the estimates provided at the

corresponding output nodes of the network. We will consider
them as the elements of a corresponding vector, 4,

Sergios Theodoridis University of Athens Machine Learning 34/162

The Backpropagation Algorithm

e The main difficulty in the backpropagation algorithm lies in the
computation of the gradients. Note that the output of the
network relates directly to the parameters associated with the
neurons of the last (output) layer. Thus, the computation of the
corresponding gradients poses no problems. Business as usual.

Sergios Theodoridis University of Athens Machine Learning 35/162

The Backpropagation Algorithm

e The main difficulty in the backpropagation algorithm lies in the
computation of the gradients. Note that the output of the
network relates directly to the parameters associated with the
neurons of the last (output) layer. Thus, the computation of the
corresponding gradients poses no problems. Business as usual.

e However, the output of the network is related indirectly with the
parameters of the neurons comprising the hidden layers. This is
because the outputs/responses of the hidden layers are
transformed by the neurons of the layers above. The closer to the
input is a layer, the more transformations the respected neuron
responses undergo, as they propagate through the layers higher in
the hierarchy.

Sergios Theodoridis University of Athens Machine Learning 35/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:
e Forward Computations: For a given input, x,,, employ the
currently available estimates of the parameters and compute the
output of the network, say, 9,, which depends of the current

estimates.

»

36/162

Sergios Theodoridis University of Athens Machine Learning

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

e Forward Computations: For a given input, x,,, employ the
currently available estimates of the parameters and compute the
output of the network, say, 9,, which depends of the current
estimates.

e Backward Computations: Using the desired response, y,, and the
predicted one, ¢, compute the corresponding gradients of the

cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

»

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

e Forward Computations: For a given input, x,,, employ the
currently available estimates of the parameters and compute the
output of the network, say, 9,, which depends of the current
estimates.

e Backward Computations: Using the desired response, y,, and the
predicted one, ¢, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

o Compute the gradients of the parameters of the neurons of the last
layer, L.

»

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

e Forward Computations: For a given input, x,,, employ the
currently available estimates of the parameters and compute the
output of the network, say, 9,, which depends of the current
estimates.

e Backward Computations: Using the desired response, y,, and the
predicted one, ¢, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

o Compute the gradients of the parameters of the neurons of the last
layer, L.

o Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L — 1.

»

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

To compute the gradients, two types of computations are performed:

e Forward Computations: For a given input, x,,, employ the
currently available estimates of the parameters and compute the
output of the network, say, 9,, which depends of the current
estimates.

e Backward Computations: Using the desired response, y,, and the
predicted one, ¢, compute the corresponding gradients of the
cost function w.r. to all the parameters. To this end, the
computations propagate backwards:

o Compute the gradients of the parameters of the neurons of the last
layer, L.

o Using the previously computed gradients and the chain rule of
derivation (to account for the imposed, by the network,
transformations), compute the gradients of the parameters of the
neurons of layer L — 1.

o The above procedure caries on, backwards, till all the gradients,
including those in the first hidden layer, have been computed.

Sergios Theodoridis University of Athens Machine Learning 36/162

The Backpropagation Algorithm

e Computation of the gradients: Let z;; denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern x,, appears at the input nodes. Then, we can write

that
k:T,1 k?r—l
—il =il T, r—1
m=1 m=0
where by definition
=il -1 -1 1T
y; = [17y;1 7"'7y:;k7_71])
and y,, =1, V r,n. For the neurons at the output layer, r = L,
Y = Uum, m=1,2,...,kr, and for r = 1, we have
Y0 = Tpm, m=1,2,...,ko; that is, 2, are set equal to the input

feature values.

v
Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm
e Computation of the gradients: Let z;; denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern x,, appears at the input nodes. Then, we can write

that
k:T,1 kr—l
1 —1 T, r—1
m=1 m=0
where by definition
=il -1 -1 1T
y; = [17y;1 7"'7y:;k7_71])
and y,, =1, V r,n. For the neurons at the output layer, r = L,
Y = Uum, m=1,2,...,kr, and for r = 1, we have
Y0 = Tpm, m=1,2,...,ko; that is, 2, are set equal to the input

feature values.
e Hence, we can now write that

0z" .
8—']’: = 8{" = — aJT" y, ', and 0], := —8{” :
80j 8znj 50j 8znj 8znj

v
Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm
e Computation of the gradients: Let z;; denote the output of the
linear combiner of the jth neuron in the rth layer at time instant n,
when the pattern x,, appears at the input nodes. Then, we can write

that
k:T,1 kr—l
1 —1 T, r—1
m=1 m=0
where by definition
v =yt 1T
and y,, =1, V r,n. For the neurons at the output layer, r = L,
Y = Uum, m=1,2,...,kr, and for r = 1, we have
Y0 = Tpm, m=1,2,...,ko; that is, 2, are set equal to the input
feature values.
e Hence, we can now write that
aJ, 0.J,, 0z, aJ, aJ,
907 ~ 0, 90, ~ B, U 0 0 = g
j #nj OY; “nj “nj
e Then we have N
AG =—p> oryrt, r=12,... L (4)
n=1

v
Sergios Theodoridis University of Athens Machine Learning 37/162

The Backpropagation Algorithm

e Computation of 4; ;: Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, d,,;, one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this

philosophy justifies the name given to the algorithm.

e 7 = L: We have that L a.J,
nj — 9L
nj

V.

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

e Computation of 4; ;: Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, d,,;, one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this

philosophy justifies the name given to the algorithm.

e 7 = L: We have that L a.J,
Ea 0zL;
For the squared error loss function,
e 2
JIp = B) Z (f(zrj:k) - ynk) .
k=1

V.

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

e Computation of 4; ;: Here is where the heart of the backpropagation
algorithm beats. For the computation of the gradients, d;,;, one starts
at the last layer, r = L, and proceeds backwards towards r = 1; this

philosophy justifies the name given to the algorithm.

e r = L: We have that L 0
Ea 0zL;
For the squared error loss function,
L 2
JIp = 3 Z (F(z5) = ymi) ™
k=1
Hence,
57LLj = (gnj - ynj)f,(zﬁj),
= enf (25), i=1,2,... k. (5)

where f'(-) denotes the derivative of f(-), and e, is the error
associated with the jth output variable at time n. Note that for
the last layer, the computation of the gradient is straightforward.

4

Sergios Theodoridis University of Athens Machine Learning 38/162

The Backpropagation Algorithm

o Computation of §;,; (continued):
e r < L: Due to the successive dependence between the layers, the

value of z:;;l influences all the values 27, kK =1,2,...,k, of the
next layer. Employing the chain rule for differentiation, we get
0Jn 0J, 0z
' = g = ok (6)
8 iy — 8an Oz

o
Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

e Computation of 9,

; (continued):

e r < L: Due to the successive dependence between the layers, the

r—1
value of z;

influences all the values 2, , k=1,2,...,

next layer. Employing the chain rule for differentiation, we get

k, of the

1 Oy aJ, 9,
5 — 1 = 8 r— 1) (6)
8 — an 62
or
k-
: 671/]66 r— 1 * (7)
n]
o
Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

o Computation of §;,; (continued):
e r < L: Due to the successive dependence between the layers, the

value of zQ;l influences all the values 27, kK =1,2,...,k, of the
next layer. Employing the chain rule for differentiation, we get
0Jn 0J, 0z
' = g = ok (6)
8 iy — 8an Oz
or k.
Zénk = (7)
n] 8 i
However,
O _ (Lt OV . .
azr_kl =] , where y" -1 = f(z0 1),
nj nj

o
Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

o Computation of §;,; (continued):
e r < L: Due to the successive dependence between the layers, the

value of zQ;l influences all the values 27, kK =1,2,...,k, of the
next layer. Employing the chain rule for differentiation, we get
0Jn 0J, 0z
' = g = ok (6)
8 iy — 8znk Oz
or k.
Zénk 1 (7)
n] 8 i
However,
O _ (Lt OV . .
c’)zr_kl =] , where y" -1 = f(z0 1),
nj nj
hich leads to,
which leads to 021, :er‘f,('r—l)
Bapyt MY

and combining with (6)-(7), we obtain for j =1,2,... k._1,

o
Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

o Computation of §;,; (continued):
e r < L: Due to the successive dependence between the layers, the

value of zQ;l influences all the values 27, kK =1,2,...,k, of the
next layer. Employing the chain rule for differentiation, we get
0Jn 0J, 0z
' = g = ok (6)
8 iy — 8znk Oz
or k.
Zénk = (7)
’I’LJ 8 r
However,
az’:‘L 9 Z =0 eTmynm r— r—
r—kl = (r—1) ; where ynml = f(znml)v
02y, 0z
hich leads to,
which leads to 021, —er,f’('r—l)
827‘—1 — Vkj ny 2’

and combining with (6)- (7) we obtain for j=1,2,... k._1,
5y (Za b)F Gyt = 0t = ;jlf'(ZZ;f)- (8)

v
Sergios Theodoridis University of Athens Machine Learning 39/162

The Backpropagation Algorithm

e The Gradient Descent Backpropagation Algorithm
@ |Initialization
@ |Initialize all synaptic weights and biases randomly with small, but not very small, values. Select p

O Seialpy = @agjo § = Ly Fhoconlin =0 = 1,200,/
@ Repeat; Each repetition completes an epoch.
@ Forn=1,2,...,N, Do
- Forr =1,2,..., L, Do; Forward computations.
- Forj =1,2,...,k,, Do

- Compute z;;j from (3).
= Compute y;j = f(z;j).

- End For
- End For

@ End For

® Forj=1,2,...,kp, Do
- Compute BTIL‘J- from (5).

@ End For

@ Forr=L,L—1,...,2, Do; Backward computations.
- Forj =1,2,...,k,, Do
- Compute 62;1 from (8).
- End For

@ End For

@ End For

@ Forr=1,2 ., L, Do; Update the weights.
@® Forj=1,2,...,ky,, Do
- Compute A@7 from (4)
T _ gr T
- 67 =67+ Af]
@ End For
@ End For
@ Until a stop criterion is met. y
Sergios Theodoridis University of Athens Machine Learning 40/162

The Backpropagation Algorithm I

Some Remarks on the Backpropagation Algorithm

e One possibility to terminate the algorithm is to track the value of
the cost function, and stop the algorithm when this gets smaller
than a preselected threshold. An alternative path is to check for
the gradient values and stop when these become small.

Sergios Theodoridis University of Athens Machine Learning 41/162

The Backpropagation Algorithm

Some Remarks on the Backpropagation Algorithm

e One possibility to terminate the algorithm is to track the value of
the cost function, and stop the algorithm when this gets smaller
than a preselected threshold. An alternative path is to check for
the gradient values and stop when these become small.

e As it is the case with all gradient descent schemes, the choice of
the step size, p, is very critical; it has to be small to guarantee
convergence, but not too small, otherwise convergence speed
slows down. Adaptive values of i, whose value depends on the
iteration are more appropriate. Soon, such techniques will be
discussed.

Sergios Theodoridis University of Athens Machine Learning 41/162

The Backpropagation Algorithm

e Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be

trapped.

4

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

e Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

e If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

4

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

e Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

e If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

e However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

V.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm

e Due to the highly nonlinear nature of the NN task, the cost
function in the parameter space is, in general, of a complicated
form and there exist local minima, where the algorithm can be
trapped.

e If such a local minimum is deep enough, the obtained solution
can be acceptable. However, this may not be the case and the
solution can be trapped in a shallow minimum resulting in a bad
solution.

e However, this “shallow minima” view has been challenged in the
context of deep architectures. As we will discuss soon, in the case
of networks with many layers, shallow minima may not necessarily
be a major problem. Saddle points become the critical issue.

e In practice, random initialization of the weights is carried out.
Yet, initialization remains a critical part of the algorithm.

Sergios Theodoridis University of Athens Machine Learning 42/162

The Backpropagation Algorithm I

e Pattern-by-pattern operation: The previous scheme is of the
batch type of operation, where the weights are updated once per
epoch. The alternative route is the pattern-by-pattern/online
mode of operation; the weights are updated at every time instant
when a new pattern appears in the input.

Sergios Theodoridis University of Athens Machine Learning 43/162

The Backpropagation Algorithm

e Pattern-by-pattern operation: The previous scheme is of the
batch type of operation, where the weights are updated once per
epoch. The alternative route is the pattern-by-pattern/online
mode of operation; the weights are updated at every time instant
when a new pattern appears in the input.

e Mini-batch operation: There are also intermediate ways, where
the update is performed every N1 < N samples; this technique is
also referred as mini-batch mode of operation. Batch and
mini-batch modes have an averaging effect on the the
computation of the gradients.

Sergios Theodoridis University of Athens Machine Learning 43/162

Vanishing, Exploding and Unstable Gradients

e Due to the hierarchical computations of the gradients, it turns
out that their computation involves a sequence of products of
parameters with derivatives of the activation function (e.g., Eq.
(8)). The closer to the input layer we are, the more products the
computation of the respected gradients involve.

Sergios Theodoridis University of Athens Machine Learning 44/162

Vanishing, Exploding and Unstable Gradients

e Due to the hierarchical computations of the gradients, it turns
out that their computation involves a sequence of products of
parameters with derivatives of the activation function (e.g., Eq.
(8)). The closer to the input layer we are, the more products the
computation of the respected gradients involve.

e Taking into account that the derivatives of the activation
function can be less than one (e.g., for sigmoid functions can be
very small), and if the parameters values are not very large, this
can make the gradients, associated to the parameters in the lower
layers, vanishingly small, especially if networks with many layers
are involved. This can make learning extremely slow.

Sergios Theodoridis University of Athens Machine Learning 44/162

The Backpropagation Algorithm

e On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

Sergios Theodoridis University of Athens Machine Learning 45/162

The Backpropagation Algorithm

e On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

e Another related problem is that gradients in different layers can
take values of different scales. Thus, some layers can learn faster
that others, and this can make the learning process unstable.

Sergios Theodoridis University of Athens Machine Learning 45/162

The Backpropagation Algorithm

e On the other extreme, if the values of the parameter estimates
happen to take large values, this may lead the values of the
gradients to explode. As a result, this can disturb the learning
process, by pushing the estimates to wrong regions in the
parameters’ space.

e Another related problem is that gradients in different layers can
take values of different scales. Thus, some layers can learn faster
that others, and this can make the learning process unstable.

e To cope with such difficulties, a number of modifications of the
basic gradient scheme and a number of practical hints have been
proposed.

Sergios Theodoridis University of Athens Machine Learning 45/162

Beyond The Basic Gradient Descent Scheme

e Gradient descent with a momentum term: One way to improve
the convergence rate is to employ the so called momentum term,
a. The correction term is now modified as

A% (new) = aA@j(old) + AB;

The effect is to increase the step size in regions, where the cost
function exhibits low curvature.

V.

Sergios Theodoridis University of Athens Machine Learning 46/162

Beyond The Basic Gradient Descent Scheme

e Gradient descent with a momentum term: One way to improve
the convergence rate is to employ the so called momentum term,
a. The correction term is now modified as

A} (new) = aA@}(old) + AG
The effect is to increase the step size in regions, where the cost
function exhibits low curvature.

e Indeed, assume that the gradient is approximately constant over a
number of steps, say I. Then, it can be shown that

I
l1—«a

where g is the gradient over the I steps. That is, the use of the
momentum term increases the correction by a factor 1 — .. Note
that adaptive versions for the momentum term a are possible and
popular.

y

Sergios Theodoridis University of Athens Machine Learning 46/162

Beyond The Basic Gradient Descent Scheme

e A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

Sergios Theodoridis University of Athens Machine Learning 47/162

Beyond The Basic Gradient Descent Scheme

e A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

o Newton-type and related simplified versions for computing the
associated Hessian matrix.

Sergios Theodoridis University of Athens Machine Learning 47/162

Beyond The Basic Gradient Descent Scheme

e A number of alternatives have been proposed, and the topic of
speeding up the convergence of the backpropagation algorithm
has been a hot topic of research, and many variants have been
proposed over the years. For example:

o Newton-type and related simplified versions for computing the
associated Hessian matrix.

o A number of versions, using more recent results on optimization,
have also been suggested; for example, schemes based on the
ADAGARD or on the Nesterov rationale, which have been
considered and discussed in the text in Chapter 8.

Sergios Theodoridis University of Athens Machine Learning 47/162

Selecting A Cost Function

e The choice of a loss function for the optimization is tightly
related with the choice of the output activation function. A
wrong combination can severely affect the learning performance
of a network.

Sergios Theodoridis University of Athens Machine Learning 48/162

Selecting A Cost Function

e The choice of a loss function for the optimization is tightly
related with the choice of the output activation function. A
wrong combination can severely affect the learning performance
of a network.

e A wrong combination: Let us select the squared error loss
function and the logistic sigmoid function as the output
nonlinearity, i.e.,

1 1)

f(z):U(Z):H_eX—p(_az)7 J(€)=§(y—ﬁ) :

where a single output neuron is considered and the time index has
been suppressed.

Sergios Theodoridis University of Athens Machine Learning 48/162

Selecting A Cost Function

e Assume L layers and let the vector of the parameters, associated
with the single output neuron, be 8. The vector of the outputs
of the previous (L — 1) layer is denoted as

L., L—1, L-1 =1 :
Yy i=[yr ¥y .- Y,], see figure below. Then, the
output of the network will be

T —
L._ gL"yl-1

Yy

where the bias term has been included in the vector of
parameters.

g=o0(z"), 2

4

Sergios Theodoridis University of Athens Machine Learning 49/162

Selecting A Cost Function I

e For the specific combination of loss and activation functions, it
turns out that

oJ
W=(Z/—y

Sergios Theodoridis University of Athens Machine Learning 50/162

Selecting A Cost Function

e For the specific combination of loss and activation functions, it
turns out that

oJ s _
W=(Z/—y)0 (z")y" "

e Observe that for values of z” not close to zero, the derivative of
the logistic sigmoid function takes very small values, due to its
saturating nature. However, very small values of the gradient lead
to considerable slow down of the convergence of the gradient
descent type algorithms.

Sergios Theodoridis University of Athens Machine Learning 50/162

Selecting A Cost Function

e For the specific combination of loss and activation functions, it

turns out that

oJ
W=(Z/—y

e Observe that for values of z” not close to zero, the derivative of
the logistic sigmoid function takes very small values, due to its
saturating nature. However, very small values of the gradient lead
to considerable slow down of the convergence of the gradient
descent type algorithms.

e In contrast, this is not the case, if the squared error loss function
is combined with a linear activation function. This is a perfectly
good combination (try it).

Sergios Theodoridis University of Athens Machine Learning 50/162

Cross-Entropy Loss Function

e If one adopts as target values, in a classification task, the 0,1
values, i.e., y, € {0,1}, and assuming k1, output nodes, the
cross-entropy cost is defined as

N kg
J=- Z Z (ynk In gnp + (1 - ynk) 111(1 - gnk)))
n=1 k=1

where N is the number of the training points.

V.

Sergios Theodoridis University of Athens Machine Learning 51/162

Cross-Entropy Loss Function

e If one adopts as target values, in a classification task, the 0,1
values, i.e., y, € {0,1}, and assuming k, output nodes, the
cross-entropy cost is defined as

N kg
J=- Z Z (ynk In gnp + (1 - ynk) 111(1 - gnk)))
n=1 k=1
where N is the number of the training points.

e The minimum of this cost function is achieved when v,z = Up.
Viewing 9, as the probability of observing an “1” at the
respective node, then the probability P(y,,) is equal to

kr,
P(yn) = H(gnk)ynk(l - gnk)l_ynk-
k=1
Thus, the cross entropy can be interpreted as the negative
log-likelihood function over the training samples.

4

Sergios Theodoridis University of Athens Machine Learning 51/162

Cross-Entropy Loss Function

e |t turns out that, combining the cross entropy with the logistic
sigmoid activation in the output nodes renders the associated
gradients independent of the respective derivative and the
gradients depend solely on the errors committed.

Sergios Theodoridis University of Athens Machine Learning 52/162

Softmax Output Activation Function

e Softmax activation function: Although we have interpreted the
outputs as probabilities, there is no guarantee that these add to
one. This can be enforced if the activation function takes the
form

G = exp(zL,)

ne — k 9
> me1€XP(Zim)

which is known as the softmax function.

Sergios Theodoridis University of Athens Machine Learning 53/162

Softmax Output Activation Function

e Softmax activation function: Although we have interpreted the
outputs as probabilities, there is no guarantee that these add to
one. This can be enforced if the activation function takes the
form

G = exp(zL,)

ne — k 9

which is known as the softmax function.

e It turns out that, combining the softmax activation with the
cross-entropy loss makes the gradients equal to
oJ N L1
90 = (y—9)y~ ",
where time and node indices have been suppressed. Thus, the
gradients depend on the error and no derivative is involved.

Sergios Theodoridis University of Athens Machine Learning 53/162

e Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with @ = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

Sergios Theodoridis University of Athens Machine Learning 54/162

e Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with @ = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

e The momentum and the adaptive momentum algorithms, as explained
in the book, were used. The weights were initialized by a uniform
pseudorandom distribution between 0 and 1. The obtained results are
shown in the following figures.

Sergios Theodoridis University of Athens Machine Learning 54/162

e Learning curves: The classification task consists of two classes, each
being the union of four regions. Each region consists of normally
distributed random vectors. A total of 400 training vectors were
generated, 50 from each distribution. A multilayer perceptron with
three neurons in the first and two neurons in the second hidden layer
were used, with a single output neuron. The activation function was the
logistic one with @ = 1 and the desired outputs 1 and 0, respectively, for
the two classes.

e The momentum and the adaptive momentum algorithms, as explained
in the book, were used. The weights were initialized by a uniform
pseudorandom distribution between 0 and 1. The obtained results are
shown in the following figures.

10%

2

Sum-squares Error
I

=3

5
o

0 2000 4000 6000 0
Epochs

@
(a) Error convergence curves for the adaptive momentum (red line) and the momentum algorithms. Note that
the adaptive momentum leads to faster convergence. (b) The classifier formed by the multilayer perceptron.

v
Sergios Theodoridis University of Athens Machine Learning 54/162

The Rectified Linear Unit (ReLU)

e Besides the two already mentioned activation functions, more
recently, a new one has become very popular for use in the hidden
layers, especially in the context of deep networks. The rectified
linear unit (ReLU) is defined as

f(2) := max (0, 2)

and it is shown in the figure

f(z)

v

Sergios Theodoridis University of Athens Machine Learning 55/162

The Rectified Linear Unit (ReLU)

e |t has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

e |t has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

e Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

e |t has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

e Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

e Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., 6y = 0.1; this increases the probability
the the input to the activation has positive values.

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

It has been established, by now, that the use of the ReLU in the
context of deep networks, with many layers, can improve the
training time significantly.

Observe that the ReLU has derivatives that their values remain
large for large positive values of z; That is, in the region where
the neuron remains active.

Thus, it is advisable to initialize the respective biases to some
positive small value, e.g., 6y = 0.1; this increases the probability
the the input to the activation has positive values.

Note that at z = 0, the derivative is not defined; yet, in the
extreme case that z is exactly zero, one can set the derivative
either equal to zero or to one (for those familiar with the notion
of subgradient, this makes sense!)

Sergios Theodoridis University of Athens Machine Learning 56/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

V.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

e Consider the function:

f(2) = max(0, z) + amin(0, z).

V.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

e Consider the function:
f(2) = max(0, z) + amin(0, z).

o When a = —1, the resulting is known as the absolute value
rectification.

V.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

e Consider the function:
f(2) = max(0, z) + amin(0, z).

o When a = —1, the resulting is known as the absolute value
rectification.

o When « is assigned a fixed small value, e.g., @ = 0.01, the
resulting function is coined as the leaky RelLU.

V.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing

when z < 0. To bypass this obstacle, a number of variants have
been proposed.

e Consider the function:
f(2) = max(0, z) + amin(0, z).

o When a = —1, the resulting is known as the absolute value
rectification.

o When « is assigned a fixed small value, e.g., @ = 0.01, the
resulting function is coined as the leaky RelLU.

o When « is left as a parameter to be learned during the training, it
is known as the parametric RelU.

V.

Sergios Theodoridis University of Athens Machine Learning 57/162

The Rectified Linear Unit (ReLU)

e The major disadvantage of the ReLU is that learning is freezing
when z < 0. To bypass this obstacle, a number of variants have
been proposed.

e Consider the function:
f(2) = max(0, z) + amin(0, z).

o When a = —1, the resulting is known as the absolute value
rectification.

o When « is assigned a fixed small value, e.g., @ = 0.01, the
resulting function is coined as the leaky RelLU.

o When « is left as a parameter to be learned during the training, it
is known as the parametric RelU.

o Maxout unit: In this variant, a fixed number of, say &, different
ReLUs are employed, which are learned during the training. The
output of the neuron is selected as the maximum one among the k
ones.

v

Sergios Theodoridis University of Athens Machine Learning 57/162

Which Activation Function Then?

e Which nonlinearity is the best? Unfortunately, there is not a
universal answer to that. It depends on the data and the problem
at hand. At the time of developing these slides, it seems that the
RelU versions are the preferable choice, for a number of
mainstream applications.

Sergios Theodoridis University of Athens Machine Learning 58/162

Pruning a Network

e Pruning a Network: A crucial factor in training NNs is to decide
the size of the network. The size is directly related to the number
of weights to be estimated and we know that, in any parametric
modeling method, if the number of free parameters is large
enough with respect to the number of training data, overfitting
is bound to happen.

Sergios Theodoridis University of Athens Machine Learning 59/162

Pruning a Network

e Pruning a Network: A crucial factor in training NNs is to decide
the size of the network. The size is directly related to the number
of weights to be estimated and we know that, in any parametric
modeling method, if the number of free parameters is large
enough with respect to the number of training data, overfitting
is bound to happen.

e In practice, the classical approach is to start with a large enough
number of neurons and then use a regularization technique to
push the less informative weights to low values, which are then
removed. To this end, there exists a number of different
regularization approaches, which have been proposed over the
years.

Sergios Theodoridis University of Athens Machine Learning 59/162

Pruning a Network-Regularization

e Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of

minimizing a cost function, J(@), its regularized version is used,
i.e.,

J'(8) = J(8) + Al6]I*.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

e Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(@), its regularized version is used,
i.e.,

7 2

J(0) = J(8) + All6]".

e In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

e Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(@), its regularized version is used,
i.e.,

T(0) = J(6) + All6]*.

e In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

e Moreover, it is even better if one groups the parameters of

different layers together and employs different regularizing
constants for each group.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

e Weight decay: This path refers to a typical cost function
regularization via the Euclidean norm of the weights. Instead of
minimizing a cost function, J(@), its regularized version is used,
i.e.,

T(0) = J(6) + All6]*.

e In general, it is not a good practice to include the bias terms in
the norm. As it is the case with the ridge regression task, this
affects the translation invariant properties of the network.

e Moreover, it is even better if one groups the parameters of
different layers together and employs different regularizing
constants for each group.

e More recently, the use of the sparsity promoting /1 norm has been
proposed in places of the Euclidean norm.

Sergios Theodoridis University of Athens Machine Learning 60/162

Pruning a Network-Regularization

e Weight elimination: Another path is include other functions than
norms. An example is,

J'(0) = +)\292+02

where K is the number of the weights involved and 6}, is a
preselected threshold value.

Sergios Theodoridis University of Athens Machine Learning 61/162

Pruning a Network-Regularization

e Weight elimination: Another path is include other functions than
norms. An example is,

J'(0) = +)\292+02

where K is the number of the weights involved and 6}, is a
preselected threshold value.

e A careful look at this function reveals that, if 6, < 0, the penalty
term goes to zero very fast. In contrast, for values 6 > 6, the
penalty term tends to unity. In this way, less significant weights
are pushed towards to zero.

Sergios Theodoridis University of Athens Machine Learning 61/162

e Pruning of the network: The samples of the two classes are denoted by
black and red “o” respectively. Figure (a) on the left corresponds to a
multilayer perceptron with two hidden layers and 20 neurons in each of
them, amounting to a total of 480 weights. Training was performed via
the backpropagation algorithm. The overfitting nature of the resulting
curve is readily observed. Figure (b) on the right corresponds to the
same multilayer perceptron trained with a pruning algorithm. Finally,
only 25 of the 480 weights have survived, and the curve is simplified to
a straight line.

Sergios Theodoridis University of Athens Machine Learning 62/162

Pruning a Network-Regularization Via Noise Injection

e Adding some small noise to the input data turns out to be
equivalent with modifying the cost function by adding an extra
term, which acts as a regularizer.

Sergios Theodoridis University of Athens Machine Learning 63/162

Pruning a Network-Regularization Via Noise Injection

e Adding some small noise to the input data turns out to be
equivalent with modifying the cost function by adding an extra
term, which acts as a regularizer.

e Adding some small noise to the unknown parameters, during their
training, pertubes the solution. Using Taylor series expansion
arguments around this perturbation, it turns out that this
procedure is equivalent with regularizing the cost function via the
norm of the gradient of the w.r. to the parameters.

Sergios Theodoridis University of Athens Machine Learning 63/162

Regularization-Artificially Expanding The Data Set

e The source of overfitting is the relatively limited number of the

training data compared to the size of the network. Thus,

increasing the data size has an equivalent effect as regularization.

It decreases overfitting.

Sergios Theodoridis University of Athens Machine Learning

64/162

Regularization-Artificially Expanding The Data Set

e The source of overfitting is the relatively limited number of the

training data compared to the size of the network. Thus,

increasing the data size has an equivalent effect as regularization.

It decreases overfitting.

e In certain applications, one can artificially generate more data.

For example, in an OCR task, one can generate many characters

in different rotations. Similar arguments hold for object
recognition tasks.

Sergios Theodoridis University of Athens Machine Learning

64/162

Regularization-Artificially Expanding The Data Set

e The source of overfitting is the relatively limited number of the

training data compared to the size of the network. Thus,

increasing the data size has an equivalent effect as regularization.

It decreases overfitting.

e In certain applications, one can artificially generate more data.

For example, in an OCR task, one can generate many characters

in different rotations. Similar arguments hold for object
recognition tasks.

e Soon, we will discuss ways of generating fake data.

Sergios Theodoridis University of Athens Machine Learning

64/162

(Dropout

e This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

Sergios Theodoridis University of Athens Machine Learning 65/162

e This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

e One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

Sergios Theodoridis University of Athens Machine Learning 65/162

e This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

e One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

o Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P.

Sergios Theodoridis University of Athens Machine Learning 65/162

Dropout

e This is the most recent technique that deals with overfitting, in
the context of deep networks. The term dropout refers to
dropping out/removing neurons and/or input nodes in a neural
network.

e One starts with a large enough network, comprising, say, K
nodes. Choose a training algorithm, e.g., any version of the
gradient descent backpropagation algorithm. At each iteration
step of the algorithm:

o Retain each node (hidden or input), together with its incoming
and outgoing connections, with probability P.

e Train the remaining nodes according to the selected algorithm.

Sergios Theodoridis University of Athens Machine Learning 65/162

e Thus, at each iteration step, a different subnetwork is trained. In
other words, at each iteration step, only the parameters of one
subnetwork are updated. The parameters of the “removed” nodes
are left unchanged, frozen at their current estimates.

Sergios Theodoridis University of Athens Machine Learning 66/162

Full Network And Subnetwork For The Dropout Method

Full network

Sergios Theodoridis University of Athens Machine Learning 67/162

ne)
o
A=
)
(]
p=
+
3
o
o
()
=
o)
(]
=
=
[
o
L
=
[
o
2
P
Q
c
0
3
wn
ae)
=
<<
g
[
(@]
2
)
(]
=2
=
L

Red nodes and connections

Full network

to be removed

67/162

Machine Learning

University of Athens

Sergios Theodoridis

ne)
o
A=
)
(]
p=
+
3
o
o
()
=
o)
(]
=
=
[
o
L
=
[
o
2
P
Q
c
0
3
wn
ae)
=
<<
g
[
(@]
2
)
(]
=2
=
L

i

!

i

0

N

$
i

Red nodes removed

Full network

67/162

Machine Learning

University of Athens

Sergios Theodoridis

e Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P.

Sergios Theodoridis University of Athens Machine Learning 68/162

e Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P.

e Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2/). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

Sergios Theodoridis University of Athens Machine Learning 68/162

e Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P.

e Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2/). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

e This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

Sergios Theodoridis University of Athens Machine Learning 68/162

e Once training has been completed and convergence has been
achieved, during the test phase, each parameter is multiplied by
the probability P.

e Justification: At each iteration step, a different subnetwork is
trained. This can be thought of as being equivalent of training a
large number of networks (theoretically 2/). Once training is
over, one combines the trained subnetworks by an averaging
rationale.

e This reminds of the bagging approach to combine predictors. Yet,
it is different. In dropout, there is a large overlap and parameter
sharing among the different subnetworks.

e Typical values for the probabilities are: For hidden layers P = 0.5
and for input units P = 0.8.

Sergios Theodoridis University of Athens Machine Learning 68/162

e Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

Sergios Theodoridis University of Athens Machine Learning 69/162

e Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

e In other words, the network is forced to learn while parts of the
network are missing at random.

Sergios Theodoridis University of Athens Machine Learning 69/162

e Is this magic? A heuristic explanation on why this technique
works is that it reduces co-adaptations of neurons, since at each
iteration different neurons are updated. Thus, the network is
forced to learn more robust features, that are useful in
conjunction with the different subnetworks.

e In other words, the network is forced to learn while parts of the
network are missing at random.

e Some more theoretically pleasing arguments have been given via a
Bayesian inference view of a neural network.

Sergios Theodoridis University of Athens Machine Learning 69/162

Simulation Example
e Data Base used MNIST with 55000 handwritten digits for the
training and 10000 handwritten digits for testing.
e A feedforward NN was used with 784-2000-2000-10 neurons.

e RelU units were used for the hidden layers and ten softmax
output units were employed.

e Cross entropy was used as a cost function, the mini batch size
was 100 and the learning rate for the gradient backpropagation
algorithm was set equal to 0.01.

Sergios Theodoridis University of Athens Machine Learning 70/162

Universal Approximation Property of Feed-Forward Neural Networks

e So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

e So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

e To this end, some strong theoretical results have been developed
and are still being developed.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

e So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

e To this end, some strong theoretical results have been developed
and are still being developed.

e Let us consider a two-layer network, with one hidden layer and
with a single output linear node.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

e So far, we focused on how to train neural networks so that to
learn a specific input-output mapping. Our interest now turns on
what a neural network is capable to learn?

e To this end, some strong theoretical results have been developed
and are still being developed.

e Let us consider a two-layer network, with one hidden layer and
with a single output linear node. The output of the network is
then written as

Zakfa) + 63,

where Gh denotes the synaptic weights and bias term defining the
kth hldden neuron and the superscript “o" refers to the output
neuron. Then, the following theorem hoIds true.

Sergios Theodoridis University of Athens Machine Learning 71/162

Universal Approximation Property of Feed-Forward Neural Networks

e Theorem: Let g(x) be a continuous function defined in a
compact (closed and bounded) subset S C R! and any ¢ > 0.
Then there exists a K (¢) and a two-layer network of the previous
form, so that

lg(x) — g(x)| <€, V€ S.

It has been shown that the approximation error decreases
according to an O(7) rule.

Sergios Theodoridis University of Athens Machine Learning 72/162

Universal Approximation Property of Feed-Forward Neural Networks

e Theorem: Let g(x) be a continuous function defined in a
compact (closed and bounded) subset S C R! and any ¢ > 0.
Then there exists a K (¢) and a two-layer network of the previous
form, so that

lg(x) — g(x)| <€, V€ S.

It has been shown that the approximation error decreases
according to an O(7) rule.

e In other words, the input dimensionality does not enter into the
scene and the error depends on the number of neurons used. The
theorem states that a two-layer NN network is sufficient to
approximate any continuous function.

Sergios Theodoridis University of Athens Machine Learning 72/162

Universal Approximation Property of Feed-Forward Neural Networks

e However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

Sergios Theodoridis University of Athens Machine Learning 73/162

Universal Approximation Property of Feed-Forward Neural Networks

e However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

e This is where the use of more layers can be advantageous. Using
more layers, the overall number of neurons, needed to achieve
certain approximation, may be much smaller.

Sergios Theodoridis University of Athens Machine Learning 73/162

Universal Approximation Property of Feed-Forward Neural Networks

e However, what the theorem does not say is how big such a
network should be, in terms of the required number of neurons in
the single layer. It may be that a very large number of neurons is
needed in order to obtain a good enough approximation.

e This is where the use of more layers can be advantageous. Using
more layers, the overall number of neurons, needed to achieve
certain approximation, may be much smaller.

e This is point that ignites our the interest for deep networks,
involving many hidden layers.

Sergios Theodoridis University of Athens Machine Learning 73/162

The Need for Deep Architectures I

e We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures I

e We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

o The input layer described each pattern as a point in the feature
space.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

e We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

o The input layer described each pattern as a point in the feature
space.

e The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

e We have already discussed that each layer of a neural network provides
a different description of the input patterns. In the context of our
previous presentation:

o The input layer described each pattern as a point in the feature
space.

e The first hidden layer of nodes formed a partition of the input
space and placed each input point in one of the regions, using a
coding scheme of zeros and ones at the outputs of the respective
neurons. This can be considered as a more abstract
representation of our input patterns.

e The second hidden layer of nodes, based on the information
provided by the previous layer, encoded information related to the
classes; this is a further representation abstraction, which carries
some type of semantic meaning. For example, it could provide
information of whether a tumor is malignant or benign, in a
related a medical application.

Sergios Theodoridis University of Athens Machine Learning 74/162

The Need for Deep Architectures

e It turns out that, the previous reported hierarchical type of
representations of the input patterns mimics the way that a
mammal'’s brain follows in order to understand and sense the
world around us; in the case of humans, this is the physical
mechanism in the brain, which intelligence is built upon.

Sergios Theodoridis University of Athens Machine Learning 75/162

The Need for Deep Architectures

e It turns out that, the previous reported hierarchical type of
representations of the input patterns mimics the way that a
mammal'’s brain follows in order to understand and sense the
world around us; in the case of humans, this is the physical
mechanism in the brain, which intelligence is built upon.

e The brain of the mammals is organized in a number of layers of
neurons and each layer provides a different representation of the
input percept. In this way, different levels of abstraction are
formed, via a hierarchy of transformations.

Sergios Theodoridis University of Athens Machine Learning 75/162

The Need for Deep Architectures

e For example, in the primate visual system, this hierarchy involves
first detection of edges, then formation of primitive shapes and
every subsequent stage forms more complex visual shapes, till
finally a semantics concept is formed; e.g., a car moving in a
video scene, a person sitting in an image. The cortex of our brain
can be seen as a multilayer architecture with 5-10 layers
dedicated only to our visual system.

Sergios Theodoridis University of Athens Machine Learning 76/162

The Need for Deep Architectures

e For example, in the primate visual system, this hierarchy involves
first detection of edges, then formation of primitive shapes and
every subsequent stage forms more complex visual shapes, till
finally a semantics concept is formed; e.g., a car moving in a
video scene, a person sitting in an image. The cortex of our brain
can be seen as a multilayer architecture with 5-10 layers
dedicated only to our visual system.

e An issue that is now raised is whether one can obtain an
equivalent input-output representation via a relatively simple
functional formulation, e.g., via networks with less than three
layers of neurons/processing elements, maybe at the expense of
more elements per layer.

Sergios Theodoridis University of Athens Machine Learning 76/162

The Need for Deep Architectures

e The answer to the first of the previously stated two point is yes,
as long as the input-output dependence relation is simple enough.
However, for more complex tasks, where more complex concepts
have to be learned, e.g., recognition of a scene in a video
recording, language and speech recognition, the underlying
functional dependence is of very a complex nature that we are
unable to express it analytically in a simple way.

Sergios Theodoridis University of Athens Machine Learning 77/162

The Need for Deep Architectures

e The answer to the second point, concerning networks, lies in what
is known as compactness of representation. We say that a
network, realizing an input-output functional dependence, is
compact if it consists of relatively few free parameters (few
computational elements) to be learned/tuned during the training
phase. Thus, for a given number of training points, we expect
compact representations to result in better generalization
performance.

Sergios Theodoridis University of Athens Machine Learning 78/162

The Need for Deep Architectures

e Using networks with more layers can lead to more compact
representations of the input-output relation. Results from the
theory of circuits of Boolean functions suggest that a function,
which can compactly be realized by, say, k layers of logic
elements, may need an exponentially large number of elements if
it is realized via k — 1 layers.

Sergios Theodoridis University of Athens Machine Learning 79/162

The Need for Deep Architectures

e Using networks with more layers can lead to more compact
representations of the input-output relation. Results from the
theory of circuits of Boolean functions suggest that a function,
which can compactly be realized by, say, k layers of logic
elements, may need an exponentially large number of elements if
it is realized via k£ — 1 layers.

e Some of these results have been generalized and are valid for
learning algorithms in some special cases. For example, it has
been shown that, for a class of deep networks and target
functions, one needs a substantially smaller number of nodes to
achieve a predefined accuracy compared to a shallow one.

Sergios Theodoridis University of Athens Machine Learning 79/162

Learning Deep Networks

e A major drawback of multilayer NNs is that their training can
become difficult. This drawback becomes more severe if more
than two hidden layers are used. The more layers one uses, the
more difficult the training becomes. Historically, in the 1990’s,
the effort to train large networks was, practically, abandoned.

Sergios Theodoridis University of Athens Machine Learning 80/162

Learning Deep Networks

e A major drawback of multilayer NNs is that their training can
become difficult. This drawback becomes more severe if more
than two hidden layers are used. The more layers one uses, the
more difficult the training becomes. Historically, in the 1990’s,
the effort to train large networks was, practically, abandoned.

e For a long time, it was believed that, this was due to the
existence of many local minima, which caused the learning
algorithm to be trapped in a shallow one. To remedy such a
drawback, the algorithm was randomly initialized from different
points a number of times, hoping for the best result.

Sergios Theodoridis University of Athens Machine Learning 80/162

Learning Deep Networks

e The view point concerning local minima is now challenged, as
new results started coming out around 2015. Theoretical as well
as experimental evidence point out that the major drawback lies
not in the local minima but in the saddle points. At the time
these slides are being developed, this is an ongoing and active
research area.

Sergios Theodoridis University of Athens Machine Learning 81/162

Learning Deep Networks

e Under some simplifications, it has been shown that in large size
networks most local minima yield low cost function values and
result to similar performance. Moreover, the probability of finding
a poor local minimum decreases fast as the size of the network
increases ([Choromanska, et.al. 2015]).

Sergios Theodoridis University of Athens Machine Learning 82/162

Learning Deep Networks

e Under some simplifications, it has been shown that in large size
networks most local minima yield low cost function values and
result to similar performance. Moreover, the probability of finding
a poor local minimum decreases fast as the size of the network
increases ([Choromanska, et.al. 2015]).

e In high dimensional spaces, the major drawback seems to be
posed by the proliferation of the saddle points. The existence of
such points can slow down the convergence of the training
algorithms dramatically (Dauphin, et.al, 2014]).

Sergios Theodoridis University of Athens Machine Learning 82/162

Learning Deep Networks

e Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

e Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

e A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

e Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

e A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

o Under certain assumptions, there are no spurious local minima
points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

e Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

e A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

o Under certain assumptions, there are no spurious local minima
points.

o If the squared norm of the gradient matrix is bounded by an ¢, then
the (squared) error on the training set is also bounded by O(e).

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

e Although the exact effect of these findings on the gradient-type
algorithms is not yet clear, it seems that they are finally able to
escape such critical points, in spite of the very small values of the
corresponding gradients ([Goodfellow, et. al. 2015]).

e A particularly interesting result has been derived in [Xie, et. al.,
2017]. Focusing on a single hidden layer network, involving ReLU
activations, they proved that, in spite of the nonconvexity of the
cost function:

o Under certain assumptions, there are no spurious local minima
points.

o If the squared norm of the gradient matrix is bounded by an ¢, then
the (squared) error on the training set is also bounded by O(e).

e The generalization error is bounded by O(e + \/l—ﬁ) where N is
the number of training data points.

Sergios Theodoridis University of Athens Machine Learning 83/162

Learning Deep Networks

e The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

Sergios Theodoridis University of Athens Machine Learning 84/162

Learning Deep Networks

e The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

e Currently, the success of the neural networks seems to lie in the
available computational power combined with the availability of
large training data sets. The combination of RelLU activation
functions with the dropout technique, together with some
practical hints, concerning initialization, seem to offer the secret
of their success.

Sergios Theodoridis University of Athens Machine Learning 84/162

Learning Deep Networks

e The previous result confirms what is known and observed in
practice. Neural networks can perform well even without
regularization, provided that they are trained with lots of training
points. Of course, regularization improves the performance.

e Currently, the success of the neural networks seems to lie in the
available computational power combined with the availability of
large training data sets. The combination of RelLU activation
functions with the dropout technique, together with some
practical hints, concerning initialization, seem to offer the secret
of their success.

e The use of appropriate pre-training techniques, as we will soon
see, can also be beneficial in certain cases.

Sergios Theodoridis University of Athens Machine Learning 84/162

Features Via Convolutions

e A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

e A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

e The input to any classifier/learner is presented with a set of
features. Each input vector, x,, in the training set is a point in
the feature space. The features should encode, in a compact way,
information that resides in the raw/sensed data and it is related
to the learning task at hand.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

e A major class of NNs, known as convolutional neural networks,
employ convolutions instead of multiply-add type of neurons. We
will first review the “why” behind the convolutions.

e The input to any classifier/learner is presented with a set of
features. Each input vector, x,, in the training set is a point in
the feature space. The features should encode, in a compact way,
information that resides in the raw/sensed data and it is related
to the learning task at hand.

e If, instead, the input to a neural network were the pixels of a
256 x 256 image, this would correspond to a vector in a space of
dimension equal to 65536. If the first hidden layer had, say,
20000 nodes, this would amount to approximately 1.3 billion
synapses! Adding more layers, this number would explode further.

Sergios Theodoridis University of Athens Machine Learning 85/162

Features Via Convolutions

e One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run" a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

e One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run" a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

e Example: Edge detection

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

e One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run" a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

e Example: Edge detection

-1 -1 -1
H=| -1 8 -1
-1 -1 -1

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

e One among the most popular ways to generate features from an
image (and not only) has traditionally being to “run" a filter over
the image. Filtering exploits underlying correlations/relations
among the pixels; different filters can extract different type of
information.

e Example: Edge detection

-1 -1 -1
H=| -1 8 -1
-1 -1 -1

Sergios Theodoridis University of Athens OrigMéFhﬁ‘ngeami"g 86/162

Features Via Convolutions

e Example: Edge detection

Sergios Theodoridis University of Athens Machine Learning 86/162

Features Via Convolutions

e Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

e Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

e Let us assume, for simplicity, that,

H:[h” h”} and IT=| I(2,1) I(2,2) I(2,3)
2 ez I(3,1) I(3,2) 1I(3,3)

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

e Convolution: In the current context, filtering will be viewed as a
cross-correlation operation between the filer matrix, known as the
kernel matrix, H, and the image array, I. The output matrix, O,
is known as the feature map.

e Let us assume, for simplicity, that,

H:[h” h”} and IT=| I(2,1) I(2,2) I(2,3)
2 ez I(3,1) I(3,2) 1I(3,3)

e The convolution between the kernel matrix, H, and the image, I,
will be the 2 x 2 feature map array, O, with elements
2 2

O(n,m) :ZZhijI(n+i—1,m+j—1), n,m=1,2.
i=1 j=1

Sergios Theodoridis University of Athens Machine Learning 87/162

Features Via Convolutions

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

I(L,1) ki -1(1,2) his-I(1,3)
121) by 12.2) hy-1(23) |, 0=|OLD 002
13,1) I(3,2) 1(3,3) * *

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

(1,1 I(1,2) I(1,3) o
hi - 1(2,1) heo-1(2,2) 1(2,3) |, O= 0(7
hoi-1(3,1) has-1(3,2) I(3,3)

Sergios Theodoridis University of Athens Machine Learning 88/162

Features Via Convolutions

1(1,1) I(1,2) I(1,3) o1) O
12,1) hiy-12,2) he 12,3) |, 0= 2\ :
1G.1) his-1(3.2) has- I(3.9) 0@21) 0(22)

Sergios Theodoridis University of Athens Machine Learning 88/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

e Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

e Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

e Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

e Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

e Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

e The basic steps performed in the front end convolution layers are:

o The convolution step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

e Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

e Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

e The basic steps performed in the front end convolution layers are:

o The convolution step.
e The nonlinearity step.

Sergios Theodoridis University of Athens Machine Learning 89/162

Convolutional Neural Networks (CNN)

e A breakthrough in training neural networks came in the late
1980s (Le Cun), when the feature generation step, via
convolutions, was integrated as part of a neural network.

e Instead of using fixed kernel matrices, it was left to the network
to learn the elements of the kernel matrix as part of the training
process.

e Thus, the first layers of a neural network were dedicated to
perform convolutions instead of simple multiply-add operations.
These constitute the layers where the features are learned from
the input raw data and feed subsequent layers of the NN.

e The basic steps performed in the front end convolution layers are:

o The convolution step.
e The nonlinearity step.
e The pooling step.

Sergios Theodoridis University of Athens Machine Learning 89/162

CNN: The Convolution Step

e The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

e The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

e Thus, the parameters comprise the kernel array and they are
shared among the input pixels; moreover, in place of the
multiply-add operations convolutions are performed, instead.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

e The first layer in a CNN comprises the parameters of the kernel
matrix. If the input nodes correspond to the (raw) pixels of an
image array, the output of the convolutional layer is the
corresponding feature map array.

e Thus, the parameters comprise the kernel array and they are
shared among the input pixels; moreover, in place of the
multiply-add operations convolutions are performed, instead.

e However, instead of a single kernel matrix, multiple ones are used;
each one is expected to extract different type of information, to
be encoded via a different feature map array. In the figure, three
such kernel arrays are shown to “scan” the input image, searching
for “hidden information”.

Sergios Theodoridis University of Athens Machine Learning 90/162

CNN: The Convolution Step

Feature Map 3

Feature Map 2

e Feature Map 1

Input Image T

Sergios Theodoridis University of Athens Machine Learning 91/162

CNN: The Convolution Step I

e There is strong evidence from the visual neuroscience that, similar
computations are performed in the human brain. The idea of
employing convolutions was first exploited in the neogognitron
([Fukushimal).

Sergios Theodoridis University of Athens Machine Learning 92/162

CNN: The Convolution Step

e There is strong evidence from the visual neuroscience that, similar
computations are performed in the human brain. The idea of
employing convolutions was first exploited in the neogognitron
([Fukushimal).

e Translation invariance: A welcome byproduct of the convolution
step is that in this way, the network becomes invariant to
translations. The same kernel matrix is slided all over the input
image array. Thus, if an object has been moved within in an
image, the only difference is that, in the feature map, the
corresponding activity will move by the same amount of pixels.

Sergios Theodoridis University of Athens Machine Learning 92/162

CNN: The Convolution Step

Bit of the jargon:

e Receptive field: Each pixel in the feature map array receives input
from within a specific region of the previous (input) layer.This is
known as the corresponding receptive field.

y

Sergios Theodoridis University of Athens Machine Learning 93/162

CNN: The Convolution Step

Bit of the jargon:

e Receptive field: Each pixel in the feature map array receives input
from within a specific region of the previous (input) layer.This is
known as the corresponding receptive field.

e Depth: This refers to the number of kernel matrices (filters) that
are employed. For each filter, a corresponding feature map image
array results.

Feature Map 3

Feature Map 2

Feature Map 1

Input Image

The depth of the feature map array is three

y

Sergios Theodoridis University of Athens Machine Learning 93/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step
Bit of the jargon (continued):
e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then

the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* XK X X X
* X X X X
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* K X X X
* K X X X
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* K X X X
* K X X X
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X %
* X X X X
* X K X X
R I R SR O
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* X K X X
R I R S
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* X K X X
R I R S
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* XK X X X
R I R SR O
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* XK X X X
* X X X X
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 1:

* X X X X
* X X X X
* XK X X X
* X X X X
* X X X X

The resulting feature map array has size 9 x 9.

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 2:

* X X X X
* X X X X
* K X X X
R I R SR O
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 2:

* X X X X
* X X X X
* K X X X
* K X X X
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 2:

* X X X X
* X X X X
* XK X X X
R I R SR O
* X X X X

Sergios Theodoridis University of Athens Machine Learning 94/162

CNN: The Convolution Step

Bit of the jargon (continued):

e Stride: This is the number of pixels by which one slides the filter
matrix over the input matrix. When the stride is one, then we
move the filters one pixel at a time. When the stride is two, then
the filter jumps two pixels at a time as we slide them around. The
larger the stride is the smaller the resulting feature maps become.

e Example for a 3 x 3 kernel matrix:

Stride 2:

* X X X X
* X X X X
* XK X X X
* X X X X
* X X X