Multilayered Perceptrons

Classification of non-linearly separable patterns

- A single-layered perceptron can achieve linear separation of patterns
- In the late 1960s the prevailing view on whether solution of nonlinearly separable problems is practical was pessimistic (following criticism by Minsky and Papert).
- It is necessary to show that:
> There exist architectures capable of non-linear separation of patterns
> There exist effective training algorithms capable of delivering the synaptic weights needed to achieve non-linear separation of patterns in the general case.

Classification of non-linearly separable patterns The XOR problem (1)

A/A	x_{1}	x_{2}	Class
1	0	0	0
2	1	0	1
3	0	1	1
4	1	1	0

- Linear separation of the classes with a single-layered perceptron is impossible
- Proof: System of 4 linear inequalities has no solution

Classification of non-linearly separable patterns The XOR problem (2)

Let us try to construct a solution:

- We need 2 hidden neurons (with intermediate outputs $Z_{1} \kappa \alpha 1 z_{2}$) that separate the plane of the 3 original inputs into 3 regions П1, П2, ПЗ.
- Consequently, we map the pattens in a new 2-dimensional space.
- For example, we wish patterns 1 кaı 4 to yield the same output. This will render the problem linearly separable in the new 2-dimensional space!

Region	z_{1}	z_{2}
$\Pi 1$	1	1
$\Pi 2$	1	0
$\Pi 3$	0	0

Classification of non-linearly separable patterns The XOR problem (3)

From the equations of the separating lines H_{1} and H_{2}

$$
-x_{1}+x_{2}+1 / 2=0, \quad-x_{1}+x_{2}-1 / 2=0
$$

we can read off the synaptic weights of the hidden layer:

$$
\begin{aligned}
& z_{1}=f\left[(-1) x_{1}+(+1) x_{2}+1 / 2\right] \\
& z_{2}=f\left[(-1) x_{1}+(+1) x_{2}-1 / 2\right] \\
& \text { Pattern } 1: z_{1}=f[(-1) 0+(+1) 0+1 / 2]=f[1 / 2]=1 \\
& z_{2}=f[(-1) 0+(+1) 0-1 / 2]=f[-1 / 2]=0 \\
& \text { Pattern } 2: z_{1}=f[(-1) 1+(+1) 0+1 / 2]=f[-1 / 2]=0 \\
& z_{2}=f[(-1) 1+(+1) 0-1 / 2]=f[-3 / 2]=0 \\
& \text { Pattern 3: } z_{1}=f[(-1) 0+(+1) 1+1 / 2]=f[3 / 2]=1 \\
& z_{2}=f[(-1) 0+(+1) 1-1 / 2]=f[1 / 2]=1 \\
& \text { Pattern 4: } z_{1}=f[(-1) 1+(+1) 1+1 / 2]=f[1 / 2]=1 \\
& z_{2}=f[(-1) 1+(+1) 1-1 / 2]=f[-1 / 2]=0
\end{aligned}
$$

The representations of the patterns in the hidden layer are linearly separable!

Classification of non-linearly separable patterns The XOR problem (4)

A/A	z_{1}	z_{2}	Class
1	1	0	0
2	0	0	1
3	1	1	1
4	1	0	0

From the equation of the line separating the outputs of the hidden layer:

$$
-z_{1}+z_{2}+1 / 2=0
$$

we can read off the synaptic weights of the output layer:

$$
y=f\left[(-1) z_{1}+(+1) z_{2}+1 / 2\right]
$$

Pattern 1: $y=f[(-1) 1+(+1) 0+1 / 2]=f[-1 / 2]=0$
Pattern 2: $y=f[(-1) 0+(+1) 0+1 / 2]=f[1 / 2]=1$
Pattern 3: $z_{1}=f[(-1) 1+(+1) 1+1 / 2]=f[1 / 2]=1$
Pattern 4:y $=f[(-1) 1+(+1) 0+1 / 2]=f[-1 / 2]=0$
Therefore, our network implements the XOR function!

Classification of non-linearly separable patterns The XOR problem (5)

EXERCISE: For the XOR problem, find another mapping of the inputs to the hidden layer neurons, using a different partition of the 2 -dimensional input space, as shown in the diagram below. Draw the resulting network and find its synaptic weights and thresholds.

$3^{\text {rd }}$ layer: Any piecewise linear boundaries

Multi-Iayered Perceptron

Multi-layered Perceptron

This is a diagram showing the information flow in a perceptron with R layers

f : Activation function

* Note: Input to each neuron is augmented by a constant input component equal to +1 (to account for the presence of the threshold)

Universal approximation (1)

Question: The XOR problem can be solved with 2 layers of neurons. Can we solve a general non-linear classification or regression problem using multi-layered networks?
Answer: A two-layered perceptron suffices in principle, because it is a universal approximator, i.e.

- Let $g(\mathbf{x})$ be a continuous function of N variables, defined on a compact set $S \subset \mathbb{R}^{N}$.
- Let $f(t)$ be a non-constant, bounded and increasing as well as continuous function of a single variable.
Then given $\varepsilon>0$ there exists an integer $M=M(\varepsilon)$ and a two-layered perceptron with N inputs, M hidden neurons and one (linear) output neuron:

so that the following inequality holds: $\left\|y^{(2)}(\mathbf{x})-g(\mathbf{x})\right\|<\varepsilon, \quad \forall \mathbf{x} \in S$

Universal approximation (2)

If the output neuron is non-linear, as in the following diagram, with the function f bounded:

$$
L_{1} \leq f \leq L_{2}
$$

we can approximate any continuous function taking values between L_{1} and L_{2}.

- Linear activation functions in the output layer are more convenient for solving regression problems.
- Non-inear activation functions in the output layer are more convenient for solving classification problems.

Desired outputs (1)

Classification problem with K classes:

Encoding of desired outputs:
$1^{\text {st }}$ method (diagonal encoding): K output neurons. The desired outputs for a pattern belonging to class number $k(k=1,2, \ldots, K)$ are all equal to L_{1} except the k-th output, which is equal to L_{2}.

Desired outputs (2)

$2^{\text {nd }}$ method (binary encoding): Consider a pattern belonging to class k and the binary representation (a succession of 0 s and 1 s) using as many bits, as we need to represent $K-1$. The desired outputs are:

- L_{1} wherever the binary representation is 0
- L_{2} wherever the binary representation is 1

Example: Problem with 10 classes: We need 4 bits.
Representation of the $7^{\text {th }}$ class: Binary representation of $7-1=6$:
0110 .

Binary representation of the 7 ns class in a 10 -class problem

Activation functions

$1^{\text {st }}$ case:

$$
f(x)=\frac{1}{1+\exp (-x)}, \quad L_{1}=0, \quad L_{2}=1
$$

$2^{\text {nd }}$ case:

$$
f_{2}(x)=\tanh (x / 2)=\frac{1-\exp (-x)}{1+\exp (-x)}, \quad L_{1}=-1, \quad L_{2}=1
$$

The Backpropagation Algorithm (1)

Cost function:

$$
E=\frac{1}{2} \sum_{k \mu}\left(e_{k \mu}\right)^{2}
$$

Labels the patterns in the training set

GRADIENT DESCENT:

- We update the synaptic weights moving opposite to the gradient of E with respect to these weights:

$$
\delta \mathbf{w}=-\varepsilon \nabla E
$$

- We need a systematic computationally efficient method of calculating the gradient.
- We organize our calculations by layer:

$$
\delta w_{i j}^{(r)}=-\varepsilon \frac{\partial E}{\partial w_{i j}^{(r)}}
$$

The Backpropagation Algorithm (2)

Information flow diagram (R layers of neurons)

$$
v_{i \mu}^{(r)}=\Sigma \mathrm{w}^{(r)}{ }_{i j} y_{j \mu}{ }^{(r-1)}
$$

Calculation of derivatives: Extensive use of the chain rule:

$$
\frac{\partial \phi(\sigma(x))}{\partial x}=\frac{\partial \phi}{\partial \sigma} \frac{\partial \sigma}{\partial x}
$$

The Backpropagation Algorithm (3)

We focus on parts of the flow diagram (coloured red):

$$
\begin{gathered}
y_{i \mu}{ }^{(r-1)} \\
\frac{\partial E}{\partial w_{i j}^{(r)}}=\sum_{\mu} \frac{\partial E}{\partial v_{i \mu}^{(r)}} \frac{\partial v_{i \mu}^{(r)}}{\partial w_{i j}^{(r)}}=\sum_{\mu} \delta_{i \mu}^{(r)} y_{j \mu}^{(r-1)} \\
\delta_{i \mu}^{(r)}=\frac{\partial E}{\partial v_{i \mu}^{(r)}}
\end{gathered}
$$

What have we achieved so far?
For a given layer r we have written the derivative of the cost function with respect to the weights as a sum of terms, with each term depending on:

- Already known local information, originating strictly from the previous layer.
- Information depending on the given layer and all subsequent layers, which is unknown to us and calls for additional calculations. Let us concentrate on these.

The Backpropagation Algorithm (4)

$$
\delta_{i \mu}^{(r)}=\frac{\partial E}{\partial v_{i \mu}^{(r)}}=\sum_{k} \frac{\partial E}{\partial v_{k \mu}^{(r+1)}} \frac{\partial v_{k \mu}^{(r+1)}}{\partial v_{i \mu}^{(r)}}=\sum_{k} \delta_{k \mu}^{(r+1)} \frac{\partial v_{k \mu}^{(r+1)}}{\partial v_{i \mu}^{(r)}}
$$

Look at the diagram:

$$
\delta_{i \mu}^{(r)}=\sum_{k} \delta_{k \mu}^{(r+1)} W_{k i}^{(r+1)} f^{\prime}\left(v_{i \mu}^{(r)}\right)
$$

The Backpropagation Algorithm (5)

What have we achieved?

- We have reduced the unknown information from the layer r, to known information plus information that depends only on layer $\mathrm{r}+1$ and subsequent layers.
- The deltas can be evaluated starting from the last layer and moving towards previous layers (backpropagation).
- To complete the picture, we only need to "initialize" the deltas, i.e. to calculate their values for the last layer R :

$$
\begin{aligned}
& \delta_{i \mu}^{(R)}=\frac{\partial E}{\partial v_{i \mu}^{(R)}}=\frac{\partial E}{\partial y_{i \mu}^{(R)}} \frac{\partial y_{i \mu}^{(R)}}{\partial v_{i \mu}^{(r)}}=f^{\prime}\left(v_{i \mu}^{(R)}\right)\left(y_{i \mu}^{(R)}-T_{i \mu}\right)
\end{aligned}
$$

The Backpropagation Algorithm (6)

Calculation of activation function derivatives:

$1^{\text {st }}$ case:

$$
f(x)=\frac{1}{1+\exp (-x)} \Rightarrow f^{\prime}(x)=\frac{\exp (-x)}{[1+\exp (-x)]^{2}}=\frac{1}{1+\exp (-x)} \frac{\exp (-x)}{1+\exp (-x)}=f(x)[1-f(x)]
$$

$2^{\text {nd }}$ case:

$$
\begin{aligned}
& f_{2}(x)=\tanh (x / 2)=\frac{1-\exp (-x)}{1+\exp (-x)}=2 \frac{1}{1+\exp (-x)}-1=2 f_{1}(x)-1 \Rightarrow f_{1}(x)=\frac{1}{2}\left[1+f_{2}(x)\right] \\
& f_{2}^{\prime}(x)=2 f_{1}^{\prime}(x)=2 f_{1}(x)\left[1-f_{1}(x)\right] \\
& \Rightarrow f_{2}^{\prime}(x)=\frac{1}{2}\left[1+f_{2}(x)\right]\left[1-f_{2}(x)\right]
\end{aligned}
$$

In both cases, the derivative is a function of the activation function itself.

The Backpropagation Algorithm (7)

Initialization: With small weights uniformly distributed between $-\alpha$ and α, where α is a small positive real number.

Iterative steps:
-Forward calculations:
Calculation of the outputs of every neuron in the network, starting from the first layer and progressing towards the output layer:

$$
y_{i \mu}^{(r)}=f\left(\sum_{k} w_{i j}^{(r)} y_{j \mu}^{(r-1)}\right)
$$

Cost function calculation: $\quad E=\frac{1}{2} \sum_{k \mu}\left(e_{k \mu}\right)^{2} \quad e_{k \mu}=T_{k \mu}-y_{k \mu}^{(R)}$
-Backward calculations:
Calculation of all deltas for each layer starting from the output layer R according to the relations:

$$
\delta_{i \mu}^{(R)}=f^{\prime}\left(v_{i \mu}^{(R)}\right)\left(y_{i \mu}^{(R)}-T_{i \mu}\right) \quad \delta_{i \mu}^{(r)}=\sum_{k} \delta_{k \mu}^{(r+1)} w_{k i}^{(r+1)} f^{\prime}\left(v_{i \mu}^{(r)}\right)
$$

-Weight updates:

$$
w_{i j}^{(r)}(\text { new })=w_{i j}^{(r)}(\text { old })+\delta w_{i j}^{(r)}, \quad \delta w_{i j}^{(r)}=-\varepsilon \sum_{\mu} \delta_{i \mu}^{(r)} y_{j \mu}^{(r-1)}
$$

Termination:

- When the cost drops below a given threshold
- Or the norm of the cost function gradient drops below a given threshold
- *To avoid overfitting, apply termination criterion on validation set

The Backpropagation Algorithm (8)

REMARK:

For weight updates, all patterns μ are taken into account:

$$
w_{i j}^{(r)}(\text { new })=w_{i j}^{(r)}(\text { old })+\delta w_{i j}^{(r)}, \quad \delta w_{i j}^{(r)}=-\varepsilon \sum_{\mu} \delta_{i \mu}^{(r)} y_{j \mu}^{(r-1)}
$$

The update takes place after all patterns in the training set have been presented to the network (batch mode).

Variation: Update takes place after presenting each training pattern (incremental mode):

$$
w_{i j}^{(r)}(\text { new })=w_{i j}^{(r)}(\mathrm{old})+\delta w_{i j}^{(r)}, \quad \delta w_{i j}^{(r)}=-\varepsilon \delta_{\mu}^{(r)} y_{j \mu}^{(r-1)}, \forall \mu
$$

Weight Pruning - Regularization (1)

- How to decide about the number of weights? Too many weights mean unnecessary complexity for our model, which inevitably leads to overfitting.
- The usual practice is to start with a reasonably large number of weights and eliminate the least useful ones.
- Modified cost functions are used for training, which help push the least informative weights towards very low values.
- After training ends, these are altogether eliminated (pruned) and the pruned network is used for testing.

Weight Pruning - Regularization (2)

Weight decay: Minimize regularized cost function (as in ridge regression):

$$
E^{\prime}(\mathbf{w})=E(\mathbf{w})+\lambda\|\mathbf{w}\|^{2}
$$

- It is better to use a different λ for each layer of weights.
- It is not good to include biases (thresholds) in the norm, as these have a distinct function to play in the network and it is not wise to eliminate them.
Weight elimination: Minimize modified cost function:

$$
E^{\prime}(\mathbf{w})=E(\mathbf{w})+\lambda \sum_{k} \frac{w_{k}^{2}}{w_{k}^{2}+T^{2}}
$$

- When a weight drops below T , the corresponding regularizing term goes to zero fast. For weights much larger than T , the term is close to 1 . Less significant weights are pushed towards zero.

$1^{\text {st }}$ order algorithms (1)

Gradient descent-back propagation:

$$
\delta \mathbf{w}=-\varepsilon \nabla E
$$

(All synaptic weights of the network are considered as components of a single weight vector)

Small step ε : Very slow progress
Large step: Oscillations (zig-zags)

$1^{\text {st }}$ order algorithms (2)

Gradient descent with momentum:

$$
\delta \mathbf{w}=-\varepsilon \nabla E+a \delta \mathbf{w}_{t-1}, \quad \delta \mathbf{w}_{t-1}=\mathbf{w}-\mathbf{w}_{t-1}
$$

The second term brings about a partial alignment of the old and new weight updates, so that oscillations are somewhat diminished.

$$
\begin{gathered}
E(\mathbf{w}+\delta \mathbf{w})=E(\mathbf{w})+\nabla E(\mathbf{w})^{T} \delta \mathbf{w}+\frac{1}{2} \delta \mathbf{w}^{T}\left[\nabla^{2} E(\mathbf{w})\right] \delta \mathbf{w}+\ldots \\
\nabla E(\mathbf{w}+\delta \mathbf{w})=\nabla E(\mathbf{w})+\delta \mathbf{w}^{T} \nabla^{2} E(\mathbf{w})+\ldots
\end{gathered}
$$

- We use information about the gradient and curvature.
Assuming that the cost function is quadratic, we ignore terms of higher than second order
- We seek to find the minimum in a SINGLE step

$$
\nabla E(\mathbf{w}+\delta \mathbf{w})=\nabla E(\mathbf{w})+\delta \mathbf{w}^{T} \nabla^{2} E(\mathbf{w})=0
$$

Newton step:

$$
\delta \mathbf{w}=-\left(\nabla^{2} E\right)^{-1} \nabla E
$$

$2^{\text {nd }}$ order algorithms: Newton's method (2)

- Problems:
- Complexity of evaluating and inverting the Hessian Matrix

$$
\mathbf{H}=\nabla^{2} E
$$

- To ensure local convexity of the cost function, \mathbf{H} must be positive definite in order to ensure local convexity of the cost function (this does not hold necessarily)
- Convergence issues
- Simplification:
- The main question: Do methods exist, that use second order information without explicit evaluation and inversion of the Hessian?

$2^{\text {nd }}$ order algorithms: The conjugate gradient method (1)

We still assume that the cost function is quadratic in the weights:

$$
E(\mathbf{w}+\delta \mathbf{w})=E(\mathbf{w})+\nabla E(\mathbf{w})^{T} \delta \mathbf{w}+\frac{1}{2} \delta \mathbf{w}^{T}\left[\nabla^{2} E(\mathbf{w})\right] \delta \mathbf{w}
$$

We initialize the weight vector and pick a random direction for our first update. We choose the weight update vector $\delta \mathbf{w}$ so as to minimize the cost function along this direction.

$2^{\text {nd }}$ order algorithms: The conjugate gradient method (2)

- Question: Is it possible to choose the successive directions so that the minimum of the cost function can be reached after a succession of line minimizations along each individual direction?
- Answer: Yes! We must choose directions that are conjugate with respect to the Hessian:

$$
\delta \mathbf{w}^{T}\left(\nabla^{2} E\right) \delta \mathbf{w}_{t-1}=0
$$

With this choice, and provided that the quadratic approximation is valid, it can be shown that the minimum of E can be found in a number of steps equal to the total number of weights.

- Question: Can we evaluate the successive weight updates without explicitly evaluating the Hessian?
- Answer: Yes! The weight update rule is:

$$
\delta \mathbf{w}=-\nabla E+\beta_{t} \delta \mathbf{w}_{t-1}
$$

where β_{t} can be evaluated using any of the following formulas:

$$
\begin{gathered}
\beta_{t}=\frac{\|\nabla E(\mathbf{w})\|^{2}}{\left\|\nabla E\left(\mathbf{w}_{t-1}\right)\right\|^{2}} \\
\beta_{t}=\frac{\nabla E(\mathbf{w})^{T}\left[\nabla E(\mathbf{w})-\nabla E\left(\mathbf{w}_{t-1}\right)\right]}{\left\|\nabla E\left(\mathbf{w}_{t-1}\right)\right\|^{2}} \\
\beta_{t}=\frac{\nabla E(\mathbf{w})^{T}\left[\nabla E(\mathbf{w})-\nabla E\left(\mathbf{w}_{t-1}\right)\right]}{\delta \mathbf{w}_{t-1}^{T}\left[\nabla E(\mathbf{w})-\nabla E\left(\mathbf{w}_{t-1}\right)\right]}
\end{gathered}
$$

(Fletcher-Reeves method)
(Polak-Ribiere method)
(Hestenes-Stiefel method)

$2^{\text {nd }}$ order algorithms: The Levenberg-Marquardt algorithm (1)

$$
\begin{gathered}
E=\frac{1}{2} \sum_{\mu}\left(e_{k \mu}\right)^{2}=\frac{1}{2}\|\mathbf{e}\|^{2}, \quad e_{k \mu}=T_{k \mu}-y_{k \mu}^{(R)} \\
\nabla E=\sum_{k \mu} e_{k \mu} \frac{\partial e_{k \mu}}{\partial \mathbf{w}}=\mathbf{e}^{T} \nabla \mathbf{e} \\
\nabla^{2} E=\nabla\left(\mathbf{e}^{T} \nabla \mathbf{e}\right)=\nabla \mathbf{e}^{T} \nabla \mathbf{e}+\mathbf{e}^{T} \nabla^{2} \mathbf{e}=\mathbf{J}^{T} \mathbf{J}+\mathbf{e}^{T} \nabla^{2} \mathbf{e}
\end{gathered}
$$

$$
\nabla^{2} E \simeq \mathbf{J}^{T} \mathbf{J}
$$

When the norm of the error vector \mathbf{e} is already small (close to the local minimum, where a quadratic approximation for the cost function makes sense).

$2^{\text {nd }}$ order algorithms: The Levenberg-Marquardt algorithm (2)

$$
\delta \mathbf{w}=-(\mathbf{H}+\mu \mathbf{I})^{-1} \nabla E \longrightarrow
$$

Levenberg:

- We keep μ small close to minima and large far away from minima
- Close to a minimum the weight update follows a Newton step
- Away from a minimum, if μ is large enough, emphasis is placed on gradient descent

A valid approximation, since the Hessian

$$
\delta \mathbf{w}=-\left(\mathbf{J}^{T} \mathbf{J}+\mu \mathbf{I}\right)^{-1} \nabla E \longrightarrow
$$

$\delta \mathbf{w}=-\left[\mathbf{J}^{T} \mathbf{J}+\mu \operatorname{diag}(\mathbf{H})\right]^{-1} \nabla E \rightarrow$

$2^{\text {nd }}$ order algorithms: The Levenberg-Marquardt algorithm (3)

$$
\begin{gathered}
\delta \mathbf{w}=-\left(\mathbf{J}^{T} \mathbf{J}+\mu \mathbf{I}\right)^{-1} \nabla E \\
\delta \mathbf{w}=-\left[\mathbf{J}^{T} \mathbf{J}+\mu \operatorname{diag}(\mathbf{H})\right]^{-1} \nabla E
\end{gathered}
$$

- Criterion for updating μ : increase or decrease of the cost function in the previous step.
- If the cost has increased, our quadratic approximation is not reasonable, so we boost μ to place emphasis on the gradient descent term.
- If the cost has decreased, the quadratic approximation is valid, so we place emphasis on the Hessian term by decreasing μ.

$2^{\text {nd }}$ order algorithms: The Levenberg-Marquardt algorithm (4)

1. Initialization with small weights and small μ
2. Weight adaptation according to the rule

$$
\begin{array}{ll}
\delta \mathbf{w}=-\left(\mathbf{J}^{T} \mathbf{J}+\mu \mathbf{I}\right)^{-1} \nabla E & \text { (Levenberg) } \\
\delta \mathbf{w}=-\left[\mathbf{J}^{T} \mathbf{J}+\mu \operatorname{diag}(\mathbf{H})\right]^{-1} \nabla E & \text { (Marquardt) }
\end{array}
$$

3. If the error grew:

- Ignore the update (we return to the previous weight vector)
- Increase $\mu: \mu=\rho^{*} \mu$ (ρ of the order of 10)
- Return to step 2

4. If the error dropped:

- Keep the new weights
- Decrease $\mu: \mu=\mu / \rho$
- Return to step 2

