
GATK4 :: Germline SNPs & Indels :: Worksheet

September 2018

The tutorial demonstrates an effective
workflow for joint calling germline SNPs
and indels in cohorts of multiple
samples. The workflow applies to whole
genome or exome data.

Specifically, the tutorial uses a trio of
WG sample snippets to demonstrate
HaplotypeCaller's GVCF workflow for
joint variant analysis. We use a
GenomicsDB database structure,
perform a genotype refinement based
on family pedigree, and evaluate the
effects of refinement.

The tutorial was last tested with the broadinstitute/gatk:4.0.8.1 docker and IGV v2.4.13.

Table of Contents

1 HAPLOTYPECALLER BASICS
1.1 Call variants with HaplotypeCaller in default VCF mode 2
1.2 View realigned reads and assembled haplotypes 3

2 GVCF WORKFLOW
2.1 Run HaplotypeCaller on a single bam file in GVCF mode 5
2.2 Consolidate GVCFs using GenomicsDBImport 6
2.3 Run joint genotyping on the trio to generate the VCF 7

3 GENOTYPE REFINEMENT
3.1 Refine the genotype calls with CalculateGenotypePosteriors 8
3.2 Compare changes with CollectVariantCallingMetrics 10

1

1 HAPLOTYPECALLER BASICS

1.1 Call variants with HaplotypeCaller in default VCF mode
In this first step we run HaplotypeCaller in its simplest form on a single sample to get familiar with its
operation and to learn some useful tips and tricks.

gatk HaplotypeCaller \

 -R ref/ref.fasta \

 -I bams/mother.bam \

 -O sandbox/motherHC.vcf \

 -L 20:10,000,000-10,200,000

Load the input BAM file as well as the output VCF (sandbox/motherHC.vcf) in IGV and go to the
coordinates 20:10,002,294-10,002,623. Be sure the genome is set to b37.

We see that HaplotypeCaller called a homozygous variant insertion of three T bases. How is this possible
when so few reads seem to support an insertion at this position?

TOOLTIP
When you encounter
indel-related weirdness,
turn on the display of
soft-clips, which IGV
turns off by default. Go
to View > Preferences
> Alignments and
select “Show
soft-clipped bases”

With soft clip display turned on, the region lights up with mismatching bases. For these reads, the aligner
(here, BWA MEM) found the penalty of soft-clipping mismatching bases less than the penalty of inserting
bases or inserting a gap.

2

1.2 View realigned reads and assembled haplotypes
Let's take a peek under the hood of HaplotypeCaller. You find that HaplotypeCaller has a parameter
called -bamout, which allows you to ask for the realigned reads. These realigned reads are what
HaplotypeCaller uses to make its variant calls, so you will be able to see if a realignment fixed the messy
region in the original bam.

Run the following command:

gatk HaplotypeCaller \

 -R ref/ref.fasta \

 -I bams/mother.bam \

 -O sandbox/motherHCdebug.vcf \

 -bamout sandbox/motherHCdebug.bam \

 -L 20:10,002,000-10,003,000

Since you are only interested in looking at that messy region, you decide to give the tool a narrowed
interval with -L 20:10,002,000-10,003,000.

Load the output BAM (sandbox/motherHCdebug.bam) in IGV, and switch to Collapsed view
(right-click>Collapsed). You should still be zoomed in on coordinates, and have the mother.bam track
loaded for comparison.

After realignment by HaplotypeCaller (the bottom track), almost all the reads show the insertion, and the
messy soft clips from the original bam are gone. HaplotypeCaller will utilize soft-clipped sequences
towards realignment. Expand the reads in the output BAM (right-click>Expanded view), and you can see
that all the insertions are in phase with the C/T SNP.

3

This shows that HaplotypeCaller found a different alignment after performing its local graph assembly
step. The reassembled region provided HaplotypeCaller with enough support to call the indel, which
position-based callers like UnifiedGenotyper would have missed.

➤ Focus on the insertion locus. How many different types of insertions do you see? Which one did
HaplotypeCaller call in the VCF? What do you think of this choice?

There is more to a BAM than meets the eye--or at least, what you can see in this view of IGV. Right-click
on the motherHCdebug.bam track to bring up the view options menu. Select Color alignments by, and
choose read group. Your gray reads should now be colored similar to the screenshot below.

Some of the first reads, shown in red at the top of the pile, are not real reads. These represent artificial
haplotypes that were constructed by HaplotypeCaller, and are tagged with a special read group identifier,
RG:Z:ArtificialHaplotypeRG to differentiate them from actual reassembled reads. You can click on an
artificial read to see this tag under Read Group.

➤ How is each of the three artificial
haplotypes different from the others?

Let's separate these artificial reads to
the top of the track. Select Group
alignments by, and choose read
group.

Now we will color the reads differently. Select Color alignments by, choose tag, and type in HC.
HaplotypeCaller labels reassembled reads that have unequivocal support for a haplotype (based on
likelihood calculations) with an HC tag value that matches the HC tag value of the corresponding
haplotype.

4

➤ Again, what do you think of HaplotypeCaller's choice to call the three-base insertion instead of the
two-base insertion?

Zoom out to see the three active regions within the scope of the interval we provided. We can see that
HaplotypeCaller considered twelve, three, and six putative haplotypes, respectively, for the regions.

2 GVCF workflow

2.1 Run HaplotypeCaller on a single bam file in GVCF mode
It is possible to genotype a multi-sample cohort simultaneously with HaplotypeCaller. However, this
scales poorly. For a scalable analysis, GATK offers the GVCF workflow, which separates BAM-level
variant calling from genotyping. In the GVCF workflow, HaplotypeCaller is run with the -ERC GVCF option
on each individual BAM file and produces a GVCF, which adheres to VCF format specifications while
giving information about the data at every genomic position. GenotypeGVCFs then genotypes the
samples in a cohort via the given GVCFs.

Run HaplotypeCaller in GVCF mode on the mother’s bam. This will produce a GVCF file that contains
likelihoods for each possible genotype for the variant alleles, including a symbolic <NON_REF> allele. You'll
see what this looks like soon.

5

gatk HaplotypeCaller \

 -R ref/ref.fasta \

 -I bams/mother.bam \

 -O sandbox/mother.g.vcf \

 -ERC GVCF \

 -L 20:10,000,000-10,200,000

In the interest of time, we have supplied the other sample GVCFs in the bundle, but normally you would
run them individually in the same way as the first.

Let's take a look at a GVCF in IGV. Start a new session to clear your IGV screen (File>New Session),
then load the GVCF for each family member (gvcfs/mother.g.vcf, gvcfs/father.g.vcf,
gvcfs/son.g.vcf). Zoom in on 20:10,002,371-10,002,546. You should see this:

Notice anything different from the VCF? Along with the colorful variant sites, you see many gray blocks in
the GVCF representing reference confidence intervals. The gray blocks represent the blocks where the
sample appears to be homozygous reference or invariant. The likelihoods are evaluated against an
abstract non-reference allele and so these are referred to somewhat counterintuitively as NON_REF blocks
of the GVCF. Each belongs to different contiguous quality GVCFBlock blocks.

If we peek into the GVCF file, we actually see in the ALT column a symbolic <NON_REF> allele, which
represents non-called but possible non-reference alleles. Using the likelihoods against the <NON_REF>
allele we assign likelihoods to alleles that weren’t seen in the current sample during joint genotyping.
Additionally, for NON_REF blocks, the INFO field gives the end position of the homozygous-reference
block. The FORMAT field gives Phred-scaled likelihoods (PL) for each potential genotype given the
alleles including the NON_REF allele.

Later, the genotyping step will retain only sites that are confidently variant against the reference.

6

2.2 Consolidate GVCFs using GenomicsDBImport
For the next step, we need to consolidate the GVCFs into a GenomicsDB datastore. That might sound
complicated but it's actually very straightforward.

gatk GenomicsDBImport \

 -V gvcfs/mother.g.vcf \

 -V gvcfs/father.g.vcf \

 -V gvcfs/son.g.vcf \

 --genomicsdb-workspace-path sandbox/trio \

 --intervals 20:10,000,000-10,200,000

Note the version of GenomicsDBImport we are using accepts only one interval at a time. Each interval
can be at most a contig. Here we have it easy because we're running on a single interval. To run on a full
genome, we would need to define a set of intervals, and execute this command on each interval by itself.
See this WDL script for an example pipelining solution. In GATK v4.0.6.0+, GenomicsDB can import
multiple intervals per command.

For those who cannot use GenomicDBImport, the alternative is to consolidate GVCFs with
CombineGVCFs. Keep in mind though that the GenomicsDB intermediate allows you to scale analyses to
large cohort sizes efficiently. Because it's not trivial to examine the data within the database, we will
extract the trio's combined data from the GenomicsDB database using SelectVariants.

gatk SelectVariants \

 -R ref/ref.fasta \

 -V gendb://sandbox/trio \

 -O sandbox/trio_selectvariants.g.vcf

➤ Take a look inside the combined GVCF. How many samples are represented? What is going on with
the genotype field (GT)? What does this genotype notation mean?

2.3 Run joint genotyping on the trio to generate the VCF
The last step is to joint genotype variant sites for the samples using GenotypeGVCFs.

gatk GenotypeGVCFs \

 -R ref/ref.fasta \

 -V gendb://sandbox/trio \

 -O sandbox/trioGGVCF.vcf \

 -L 20:10,000,000-10,200,000

7

https://github.com/gatk-workflows/gatk4-germline-snps-indels

The calls made by GenotypeGVCFs and HaplotypeCaller run in multisample mode should mostly be
equivalent, especially as cohort sizes increase. However, there can be some marginal differences in
borderline calls, i.e. low-quality variant sites, in particular for small cohorts with low coverage. For such
cases, joint genotyping directly with HaplotypeCaller and/or using the new quality score model with
GenotypeGVCFs (turned on with -new-qual) may be preferable.

➤ What would the command to run HaplotypeCaller jointly on the three samples look like? How about the
command that also produces a reassembled BAM and uses the new quality score model?

gatk HaplotypeCaller \

 -R ref/ref.fasta \

 -I bams/mother.bam \

 -I bams/father.bam \

 -I bams/son.bam \

 -O sandbox/trio_hcjoint_nq.vcf \

 -L 20:10,000,000-10,200,000 \

 -new-qual \

 -bamout sandbox/trio_hcjoint_nq.bam

In the interest of time, we do not run the above command. Note the BAMOUT will contain reassembled
reads for all the input samples.

Let's circle back to the locus we examined at the start. Load sandbox/trioGGVCF.vcf into IGV and
navigate to 20:10,002,376-10,002,550.

➤ What's going on with NA12877's (father) genotype call? Focus on the PL values
(phred-scaled likelihoods). What do the zeros mean?

➤ Knowing the familial relationship for the three samples and the child's
homozygous-variant genotype, what can we deduce for the father?

8

https://github.com/broadinstitute/gatk/issues/4614

3 GENOTYPE REFINEMENT

3.1 Refine the genotype calls with CalculateGenotypePosteriors

We can deduce that at least one allele for the father must be variant. We can systematically refine our
calls for the trio using CalculateGenotypePosteriors and a pedigree file. If you want, take a look at the
trio.ped pedigree file to make sense of the columns. Alternatively, it is possible to use population allele
frequencies to calculate genotype probabilities.

gatk CalculateGenotypePosteriors \

 -V sandbox/trioGGVCF.vcf \

 -O sandbox/trioCGP.vcf \

 -ped trio.ped \

 --skip-population-priors

Add sandbox/trioCGP.vcf to the IGV session.

➤ What has changed? What has not changed?

CalculateGenotypePosteriors adds three new FORMAT annotations–-PP, JL and JP.

● Phred-scaled Posterior Probability (PP) basically refines the PL values. It incorporates the prior
expectations for the given pedigree.

● Joint Trio Likelihood (JL) is the Phred-scaled joint likelihood of the posterior genotypes for the trio
being incorrect.

● Joint Trio Posterior (JP) is the Phred-scaled posterior probability of the posterior genotypes for
the three samples being incorrect.

9

You can learn more about the Genotype Refinement workflow in Article#11074 at
<https://software.broadinstitute.org/gatk/documentation/article?id=11074>.

3.2 Compare changes with CollectVariantCallingMetrics

gatk CollectVariantCallingMetrics \

 -I sandbox/trioGGVCF.vcf \

 –-DBSNP resources/dbsnp.vcf \

 -O sandbox/trioGGVCF_metrics

gatk CollectVariantCallingMetrics \

 -I sandbox/trioCGP.vcf \

 –-DBSNP resources/dbsnp.vcf \

 -O sandbox/trioCGP_metrics

CollectVariantCallingMetrics produces both summary and detail metrics. The summary metrics provide
cohort-level variant metrics, while the detail metrics segment the variant metrics for each sample in the
callset. The detail metrics give the same metrics as the summary metrics plus the following five additional
fields: sample alias, het to homvar ratio, percent GQ0 variants, total GQ0 variants, and total het depth.
Metrics are explained at <https://broadinstitute.github.io/picard/picard-metric-definitions.html>.

➤ How many GQ0 genotype calls does the refinement rescue?

10

https://software.broadinstitute.org/gatk/documentation/article?id=11074
https://broadinstitute.github.io/picard/picard-metric-definitions.html

