Logically Centralized? State Distribution Trade-offs in
Software Defined Networks

Dan Levin
TU Berlin/ T-Labs
dan@net.t-labs.tu-berlin.de

Nikhil Handigol
Stanford University
nikhilh@stanford.edu

ABSTRACT

Software Defined Networks (SDN) give network designers free-
dom to refactor the network control plane. One core benefit of
SDN is that it enables the network control logic to be designed and
operated on a global network view, as though it were a centralized
application, rather than a distributed system — logically centralized.
Regardless of this abstraction, control plane state and logic must
inevitably be physically distributed to achieve responsiveness, re-
liability, and scalability goals. Consequently, we ask: “How does
distributed SDN state impact the performance of a logically cen-
tralized control application?”

Motivated by this question, we characterize the state exchange
points in a distributed SDN control plane and identify two key state
distribution trade-offs. We simulate these exchange points in the
context of an existing SDN load balancer application. We evaluate
the impact of inconsistent global network view on load balancer
performance and compare different state management approaches.
Our results suggest that SDN control state inconsistency signifi-
cantly degrades performance of logically centralized control appli-
cations agnostic to the underlying state distribution.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Centralized Networks;
C.2.4 [Distributed Systems]: Network Operating Systems

Keywords
Software Defined Network, Control Plane, Sensitivity Study

1. INTRODUCTION

The emergence of Software Defined Networking (SDN) [8] has
sparked significant interest in rethinking classical approaches to
network architecture and design. SDN enables the network control
plane logic to be decoupled from the network forwarding hardware,
and moves the control logic and state to a programmable software
component, the controller. One of the key features enabled through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotSDN’12, August 13, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

Andreas Wundsam
ICSI/ UC Berkeley

andi@icsi.berkeley.edu

Brandon Heller
Stanford University

brandonh@stanford.edu

Anja Feldmann
. __TUBerlin/T-Labs
anja@net.t-labs.tu-berlin.de

this decoupling is the ability to design and reason about the net-
work control plane as a centrally controlled application operating
on a global network view (GNV) as its input. In essence, SDN
gives network designers freedom to refactor the network control
plane, allowing network control logic to be designed and operated
as though it were a centralized application, rather than a distributed
system — logically centralized.

Thus, SDN designers now face new choices; in particular, how
centralized or distributed should the network control plane be? Fully
physically centralized control is inadequate because it limits (i) re-
sponsiveness, (ii) reliability, and (iii) scalability. Thus, designers
resort to a physically distributed control plane, on which a logically
centralized control plane operates. In doing so, they face trade-offs
between different consistency models and associated liveness prop-
erties.

Strongly consistent control designs always operate on a consis-
tent world view, and thus help to ensure coordinated, correct behav-
ior through consensus. This process imposes overhead and delay
however, and thus limits responsiveness which can lead to subopti-
mal decisions.

Eventually consistent designs integrate information as it becomes
available, and reconcile updates as each domain learns about them.
Thus, they react faster and can cope with higher update rates, but
potentially present a temporarily inconsistent world view and thus
may cause incorrect behavior. For instance, an inconsistent world
view can cause routing loops or black holes.

Consequently, it is important to understand how physically dis-
tributed control plane state will impact the performance and cor-
rectness of a control application logic designed to operate as though
it were centralized. Specifically, when the underlying distributed
control plane state leads to inconsistency or staleness in the global
network view, how much does the network performance suffer?

We approach this problem by systematically characterizing the
state exchange points in a distributed SDN control plane. We then
identify two key state distribution trade-offs that arise: (i) The
trade-off between control application performance (optimality) and
state distribution overhead and (ii) application logic complexity vs.
robustness to inconsistency in the underlying distributed SDN state.

We then simulate these trade-offs in the context of an existing
SDN application for flow-based load balancing, in order to evalu-
ate the impact of an inconsistent global network view on the per-
formance of the “logically centralized” control application. We
compare two different control application approaches which op-
erate on distributed SDN state: A simple approach that is ignorant
to potential inconsistency in the global network view, and a more
complex approach that considers the potential inconsistency in its
network view when making a load balancing decision. In our simu-

lation scenario, initial results demonstrate that global network view
(GNV) inconsistency significantly degrades the performance of our
network load balancing application which is naive to the under-
lying distributed SDN state. The more complex application state
management approach is more robust to GNV inconsistency.

We place our sensitivity study in the context of related work in
Section 2. We then present the inherent state exchange points and
trade-offs in SDN design in Section 3, and discuss their impact on
our example application in Section 4. We quantitatively explore the
trade-offs using a simulation approach in Section 5, present our ex-
periment setup and preliminary results, then conclude in Section 6.

2. RELATED WORK

Related work falls into three main categories — (1) SDN applica-
tions that motivate our study, (2) control frameworks that provide
a logically centralized view to SDN applications, and (3) previous
studies on routing state distribution trade-offs.

Our work is inspired by SDN applications such as in-network
load-balancing [5, 14] that require a distributed control plane im-
plementation for scalability, but at the same time require an up-
to-date view of the network to optimize their objective function.
Our study explores this specific trade-off while being agnostic to
control plane implementation specifics — proactive vs reactive, mi-
cro vs macro-flow management, or short vs long timescale switch-
controller interactions.

Onix [7] is a control plane platform designed to enable scalable
control applications. Its main contribution is to abstract away the
task of network state distribution from applications and provide
them with a logical view of the network state. Onix provides a
general API for control applications, while allowing them to make
their own trade-offs among consistency, durability, and scalability.
The paper does not evaluate the impact of these trade-offs on con-
trol application objectives; our study aims to kick-start investiga-
tion into this area. Similarly, Hyperflow [13] is a distributed event-
based control plane for OpenFlow that allows control applications
to make decisions locally by passively synchronizing network-wide
views of the individual controller instances. The paper evaluates
the limits of how fast the individual controllers can synchronize
and the resultant inconsistency, but does not evaluate the impact
of this inconsistency on the application objective. Consistent Up-
dates [10] focuses on state management between the physical net-
work and the network information base (NIB) to enforce consistent
forwarding state at different levels (per-packet, per-flow). It does
not explore the implications of distributed SDN control plane state
consistency on network objective performance.

Correctness vs. liveness trade-offs emerge in the context of cur-
rent and historical intra- and inter-domain routing protocol design.

Consensus Routing [6] presents a consistency-first approach to adopt-

ing forwarding updates in the context of inter-domain routing. Us-
ing distributed snapshots and a consensus protocol, each router
ensures that every other router along the path toward a destina-
tion agrees on each routing update. The protocol separately ad-
dresses safety and liveness properties to achieve correctness guar-
antees on forwarding behavior, e.g. loop-free packet-forwarding.
Various studies have examined the impact of stale and inaccurate
intra-domain link state on quality-of-service oriented path selection
objectives [12, 3]. Both measurement and analytical studies have
characterized the effects of different link-state collection, aggrega-
tion, and update announcement patterns in terms of the resulting
QoS path selection objectives.

Probabilistically Bounded Staleness [2] is a set of models that
predicts the expected consistency of an eventually-consistent data
store — the underpinning of an eventually-consistent distributed SDN

A Application Application
- Instance 1 Instance 2 -
Global Networkg‘ *% Network Forwarding «€:
View L p State Adjustment N
e N
S State ctri 1 k; "-; -""""‘ Ctrl 2 k; v ;
V_. V_.
Mgmt Laigpie—] [H) |\ S allE

Physical Networl % Network Forwarding
State Collection 3 j State Adjustment

P‘/@\“/@\‘

Figure 1: SDN state distribution and management conceptu-
alized in layers: (A)pplication, (S)tate Management, (P)hysical
Network

control plane. It provides a useful platform for exploring design
choice consequences and performance trade-offs for realizing repli-
cated, distributed SDN control state.

3. DISTRIBUTED STATE MANAGEMENT
AND TRADE-OFFS

Before we dive into characterizing the state distribution and man-
agement trade-offs of SDN, we first describe the setting in which
we define our problem. Figure 1 illustrates the key state exchange
points in an SDN, organized into three logical layers. This repre-
sentation is similar to SDN control platforms found in Onix [7].
Each dashed arrow in the figure indicates a state exchange point in
the SDN.

At the bottom (layer P), the physical network consists of the
hardware forwarding devices which store the forwarding informa-
tion base (FIB) state of the network data plane (e.g., TCAM Entries
and configured port speeds), as well as associated meta-data includ-
ing packet, flow, and port counters. The devices of the physical
network are grouped into one or more separate controller domains,
where each domain has at least one physical controller. Figure 1
depicts two domains: “Ctrl 1” governs “sw 17, and “Ctrl 2” gov-
erns “sw2”. The devices of each domain expose read and write
interfaces for the meta-data and FIB state to the domain controller
in the state management layer, indicated by layer S.

The state management (Layer S) is the core of the SDN, and is
realized by the controllers of each domain, which collect the phys-
ical network state distributed across every control domain. This
component is sometimes called the “Network Operating System”
(NOS), as it enables the SDN to present an abstraction of the phys-
ical network state to an instance of the control application (Layer
A), in the form of a global network view. The control logic for
each application instance may be run as a separate process directly
on the controller hardware within each domain.

Each controller maintains a Network Information Base (NIB)
data structure, which is a view of the global network state pre-
sented to an application. For instance, the NIB contents presented
to a network load-balancing SDN control application would in-
clude at least link capacity and utilization state. The NIB at each
controller is periodically and independently updated with state col-
lected from the physical network (e.g., through port counters or
flow-level statistics gathering). Additionally, controllers synchro-
nize their NIB state among themselves in order to disseminate their
domain state to other controller domains.

Different manners of distributed, replicated storage models may

be used to realize the NOS state distribution and management, in-
cluding transactional databases, distributed hash tables, and partial-
quorum mechanisms [11]. One key property of any NOS state
distribution approach is the degree of state consistency achieved —
strong (e.g., via transactional storage) vs. eventual consistency. A
strongly consistent NOS will never present inconsistent NIB state
to an application (i.e., no two application instances will see a differ-
ent global network view). However, the state distribution imposes
overhead and thus limits the rate at which NOS state can be up-
dated. While an update is being processed, applications continue
to operate on a stale (but consistent) world view, even though more
current information may be locally available. Eventually consistent
approaches react faster, but temporarily introduce inconsistency —
different global network views being presented to the individual
physical controller instances.

Consequently, trade-off #1 arises between the consistency model
underlying NOS state distribution and the control application ob-
jective optimality. The performance of the network in relation to
the control application’s objective can suffer in the presence of in-
consistent or stale global network view. Uncoordinated changes to
the physical network state may result in routing loops, sub-optimal
load-balancing, and other undesired application-specific behavior.
The cost to achieving consistent state in the global network view
entails higher rates of control synchronization and communication
overhead, thus also imposing a penalty on responsiveness.

The degree to which the control application logic is more or less
aware of the distributed nature of the underlying global network
view constitutes trade-off #2 between application logic complex-
ity and robustness to stale NOS state. A “logically centralized”
application that is unaware of the potential staleness of its input is
simpler to design. An application which is aware of underlying dis-
tributed NOS state can take measures to separate and compare the
inter-domain global network view with its own local domain view,
and avoid taking action based solely on stale input.

4. EXAMPLE APPLICATION: NETWORK
LOAD BALANCER

To investigate these trade-offs, we choose a well-known arrival-
based network load balancer control application. The load balancer
objective is to minimize the maximum link utilization in our net-
work. We present and compare two implementations featuring dif-
ferent state (and staleness) awareness and management approaches.

Link Balancer Controller (LBC): The simpler of our two ap-
plication approaches is inspired by Aster*x [5] and “Load Balanc-
ing Gone Wild” [14]. Within a specific domain, upon a dataplane-
triggered event (e.g. reaction to a new flow arrival or pro-active
notification of link imbalance within the domain), a global network
view (table of links and utilizations) is presented by the NOS to the
domain application instance. This view combines both the physical
network state from within the domain as well as any inter-domain
link utilization updates from other controllers. A list of paths (with
utilizations) is generated from each ingress switch in the domain to
every server which can respond to incoming requests (reachability
information is provided by the NOS). From this list, the path with
the lowest max link utilization is chosen on which to assign the next
arriving flow and the appropriate forwarding state is installed in the
physical network.

Separate State Link Balancer Controller (SSLBC): This con-
trol application keeps fresh intra-domain physical network state
separate from updates learned through inter-domain controller syn-
chronization events. The arrival-based path selection incorporates
logic to ensure convergence properties on load distribution. Us-

r Controller Domain 2

ctri 2
100 1000

server 1 @ switch 1 switch 2@ server 2

SN N\

Controller Domain 1
Ctrl 1 &S

link capacity:] link capacity:

Arriving Requests
Arriving Requests

(a) Simulated topology

Link Name Type Capacity (Bandwidth)
sl-swl |server-switch 100 units
s2-sw2 |server-switch 100 units

swl-sw2 | inter-switch 1000 units
sw2-swl | inter-switch 1000 units

(b) Simulated link capacities

Figure 2: Simulated topology and link capacities

ing the (potentially stale) global network view, it determines the
ingress-to-server path P,q., With the maximum link utilization
along the path. It calculates what fraction F' of traffic would need
to be redistributed off of P4, (onto the other links) to better bal-
ance all the paths, however no active flows are actually migrated.
Next, using only the fresh link utilization state from within its own
domain, it calculates new link metrics within the domain. Using
a convergence parameter « € (0, 1], it scales each link utilization
value by F' X « (a fraction of the domain’s contributed load from
path P, across the links of other available paths). From this set
of new link metrics, the path with the minimum max link utilization
is then chosen for the next arriving flow. Effectively, the global net-
work view guides each application instance to redistribute a scaled
(ev) fraction of its local link imbalance on a flow-by-flow arrival
basis.

S. EXPERIMENTS

We now discuss our investigation of the trade-offs described in
the last sections. We describe the custom simulator we use, discuss
our experiment setup, and describe and discuss our initial findings.

5.1 Simulation

To explore our state distribution trade-offs in a controlled and
deterministic manner, we develop a custom simulator to implement
the key state-exchange interfaces of an SDN, as introduced in Sec-
tion 3. We opt for a custom flow-level simulation in this study, as
we are first and foremost interested in having explicit control over
the specific aforementioned state-exchange interfaces. We release
our simulation as an open-source tool [1].

Our simulation is designed to capture interactions between three
SDN layers from Figure 1. First, a graph data-structure [4] repre-
senting the physical network is instantiated with a topology struc-
ture, and link capacity and utilization annotations. Next, the NOS
is instantiated from individual controller instances and controller
domains are mapped to the network graph. Each controller is given
its own copy of the graph data-structure as its NIB to update and
distribute among the other controllers. Finally a flow workload def-
inition is created, which is list of 4-tuples: Arrival time (in simula-
tion time), ingress switch (where it enters our simulated network),
duration, and average link utilization. The workload, controllers,
and physical topology are provided to the simulation, and the sim-
ulation then begins iterating through the workload.

As the simulation iterates through the workload, simulation time
is updated to the time of the flow arrival. Any existing flows which

have ended prior to this time are terminated, and their consumed
link utilization is freed back into the available link capacity along
the path it used. Each controller then records the link utilization
values from the physical network within its domain. Next, an all-
to-all synchronization may be triggered depending on whether the
chosen synchronization period for the simulation run has elapsed.
The controller application of the domain in which the flow ar-
rives is given the opportunity to assign the new flow to a path to
any of the servers of which it is aware. Each controller application
is able to assign flows entering from its domain’s ingress switch to
a server replica in the other controller domain. Based on its view
of the network and the specific state management approach of the
control application, the flow will be allocated to a path with the ob-
jective of minimizing the maximum link utilization in the network.

5.2 Experiment Setup

For our initial experiments, we choose our topology to be as sim-
ple as possible, yet still involve distributed state — two cooperating
controller domains, as illustrated in Figure 2(a). Each domain con-
sist of a single switch and a single server. For simulation purposes,
we consider upstream traffic (e.g., http requests toward servers)
negligible compared to downstream (e.g., streaming download con-
tent toward the switches), and therefore only simulate the link ca-
pacities and utilizations of four links in total, as given by the table
in Figure 2(b). We consider both servers as identical replicas, able
to serve content for all requests, constrained only by the available
downstream bandwidth.

We choose fat inter-domain links, as they enable both domains to
better cooperate in serving incoming requests. Alternately, a bot-
tleneck between domains incentiveizes each domain to keep flows
within its domain — limiting the value of an inter-domain coopera-
tive load-balancing application.

The load balancer objective is to minimize the difference be-
tween all link utilizations, we choose RMSE — root mean squared
error (the Euclidean distance) — of the maximum link utilization
along each server-switch path in the network. Thus, if the maxi-
mum link utilization over every server-to-switch path is equal, our
RMSE metric is 0.

Although we present initial results only for this simple topology,
simulations run on 3-domain chain and ring topologies exhibit very
similar behavior.

5.3 Results

We use two different workloads to drive our simulations and ex-
plore the impact of inconsistent NOS state on network load bal-
ance. We first utilize a deterministic, controlled workload to impart
a link utilization imbalance. This workload oscillates ingress load
between the two switches, keeping constant the total load ingress
into the network. Second, we apply a more realistic workload us-
ing exponentially distributed flow inter-arrival times and Weibull
distributed flow durations.

5.3.1 Controlled workload—LBC

We realize the first of our two workloads, by choosing a flow
arrival rate that is driven by a sin-function. More specifically, the
flow arrival rate at each switch over a given simulation time interval
(t,t+1), is defined by sin(t/T") and sin(t/T —T'/2) respectively,
where 7' is the period of the oscillation. We choose a wave period
of T' = 64 simulation timesteps and run the simulation for 256 time
steps, which leads to oscillating link utilization dynamics. We con-
sider different workloads consisting of 32, 64, 128 flows arriving
within each time period to understand the impact of medium, heavy,
and over-subscribed workloads respectively. We present results us-

© | & X
A
c A
k<]
® < | - i
83
5 |
= —o— Link swi — sw2
O QN —A— Link srvl —swi1
B © —+— Link srv2 - sw2
| —*— Link sw2 - sw1
o | BERBRRIKIIQVCE
o T T T T T T
115 120 125 130 135 140 145
Simulation Time
(a) Link Utilization Timeseries (Sync Period = 16)
0 E
w |
%) :
= :
E o | o .
cT —_
- :
1] ,
S '
37 8 :
—_ o - \
| :] 1 —) :_‘ :
ol /Y /= — — -
0 1 2 4 8 16

NOS Sync Period (Simulation Timesteps)
(b) Load Balancer Performance vs. Sync Period

Figure 3: LBC: global network view inconsistency vs. control
application performance

ing 32 arrivals per timestep with fixed flow duration of 2 timesteps.
This gives a total ingress of 64 load units into the network at any
point in time, keeping in mind that each server-to-switch link can
carry a maximum capacity of 100 units.

We now use the load balancer based upon the LBC state manage-
ment approach with different synchronization intervals: 0,1,2,4, 8
and 16 timesteps. Here, O implies that we synchronize the state
between any two changes in NOS state. For the simulation with
synchronization interval 16 Figure 3(a) shows an excerpt of the
link utilization time series progression for the time period of 112
to 147. From the figure we confirm that the two server-switch links
are indeed the “bottlenecks” with a utilization in the range of 40%
to 60%. We also see the impact of synchronization at time steps
113, 129, and 145 (see support lines). After each synchronization
step the load balancer reassigns a significant fraction of newly ar-
riving flows to the other server and therefore to the other path —
thus significantly changing the link utilizations. This results in an
improved link balance for about 4-6 time steps later. Beyond that
time, however, diverging link utilization state leads to inconsistent
global network view as seen by each controller. The load balancer
makes increasingly poorer decisions and the link imbalance grows.
Also due to the oscillations in the workload, the switch with the
greater ingress load changes over time. Similar patterns apply for
shorter synchronization intervals and higher workload flow arrival
rates.

To evaluate the load balancer performance, we consider the RMSE
values over each simulation run, and exclude the first 16 timesteps.
In Figure 3(b), we present the RMSE values for simulation run of
increasing synchronization period in the form of a box-plot. Each

Te)
2 -
S
'ﬁ o
N
= @ |
2 e —e— Link swi -sw2
c —A— Link srvi - swi
Jdo] —— Link srv2 - sw2
2 —»— Link sw2 - sw1
S
o
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
115 120 125 130 135 140 145
Simulation Time
(a) Link Utilization Timeseries (Sync Period = 16)
w0 |

Server Link RMSE
10

o)
o

[e] [e] [e] [e] [e]
0 + o o o [e] g g

g — 8 8 & 3

|] [] [] — |)
o CCKOICT /—/— p—— J—— p——

0 1 2 4 8 16

NOS Sync Period (Simulation Timesteps)
(b) Load Balancer Performance vs. Sync Period

Figure 4: SSLBC: global network view inconsistency vs. con-
trol application performance

box-plot shows the center half of the data (the box) with the me-
dian marked. The whiskers show the 95 percentiles and outliers
are drawn separately. Recall, an RMSE of zero corresponds to bal-
anced loads. We see that the RMSE value range increases as the
synchronization periods increases. This is due to the effects high-
lighted by Figure 3(a). The median RMSE at sync period 16 is
over 8x the imbalance at sync period 1. This underlines our first
trade-off — as the global network view becomes inconsistent, the
application performance (in this case load balancing) can suffer.

5.3.2 Controlled workload—SSLBC

Next, we examine the second trade-off, namely, how the SSLBC
state management approach is able to handle the above workload.
Figure 4(b) shows the box-plot of the RMSE metric for each syn-
chronization interval using the SSLBC state management approach.
Comparing Figure 3(b) and 4(b) we observe that at high NOS syn-
chronization rates, SSLBC achieves a mean RMSE comparable to
LBC. As NOS staleness increases, the performance of SSLBC de-
grades far less as compared to LBC. However, for high rates of
NOS synchronization, SSLBC may not perform as well because it
is more conservative with respect to load balancing. Alternately,
this improves SSLBC robustness to NOS staleness.

For example, Figure 4(a) shows the link utilizations for the same
period as Figure 3(a). We see again see the effect of synchroniza-
tion as well as the effect of the oscillations in the imposed load.
However, the effects are much smaller, leading to lower RMSE val-
ues. Thus, we see the effects of the second trade-off — a more con-
servative control application design which is aware of underlying
distributed state leads to less sensitivity to NOS staleness.

© 1 o
w —_
n @ !
2 o o '
o o o o o ,
<5 o o o o .
— —_ —_ —_ —_ L
g o : : : :
S . ° : : : :
1%} (aV)

ol L

0 1 2 4 8 16
NOS Sync Period (Simulation Timesteps)
(a) LBC Performance vs. Sync Period
o |
o

w o
0 ©
2 o o o o
o o o o o o
< o o o o o o o
:' o —_ o) —_ —_ —_
g o : o : : :
S5

ol

0 1 2 4 8 16

NOS Sync Period (Simulation Timesteps)
(b) SSLBC Performance vs. Sync Period

Figure 5: Load balancer performance comparison under more
realistic workload

5.3.3 Toward a more realistic workload

We now evaluate the two previously illustrated trade-offs in the
context of a more realistic workload. The simplistic s¢n function
workload from earlier effectively illustrates the cost of NOS incon-
sistency to the control application performance. A more realistic
flow arrival process and duration distribution is necessary, how-
ever, to better estimate how these expected trade-off may behave in
practice.

This more realistic workload uses exponentially distributed flow
inter-arrival times to define the ingress load on a per-switch basis.
We modulate the mean of the exponential distribution by the wave
function from earlier to achieve ingress load oscillations between
switch 1 and switch 2. Flow durations are obtained from Weibull
distribution with mean 10 (timesteps) and shape 0.5 to achieve a
network ingress load over the simulation that is comparable to the
earlier presented workload.

In this evaluation, as before, we vary the time interval between
NOS synchronization events, and compare the load balancing per-
formance of our LBC and SSLBC state management approaches.
We reuse the same performance metric, RMSE over the server
links and for each synchronization interval, present a box-plot of
these values over an entire simulation run. We see in Figure 5(a)
that as the sync period increases, the LBC again exhibits a notice-
able increase in median RMSE. By comparison, Figure 5(b) shows
the SSLBC performance remains almost unchanged for increasing
sync periods. Additionally, at each synchronization period, the
median RMSE of the SSLBC is equal to or strictly less (better)
than that of the LBC application state management approach. The
SSLBC shows less improvement over the LBC at lower synchro-

nization periods, as a heavy-tailed flow duration distribution can
not be so easily accommodated by an arrival-based load balanc-
ing approach. These results support our earlier conclusions on the
impact of stale NOS state on the control application performance.

6. SUMMARY

This position paper investigates the details behind the catchy tag-
line Logically Centralized of Software Defined Networks. Log-
ically centralized world views, as presented by controller frame-
works such as Onix [7] enable simplified programming models.
However, as the logically centralized world view is mapped to a
physically distributed system, fundamental trade-offs emerge that
affect application performance, liveness, robustness, and correct-
ness. These trade-offs, while well studied in a different context in
the distributed systems community, are relevant to the networking
community as well. It is our position that they should be revis-
ited in the context of design choices exposed by software defined
networks.

In this paper, we characterize the key state distribution points
in the distributed SDN control plane. We identify two concrete
trade-offs, between staleness and optimality, and between appli-
cation logic complexity and robustness to inconsistency. We fur-
ther discuss a simulation based approach to experimentally inves-
tigate these trade-offs. For a well-known SDN application (load
balancing) and a simple topology, we find that (i) view staleness
significantly impacts optimality and (ii) application robustness to
inconsistency increases when the application logic is aware of dis-
tribution.

Although our current work focusses on a load-balancing con-
trol application scenario, note that similar trade-offs arise in other
SDN control applications, e.g, in distributed firewalls, intrusion de-
tection, admission enforcement (policy enforcement correctness vs.
liveness), routing, and middle-box applications [9] (path choice op-
timality vs. liveness).

Certainly, more work is required to make our results quantita-
tively meaningful in the general SDN context. In future work, we

e plan to extend our simulator to more realistically model traf-
fic characteristics and delays, and the overhead of synchro-
nization

e apply our tools to larger and more complex topologies
e and compare the results of different applications.

Our hope is that this paper may spark a discussion about the
details and trade-offs of logical centralization. Building on our
early model and prototype, we aim to develop a tool-set that fa-
cilitates practical exploration of these state-distribution trade-offs
for further applications, their concrete algorithms, workloads, and
topologies.

7. ACKNOWLEDGEMENTS

We wish to extend gratitude toward Stefan Schmid for creative
discussions as well as to our anonymous reviewers for their help-
ful feedback. This work was funded in part by Deutsche Telekom
Innovation Laboratories, the GLAB project, and a DAAD research
fellowship.

8. REFERENCES

[1] github.com/cryptobanana/sdnctrlsim.

[2] P. Bailis, S. Venkataraman, J. M. Hellerstein, M. Franklin,
and I. Stoica. Probabilistically bounded staleness for
practical partial quorums. Technical Report
UCB/EECS-2012-4, EECS Department, University of
California, Berkeley, Jan 2012.

[3] R. A. Guérin and A. Orda. QoS routing in networks with
inaccurate information: theory and algorithms. IEEE/ACM
Trans. Netw., 7(3):350-364, June 1999.

[4] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring
network structure, dynamics, and function using NetworkX.
In SciPy2008, Aug. 2008.

[5] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and
R. Johari. Plug-n-Serve: Load-Balancing Web Traffic using
OpenFlow. SigComm Demonstration, 2009.

[6] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus routing: the internet as a
distributed system. In NSDI, 2008.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
large-scale production networks. In USENIX OSDI, 2010.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks. ACM
Sigcomm CCR, 38(2), 2008.

[9] S.Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and J. P.
Singh. Measurouting: a framework for routing assisted traffic
monitoring. I[EEE/ACM Trans. Netw., 20(1):45-56, Feb.
2012.

[10] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.
Consistent updates for software-defined networks: change
you can believe in! In ACM HotNets Workshop, 2011.

[11] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42-81, Mar. 2005.

[12] A. Shaikh, J. Rexford, and K. G. Shin. Evaluating the impact
of stale link state on quality-of-service routing. IEEE/ACM
Trans. Netw., 9(2):162-176, Apr. 2001.

[13] A. Tootoonchian and Y. Ganjali. Hyperflow: a distributed
control plane for openflow. In USENIX INM/WREN, 2010.

[14] R. Wang, D. Butnariu, and J. Rexford. Openflow-based
server load balancing gone wild. In Proc. USENIX HotICE,
2011.

