
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  
11	
  
12	
  
13	
  
14	
  
15	
  
16	
  
17	
  
18	
  
19	
  
20	
  
21	
  
22	
  
23	
  
24	
  
25	
  
26	
  
27	
  
28	
  
29	
  
30	
  
31	
  
32	
  
33	
  
34	
  
35	
  
36	
  
37	
  
38	
  
39	
  
40	
  
41	
  
42	
  
43	
  
44	
  
45	
  
46	
  
47	
  
48	
  
49	
  
50	
  
51	
  
52	
  
53	
  
54	
  
55	
  
56	
  
57	
  
60	
  
61	
  
62	
  
63	
  
64	
  
65	
  

Segment Routing based Traffic Engineering for
Energy Efficient Backbone Networks

Radu CÂRPA, Olivier GLÜCK and Laurent LEFEVRE
Inria Avalon - LIP Laboratory

École Normale Supérieure de Lyon, University of Lyon, France
Email: radu.carpa@ens-lyon.fr, olivier.gluck@ens-lyon.fr, laurent.lefevre@inria.fr

Abstract—Energy consumption has become a limiting factor
for deploying large-scale distributed infrastructures. This work1

seeks to improve the energy efficiency of backbone networks
by providing an intra-domain Software Defined Network (SDN)
approach to selectively turn off a subset of links. We propose the
STREETE framework (SegmenT Routing based Energy Efficient
Traffic Engineering) that dynamically adapts the number of
powered-on links to the traffic load. The core of the solution relies
on SPRING, a novel protocol being standardized by IETF. It is
also known under the name of Segment Routing. The algorithms
have been implemented and evaluated using the OMNET++
simulator. Experimental results show that the consumption of
44% of links can be reduced while preserving good quality of
service.

Index Terms—energy efficiency, backbone networks, SDN,
traffic engineering, SPRING, segment routing, MPLS.

I. INTRODUCTION

Networks play an important role in today’s highly connected
world, and their traffic is expected to increase by a factor of
three in the next five years2. Although they are responsible
for only a fraction of the energy the IT sector consumes,
networks can be made more efficient as their components
often consume a constant amount of power regardless of their
utilization. Backbone networks, for example, comprise devices
that consume several KWh of energy even when idle.

Techniques to reduce the energy consumption of backbone
networks include traffic rerouting and the use of low power
consumption modes. It is possible to reroute data over alter-
native paths to offload a subset of links because operators
over-provision their networks to handle demands during peak-
periods and to offer high Quality of Service (QoS) to their
clients. Evidence shows, however, that even during peak hours
links are rarely used more than 50% [1]. Fig. 1c demonstrates
the utilization of links computed from traffic matrices of the
Géant network where most links are less than 25% utilized
even, at peak hours.

In this work, we tackle the problem of energy consumption
of backbone networks by changing the status of router ports
and transponders on the two extremities of a link. The status
of these components is set to sleep mode whenever a link is

1The work is done as part of the CHIST-ERA STAR "SwiTching And
tRansmission" European project (http://www.chistera.eu/projects/star), which
aims to decrease the consumption of backbone networks by a factor of 100
until 2020.

2http://ciscovni.com/forecast-widget/index.html

not required to transfer data, and brought back to operational
state when needed. Hereafter we term this process as switching
off/on links.

We analyzed the implementation issues of an energy-
efficient SDN-based traffic engineering in core networks. Most
works which seek to adapt the number of switched on links
to the amount of traffic in the network rest at the conceptual
level. They search to minimize the number of active links
via solving MILP formulations or heuristics. Few went deeper
into implementation details, but still miss-observed or ignored
some race conditions. Our team fully implemented the pro-
posed solution in the OMNET++ packet-based discrete event
simulator. Experiments considering real network topologies
(Germany50 and Géant, see Fig.1) and real dynamic traffic
matrices allowed us to quantify the trade-off between energy
saving and impact of our solution on network performance.

As mean to reroute the traffic we use a promising new
protocol, SPRING. This comes in contrast with other works,
which use classical IP link weights changes or MPLS+RSVP-
TE for this purpose. SPRING proved itself well suited for
dynamic reconfiguration of the network. As a bonus, the usage
of SPRING makes the implementation easier. To the best of
our knowledge, SPRING has never been considered in the
literature for reducing the energy consumption of networks.

The implemented solution is proposed under a form of
a framework which we name STREETE (SegmenT Routing
based Energy Efficient Traffic Engineering). It represents an
online method to switch some links off/on dynamically ac-
cording to the network load. The generecity of our framework
allows gradual enhancements, like adding protection and more
intelligent flow placement computations by a simple update of
its composing algorithms.

The rest of this paper is structured as follows. Section
II discusses related work, whereas Section III describes our
assumptions and concepts such as SDN and segment rout-
ing/SPRING protocol. After that, we present our solution
in Section IV and analyze simulation results in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

Gupta et al. [2] were among the first to consider putting
interfaces into sleep mode to save energy. In backbone net-
works, however, links cannot be simply switched off without
losing data. It has been shown that even micro-second sleeps

IEEE ANTS 2014 1570023277

1



(a) Germany 50 network (b) Géant network (c) Link loads in Géant network

Figure 1: Considered network topologies and Géant usage

are difficult to achieve due to the small inter-packet arrival
time [3]. To cope with this challenge, data transmission in
bursts has been considered [4]; a technique nearly impossible
under modern 100Gbps speeds.

A distributed network-wide solution has been provided by
Vasic et al. in order to change flow paths to reduce link
utilization, enabling 21% of links of real networks to be put in
sleep mode [5]. Such a solution, however, is a concept whose
implementation details are not fully disclosed. Another dis-
tributed approach considers that every node locally monitors
the utilization of adjacent links and decides whether to switch
them off or not [6]. Machine learning mechanisms are used to
avoid choosing links whose extinctions have already provoked
a congestion. This solution heavily relies on the Interior
Gateway Protocol Traffic Engineering extensions (IGP-TE)
and the communication overhead is underestimated. After
detailed analysis, we discovered that due to bad estimations
of the frequency of the IGP-TE exchanges [7], the announced
overhead of 0.52% is actually a 30% increase of IGP-TE
flooding. This is not negligible because these floodings are
costly both in number of messages and required processing
power. Moreover, the authors used classical IP routing instead
of MPLS, which can induce instability periods while the
network is re-configuring.

Zhang et al. proposed a centralized approach based on
MPLS+RSVP-TE [8] that relies on estimation of traffic matri-
ces, proven not very efficient [9]. They also opt for a hybrid
approach where MPLS+RSVP-TE is used in parallel with
shortest path routing. Our work uses the SPRING protocol,
which yields the same advantages with less complexity.

Existing work also concentrates on searching the best links
to switch off assuming full knowledge of network state. The
results on energy efficiency of the proposed solutions varies
drastically from one work to another. For example, at times
the performance of greedy approaches like “selecting the least
congested link” is claimed to be close to that of optimal
algorithms in terms of energy savings (Kamola et al. [10]).
In contrast, stochastic optimization techniques, like genetic
algorithms, are said to outperform greedy algorithms when
considering stability of both network and energy savings

(Bonetto et al. [11]). We attempt to explain this variation in
our work.

[12] presents ESTOP, an algorithm which is similar to
STREETE. They also test their solution on the Germany50
network. However, they do not exploit the knowledge of the
network wise traffic matrices and obtain worst results in terms
of energy efficiency.

III. ASSUMPTIONS AND BACKGROUND

We consider that the variation of traffic in backbone network
is slow and follows a diurnal pattern due to a high level
of flow aggregation [13]. Table I provides figures on the
power consumed by backbone-network equipments [14]. Our
model considers that switching a port off corresponds to
powering off part of its integrated circuit and the transponder.
Switching a link off means to switch off the two ports at the
link’s extremities. Hence, if a 100Gbps link is switched off,
2 · (135 + 150) = 570 Watts are saved.

Table I: Router port consumption

Port Speed
(Gbps)

Consumption (W)
Port card Transponder

10 10 50
40 35 100

100 135 150
400 335∗ 300∗

* mathematical projection

A. SDN

In traditional networks, control and data planes are located
on network nodes, and adjustments to network-wide policies
often require access to, and configuration of, all devices.
SDN aims to simplify management by separating the control
and data planes. The control plane contains the network
intelligence responsible for calculating paths to be followed
by data flows and programming them into the data plane. The
data plane is responsible for passing packets from an incoming
port of a device to the right outgoing port. We refer to data
plane devices as SDN switches.

SDN controllers exploit network-wide knowledge to execute
all required computations and apply changes into the data

2



L1

L2

L3 L4
L5

a

b c

d e

f

g h

b

(a) Segment Identifiers

[b,L1]

[b,L1]

[b,L1]

a

b c

d e

f

g h

(b) Force data over a link

[f,a]

[f,a]

[f,a]

[f,a]

[

a

b c

d e

f

g h

(c) Force data over a node

Figure 2: SPRING protocol

plane of network nodes through a predefined API. SDNs en-
able a lot of flexibility for energy efficient traffic engineering.

Compared to the data-center networks, the optical backbone
networks face problems (such as lightpath provisioning), for
which the current SDN implementation, OpenFlow, is not
ready. However, researchers succeed to bring the SDN concept
into the backbone [15]. In this paper we assume the availability
of such a control plane, whose comportment we can change
for our needs: for example, by modifying its source code.

We focus on a centralized SDN solution. While it is possible
to chose the best links to be shut down in a distributed fashion
[6], more complex and intelligent decisions can be taken if
done in a centralized manner.

B. SPRING protocol

SPRING [16], also known as Segment Routing, is an IETF
draft since 2013 and has the goal to substitute MPLS+RSVP-
TE for traffic engineering. It combines the power of source
routing (flexible traffic engineering) with shortest path routing
(less signaling/header overhead compared to MPLS/Myrinet).

The data plane of the SPRING protocol uses the same
concept of label switching of MPLS and can even use exist-
ing MPLS-capable devices without modification. The control
plane though, suffered a complete re-design. Called Segment
IDentifiers (SID), labels are global identifiers, unlike classical
MPLS where they are local. Here, we are interested in 2 types
of SIDs, namely “nodal” and “adjacency” (Fig. 2a).

• A nodal SID is globally unique and identifies a node
(a, b, c, ..., h).

• An adjacency SID is local to a node and uniquely
identifies an outgoing interface (node b has the Adjacency
SIDs L1, L2, L3, L4 and L5).

Compared to MPLS, the distribution of labels is done via
an extension to the IGP instead of using special protocols
(LDP/RSVP-TE). After the network discovery, sending a
packet to the node a through the shortest path resumes to
encapsulating it into a packet with destination a. However,
unlike in IP, much more flexible traffic engineering is possible:

• If node h wants to send a packet to node a while forcing
it over link L1, it adds the header [b, L1] (Fig. 2b). As a
result, the packet will take the shortest path to b, and b
will force it through link L1 to a.

• In Fig. 2c, if h wants to send a packet to a via f , it will
add the header [f, a]. As result the packet will take the
shortest path to f , and afterward continue to a.

SPRING is a good choice for dynamic rerouting regardless
of opting for an SDN approach or not. Being a source routing
protocol, it enables fast flow setup and easy reconfiguration
of virtual circuits with minimum overhead. Changes must be
applied only on the ingress devices and no time and signaling
is lost re-configuring the midpoint devices. This is important
when frequent routing policy changes are needed.

We also use SPRING protocol because MPLS+RSVP-TE
faces convergence issues in case of link failures3. With small
numbers of RSVP-TE virtual tunnels and the refresh reduction
extension added to RSVP-TE, the risk has been reduced.
However, in our case, due to rerouting the virtual tunnels over
a subset of paths and switching other links off, we increase the
load on some routers and the number of LSPs per router. For
this reason, SPRING suits better our work because it is more
stable with a larger number of dynamically changing LSPs.

IV. THE STREETE FRAMEWORK

A. Analysis

In this section we formalize the problem of the energy
efficient traffic engineering. The goal is to avoid losing con-
nectivity between any two nodes in the network. The term
Connectivity Constraint is used to refer to satisfying the
integrity of the network.

We divided our solution into the following three steps:
• Selecting links to switch off/on.
• Computing new routes to avoid/re-use these links.
• Pushing these routes to the network devices and switching

off/on the links.
1) Selecting links to switch off/on: This step selects

candidate links to be switched off/on. We implement the
“least congested link” technique because it is the approach
against which most of existing work compare their results.
This step, quite straightforward, first sorts links by their
instant transmission speed. The complexity of this step is
O(E · log(E)), where E is the number of links (Edges). It
then tries to switch off links that transmit less data by testing,
for each link, whether shutting it down does not violate the
connectivity constraint. At most it will take O(E ·(E+V )) : E

3http://www.ietf.org/mail-archive/web/bmwg/current/msg01502.html

3



times breadth-first search to test the integrity of the network,
where V is the number of nodes (Vertices). The algorithm
that searches for good links to be switched off/on is hereafter
referred to as <SelectLinksToOff/On>.

2) Computing new routes for data flows: Prior to actually
switching off/on the links selected by <SelectLinksToOff/On>,
we must compute new paths for every flow traversing them.
It may happen that the network is not capable of routing all
data flows if all the selected links are switched off. Moreover,
letting every node recalculate new shortest paths throughout
the network is not efficient and may produce congestion. In
fact, congestion may occur even when a link is turned on, such
as when the turned-on link provides a shortest path for a large
number of flows.

To compute the new routes, the SDN controller exploits
global knowledge about the network traffic to solve the "Mul-
ticommodity Flow Problem" which has been proven to be NP-
complete, but for which approximation techniques exist [17].
As a prerequisite, the SDN controller has to know the used
bandwidth between any head-end to any tail-end (the traffic
matrix). The statistics must be collected on the ingress SDN
switches. Fortunately, the availability of this kind of metric is
already considered in the OpenFlow SDN specification. At this
step, the algorithm may also compute protection paths [18].

In our simulation we implemented a technique that com-
putes the all-pairs shortest path routes and tests the possibility
to route all the available traffic over these paths. The complex-
ity of the computation is O(V · (E + V · logV )) if Dijkstra
from every node is computed. The complexity may decrease
with the use of an optimized all-pairs shortest path algorithm.

In the case of switching on, our algorithm is let as simple
as possible. It tests the utilization of the most utilized link,
and if it is greater than 75%, everything is switched on the
shortest path routes are recalculated. We refer to this algorithm
as <ComputeNewRoutes>.

3) Rerouting and switching links off/on: Once new routes
for flows are computed, the controller directly informs each
node about the explicit routes to be introduced in the forward-
ing table and the links will be switched off or on.

The steps taken to switch off the links are described in the
Algorithm 1. For example, here the links between nodes A and
B, C and D, etc were selected for shutdown. The algorithm
presents the steps to be executed to switch these links off.

The overhead of this solution in terms of exchanged mes-
sages is smaller than for distributed solutions. In distributed
cases, the nodes need to synchronize their actions to avoid
switching off a link which disconnects the network. In the
centralized SDN case, if network failures do not occur, there is
no risk to violate the connectivity constraint. The cases of net-
work failures may be treated by adding protection constraints
to <SelectsLinksToOff> and <ComputeNewRoutes>. We do
not address this issue in this paper.

4) Main Loop: <MainLoop> demonstrates how the pre-
sented algorithms interact. This algorithm searches links that
can be switched on or off. If it finds such links, it will actually
execute <RerouteAndSwitchOn> or <RerouteAndSwitchOff>.

Data: List-Of-Links :[(A-B),(C-D),...] and the new routes
/* given by <SelectLinksToOff> and
<ComputeNewRoutes> respectively */

1 begin
22 The controller tells every router the new paths to be used

for virtual circuits;
33 The controller tells nodes adjacent to links (A,B,...) to turn

them off;
44 Nodes A,B,C,... ACK to the controller ;
55 The SDN controller sends IGP flooding : link A-B is down

/* flooding is needed, because at
line 2 we may not contact every node
*/

6 Every router applies the changes to the forwarding table to
reroutes over the new paths;

7 Nodes A,B,C,... suspend the IGP HELLO messages ;
8 Let the links (A-B,C-D,...) go to a sleep mode / negotiate

the shutdown ;
9 end
Algorithm 1: Centralized SDN: <RerouteAndSwitchOff>

1 while Energy Efficient Traffic Engineering is active do
2 List-Of-Links = <SelectLinksToOn>();
3 if <ComputeNewRoutes>(All-links-that-are-ON ∪

List-Of-Links) then
4 <RerouteAndSwitchOn>(List-Of-Links);
5 end
6 List-Of-Links = <SelectLinksToOff>();
7 if <ComputeNewRoutes>(All-links-that-are-ON \

List-Of-Links) then
8 <RerouteAndSwitchOff>(List-Of-Links);
9 end

10 end
Algorithm 2: Main loop

V. PERFORMANCE EVALUATION

A. Environment Setup

The STREETE approach was implemented in the OM-
NET++ simulator. We also developed a draft version of the
SPRING protocol to dynamically reroute data in the network
to avoid turned-off links. At the border of the network domain,
during the classification of each packet and assignment to a
virtual circuit, the ingress nodes collect the statistics about
the amount of data sent to all the other nodes inside the
domain. The SDN controller retrieves this information from
every router and generates the network-wide traffic matrix to
be used by the algorithm presented in the previous section.

We tested our solution considering two different networks,
summarized in Table II. The Germany50 network is a real
backbone, i.e. the traffic is the aggregation of a large number
of flows and is steady over the time. Although Geant is
interconnecting research networks, the aggregation degree is
high enough and the traffic pattern is similar to other backbone
networks. We still observe slightly higher traffic variations, but
that did not have any impact on our solution.

We tested STREETE by simulating real networks with real
traffic matrices from SNDLib4, which were scaled to represent

4http://sndlib.zib.de/

4



 0

 100

 200

 300

 400

 500

0h 3h 6h 9h 12h 15h 18h 21h 24h
0%

25%

50%

75%

100%

N
e
tw

o
rk

 L
o
a
d

 (
G

b
p

s)

%
 o

f 
lin

ks
 O

N

Time

Network load, our solution's overhead
Initial network load

% of links in Minimum Spanning Tree
% of links ON

(a) Impact on link loads (b) Impact on end-to-end delay

 0

 20

 40

 60

 80

 100

0h 3h 6h 9h 12h 15h 18h 21h 24h
0%

25%

50%

75%

100%

N
e
tw

o
rk

 L
o
a
d

 (
G

b
p

s)

%
 o

f 
lin

ks
 O

N

Time

Network load, our solution's overhead
Initial network load

% of links in Minimum Spanning Tree
% of links ON

(c) Impact on link loads (d) Impact on end-to-end delay

Figure 3: Simulation results in Germany50 (top) and Géant (bottom) networks

Table II: Evaluated network topologies.

Network Number of nodes Number of links
Géant (Fig. 1b) 22∗ 36
Germany50 (Fig.1a) 50 88
*the New York node is not visible in Fig. 1b, but the two
links connecting it to the rest of the network are shown.

today’s faster network speeds. The links in the network are
switched off one by one while no link reaches the threshold
utilization of 60%. Over this value, we stop switching off links.
When the utilization of any link goes beyond 75% for a couple
of minutes, the network is switched back on.

The propagation delay was calculated as the time needed
for light to travel through the fiber. The distance between
nodes is the bird-fly distance. Queuing delay is simulated by
OMNET++.

B. Results

1) Energy consumption: We simulated a day of operation
for each network. In Fig. 3, green lines represent the % of
links left on by our algorithm. Using the values of Table I
for 100Gbps links, this translates into reductions in energy
consumed during the simulated day as shown in Table III.

At the beginning of the day, when our algorithm starts
to execute, both networks start to shut down links one by
one every couple of minutes and converge very fast to a
spanning tree. The further extinction of links is not possible
without violating the connectivity constraint. In the case of

Table III: Energy savings during the simulated day.

Network Average off time
of links

Energy economy
(kWh)

Géant 14.88 out of 36 204
Germany50 38.18 out of 88 522

the Germany 50 network, we observe a turn-on at 23:00h.
It is due to a large increase in traffic demand between two
network nodes. We do not know the reason for this unusual
increase in the original traffic matrices, but this demand was
handled well by our algorithm which turned on sleeping links
and restored the full capacity of the network.

We discovered that even greedy techniques for selecting
links to switch off provide good energy savings due to high
over-provisioning of the analyzed networks. An a posteriori
detailed analysis of the work which affirms the contrary ([11])
on the same traffic matrices showed that they compare a greedy
approach acting at the physical link granularity with complex
techniques acting on the light path granularity.

2) Impact on link loads: The fact of rerouting data over
paths which are not the shortest possible, induces overhead in
the network load. The overhead of our solution is visible in
Figures 3a and 3c. The maximum overhead observed during
these simulations was 18.56%. It may be noticed that even with
this overhead, the networks converge to a minimum energy
state.

At the beginning of the simulations and the moment when
the network was turned on, in the case of Germany50 we

5



observe that the overhead is null, as expected.
3) Impact on end-to-end delays: Figures 3b and 3d show

the impact of our solution on the end-to-end delay. For every
source and destination node, we calculated the mean end-to-
end delay per intervals of one hour. The box plots represent
the distribution of the means of all pairs (source,destination)
during the previous hour. The blue ones describe the delays in
the original network and the red ones the delay in the network
with switched off links. We also represent the mean delay for
the cases with switch off and without switch off as continuous
lines of the same colors.

In the case of the Germany50 network, the delay increases
by 37% in the worst case, but usually increases by around
20%. A much more interesting result can be seen in the Géant
network. While in most cases the delay still slightly increases,
it can be clearly seen that the maximum outlier suffered a delay
reduction. It is due to the minimum hop count shortest path
routing. The Géant network has a complex physical topology
and it occurs that the minimum hop count routing is not well
suited for this network: in some cases traffic between two
European nodes will pass through New York. Turning off the
2 links forced the flows to pass through multiple hops, but
remaining in Europe.

4) Impact on packet loss: The simulation revealed abso-
lutely no packet loss due to our algorithms. In the case of
backbone networks, the aggregated traffic flows do not change
fast enough to produce congestion implied by our solution.
The algorithm wakes up the links and serves the increased
demand.

VI. CONCLUSION

In this work, we implemented an energy-aware traffic
engineering technique for reducing energy consumption in
backbone networks. Energy efficient traffic engineering was
analyzed in previous work, but none addressed implementation
challenges of their solutions. We showed that ignoring to test
the feasibility of techniques can lead to bad estimations and
unstable solutions. We proposed and implemented a working
prototype in the OMNET++ simulator.

Nowadays networks are changing towards a centralized
architecture and SDN is increasingly utilized in data center
production networks. We believe that the SDN philosophy may
be extended to the backbone networks. The simplicity of the
implemented solution shows that SDN may also be a good path
for reducing the energy consumption of the network devices.

Compared to previous work, in this paper we used the
SPRING transport protocol to improve the stability of energy
efficient traffic engineering solutions. To the best of our
knowledge, this is the first work proposing the use of SPRING
to improve the energy efficiency of backbone networks. The
flexibility of this routing protocol is well suited to frequent
route changes that happen when we switch links off and on.
Moreover, this protocol is very SDN-friendly.

Via simulations, we showed that as much as 44% of links
can be switched off to save energy. We also discovered by
using real traffic matrices that backbone networks are very

over-provisioned. Even greedy techniques can easily approach
the maximum reduction in the amount of energy consumed.
In fact, the bottleneck in terms of energy efficiency in en-
ergy aware traffic engineering solutions is the connectivity
constraint. While this may not hold true in all networks, the
analyzed ones confirmed the assumption.

In future work, we will evaluate the solution on a real
NetFPGA testbed simulating a backbone network.

REFERENCES

[1] A. Hassidim, D. Raz, et al., “Network utilization: the flow view”, in
INFOCOM, 2013 Proceedings IEEE, Apr. 2013, pp. 1429–1437.

[2] M. Gupta and S. Singh, “Greening of the internet”, in Proceedings
of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM ’03,
Karlsruhe, Germany: ACM, 2003, pp. 19–26.

[3] R. Bolla, R. Bruschi, et al., “Energy efficiency in optical networks”, in
Telecommunications Network Strategy and Planning Symposium, 2012
XVth International, Oct. 2012, pp. 1–6.

[4] S. Nedevschi, L. Popa, et al., “Reducing network energy consumption
via sleeping and rate-adaptation”, in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, ser.
NSDI’08, San Franc., CA: USENIX Association, 2008, pp. 323–336.

[5] N. Vasić and D. Kostić, “Energy-aware traffic engineering”, in Pro-
ceedings of the 1st International Conference on Energy-Efficient Com-
puting and Networking, ser. e-Energy ’10, Passau, Germany: ACM,
2010, pp. 169–178.

[6] A. Bianzino, L. Chiaraviglio, et al., “Grida: a green distributed
algorithm for backbone networks”, in Online Conference on Green
Communications (GreenCom), 2011 IEEE, Sep. 2011, pp. 113–119.

[7] S. Salsano, A. Botta, et al., “Traffic engineering with ospf-te and rsvp-
te: flooding reduction techniques and evaluation of processing cost”,
Comput. Commun., vol. 29, no. 11, pp. 2034–2045, Jul. 2006.

[8] M. Zhang, C. Yi, et al., “Greente: power-aware traffic engineering”, in
Network Protocols (ICNP), 2010 18th IEEE International Conference
on, Oct. 2010, pp. 21–30.

[9] A. Gunnar, M. Johansson, et al., “Traffic matrix estimation on a large
ip backbone: a comparison on real data”, in Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’04,
Taormina, Sicily, Italy: ACM, 2004, pp. 149–160.

[10] M. Kamola and P. Arabas, “Shortest path green routing and the
importance of traffic matrix knowledge”, in Digital Communications
- Green ICT (TIWDC), 2013 24th Tyrrhenian International Workshop
on, Sep. 2013, pp. 1–6.

[11] E. Bonetto, L. Chiaraviglio, et al., “Algorithms for the multi-period
power-aware logical topology design with reconfiguration costs”, Op-
tical Communications and Networking, IEEE/OSA Journal of, vol. 5,
no. 5, pp. 394–410, May 2013.

[12] F. Cuomo, A. Cianfrani, et al., “Network pruning for energy saving
in the internet”, Computer Networks, vol. 56, no. 10, pp. 2355–2367,
2012, Green communication networks.

[13] I. Juva, R. Susitaival, et al., “Traffic characterization for traffic engi-
neering purposes: analysis of funet data”, in Next Generation Internet
Networks, 2005, Apr. 2005, pp. 404–411.

[14] W. Van Heddeghem, F. Idzikowski, et al., “Power consumption mod-
eling in optical multilayer networks”, English, Photonic Network
Communications, vol. 24, no. 2, pp. 86–102, 2012.

[15] M. Siqueira, J. Oliveira, et al., “An optical sdn controller for transport
network virtualization and autonomic operation”, in Globecom Work-
shops (GC Wkshps), 2013 IEEE, Dec. 2013, pp. 1198–1203.

[16] C. Filsfils, S. Previdi, et al., Segment routing architecture", draft-filsfils-
spring-segment-routing-02 (work in progress), May 2014.

[17] A. Madry, “Faster approximation schemes for fractional multicommod-
ity flow problems via dynamic graph algorithms”, in Proceedings of
the Forty-second ACM Symposium on Theory of Computing, ser. STOC
’10, Cambridge, Massachusetts, USA: ACM, 2010, pp. 121–130.

[18] V. Y. Liu and D. Tipper, “Spare capacity allocation using shared backup
path protection for dual link failures”, Comput. Commun., vol. 36, no.
6, pp. 666–677, Mar. 2013.

6


