
Using Network Knowledge to Improve Workload
Performance in Virtualized Data Centers

David Erickson, Brandon Heller, Nick McKeown, Mendel Rosenblum

Stanford University

Abstract—The scale and expense of modern data centers moti-
vates running them as efficiently as possible. This paper explores
how virtualized data center performance can be improved when
network traffic and topology data informs VM placement. Our
practical heuristics, tested on network-heavy, scale-out workloads
in an 80 server cluster, improve overall performance by up to 70%
compared to random placement in a multi-tenant configuration.

I. INTRODUCTION

Modern virtual machines (VMs) arose as a tool to test,
manage, and consolidate x86 servers. They have since matured
into the building block of the cloud, supporting scale-out
services in both public and private virtualized data centers
(VDCs). The size of modern data centers provides a strong mo-
tivation to optimize efficiency; Amazon’s US East data center
reportedly contains over 320,000 servers [1]. Optimization can
reduce operating expenses, defer upgrades, free up capacity
to sell, or automatically improve tenants’ performance – all
attractive options when a large data center costs hundreds of
millions of dollars to build and operate.

Despite cost pressures, today’s cloud environments do not
appear to exploit the full potential of VMs to optimize a single
scale-out workload, let alone an entire data center. To our
knowledge, with the exception of maintenance events, every
major cloud operator places VMs on physical machines (PMs)
statically, without network knowledge, leaving them in place
for their entire lifetimes. A dynamic data center would not
just alleviate hot spots, but would use all available data to
optimize the workloads running inside, both individually and
collectively. For example, including network knowledge in the
assignment of VMs to PMs (VM placement) could increase
traffic locality to reduce network bottlenecks, enabling a web
service to handle more requests, a MapReduce job to complete
faster, and both to improve simultaneously. Improvements in
efficiency can benefit both providers and tenants in cloud
environments (where the two are decoupled), as well as private
data center owner/operators.

Today, two commercial VM placement products are widely
used in enterprise data centers, but they are not network-
aware [2], [18]. We suspected that public clouds could do much
better by taking advantage of network knowledge; this belief
leads us to the first of two questions posed in this paper:

What are the performance benefits of adding net-
work knowledge to VM placement for scale-out
workloads?

(1)

That is, with perfect knowledge and an optimal algorithm
for placing VMs, how much faster might one or more scale-
out workloads run? Most related work does not answer this

question, and (a) only considers the efficiency benefits for the
operator, but not the improvements in the workload itself [34],
[44]; or (b) does not have complete topology and traffic matrix
information when optimizing VM placement [13], [26], [37],
[44].

Figure 1 shows the time evolution of an iterative VM
placement algorithm, with each iteration consisting of three
phases. In the first phase, we measure CPU and network
resource use. Next, an optimization algorithm picks a new
mapping of VMs to PMs. Finally, the VMs are migrated to
their new host. The three phases are repeated indefinitely,
with the goal of improving the optimization metric (usually
throughput or completion time) in each cycle. Each phase of
the cycle is challenging:

• Measure. We need to pick a measurement period that
is small compared to the rate in which workloads
change their network and CPU usage; changes occur
during different phases of computation and as work-
loads come and go. Also, the system must take into
account that network usage is elastic — TCP will use
more capacity should it be available.

• Optimize. Traffic-aware VM placement is NP-hard
and does not admit a constant-factor approxima-
tion [34].

• Migrate. Moving VMs takes time, consumes re-
sources on both the origin and target hosts, and the
network links in-between.

For the rest of the paper, we will assume the system
uses the three-phase optimization cycle. This paper focuses
on the “measure” and “optimize” phases as these are both the
least studied and are necessary to enable an exploration of
possible network-aware workload performance improvements.
VM migration is further discussed in §VI.

Fig. 1. Workflow to optimize VM placement.

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.81

185



+20%

+40%

+60%

+80%

+100%

P
e
rf
o
rm

a
n
c
e

Increasing
Network KnowledgeNone Full

Heuristics Model

Fig. 2. Performance improvement by algorithm.

The system performance will critically depend on the
algorithm in the “optimize” phase, which leads to this paper’s
second question:

What are practical network-aware VM placement
algorithms, and what are their tradeoffs? (2)

Figure 2 gives a sneak preview of our findings (full results
are in §V). The graph plots the improvement in performance
(in this case, webpage serving throughput for web servers on
40 PMs) for different optimization algorithms. For now we are
not concerned with the actual numbers, but want to highlight
the trend of improving performance from left to right as the
algorithms have access to more network knowledge. On the
right, the last three algorithms (two heuristics, and a mixed
integer optimization) know the topology and full traffic matrix.
Performance improves and becomes less variable, at the cost of
gathering more data and using a more complex algorithm. We
will see that improvements of 70% are possible, by carefully
placing VMs using full network knowledge.

We find it encouraging that these gains occur where they
are hardest to achieve; that is, in public data centers (such as
EC2 and Rackspace) where workloads are:

• Opaque (i.e., applications provide no hints on how
they use resources).

• Heterogeneous (i.e., the VDC hosts many concurrent
workloads).

Our contributions are:

Algorithms (§III). We introduce placement algorithms
that improve performance by exploiting network and topology
knowledge. Model is our performance benchmark: it solves a
mixed-integer optimization to calculate a near-optimal place-
ment. Model does not scale, so we introduce two greedy
algorithms and four simulated annealing variations. Some al-
gorithms iteratively improve a starting placement, while others
start from scratch.

Prototype (§IV). We designed and built a prototype VDC
resource manager, Virtue, that can efficiently launch scale-out
multi-tenant workloads, measure resource utilizations, feed the
results to an external optimizer, and then run an experiment
with a new placement – entirely unattended. This function-
ality enables before-and-after comparisons from our baseline
random placements to improved placements returned by our
optimizers.

Experiments (§V). We evaluate all of our optimization
algorithms on an 80-node cluster, with different workloads.

We show that random placement gives low performance
(throughput and completion time) and significant variance.
We show that our optimization algorithms steadily improve
performance when given progressively more network knowl-
edge. Our heuristics give up to 70% higher throughput than
a Random algorithm or an algorithm representative of current
commercial offerings.

II. RELATED WORK

When trying to optimize a VDC that runs network-heavy,
scale-out workloads, we have two high-level choices: improve
the network, or improve VM placement.

Improve the network. For single workloads that run across
thousands of machines with little or no locality, providing
high or full bisection bandwidth [7], [16], [17], [22], [39],
[42] and routing flows across multiple paths [8], [36] may be
the only way to improve server-to-server bandwidth. However,
even with full bisection bandwidth (FBB), VM placement can
improve performance. A single modern core can saturate a
10Gb/s link [5]; yet, many servers have multiple cores, which
means more network bandwidth is available between VMs on
the same PM than between VMs on separate PMs.

Improving VM placement. The closest and most recent
related work is Net-Cohort [26], which measures VM CPU
and NIC counters and uses them to determine a better VM
placement. Net-Cohort infers VM “ensembles” by looking for
hierarchical clusters, however, the authors do not describe
how VM clusters map to physical machines. The Net-Cohort
paper demonstrates benefits in application-level metrics after a
single optimization stage from a single starting placement. In
contrast, we explore the incremental benefits of gradually in-
creasing network knowledge with seven algorithms, rather than
one. We consider algorithms that use the directly measured
network traffic matrix, rather than inferred values, and the
network topology. We measure 1,675 before-after placements,
rather than one. Our experiments also vary link rates and
oversubscription ratios.

Optimization tools from VMware [18] and Citrix [2] au-
tomatically balance the placement of VMs on PMs within a
resource pool. These products only use local information from
the hypervisor, such as CPU, RAM, disk, and local network
traffic counters, and only support load balancing of resource
pools containing up to 32 hosts. Unlike commercial tools,
Virtue uses algorithms with full network knowledge, including
the traffic matrix and topology, and runs them on up to 80
PMs.

Meng [34] defines the Traffic-aware VM Placement Prob-
lem (TVMPP) and shows it to be NP-hard. The authors propose
a cluster-and-cut algorithm to minimize total network traffic.
The evaluation uses VMs with minimal network usage: 80%
of the measured VMs have network rates below 106 Kb/s and
only 4% exceed 1 Mb/s. Virtue aims to maximize workload
performance and evaluates workloads that saturate network
links.

Sandpiper [44] uses a greedy approach to minimize a
VM’s “volume”, the product of its CPU, memory, and network
use; like other systems [37], Sandpiper does not consider the
traffic matrix or evaluate the resulting workload performance

186



(like [33], [35]). Virtue considers the full traffic matrix and
evaluates total system performance.

Mantri [9] uses static rack bandwidth when placing
MapReduce tasks to reduce effects from network congestion.
Other research explores live VM migration [14], [40], [46],
efficient scale-out service provisioning [41], and the interface
presented to the VDC manager and users [32].

Systems like Oktopus [12] and SecondNet [21] reserve
network bandwidth, but require a priori demand knowledge. In
contrast, Virtue requires no service knowledge, and discovers
all resource usage. Seawall [38] and NetShare [30] share net-
work bandwidth among a network’s tenants more consistently,
complementing our approach.

III. ALGORITHMS

It is difficult to know exactly what algorithms public cloud
providers use today to place VMs, since these algorithms are
viewed as a competitive advantage and are therefore kept
hidden. To our knowledge, none leverage knowledge of the
network topology or the traffic matrix. In this section, we show
algorithms that do leverage network information.

A. Optimization Metric: Minimax

All of our algorithms place VMs by minimizing the uti-
lization of the maximally utilized resource in the data center,
which for our experiments is either a PM’s CPU or a network
link. Other resources such as disk or memory could also be
included, but this work focuses on the incremental benefit of
adding network knowledge to today’s CPU-only algorithms.

Minimizing the maximum utilization, a heuristic often
referred to as Minimax, is commonly used for load-balancing.
Minimax is simple to understand and implement, performs
well in practice, and has previously been used to allocate tasks
onto networked infrastructures [11]. The main shortcoming
of Minimax is that it will not try to improve performance
if the utilization of the maximally utilized resource cannot
be decreased. For example, if two VMs are communicating
at full line rate but cannot be placed on the same PM, the
optimizer cannot reduce the 100% utilization of the links
between them, and it will not even attempt to optimize any
of the resources. This problem is likely in scale-out, multi-
tenant data centers where it is likely that at least one link is
fully utilized. Nonetheless, as we will see, Minimax is a good
starting point to demonstrate performance improvements using
network-aware algorithms, and it is not hard to find algorithms
that go beyond just considering the most utilized resource.

B. Random Placement

The Random algorithm generates baseline placements to
compare our other algorithms against. Random distributes VMs
at random across all PMs; some PMs host several VMs, while
others host none. If the algorithm picks an oversubscribed
PM (in our evaluations, each PM is allowed to host at most
four VMs), it randomly picks a new PM. Because it does not
consider resource usage, Random represents a lower bound on
performance; dynamic placement optimization algorithms that
are aware of resource usage should fare better. Random also
represents the performance we can expect in a large VDC with

TABLE I. OPTIMIZATION ALGORITHMS AND THE DATA THEY USE.
CPU VM NIC T. Matrix Topo

Random
SA C �
SA CN � �
SA CNTM � � �
SA All � � � �
Greedy Net � � �
Greedy Fill � � � �
Model � � � �

a static placement policy, which has become fragmented over
time as tenants add and remove VMs.

C. Mixed-Integer Model

If Random is our lower bound, then Model is an ap-
proximate upper bound to compare our algorithms against.
The Model algorithm uses system resource data (CPU speeds,
network topology, link capacities, and routing tables) and
measured workload data (CPU utilization and traffic matrix).
It solves a mixed-integer optimization to find a new VM
placement that minimizes the maximally used CPU or network
link. Model is described as a multi-commodity flow problem
with added CPU and VM placement constraints. Model works
for any network topology, and our implementation is based on
the commercial CPLEX solver that guarantees an optimization
metric within a fixed fraction (the gap) of its believed optimal
value. However, Model must explore an enormous solution
space, and it may take a long, variable time to return a solution.
As a result, we will see that it is only practical as a benchmark
for systems with 20 or fewer PMs.1 The poor scaling properties
of Model motivate more practical algorithms.

D. Practical Algorithms

The practical algorithms we consider next give perfor-
mance numbers that generally fall between Random and
Model. We examine algorithms with varying degrees of net-
work knowledge, as this knowledge could be difficult to gather,
or might simply be unavailable. We want to understand how
performance improves as algorithms become more network-
aware. Table I categorizes the algorithms by the information
they use, including VM CPU utilization and PM CPU capacity,
VM NIC traffic counters and PM NIC link capacity, the VM-
to-VM traffic matrix, and the full network topology, including
link capacities and routing information. We do not consider
RAM so we can focus on the performance improvements when
we add network knowledge over and above today’s CPU-based
optimization.

1) Simulated Annealing: Four of our practical algorithms
are based on simulated annealing. Simulated Annealing (SA)
is a probabilistic optimization heuristic that strives to find
the global optimum in a search space that may have many
local minima. Initially, SA algorithms take random steps with
high probability in an effort to escape local minima. As time
progresses, SA algorithms become more conservative and less
likely to take steps that do not immediately improve the
optimization metric [29].

We implemented four variants of simulated annealing with
different energy functions. Below, we describe each variant

1The evaluations in this paper all run on tree-like networks, so we could
probably accelerate Model by exploiting this knowledge.

187



Algorithm 1 Greedy Fill

1: unassign(vms)
2: sortByTrafficSumAsc(vms)
3: for VM vm in vms do
4: minUtil←MAX V ALUE
5: for PM pm in pms do
6: util←MaxUtil(vmonpm)
7: if util < minUtil then
8: minUtil← util
9: minPM ← pm

10: end if
11: end for
12: assign(vm, pm)
13: end for

along with the information about the infrastructure that each
one requires:

• SA C - Uses CPU utilization reported by VMs and
the maximum CPU capacity of the PMs. This is a
simplified version of what appears to be used by
VMware’s DRS today [18], [19]. The energy function
returns the estimated maximally utilized PM CPU.

• SA CN - SA C plus limited network awareness: the
VM NIC’s rate over time, and the maximum capacity
of the physical NIC on the machine. The energy
function returns:

max(max PM CPU utilization,
max PM NIC utilization)

• SA CNTM - SA CN plus traffic awareness: the mea-
sured traffic matrix between VMs. Improves upon SA
CN’s PM NIC utilization estimate by removing intra-
PM VM traffic from the estimate of traffic crossing
the PM’s NIC. The energy function is the same as
that of SA CN.

• SA All - SA CNTM plus full network topology, link
capacities, and routing. The energy function returns:

max(max PM CPU utilization,
max network link utilization)

2) Greedy Network: The Greedy Net algorithm uses traffic
matrix, topology, and routing data, but no CPU data. Greedy
Net repeatedly finds the most congested link, then moves VMs
sending traffic across this link to other PMs when a move will
decrease the maximum link utilization. It stops when no move
will decrease the maximum link utilization.

3) Greedy Fill: The Greedy Fill algorithm uses the same
information as SA All and is shown in Algorithm 1. It starts
with a clean slate, first unassigning all VMs, then sorting them
in ascending order based on the sum of their average network
rate. Greedy Fill assigns each VM to a PM, at each step
computing the maximum CPU or network link utilization for
each possible VM to PM assignment, then picking the PM that
minimizes the maximum utilization. This method represents an
interesting class of algorithms and shows whether a heuristic
can do better if it rips up the existing VM placement and starts
over.

If our algorithm assigned VMs to PMs starting with the
heaviest network users first, it would likely run into trouble

later. Consider the case where one VM is a heavy network
user but only because it talks at a modest rate to many
other VMs. The heavy VM will be placed first, and the
VMs it communicates with may be placed much later by the
algorithm. Later, when Greedy Fill finally gets to placing the
communicating VMs, there may be no slots available on PMs
near the heavy VM from a network perspective, thus putting
additional load on the core network. Therefore, we take the
counterintuitive step of assigning VMs in ascending network-
use order.

As we see later, our results show that Greedy Fill performs
surprisingly well. If it becomes cheap to move VMs [14], [40],
[46], this algorithm could become very attractive.

IV. TESTBED

To understand how each algorithm performs in practice, we
built a system to run relatively large, controlled experiments.
Our software, Virtue, lets us configure, deploy, measure, and
optimize real and synthetic workloads at scale, while vary-
ing network properties and VM placement. Virtue’s software
comprises 41,000 lines of custom Java, Bash scripts, and GUI
interface code. Virtue runs customized OS and switch firmware
images on bare metal server and switch hardware; something
we could not do on shared testbeds such as Emulab [24].
We partnered with Google to create the Data Center Network
Research Cluster (DNRC), which provides full bare-metal
access.

A. Servers

The DNRC contains 80 Google production servers that first
ran in 2004; each has two sockets with hyper-threaded Intel
Netburst-based Xeon CPUs running at 2.8GHz with 8GB of
DDR RAM. All servers, 20 in a rack, run the XenServer
5.6FP1 hypervisor with paravirtualized Linux VMs. Each
XenServer runs Open vSwitch (OVS), a fast, externally con-
trollable software switch, which measures VM-to-VM traffic
inside and between PMs.

B. Network

The DNRC network is a full-bisection-bandwidth three-
layer k = 4 fat tree [7], built from Pronto 3240 48 × 1Gb/s
+ 4×10Gb/s switches. In addition to two 10Gb/s data uplinks,
each top-of-rack switch has a 1Gb/s control port used for NFS
and terminal access. Each switch runs Indigo firmware; using
OpenFlow [31], it configures routes, monitors link utilization,
and modifies network bandwidth. Configurable rate limiters
can adjust the oversubscription ratio (16:1 to FBB) and edge
link speeds (100Mb/s to 1Gb/s), helping to explore how
network provisioning levels affect workload performance.

We measure the VM-VM traffic matrix by periodically
polling flow counters in OVS, one per IP source-destination
pair. Operators of a real system may want to measure the traffic
matrix frequently, to adapt quickly to changing workloads.
Measuring traffic matrices is widely thought to be expensive,
but not in this environment, where reading a counter takes 88
bytes on the wire.

Table II shows network bandwidth consumed by polling
traffic counters, as a fraction of a 1Gb/s link, for varying

188



TABLE II. PERCENTAGES OF A 1GB/S LINK USED TO POLL COUNTER,
FOR DIFFERENT NUMBERS OF FLOWS AND POLLING INTERVALS.

Polling Interval

Flows 20s 10s 5s 1s

100 0.0003% 0.0007% 0.0014% 0.007%

1000 0.0035% 0.0070% 0.0140% 0.070%

10,000 0.0352% 0.0704% 0.1408% 0.704%

100,000 0.3520% 0.7040% 1.4080% 7.04%

numbers of flow entries and polling intervals. The number of
flow entries in an OVS instance is determined by the number of
VMs per PM, along with the number of other communicating
VMs. For example, a VDC with 100 VMs per PM, where each
VM communicates bidirectionally with 50 other VMs, needs
10,000 flow entries. Polling all counters every second uses less
than 1% of the link capacity, and future VDCs with more VMs
per PM will have faster network links that reduce this fraction.

C. Virtue

Virtue configures and monitors experiments for a VDC.
Similar in scope to many data center resource managers [3],
[4], [20], [25], Virtue gives low-level configurability (network
bandwidths and routes) and handles batches of queued ex-
periments, rather than a continuous workload. Virtue’s input
is the Experiment Description File (EDF), a full description
of experiment hardware (PMs, switches, links) and software
(VMs, workloads, routes). Given an EDF, Virtue coordinates
with XenServers, Open vSwitch virtual switches, Indigo phys-
ical switches, and the network control plane, Beacon [15], to
set up an experiment. Virtue deploys all VMs in the workload
to PMs and creates a MySQL database entry for the exper-
iment. Once each VM is ready, Virtue starts the experiment,
begins gathering resource statistics and self-reported workload
performance metrics, and provides a dashboard to monitor the
workload.

D. Optimizers

We implemented Model on CPLEX and set it to solve
to within 10% of the estimated optimal solution within a 3
hour runtime limit. We found 3 hours to be a good cutoff;
experiments taking longer to find a solution typically took
dramatically longer, up to multiple days. Due to the difficulty
of the problem and observed runtime scaling, we only evalu-
ated Model on our smaller-sized experiments. Optimizers for
the remaining algorithms are written in Java and are single
threaded. Each algorithm receives as input the EDF from
a completed experiment run and all its recorded resource
measurements. After optimization, each algorithm outputs a
new EDF with modified VM placement and routing. This
workflow enables Virtue to measure before-and-after perfor-
mance comparisons for different algorithms, or iterate on a
single experiment to further improve optimization results. To
accelerate the optimization process, we ran our optimizers in
Amazon’s EC2 cloud. CPLEX solving a single EDF uses all
threads on a High-CPU Extra Large instance, and we used up
to 50 such instances to optimize all experiments with different
random workload placements, simultaneously. The Java-based
optimizers use a Cluster Compute Eight Extra Large Instance,
optimizing 25 placements in parallel across the instance’s 32
exposed processing cores.

Agg 

Core 

ToR 

Fig. 3. Subset of testbed topology used in experiments.

V. EVALUATION

The experiments in this section compare multiple work-
loads, at multiple scales, using our VDC optimization algo-
rithms.

Methodology. For each workload and scale, we generate
a set of Random VM placements. Experiments with 120 VMs
on 80 PMs have 25 initial placements, and experiments with
20 VMs on 40 PMs have 50 due to the decreased setup and
teardown time needed for this smaller scale. Each combination
of workload, scale, and placement runs on the DNRC for 3
minutes 2 or until the workload terminates. During each run,
Virtue records resource utilization and performance metrics.
After all placements for a particular workload and scale have
been run, their data is fed into each optimization algorithm,
creating new sets of VM placements, which are then run on
the DNRC to determine the relative performance differences.

Setup. Figure 3 shows the DNRC subset used in our
experiments. 80-PM experiments used four racks of 20 PMs
per rack; 40-PM experiments used 10 PMs per rack. RAM
is statically allocated for each VM and not included in the
optimization algorithms. The total bandwidth oversubscription
from PM to PM through the core is set to 16:1, broken down as
4:1 between the top of rack (ToR) switch and the aggregation
(AGG) switch, and a further 4:1 between the AGG and core
switch. We picked a 16:1 total oversubscription to be well
below reported total oversubscription levels of 240:1, and 5:1
to 20:1 from ToR to AGG [17]. We limit edge network links
to 100Mb/s to better match the ratio between same-server and
different-server VM-to-VM bandwidth (our machines are a few
years old). For comparison, we run experiments with other link
rates and oversubscription levels.

Graphs. We use boxplots to show the range of measured
performance numbers for different placements. The boxes
cover inter-quartile ranges (IQRs), the median is marked
within each box, the whiskers extend to the furthest point
(1.5 times the IQR), and any additional outlier points beyond
the whisker’s range are marked with an x. Each algorithm’s
median value improvement relative to Random is listed at the
top of each boxplot. To highlight important results, we switch
to a question/answer format.

A. Web Workload

To emulate the workload of a multi-tier website, we created
a client + 2-tier web workload. The workload has three groups
of VMs : (1) clients that continuously send requests to web
tier VMs, 20 in parallel; (2) web VMs that listen for incoming

2The experiment duration was long enough to ensure the performance of the
JVM and total workload stabilized. A shorter runtime on throughput focused
workloads while accurately measuring performance should be possible.

189



Ra
nd
om

SA
C
SA

CN

SA
CN

TM
SA

All

Gr
ee
dy

Ne
t

Gr
ee
dy

Fil
l

Mo
de
l

500

1000

1500

2000

2500

3000
T
o
ta
l
T
h
ro
u
g
h
p
u
t
(R
e
q
u
e
s
ts
/s
) -9% 0% +6% +25% +16% +42% +37%

(a) Box plots of measured throughputs for each
algorithm

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

10%

30%

50%

70%

90%

S
o
lu
ti
o
n
D
is
ta
n
c
e
fr
o
m

O
p
ti
m
a
l Model

(b) CDF of Model solution distance from opti-
mal.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

-50%

0%

+50%

+100%

+150%

+200%

R
e
la
ti
v
e
P
e
rf
o
rm

a
n
c
e
v
s
R
a
n
d
o
m Model

Greedy Fill
Greedy Net
SA All
SA CNTM
SA CN
SA C

(c) Relative CDF.

Fig. 4. Web 20 VMs 40 PMs

requests, make 10 sequential Memcached-like requests to
random VMs in the Memcached tier, then return a response
to the client; and (3) the Memcached tier, which receives
requests from the web tier. The client sends a 700-800B request
to the web tier and gets a 33.66KB response from the web
tier. These numbers correspond to the top websites’ average
request/response size for an HTML page [6]. The web tier’s
Memcached requests and response sizes are the same as those
measured on Facebook’s Memcached infrastructure [10]. The
optimal performance we have measured from this workload
comes at a 1:1:1.333 VM ratio.

1) Web Workload, 20 VMs: Our first experiment is a 20-
VM web workload (6 clients, 6 web, 8 Memcached) run on a
pool of 40 PMs. The total network oversubscription is 16:1 and
so we expect to see a big variation in performance depending
on which rack a VM is placed.

Does the web workload’s performance vary across
Random placements? Yes, by over 2× between the worst and
best performing placements. Figure 4a plots the performance
distribution of each algorithm, along with the set of initial
random placements. This workload shows significant variation
in performance for the Random placements because it is
oblivious to CPU and network usage. In fact, the best Random
placement yields twice the throughput of the worst, despite
using the same number of VMs.

Does a network-aware algorithm accelerate a single web
workload? Yes. Network-aware algorithms improve perfor-
mance by up to 42%; network-oblivious optimization (SA C),
reduces median performance by 9%. Comparing Random to
our optimization algorithms in Figure 4a, we see a steady
upward progression, where more network knowledge leads to
higher total throughput. Surprisingly, simulated annealing with
CPU data (SA C), which is similar to today’s network-oblivious
optimization products, performs slightly worse than random.
SA C evenly spreads CPU load across machines, preclud-
ing it from creating network-beneficial placements containing
multiple VMs on a single PM, which random can create.
SA CN adds NIC traffic counters and performs similarly to
random; its improvement relative to SA C suggests that for
this workload, where plenty of cores are available, spreading
the network load is more important than spreading the CPU
load. Adding the traffic matrix in SA CNTM yields another
small improvement, as highly-communicating VMs can then
be co-scheduled to reduce network load. SA All adds topology
knowledge to further improve performance by helping the

optimizer differentiate between placements that look great for
each edge NIC but stress the core network links. Greedy Net,
which has no CPU info, performs well, indicating the network
dependence of this workload. Greedy Fill, which has CPU data,
performs the best, even outperforming Model.

Why does Greedy Fill outperform Model for this
workload? Model runs for a maximum of 3 hours, bringing
only 6% of placements within 10% of the believed optimal
solution (gap). Figure 4b plots a CDF of the optimality of the
placements created by Model, where optimality is a numerical
value reported by CPLEX representing its believed distance
from the optimal solution. Few solutions are actually solved
to within our configured 10% gap; however, the majority are
solved to less than 25%. This tells us two things: Model would
take much longer than our 3 hour cut off to solve all mappings
to within the 10% gap; more importantly, a large fraction of
placements (those with a gap significantly higher than 10%)
are not likely to yield peak performance.

Does network-aware optimization ever harm perfor-
mance? Of the 200 placements generated by fully network-
aware algorithms, only 3 reduced performance. Figure 4c
examines whether an algorithm always improves performance,
or whether it occasionally hurts performance. On this and
subsequent relative graphs, each point on a CDF corresponds
to the relative performance difference between an algorithm’s
chosen placement and the random placement from which it
received measurement data: for Web, requests/s after/before;
for Hadoop, runtime before/after. In this Web workload, algo-
rithms with full topology knowledge do not harm performance,
with the exception of 3 placements for Greedy Fill. For these
algorithms, performance is good, with median improvements
from 1.2× to 1.5×, and a maximum improvement of up
to 2.5×. However, algorithms with no topology knowledge
cannot prevent oversubscribing the core. Within this group,
SA CNTM has the most information and does the best, im-
proving performance in around 70% of the cases and harming
performance for the remaining.

Do multiple optimization cycles improve performance?
Yes, but with diminishing returns. Our algorithms operate
without specific workload knowledge, so they must make
placement decisions by measuring the infrastructure. If we
knew exactly how a workload would perform absent such
bottlenecks, we could make better placement decisions. To
understand how our algorithms could perform with better
demand knowledge, we ran four iterations of both Model and

190



Ra
nd
om

SA
C

SA
CN

SA
CN

TM
SA

All

Gr
ee
dy

Ne
t

Gr
ee
dy

Fil
l

Mo
de
l

-30%

-20%

-10%

0%

+10%

+20%

+30%

+40%

+50%

N
o
rm

a
liz
e
d
C
o
m
p
le
ti
o
n
T
im
e

Im
p
ro
v
e
m
e
n
t

+14% +15% +20% +15% +2% +31% +17%

(a) Completion time normalized to Random’s median of 139.5 sec-
onds.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

-20%

0%

+20%

+40%

+60%

R
e
la
ti
v
e
C
o
m
p
le
ti
o
n
T
im
e

Im
p
ro
v
e
m
e
n
t
v
s
R
a
n
d
o
m

Model
Greedy Fill
Greedy Net
SA All
SA CNTM
SA CN
SA C

(b) Relative CDF.

Fig. 5. Hadoop 20 VMs 40 PMs

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

1600

1800

2000

2200

2400

2600

T
o
ta
l
T
h
ro
u
g
h
p
u
t
(R

e
q
u
e
s
ts
/s
)

Model
SA All

Fig. 6. Iterative algorithm improvement.

SA All, starting with measurements from a random placement.
Each successive iteration should remove bottlenecks, bringing
traffic matrix measurements closer to the workload’s actual
demand and bringing performance closer to its peak. Figure 6
shows a CDF comparing the performance of each iteration. We
see that SA All starts at the bottom line and performs better at
each iteration. Between the first and fourth (bottom and top)
iterations, there is a 10% median performance improvement.
Model shows similar behavior between its first and second iter-
ations, finding a 5% median improvement, but the subsequent
two show little difference, indicating that Model is unable to
further improve performance due to its limited view of the
world.

B. MapReduce Workload

MapReduce is one of the most frequently run applications
in data centers, typified by Amazon’s Elastic MapReduce
service based on its own version of Hadoop. It is also very
different from a web workload. MapReduce performance tends
to be dominated by the CPU, with network usage happening
between phases in short bursts of all-to-all communication. To
represent MapReduce workloads, we use the Hadoop TeraSort
benchmark which utilizes a set of VMs to sort a large data
set. In each experiment, we picked a data set size so that the
benchmark would complete in approximately three minutes –
the time of the measurement phase in our optimization cycle
— including setup and teardown time. Because MapReduce
tends to be CPU or disk limited, we expect to see only a
small runtime improvement when moving to network-aware
algorithms.

1) Hadoop, 20 VMs: Our first Hadoop experiment runs
TeraSort on 20VMs to sort 2GB of data. Each VM stores the
data it is working on locally, on the PM’s hard drive.

Does a network-aware algorithm help Hadoop finish

sooner? Yes, but at most 17% faster than if did not use network
knowledge. Figure 5a shows a box plot of the time it took Tera-
Sort to complete, for each optimization algorithm, compared to
Random’s median completion time (139.5 seconds). TeraSort
is primarily CPU-limited, so there was little improvement
when moving from SA C to network-aware algorithms. Greedy
Net performs no better than Random because it measures low
network utilization (and does not have access to CPU usage),
so it naively places several VMs on the same PM. Greedy
Fill performs the best because the optimal placement is one
VM per PM across the first two racks, which comes as a
consequence of our strategy to break ties left-to-right when
choosing where to place a VM among otherwise identical PMs.
Model has trouble finding near-optimal solutions in the time
allowed, and so its performance varies widely. Figure 5b shows
the good news: all heuristics other than Greedy Net improve
more than 90% of the placements.

C. Combined Web + MapReduce, 120 VMs

To explore how our optimization algorithms might work in
a multi-tenant VDC, we run a mix of workloads totaling 120
VMs on 80 PMs. 30 of the VMs run Hadoop TeraSort (sorting
2GB of data) and 90 VMs run 11 different web services (5
with 3 VMs, 3 with 7 VMs, and 1 each with 10, 14, and 30
VMs).

Does a network-aware algorithm accelerate total web
tenant throughput? Without network knowledge, SA C re-
duced performance by 9% compared to Random, whereas
optimizing with full network knowledge improved performance
by 74%, demonstrating the importance of network-aware al-
gorithms. Figure 7a plots the combined throughput of the web
workloads for different algorithms. The fourth box from the
left shows that having NIC and traffic matrix knowledge (SA
CNTM) makes the workload 10% faster. If the algorithms
have full network knowledge, the workload runs 39% faster
with Greedy Net, 55% faster with SA All, and 74% faster
with Greedy Fill. These three algorithms consistently improve
average performance; Figure 7b shows that they improve upon
Random in all but 3 cases (96% of the time).

How do individual tenants fare? In total, 85% of tenant-
placement pairs improve with SA All. Figure 7c plots the per-
tenant results using SA All. Big workloads are almost all better
off with SA All than Random (with 10% worse off). Small
workloads are affected much more (up and down) with 81%
doing better, and 19% worse.

191



Ra
nd
om

SA
C
SA

CN

SA
CN

TM
SA

All

Gr
ee
dy

Ne
t

Gr
ee
dy

Fil
l

1000

2000

3000

4000

5000

6000

7000

8000
T
o
ta
l
T
h
ro
u
g
h
p
u
t
(R
e
q
u
e
s
ts
/s
) -9% -1% +10% +55% +39% +74%

(a) Web Tenant Throughput Sum.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

-50%

0%

+50%

+100%

+150%

+200%

R
e
la
ti
v
e
T
h
ro
u
g
h
p
u
t
v
s
R
a
n
d
o
m Greedy Fill

Greedy Net
SA All
SA CNTM
SA CN
SA C

(b) Web Tenant Throughput Sum Relative CDF.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

-100%

0%

+100%

+1000%

R
e
la
ti
v
e
T
h
ro
u
g
h
p
u
t
v
s
R
a
n
d
o
m 3 VM

7 VM
10,14,30 VM

(c) SA All relative client throughput.

Ra
nd
om

SA
C
SA

CN

SA
CN

TM
SA

All

Gr
ee
dy

Ne
t

Gr
ee
dy

Fil
l

-20%

-10%

0%

+10%

+20%

+30%

+40%

N
o
rm

a
liz
e
d
C
o
m
p
le
ti
o
n
T
im
e

Im
p
ro
v
e
m
e
n
t

+9% 0% +2% +5% +3% +9%

(d) Hadoop Tenant completion time normalized
to Random’s median of 122 seconds.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Placements

-30%

-20%

-10%

0%

+10%

+20%

+30%

+40%

R
u
n
ti
m
e
R
e
la
ti
v
e
to

R
a
n
d
o
m

Greedy Fill
Greedy Net
SA All
SA CNTM
SA CN
SA C

(e) Hadoop Tenant Runtime Relative CDF.

SA
C
SA

CN

SA
CN

TM
SA

All

Gr
ee
dy

Ne
t

Gr
ee
dy

Fil
l

Gr
ee
dy

Ne
t 8
T

Gr
ee
dy

Fil
l 8
T

0

10

100

1000

O
p
ti
m
iz
a
ti
o
n
R
u
n
ti
m
e
(s
)

37 37 39 103 105 119 17 18

(f) Algorithm Runtime.

Fig. 7. Multi-Tenant Workload 120 VMs 80 PMs

Does a network-aware algorithm help the Hadoop
tenant complete faster? Yes, but marginally, because our
Hadoop workload is CPU limited. Figures 7d and 7e show the
runtime of the 30 Hadoop VMs. SA C and Greedy Fill make
Hadoop finish 9% sooner, because it is sensitive to being co-
scheduled with other Hadoop processes. SA C minimizes the
maximum CPU, so a single Hadoop VM is assigned to each
PM, and Greedy Fill places a Hadoop VM on each of the first
30 PMs because their average network use is below any of the
Web workload VMs.

How long do our optimization algorithms take to run?
One thread takes 37-119s, but eight threads only needs 17-18s.
Figure 7f compares the runtimes of the (lightly optimized)
algorithms. SA C, SA CN, and SA CNTM take about the
same time to run (37-39s). SA All, Greedy Net, and Greedy
Fill take longer when finding the maximally utilized link,
increasing median runtimes to 103-109s. Greedy Net’s runtime
varies, because it iteratively moves VMs and their traffic, and
may evaluate and move the same VM multiple times. Finally,
Greedy Fill’s runtime is nearly constant because for each VM
it examines all possible PM placements exactly once.

Greedy Net and Greedy Fill are easy to multi-thread by
examining all possible PM locations for a VM in parallel. We
tried both algorithms with 8 threads, labeled in Figure 7f as
Greedy Net 8T and Greedy Fill 8T. The median runtime of
Greedy Net decreased from 105s to 17s (617% faster) and
Greedy Fill from 119s to 18s (661% faster).

What if the core network is FBB? The web workloads
get 20-44% faster, while Hadoop is unaffected. Figure 8 shows

3Our testbed’s software did not yet support this combination of edge link
speed and core network bandwidth; we expect to support it soon.

TABLE III. MEDIAN RELATIVE PERFORMANCE IMPROVEMENT OF

Greedy Fill VS Random BY EDGE LINK RATE AND NETWORK CORE

OVERSUBSCRIPTION RATIO.
16:1 4:1 FBB

100Mb/s 129% 69% 58%

250Mb/s 70% 38% 41%

500Mb/s 57% 33% -3

750Mb/s 37% 34% -3

how much faster the Web and Hadoop workloads run when
we stop oversubscribing the network. Each plot shows two
sets of results: 16:1 oversubscription and no oversubscription.
Figure 8a shows the surprising result that even when the
network fabric is not a bottleneck, web workloads run faster
when optimizing with network knowledge; median perfor-
mance improves by 20% to 44%. The SA algorithms all
improve by about the same amount because when the network
is no longer a bottleneck, they all focus on minimizing the
maximum utilization of PM NICs. Greedy Fill does much
better; its technique of unassigning all VMs then assigning
them one by one enables it to reach final states that SA does
not. As expected, Figure 8b shows that CPU-limited Hadoop
is unaffected by network oversubscription.

As network links get faster, will our algorithms still
improve performance? We see performance improvements of
33-129% for each tested link speed/network oversubscription
combination. All the results presented so far were for a network
with 100Mb/s links at the edge. If we make the links faster,
keeping everything else constant, we should expect Random
performance to get better as the links get faster, because the
network is less of a bottleneck, leaving less headroom for our
algorithms to improve. Indeed, Table III shows this to be the
case. Consider the first column for which the network link
increases from 100Mb/s to 750Mb/s while keeping the core
oversubscription constant at 16:1. Our best algorithm, Greedy
Fill, still improves upon Random but the improvement drops

192



SA
C

SA
CN

SA
CN

TM

Gr
ee
dy

Ne
t

SA
All

Gr
ee
dy

Fil
l

-50%

0%

+50%

+100%

+150%

+200%

R
e
la
ti
v
e
T
h
ro
u
g
h
p
u
t
v
s
R
a
n
d
o
m -3%

+12%
-1%
+20%

+11%
+24%

+37%
+21%

+61%
+23%

+70%
+44%

16:1 Oversubscribed

Full Bisection Bandwidth

(a) Web.

SA
C

SA
CN

SA
CN

TM

Gr
ee
dy

Ne
t

SA
All

Gr
ee
dy

Fil
l

-50%

0%

+50%

+100%

+150%

+200%

R
e
la
ti
v
e
C
o
m
p
le
ti
o
n
T
im
e

Im
p
ro
v
e
m
e
n
t
v
s
R
a
n
d
o
m

+10%
+10%

0%
0%

+3%
+1%

+3%
-1%

+5%
0%

+11%
+1%

16:1 Oversubscribed

Full Bisection Bandwidth

(b) Hadoop.

Ra
nd
om

Gr
ee
dy

Fil
l

Ra
nd
om

Gr
ee
dy

Fil
l

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
o
ta
l
T
h
ro
u
g
h
p
u
t
(R
e
q
u
e
s
ts
/s
)

16:1 Oversubscribed

Full Bisection Bandwidth

(c) Web.

Fig. 8. How much faster the web and Hadoop workloads run when the number is not oversubscribed.

from 129% to 37%4. In every combination of link-speed and
oversubscription Greedy Fill improves performance by at least
33%, suggesting that a network-aware algorithm can improve
performance in a wide variety of VDC settings.

VI. DISCUSSION

For the optimization approach discussed in this paper to be
a success, it must operate faster than significant traffic matrix
or server CPU load changes. In addition, the performance
improvement must be large enough to make up for perfor-
mance lost during the migration phase. The time to complete
an optimization cycle is the sum of the time to measure the
traffic matrix, run the optimization algorithm, and actualize
the improved VM placement by migrating VMs to their new
locations. Our evaluation showed that the measurement phase
completes in under one second and an optimization algorithm
can run in the low tens of seconds. The final component is the
VM migration time, which we discuss next.

VM Migration. The time to migrate a VM is primarily
a function of the size of the VM’s resident memory, the
frequency of VM memory changes, and the network bandwidth
available between the origin and target hosts. These values will
all vary depending on the execution environment, however we
can examine some data points for estimation.

In our cluster using a 1Gbps link, it takes approximately
21 seconds to migrate a quiescent VM with 1GB of RAM.
Separate work has demonstrated that compression can reduce
migration time down to seven seconds [45] and RDMA on
a 10Gbps network can reduce it further to two seconds [27].
Simultaneous migrations and the congestion of the network by
workload traffic will also affect the migration time. Operators
could choose to prioritize migration traffic to quickly move
VMs and reduce congestion, to prioritize workload traffic to
minimize workload performance disruption, or let both traffic
types have an equal bandwidth share. The equal or prioritized
cases should be able to complete the migration phase in
tens of seconds. Temporary network links could be used to
further decrease migration phase time [23], [43]. Including the
migration phase time range brings the the overall optimization
cycle time to the range of tens of seconds to single digit
minutes. Next we discuss if this optimization cycle time is
sufficiently short enough to be applicable in today’s data
centers.

4All the results in this table were measured after DNRC was upgraded to
faster CPUs (the network is the same). New CPUs are 2×dual-core AMD
Opteron 8214 HE running at 2210Mhz, introduced in 2006.

Applicability. Researchers have measured a 1500 server
production data center cluster running MapReduce and found
that the traffic matrix changes frequently at both 10 and 100
second time windows [28]. This matches our expectation of
the communication patterns of MapReduce and its distributed
data store. Our evaluation showed that Virtue is unable to sig-
nificantly improve such workloads due to the CPU-dependent
nature of the workload. There is also the practical infeasibility
of migrating VMs which use a local disk containing many
gigabytes or terabytes of data, common for a MapReduce
workload.

Our evaluation indicates that Virtue works best when there
are many smaller clusters of communicating VMs that can
be consolidated closer together from a network standpoint
to increase the effective network bandwidth between them.
Intuition suggests that traffic matrices could be more stable
in such an environment because there are fewer possible pairs
of communicating nodes within each cluster, allowing more
time for an optimization cycle or for taking advantage of
improved performance from a completed cycle. Unfortunately
we are unaware of any measurement studies characterizing
traffic matrix stability in environments that may have similar
characteristics (such as EC2 or Rackspace) that could be used
to validate Virtue’s applicability there.

VII. CONCLUSION

We built Virtue because we felt that prior traffic-aware VM
placement work lacked sufficient realism to convince industry
that the approach (1) leads to worthwhile efficiency gains and
(2) can actually be implemented in practice. This problem is
compounded by a lack of public VDC traces needed to run
meaningful simulations.

Our approach was to build a custom data center cluster and
run everything ourselves. This meant setting up, running, and
operating a multi-rack testbed with custom control software,
combined with thousands of hours of machine time to run
workloads on the testbed and optimization algorithms in the
cloud. Every performance number we report comes from mea-
surement; none of them are from simulation or estimation. The
payoff is more-complete answers to the original motivating
questions: (1) measured performance improvements up to 70%
across a range of network configurations; (2) which come from
adding full network knowledge, including the traffic matrix, to
multiple VM placement algorithms.

Perhaps the biggest takeaway from our results is that VDC
operators could save upgrade costs by using network-aware

193



placement algorithms rather than upgrading to an expensive
FBB network. Figure 8c highlights the performance implica-
tions of these choices for our multi-tenant web workload, using
the 16:1 oversubscribed and FBB network configurations, op-
timized using Greedy Fill. Even on a 16:1 oversubscribed net-
work, optimization improves performance such that it nearly
matches the unoptimized workload placement running on a
FBB network. If, however, you do upgrade to FBB, the same
techniques can further improve the workload’s performance.

In conclusion, we believe that Virtue represents a promising
new line of research for enabling VDC operators to use
network knowledge to increase workload performance on their
infrastructure.

ACKNOWLEDGEMENTS

This work was supported by a Microsoft PhD Fellowship.
Thanks to Jonathan Chu, Shuang Yang, and Ali Yahya for their
contributions.

REFERENCES

[1] Amazon data center size. http://goo.gl/ZRH2X.

[2] Citrix xenserver workload balancing, 6.0 user guide. http://support.
citrix.com/article/CTX130429.

[3] Cloudstack. http://www.cloudstack.org/.

[4] Openstack: Open source software for building private and public clouds.
http://www.openstack.org/.

[5] The rise of soft switching part ii: Soft switching is awesome. http:
//goo.gl/3Hx0g.

[6] Web metrics: Size and number of resources. https://developers.google.
com/speed/articles/web-metrics.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM CCR, volume 38, 2008.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In NSDI,
San Jose, CA, April 2010.

[9] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In USENIX OSDI, 2010.

[10] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In SIGMETRICS,
2012.

[11] G. Attiya and Y. Hamam. Optimal allocation of tasks onto networked
heterogeneous computers using minimax. In INOC’03, 2003.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In ACM SIGCOMM, 2011.

[13] M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner, V. Kravtsov,
and D. Pelleg. NAP: a building block for remediating performance
bottlenecks via black box network analysis. In ICAC, 2009.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In NSDI, 2005.

[15] D. Erickson. The Beacon OpenFlow Controller. In HotSDN. ACM,
2013.

[16] N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical
switch architecture for modular data centers. In SIGCOMM CCR,
volume 40, 2010.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In SIGCOMM, 2009.

[18] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger,
and X. Zhu. Vmware distributed resource management: Design,
implementation, and lessons learned. VMware, 2012.

[19] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad. Cloud-scale
resource management: Challenges and techniques. 2011.

[20] P. Gunda, L. Ravindranath, C. Thekkath, Y. Yu, and L. Zhuang. Nectar:
automatic management of data and computation in datacenters. In
OSDI, 2010.

[21] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. Secondnet: A data center network virtualization architecture
with bandwidth guarantees. In CoNEXT, 2010.

[22] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable
and fault-tolerant network structure for data centers. In SIGCOMM
CCR, volume 38, 2008.

[23] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Aug-
menting data center networks with multi-gigabit wireless links. In ACM
SIGCOMM, 2011.

[24] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale virtualization in the emulab
network testbed. In USENIX ATC, 2008.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In NSDI, 2011.

[26] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang. Net-cohort:
Detecting and managing vm ensembles in virtualized data centers. In
ICAC, 2012.

[27] W. Huang, Q. Gao, J. Liu, and D. Panda. High performance virtual
machine migration with rdma over modern interconnects. In ICCC,
2007.

[28] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In IMC, 2009.

[29] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimization by simulated
annealing. Science, 220, 1983.

[30] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese. Netshare:
Virtualizing data center networks across services. UCSD, Tech. Rep.
CS2010-0957, 2010.

[31] N. McKeown, T. Anderson, and H. Balakrishnan. OpenFlow: enabling
innovation in campus networks. SIGCOMM CCR, 38(2), April 2008.

[32] M. Mcnett, D. Gupta, A. Vahdat, and G. M. Voelker. Usher: An
extensible framework for managing clusters of virtual machines. In
USENIX LISA, 2007.

[33] X. Meng, C. Isci, J. Kephart, L. Zhang, and E. Bouillet. Efficient
resource provisioning in compute clouds via VM multiplexing. In ICAC,
2010.

[34] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine placement. In
INFOCOM, 2010.

[35] A. Rai, R. Bhagwan, and S. Guha. Generalized resource allocation for
the cloud. In SOCC, 2012.

[36] C. Raiciu, S. Barre, C. Pluntke, and A. Greenhalgh. Improving
datacenter performance and robustness with multipath tcp. SIGCOMM
CCR, 41(4), 2011.

[37] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. VCONF: a reinforcement
learning approach to virtual machines auto-configuration. In ICAC,
2009.

[38] A. Shieh, S. Kandula, and A. Greenberg. Sharing the data center
network. In USENIX NSDI, 2011.

[39] A. Singla, C. Hong, L. Popa, and P. Godfrey. Jellyfish: Networking
data centers, randomly. HotCloud, June, 2011.

[40] A. Stage and T. Setzer. Network-aware migration control and scheduling
of differentiated virtual machine workloads. In CLOUD, 2009.

[41] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, and R. Bianchini.
Dejavu: Accelerating resource allocation in virtualized environments.
In ASPLOS, 2012.

[42] G. Wang, D. Andersen, M. Kaminsky, and K. Papagiannaki. c-through:
Part-time optics in data centers. In SIGCOMM CCR, volume 40, 2010.

[43] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan. c-through: Part-time optics in data centers.
In ACM SIGCOMM, 2010.

[44] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
Gray-box Strategies for Virtual Machine Migration. In NSDI, 2007.

[45] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data deduplication
to accelerate live virtual machine migration. In IEEE CLUSTER, 2010.

[46] M. Zhao and R. J. Figueiredo. Experimental study of virtual machine
migration in support of reservation of cluster resources. In VTDC, 2007.

194


