
StEERING: A Software-Defined Networking for Inline Service Chaining

Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvret, Ravi Manghirmalani, Ramesh Mishra,

Ritun Patney t, Meral Shirazipour, Ramesh Subrahmaniam, Catherine Truchan, Mallik Tatipamula t

Ericsson Research

Abstract-Network operators are faced with the challenge of
deploying and managing middleboxes (also called inline services)
such as firewalls within their broadband access, datacenter or en
terprise networks. Due to the lack of available protocols to route
traffic through middleboxes, operators still rely on error-prone
and complex low-level configurations to coerce traffic through
the desired set of middleboxes. Built upon the recent software
defined networking (SDN) architecture and OpenFlow protocol,
this paper proposes StEERING, short for SDN inlinE sERvices
and forwardiNG. It is a scalable framework for dynamically
routing traffic through any sequence of middleboxes. With simple
centralized configuration, StEERING can explicitly steer different
types of flows through the desired set of middleboxes, scaling
at the level of per-subscriber and per-application policies. With
its capability to support flexible routing, we further propose an
algorithm to select the best locations for placing services, such
that the performance is optimized. Overall, StEERING allows
network operators to monetize their middlebox deployment in
new ways by allowing subscribers flexibly to select available
network services.

I. INTRODUCTION

Network appliances such as firewalls, content filters, intru
sion detection systems (IDS), deep packet inspection (DPI) ,
network address translation (NAT), content caches, load
balancers, wide area network (WAN) accelerators, multime
dia transcoders, logginglmetering/charging/advanced charging
applications, etc. are generally referred to as middleboxes or
inline services because end users are often unaware of their
existence in their traffic's path. Middleboxes are inevitably
deployed in broadband access networks (fixed or mobile), in
enterprise networks, and more recently in data centers and
cloud environments. While this topic area has received a
significant amount of attention in recent years [1], [2] , [3],
[4] , [5] , [6], [7], there is still no satisfactory solution for the
deployment and management of middleboxes in broadband
access networks. In fact, given the forecasts of traffic growth
and reduction of average revenue per user (ARPU) , network
operators need to address the problem of reducing the costs
associated with the deployment of middleboxes as well as
new ways to monetize some of these network based services.
For example, it is desirable that upon detection of a long
lived video flow, DPI could be dynamically bypassed to save
processing resources. Another example is that a transcoding
appliance can be bypassed once the content type and co dec
have been identified. Scalable and dynamic steering capabili
ties could also enable new ways to monetize the middlebox de
ployment, where subscribers can buy network based services.

However, there are currently challenges associated with
configuring the network to bypass certain middleboxes for

t These authors are no longer at Ericsson Research.

978-1 -4799- 1 270-4/13/$3 1 .00 ©20 1 3 IEEE

given traffic flows. Because of the lack of efficient protocols
for this problem, operators often need to use low level and
complex configuration to achieve certain degree of control.
Thus, today's practice is either to direct excess traffic through
unnecessary middleboxes, or to set up an unwieldy set of
tunnels.

This paper describes StEERING (SDN inlinE sERvices
and forwardING), a novel framework based on the concepts
of Software-Defined Networking (SDN) that addresses these
challenges by empowering network operators with the ability
to steer traffic at the granularity of subscriber and traffic
types, using simple policies which are defined and propagated
from a centralized point of control. Moreover, the ability to
offer a per-subscriber selection of inline services leads to the
creation of new offerings and hence new ways for operators
to monetize their networks. StEERING does that by reusing
existing OpenFlow 1.1 [8] specification, in a novel fashion
without the need for any new extensions. The design of
StEERING aims to meet the following requirements:

• Efficiency: traffic should traverse middleboxes in the
sequence specified by the network operators and
should not unnecessarily traverse middleboxes. Great
CAPEX savings could be achieved if traffic could
be selectively steered away (bypassed) from specific
inline services.

• Flexibility: the framework should support subscriber,
application, and operator specific policies simulta
neously, all stemming from a single control point.
Adding or removing new services should be easily
done by the network operator.

• Scalability: the framework should support a large
number of rules and scale as the number of sub
scribers/applications grows.

• Openness: it should be possible to deploy any type
of middlebox in the network, independently of its
vendor in order to avoid vendor lock-in backward
compatibility with already deployed middleboxes. Our
method can be applied to both physical and virtualized
middle boxes.

Concretely, StEERING consists of a set of OpenFlow 1. 1
switches interposed between middleboxes and their intercon
nections (Ethernet switches and IP routers). The OpenFlow
switches are programmed and managed by a centralized con
troller which provides a single interface for the deployment
of fine-grained traffic steering policies. StEERING provides
scalability in three distinct ways. First, in order to reduce the
amount of state required at each switch, we use multiple tables
to transform the flat policy space into a multi-dimensional
space. Therefore, the rules required can scale linearly with the
number of subscribers and applications, instead of the cross
product of subscribers and applications. Second, we define the

set of services to traverse for each flow as one type of metadata,
which is used to communicate information between tables.
Thus, every table can operate on the service set independently,
e. g. , adding/removing services. This design enables the simple
integration of different types of policies. Third, StEERING
pushes to the perimeter of the service delivery network expen
sive forwarding operations such as classification and header
rewriting. These operations need to be done only once within
the network. We also perform intelligent lookup to improve
the switch's performance.

We make the following three key contributions in this
paper:

• We propose a scalable and flexible architecture to
reduce the state required at each switch, by leveraging
new features available in OpenFlow 1. 1 (the proposal
is applicable to later versions of the protocol). This
design enables the simple and efficient integration of
different types of traffic steering policies.

• Given the flexible steering capability supported by
the above design, we further address the issue of
where to connect the inline services to the network.
To this end, our main contribution is to formulate
the problem and analyze its importance. We further
use a heuristic solution and demonstrate that it can
significantly improve user performance. The efficient
solution can also be be periodically run to determine
the locations for virtualized appliances.

• We demonstrate the deployment feasibility of our
approach by implementing the StEERING forwarding
plane on a network processor which has already
proven its efficiency in commercial routers [9]. We
also evaluate the scalability using real broadband
network traffic.

The novelty of our design is reusing existing SDN con
cepts, e.g., OpenFlow 1 . 1 multiple tables and metadata,to solve
the inline service chaining problem in a scalable fashion. The
rest of this paper is organized as follows. We introduce the
problems and summarize limitations of existing approaches in
§II. §III presents an overview of the StEERING architecture
and §IV describes each component in details. §V describes
our algorithm for determining the service locations. In §VI
we describe our prototype and evaluation results. Finally, we
summarize the related work in §VII and conclude in §VIII.

II. PROB LEM S TATEMENT

The StEERING design presented in this paper is a general
solution that can be applied to any network with middlebox
services. Broadband (fixed and mobile) networks will however
specifically benefit from the presented design, because of
its scalability - i.e. , its ability to handle per-subscriber and
per-application traffic for a large number of subscribers and
applications. For this reason, we focus the use-cases and
examples on broadband networks.

The network-wide view of StEERING is shown in Fig
ure 1. The broadband access network depicted here consists
of three areas: the access network (with either mobile or fixed
access technologies), the aggregation network, and the core
network (hosting packet gateways and policy control servers).
A set of middleboxes resides in the core network, between

Access Aggregation Core
network network network

Fig. 1 . Network view of StEERING

Stee- Effic- Flexi-
ring iency bility

Single box .{ .{ J(
Static chains .{ J(J(
PBR .{ J(J(
Pswitch .{ .{ J(
StEERING .{ .{ .{

Internet

Open- Scala-
ness bility

J(J(
.{ J(
.{ J(
.{ J(
.{ .{

lAJ:SLb 1. :SUMMARY OF EXISTING APPROACHES

the ingress routers and the border routers that connect to
the Internet. These service-providing middleboxes, together
with the switches that interconnect them, are referred to as
the service delivery network. We define upstream to be the
direction from a subscriber to the core network. Conversely,
downstream traffic is from the core to a subscriber. Note
that we allow the existence of multiple ingress and egress
points, but the traffic only goes in two directions, i.e. , from
subscribers to the Internet and vice versa. We do not consider
communications between subscribers in this work.

Service chaining is required if the traffic needs to go
through more than one inline services. Moreover, if more than
one chain of services is possible, then the operator needs to
configure the networking infrastructure to direct the right traffic
through the right inline service path. In this paper, traffic
steering refers to leading the traffic through the right inline
service path. Unfortunately, in today's networks, this process
is inflexible and prone to mis-configurations.

Limitations of existing solutions: The operators today still
do not have protocols or tools available to perform flexible
traffic steering. We summarize the existing approaches used in
operational networks below. Their pros and cons are discussed
in Table I, according to the requirements listed in §1.

• Single box running multiple services: This approach
consolidates all inline services into a single box [10].
The operator adds new services by adding additional
service cards to its router or gateway. This approach
makes the integration of third party service appliances
difficult. It also suffers from a scalability issue as the
number of services and the aggregated bandwidth is
limited by the router's capacity.

• Statically configured service chains: It configures one
or more static service chains where each service
is configured to send traffic to the next service in
its chain. This approach is not flexible as it cannot
dynamically reconfigure the set of services easily. It
requires a large amount of service-specific configura
tion and is error prone. It certainly cannot support the
steering at the granularity of per subscriber.

Traffic Bypass
Traffic Steering

OF Protocol
StEERING Service Protocol

Fig. 2. System architecture

StEERING Control Logic

Content Cache

• Policy-based routing: A third approach is to use a
router using policy-based routing (PBR) to route traffic
to different services. Each time the traffic is returned
to the centralized router and then sent to the next
service. Clearly, this approach suffers from scalability
issues as traffic is forced through the router after every
service. The router must be able to handle N times
the incoming traffic line rate to support a chain with
N - 1 services.

• Policy-aware switching layer: Joseph et al. [1] propose
a policy-aware switching layer for data centers which
explicitly forwards traffic through different sequences
of middleboxes. Their method satisfies the efficiency
requirement but fails to meet the requirements of
flexibility and scalability. Each policy needs to be
translated into a set of low level forwarding rules on
all the relevant switches. There is no explicit way
to configure application and subscriber related rules
separately which need to be manually consolidated
into a set of low level rules. Moreover, it requires
to install one rule for each new flow. Therefore, it is
hard to scale with the number of subscriber/application
combinations.

Location of the services: Even if we have the perfect steer
ing mechanism to route traffic through different middleboxes
as the subscribers' policies define, there is still an orthogonal
problem at the network planning stage, i. e. , where do we
connect these services so that the users' performance is the
best. Apparently, traffic steering will result in prolonged delay
in user performance, due to the detour to the services. Thus,
how these services are connected to the network clearly has
an impact on the user performance.

III. SYSTEM OVERV IEW

StEERING is built upon the software-defined networking
(SDN) concept. SDN is a new network architecture that
introduces programmability, centralized intelligence and ab
stractions from the underlying network infrastructure [1 1]. In
SDN, the control plane applications that implement network
functionalities (e.g. , routing and switching) can evolve sepa
rately from the forwarding plane. OpenFlow (OF) [8] is an
open standard protocol proposed for the interface between the
control and forwarding planes in SDN.

The components of StEERING are shown in Figure 2.
There are two types of switches in the network. The Perimeter

OF Switches are placed on the perimeter of the service delivery
network. These switches will classify the incoming traffic and
steer it towards the next service in the chain. These are the
switches to which services or gateway nodes are connected.
The Inner Switches will forward the traffic using efficient L2
switching. These switches are only connected to other switches
and may or may not be OF switches.

There are two modules of StEERING control logic. The
first module is a standard OpenFlow controller, which is
responsible for setting up the table entries in the OF switches,
via OpenFlow protocol (blue dashed lines). The second module
of the control logic is an algorithm that periodically runs to
determine the best locations for inline services. The openflow
rules are used to perform two-step process for steering. The
first step classifies incoming packets and assigns them a service
path based on predefined subscriber, application, and ordering
policies. The second step forwards packets to a next service
based on its current position along the assigned service path.
For example, the solid red line in Figure 2 shows a service path
for the upstream traffic through Virus Scan, DPI and Content
Cache. The green line, on the other hand, allows the traffic to
bypass all the services.

In most cases, policies can be determined by fields in the
packet headers. Alternatively, it can also be determined by the
packet payload, such as URLs. In such cases, the policy can
be decided on the fly via a DPI box, which will inform the
controller with the packet content. Thus, in our architecture
we also propose an interface between the inline services and
the OF controller, as the yellow dotted lines in Figure 2. For
instance, once DPI has recognized or resolved a flow, it can
send a notification message to the OF controller.

The service policy for each flow is determined by the
operator but can also be specified by the subscriber, i. e. , cus
tomers of the ISPs, which can be either end users or enterprise
customers. Therefore a subset of the services traversed by the
traffic can be selected by the subscriber, perhaps on a pay per
service basis.

IV. BASIC DESIGN COMPONENTS

The data plane (forwarding) of StEERING can be easily
configured and scaled as the number of subscriber/application
combination grows. The controller programs switches with the
rules on how to forward each packet. Forwarding decisions are
made based on Layer 2 to Layer 4 contents of packets as well
as the ingress port. The key challenge to achieve scalability is
to avoid exponential growth (rule explosion) of the forwarding
rules installed in each switch. We make three design choices
to reduce the amount of state on each switch: defining port
types to indicate directions, using multiple tables to decompose
multi-dimensional policies, and introducing a new metadata
type to encode service paths.

A. Represent directions with port types

We define two types of ports on perimeter switches: node
ports and transit ports. Node ports are connected to services
and gateway nodes (BNG, GGSN, routers). Transit ports are
connected to other perimeter switches or to inner network
switches.

Direction table MAC table

Key: dst MAC

Action: forward

� MicrOflow -tabie····· -: Subscriber table Application table

Key: dstiP. proto, port

Action: set

metadata(serv_set)

Path status table

Key: input port

Action: modify

metadata(serv_set)

Next Ost table
incoming � Key: input port Key: five tuples : Key: srclP, dir Key: dir. serv_set

Action: forward packet-y Action: set Action: set : Action: set

metadata(dir) metadata(s8rv_set) : metadata(serv_set)
••••••••••••••••••• 1 L..-___ ----'

r---,.,/
Meladala 64 bits
Service Set r:(.,. �10� 1,1111111111.11

ro��._ � 1b1tordirection I
Virus Scan OPI Content Cache

1 bit for one service

Fig. 4. Multiple tables and metadata

Fig. 3. lllustration of port direction

Other remote

networks

Internet

• Upstream facing port

• Downstream facing port

C Transit port

Figure 3 shows an example of a Service Delivery Network
based on the StEERING architecture. Switches OFl, OF2, and
OF3 are perimeter switches. Switch SWl is an inner switch.
The black/red ports on the switches are node ports and the
white ports are transit ports.

Incoming traffic, either coming in from a gateway node
or coming back from a service, always enters the Service
Delivery Network via a perimeter switch and through a node
port. Packets coming in through node ports are steered towards
the next node (service or gateway) in their assigned service
paths. Packets arriving on transit ports are simply forwarded
using their destination MAC addresses.

All packets traversing the steering network are considered
to be traveling either upstream or downstream. Each node
port in the perimeter switches is either facing upstream or
downstream. In Figure 3, downstream-facing ports are colored
red and upstream-facing ports are colored black. All packets
that arrive on a downstream-facing port are traveling upstream,
and vice versa. Packets arriving on transit ports may be
traveling in either direction. In this case, the direction is known
based on the destination MAC address, which will correspond
to either an upstream-facing or downstream-facing service or
router port.

B. Realize policies with multiple forwarding tables

In theory, a single TCAM-like table could be used to spec
ify the required functionality, as in OpenFlow 1.0 or pswitch.
However, this would not be a scalable solution because it
would involve the cross-product of subscribers, applications,
and ports within the same table. Using indirection and multiple
tables, we separate this into multiple steps, resulting in linear
scaling of each table.

Six tables are mandatory. The matching keys and the
associated actions of these tables are shown in Figure 4.
Direction table: Ingress port is the key, which identifies the
direction of the packet (upstream vs. downstream) and the type
of the port the packet was received on (node vs. transit port).
The action is to set the a metadata field called dir. We will
explain more about the metadata fields in Section IV-D.
MAC table: Destination MAC address is the key. Based on the
contents of this table, the packet will either be transmitted to a
directly connected service or router on a node port, forwarded
out to another transit port, or dropped.
Subscriber table: Subscriber's identifier (e. g., IP address)
and the direction bit are the keys. This table contains the
information of the default service set for the a given direction
for each subscriber. This can be an LPM (longest-prefix match)
table. If there is a miss in this table, the default action is to
drop the packet. With a hit, a metadata field called serv _set
will be set, which records the list of services this flow should
traverse. Again, it will be further explained in Section IV-D
Application table: In this context, application refers to the re
mote communication endpoint, e. g. , web servers, as identified
by the IP address, protocol, and port number. This table is used
to modify the subscriber's default service set according to any
static L3-L4 application policies. Based on this information,
specific services can be excluded from the service set or added
to it. Its action is also to set the serv_set metadata field. Note
that that action of this table can add or remove certain bits that
are set in the previous table.
The Path Status table: According to the bits set in the
service set, the path status table determines which services
have already been traversed and what is the next service in
the chain. This is important because a packet may traverse
the same perimeter switch multiple times, and it should be
treated differently each time. The ingress port is sufficient to
provide this information. If this table is reached, it means that
the packet has arrived on a node port, connected directly to a
service or router. The ingress port then tells us which service
was just applied, if any, and it also tells us the direction. There
is a global ordering of services in each direction (they may
or may not be the exact reverse of each other). Based on the
direction and the previous service, the service set is modified to
exclude the previous service and all other services that precede
it.
Next Destination table: As the last table, it uses the direction
and the service set as a key. This is a TCAM-like table, with
arbitrary bitmasks and rule priorities. Based on the direction
bit, it essentially scans the bits in the service set according
to the global service ordering in that direction. The first or
highest-priority service it finds will be the next destination. If
the service set is empty, the next destination will be either the

upstream or downstream router, depending on the direction
bit. The next destination may be connected to the current
switch or another one. If the destination is connected to a
different switch, then the destination MAC address is set to the
value corresponding to that service or router and the packet
is transmitted out through an appropriate transit port. If the
destination is directly connected, then the MAC addresses are
updated as needed and the packet is transmitted out to the
corresponding node port.

C. Handle dynamics with the Microflow Table

Microflow table is added to handle dynamically generated
rules. Usually operators have policies statically determined
by the subscriber and application identities. These rules can
statically be pre-programmed on the Subscriber table and the
Application table. But in real time, operators may want to add
policies dynamically, or add more specific policies, or higher
priority policies. Moreover, policies may be added according
to the results of another middlebox, e. g., DPI. We add the
Microflow table to accommodate such dynamics.

If there is a hit in the direction table, the next table to
be consulted will be the Microflow table. The key for this
table is the direction bit together with the 5-tuples (source and
destination IP address, IP protocol field, and TCPIUDP source
and destination port) of the packet. The table contains exact
match entries used for selective complex steering of specific
TCPIUDP flows. If there is a hit in this table, the next two
lookups will be skipped. Thus, the rules in the Microflow
table have higher priority than the rules in the Subscriber and
Application tables.

D. Encode service chaining with metadata

Metadata is used in OpenFlow 1.1. to communicate the
information among different tables and associated actions [8].
Intermediate results from one table are communicated to other
tables using some metadata, which can be used as part of a
subsequent lookup key or be further modified later.

We introduce two new types of metadata, the direction bit
that represents the direction of the flow and the set of inline
services to be applied for the flow under process, called service
set. This service set is encoded as a bit vector, one bit for
each possible service. More sophisticated encodings can be
used to enable more advanced features such as load balancing
over multiple service instances. OpenFlow 1.1 supports 64-bit
metadata field [8]. Our design requires one bit for the direction
and leaves up to 63 bits for encoding the service set, allowing
a maximum of 63 distinct services. The format of the metadata
is shown in Figure 4, together with an example. The metadata
field can be applied with arbitrary mask and is updated as
below:

new_metadata = (old_metadata&--,mask) I (value&mask).

The value are the bits to be set and the mask is used to select
these bits, which can be arbitrary 64 bit numbers.

The first bit indicates whether it's upstream (0) or down
stream (1). The following N-bit vector defines the service
set, encoding for N number of services. The encoding in this
example specifies that this packet should traverse the VS, DPI,
and content cache. In the datapath, this metadata is set, then

64 bits

� �

III 111111111111
1d;rn�;," ! i .". ".: ,

11x4 ,..
•

3 unused bits r 11 services uSil 4 bits per service

(up to 8 instances per service:

1 apply bit, 3 instance bits)

2 services using 8 bits per service

(up to 128 instances per service:

1 apply bit, 7 instance bits)

Fig. 5. Encode Metadata to handle load balancing

modified, and finally used to search for the next service to be
applied to this packet.

1) Load balancing across mUltiple service instances: If
a single middlebox is insufficient to deliver the required
throughput, multiple instances of that service can be connected
to the steering network. We use the metadata fields to distribute
traffic without the need for a separate load balancer.

The controller can re-define the format of the bits in
serv_set metadata for load balancing purposes. The current
encoding can be seen as using one bit to represent a service
(indicating whether or not it should be applied), and there is
only one instance of each service. This encoding can be ex
tended such that the services can additionally have an instance
identifier included in the metadata as shown in Figure 5. If n
bits are allocated to each service for such an identifier, then up
to 2n instances can be represented. With a fixed number of bits
available, this is a trade-off between the maximum number of
services and the number of instances per service. Each service
can use a different number of bits for the instance identifier.

E. Example

We finally illustrate the whole system through an example
using the same topology as in Figure 3. A subscriber Bob
has a subscriber policy: service {S 1 ,S3} for upstream traffic,
i. e. , traffic sent from the subscriber to the core network should
go through first 81 then 83. On the other hand, the operator
wants to impose two application policies: for YouTube traffic
{ +S2,-S3} , and for VoIP traffic {-S 1 }.

Table II shows the table entries of the perimeter switch
OF2. The only table that is not represented here is the Mi
croflow table, as it is not derived from the static configuration.
Below, an example is given on how the metadata field is
matched or updated. This example is based on a 5-bit metadata
field (one direction bit, 4 service bits) with the most significant
bit representing the direction. Let us walk through this example
of Bob watching YouTube (Bob at 1.2.3.4 and the YouTube
server at 4.3.2.1132 on port 80). The metadata is defined as a
five bit vector [D81828384]b for upstream, where D means
the direction bit and the rest of the bits represent services, with
the letter b indicating the value in binary format. We pick two
tables as examples to show how the metadata is modified.

The Direction table sets determines the direction based on
the ingress port. Value 1 represents the upstream direction and

Direction Table
Ingress port Action MAC Table I Subscriber Table I 1 dir=down Dst MAC I Action Direction I IP Addr I Action 2 dir=up S2 MAC

I
set srcMAC, output to port 1

I Up I Bob I serv_set={81,83} I 3 dir=down S3 MAC set srcMAC, output to port 3
4 dir=up

Application Table Path Status Table
Dir. I IP Addr I Proto I Port I Action Ingress Port I Action
Up
Up I

YouTube server
I

TCP
I

80
I

serv_set - serv_set - j 83} + {82}
VoIP server * 5060 serv set-={ 81 }

1
I

serv_set-�J82L
3 serv set-={82,83}

Next Destination Table
Dir. I Service set Action
Up I 82 E serv_set set dstMAC=S2's MAC set srcMAC=portl's MAC, output
Up 83 E serv_set set dstMAC=S3's MAC set srcMAC=port 3 's MAC, output

AHLh 11. hXAMPLE OF TABLE CONTENTS ON Ul'Z

Fig. 6. Motivating example of service placement

o represents the downstream direction. Assuming that a packet
coming from port 2 matches the second rule, the metadata field
would be updated according to Equation 1. For example, to set
the first bit to 1, it uses mask 10000b to select the first bit to
operate on the old metadata 0 and set its value to 1 using
10000b. Thus, metadata is:
(0&01111b)I(10000b&10000b) = 10000b.
Note that in this table we will only consider the direction
information, regardless of the subscribers. Next, we perform a
lookup in the Subscriber table using the subscriber informa
tion. Using both the direction bit (Up) and the Subscriber IP
address, the first rule is selected, i. e. , service Sl and S3 to be
added. The old metadata is 10000b. Since it is the first time
to set the service set, all the services are selected using mask
01111b and then only Sl and S3 bits are set to 1 using 00110b.
The metadata is
(10000b&10000b) I (0l010b&01111b) = 11010b.
We use these two examples to illustrate how the metadata is
set and used to transfer information between tables.

V. SERV ICE PLACEMENT MODULE

Given the ability to perform flexible routing across services
demonstrated above, we do not require the services to be
placed in a specific order. Rather, they can be placed anywhere
in the network. However, despite this freedom, we discover
that certain placement strategies are better than others when
affecting user performance. In this section, we discuss the
inline service placement problem and provide one heuristic

to placing services in the network, with the objective of
minimizing the average time it takes for the subscribers' traffic
to go through all required services. Note that we do not
aim at finding an optimal algorithm for service placement in
this work. Our contribution is to formulate the problem and
demonstrate its importance.

In what follows, we first explain how different placement
strategies affect performance. Then, we formulate the problem
as a graph problem, and propose a greedy algorithm that
minimizes the average latency of paths that subscribers' traffic
traverse in the network.

A. Motivating example

We motivate the need for an intelligent (non-random)
service placement scheme through an example. In Figure 6
(a), we assume that all the traffic enters the network from the
left router and exit the network on the right. The ordering
of the inline services to be traversed is determined according
to subscribers' policies: 90% of the subscribers require their
traffic to first traverse the DPI box and then traverse the
firewall. This service order is specified in the subscribers'
service contract. The remaining 10% of traffic requires going
through FW first before DPI. In this case, the majority of traffic
needs to first go through the network to reach the DPI box,
and then go all the way through the network again to reach
FW, and finally, to reach the outbound router, shown in the red
solid curve (We assume that a shortest-path routing scheme is
used for routing traffic between any pairs of services).

Figure 6 (b) shows an alternative service placement strat
egy, which moves the DPI closer to the ingress point; hence,
makes the path of majority of the flows shorter.

However, the problem of determining the best locations
for all the services is not always this trivial. For example,
in Figure 6, if there are another ingress point and egress
point, and if the subscribers require a different ordering of
the inline services (the green dashed curve), then it will be
more complicated to find the optimal solution.

B. Problem definition and a greedy solution

We formulate the service placement problem as an opti
mization problem of minimizing the delay or distance to be
traversed by all subscribers' traffic. Let G = (V, E) denote
the network graph, with node set V representing switches, and
edge set E representing the links. Graph G is an undirected

symmetric graph with weighted edges, i. e. , if (u, v) E E, then
(v, u) E E. Each edge is associated with a delay value du,v'
It can be simply du,v = dv,u = 1, meaning that the delay is
approximated as the hop count.

We denote the set of inline services as 8 = {81' 82, . . . 8 h},
where each service 8i is one type of service to be placed in
the network. Each subscriber has its own requirement on the
order of inline services to traverse. For example, subscriber
i's requirement is ri = ingi, 81,83,85,82, egri. Here ingi and
egri are the ingress and egress locations of the subscriber's
traffic.

The objective is to find a subset M (I MI = 181 = h)
of the locations among all candidates N = lVI, and place
the services in these selected locations so that the total delay
for all the users are minimized. Given a service placement L,
for each service sequence ri, the total delay is calculated as
the sum of the (shortest-path) delay between all consecutive
services, plus the delay between the ingress point and the first
service and the delay between the last service and the egress
point.

If the placement problem can be solved offline, an exhaus
tive search can be used to find the optimum solution. But
if there is a need to periodically change services locations
in the real time, e. g., in a data center environment with
virtualized appliances, or if the network size is very large,
then an efficient approximation algorithm is needed. In the
following, we propose a heuristic algorithm to solve the
placement problem. Though we are aware that it may not
produce optimized results, our results show that it can already
outperform a naive approach.

In our heuristic algorithm, we form a service dependency
graph between all services. Two services are dependent if they
appear consecutively in the service chain requirement of some
subscribers, and the degree of this dependency is determined
based on the amount of traffic (or the number of subscribers)
with such service chain requirement. In a greedy approach, we
pick the service with the highest dependency degree, find the
best location for that service, and remove that service from the
service list. We do this iteratively until all services are placed
in the network. Due to limited space, we omit the details and
the pseudo code of our algorithm, but some results will be
presented in Section VI.

VI. IMPLEMENTATION AND EVALUATION

We implement StEERING in a testbed as shown in Fig
ure 7. Our control plane is built using the NOX OpenFlow
controller [12] and the data plane is implemented using pro
grammable EZchip NP-4 network processors [13]. We deploy
four middlebox services: two Linux IPTables based firewalls,
a commercial proprietary DPI box, and the Apache Traffic
Server [14] as the content filter. An Authentication, Authoriza
tion and Accounting (AAA) server connects to the controller
using an external Ethernet switch for out-of-band connectivity.
We use FreeRADIUS [15] as the AAA server, providing
subscriber information to the controller. The controller is also
connected to the Broadband Network Gateway (BNG) server
so that it can program the rules as the subscribers login. We
have demonstrated this prototype in a major mobile computing
conference. In this section, we first describe the details of each
component followed by evaluation results.

���

AAA

Fig. 7. Prototype diagram

A. Control plane

BNG DPI

OF Controller

Firewall

We build the control plane on top of the NOX OpenFlow
controller [12]. NOX provides a programmable interface for
network management and control applications. It programs
OpenFlow switches via OpenFlow protocol messages. We
implemented four modules that run as application on top of
NOX, as shown in Figure 7.

The Steering Config Module maintains databases of the
network topology, the service policies as well as the global
ordering between services.
The Steering Controller Module translates traffic steering poli
cies into rules that are pushed to the perimeter switches using
the OpenFlow protocol. It runs Dijkstra algorithm to determine
the shortest paths between any two endpoints. On the one hand,
it receives requests from other modules to install new policies.
On the other hand, it collects flow statistics which are input
to the service placement module.
The ENG Connection Module keeps track of events related
to subscribers. It registers itself with the BNG to receive
notifications whenever a subscriber logs in. These notifications
include the subscriber's IP address and its service policy. Upon
receiving a notification, this module interacts with the config
module to install rules on the Subscriber table.
Finally, the DPI Connection Module is responsible for complex
traffic steering. It listens for flow notification messages sent
by services such as DPI and reacts by pushing new rules that
will dynamically "re-steer" a flow to bypasss certain services.
These rules are computed by associating the flow described in
the flow notification message (i. e. , 5-tuple) with the originating
subscriber as well as its assigned service chain.

Rule timeout: To reduce the number of rules on the
switch, when receiving an explicit logout message from the
AAA, the BNG Connection module reports an event to the
DPIConnection module to purge all entries from the micro-

flow table and subscriber table associated with that subscriber.

B. Forwarding plane

The decision to develop our own implementation of an
OpenFlow 1.1 switch was based on the fact that there are no
hardware solutions on the market today that support multiple
tables. The forwarding plane is built on a hardware platform
equipped with an EZchip NP-4 network processor [9] . This
processor has a programmable pipelined architecture capable
of processing packets at a line rate of 100 Gbps. NP-4 are
specifically optimized to process packets and provide more
flexibility than a networking ASIC while providing substan
tially higher performance than general purpose processors from
Intel or AMD.

In addition to the NP-4, the hardware platform used to
develop our prototype is equipped with a host processor (pow
erPC) used to run initialization, control and management tasks.
The host processor runs a small footprint distribution of Linux
on which we installed a version of Open vSwitch (OVS) [16]
that we modified to support OpenFlow 1.1. We use Open
vSwitch as an middleman between the OpenFlow controller
and the NP-4 processor. It communicates with the controller
using the OpenFlow protocol and we develop a hardware
abstraction layer that translate Open vSwitch functions to
populate tables and handling packets in/out into system calls
to the NP-4.

The EZchip NP-4 consists of Task Optimized Processors
(TOPs), each one dedicated to a specific task. TOPs can be
seen as processing cores where multiple packets are processed
in parallel. The NP-4 pipeline contains four types of TOPs:

• TOpparse: Parse and classify the packets. At this
stage, keys are built based on the packet headers and
sent to the next stage. More than one key can be
derived from the packet.

• TOPsearch: Perform lookups in the corresponding data
structures in memory. The NP-4 version of EZchip
contain two search stage identified as TOPsearch I
and TOPsearch II. In particular, the lookup for MAC
table, Application, Subscriber, and Microflow table are
performed in parallel in the TOPsearch I phase, as they
can operate on the metadata field independently. The
Path Status and Next Destination table are looked up
in TOPsearch II.

• TOPresolve: Analyze the lookup results and determine
what to do next with the packet.

• TOPmodify: Apply the modifications to the packet
(e.g. push header, set IP address, etc.) and mark how
to output the packet if applicable.

The NP-4 is also equipped with a learning TOP (TOPlearn)
and an integrated traffic manager that provides end-to-end
dynamic traffic control. We did not use these two features in
our implementation.

C. Interfaces

There are two types of interfaces. The first type is
the OpenFlow 1.1 protocol between the StEERING Con
troller (StC) and the OF switches. The second type is the

.<:
.9
.� III
.... Q) 0.
III Q)
"2
'0

.... Q) .0
E :l

Z

160000

140000

120000

100000

80000

60000

40000

20000

0

StEERING X
pswitch D

0 5000 10000 1500020000 25000300003500040000

Number of subscribers

Fig. 8. Number of rules as subscriber increases

180000

.<: 160000
B

140000 .�
Q; 120000
0.
III 100000 Q)
"2
'0

80000

.... 60000 Q) .0
E 40000 :l

Z 20000

0
0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Fig. 9. Table size increases over time

controller-service protocol, called the StEERING Service Pro
tocol (StSP). It is used for services such as DPI to send flow
notifications to the StC. The notification will include informa
tion to uniquely identify the flow (typically the 5-tuples) as
well as the traffic type (e.g. SIP, HTTP URL, etc.) known to
both the controller and service. Based on the traffic type and
the configured application and service policies, the controller
will determine which service path should be applied to this
recognized flow and sends the appropriate flow modifications
to the perimeter OF switches to re-steer the traffic accordingly.
Subsequent packets of this flow will be steered through the
Service Delivery Network according to the new rules. Similar
to the OpenFlow interface between the controller and switches,
the StSP interface will run directly over TCP or be encrypted
using TLS (Transport Layer Security).

D. Solution Validation

In this section, we provide preliminary benchmark of our
system as well as scalability analysis.

I) Switch Scalability: The number of rules installed is
limited by the switch capacity. The rules in StEERING in
creases linearly as the sum of subscribers and applications,
while the pswitch approach grows as the product of subscribers
and applications. We show the difference between the two
approaches using a simple simulation. In the topology in
Figure 7, we define 100 applications, each application j request
traversing mj number of services, mj E [1,4]. And we
assume that each subscriber i sends flows for ni applications,
n E [1,10]. At the same time, each subscriber requests to

50 0.4

0.38 U)
40 0.36 .s

� 0.34
Q)
E

<: .,
0 30 0.32 Q)

� <IJ
0.3

<: 0 a.
:s 20 0.28

<IJ
� �

0.26 Q) a. 0> 0 � 10 0.24 Q)
0.22 �

0 0.2
0 .1 10 100 1000

Subscriber per second (K)

Fig. 1 0. Controller utilization and Response time

traverse 2 services. Then we simulate when a subscriber i
arrives with an application j, the number of rules installed
in StEERING and in a system like pswitch [1]. Figure 8
shows that the slope of our method is much smaller than the
pswitch approach. The advantage comes from the separation
of subscriber policies from application policies, allowing the
independent scaling of rules in each dimension.

Next, we show that StEERING can support flows in the
real network. We validate this by replaying the unsampled
packet traces collected from a European municipal network.
It contains around 200K subscribers and 24 hours of data.
We use the data as input and emulate the process of rule
setting up and tearing down. We assume that if the subscriber
is not active for n second, the rule is removed from the
switch. We try n = 1 min and n = l Omin timeout threshold
and show different ways of defining flows in Figure 9. We
can see that as the time evolves, the increasing of table size
slows down. A larger timeout interval results in fewer rules
and faster convergence. As expected, grouping IP addresses to
124 prefixes helps reduce the rules significantly as well. The
number of rules can be supported by our commodity EZchip
based switches.

2) Forwarding performance: Using a traffic generator, we
were able to measure the performance of our prototype at full
line rate of 20 Gbps full-duplex with minimum packet size of
64 bytes, which represents 29.8 Mpps. This throughput is, in
fact, limited by the capability of our current traffic generator. In
the future, we plan to test it with a more powerful generator.
This experiment was executed with hardware lookup tables
populated to 1 0,000 entries for the Microflow, Subscriber and
Application tables. We test large number of entries in these
tables, as the number of subscribers, applications, and dynamic
flows can be large in real networks. For other tables, it is
unlikely to grow very large, e. g. , number of services or ports.
As expected, the throughput performance is independent of the
number of entries per tables, i. e. , the throughput is constantly
20 Gbps as the entries increase. The EZchip hardware platform
provide deterministic characteristics for each packet being
processed if the number of clock cycles required is kept within
the cycle budget available. Our implementation is built in such
a way that every packet will necessitate the same amount of
processing and memory accesses.

3) Controller performance: We built an application on
top of the NOX controller. In this section we show that the

u..

0.9

0.8

0.7

0.6

8 0.5

0.4

0.3

0.2

0 .1

o L-� __ � __ �� __ � __ L-� __ � __ L-�
o 0.02 0.04 0.06 0.08 0 .1 0 .12 0 .14 0 .16 0 .18 0.2

Latency (sec)

Fig. I I . Delay distribution with 3 services deployed

0.6
greedy algorithm =t::=J

0.5 random placement !
U Q)

0.4 .!!!.

i$' <: 0.3 2 .
.!!!
C, 0.2

1 i
·- - w ,

>
4: : .

0.1

1 5 i II i
0

1 2 3 4 5 6 7 8 9

Number of services

Fig. 12 . Average delay as number of services increases

StEERING component does not introduce much overhead. We
profile the CPU utilization as the subscriber incoming rate
increases. In the left y-axis of Figure 1 0, we vary the subscriber
incoming rate and measure the average CPU utilization of the
controller. Since the controller needs to program the policies
for each new subscriber, its CPU utilization increases with
the subscriber rate, but after 1 00K subscribers per second, the
utilization becomes stable around 45%. After this, the network
becomes the bottleneck so the computation resource is stable.

Another metric of controller performance is the response
time, i. e. , the time elapsed from when a request (flowmod
message) comes in until the time when rules are sent out. We
show the average response time across all subscribers as the
rate increases in the y-axis of Figure 1 0. Clearly, the response
time is not significantly affected by the incoming rate.

4) Evaluation of service placement algorithm: We evaluate
the service placement algorithm in Section V using the Abilene
network topology [17] and the traffic from the packet traces
mentioned above. We first divide the source addresses to 11
groups, assigning each group to one PoP in Abilene network
topology as the ingress point of this group of sources. Simi
larly, we divide all the destination addresses to 11 groups and
assign each group to a PoP, as their egress points. We select
the top 1 0 applications that account for most traffic, and then
assign n number of services for each application. Given this
input, we use the greedy algorithm to compute the locations for
these n services, as well as a random deployment. In Figure 1 1 ,
we show the delay distribution for all the flows. For 50%
of the flows, our algorithm can achieve 40ms latency while

the random scheme needs 80ms. We also vary the number of
services in Figure 12. The advantage of the greedy algorithm
is more significant with more services deployed. It should be
noted that the greedy algorithm is used to efficiently solve the
problem online, however if resource is not a limitation, other
algorithms should be investigated.

VII. RELATED WORK

Our work contributes to and draws inspiration from a rich
corpus of work in middlebox management, Software-Defined
Networking (SDN) and cellular network management. Studies
have measured the end-to-end impact of middleboxes [18]
and interactions with transport protocols [19]. Reference [20]
proposes a network management plane. Sekar et al. [4],
[21] propose software-centric middlebox implementations run
ning on general-purpose hardware platforms with open APIs.
CoMb [3] is a new middlebox architecture for consolidating
middlebox deployments. Sherryet al. proposes a method to
deploy middleboxes in the cloud [2]. There are increasing
interests on middleboxes in cellular networks [5] . Our work is
orthogonal to these work as we propose a method of routing
traffic through deployed middleboxes.

Our work builds on top of the eXIstmg proposals of
SDN [22] , [11], [8]. It is an application to demonstrate SDN's
support on flexible routing. There have been many applications
building upon SDN. For example, Flowvisor is designed to
provide network virtualization [23] and Wang et al. proposes
a scheme for load balancing of web servers [24] . In our
problem, policy dependencies that arise in the context of
inline service routing create new challenges for management
and optimization unique to our context. A large body of
work on improving the SDN programmability is orthogonal
to our work [25], [26] , [27], and thus can be integrated into
StEERING in the future.

VIII. CONCLUSION

We presented StEERING for managing traffic through
middleboxes in the mobile and broadband network. Built on
top of SDN, StEERING can support efficient forwarding and
scale to a large number of subscribers and applications. We
demonstrated the functionalities and performance through a
prototype with both software and programmable hardware
supports. Using simulations, we showed the significant latency
reduction that results from implementing our approximation
algorithm for placing services in the network.

ACKNOWLEDGMENTS

The authors would like to thank Frank Ruhl and Daniel
Kirkham of Telstra's Innovation and Strategy team. The au
thors are also grateful to Erik Rubow for his input into the
early stages of this work.

REFERENCES

[1] D. A. Joseph, A. Tavakoli, and I. Stoica, "A policy-aware switching
layer for data centers," in Proc. ACM SIGCOMM, pp. 51-62, 2008.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, "Making middleboxes someone else's problem: network
processing as a cloud service," in Proc. ACM SIGCOMM, pp. 1 3-24,
2012.

[3] V. Sekar, N. Egi, S . Ratnasamy, M. K Reiter, and G. Shi, "Design
and implementation of a consolidated middlebox architecture," in Proc.
Symposium on Networked Systems Design and Implementation, 20 12.

[4] V. Sekar, S. Ratnasamy, M. K Reiter, N. Egi, and G. Shi, ''The
middlebox manifesto: enabling innovation in IDlddlebox deployment,"
in Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, 201 f.

[5] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, "An untold story
of middleboxes in cellular networks;' in Proceedings of the ACM
SIGCOMM 201 1 conference, SIGCOMM ' 1 1 , 20 1 1 .

[6] J . Sherry, "Future architectures for middlebox processing services on
the internet and in the cloud," Master's theSIS, EECS Department,
University of California, Berkeley, Dec 201 2.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, ''Towards software
defined middlebox networking," in Proceedings of the 1 1 th ACM
Workshop on Hot Topics in Networks, HotNets-XI, 2012.

[8] "OpenRow 1 . 1 ." http://www.openflow.orglwklindex.php/OpenRow31 .
I .

[9] EZchip, "Ezchip np-4 product brief," 20 1 1 . http://www.ezchip.coml
Images/pdflNP-4_ShorCBrieConline.pdf.

[10]

[1 1]

[12]

[13]

[14]
[15]

[16]
[17]
[1 8]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ericsson, "Smart Services Router." http://www.ericsson.coml
ourportfolio/products/ericsson-ssr - 8000-family.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, "Openflow: enabling innovation in
campus networks," SIGCOMM Comput. Commun. Rev. , vol. 38, pp. 69-
74, March 2008.
N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, "Nox: towards an operating system for networks,"
SIGCOMM Comput. Commun. Rev. , vol. 38, July 2008.
E. Technologies, "Network processor designs for nextgeneration net
working eqUIpment," Dec 1999.
"Apache Traffic Server." http://trafficserver.apache.org.
FreeRADIUS, "Freeradius: The world's most popular radius server."
freeradius.org.
"Open vswitch." http://www.openvswitch.org.
http://www.internet2.edu/networkl.
M. Allman, "On the performance of middleboxes;' in Proc. ACM
SIGCOMM IMC, 2003.
M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, "Is it still possible to extend tcp?," in Proc. ACM SIGCOMM
IMC, 20 1 1 .
H. Ballani and P. Francis, "Conman: a step towards network manage
ability," in Proc. ACM SIGCOMM, 2007.
Z. Qazi, C.-c. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, "Simple
fying middlebox policy enforcement using sdn," in Proceedings of the
ACM SIGCOMK2013 conference, SIGCOMM ' 1 3, 201 3.
A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, ''A clean slate 4d approach
to network control and management," SIGCOMM Comput. Commun.
Rev. , vol. 35, October 2005.
R. Sherwood, G. Gibb, K-K Yap, G. Appenzeller, M. Casado, N. McK
eown, and G. Parulkar, "Can the production network be the testbed?,"
in Proceedings of the 9th USENlX conference on Operating systems
design and implementation, OSDI' 10, 20 10.
R. Wang, D. Butnariu, and J. Rexford, "Openflow-based server load
balancing gone wild," in Proceedings of the 1 1 th USENlX conference
on Hot tOpiCS in management of internet, cloud, and enterprise networks
and services, Hot-ICE' l 1 , 201 1 .
N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, "Frenetic: a network programming language,"
in Proceedings of the 16th ACM SIGPLAN international conference on
Functional programming, ICFP ' 1 1 , 20 1 1 .
M. Yu, J . Rexford, M . J. Freedman, and J . Wang, "Scalable flow-based
networking with difane," in Proceedings of the ACM SIGCOMM 2010
conference, SIGCOMM ' 10, pp. 351-362, 20 10.
M. Reitblatt, N. Foster, J. Rexford, and D. Walker, "Consistent updates
for software-defined networks: change you can believe in ! ," in Proceed-
inBs of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X,
20 1 1 .

