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Abstract-Network operators are faced with the challenge of 
deploying and managing middleboxes (also called inline services) 
such as firewalls within their broadband access, datacenter or en
terprise networks. Due to the lack of available protocols to route 
traffic through middleboxes, operators still rely on error-prone 
and complex low-level configurations to coerce traffic through 
the desired set of middleboxes. Built upon the recent software
defined networking (SDN) architecture and OpenFlow protocol, 
this paper proposes StEERING, short for SDN inlinE sERvices 
and forwardiNG. It is a scalable framework for dynamically 
routing traffic through any sequence of middleboxes. With simple 
centralized configuration, StEERING can explicitly steer different 
types of flows through the desired set of middleboxes, scaling 
at the level of per-subscriber and per-application policies. With 
its capability to support flexible routing, we further propose an 
algorithm to select the best locations for placing services, such 
that the performance is optimized. Overall, StEERING allows 
network operators to monetize their middlebox deployment in 
new ways by allowing subscribers flexibly to select available 
network services. 

I. INTRODUCTION 

Network appliances such as firewalls, content filters, intru
sion detection systems (IDS), deep packet inspection (DPI) , 
network address translation (NAT), content caches, load
balancers, wide area network (WAN) accelerators, multime
dia transcoders, logginglmetering/charging/advanced charging 
applications, etc. are generally referred to as middleboxes or 
inline services because end users are often unaware of their 
existence in their traffic's path. Middleboxes are inevitably 
deployed in broadband access networks (fixed or mobile), in 
enterprise networks, and more recently in data centers and 
cloud environments. While this topic area has received a 
significant amount of attention in recent years [1], [2] , [3], 
[4] , [5] , [6], [7], there is still no satisfactory solution for the 
deployment and management of middleboxes in broadband 
access networks. In fact, given the forecasts of traffic growth 
and reduction of average revenue per user (ARPU) , network 
operators need to address the problem of reducing the costs 
associated with the deployment of middleboxes as well as 
new ways to monetize some of these network based services. 
For example, it is desirable that upon detection of a long 
lived video flow, DPI could be dynamically bypassed to save 
processing resources. Another example is that a transcoding 
appliance can be bypassed once the content type and co dec 
have been identified. Scalable and dynamic steering capabili
ties could also enable new ways to monetize the middlebox de
ployment, where subscribers can buy network based services. 

However, there are currently challenges associated with 
configuring the network to bypass certain middleboxes for 
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given traffic flows. Because of the lack of efficient protocols 
for this problem, operators often need to use low level and 
complex configuration to achieve certain degree of control. 
Thus, today's practice is either to direct excess traffic through 
unnecessary middleboxes, or to set up an unwieldy set of 
tunnels. 

This paper describes StEERING (SDN inlinE sERvices 
and forwardING), a novel framework based on the concepts 
of Software-Defined Networking (SDN) that addresses these 
challenges by empowering network operators with the ability 
to steer traffic at the granularity of subscriber and traffic 
types, using simple policies which are defined and propagated 
from a centralized point of control. Moreover, the ability to 
offer a per-subscriber selection of inline services leads to the 
creation of new offerings and hence new ways for operators 
to monetize their networks. StEERING does that by reusing 
existing OpenFlow 1.1 [8] specification, in a novel fashion 
without the need for any new extensions. The design of 
StEERING aims to meet the following requirements: 

• Efficiency: traffic should traverse middleboxes in the 
sequence specified by the network operators and 
should not unnecessarily traverse middleboxes. Great 
CAPEX savings could be achieved if traffic could 
be selectively steered away (bypassed) from specific 
inline services. 

• Flexibility: the framework should support subscriber, 
application, and operator specific policies simulta
neously, all stemming from a single control point. 
Adding or removing new services should be easily 
done by the network operator. 

• Scalability: the framework should support a large 
number of rules and scale as the number of sub
scribers/applications grows. 

• Openness: it should be possible to deploy any type 
of middlebox in the network, independently of its 
vendor in order to avoid vendor lock-in backward 
compatibility with already deployed middleboxes. Our 
method can be applied to both physical and virtualized 
middle boxes. 

Concretely, StEERING consists of a set of OpenFlow 1. 1 
switches interposed between middleboxes and their intercon
nections (Ethernet switches and IP routers). The OpenFlow 
switches are programmed and managed by a centralized con
troller which provides a single interface for the deployment 
of fine-grained traffic steering policies. StEERING provides 
scalability in three distinct ways. First, in order to reduce the 
amount of state required at each switch, we use multiple tables 
to transform the flat policy space into a multi-dimensional 
space. Therefore, the rules required can scale linearly with the 
number of subscribers and applications, instead of the cross
product of subscribers and applications. Second, we define the 



set of services to traverse for each flow as one type of metadata, 
which is used to communicate information between tables. 
Thus, every table can operate on the service set independently, 
e. g. , adding/removing services. This design enables the simple 
integration of different types of policies. Third, StEERING 
pushes to the perimeter of the service delivery network expen
sive forwarding operations such as classification and header 
rewriting. These operations need to be done only once within 
the network. We also perform intelligent lookup to improve 
the switch's performance. 

We make the following three key contributions in this 
paper: 

• We propose a scalable and flexible architecture to 
reduce the state required at each switch, by leveraging 
new features available in OpenFlow 1. 1 (the proposal 
is applicable to later versions of the protocol). This 
design enables the simple and efficient integration of 
different types of traffic steering policies. 

• Given the flexible steering capability supported by 
the above design, we further address the issue of 
where to connect the inline services to the network. 
To this end, our main contribution is to formulate 
the problem and analyze its importance. We further 
use a heuristic solution and demonstrate that it can 
significantly improve user performance. The efficient 
solution can also be be periodically run to determine 
the locations for virtualized appliances. 

• We demonstrate the deployment feasibility of our 
approach by implementing the StEERING forwarding 
plane on a network processor which has already 
proven its efficiency in commercial routers [9]. We 
also evaluate the scalability using real broadband 
network traffic. 

The novelty of our design is reusing existing SDN con
cepts, e.g., OpenFlow 1 . 1  multiple tables and metadata,to solve 
the inline service chaining problem in a scalable fashion. The 
rest of this paper is organized as follows. We introduce the 
problems and summarize limitations of existing approaches in 
§II. §III presents an overview of the StEERING architecture 
and §IV describes each component in details. §V describes 
our algorithm for determining the service locations. In §VI 
we describe our prototype and evaluation results. Finally, we 
summarize the related work in §VII and conclude in §VIII. 

II. PROB LEM S TATEMENT 

The StEERING design presented in this paper is a general 
solution that can be applied to any network with middlebox 
services. Broadband (fixed and mobile) networks will however 
specifically benefit from the presented design, because of 
its scalability - i.e. , its ability to handle per-subscriber and 
per-application traffic for a large number of subscribers and 
applications. For this reason, we focus the use-cases and 
examples on broadband networks. 

The network-wide view of StEERING is shown in Fig
ure 1. The broadband access network depicted here consists 
of three areas: the access network (with either mobile or fixed 
access technologies), the aggregation network, and the core 
network (hosting packet gateways and policy control servers). 
A set of middleboxes resides in the core network, between 
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Fig. 1 .  Network view of StEERING 
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the ingress routers and the border routers that connect to 
the Internet. These service-providing middleboxes, together 
with the switches that interconnect them, are referred to as 
the service delivery network. We define upstream to be the 
direction from a subscriber to the core network. Conversely, 
downstream traffic is from the core to a subscriber. Note 
that we allow the existence of multiple ingress and egress 
points, but the traffic only goes in two directions, i.e. , from 
subscribers to the Internet and vice versa. We do not consider 
communications between subscribers in this work. 

Service chaining is required if the traffic needs to go 
through more than one inline services. Moreover, if more than 
one chain of services is possible, then the operator needs to 
configure the networking infrastructure to direct the right traffic 
through the right inline service path. In this paper, traffic 
steering refers to leading the traffic through the right inline 
service path. Unfortunately, in today's networks, this process 
is inflexible and prone to mis-configurations. 

Limitations of existing solutions: The operators today still 
do not have protocols or tools available to perform flexible 
traffic steering. We summarize the existing approaches used in 
operational networks below. Their pros and cons are discussed 
in Table I, according to the requirements listed in §1. 

• Single box running multiple services: This approach 
consolidates all inline services into a single box [10]. 
The operator adds new services by adding additional 
service cards to its router or gateway. This approach 
makes the integration of third party service appliances 
difficult. It also suffers from a scalability issue as the 
number of services and the aggregated bandwidth is 
limited by the router's capacity. 

• Statically configured service chains: It configures one 
or more static service chains where each service 
is configured to send traffic to the next service in 
its chain. This approach is not flexible as it cannot 
dynamically reconfigure the set of services easily. It 
requires a large amount of service-specific configura
tion and is error prone. It certainly cannot support the 
steering at the granularity of per subscriber. 



Traffic Bypass 
Traffic Steering 

OF Protocol 
StEERING Service Protocol 

Fig. 2. System architecture 

StEERING Control Logic 

Content Cache 

• Policy-based routing: A third approach is to use a 
router using policy-based routing (PBR) to route traffic 
to different services. Each time the traffic is returned 
to the centralized router and then sent to the next 
service. Clearly, this approach suffers from scalability 
issues as traffic is forced through the router after every 
service. The router must be able to handle N times 
the incoming traffic line rate to support a chain with 
N - 1 services. 

• Policy-aware switching layer: Joseph et al. [1 ] propose 
a policy-aware switching layer for data centers which 
explicitly forwards traffic through different sequences 
of middleboxes. Their method satisfies the efficiency 
requirement but fails to meet the requirements of 
flexibility and scalability. Each policy needs to be 
translated into a set of low level forwarding rules on 
all the relevant switches. There is no explicit way 
to configure application and subscriber related rules 
separately which need to be manually consolidated 
into a set of low level rules. Moreover, it requires 
to install one rule for each new flow. Therefore, it is 
hard to scale with the number of subscriber/application 
combinations. 

Location of the services: Even if we have the perfect steer
ing mechanism to route traffic through different middleboxes 
as the subscribers' policies define, there is still an orthogonal 
problem at the network planning stage, i. e. , where do we 
connect these services so that the users' performance is the 
best. Apparently, traffic steering will result in prolonged delay 
in user performance, due to the detour to the services. Thus, 
how these services are connected to the network clearly has 
an impact on the user performance. 

III. SYSTEM OVERV IEW 

StEERING is built upon the software-defined networking 
(SDN) concept. SDN is a new network architecture that 
introduces programmability, centralized intelligence and ab
stractions from the underlying network infrastructure [1 1]. In 
SDN, the control plane applications that implement network 
functionalities (e.g. , routing and switching) can evolve sepa
rately from the forwarding plane. OpenFlow (OF) [8] is an 
open standard protocol proposed for the interface between the 
control and forwarding planes in SDN. 

The components of StEERING are shown in Figure 2. 
There are two types of switches in the network. The Perimeter 

OF Switches are placed on the perimeter of the service delivery 
network. These switches will classify the incoming traffic and 
steer it towards the next service in the chain. These are the 
switches to which services or gateway nodes are connected. 
The Inner Switches will forward the traffic using efficient L2 
switching. These switches are only connected to other switches 
and may or may not be OF switches. 

There are two modules of StEERING control logic. The 
first module is a standard OpenFlow controller, which is 
responsible for setting up the table entries in the OF switches, 
via OpenFlow protocol (blue dashed lines). The second module 
of the control logic is an algorithm that periodically runs to 
determine the best locations for inline services. The openflow 
rules are used to perform two-step process for steering. The 
first step classifies incoming packets and assigns them a service 
path based on predefined subscriber, application, and ordering 
policies. The second step forwards packets to a next service 
based on its current position along the assigned service path. 
For example, the solid red line in Figure 2 shows a service path 
for the upstream traffic through Virus Scan, DPI and Content 
Cache. The green line, on the other hand, allows the traffic to 
bypass all the services. 

In most cases, policies can be determined by fields in the 
packet headers. Alternatively, it can also be determined by the 
packet payload, such as URLs. In such cases, the policy can 
be decided on the fly via a DPI box, which will inform the 
controller with the packet content. Thus, in our architecture 
we also propose an interface between the inline services and 
the OF controller, as the yellow dotted lines in Figure 2. For 
instance, once DPI has recognized or resolved a flow, it can 
send a notification message to the OF controller. 

The service policy for each flow is determined by the 
operator but can also be specified by the subscriber, i. e. , cus
tomers of the ISPs, which can be either end users or enterprise 
customers. Therefore a subset of the services traversed by the 
traffic can be selected by the subscriber, perhaps on a pay per 
service basis. 

IV. BASIC DESIGN COMPONENTS 

The data plane (forwarding) of StEERING can be easily 
configured and scaled as the number of subscriber/application 
combination grows. The controller programs switches with the 
rules on how to forward each packet. Forwarding decisions are 
made based on Layer 2 to Layer 4 contents of packets as well 
as the ingress port. The key challenge to achieve scalability is 
to avoid exponential growth (rule explosion) of the forwarding 
rules installed in each switch. We make three design choices 
to reduce the amount of state on each switch: defining port 
types to indicate directions, using multiple tables to decompose 
multi-dimensional policies, and introducing a new metadata 
type to encode service paths. 

A. Represent directions with port types 

We define two types of ports on perimeter switches: node 
ports and transit ports. Node ports are connected to services 
and gateway nodes (BNG, GGSN, routers). Transit ports are 
connected to other perimeter switches or to inner network 
switches. 
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Figure 3 shows an example of a Service Delivery Network 
based on the StEERING architecture. Switches OFl, OF2, and 
OF3 are perimeter switches. Switch SWl is an inner switch. 
The black/red ports on the switches are node ports and the 
white ports are transit ports. 

Incoming traffic, either coming in from a gateway node 
or coming back from a service, always enters the Service 
Delivery Network via a perimeter switch and through a node 
port. Packets coming in through node ports are steered towards 
the next node (service or gateway) in their assigned service 
paths. Packets arriving on transit ports are simply forwarded 
using their destination MAC addresses. 

All packets traversing the steering network are considered 
to be traveling either upstream or downstream. Each node 
port in the perimeter switches is either facing upstream or 
downstream. In Figure 3, downstream-facing ports are colored 
red and upstream-facing ports are colored black. All packets 
that arrive on a downstream-facing port are traveling upstream, 
and vice versa. Packets arriving on transit ports may be 
traveling in either direction. In this case, the direction is known 
based on the destination MAC address, which will correspond 
to either an upstream-facing or downstream-facing service or 
router port. 

B. Realize policies with multiple forwarding tables 

In theory, a single TCAM-like table could be used to spec
ify the required functionality, as in OpenFlow 1.0 or pswitch. 
However, this would not be a scalable solution because it 
would involve the cross-product of subscribers, applications, 
and ports within the same table. Using indirection and multiple 
tables, we separate this into multiple steps, resulting in linear 
scaling of each table. 

Six tables are mandatory. The matching keys and the 
associated actions of these tables are shown in Figure 4. 
Direction table: Ingress port is the key, which identifies the 
direction of the packet (upstream vs. downstream) and the type 
of the port the packet was received on (node vs. transit port). 
The action is to set the a metadata field called dir. We will 
explain more about the metadata fields in Section IV-D. 
MAC table: Destination MAC address is the key. Based on the 
contents of this table, the packet will either be transmitted to a 
directly connected service or router on a node port, forwarded 
out to another transit port, or dropped. 
Subscriber table: Subscriber's identifier (e. g., IP address) 
and the direction bit are the keys. This table contains the 
information of the default service set for the a given direction 
for each subscriber. This can be an LPM (longest-prefix match) 
table. If there is a miss in this table, the default action is to 
drop the packet. With a hit, a metadata field called serv _set 
will be set, which records the list of services this flow should 
traverse. Again, it will be further explained in Section IV-D 
Application table: In this context, application refers to the re
mote communication endpoint, e. g. , web servers, as identified 
by the IP address, protocol, and port number. This table is used 
to modify the subscriber's default service set according to any 
static L3-L4 application policies. Based on this information, 
specific services can be excluded from the service set or added 
to it. Its action is also to set the serv_set metadata field. Note 
that that action of this table can add or remove certain bits that 
are set in the previous table. 
The Path Status table: According to the bits set in the 
service set, the path status table determines which services 
have already been traversed and what is the next service in 
the chain. This is important because a packet may traverse 
the same perimeter switch multiple times, and it should be 
treated differently each time. The ingress port is sufficient to 
provide this information. If this table is reached, it means that 
the packet has arrived on a node port, connected directly to a 
service or router. The ingress port then tells us which service 
was just applied, if any, and it also tells us the direction. There 
is a global ordering of services in each direction (they may 
or may not be the exact reverse of each other). Based on the 
direction and the previous service, the service set is modified to 
exclude the previous service and all other services that precede 
it. 
Next Destination table: As the last table, it uses the direction 
and the service set as a key. This is a TCAM-like table, with 
arbitrary bitmasks and rule priorities. Based on the direction 
bit, it essentially scans the bits in the service set according 
to the global service ordering in that direction. The first or 
highest-priority service it finds will be the next destination. If 
the service set is empty, the next destination will be either the 



upstream or downstream router, depending on the direction 
bit. The next destination may be connected to the current 
switch or another one. If the destination is connected to a 
different switch, then the destination MAC address is set to the 
value corresponding to that service or router and the packet 
is transmitted out through an appropriate transit port. If the 
destination is directly connected, then the MAC addresses are 
updated as needed and the packet is transmitted out to the 
corresponding node port. 

C. Handle dynamics with the Microflow Table 

Microflow table is added to handle dynamically generated 
rules. Usually operators have policies statically determined 
by the subscriber and application identities. These rules can 
statically be pre-programmed on the Subscriber table and the 
Application table. But in real time, operators may want to add 
policies dynamically, or add more specific policies, or higher 
priority policies. Moreover, policies may be added according 
to the results of another middlebox, e. g., DPI. We add the 
Microflow table to accommodate such dynamics. 

If there is a hit in the direction table, the next table to 
be consulted will be the Microflow table. The key for this 
table is the direction bit together with the 5-tuples (source and 
destination IP address, IP protocol field, and TCPIUDP source 
and destination port) of the packet. The table contains exact
match entries used for selective complex steering of specific 
TCPIUDP flows. If there is a hit in this table, the next two 
lookups will be skipped. Thus, the rules in the Microflow 
table have higher priority than the rules in the Subscriber and 
Application tables. 

D. Encode service chaining with metadata 

Metadata is used in OpenFlow 1.1. to communicate the 
information among different tables and associated actions [8]. 
Intermediate results from one table are communicated to other 
tables using some metadata, which can be used as part of a 
subsequent lookup key or be further modified later. 

We introduce two new types of metadata, the direction bit 
that represents the direction of the flow and the set of inline 
services to be applied for the flow under process, called service 
set. This service set is encoded as a bit vector, one bit for 
each possible service. More sophisticated encodings can be 
used to enable more advanced features such as load balancing 
over multiple service instances. OpenFlow 1.1 supports 64-bit 
metadata field [8]. Our design requires one bit for the direction 
and leaves up to 63 bits for encoding the service set, allowing 
a maximum of 63 distinct services. The format of the metadata 
is shown in Figure 4, together with an example. The metadata 
field can be applied with arbitrary mask and is updated as 
below: 

new_metadata = (old_metadata&--,mask) I (value&mask). 

The value are the bits to be set and the mask is used to select 
these bits, which can be arbitrary 64 bit numbers. 

The first bit indicates whether it's upstream (0) or down
stream (1). The following N-bit vector defines the service 
set, encoding for N number of services. The encoding in this 
example specifies that this packet should traverse the VS, DPI, 
and content cache. In the datapath, this metadata is set, then 
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Fig. 5. Encode Metadata to handle load balancing 

modified, and finally used to search for the next service to be 
applied to this packet. 

1) Load balancing across mUltiple service instances: If 
a single middlebox is insufficient to deliver the required 
throughput, multiple instances of that service can be connected 
to the steering network. We use the metadata fields to distribute 
traffic without the need for a separate load balancer. 

The controller can re-define the format of the bits in 
serv_set metadata for load balancing purposes. The current 
encoding can be seen as using one bit to represent a service 
(indicating whether or not it should be applied), and there is 
only one instance of each service. This encoding can be ex
tended such that the services can additionally have an instance 
identifier included in the metadata as shown in Figure 5. If n 
bits are allocated to each service for such an identifier, then up 
to 2n instances can be represented. With a fixed number of bits 
available, this is a trade-off between the maximum number of 
services and the number of instances per service. Each service 
can use a different number of bits for the instance identifier. 

E. Example 

We finally illustrate the whole system through an example 
using the same topology as in Figure 3. A subscriber Bob 
has a subscriber policy: service {S 1 ,S3} for upstream traffic, 
i. e. , traffic sent from the subscriber to the core network should 
go through first 81 then 83. On the other hand, the operator 
wants to impose two application policies: for YouTube traffic 
{ +S2,-S3} , and for VoIP traffic {-S 1 }. 

Table II shows the table entries of the perimeter switch 
OF2. The only table that is not represented here is the Mi
croflow table, as it is not derived from the static configuration. 
Below, an example is given on how the metadata field is 
matched or updated. This example is based on a 5-bit metadata 
field (one direction bit, 4 service bits) with the most significant 
bit representing the direction. Let us walk through this example 
of Bob watching YouTube (Bob at 1.2.3.4 and the YouTube 
server at 4.3.2.1132 on port 80). The metadata is defined as a 
five bit vector [D81828384]b for upstream, where D means 
the direction bit and the rest of the bits represent services, with 
the letter b indicating the value in binary format. We pick two 
tables as examples to show how the metadata is modified. 

The Direction table sets determines the direction based on 
the ingress port. Value 1 represents the upstream direction and 
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Fig. 6. Motivating example of service placement 

o represents the downstream direction. Assuming that a packet 
coming from port 2 matches the second rule, the metadata field 
would be updated according to Equation 1. For example, to set 
the first bit to 1, it uses mask 10000b to select the first bit to 
operate on the old metadata 0 and set its value to 1 using 
10000b. Thus, metadata is: 
(0&01111b)I(10000b&10000b) = 10000b. 
Note that in this table we will only consider the direction 
information, regardless of the subscribers. Next, we perform a 
lookup in the Subscriber table using the subscriber informa
tion. Using both the direction bit (Up) and the Subscriber IP 
address, the first rule is selected, i. e. , service Sl and S3 to be 
added. The old metadata is 10000b. Since it is the first time 
to set the service set, all the services are selected using mask 
01111b and then only Sl and S3 bits are set to 1 using 00110b. 
The metadata is 
(10000b&10000b) I (0l010b&01111b) = 11010b. 
We use these two examples to illustrate how the metadata is 
set and used to transfer information between tables. 

V. SERV ICE PLACEMENT MODULE 

Given the ability to perform flexible routing across services 
demonstrated above, we do not require the services to be 
placed in a specific order. Rather, they can be placed anywhere 
in the network. However, despite this freedom, we discover 
that certain placement strategies are better than others when 
affecting user performance. In this section, we discuss the 
inline service placement problem and provide one heuristic 

to placing services in the network, with the objective of 
minimizing the average time it takes for the subscribers' traffic 
to go through all required services. Note that we do not 
aim at finding an optimal algorithm for service placement in 
this work. Our contribution is to formulate the problem and 
demonstrate its importance. 

In what follows, we first explain how different placement 
strategies affect performance. Then, we formulate the problem 
as a graph problem, and propose a greedy algorithm that 
minimizes the average latency of paths that subscribers' traffic 
traverse in the network. 

A. Motivating example 

We motivate the need for an intelligent (non-random) 
service placement scheme through an example. In Figure 6 
(a), we assume that all the traffic enters the network from the 
left router and exit the network on the right. The ordering 
of the inline services to be traversed is determined according 
to subscribers' policies: 90% of the subscribers require their 
traffic to first traverse the DPI box and then traverse the 
firewall. This service order is specified in the subscribers' 
service contract. The remaining 10% of traffic requires going 
through FW first before DPI. In this case, the majority of traffic 
needs to first go through the network to reach the DPI box, 
and then go all the way through the network again to reach 
FW, and finally, to reach the outbound router, shown in the red 
solid curve (We assume that a shortest-path routing scheme is 
used for routing traffic between any pairs of services). 

Figure 6 (b) shows an alternative service placement strat
egy, which moves the DPI closer to the ingress point; hence, 
makes the path of majority of the flows shorter. 

However, the problem of determining the best locations 
for all the services is not always this trivial. For example, 
in Figure 6, if there are another ingress point and egress 
point, and if the subscribers require a different ordering of 
the inline services (the green dashed curve), then it will be 
more complicated to find the optimal solution. 

B. Problem definition and a greedy solution 

We formulate the service placement problem as an opti
mization problem of minimizing the delay or distance to be 
traversed by all subscribers' traffic. Let G = (V, E) denote 
the network graph, with node set V representing switches, and 
edge set E representing the links. Graph G is an undirected 



symmetric graph with weighted edges, i. e. , if (u, v) E E, then 
(v, u) E E. Each edge is associated with a delay value du,v' 
It can be simply du,v = dv,u = 1, meaning that the delay is 
approximated as the hop count. 

We denote the set of inline services as 8 = {81' 82, . . .  8 h}, 
where each service 8i is one type of service to be placed in 
the network. Each subscriber has its own requirement on the 
order of inline services to traverse. For example, subscriber 
i's requirement is ri = ingi, 81,83,85,82, egri. Here ingi and 
egri are the ingress and egress locations of the subscriber's 
traffic. 

The objective is to find a subset M ( I MI = 181 = h) 
of the locations among all candidates N = lVI, and place 
the services in these selected locations so that the total delay 
for all the users are minimized. Given a service placement L, 
for each service sequence ri, the total delay is calculated as 
the sum of the (shortest-path) delay between all consecutive 
services, plus the delay between the ingress point and the first 
service and the delay between the last service and the egress 
point. 

If the placement problem can be solved offline, an exhaus
tive search can be used to find the optimum solution. But 
if there is a need to periodically change services locations 
in the real time, e. g., in a data center environment with 
virtualized appliances, or if the network size is very large, 
then an efficient approximation algorithm is needed. In the 
following, we propose a heuristic algorithm to solve the 
placement problem. Though we are aware that it may not 
produce optimized results, our results show that it can already 
outperform a naive approach. 

In our heuristic algorithm, we form a service dependency 
graph between all services. Two services are dependent if they 
appear consecutively in the service chain requirement of some 
subscribers, and the degree of this dependency is determined 
based on the amount of traffic (or the number of subscribers) 
with such service chain requirement. In a greedy approach, we 
pick the service with the highest dependency degree, find the 
best location for that service, and remove that service from the 
service list. We do this iteratively until all services are placed 
in the network. Due to limited space, we omit the details and 
the pseudo code of our algorithm, but some results will be 
presented in Section VI. 

VI. IMPLEMENTATION AND EVALUATION 

We implement StEERING in a testbed as shown in Fig
ure 7. Our control plane is built using the NOX OpenFlow 
controller [12] and the data plane is implemented using pro
grammable EZchip NP-4 network processors [13]. We deploy 
four middlebox services: two Linux IPTables based firewalls, 
a commercial proprietary DPI box, and the Apache Traffic 
Server [14] as the content filter. An Authentication, Authoriza
tion and Accounting (AAA) server connects to the controller 
using an external Ethernet switch for out-of-band connectivity. 
We use FreeRADIUS [15] as the AAA server, providing 
subscriber information to the controller. The controller is also 
connected to the Broadband Network Gateway (BNG) server 
so that it can program the rules as the subscribers login. We 
have demonstrated this prototype in a major mobile computing 
conference. In this section, we first describe the details of each 
component followed by evaluation results. 

��� 

AAA 

Fig. 7. Prototype diagram 
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We build the control plane on top of the NOX OpenFlow 
controller [12]. NOX provides a programmable interface for 
network management and control applications. It programs 
OpenFlow switches via OpenFlow protocol messages. We 
implemented four modules that run as application on top of 
NOX, as shown in Figure 7. 

The Steering Config Module maintains databases of the 
network topology, the service policies as well as the global 
ordering between services. 
The Steering Controller Module translates traffic steering poli
cies into rules that are pushed to the perimeter switches using 
the OpenFlow protocol. It runs Dijkstra algorithm to determine 
the shortest paths between any two endpoints. On the one hand, 
it receives requests from other modules to install new policies. 
On the other hand, it collects flow statistics which are input 
to the service placement module. 
The ENG Connection Module keeps track of events related 
to subscribers. It registers itself with the BNG to receive 
notifications whenever a subscriber logs in. These notifications 
include the subscriber's IP address and its service policy. Upon 
receiving a notification, this module interacts with the config 
module to install rules on the Subscriber table. 
Finally, the DPI Connection Module is responsible for complex 
traffic steering. It listens for flow notification messages sent 
by services such as DPI and reacts by pushing new rules that 
will dynamically "re-steer" a flow to bypasss certain services. 
These rules are computed by associating the flow described in 
the flow notification message (i. e. , 5-tuple) with the originating 
subscriber as well as its assigned service chain. 

Rule timeout: To reduce the number of rules on the 
switch, when receiving an explicit logout message from the 
AAA, the BNG Connection module reports an event to the 
DPIConnection module to purge all entries from the micro-



flow table and subscriber table associated with that subscriber. 

B. Forwarding plane 

The decision to develop our own implementation of an 
OpenFlow 1.1 switch was based on the fact that there are no 
hardware solutions on the market today that support multiple 
tables. The forwarding plane is built on a hardware platform 
equipped with an EZchip NP-4 network processor [9] . This 
processor has a programmable pipelined architecture capable 
of processing packets at a line rate of 100 Gbps. NP-4 are 
specifically optimized to process packets and provide more 
flexibility than a networking ASIC while providing substan
tially higher performance than general purpose processors from 
Intel or AMD. 

In addition to the NP-4, the hardware platform used to 
develop our prototype is equipped with a host processor (pow
erPC) used to run initialization, control and management tasks. 
The host processor runs a small footprint distribution of Linux 
on which we installed a version of Open vSwitch (OVS) [16] 
that we modified to support OpenFlow 1.1. We use Open 
vSwitch as an middleman between the OpenFlow controller 
and the NP-4 processor. It communicates with the controller 
using the OpenFlow protocol and we develop a hardware 
abstraction layer that translate Open vSwitch functions to 
populate tables and handling packets in/out into system calls 
to the NP-4. 

The EZchip NP-4 consists of Task Optimized Processors 
(TOPs), each one dedicated to a specific task. TOPs can be 
seen as processing cores where multiple packets are processed 
in parallel. The NP-4 pipeline contains four types of TOPs: 

• TOpparse: Parse and classify the packets. At this 
stage, keys are built based on the packet headers and 
sent to the next stage. More than one key can be 
derived from the packet. 

• TOPsearch: Perform lookups in the corresponding data 
structures in memory. The NP-4 version of EZchip 
contain two search stage identified as TOPsearch I 
and TOPsearch II. In particular, the lookup for MAC 
table, Application, Subscriber, and Microflow table are 
performed in parallel in the TOPsearch I phase, as they 
can operate on the metadata field independently. The 
Path Status and Next Destination table are looked up 
in TOPsearch II. 

• TOPresolve: Analyze the lookup results and determine 
what to do next with the packet. 

• TOPmodify: Apply the modifications to the packet 
(e.g. push header, set IP address, etc.) and mark how 
to output the packet if applicable. 

The NP-4 is also equipped with a learning TOP (TOPlearn) 
and an integrated traffic manager that provides end-to-end 
dynamic traffic control. We did not use these two features in 
our implementation. 

C. Interfaces 

There are two types of interfaces. The first type is 
the OpenFlow 1.1 protocol between the StEERING Con
troller (StC) and the OF switches. The second type is the 
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controller-service protocol, called the StEERING Service Pro
tocol (StSP). It is used for services such as DPI to send flow 
notifications to the StC. The notification will include informa
tion to uniquely identify the flow (typically the 5-tuples) as 
well as the traffic type (e.g. SIP, HTTP URL, etc.) known to 
both the controller and service. Based on the traffic type and 
the configured application and service policies, the controller 
will determine which service path should be applied to this 
recognized flow and sends the appropriate flow modifications 
to the perimeter OF switches to re-steer the traffic accordingly. 
Subsequent packets of this flow will be steered through the 
Service Delivery Network according to the new rules. Similar 
to the OpenFlow interface between the controller and switches, 
the StSP interface will run directly over TCP or be encrypted 
using TLS (Transport Layer Security). 

D. Solution Validation 

In this section, we provide preliminary benchmark of our 
system as well as scalability analysis. 

I) Switch Scalability: The number of rules installed is 
limited by the switch capacity. The rules in StEERING in
creases linearly as the sum of subscribers and applications, 
while the pswitch approach grows as the product of subscribers 
and applications. We show the difference between the two 
approaches using a simple simulation. In the topology in 
Figure 7, we define 100 applications, each application j request 
traversing mj number of services, mj E [1,4]. And we 
assume that each subscriber i sends flows for ni applications, 
n E [1,10]. At the same time, each subscriber requests to 
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traverse 2 services. Then we simulate when a subscriber i 
arrives with an application j, the number of rules installed 
in StEERING and in a system like pswitch [1]. Figure 8 
shows that the slope of our method is much smaller than the 
pswitch approach. The advantage comes from the separation 
of subscriber policies from application policies, allowing the 
independent scaling of rules in each dimension. 

Next, we show that StEERING can support flows in the 
real network. We validate this by replaying the unsampled 
packet traces collected from a European municipal network. 
It contains around 200K subscribers and 24 hours of data. 
We use the data as input and emulate the process of rule 
setting up and tearing down. We assume that if the subscriber 
is not active for n second, the rule is removed from the 
switch. We try n = 1 min and n = l Omin timeout threshold 
and show different ways of defining flows in Figure 9. We 
can see that as the time evolves, the increasing of table size 
slows down. A larger timeout interval results in fewer rules 
and faster convergence. As expected, grouping IP addresses to 
124 prefixes helps reduce the rules significantly as well. The 
number of rules can be supported by our commodity EZchip 
based switches. 

2) Forwarding performance: Using a traffic generator, we 
were able to measure the performance of our prototype at full 
line rate of 20 Gbps full-duplex with minimum packet size of 
64 bytes, which represents 29.8 Mpps. This throughput is, in 
fact, limited by the capability of our current traffic generator. In 
the future, we plan to test it with a more powerful generator. 
This experiment was executed with hardware lookup tables 
populated to 1 0,000 entries for the Microflow, Subscriber and 
Application tables. We test large number of entries in these 
tables, as the number of subscribers, applications, and dynamic 
flows can be large in real networks. For other tables, it is 
unlikely to grow very large, e. g. , number of services or ports. 
As expected, the throughput performance is independent of the 
number of entries per tables, i. e. , the throughput is constantly 
20 Gbps as the entries increase. The EZchip hardware platform 
provide deterministic characteristics for each packet being 
processed if the number of clock cycles required is kept within 
the cycle budget available. Our implementation is built in such 
a way that every packet will necessitate the same amount of 
processing and memory accesses. 

3) Controller performance: We built an application on 
top of the NOX controller. In this section we show that the 
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StEERING component does not introduce much overhead. We 
profile the CPU utilization as the subscriber incoming rate 
increases. In the left y-axis of Figure 1 0, we vary the subscriber 
incoming rate and measure the average CPU utilization of the 
controller. Since the controller needs to program the policies 
for each new subscriber, its CPU utilization increases with 
the subscriber rate, but after 1 00K subscribers per second, the 
utilization becomes stable around 45%. After this, the network 
becomes the bottleneck so the computation resource is stable. 

Another metric of controller performance is the response 
time, i. e. , the time elapsed from when a request (flowmod 
message) comes in until the time when rules are sent out. We 
show the average response time across all subscribers as the 
rate increases in the y-axis of Figure 1 0. Clearly, the response 
time is not significantly affected by the incoming rate. 

4) Evaluation of service placement algorithm: We evaluate 
the service placement algorithm in Section V using the Abilene 
network topology [17] and the traffic from the packet traces 
mentioned above. We first divide the source addresses to 11 
groups, assigning each group to one PoP in Abilene network 
topology as the ingress point of this group of sources. Simi
larly, we divide all the destination addresses to 11 groups and 
assign each group to a PoP, as their egress points. We select 
the top 1 0  applications that account for most traffic, and then 
assign n number of services for each application. Given this 
input, we use the greedy algorithm to compute the locations for 
these n services, as well as a random deployment. In Figure 1 1 , 
we show the delay distribution for all the flows. For 50% 
of the flows, our algorithm can achieve 40ms latency while 



the random scheme needs 80ms. We also vary the number of 
services in Figure 12. The advantage of the greedy algorithm 
is more significant with more services deployed. It should be 
noted that the greedy algorithm is used to efficiently solve the 
problem online, however if resource is not a limitation, other 
algorithms should be investigated. 

VII. RELATED WORK 

Our work contributes to and draws inspiration from a rich 
corpus of work in middlebox management, Software-Defined 
Networking (SDN) and cellular network management. Studies 
have measured the end-to-end impact of middleboxes [18] 
and interactions with transport protocols [19]. Reference [20] 
proposes a network management plane. Sekar et al. [4], 
[21] propose software-centric middlebox implementations run
ning on general-purpose hardware platforms with open APIs. 
CoMb [3] is a new middlebox architecture for consolidating 
middlebox deployments. Sherryet al. proposes a method to 
deploy middleboxes in the cloud [2]. There are increasing 
interests on middleboxes in cellular networks [5] . Our work is 
orthogonal to these work as we propose a method of routing 
traffic through deployed middleboxes. 

Our work builds on top of the eXIstmg proposals of 
SDN [22] , [11], [8]. It is an application to demonstrate SDN's 
support on flexible routing. There have been many applications 
building upon SDN. For example, Flowvisor is designed to 
provide network virtualization [23] and Wang et al. proposes 
a scheme for load balancing of web servers [24] . In our 
problem, policy dependencies that arise in the context of 
inline service routing create new challenges for management 
and optimization unique to our context. A large body of 
work on improving the SDN programmability is orthogonal 
to our work [25], [26] , [27], and thus can be integrated into 
StEERING in the future. 

VIII. CONCLUSION 

We presented StEERING for managing traffic through 
middleboxes in the mobile and broadband network. Built on 
top of SDN, StEERING can support efficient forwarding and 
scale to a large number of subscribers and applications. We 
demonstrated the functionalities and performance through a 
prototype with both software and programmable hardware 
supports. Using simulations, we showed the significant latency 
reduction that results from implementing our approximation 
algorithm for placing services in the network. 
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