
228 8 Lossy Compression Algorithms

1.0

−1.0

−2.0

−3.0

−4.0

−4 −3 −2 −1
4321

3.5

2.5

1.5

0.5

−3.5

−0.5

−1.5

2.0

Q(X)Q(X)

x Δ/ Δ/
4.5

−4.5
2.51.50.5 3.5

−3.5 −2.5 −1.5 −0.5 x

4.0

3.0

−2.5

(a) (b)

Fig. 8.2 Uniform scalar quantizers: a midrise; b midtread

thus leading to scalar quantizers and vector quantizers. In this section, we examine
the design of both uniform and nonuniform scalar quantizers and briefly introduce
the topic of vector quantization (VQ).

8.4.1 Uniform Scalar Quantization

A uniform scalar quantizer partitions the domain of input values into equally spaced
intervals, except possibly at the two outer intervals. The endpoints of partition inter-
vals are called the quantizer’s decision boundaries. The output or reconstruction
value corresponding to each interval is taken to be the midpoint of the interval. The
length of each interval is referred to as the step size, denoted by the symbol θ.

Uniform scalar quantizers are of two types: midrise and midtread. A midrise
quantizer is used with an even number of output levels, and a midtread quantizer
with an odd number. The midrise quantizer has a partition interval that brackets zero
(see Fig. 8.2). The midtread quantizer has zero as one of its output values, hence, it is
also known as dead-zone quantizer, because it turns a range of nonzero input values
into the zero output.

The midtread quantizer is important when source data represents the zero value
by fluctuating between small positive and negative numbers. Applying the midtread
quantizer in this case would produce an accurate and steady representation of the
value zero. For the special case θ = 1, we can simply compute the output values for
these quantizers as

Qmidrise(x) = ≡x∝ − 0.5 (8.4)

Qmidtread(x) = ∃x + 0.5⊕. (8.5)

8.4 Quantization 229

The goal for the design of a successful uniform quantizer is to minimize the
distortion for a given source input with a desired number of output values. This can
be done by adjusting the step size θ to match the input statistics.

Let’s examine the performance of an M level quantizer. Let B = {b0, b1, . . . , bM }
be the set of decision boundaries and Y = {y1, y2, . . . , yM } be the set of recon-
struction or output values. Suppose the input is uniformly distributed in the interval
[−Xmax, Xmax]. The rate of the quantizer is

R = ≡log2 M∝. (8.6)

That is, R is the number of bits required to code M things—in this case, the M output
levels.

The step size θ is given by

θ = 2Xmax

M
(8.7)

since the entire range of input values is from −Xmax to Xmax. For bounded input,
the quantization error caused by the quantizer is referred to as granular distortion.
If the quantizer replaces a whole range of values, from a maximum value to ≤,
and similarly for negative values, that part of the distortion is called the overload
distortion.

To get an overall figure for granular distortion, notice that decision boundaries
bi for a midrise quantizer are [(i − 1)θ, iθ], i = 1 .. M/2, covering positive data
X (and another half for negative X values). Output values yi are the midpoints
iθ − θ/2, i = 1 .. M/2, again just considering positive data. The total distortion is
twice the sum over the positive data, or

Dgran = 2

M
2∑

i=1

∫ iθ

(i−1)θ

⎛
x − 2i − 1

2
θ

⎜2 1

2Xmax
dx (8.8)

where we divide by the range of X to normalize to a value of at most 1.
Since the reconstruction values yi are the midpoints of each interval, the quanti-

zation error must lie within the values [−θ
2 , θ

2]. Figure 8.3 is a graph of quantization
error for a uniformly distributed source. The quantization error in this case is also
uniformly distributed. Therefore, the average squared error is the same as the vari-
ance α 2

d of the quantization error calculated from just the interval [0, θ] with error
values in [−θ

2 , θ
2]. The error value at x is e(x) = x −θ/2, so the variance of errors

is given by

α 2
d = 1

θ

∫ θ

0
(e(x) − ē)2 dx

= 1

θ

∫ θ

0

⎛
x − θ

2
− 0

⎜2

dx (8.9)

= θ2

12
.

230 8 Lossy Compression Algorithms

Error

Δ

−Δ/2

Δ/2

0 x

Fig. 8.3 Quantization error of a uniformly distributed source

Similarly, the signal variance is α 2
x = (2Xmax)

2/12 for a random signal, so if the
quantizer is n bits, M = 2n , then from Eq. (8.2) we have

SQNR = 10 log10

⎝
α 2

x

α 2
d

⎞

= 10 log10

⎛
(2Xmax)

2

12
· 12

θ2

⎜

= 10 log10

⎟
⎠ (2Xmax)

2

12
· 12(

2Xmax
M

)2

= 10 log10 M2 = 20 n log10 2 (8.10)

= 6.02 n (dB). (8.11)

Hence, we have rederived the formula (6.3) derived more simply in Sect. 6.1. From
Eq. (8.11), we have the important result that increasing one bit in the quantizer
increases the signal-to-quantization noise ratio by 6.02 dB. In Sect. 6.1.5 we also
showed that if we know the signal probability density function we can get a more
accurate figure for the SQNR: there we assumed a sinusoidal signal and derived a
more exact SQNR Eq. (6.4). As well, more sophisticated estimates of D result from
more sophisticated models of the probability distribution of errors.

8.4.2 Nonuniform Scalar Quantization

If the input source is not uniformly distributed, a uniform quantizer may be inefficient.
Increasing the number of decision levels within the region where the source is densely

http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6

8.4 Quantization 231

distributed can effectively lower granular distortion. In addition, without having to
increase the total number of decision levels, we can enlarge the region in which the
source is sparsely distributed. Such nonuniform quantizers thus have nonuniformly
defined decision boundaries.

There are two common approaches for nonuniform quantization: the Lloyd–Max
quantizer and the companded quantizer, both introduced in Chap. 6.

Lloyd–Max Quantizer∗

For a uniform quantizer, the total distortion is equal to the granular distortion, as
in Eq. (8.8). If the source distribution is not uniform, we must explicitly consider
its probability distribution (probability density function) fX (x). Now we need the
correct decision boundaries bi and reconstruction values yi , by solving for both
simultaneously. To do so, we plug variables bi , yi into a total distortion measure

Dgran =
M∑

j=1

∫ b j

b j−1

(
x − y j

)2 1

Xmax
fX (x) dx . (8.12)

Then we can minimize the total distortion by setting the derivative of Eq. (8.12) to
zero. Differentiating with respect to y j yields the set of reconstruction values

y j =
∫ b j

b j−1
x fX (x) dx

∫ b j
b j−1

fX (x) dx
. (8.13)

This says that the optimal reconstruction value is the weighted centroid of the x
interval. Differentiating with respect to b j and setting the result to zero yields

b j = y j+1 + y j

2
. (8.14)

This gives a decision boundary b j at the midpoint of two adjacent reconstruction
values. Solving these two equations simultaneously is carried out by iteration. The
result is termed the Lloyd–Max quantizer.

Starting with an initial guess of the optimal reconstruction levels, the algorithm
above iteratively estimates the optimal boundaries, based on the current estimate of
the reconstruction levels. It then updates the current estimate of the reconstruction
levels, using the newly computed boundary information. The process is repeated until
the reconstruction levels converge. For an example of the algorithm in operation, see
Exercise 3.

Companded Quantizer

In companded quantization, the input is mapped by a compressor function G and
then quantized using a uniform quantizer. After transmission, the quantized values

http://dx.doi.org/10.1007/978-3-319-05290-8_6

232 8 Lossy Compression Algorithms

Algorithm 8.1 (Lloyd–Max Quantization)

BEGIN
Choose initial level set y0

i = 0
Repeat
Compute bi using Equation 8.14
i = i + 1
Compute yi using Equation 8.13

Until |yi − yi−1| < φ

END

G −1

Uniform quantizerX X
^

G

Fig. 8.4 Companded quantization

are mapped back using an expander function G−1. The block diagram for the com-
panding process is shown in Fig. 8.4, where X̂ is the quantized version of X . If the
input source is bounded by xmax, then any nonuniform quantizer can be represented
as a companded quantizer. The two commonly used companders are the μ-law and
A-law companders (Sect. 6.1).

8.4.3 Vector Quantization

One of the fundamental ideas in Shannon’s original work on information theory is
that any compression system performs better if it operates on vectors or groups of
samples rather than on individual symbols or samples. We can form vectors of input
samples by concatenating a number of consecutive samples into a single vector.
For example, an input vector might be a segment of a speech sample, a group of
consecutive pixels in an image, or a chunk of data in any other format.

The idea behind vector quantization (VQ) is similar to that of scalar quantization
but extended into multiple dimensions. Instead of representing values within an
interval in one-dimensional space by a reconstruction value, as in scalar quantization,
in VQ an n-component code vector represents vectors that lie within a region in n-
dimensional space. A collection of these code vectors forms the codebook for the
vector quantizer.

Since there is no implicit ordering of code vectors, as there is in the one-
dimensional case, an index set is also needed to index into the codebook. Figure 8.5
shows the basic vector quantization procedure. In the diagram, the encoder finds

http://dx.doi.org/10.1007/978-3-319-05290-8_6

8.4 Quantization 233

N

Find closest
code vector Table lookup

Index

DecoderEncoder

X X
^

. . .

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

N

. .
 .

. .
 .

Fig. 8.5 Basic vector quantization procedure

the closest code vector to the input vector and outputs the associated index. On the
decoder side, exactly the same codebook is used. When the coded index of the input
vector is received, a simple table lookup is performed to determine the reconstruction
vector.

Finding the appropriate codebook and searching for the closest code vector at
the encoder end may require considerable computational resources. However, the
decoder can execute quickly, since only a constant time operation is needed to obtain
the reconstruction. Because of this property, VQ is attractive for systems with a lot
of resources at the encoder end while the decoder has only limited resources, and the
need is for quick execution time. Most multimedia applications fall into this category.

Gersho and Gray [6] cover quantization, especially vector quantization, compre-
hensively. In addition to the basic theory, this book provides a nearly exhaustive
description of available VQ methods.

8.5 Transform Coding

From basic principles of information theory, we know that coding vectors is more
efficient than coding scalars (see Sect. 7.4.2). To carry out such an intention, we need
to group blocks of consecutive samples from the source input into vectors.

Let X = {x1, x2, . . . , xk}T be a vector of samples. Whether our input data is an
image, a piece of music, an audio or video clip, or even a piece of text, there is a
good chance that a substantial amount of correlation is inherent among neighboring
samples xi . The rationale behind transform coding is that if Y is the result of a linear

http://dx.doi.org/10.1007/978-3-319-05290-8_7

234 8 Lossy Compression Algorithms

transform T of the input vector X in such a way that the components of Y are much
less correlated, then Y can be coded more efficiently than X.

For example, if most information in an RGB image is contained in a main axis,
rotating so that this direction is the first component means that luminance can be
compressed differently from color information. This will approximate the luminance
channel in the eye.

In higher dimensions than three, if most information is accurately described by
the first few components of a transformed vector, the remaining components can
be coarsely quantized, or even set to zero, with little signal distortion. The more
decorrelated—that is, the less effect one dimension has on another (the more orthog-
onal the axes), the more chance we have of dealing differently with the axes that
store relatively minor amounts of information without affecting reasonably accurate
reconstruction of the signal from its quantized or truncated transform coefficients.

Generally, the transform T itself does not compress any data. The compression
comes from the processing and quantization of the components of Y. In this section,
we will study the Discrete Cosine Transform (DCT) as a tool to decorrelate the
input signal. We will also examine the Karhunen–Loève Transform (KLT), which
optimally decorrelates the components of the input X.

8.5.1 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT), a widely used transform coding technique, is
able to perform decorrelation of the input signal in a data-independent manner [7,8].
Because of this, it has gained tremendous popularity. We will examine the definition
of the DCT and discuss some of its properties, in particular the relationship between
it and the more familiar Discrete Fourier Transform (DFT).

Definition of DCT

Let’s start with the two-dimensional DCT. Given a function f (i, j) over two integer
variables i and j (a piece of an image), the 2D DCT transforms it into a new function
F(u, v), with integer u and v running over the same range as i and j . The general
definition of the transform is

F(u, v) = 2 C(u) C(v)∗
M N

M−1∑
i=0

N−1∑
j=0

cos
(2i + 1)uω

2M
cos

(2 j + 1)vω

2N
f (i, j) (8.15)

where i, u = 0, 1, . . . , M − 1, j, v = 0, 1, . . . , N − 1, and the constants C(u) and
C(v) are determined by

C(ξ) =
⎧ ∗

2
2 if ξ = 0,

1 otherwise.
(8.16)

8.5 Transform Coding 235

In the JPEG image compression standard (see Chap. 9), an image block is defined
to have dimension M = N = 8. Therefore, the definitions for the 2D DCT and its
inverse (IDCT) in this case are as follows:

2D Discrete Cosine Transform (2D DCT)

F(u, v) = C(u) C(v)

4

7∑
i=0

7∑
j=0

cos
(2i + 1)uω

16
cos

(2 j + 1)vω

16
f (i, j), (8.17)

where i, j, u, v = 0, 1, . . . , 7, and the constants C(u) and C(v) are determined by
Eq. (8.16).

2D Inverse Discrete Cosine Transform (2D IDCT)

The inverse function is almost the same, with the roles of f (i, j) and F(u, v)

reversed, except that now C(u)C(v) must stand inside the sums:

f̃ (i, j) =
7∑

u=0

7∑
v=0

C(u) C(v)

4
cos

(2i + 1)uω

16
cos

(2 j + 1)vω

16
F(u, v) (8.18)

where i, j, u, v = 0, 1, . . . , 7, and the constants C(u) and C(v) are determined by
Eq. (8.16).

The 2D transforms are applicable to 2D signals, such as digital images. As shown
below, the 1D version of the DCT and IDCT is similar to the 2D version.

1D Discrete Cosine Transform (1D DCT)

F(u) = C(u)

2

7∑
i=0

cos
(2i + 1)uω

16
f (i), (8.19)

where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7, and the constant C(u) is the same as in
Eq. (8.16).

1D Inverse Discrete Cosine Transform (1D-IDCT)

f̃ (i) =
7∑

u=0

C(u)

2
cos

(2i + 1)uω

16
F(u), (8.20)

http://dx.doi.org/10.1007/978-3-319-05290-8_9

236 8 Lossy Compression Algorithms

where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7, and the constant C(u) is the same as in
Eq. (8.16).

One-Dimensional DCT

Let’s examine the DCT for a one-dimensional signal; almost all concepts are readily
extensible to the 2D DCT.

An electrical signal with constant magnitude is known as a DC (direct current)
signal. A common example is a battery that carries 1.5 or 9 volts DC. An electrical
signal that changes its magnitude periodically at a certain frequency is known as
an AC (alternating current) signal. A good example is the household electric power
circuit, which carries electricity with sinusoidal waveform at 110 volts AC, 60 Hz
(or 220 volts, 50 Hz in many other countries).

Most real signals are more complex. Speech signals or a row of gray-level inten-
sities in a digital image are examples of such 1D signals. However, any signal can be
expressed as a sum of multiple signals that are sine or cosine waveforms at various
amplitudes and frequencies. This is known as Fourier analysis. The terms DC and AC,
originating in electrical engineering, are carried over to describe these components
of a signal (usually) composed of one DC and several AC components.

If a cosine function is used, the process of determining the amplitudes of the
AC and DC components of the signal is called a Cosine Transform, and the integer
indices make it a Discrete Cosine Transform. When u = 0, Eq. (8.19) yields the DC
coefficient; when u = 1, or 2,..., up to 7, it yields the first or second, etc., up to the
seventh AC coefficient.

Equation (8.20) shows the Inverse Discrete Cosine Transform. This uses a sum
of the products of the DC or AC coefficients and the cosine functions to reconstruct
(recompose) the function f (i). Since computing the DCT and IDCT involves some
loss, f (i) is now denoted by f̃ (i).

In short, the role of the DCT is to decompose the original signal into its DC and AC
components; the role of the IDCT is to reconstruct (recompose) the signal. The DCT
and IDCT use the same set of cosine functions; they are known as basis functions.
Figure 8.6 shows the family of eight 1D DCT basis functions: u = 0 .. 7.

The DCT enables a new means of signal processing and analysis in the frequency
domain. In the original Signal Processing that deals with electrical and electronic
signals (e.g., electricity, speech), f (i) usually represents a signal that changes with
time i (we will not be bothered here by the convention that time is usually denoted
as t). The 1D DCT transforms f (i), which is in the time domain, to F(u), which is in
the frequency domain. The coefficients F(u) are known as the frequency responses
and form the frequency spectrum of f (i). In Image Processing, the image content
f (i, j) changes with the spatial indices i and j in the space domain. The 2D DCT
now transforms f (i, j) to F(u, v), which is in the spatial frequency domain. For the
convenience of discussion, we sometimes use 1D images and 1D DCT as examples.

Let’s use some examples to illustrate frequency responses.

8.5 Transform Coding 237

The 0th basis function (u = 0)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 1st basis function (u = 1)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 2nd basis function (u = 2)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 3rd basis function (u = 3)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 4th basis function (u = 4)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 5th basis function (u = 5)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 6th basis function (u = 6)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 7th basis function (u = 7)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

Fig. 8.6 The 1D DCT basis functions

Example 8.1

The left side of Fig. 8.7a shows a DC signal with a magnitude of 100, i.e., f1(i) = 100.
Since we are examining the Discrete Cosine Transform, the input signal is discrete,
and its domain is [0, 7].

When u = 0, regardless of the i value, all the cosine terms in Eq. (8.19) become
cos 0, which equals 1. Taking into account that C(0) = ∗

2/2, F1(0) is given by

F1(0) =
∗

2

2 · 2
· (1 · 100 + 1 · 100 + 1 · 100 + 1 · 100

+ 1 · 100 + 1 · 100 + 1 · 100 + 1 · 100)

√ 283

238 8 Lossy Compression Algorithms

0

50

100

150

200

0 1 2 3 4 5 6 7
i

Signal f1(i) that does not change

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F1(u)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

A changing signal f2(i)
that has an AC component

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F2(u)

0
50

100
150
200

0 1 2 3 4 5 6 7
i

Signal f3(i) = f1(i) + f2(i)

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F3(u)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

An arbitrary signal f(i)

−200
−100

0
100
200

0 1 2 3 4 5 6 7
u

DCT output F(u)

(a)

(b)

(c)

(d)

Fig.8.7 Examples of 1D Discrete Cosine Transform: a a DC signal f1(i); b an AC signal f2(i); c
f3(i) = f1(i) + f2(i); and d an arbitrary signal f (i)

when u = 1, F1(u) is as below. Because cos ω
16 = − cos 15ω

16 , cos 3ω
16 = − cos 13ω

16 ,
etc. and C(1) = 1, we have

F1(1) = 1

2
· (cos

ω

16
· 100 + cos

3ω

16
· 100 + cos

5ω

16
· 100 + cos

7ω

16
· 100

+ cos
9ω

16
· 100 + cos

11ω

16
· 100 + cos

13ω

16
· 100 + cos

15ω

16
· 100)

= 0.

8.5 Transform Coding 239

Similarly, it can be shown that F1(2) = F1(3) = ... = F1(7) = 0. The 1D-DCT
result F1(u) for this DC signal f1(i) is depicted on the right side of Fig. 8.7a—only
a DC (i.e., first) component of F is nonzero.

Example 8.2

The left side of Fig. 8.7b shows a discrete cosine signal f2(i). Incidentally (or, rather,
purposely), it has the same frequency and phase as the second cosine basis function,
and its amplitude is 100.

When u = 0, again, all the cosine terms in Eq. (8.19) equal 1. Because cos ω
8 =

− cos 7ω
8 , cos 3ω

8 = − cos 5ω
8 , and so on, we have

F2(0) =
∗

2

2 · 2
· 1 · (100 cos

ω

8
+ 100 cos

3ω

8
+ 100 cos

5ω

8
+ 100 cos

7ω

8

+ 100 cos
9ω

8
+ 100 cos

11ω

8
+ 100 cos

13ω

8
+ 100 cos

15ω

8
)

= 0.

To calculate F2(u), we first note that when u = 2, because cos 3ω
8 = sin ω

8 , we
have

cos2 ω

8
+ cos2 3ω

8
= cos2 ω

8
+ sin2 ω

8
= 1.

Similarly,

cos2 5ω

8
+ cos2 7ω

8
= 1

cos2 9ω

8
+ cos2 11ω

8
= 1

cos2 13ω

8
+ cos2 15ω

8
= 1.

Then we end up with

F2(2) = 1

2
· (cos

ω

8
· cos

ω

8
+ cos

3ω

8
· cos

3ω

8
+ cos

5ω

8
· cos

5ω

8

+ cos
7ω

8
· cos

7ω

8
+ cos

9ω

8
· cos

9ω

8
+ cos

11ω

8
· cos

11ω

8

+ cos
13ω

8
· cos

13ω

8
+ cos

15ω

8
· cos

15ω

8
) · 100

= 1

2
· (1 + 1 + 1 + 1) · 100 = 200.

We will not show the other derivations in detail. It turns out that F2(1) = F2(3) =
F2(4) = · · · = F2(7) = 0.

Example 8.3

In the third row of Fig. 8.7 the input signal to the DCT is now the sum of the previous
two signals—that is, f3(i) = f1(i) + f2(i). The output F(u) values are

240 8 Lossy Compression Algorithms

F3(0) = 283,

F3(2) = 200,

F3(1) = F3(3) = F3(4) = · · · = F3(7) = 0.

Thus we discover that F3(u) = F1(u) + F2(u).

Example 8.4

The fourth row of the figure shows an arbitrary (or at least relatively complex) input
signal f (i) and its DCT output F(u):

f (i)(i = 0 .. 7) : 85 −65 15 30 −56 35 90 60
F(u)(u = 0 .. 7) : 69 −49 74 11 16 117 44 −5.

Note that in this more general case, all the DCT coefficients F(u) are nonzero and
some are negative.

From the above examples, the characteristics of the DCT can be summarized as
follows:

1. The DCT produces the spatial frequency spectrum F(u) corresponding to the
spatial signal f (i).
In particular, the 0th DCT coefficient F(0) is the DC component of the signal

f (i). Up to a constant factor (i.e., 1
2 ·

∗
2

2 · 8 = 2 · ∗
2 in the 1D DCT and

1
4 ·

∗
2

2 ·
∗

2
2 · 64 = 8 in the 2D DCT), F(0) equals the average magnitude of the

signal. In Fig. 8.7a, the average magnitude of the DC signal is obviously 100,
and F(0) = 2

∗
2 × 100; in Fig. 8.7b, the average magnitude of the AC signal

is 0, and so is F(0); in Fig. 8.7c, the average magnitude of f3(i) is apparently
100, and again we have F(0) = 2

∗
2 × 100.

The other seven DCT coefficients reflect the various changing (i.e., AC) compo-
nents of the signal f (i) at different frequencies. If we denote F(1) as AC1, F(2)

as AC2, ..., F(7) as AC7, then AC1 is the first AC component, which completes
half a cycle as a cosine function over [0, 7]; AC2 completes a full cycle; AC3
completes one and one-half cycles; ..., and AC7, three and a half cycles. All these
are, of course, due to the cosine basis functions, which are arranged in exactly
this manner. In other words, the second basis function corresponds to AC1, the
third corresponds to AC2, and so on. In the example in Fig. 8.7b, since the sig-
nal f2(i) and the third basis function have exactly the same cosine waveform,
with identical frequency and phase, they will reach the maximum (positive) and
minimum (negative) values synchronously. As a result, their products are always
positive, and the sum of their products (F2(2) or AC2) is large. It turns out that
all other AC coefficients are zero, since f2(i) and all the other basis functions
happen to be orthogonal. (We will discuss orthogonality later in this chapter.)
It should be pointed out that the DCT coefficients can easily take on negative
values. For DC, this occurs when the average of f (i) is less than zero. (For an
image, this never happens so the DC is nonnegative.) For AC, a special case
occurs when f (i) and some basis function have the same frequency but one

8.5 Transform Coding 241

of them happens to be half a cycle behind—this yields a negative coefficient,
possibly with a large magnitude.
In general, signals will look more like the one in Fig. 8.7d. Then f (i) will
produce many nonzero AC components, with the ones toward AC7 indicating
higher frequency content. A signal will have large (positive or negative) response
in its high-frequency components only when it alternates rapidly within the small
range [0, 7].
As an example, if AC7 is a large positive number, this indicates that the sig-
nal f (i) has a component that alternates synchronously with the eighth basis
function—three and half cycles. According to the Nyqist theorem, this is the
highest frequency in the signal that can be sampled with eight discrete values
without significant loss and aliasing.

2. The DCT is a linear transform.
In general, a transform T (or function) is linear, iff

T (σp + βq) = σT (p) + βT (q), (8.21)

whereσ andβ are constants, and p and q are any functions, variables or constants.

From the definition in Eq. (8.19), this property can readily be proven for the
DCT, because it uses only simple arithmetic operations.

One-Dimensional Inverse DCT

Let’s finish the example in Fig. 8.7d by showing its inverse DCT (IDCT). Recall that
F(u) contains the following:

F(u)(u = 0 .. 7) : 69 −49 74 11 16 117 44 −5.

The 1D IDCT, as indicated in Eq. (8.20), can readily be implemented as a loop with
eight iterations, as illustrated in Fig. 8.8.

Iteration 0: f̃ (i) = C(0)
2 · cos 0 · F(0) =

∗
2

2·2 · 1 · 69 √ 24.3.

Iteration 1: f̃ (i) = C(0)
2 · cos 0 · F(0) + C(1)

2 · cos (2i+1)ω
16 · F(1)

√ 24.3 + 1
2 · (−49) · cos (2i+1)ω

16 √ 24.3 − 24.5 · cos (2i+1)ω
16 .

Iteration 2: f̃ (i) = C(0)
2 ·cos 0 · F(0)+ C(1)

2 ·cos (2i+1)ω
16 · F(1)+ C(2)

2 ·cos (2i+1)ω
8 ·

F(2)

√ 24.3 − 24.5 · cos (2i+1)ω
16 + 37 · cos (2i+1)ω

8 .

After iteration 0, f̃ (i) has a constant value of approximately 24.3, which is the
recovery of the DC component in f (i); after iteration 1, f̃ (i) √ 24.3 − 24.5 ·
cos (2i+1)ω

16 , which is the sum of the DC and first AC component; after iteration 2,
f̃ (i) reflects the sum of DC and AC1 and AC2; and so on. As shown, the process
of the sum-of-product in IDCT eventually reconstructs (recomposes) the function
f (i), which is approximately

242 8 Lossy Compression Algorithms

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 0th iteration (DC)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 1st iteration (DC + AC1)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 2nd iteration
(DC + AC1 + AC2)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 3rd iteration
(DC + AC1 + AC2 + AC3)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 4th iteration
(DC + AC1 + . . . + AC4)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 5th iteration
(DC + AC1 + . . . + AC5)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 6th iteration
(DC + AC1 + . . . + AC6)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 7th iteration
(DC + AC1 + . . . + AC7)

Fig. 8.8 An example of 1D IDCT

f̃ (i)(i = 0 .. 7) : 85 −65 15 30 −56 35 90 60.

As it happens, even though we went from integer to integer via intermediate floats,
we recovered the signal exactly. This is not always true, but the answer is always
close.

The Cosine Basis Functions

For a better decomposition, the basis functions should be orthogonal, so as to have
the least redundancy among them.

8.5 Transform Coding 243

Functions Bp(i) and Bq(i) are orthogonal if∑
i

[Bp(i) · Bq(i)] = 0 if p ⊂= q. (8.22)

Functions Bp(i) and Bq(i) are orthonormal if they are orthogonal and∑
i

[Bp(i) · Bq(i)] = 1 if p = q. (8.23)

The orthonormal property is desirable. With this property, the signal is not ampli-
fied during the transform. When the same basis function is used in both the trans-
formation and its inverse (sometimes called forward transform and backward trans-
form), we will get (approximately) the same signal back.

It can be shown that
7∑

i=0

⎪
cos

(2i + 1) · pω

16
· cos

(2i + 1) · qω

16

⎨
= 0 if p ⊂= q

7∑
i=0

⎪
C(p)

2
cos

(2i + 1) · pω

16
· C(q)

2
cos

(2i + 1) · qω

16

⎨
= 1 if p = q.

The cosine basis functions in the DCT are indeed orthogonal. With the help
of constants C(p) and C(q) they are also orthonormal. (Now we understand why
constants C(u) and C(v) in the definitions of DCT and IDCT seemed to have taken
some arbitrary values.)

Recall that because of the orthogonality, for f2(i) in Fig. 8.7b, only F2(2) (for
u = 2) has a nonzero output whereas all other DCT coefficients are zero. This is
desirable for some signal processing and analysis in the frequency domain, since we
are now able to precisely identify the frequency components in the original signal.

The cosine basis functions are analogous to the basis vectors �x , �y, �z for the 3D
Cartesian space, or the so-called 3D vector space. The vectors are orthonormal,
because

�x · �y = (1, 0, 0) · (0, 1, 0) = 0

�x · �z = (1, 0, 0) · (0, 0, 1) = 0

�y · �z = (0, 1, 0) · (0, 0, 1) = 0

�x · �x = (1, 0, 0) · (1, 0, 0) = 1

�y · �y = (1, 0, 0) · (1, 0, 0) = 1

�z · �z = (1, 0, 0) · (1, 0, 0) = 1.

Any point P = (x p, yp, z p) can be represented by a vector �O P = (x p, yp, z p),
where O is the origin, which can in turn be decomposed into x p · �x + yp · �y + z p · �z.

If we view the sum-of-products operation in Eq. (8.19) as the dot product of one
of the discrete cosine basis functions (for a specified u) and the signal f (i), then the
analogy between the DCT and the Cartesian projection is remarkable. Namely, to get
the x-coordinate of point P , we simply project P onto the x axis. Mathematically, this

244 8 Lossy Compression Algorithms

is equivalent to a dot product �x · �O P = x p. Obviously, the same goes for obtaining
yp and z p.

Now, compare this to the example in Fig. 8.7b, for a point P = (0, 5, 0) in the
Cartesian space. Only its projection onto the y axis is yp = 5 and its projections
onto the x and z axes are both 0.

Finally, for reconstruction of P , use the dot product of (x p, yp, z p) and (�x, �y, �z)
to obtain x p · �x + yp · �y + z p · �z.

2D Basis Functions

For two-dimensional DCT functions, we use the basis depicted as 8 × 8 images in
Fig. 8.9, where u and v indicate their spatial frequencies, white indicates positive
values and black indicates negative. For a particular pair of u and v, the respective
basis function is:

cos
(2i + 1) · uω

16
· cos

(2 j + 1) · vω

16
, (8.24)

where i and j are their row and column indices.
For example, for the enlarged block shown in Fig. 8.9, where u = 1 and v = 2,

it is:

cos
(2i + 1) · 1ω

16
· cos

(2 j + 1) · 2ω

16
.

To obtain DCT coefficients, we essentially just form the inner product of each
of these 64 basis functions with an 8 × 8 block from an original image. Again, we
are talking about an original signal indexed by space, not time. The 64 products we
calculate make up an 8 × 8 spatial frequency response F(u, v). We do this for each
8 × 8 image block.

2D Separable Basis

Of course, for speed, most software implementations use fixed point arithmetic to
calculate the DCT transform. Just as there is a mathematically derived Fast Fourier
Transform, there is also a Fast DCT. Some fast implementations approximate coeffi-
cients so that all multiplies are shifts and adds. Moreover, a much simpler mechanism
is used to produce 2D DCT coefficients—factorization into two 1D DCT transforms.

The 2D DCT can be separated into a sequence of two 1D DCT steps. First,
we calculate an intermediate function G(u, j) by performing a 1D DCT in each
column—in this way, we have taken care of the 1D transform vertically, i.e., replacing
the row index by its frequency counterpart u. When the block size is 8 × 8:

G(u, j) = 1

2
C(u)

7∑
i=0

cos
(2i + 1)uω

16
f (i, j). (8.25)

8.5 Transform Coding 245

Fig. 8.9 Graphical
illustration of 8 × 8 2D DCT
basis

u

v

j

i

Then we calculate another 1D DCT horizontally in each row, this time replacing the
column index j by its frequency counterpart v:

F(u, v) = 1

2
C(v)

7∑
j=0

cos
(2 j + 1)vω

16
G(u, j). (8.26)

This is possible because the 2D DCT basis functions are separable (multiply separate
functions of i and j). It is straightforward to see that this simple change saves many
arithmetic steps. The number of iterations required is reduced from 8 × 8 to 8 + 8.

2D DCT-Matrix Implementation

The above factorization of a 2D DCT into two 1D DCTs can be implemented by two
consecutive matrix multiplications, i.e.,

F(u, v) = T · f (i, j) · TT . (8.27)

246 8 Lossy Compression Algorithms

We will name T the DCT-matrix.

T[i, j] =

⎩

1∗
N

, if i = 0

√
2
N · cos (2 j+1)·iω

2N , if i > 0
(8.28)

where i = 0, ..., N − 1 and j = 0, ..., N − 1 are the row and column indices, and
the block size is N × N .

When N = 8, we have:

T8[i, j] =
⎩

1
2
∗

2
, if i = 0

1
2 · cos (2 j+1)·iω

16 , if i > 0.

(8.29)

Hence,

T8 =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1
2
∗

2
1

2
∗

2
1

2
∗

2
· · · 1

2
∗

2

1
2 · cos ω

16
1
2 · cos 3ω

16
1
2 · cos 5ω

16 · · · 1
2 · cos 15ω

16

1
2 · cosω

8
1
2 · cos 3ω

8
1
2 · cos 5ω

8 · · · 1
2 · cos 15ω

8

1
2 · cos 3ω

16
1
2 · cos 9ω

16
1
2 · cos 15ω

16 · · · 1
2 · cos 45ω

16

...
...

...
. . .

...

1
2 · cos 7ω

16
1
2 · cos 21ω

16
1
2 · cos 35ω

16 · · · 1
2 · cos 105ω

16

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

. (8.30)

A closer look at the DCT-matrix will reveal that each row of the matrix is basically
a 1D DCT basis function, ranging from DC to AC1, AC2, ..., AC7. Compared to
the functions in Fig. 8.6, the only difference is that we have added some constants
and taken care of the orthonormal aspect of the DCT basis functions. Indeed, the
constants and basis functions in Eqs. (8.19) and (8.29) are exactly the same. (We will
leave it as an exercise (see Exercise 7) to verify that the rows and columns of T8 are
orthonormal vectors, i.e., T8 is an Orthogonal Matrix.)

In summary, the implementation of the 2D DCT is now a simple matter of applying
two matrix multiplications as in Eq. (8.27). The first multiplication applies 1D DCT
vertically (for each column), and the second applies 1D DCT horizontally (for each
row). What has been achieved is exactly the two steps as indicated in Eqs. (8.25) and
(8.26).

2D IDCTMatrix Implementation

In this section, we will show how to reconstruct f (i, j) from F(u, v) losslessly by
matrix multiplications. In the next several chapters, when we discuss lossy compres-
sion of images and videos, quantization steps will usually be applied to the DCT
coefficients F(u, v) before the IDCT.

8.5 Transform Coding 247

It turns out that the 2D IDCT matrix implementation is simply:

f (i, j) = TT · F(u, v) · T. (8.31)

Its derivation is as follows:
First, because T · T−1 = T−1 · T = I, where I is the identity matrix, we can

simply rewrite f (i, j) as:

f (i, j) = T−1 · T · f (i, j) · TT · (TT)−1.

According to Eq. (8.27),

F(u, v) = T · f (i, j) · TT .

Hence,
f (i, j) = T−1 · F(u, v) · (TT)−1.

As stated above, the DCT-matrix T is orthogonal, therefore,

TT = T−1.

It follows,
f (i, j) = TT · F(u, v) · T.

Comparison of DCT and DFT

The discrete cosine transform is a close counterpart to the Discrete Fourier Transform
(DFT) [9], and in the world of signal processing, the latter is likely the more common.
We have started off with the DCT instead because it is simpler and is also much used
in multimedia. Nevertheless, we should not entirely ignore the DFT.

For a continuous signal, we define the continuous Fourier transform F as follows:

F(ω) =
∫ ≤

−≤
f (t)e−iωt dt. (8.32)

Using Euler’s formula, we have

eix = cos(x) + i sin(x). (8.33)

Thus, the continuous Fourier transform is composed of an infinite sum of sine and
cosine terms. Because digital computers require us to discretize the input signal, we
define a DFT that operates on eight samples of the input signal { f0, f1, . . . , f7} as

Fω =
7∑

x=0

fx · e− 2ω iωx
8 . (8.34)

Writing the sine and cosine terms explicitly, we have

Fω =
7∑

x=0

fx cos

⎛
2ωωx

8

⎜
− i

7∑
x=0

fx sin

⎛
2ωωx

8

⎜
. (8.35)

248 8 Lossy Compression Algorithms

Fig. 8.10 Symmetric
extension of the ramp
function

y

10 11 12 13 14 150

1

2

3

4

5

7

6

x
1 2 3 4 5 6 7 8 9

Table 8.1 DCT and DFT
coefficients of the ramp
function

Ramp DCT DFT

0 9.90 28.00
1 −6.44 −4.00
2 0.00 9.66
3 −0.67 −4.00
4 0.00 4.00
5 −0.20 −4.00
6 0.00 1.66
7 −0.51 −4.00

Even without giving an explicit definition of the DCT, we can guess that the DCT
is likely a transform that involves only the real part of the DFT. The intuition behind
the formulation of the DCT that allows it to use only the cosine basis functions of the
DFT is that we can cancel out the imaginary part of the DFT by making a symmetric
copy of the original input signal.

This works because sine is an odd function; thus, the contributions from the sine
terms cancel each other out when the signal is symmetrically extended. Therefore,
the DCT of eight input samples corresponds to the DFT of 16 samples made up of
the original eight input samples and a symmetric copy of these, as in Fig. 8.10.

With the symmetric extension, the DCT is now working on a triangular wave,
whereas the DFT tries to code the repeated ramp. Because the DFT is trying to
model the artificial discontinuity created between each copy of the samples of the
ramp function, a lot of high-frequency components are needed. (Refer to [9] for a
thorough discussion and comparison of DCT and DFT.)

Table 8.1 shows the calculated DCT and DFT coefficients. We can see that more
energy is concentrated in the first few coefficients in the DCT than in the DFT. If
we try to approximate the original ramp function using only three terms of both the
DCT and DFT, we notice that the DCT approximation is much closer. Figure 8.11
shows the comparison.

8.5 Transform Coding 249

0

1

2

3

4

5

6

7

y

x
1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

y

x
1 2 3 4 5 6 7

(a) (b)

Fig. 8.11 Approximation of the ramp function: a three-term DCT approximation; b three-term
DFT approximation

8.5.2 Karhunen–Loève Transform*

The Karhunen–Loève Transform (KLT) is a reversible linear transform that exploits
the statistical properties of the vector representation. Its primary property is that it
optimally decorrelates the input. To do so, it fits an n-dimensional ellipsoid around
the (mean-subtracted) data. The main ellipsoid axis is the major direction of change
in the data.

Think of a cigar that has unfortunately been stepped on. Cigar data consists of
a cloud of points in 3-space giving the coordinates of positions of measured points
in the cigar. The long axis of the cigar will be identified by a statistical program as
the first KLT axis. The second most important axis is the horizontal axis across the
squashed cigar, perpendicular to the first axis. The third axis is orthogonal to both
and is in the vertical, thin direction. A KLT component program carries out just this
analysis.

To understand the optimality of the KLT, consider the autocorrelation matrix RX
of the set of k input vectors X, defined in terms of the expectation value E(·) as

RX = E[XXT] (8.36)

=

⎢⎢⎢

RX (1, 1) RX (1, 2) · · · RX (1, k)

RX (2, 1) RX (2, 2) · · · RX (2, k)
...

...
. . .

...

RX (k, 1) RX (k, 2) · · · RX (k, k)

⎥⎥⎥ (8.37)

where RX (t, s) = E[Xt Xs] is the autocorrelation function. Our goal is to find a
transform T such that the components of the output Y are uncorrelated—that is,
E[Yt Ys] = 0, if t ⊂= s. Thus, the autocorrelation matrix of Y takes on the form of a
positive diagonal matrix.

	8 Lossy Compression Algorithms
	8.4 Quantization
	8.4.1 Uniform Scalar Quantization
	8.4.2 Nonuniform Scalar Quantization
	8.4.3 Vector Quantization

	8.5 Transform Coding
	8.5.1 Discrete Cosine Transform (DCT)
	8.5.2 Karhunen--Loève Transform*

