
PEAS: A Robust Energy Conserving Protool for Long-lived SensorNetworksFan Ye, Gary Zhong, Jesse Cheng�, Songwu Lu, Lixia Zhangfyefan, gzhong, slu, lixiag�s.ula.eduUCLA Computer Siene Department, Los Angeles, CA 90095-1596AbstratIn this paper we present PEAS, a robust energy-onserving protool that an build long-lived, resilientsensor networks using a very large number of small sen-sors with short battery lifetime. PEAS extends the net-work lifetime by maintaining a neessary set of workingnodes and turning o� redundant ones. PEAS opera-tions are based on individual node's observation of theloal environment and do not require any node to main-tain per neighbor node state. PEAS performane pos-sesses a high degree of robustness in the presene of bothnode power depletions and unexpeted failures. Oursimulations and analysis show that PEAS an main-tain an adequate working node density in the fae ofup to 38% node failures, and it an maintain roughly aonstant overhead level under various deployment on-ditions ranging from sparse to very dense node deploy-ment by using less than 1% of total energy onsump-tion. As a result, PEAS an extend a sensor network'sfuntioning time in linear proportion to the deployedsensor population.Keywords: sensor networks, energy-onserving,robust network protool1 IntrodutionSmall, inexpensive sensors with onstrained omput-ing power, limited memory and short battery lifetimeare oming into reality [7, 5℄. When suh nodes aredeployed in an adverse environment that has high de-grees of humidity, temperature, or even intentional de-strutions from maliious entities, in addition to nodepower depletion, unexpeted node failures are likely tobeome norms rather than exeptions. Appliations ofsensor networks, on the other hand, desire a robustsensing system with extended life time. It is a great�Jesse Cheng's email is jesse�ula.edu

researh hallenge to build a resilient, long-lived sensornetwork with suh small, fallible sensors.This paper presents PEAS1, a simple and dis-tributed protool that an build and maintain a re-silient, long-lived sensor network out of large quantitiesof unreliable, short-lived sensor nodes. PEAS extendsa network's funtioning time by keeping only a nees-sary set of sensors in working mode and putting therest into sleep mode. Sleeping nodes wake up one ina while to probe their neighborhood and replae anyfailed working nodes as needed. To be implementableon small sensors with stringent resoure limitations,PEAS maintains a minimal amount of state at eahnode and involves very simple operations. Sensor nodeskeep no per-neighbor node state, nor any informationabout the topology or lifetime estimation of their neigh-bors. When a node wakes up, it only needs to �nd outwhether there exists any working neighbor within aloal probing range to deide whether it should startworking or go bak to sleep. The wakeup frequeny ofsleeping nodes is self-adjusted to both maintain ade-quate working node density and minimize energy on-sumption. As shown by our analysis and simulationresults, PEAS an extend a sensor network's funtion-ing time in linear proportion to the number of deployednodes, using less than 1% of the total energy onsump-tion and withstanding up to 38% node failures.Di�erent from the protools designed for ad-ho net-works whih assume dynami hanges in onnetivitybut not frequent node failures, PEAS targets at a harshworking environment in whih node failures may hap-pen frequently. PEAS design also di�ers from existingenergy-saving protools, suh as GAF[10℄, SPAN[4℄,ASCENT[3℄, and AFECA[9℄. The above mentionedprotools are targeted for either ad-ho networks ora relatively stable sensor network environment wherenodes do not fail unexpetedly. Although they anall maintain a stable number of working nodes in the1PEAS stands for Probing Environment and Adaptive Sleep-ing.1



presene of battery depletions, their operations eitherdepend on the preditability of individual nodes' life-time, or require eah node maintain the state of all itsneighbors. In ontrast, PEAS assumes that the densityof deployed nodes may be orders of magnitude higherthan that of the working nodes, and that individualnodes may fail unexpetedly. These two assumptionsmake it infeasible to keep per neighbor node state orto reliably predit a node's lifetime.The rest of the paper is organized as follows. Wepresent the design of PEAS in Setion 2 and analyzethe onditions for asymptoti onnetivity of PEAS inSetion 3. We address several pratial implementa-tion issues in Setion 4, and present the performaneevaluation of PEAS in Setion 5. Related work is dis-ussed in Setion 6, followed by the onlusion setion.We would like to larify that PEAS' role in a sensornetwork is to maintain a desired level of working sen-sor density to ensure both the sensing overage andnetwork onnetivity. The atual sensing data deliveryis arried out by a separate data forwarding protool,suh as those desribed in [11, 6℄.2 PEAS DesignPEAS works with a sensor network onsisting of alarge number of inexpensive sensor nodes that an failunpreditably. PEAS has two omponents: ProbingEnvironment and Adaptive Sleeping. Probing Envi-ronment allows a newly wakeup node to probe its lo-al neighborhood to disover whether a working nodeexists within a ertain probing range. If no workingnode exists in that range, it starts working. Other-wise, it sleeps again. Adaptive Sleeping deides whena sleeping node should wake up again(or equivalently,the probing rate of eah sleeping node). It ensurestimely probing by sleeping nodes in a distributed man-ner. The goal is to make disruptions in sensing andommuniations (due to node failures) within what istolerable by appliations, while minimizing the probingoverhead.The designs of these two omponents are desribedin Setions 2.1 and 2.2, respetively. In the following,we assume that eah sensor node may vary its transmis-sion power and hoose a power level to over a irulararea given a radius2. We disuss how PEAS works with�xed transmission power in Setion 4.2Some state-of-the-art hardware, e.g., MOTES, already al-lows variable transmission power [5℄.

2.1 Probing EnvironmentEah node in PEAS has three operation modes:Sleeping, Probing and Working. The state transitiondiagram among these three modes is shown in Figure1. Nodes are initially in the Sleeping mode. Eah nodesleeps for an exponentially distributed duration gener-ated aording to a probability density funtion (PDF)f(ts) = �e��ts ; where � is the probing rate of the nodeand ts denotes the sleeping time duration.After a node wakes up, it enters the Probing mode.A probing node seeks to detet whether any workingnode is present within a ertain probing range Rp.The probing node uses an appropriate transmissionpower to broadast a PROBE message within its lo-al probing range Rp. Any working node(s) withinthat range should respond with a REPLYmessage, alsosent within the range of Rp. It is possible that multipleworking nodes exist within Rp when a node probes. Toredue ollisions, eah working node waits for a smallrandom period before it sends bak the REPLY.If the probing node hears a REPLY, it goes bak tothe Sleeping mode for another random period of timets, generated aording to the same PDF. But � is ad-justed aording to the Adaptive Sleeping algorithm inSetion 2.2 based on the feedbak information arriedin the REPLY. If the probing node does not hear anyREPLY, it enters the Working mode and starts fun-tioning until it fails or onsumes all its energy.Figure 2 gives a simple example for illustration. Attime t1, nodes 2 and 3 are in the working mode. Node1 wakes up and broadasts a PROBE message withina probing range Rp. Beause no working nodes existwithin Rp, node 1 starts working. At time t2, sleep-ing node 4 wakes up and probes. Beause node 2 iswithin node 4's probing range, it responds with a RE-PLY message. Upon hearing the REPLY, node 4 sleepsagain. Then node 2 dies at time t3, and node 6 wakesup at time t4. After probing, node 6 starts workingand replaes node 2.The initial value of � deides how quikly the net-work aquires enough number of working nodes dur-ing the boot-up phase. For instane, 50% of the de-ployed nodes are required for the network to funtionand the appliation requires the network start funtion-ing 1-minute after deployment. Based on the PDF, wean alulate that an initial � of 0.012 ensures that50% of the nodes wake up at least one within the�rst minute after deployment. Sine PEAS adjusts theprobing rates, we may hoose a higher � to ensure afast-funtioning network.The probing range Rp determines the redundany2
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Figure 2. An Example of Probing Environmentof working nodes. It is spei�ed by the appliationbased on its requirements for both robust sensing androbust ommuniating. These two funtions may re-quire di�erent densities of working nodes. For example,a type of sensors an detet animals within 10 metersand transmit up to 20 meters. Suppose an appliationdeides that working nodes should be spaed at most3 meters for robust sensing, but 6 meters are enoughfor robust ommuniation. The appliation may sim-ply hoose the probing range Rp as the smaller valueof 3 meters3. The hoie of Rp also a�ets networkonnetivity; this is to be analyzed in Setion 3.2.1.1 Design rationaleWemake two important deisions in the design of Prob-ing Environment: (1) a node's loation deides whetherit should be turned on or not, and (2) the sleeping timeof a node is randomized. We now explain the rationale.Loation-dependent working nodes Unlike otherrelated shemes that hoose to turn on nodes with moreenergy or more neighbors [10, 4℄, PEAS does not favorsuh nodes and treats all of them equally. This is moti-vated by the sensor network harateristis. In a sensornetwork built by unreliable, densely distributed nodes,it is the number, not the apability of eah individualnode that really matters. The system relies on the ol-letive behavior of nodes to funtion reliably. As longas PEAS maintains enough working nodes, they anperform required sensing and ommuniating tasks.Loation-based probing rule also ensures that adja-ent working nodes be plaed at an appropriate dis-tane, whih allows for desired redundany to guar-antee resilient sensing and ommuniating funtions.3Designing sensor hardware that balanes these two funtionsis not the topi of this paper. We expet hardware developers toaddress this issue.

This feature is important beause overly dense work-ing nodes not only inrease ollisions, but also unne-essarily waste preious energy resoures. Whereas toosparse working nodes may not satisfy the required de-gree of redundany, e.g., ertain areas may be left un-monitored.
Time

wakeups
1 2 3 4 5 6

sleeping node A

sleeping node B

Figure 3. In PEAS, sleeping nodes A and B haverandomized sleeping timesRandomized sleeping time A node in PEASsleeps for a randomized period of time. The wakeups ofnodes are spread over time (shown in Figure 3). Thisis di�erent from the related shemes [10, 4℄ whih typ-ially take the deterministi approah of synhronizedsleeping and waking-up: All sleeping nodes (in a loalneighborhood) doze for the same predited period oftime, whih is normally their working neighbors' ativetime. Then they all wake up almost simultaneously tore-elet new working nodes.Suh a deterministi approah is feasible only if itsintended environment is preditable (i.e., the lifespanfor a working node an be reliably estimated before-hand), whih again depends on the assumption of re-liable nodes. In a harsh environment with unreliablesensors, the preditability of a node's lifespan no longerholds. When a working node fails unexpetedly beforeits expeted lifespan, there ome large \gaps" in thesystem during whih no working node is available (il-lustrated in Figure 4).Therefore, PEAS hooses to distribute node wake-ups over time, rather than to luster them at a few timeinstants. Shown in Figure 5, node wakeups ome at3
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Figure 5. Distributing wakeups over time shortensgapsmuh shorter time intervals. Thus the average gap be-tween two suessive working nodes in any loal neigh-borhood an be greatly shortened. The spreading alsoredues ollisions inurred by synhronized wakeups.A remaining question about Probing Environmentis why it uses exponential distribution for the randomsleeping time. We will show in Setion 2.2 that expo-nential distribution leads to a Poisson proess of prob-ing events; this exhibits nie properties that the Adap-tive Sleeping is built upon.
2.2 Adaptive SleepingAdaptive Sleeping adjusts the probing rate � of eahsleeping node. The goal is to keep the aggregate prob-ing rate �� of all the sleeping neighbors of eah workingnode at about a desired rate �d, whih is spei�ed bythe appliation. This way, the transient interruptionsin sensing and ommuniation are aeptable to the ap-pliation, while keeping the probing frequeny in hek.The design issue is that, the number of sleepingneighbors of a working node hanges over time, variesin di�erent loations, and � has to be adjusted dynam-ially to adapt to suh varying onditions. The basiidea is to let eah working node measure the aggregateprobing rate �� it pereives from all its sleeping neigh-bors. The working node then inludes the measuredrate �� when sending a REPLY message to a probingneighbor. Eah probing node then adjusts its prob-ing rate � aordingly to generate a new sleeping timeperiod. The details are as follows.Measuring aggregate �� at a working node Eahworking node maintains two states:� N : a ounter that reords how many PROBEshave been reeived.

� t0: the most reent time when N is set to 0.
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Figure 6. Measure ��When the working node hears the �rst PROBEmes-sage, it sets the ounter to 0, and t0 to the urrent timet. After that, eah time a new PROBE is reeived,the ounter inrements by one. Eventually when theounter reahes a threshold value k (k is set to 32 aswe explained in Setion 2.2.1), a measurement �̂ of theatual probing rate �� is alulated as follows4:�̂ = kt� t0 ; (1)where t is the urrent time. The node then sets t0 to t,resets the ounter to 0, and repeats the above proess(see Figure 6 for an illustration). Whenever a workingnode reeives a PROBEmessage, it inludes its urrentprobing rate measurement �̂ and the desired probingrate �d in its REPLY message.Adjusting per-node probing rate � at eah prob-ing node Upon reeiving a REPLYmessage from theworking node, the probing node updates its urrentprobing rate � based on the reeived �̂:�new = ��d̂� : (2)Then the probing rate will use �new to generate a newsleeping period ts aording to the probability densityfuntion f(ts) = �newe��newts .2.2.1 ExplanationWe now explain why the above algorithm keeps the ag-gregate �� around the desired �d. From the probabilitytheory [8℄, the exponentially distributed intervals be-tween suessive wakeups observe a Poisson proess ofwakeup events. Probings from di�erent sleeping neigh-bors still onstrut a Poisson proess, but with a pa-rameter ��, the sum of all sleeping nodes' rates �i:�� = nXi=1 �i; (3)4We also tried a moving average measurement, but the hoiewe present here turned out to work better.4



where n is the number of sleeping neighbors and �i isthe probing rate of the ith neighbor.We utilize the property of Poisson proesses to mea-sure ��. It is known that the average interval �Ts ofthe aggregate Poisson proess is given as �Ts = 1�� . Bymeasuring the average interval �Ts, we an derive theaggregate rate ��. This is exatly what (1) does.To obtain an aurate estimate �̂ that is lose to theatual ��, the onstant k in (1) has to be large enough.Beause the intervals are i.i.d. random variables, weapply the entral limit theorem [8℄ to estimate howlarge k should be for a reasonably good measurement.It turns out that when k > 16, with over 99% on-�dene the measured average has only 1% error om-pared with the real value. We selet k = 32 based onexperimental studies. This also aounts for the shortrandom time eah working node waits before sendingits REPLY and the lateny in ommuniation and mes-sage proessing.Assume that the measured rate �̂ is aurate, i.e.,�̂ � ��. After eah sleeping neighbor adjusts its probingrate aording to (2), the new aggregate probing ratebeomes��new = nXi=1 �newi = nXi=1 �i �d̂� � �d�� �� = �d:Thus the aggregate probing rate reahes the desiredrate �d.The above derivation is idealisti sine it assumesthat all sleeping nodes hear the measurement and ad-just their rates on time. In pratie, if some nodes sleepfor longer periods and miss the urrent measurement,they may reeive a di�erent measurement. Thus �� maynot be the same as �d. But as long as the working nodekeeps measuring and feeding-bak this information, ��should be utuating around �d. We further evaluatethe e�etiveness of Adaptive Sleeping in Setion 5.It is possible to alulate �� diretly by using (3) (aworking node sums up all �i diretly). However, thisposes the diÆulty of keeping per-neighbor state �i.Due to unexpeted failures and potentially dense de-ployment, a working node may not know preisely howmany sleeping neighbors it has. Thus it does not knowwhen it has olleted all �is for its sleeping neighbors.In addition, if some neighbor fails during sleeping, theworking one does not know whether it is beause thenode has failed, or beause it has a very long sleep-ing period. Hene, it annot deide whether the orre-sponding �i should be kept or removed.In the design, we intentionally make design hoiesthat trade-o� optimality for simpliity and better ro-bustness. This is why in Adaptive Sleeping no nodekeeps per-neighbor state. A more omplex design may

inlude per neighbor states to optimize the energy on-sumption. However, as long as the required onnetiv-ity and overage are satis�ed, we opt for the simplestdesign to make PEAS robust and implementable onvery small nodes.A �nal omment is that the desired probing rate�d should be given by the appliation and depends onthe appliation's tolerane of interruptions in sensingand/or ommuniation. For example, if an animal-traking sensor network allows for monitoring inter-ruptions up to 5 minutes, �d an be set at 1 per 300seonds to ensure that the lengths of \gaps" in sensingare aeptable to the appliation.3 Asymptoti Connetivity of PEASA PEAS model We present the following PEASmodel to aid the analysis. Consider a two-dimensionalnetwork �eld5. We imagine eah working node as around pea that oupies a irular area of radius Rp=2.Sleeping or probing nodes do not oupy any area. Thedistane between the enters of any two peas is at leastRp=2 + Rp=2 = Rp, whih holds true when two peasare tangent to eah other.This is exatly what the prob-ing rule produes. On the other hand, any two workingnodes are separated by a distane of at least Rp. There-fore, positioning of working nodes is equivalent to theplaement of peas on the plane.To �nd out the onditions under whih PEAS en-sures a.a.s. onnetivity, let us onsider a suÆientlylarge network R = [0; l℄2 that is divided into squareells, eah of whih is of size �  and  = Rp. We �rstderive the onditions under whih eah ell has at leastone node a.a.s. based on Blough's Theorem 2 in [2℄.We then show that, if eah ell has at least one node,PEAS ensures onnetivity a.a.s. when the maximumtransmitting range Rt � (1 +p5)Rp.The following Lemma 3.1 spei�es the ondition un-der whih eah ell has at least one node a.a.s. Theomplete proof is similar to that of Theorem 2 in [2℄.Due to spae limit we put it in a tehnial report [12℄.Lemma 3.1 Consider the ase when n nodes are uni-formly distributed in R = [0; l℄d for d = 2, and as-sume that dn = kld ln l for some onstant k > 0. Let�0(n) be the random variable denoting the number ofempty ells. If k > d, then liml!1 E[�0(n)℄ = 0, whereE[�0(n)℄ is the expeted number of empty ells.Given the above ondition, we haveLemma 3.2 When Lemma 3.1 holds, i.e.,eah ell has at least one node a.a.s., for any5The model applies to three-dimensional as well.5
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Figure 8. A \disonneted" omponent always has an-other working node onnetedworking node A and its working neighbor B,liml!1 P (min(Dist(A;B)) < (1 + p5)) = 1,where Dist(A;B) denotes the distane between A andB, and min(Dist(A;B)) is the distane between Aand the losest working neighbor.Proof Beause Lemma 3.1 holds a.a.s. no matterhow the grid is oriented or where the grid is positioned,without any loss of generality, we let node A be at theenter of ells 1, 2, 3 and 4 (Figure 7). Aording to thepeas model, eah working node is a round pea of radius=2 and peas do not overlap with eah other. To avoidobsuring the main idea, we will onsider boundaryases later.Consider the worst-ase senario in whih all otherworking nodes are as far away from node A as possible.In suh ases, other nodes in ells 2, 3 and 4 are allwithin the probing range of A, and they are all sleeping.Consider node C in ell 5, whih is to the right of ell1. Give that node C is uniformly distributed and anbe anywhere in ell 5, the farthest it an be from A isat the upper right orner b of ell 5.In order to put node C (entered at orner b) intothe sleeping mode, node B must be working within theprobing range of C. Based on geometry alulations,the farthest position where B an be from node A, isin ell 6 and with a distane of (1 + p5). This isthe minimum distane within whih there must existat least another working node. Otherwise, if all work-ing neighbors are farther than this minimum distaneaway, node C will always be working, no matter whereit is loated within ell 5.We next onsider the boundary ase. The numberof nodes in boundary ells is O(l), whih is an order ofmagnitude lower than the total number O(l2). There-fore, it follows that P (min(Dist(A;B)) < (1 + p5))still approahes 1 as l!1.

Now we derive the ondition for asymptoti onne-tivity in PEAS.Theorem 3.1 If the transmitting range Rt � (1 +p5)Rp, and the onditions in Lemma 3.1 are satis�ed,then liml!1 Ponn(PEAS) = 1, where Ponn(PEAS)denotes the probability that working nodes in PEAS areonneted.Proof We prove the theorem by ontradition.Suppose the working nodes are not onneted. Let usonsider a onneted omponent S1 formed by a subsetof working nodes. Any working node in S1 has workingneighbors only in S1. Without any loss of generality, weonsider the \rightmost" node A in S1, and draw a gridthat is entered with A at a rossing point. A vertialline L is tangent to A (Figure 8). Any pea (workingnode) in S1 is to the left of L. Using arguments similarto Lemma 3.2, there must be a working node B whih isto the right of L and has at most a distane of (1+p5)to A. Sine the transmitting range Rt � (1 + p5)Rpand Rp = , nodes A and B are onneted. This on-tradits the assumption that any working node in S1 isonly onneted to other nodes in S1. Therefore, thereis no suh a disonneted omponent. Note that basedon similar reasoning, the boundary ase does not a�etthe asymptoti onnetivity as l!1. This ompletesthe proof.4 DisussionsCompensate paket losses Due to ollisions,PROBE and REPLY messages may get lost and auseprobing nodes to work unneessarily. To reduesuh errors, we let a probing node transmit multiplePROBEs thus eah working node reply multiple times.These multiple messages are randomly spread over a6



small time interval to redue ollisions. In experimentswe found that three PROBEs work well against lossrates of up to 10%. These multiple messages will in-rease energy but our evaluation in Setion 5 showsthat the energy overhead is still smaller than 1%.To further orret suh errors one they happen, wean make unneessary working nodes go bak to sleep:Eah working node reats to REPLYs sent by its work-ing neighbors, whih respond to probing nodes. Be-ause REPLYs are also sent within a distane of Rp,two working nodes are less than Rp away if they anhear the REPLYs from eah other. We an let oneof them go bak to sleep. In pratie, if either of thetwo working neighbors an turn o� the other, they maytake turns to work and ause an unstable working nodetopology. Sine many routing protools have to rebuildrouting states in new working nodes and su�er from un-stable topologies, we favor the one that has been work-ing for a longer time to stablize the topology: Eahworking node reords the time when it starts working.It alulates and inludes the time Tw { how long ithas been working { in its REPLYs. When a workingnode hears a REPLY, it goes to sleep only if its Tw isless than that of the sender's. So nodes that have beenworking for longer times an turn o� new working ones,but not vie versa.Probing nodes with more than one workingneighbors When a probing node has more than oneworking neighbors within its probing range, it may hearseveral REPLY messages, eah of whih ontains a dif-ferent ��. Suh a node annot replae any of the workingneighbors alone beause it an work only when all suhworking neighbors die. The probing from this node isnot ritial to the replaement of its working neighbors.We simply let suh a probing node adjust its � aord-ing to the largest measurement value, resulting in thelowest probing rate.Nodes with �xed transmission power In Setion2 we assume that eah node an hoose a transmittingpower to reah a desired probing range Rp. For sensorswith �xed transmission power, they an use a thresh-old �ltering rule regarding the reeived signal strength.A working node reats only to PROBE messages withsignal strengths greater than a threshold Sth. Simi-larly, a probing node goes to sleep again only if theREPLY has a signal strength greater than Sth. In aharsh environment, irregularities in signal attenuationmay generate di�erent signal strengths in di�erent ar-eas, thus working nodes in areas with poorer signalreeption an be denser than those in other areas. Webelieve that this is desirable beause it is only with

more working nodes in suh areas that the same levelof robustness is maintained.Distribution of deployed nodes As long as the de-ployed nodes are dense enough everywhere, PEAS ankeep enough working nodes in eah region, indepen-dent of the partiular distribution of deployed nodes.But the deployment distribution of sensor nodes doesa�et the performane of the network. An uneven dis-tribution may ause the system to funtion for less timebeause regions with fewer nodes will die out muh ear-lier. This argues for evenly distributed sensor deploy-ment. Although a omplete study of this issue is outof the sope of this paper, we believe evenly deployednodes will work longer than those deployed irregularly.5 Performane Evaluation
5.1 Methodology and MetricsWe implement PEAS in PARSEC [1℄ and selet sen-sor hardware parameters similar to Berkeley Motes [5℄.The node power onsumptions in transmission, reep-tion, idle and sleep modes are 60mW, 12mW, 12mWand 0.03mW, respetively. The initial energy of anode is randomly hosen from the range of 54 � 60Jules to simulate the variane of battery lifetime, al-lowing the node to operate about 4500 � 5000 seondsin reeption/idle modes. The sensing and maximumtransmitting ranges are both 10 meters. Eah nodehas a raw wireless ommuniation apaity of 20Kbps.The paket size of PROBE and REPLY messages is 25bytes, whih is enough to hold the information theyneed to arry.
5.2 Prolong system functioning timeWe use a 50�50m2 network �eld, and nodes are uni-formly distributed in the �eld initially and remain sta-tionary one deployed. A soure and a sink are plaedin opposite orners of the �eld. The soure generatesa data report every 10 seonds and the data report isdelivered to the sink using the GRAB forwarding pro-tool [11℄. The initial per-node probing rate � is hosenas 0.1 wakeup/se so that the number of working nodesquikly stabilizes. The probing range is set to 3 meters.The desired aggregate probing rate �d is hosen as 0.02wakeup/se, whih is equivalent to a wakeup every 50seonds pereived by a working node.To evaluate the robustness of PEAS protool, wearti�ially injet node failures whih are randomly dis-tributed over time in the simulation. The failure ratedenotes the average number of failures per unit time.7
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Figure 11. Average TotalWakeup Count for DeploymentNumbersThe failure perentage is the perentage of failed nodes.Note that failures are deaths not inurred by energydepletions.The main metris used are sensing overage life-time and data delivery lifetime. The sensing overageis de�ned as the perentage of the �eld monitored byworking nodes. An appliation may require that eahpoint in the �eld be monitored by at least K workingnodes for robustness. We de�ne K-overage (or over-age K) as the perentage of the �eld size monitored byat leastK working nodes. The lifetime of K-overage isthe time duration from the beginning until K-overagedrops below a threshold value. It haraterizes howlong the system ensures that interested events are mon-itored and reported properly.The data suess ratio at any time is the ratio ofthe number of reports suessfully reeived at the sinkto the total number of reports generated by the soureup to that time. Data delivery lifetime is de�ned asthe time when the data suess ratio drops below athreshold. It spei�es how long the network an deliverreports to users. Both threshold values are hosen as90%.We measure the overhead of PEAS by the numberof wakeups and alulate the energy onsumed by itsoperations.To see how PEAS adapts to varying node popula-tion, we set the node number as 160, 320, 480, 640and 800 and simulate for a suÆiently long period oftime until all nodes die. We assume the appliationrequires that eah point be monitored by at least 4working nodes. Given a probing range of 3 meters, 160nodes result in a lose to 100% 4-overage ratio but lessthan 95% 5-overage, so we hoose 160 as the \base"number. Given eah node population, the results areaveraged over 5 simulation runs, eah of whih uses afailure rate of 10.66 failures/5000 seonds.We now present how PEAS extends the overageand data delivery lifetimes with more deployed nodes.

Node Number Energy Overhead Overhead Ratio160 11.58J 0.143%320 34.18J 0.207%480 58.68J 0.236%640 83.53J 0.25%800 111.11J 0.267%
Table 1. Energy Overhead for Deployment NumbersFigure 9 shows the lifetimes of 3, 4 and 5-overage.As the sensor population inreases, eah lifetime in-reases almost linearly. This is beause PEAS keepsonly a neessary number of nodes working, while turn-ing o� others. The more deployed nodes, the more inthe sleeping mode, and the longer they an keep thesensing overage. We also observe that the lifetimes of3-overage are longer than those of 4-overage, beauseless working nodes are required to over eah area byat least 3 nodes. Similar is true for the ases of 4- and5-overage.The data delivery lifetime is shown in Figure 10.Given 160 nodes, the data delivery lifetime is about6600 seonds, longer than the maximum idling lifetimeof a node. This is beause the working nodes thatreplae the initial set of working ones still deliver somereports. So it takes some time after 5000 seonds forthe total suess ratio to drop below the 90% thresholdvalue.As the deployment number inreases, the averagedata delivery lifetime inreases linearly. Eah addi-tional inrease in node number prolongs the deliverylifetime for about another 6000 seonds. The aboveresults demonstrate that PEAS is able to inrease thenetwork funtioning lifetime (sensing and ommuniat-ing) in proportional to node population.We then look at the overhead inurred for PEAS'operations. Figure 11 shows the average number ofwakeups for eah deployment number. This numberalso grows linearly as the node population inreases.8
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Figure 12. Coverage Lifetimewith Failures 5.33 10.66 16 21.33 26.66 32 37.33 42.66 48
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Figure 13. Data Delivery Life-time with Failures 5.33 10.66 16 21.33 26.66 32 37.33 42.66 48
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Figure 14. Average TotalWakeup Count for Failure RatesThis is beause Adaptive Sleeping adjusts the wakeupfrequeny to the desired level. When the network fun-tions longer, more wakeups happen.To measure the energy overhead, we �rst alulatethe energy used in eah wakeup. The energy usedin a wakeup onsists of the amount in transmittingand reeiving PROBE and REPLY messages, and theamount a probing node waits in idling to reeive RE-PLYs. Based on the urrent implementation in whiha probing node transmits three PROBEs and waitsfor 100ms during whih working nodes randomly bako� to send REPLYs, the amount is 0.00316 Joule perwakeup. Using this estimation, we plot the amount ofenergy overhead and its ratio ompared with the to-tal energy onsumption in Table 1. The table showsthat the energy overhead is less than 0.3% of the to-tal energy onsumption. This small energy overheaddemonstrates the eÆieny ahieved by the simpliityand adaptivity of PEAS.
5.3 Robustness against node failuresWe now evaluate the robustness of PEAS againstnode failures. The initial node population is set to480 and we inrease the failure rate from 5.33 to 48failures per 5000 seonds at inremental steps of 5.33.We alulate the average failure perentage | the ratioof failed nodes to the total deployed nodes and �nd thatthere are about 38% nodes that fail in the maximumfailure rate ase.Similarly, we use the overage and data delivery life-times to evaluate the robustness of PEAS. If PEASis not robust enough to maintain suÆient workingnodes in the presene of severe node failures, the systemwould work for disproportionately less time or mightnot funtion at all.Figure 12 plots the overage lifetimes under the fail-ure rates from 5.33 to 48. As the failure rate inreases,system lifetime tends to derease. However, as longas there are enough sleeping nodes to overome node

failures, PEAS maintains a high overage above thethreshold. Even with the most severe failures (with38% node failure), the overage lifetime drops only be-tween 12% to 20%. This shows that not only failednodes are replaed, but also the replaements happenquikly enough to minimize interruptions (The few ab-normal points were aused by random fators).The average data delivery lifetime for eah failurerate is shown in Figure 13. The drop is about 20%,similar to that of overage lifetime. This shows thatPEAS maintains enough working nodes to provide highquality ommuniation onnetivity in the presene ofsevere node failures.Finally we present the wakeup and energy overhead.The robustness of a protool should not ome at theost of exessive overhead to ombat failures. ForPEAS, the number of wakeups dereases as the fail-ure rate inreases (Figure 14). This is beause thereare less sleeping nodes for higher failure rates. We alsomeasure the energy overhead for all failure rates, andit is onstantly less than 0.25% of the total energy on-sumption. The same level of small overhead for varyingfailure rates demonstrates that PEAS ahieves robust-ness at roughly onstant overhead and does not on-sume exessive energy to overome failures.6 Related WorkTo preserve the limited battery power, various ap-proahes have been explored to put unneessary nodesinto sleeping mode for both wireless ad ho networks(e.g. GAF[10℄, SPAN[4℄, AFECA[9℄) and sensor net-works (e.g. ASCENT[3℄). SPAN lets eah node keep alist of all its working neighbors and exhange this listwith its neighbor nodes. As a result, all nodes learnthe onnetivity within their 2-hop neighborhood todeide whih nodes to turn o�. The sleeping nodeswake up at a sheduled time interval to re-elet work-ing ones. GAF divides the network into grid ells. As-suming eah node knows its loation through GPS or9



other loation servie, eah node knows whih grid itis in. Within eah grid only one node stays up and therest goes to sleep, with the sleep time set as a fun-tion of the remaining energy of the working node. Asa result, the number of wakeups in GAF is propor-tional to the number of deployed nodes. In AFECA,eah node maintains a list of neighbor identi�ers in or-der to keep trak of the number of neighbors, basedon whih it deides the sleeping period. In ASCENT,eah node measures the number of ative neighbors andper-link data loss rates through data traÆ. The nodedeides whether it should work or go to sleep based ona funtion of the above fators. In summary, the abovementioned solutions either maintain some per-neighbornode state at eah node, or operate based on the pre-dited lifetime of the working nodes (or do both).To prolong the system lifetime PEAS uses the samebasi approah of turning o� unused nodes to preserveenergy. However to be both resilient against unpre-ditable node failures in a harsh or even hostile en-vironment and versatile under various degrees of de-ployment density, in PEAS nodes do not keep any per-neighbor information. PEAS utilizes a random wakeupalgorithm that adapts to observed node failure rate.Instead of ounting the number of neighbor nodes, awakeup node in PEAS probes the spae surroundingitself to deide whether to go bak to sleep. Insteadof relying on multiple node oordination suh as aneletion to deide who should be the working node,PEAS design exploits randomization and adaptivity toahieve simpliity and salability.7 ConlusionAlthough it is eonomially feasible to build large-sale sensor networks using large quantities of inex-pensive sensors, building a resilient, long-lived networkwith unreliable, short-lived sensors remains a researhhallenge. Sine a real operational environment may beharsh or hostile, nodes may fail unexpetedly beforetheir power depletion. Existing energy-saving proto-ols have mostly foused on maintaining a stable set ofworking nodes in the presene of node power depletion,without paying attention to unexpeted node failures.We have developed PEAS, a distributed and ran-domized energy-saving protool for sensor networks.PEAS lets eah node probe its loal operating spae tomaintain a desired working node density while avoidingthe overhead of keeping per neighbor state. To handleunpreditable node failures, PEAS uses a randomizedwakeup algorithm that an self-adapt to node failures.PEAS keeps the working node density approximatelyonstant independent of the node deployment density
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