Event Management in Multivariate Streaming Sensor Data

Event management lifecycle in SN

What is an event?

- A. Change detection
- Continuous monitoring of sensor streams
- Abrupt change on value distribution
(0.12, 1.11, 1.09, 2566.04, ...)
- Algorithms
- Single variate regression
- CUMSUM, Schewart Controller
- Multi-variate regression
- B. Predefined conditions checked in real-time
- Events are stored as a binary table

Online event processing

Change Det: Cumulative Sum (CUSUM)

ALGORITHM 1. Cumulative Sum (CUSUM)

Input: univariate time series x_{t}, target value μ, above-tolerance k^{+}, below-tolerance k^{-}, above-threshold thres ${ }^{+}$, below-threshold thres ${ }^{-}$
Output: above detection signal s^{+}, below detection signal s^{-}

```
\(P \leftarrow 0 ;\)
\(N \leftarrow 0\);
\(t \leftarrow 1\);
while ( true)
    \(s^{+} \leftarrow 0\);
    \(s^{-} \leftarrow 0\);
    \(P \leftarrow \max \left(0, x_{t}-\left(\mu+k^{+}\right)+P\right) ;\)
    \(N \leftarrow \min \left(0, x_{t}-\left(\mu-k^{-}\right)+N\right)\);
    if \(\left(P>\right.\) thres \(\left.^{+}\right)\)then
        \(s^{+} \leftarrow 1 ;\)
        \(P \leftarrow 0 ;\)
            \(N \leftarrow 0 ;\)
    end
    if ( \(N<-\) thres \({ }^{-}\)) then
        \(s^{+} \leftarrow 1 ;\)
            \(P \leftarrow 0\);
            \(N \leftarrow 0 ;\)
        end
        \(t \leftarrow t+1\);
end
```


Change Det: Shewhart controller

```
ALGORITHM 2. Shewhart Control Chart
Input: univariate time series \(x_{t}\), tightness \(k\)
Output: detection signal \(s\)
```

```
\(\bar{x}_{0} \leftarrow 0\);
```

$\bar{x}_{0} \leftarrow 0$;
$\sigma_{0} \leftarrow 0 ;$
$\sigma_{0} \leftarrow 0 ;$
$t \leftarrow 1$;
$t \leftarrow 1$;
while (true)
while (true)
$\bar{x}_{t} \leftarrow \bar{x}_{t-1}+\frac{x_{t}-\bar{x}_{t-1}}{t} ;$
$\bar{x}_{t} \leftarrow \bar{x}_{t-1}+\frac{x_{t}-\bar{x}_{t-1}}{t} ;$
$\sigma_{t} \leftarrow \sqrt{\frac{1}{t}\left((t-1) \cdot \sigma_{t-1}^{2}+\left(x_{t}-\bar{x}_{t}\right)\left(x_{t}-\bar{x}_{t-1}\right)\right)} ;$
$\sigma_{t} \leftarrow \sqrt{\frac{1}{t}\left((t-1) \cdot \sigma_{t-1}^{2}+\left(x_{t}-\bar{x}_{t}\right)\left(x_{t}-\bar{x}_{t-1}\right)\right)} ;$
$U C L_{t} \leftarrow \bar{x}_{t}+k \cdot \sigma_{t} ;$
$U C L_{t} \leftarrow \bar{x}_{t}+k \cdot \sigma_{t} ;$
$L C L_{t} \leftarrow \bar{x}_{t}-k \cdot \sigma_{t} ;$
$L C L_{t} \leftarrow \bar{x}_{t}-k \cdot \sigma_{t} ;$
if $\left(\left(x_{t}>U C L\right)\right.$ or $\left.\left(x_{t}<L C L\right)\right)$ then
if $\left(\left(x_{t}>U C L\right)\right.$ or $\left.\left(x_{t}<L C L\right)\right)$ then
$s \leftarrow 1 ;$
$s \leftarrow 1 ;$
else
else
$s \leftarrow 0 ;$
$s \leftarrow 0 ;$
end
end
$t \leftarrow t+1 ;$
$t \leftarrow t+1 ;$
end

```
    end
```


Change Det: Multivariate Autoregressive Model (MAR)

ALGORITHM 3. MAR-based change detection

Input: multivariate time series $\boldsymbol{x}_{t}=\left(x_{1, t}, \ldots, x_{n, t}\right)$, number of training samples k, thresholds (thresh h_{1}, \ldots, thres h_{n})
Output: detection signal s
Estimate the model $\left\langle c, \phi, \Pi_{1}, \Pi_{2}, \ldots, \boldsymbol{\Pi}_{\phi}\right\rangle$ that fits the training data $\left\{\boldsymbol{x}_{i}\right\}, \forall t \in[1, k]$ $t \leftarrow k+1 ;$
while (true)
$\tilde{\boldsymbol{x}}_{t} \leftarrow c+\Pi_{1} \boldsymbol{x}_{t-1}+\ldots+\boldsymbol{\Pi}_{\phi} \boldsymbol{x}_{t-\phi} ;$
for $i \leftarrow 1$ to n
$e_{i, t} \leftarrow \frac{\left\|x_{i, t}-\tilde{x}_{i, t}\right\|}{\left\|x_{i, t}\right\|} ;$
if $\left(e_{i, t}>\right.$ thresh $\left.h_{i}\right)$ then

$$
s \leftarrow 1
$$

else $s \leftarrow 0 ;$ end end
end

Event Correlation Engine (ECE)

- Data-driven approach (no pre-defined model)
- Facilitates decision-making process
- Post-analysis of events (offline mode)
- Root Cause - RC determination, Cause analysis
- Explanation (the sequence of events that led to an event triggering)
- Prediction (online mode)
- Predict system behavior in the near future (events that will be possibly triggered - coming with a probability value)

Event Correlation: Stepwise approach

$$
\begin{aligned}
& (\forall t \in N)\left(\forall I_{l}, I_{m} \subseteq I\right) P_{l_{I_{q}}}^{\text {FI }}=P\left(I_{m} \mid I_{l}, \overline{1: t}\right)=
\end{aligned}
$$

Event Correlation: Variable-order approach

- Similar to the previous approach, but now multiple Markov models are considered
- Markov-chains of order $1, \ldots, m$ are combined to predict event sequences of length up to m

Event Correlation: Sliding-window approach

$$
\left.\begin{array}{l}
\alpha_{v}^{t}=\left\{\begin{array}{l}
1 \quad \text { if } \prod_{e_{i} \in I_{v}} e_{i}^{t}=1 \\
0 \quad \text { otherwise }
\end{array}\right. \\
\beta_{u v}^{\mathrm{t}_{2}, t_{2}}=\left\{\begin{array}{l}
1 \quad \text { if } \prod_{e_{i} \in I_{u}, e_{j} \in I_{v}} e_{i}^{t_{1}} \cdot e_{j}^{t_{2}=1} \\
0 \quad \text { otherwise }
\end{array}\right. \\
(\forall u, v \in V) \quad N_{u v}^{t, w}=\sum_{i=t-w+1}^{t} \sum_{j=i}^{t} \beta_{u v}^{i, j}
\end{array}\right\} \begin{aligned}
& (\forall u, v \in V) \quad P_{u v}^{t}=\frac{\sum_{j=t-w+1}^{t} \alpha_{u}^{j} \cdot(t-j+1)}{N_{u v}^{t, w}}
\end{aligned}
$$

Dependency Graph

- Probabilistic Directed Graph (cycles are possible)
- V (nodes): attributes (in our case sensors)
- E (edges): event transition
- $P_{i j}$: conditional probabilities of event pairs $\mathrm{V}_{i}-V_{j}$
- Parameters
- w: look-ahead window
$-p_{c}$: cutoff probability
$-a$: aging factor
- Formal transformation into "if...then" rules (SWRL)
- Possible execution inside a probabilistic rule engine

Event prediction

- Event prediction by probabilistic temporal reasoning
- probabilistic temporal rules [Shakarian et al. 2011] $A \rightarrow B:[t, p]$
$-A, B$ are (ground) formulae consisting of (ground) atoms and typical logic programming operators for conjunction, disjunction and negation while the (ground) formula B is annotated with a probability value p and a time unit t.

Adaptive filtering of rules

- Use of aging or decay function $\lambda\left(r_{t}\right)=f(t)$
- $f(t)$: Linear or exponential degradation

$$
\lambda\left(r_{i}\right)=-\frac{2 k}{n-1}(i-1)+k+1 \quad \lambda\left(r_{i}\right)=\exp (-k i)
$$

Rules probability

Complete Graph

Extract Useful Correlations

- Implementation technologies
- Java, Oracle DB, JGraphT lib for visualization

