
Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 1 of 146

Go Back

Full Screen

Close

Quit

Molecular Evolution and Phylogenetics
Cambridge University Edition II

Arbiza Leonardo & Hernán Dopazo∗

Pharmacogenomics and Comparative Genomics Unit

Bioinformatics Department†

Centro de Investigación Pŕıncipe Felipe‡
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1. Objectives

• This short, but intensive course, has the purpose to introduce students
to the main concepts of molecular evolution and phylogenetics
analysis:

– Homology

– Models of Sequence Evolution

– Molecular Adaptation

– Cladograms & Phylograms

– Outgroups & Ingroups

– Rooted & Unrooted trees

– Phylogenetic Methods: MP, ML, Distances

• The course consists of a series of lectures and PC. Lab. sessions that
will familiarize the student with the statistical problem of phylogenetic
reconstruction and its multiple uses in biology.
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2. Introduction

2.1. Three basic questions

• Why use phylogenies?

– Like astronomy, biology is an historical science!

– The knowledge of the past is important to solve many questions re-
lated to biological patterns and processes.

• Can we know the past?

– We can postulate alternative evolutionary scenarios (hypothesis)

– Obtain the proper dataset and get statistical confidence

• What means to know ”...the phylogeny”?

– The ancestral-descendant relationships (tree topology)

– The distances between them (tree branch lengths)

Phylogenies are working hypotheses!!!
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2.2. Applications of phylogenies

Phylogenetic information is used in different areas of biology. From population
genetics to macroevolutionary studies, from epidemiology to animal behaviour,
from forensic practice to conservation ecology 1. In spite of this broad range of
applications, phylogenies are used by making inferences from:

1. Tree topology and branch lengths:

• Applications in evolutionary genetics deducing partial internal du-
plication of genes [26], recombination [24], reassortment [7], gene con-
version [85], translocations [56] or xenology [92, 83].

• Applications in population genetics in order to quantify parameters
and processes like gene flow [95], mutation rate, population size [21],
natural selection [30] and speciation [44] 2

• Applications by estimating rates and dates in order to check clock-
like behaviour of genes [27], to date events in epidemiological studies
[111], or macroevolutionary events [55, 39, 38].

• Applications by testing evolutionary processes like coevolution
[34], cospeciation [76, 75], biogeography [99, 33], molecular adapta-
tion, neutrality, convergence, tissue tropisms (HIV clones), the origin
of geneteic code, stress effects in bacteria, etc.

1See [36] for a comprehensive revision on the issue
2See [16] for a review on these methods.



Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 5 of 146

Go Back

Full Screen

Close

Quit

• Applications in conservation biology [70], forensic or legal cases [45],
the list is far less than exhaustive!!!

2. Mapping character states on to the tree:

• Applications in comparative biology [37, 5, 76], in areas like animal
behaviour [64, 5], development [67], speciation and adaptation [5]
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3. Tree Terminology

3.1. Topology, branches, nodes & root

• Nodes & branches.Trees contain internal and external nodes and branches.
In molecular phylogenetics, external nodes are sequences representing
genes, populations or species!. Sometimes, internal nodes contain
the ancestral information of the clustered species. A branch defines the
relationship between sequences in terms of descent and ancestry.
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• Root is the common ancestor of all the sequences.

• Topology represents the branching pattern. Branches can rotate on
internal nodes. Instead of the singular aspect, the folowing trees represent
a single phylogeny.

The topology is the same!!
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• Taxa. (plural of taxon or operaqtional taxonomic unit (OTU)) Any group
of organisms, populations or sequences considered to be sufficiently distinct
from other of such groups to be treated as a separate unit.

• Polytomies. Sometimes trees does not show fully bifurcated (binary)
topologies. In that cases, the tree is considered not resolved. Only the
relationships of species 1-3, 4 and 5 are known.

Polytomies can be solved by using more sequences, more
characters or both!!!



Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 9 of 146

Go Back

Full Screen

Close

Quit

3.2. Rooted & Unrooted trees

Trees can be rooted or unrooted depending on the explicit definition or not
of outgroup sequence or taxa.

• Outgroup is any group of sequences used in the analysis that is not in-
cluded in the sequences under study (ingroup).

• Unrooted trees show the topological relationships among sequences al-
thoug it is impossible to deduce wether nodes (ni) represent a primitive or
derived evolutionary condition.

• Rooted trees show the evolutionary basal and derived evolutionary rela-
tionships among sequences.

Rooting by outgroup is frequent in molecular phylogenetics!!
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3.3. Cladograms & Phylograms

Trees showing branching order exclusivelly (cladogenesis) are principally the
interest of systematists3 to make inferences on taxonomy4. Those interesting in
the evolutionary processes emphasize on branch lengths information (anagenesis).

• Dendrogram is a branching diagram in the form of a tree used to depict
degrees of relationship or resemblance.

• Cladogram is a branching diagram depicting the hierarchical arrangement
of taxa defined by cladistic methods (the distribution of shared derived
characters -synapomorphies-).

3The study of biological diversity.
4The theory and practice of describing, naming and classifying organisms
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• Phylogram is a phylogenetic tree that indicates the relationships between
the taxa and also conveys a sense of time or rate of evolution. The tem-
poral aspect of a phylogram is missing from a cladogram or a generalized
dendogram.

• Distance scale represents the number of differences between sequences
(e.g. 0.1 means 10 % differences between two sequences)

Rooted and unrooted phylograms or cladograms are frequently
used in molecular systematics!
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3.4. Monophyletic Groups

Taxonomic groups, to be real, must represent a community of organisms
descending from a common ancestor.This is part of the Darwinian
legacy.
Monophyletic group represents a group of organisms with the same tax-
onomic title (say genus, family, phylum, etc.) that are shown phylogenet-
ically to share a common ancestor that is exclusive to these organisms.
They are, by definition, natural groups or clades.
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3.5. Consensus trees

It is frequent to obtain alternative phylogenetic hypothesis from a single
data set. In such a case, it is usefull to summarize common or average
relationships among the original set of trees. A number of different types
of consensus trees have been proposed;

• The strict consensus tree includes only those monophyletic branches
occurring in all the original trees. It is the most conservative consen-
sus.
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• The majority rule consensus tree uses a simple majority of rela-
tionships among the fundamental trees.

A consensus tree is a summary of how well the original trees agrees.
A consensus tree is NOT a phylogeny!!.5

A helpfull manual covering these and other concepts of the section can be
obtained in [106, 77].

5Any consensus tree may be used as a phylogeny only if it is identical in topology to one of
the original equally parsimonious trees.
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4. Homology

Richard Owen’s (1847) most famous contributions to theorethical compar-
ative anatomy were to distinguish between homologous and analogous
features in organisms and to present the concept of archetype. The verte-
brate archetype consists of a linear series of ”vertebrae” and ”apendages”,
little modified from a single basic plan. Each vertebra of the archetype is
a serial homologue of every other vertebra of the archetype. Two corre-
sponding vertebrae, each from different animal, are special homologues
of one another, and general homologues of the corresponding vertebra
of the archetype6.

Homologue...”The same organ in different animals under every variety of
form and function”.
Analogue...”A part or organ in one animal which has the same function
as another part or organ in a different animal”.

6See [79] and chapters of the referenced book for a complete discussion of the term
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The Origin of Species. Charles Darwin. Chapter 14

What can be more curious than that the hand of a man, formed
for grasping, that of a mole for digging, the leg of the horse,
the paddle of the porpoise, and the wing of the bat, should all
be constructed on the same pattern, and should include similar
bones, in the same relative positions?

How inexplicable are the cases of serial homologies on the ordi-
nary view of creation!

Why should similar bones have been created to form the wing
and the leg of a bat, used as they are for such totally different
purposes, namely flying and walking?

Since Darwin homology was the result of descent with
modification from a common ancestor.
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4.1. Homology and Homoplasy

• Similarity among species could represent true homology (just by shar-
ing the same ancestral state) or, homoplastic events like conver-
gence, parallelism or reversals;

• Homology is a posteriori tree construction definition.
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• Convergences are ...

Homoplasy can provide misleading evidence of phylogenetic
relationships!! (if mistakenly interpreted as homology).
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• Parallels are ...

Homoplasy can provide misleading evidence of phylogenetic
relationships!! (if mistakenly interpreted as homology).
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• Reversions are ...

Homoplasy can provide misleading evidence of phylogenetic
relationships!! (if mistakenly interpreted as homology).
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4.2. Similarity

• For molecular sequence data, homology means that two sequences or
even two characters within sequences are descended from a common
ancestor.

• This term is frequently mis-used as a synonym of similarity.

• as in two sequences were 70% homologous.

• This is totally incorrect!

• Sequences show a certain amount of similarity.

• From this similarity value, we can probably infer that the sequences are
homologous or not.

• Homology is like pregnancy. You are either pregnant or not.

• Two sequences are either homologous or they are not.
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4.3. Sequence Homology

Homologous Genes are sequences that are descendant from a common
ancestor (e.g., all globins).

Fitch distinguished different kinds of homologous genes [29];

• Ortholog: Homologous genes that have diverged from each other
after speciation events (e.g., human β- and chimp β-globin).

• Paralog: Homologous genes that have diverged from each other after
gene duplication events (e.g., β- and γ-globin)

• Xenolog: Homologous genes that have diverged from each other af-
ter lateral gene transfer events (e.g., antibiotic resistance genes in
bacteria).
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Orthologous and Paralogous Relationships

Orthologous, Paralogous and Xenologous genes are a posteriori
phylogenetic tree reconstruction definitions !!
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Globins Gene Tree
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4.4. Positional homology

The common ancestry of specific amino acid or nucleotide positions in
different genes or sequences.
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5. Molecular Evolution

5.1. Molecular clock & Evolutionary Rates

The molecular clock hypothesis postulates that for any given macro-
molecule (a protein or DNA sequence), the rate of evolution -measured as
the mean number of amino acids or nucleotide sequence change per site per
year- is approximately constant over time in all the evolutionary lineages
[113].

This hypothesis has estimulated much interest in the use of macromolecules
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in evolutionay studies for two reasons:

• Sequences can be used as molecular markers to date evolutionary
events.

• The degree of rate change among sequences and lineages can provide
insights on mechanisms of molecular evolution. For example, a large
increase in the rate of evolution in a protein in a particular lineage
may indicate adaptive evolution.

Substitution rate estimation
It is based on the number of aa substitution (distance) and divergence time
(fossil calibration),
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There is no universal clock

It is known that clock variation exists for:

• different molecules, depending on their functional constraints,

• different regions in the same molecule,
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• different base position (synonimous-nonsynonimous),
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• different genomes in the same cell,

• different regions of genomes,

• different taxonomic groups for the same gene (lineage effects)
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6. Evolutionary Models

6.1. Multiple Hits

• The mutational change of DNA sequences varies with region. Even
considering protein coding sequence alone, the patterns of nucleotide
substitution at the first, second or third codon position are not the
same.

• When two DNA sequences are derived from a common ancestral se-
quence, the descendant sequences gradually diverge by nucleotide sub-
stitution.

• A simple measure of sequence divergence is the proportion p = Nd/Nt

of nucleotide sites at which the two sequences are different.
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• When p is large, it gives an underestimate of the number of of sub-
stitutions, because it does not take into account multiple substitu-
tions.
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• Sequences may saturate due to multiple changes (hits) at the same
position after lineage splitting.

• In the worst case, data may become random and all the phylogenetic
information about relationships can be lost!!!
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6.2. Models of nucleotide substitution

• In order to estimate the number of nucleotide substitutions
ocurred it is necessary to use a mathematical model of nucleotide
substitution. The model would consider the nucleotide frequencies
and the instantaneous rate’s change among them.
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• Interrrelationships among models for estimating the number of nu-
cleotide substitutions among a pair of DNA sequences
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• For constructing phylogenetic trees from distance measures, sophisti-
cated distances are not neccesary more efficient.

• Indeed, by using sophisticated models distances show higher variance
values.
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• Of course, corrected distances are greather than the observed.
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Distance correction methods share several assumptions:

• All nucleotide sites change independently.

• The substitution rate is constant over time and in different lineages

• The base composition is at equilibrium (all sequences have the same
base frequencies)

• The conditional probabilities of nucleotide substitutions are the same
for all sites and do not change over time.

While these assumptions make the methods tractable, they are
in many cases unrealistic.
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6.3. Rate heterogeneity correction

• In the evolutionary models considered, the rate of nucleotide substi-
tution is assumed to be the same for all nucleotide. This rarely holds,
and rates varies from site to site.

• In the case of protein coding genes this is obvious: 1, 2 and 3 positions.

• In the case of RNA coding genes, secondary structure consisting in
loops and stems have different substitutions rates.

• Statistical analyses have suggested that the rate variation approxi-
mately follows the gamma (Γ) distribution
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• Rate variation on different genes,

• Low α values corresponds to large rate variation. As α gets larger the
rate of variation diminishes, until as α approaches ∞ all sites have
the same substitution rate [107].

• Models are labeled as JC+Γ, K80+Γ, HKY+Γ, etc.

• Indeed models can be corrected by considering the proportion of
invariable sites (I) and the nucleotide frequency (F ): (JC+Γ+
I + F ) ; (K80+Γ + I + F ) ; (HKY+Γ + I + F ); etc.
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6.4. Selecting models of evolution

The best-fit model of evolution for a particular data set can be selected
through statistical testing. The fit to the data of different models can be
contrasted through likelihood ratio tests (LRTs) , the Akaike (AIC)
or the Bayesian (BIC) information criteria[82].

A natural way of comparing two models is to contrast their likelihood using
the LRT statistic:

∆ = 2(logeL1 − logeL0)

Where L1 is the maximum likelihood under the more parameter-rich, complex model(i.e., alternative

hypothesis) and L0 is the maximum likelihood under the less parameter-rich, simple model (i.e., null

hypothesis).

When model comparison is not nested, the AIC criteria, which measures the
expected distance between the true model and the estimated model can be used.

AICi = −2(logeLi + 2Ni)

Where Ni is the number of free parameters in the ith model and Li is the maximum likelihood value

of the data under the ith model.7

When LRT is significant (p ≤ 0.05, Chi-square comparison, degrees of freedom
equal to the difference in number of free parameters between the two models),
the more complex model is favored.

7See [80] for a clear theorethical and practical explanation on sequence model test’s methods.
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Comparing 2 different nested models through an LRT means testing hypothesis
about data. MODELTEST program [81] tests hierarchical LRTs in an ordered
way and compute AIC values.
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———————————————

6.5. Amino acid models

In contrast to DNA, the modeling of amino acid replacement has concentrated
on the empirical approach.
Dayhoff [12] developed a model of protein evolution that resulted in the devel-
opment of a set of widely used replacement matrices. In the Dayhoff approach,

• Replacement rates are derived from alignments of protein sequences 85%
identical,

• This ensures that the likelihood of a particular mutation (e.g., L 7→ V)
being the result of a set of successive mutations (e.g., L 7→ x 7→ y 7→ V) is
low.

• An implicit instantaneous rate matrix is estimated, and replacement prob-
ability matrices P(T ) are generated at different values of T

• One of the main uses of the Dayhoff matrices has been in databases search
methods, PAM50, PAM100, PAM250 corresponding to P(0.5), P(1) and
P(2.5), respectivelly.

• The number 250 in PAM250 corresponds to an average of 250 amino acid
replacements per 100 residues from a data set of 71 aligned sequences.
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Several later groups have attempted to extend Dayhoff’s methodology or
re-apply her analysis using later databases with more examples.

• Jones, et al. [49] used the same methodology as Dayhoff but with modern
databases and for membrane spanning proteins.

The BLOSUM series of matrices were created by Henikoff [41]. Features,

• Derived from local, ungapped alignments of distantly related sequences,

• All matrices are directly calculated; no extrapolations are used,

• The number of the matrix (BLOSUM62) refers to the minimum % identity
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of the blocks used to build the matrix; greater numbers, lesser distances,

• The BLOSUM series of matrices generally perform better than PAM ma-
trices for local similarity searches.

• Specific matrices modeling mitochondrial proteins exists [1, 63]

• Indeed, others approaches to have recently been done [62, 71, 104]8

8See [61, 105] for a review of evolutionary sequence models
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7. Distance Methods

Distance matrix methods is a major family of phylogenetic methods
trying to fit a tree to a matrix of pairwise distance [10, 28]. Distance are
generally corrected distances.

• The best way of thinking about distance matrix methods is to consider
distances as estimates of the branch length separating that pair of species.

• Branch lengths are not simply a function of time, they reflect expected
amounts of evolution in different branches of the tree.

• Two branches may reflect the same elapsed time (sister taxa), but they
can have different expected amounts of evolution.

• The product ri ∗ ti is the branch length

• The main distance-based tree-building methods are cluster analysis,
least square and minimum evolution.

• They rely on different assumptions, and their success or failure in retrieving
the correct phylogenetic tree depends on how well any particular data set
meet such assumptions.
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7.1. Ultrametric & Additive Trees
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7.2. Cluster Analysis

Cluster analysis derived from clustering algorithms popularized by Sokal and
Sneath[97]

7.2.1. UPGMA

One of the most popular distance approach is the unweighted pair-group
method with arithmetic mean (UPGMA), which is also the simplest method
for tree reconstruction [68].

1. Given a matrix of pairwise distances, find the clusters (taxa) i and j such
that dij is the minimum value in the table.

2. Define the depth of the branching between i and j (lij) to be dij/2

3. If i and j are the last 2 clusters, the tree is complete. Otherwise, create a
new cluster called u.

4. Define the distance from u to each other cluster (k, with k 6= i or j) to be
an average of the distances dki and dkj

5. Go back to step 1 with one less cluster; clusters i and j are eliminated,
and cluster u is added.

The variants of UPGMA are in the step 4. Weighted PGMA(WPGM::dku =
dki + dkj/2). Complete linkage (dku = max(dki, dkj). Single linkage(dku =
min(dki, dkj).
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The smallest distance in the first table is 0.1715 substitutions per sequence position separating Bacillus subtilis and B.

stearothermophilus. The distance between Bsu-Bst to Lvi (Lactobacillus viridescens) is (0.2147+0.2991)/2=0.2569. In

the second table, joins Bsu-Bst to Mlu(Micrococcus luteus) at the depth 0.1096(=0.2192/2). The distances Bsu-Bst-

Mlu to Lvi is (2*0.2569+0.3943)/3=0.3027. Notice that this value is identical to (Bsu:Lvi+Bst:Lvi+Mlu:Lvi)/3. Each

taxon in the original data table contributes equally to the averages, this is why the method called unweighted

UPGMA method supposes a cloclike behaviour of all the lineages,
giving a rooted and ultrametric tree.
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7.2.2. NJ (Neighboor Joining)

A variety of methods related to cluster analysis have been proposed that will
correctly reconstruct additive trees, whether the data are ultrametric or not. NJ
removes the assumption that the data are ultrametric.

1. For each terminal node i calculate its net divergence (ri) from all the other

taxa using 7→ ri =
N∑

k=1

dik
9.

2. Create a rate-corrected distance matrix (M) in which the elements are
defined by 7→ Mij = dij − (ri + rj)/(N − 2) 10.

3. Define a new node u whose three branches join nodes i, j and the rest
of tree. Define the lengths of the tree branches from u to i and j 7→
viu = dij/2 + ((ri − rj)/[2(N − 2)]; vju = dij − viu

4. Define the distance from u to each other terminal node (for all k 6= i or
j)7→ dku = (dik + djk − dij)/2

5. Remove distances to nodes i and j from the matrix, decrease N by 1

6. If more than2 nodes remain, go back to step 1. Otherwise, the tree is fully
defined except for the length of the branch joining the two remaining nodes
(i and j) 7→ vij = dij

9N is the number of terminal nodes
10Only the values i and j for which Mij is minimum need to be recorded, saving the entire

matrix is unnecessary
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The main virtue of neighbor-joining is its efficiency. It can be used on very large
data sets for which other phylogenetic analysis are computationally prohibitive.

Unlike the UPGMA, NJ does not assume that all lineages evolve at
the same rate and produces an unrooted tree.
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7.3. Pros & Cons of Distance Methods

• Pros:

– They are very fast,

– There are a lot of models to correct for multiple,

– LRT may be used to search for the best model.

• Cons:

– Information about evolution of particular characters is lost
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8. Maximum Parsimony

Most biologists are familiar with the usual notion of parsimony in science,
which essentially maintains that simpler hypotheses are prefereable to more com-
plicated ones and that ad hoc hypotheses should be avoided whenever possible.
The principle of maximum parsimony (MP) searches for a tree that requires the
smallest number of evolutionary changes to explain differences observed
among OTUs.

In general, parsimony methods operate by selecting trees that minimize the total
tree length: the number of evolutionary steps (transformation of one
character state to another) require to explain a given set of data.

In mathematical terms: from the set of possible trees, find all trees τ such that
L(τ) is minimal

L(τ) =
B∑

k=1

N∑
j=1

wj .diff(xk′j , xk′′j)

Where L(τ) is the length of the tree, B is the number of branches, N is the
number of characters, k′ and k′′ are the two nodes incident to each branch
k, xk′j and xk′′j represent either element of the input data matrix or optimal
character-state assignments made to internal nodes, and diff(y, z) is a function
specifying the cost of a transformation from state y to state z along any branch.
The coefficient wj assigns a weight to each character. Note also that diff(y, z)
needs not to be equal diff(z, y).11

11For methods that yield unrooted trees diff(y, z) =diff(z, y).
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Determining the length of the tree is computed by algorithmic methods[25, 90].
However, we will show how to calculate the length of a particular tree topology
((W,Y),(X,Z))12 for a specific site of a sequence, using Fitch (A) and transversion
parsimony (B)13:

• With equal costs, the minimum is 2 steps, achieved by 3 ways (internal
nodes ”A-C”, ”C-C”, ”G-C”),

• The alternative trees ((W,X),(Y,Z)) and ((W,Z),(Y,X)) also have 2 steps,

• Therefore, the character is said to be parsimony-uninformative,14

• With 4:1 ts:tv weighting scheme, the minimum length is 5 steps, achived
by two reconstructions (internal nodes ”A-C” and”G-C”),

• By evaluating the alternative topologies finds a minimum of 8 steps,
12Newick format
13Matrix character states: A,C,G,T
14A site is informative, only it favors one tree over the others
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• Therefore, under unequal costs, the character becomes informative.
The use of unequal costs may provide more information for phylogenetic
reconstruction,
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8.1. Pros & Cons of MP

• Pros:

– Does not depend on an explicit model of evolution (???),

– At least gives both, a tree and the associated hypotheses of character
evolution,

– If homoplasy is rare, gives reliable results,

• Cons:

– May give misleading results if homplasy is common (Long branch
attraction effect)

– Underestimate branch lengths

– Parsimony is often justified by phylosophical, instead statistical grounds.
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9. Searching Trees

9.1. How many trees are there?

The obvious method for searching the most parsimonious tree is to consider
all posible trees, one after another, and evaluate them. We will see that this
procedure becomes impossible for more than a few number of taxa (∼11).
Felsenstein [19] deduced that:

B(T ) =
T∏

i=3
(2i− 5)

An unrooted, fully resolved tree has:

• T terminal nodes, T − 2 internal nodes,

• 2T − 3 branches; T − 3 interior and T peripheral,

• B(T ) alternative topologies,

• Adding a root, adds one more internal node and one more internal
branch,

• Since the root can be placed along any 2T − 3 branches, the number of
possible rooted trees becomes,

B(T ) = (2T − 3)
T∏

i=3
(2i− 5)
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OTUs Rooted trees Unrooted trees

2 1 1
3 3 1
4 15 3
5 105 15
6 954 105
7 10,395 954
8 135,135 10,395
9 2,027,025 135,135
10 34,459,425 2,027,025
11 > 654x106 > 34x106

15 > 213x1012 > 7x1012

20 > 8x1021 > 2x1020

50 > 6x1081 > 2x1076

The observable universe has about 8.8x1077 atoms

There is not memory neither time to evaluate all the trees!!

For 11 or fewer taxa, a brute-force exhaustive search is feasible!!
For more than 11 taxa an heuristic search is the best solution!!
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9.2. Exhaustive search methods

• Every possible tree is examined; the shortest tree will always be
found,

• Taxon addition sequence is important only in that the algorithm needs
to remember where it is,

• Search will also generate a list of the lenths of all possible trees, which
can be plotted as an histogram,
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9.3. Heuristic search methods

When a data set is too large to permit the use of exact methods, optimal
trees must be sought via heuristic approaches that sacrifice the guarantee of
optimality in favor of reduced computing time

Two kind of algorithms can be used:

1. Greedy Algorithms

2. Branch Swapping Algorithms

9.3.1. Greedy Algorithms

Strategies of this sort are often called the greedy algorithm because they seize
the first improvement that they see. Two major algorithms exist:

• Stepwise Addition,

• Star Decomposition15

Both algoritms are prone to entrapment in local optima

15See Additional Material
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Stepwise Addition

• Use addition sequence similar to that for an exhaustive search, but at each
addition, determines the shortest tree, and add the next taxon to that tree.

• Addition sequence will affect the tree topology that is found!
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9.3.2. Branch Swapping Algorithms

It may be possible to improve the greedy solutions by performing sets of pre-
defined rearrangements, or branch swappings. Examples of branch swapping
algorithms are:

NNI - Nearest Neighbor Interchange, SPR - Subtree Pruning and Regrafting,
TBR - Tree Bisection and Reconnection.
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Tree Bisection & Reconnection

• Divide tree into two parts,

• Reconnect by a pair of branches, attempting every possible pair of branches
to rejoin

• NNI and SPR are subsets of TBR
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10. Statistical Methods

10.1. Maximum Likelihood

♣ The phylogenetic methods described infered the history (or the set of
histories) that were most consistent with a set of observed data.
All the methods explained used sequences as data and give one or more trees
as phylogenetic hypotheses. Then, they use the logic of:

P (H/D)

♠ Maximum Likelihood (ML)16 methods (or maximum probability)
computes the probability of obtaining the data (the observed aligned
sequences) given a defined hypothesis (the tree and the model of evolu-
tion). That is:

P (D/H)

A coin example
The ML estimation of the heads probabilities of a coin that is tossed n times.

16ML was invented by Ronal A. Fisher [23]. Likelihood methods for phylogenies were intro-
duced by Edwars and Cavalli-Sforza for gene frequency data [9]. Felsenstein showed how to
compute ML for DNA sequences [20].
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If tosses are all independent, and all have the same unknown heads prob-
ability p, then the observing sequence of tosses:

HHTTHTHHTTT

we can calculate the ML of these data as:

L = Prob(D/p) = pp(1− p)(1− p)p(1− p)pp(1− p)(1− p)(1− p) = p5(1− p)6

Ploting L against p, we observe the probabilities of the same data (D) for dif-
ferent values of p.

Thus the ML or the maximum probability to observe the above sequence of
events is at p = 0.4545,

That is: 5
11 ⇒ ( heads

heads+tails)
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? This can be verified by taking the derivative of L with respect to p:

dL
dp = 5p4(1− p)6 − 6p5(1− p)5

equating it to zero, and solving:

dL
dp = p4(1− p)5[5(1− p)− 6p] = 0 −→ p̂ = 5/11

? More easily, likelihoods are often maximized by maximizing their loga-
rithms:

lnL = 5lnp + 6ln(1− p)

whose derivative is:

d(lnL)
dp = 5

p −
6

1−p = 0 −→ p̂ = 5/11
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The likelihood of a sequence

Suppose we have:

• Data: a sequence of 10 nucleotides long, say AAAAAAAATG

• Model: Jukes-Cantor −→ f(A,C,G,T ) = 1
4

• Model: Model1 −→ f(A,C,G,T ) = 1
2 ; 1

5 ; 1
5 ; 1

10

LJC = (1
4)8.(1

4)0.(1
4).(1

4) = (1
4)10 = 9.53x10−07

LM1 = (1
2)8.(1

5)0.(1
5).( 1

10) = 7.81x10−05

LM1 is almost 100 times higher than to LJC model

Thus the JC model is not the best model to explain this data
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Since likelihoods takes the form of:

n∏
i=1

= xi , where: 0 ≤ xi ≤ 1 and generally n is large

it is convenient to report ML results as lnL or log(10)L

-12

-10

-8

-6

-4

-2

 0

 0  0.0002  0.0004  0.0006  0.0008  0.001

log10(x)
log(x)

lnL(JC) = −14.2711 ; lnL(M1) = −9.4575
When the more positive (less negative lnL values) the best likelihood
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The likelihood of a one-branch tree

Suppose we have:

• Data:

– Sequence 1 : 1 nucleotide long, say A

– Sequence 2 : 1 nucleotide long, say C

– Sequences are related by the simplest tree: a single branch

• Model:

– Jukes-Cantor −→ f(A,C,G,T ) = 1
4

– A
p←→C; p = 0.4

So, Ltree = 1
4 .(0.4) = 0.1

Since the model is reversible:

Ltree:A→C = Ltree:C→A
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Real Models

Suppose we have:

• Data:

Sequence 1 C C A T

Sequence 2 C C G T

• Model:17

π = [0.1, 0.4, 0.2, 0.3]

L(Seq.1→Seq.2) = πCPC→CπCPC→CπAPA→GπT PT→T

0.4x0.983x0.4x0.983x0.1x0.007x0.3x0.979
= 0.0000300

lnLtree:Seq1→Seq2 = −10.414

17Note that the base composition sum one, but indeed the the rows of substitution matrix
sum one. Why?
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L computation in a real problem

• Tree after rooting in an arbitrary node (reversible model).

• The likelihood for a particular site is the sum of the probabilities of every possible
reconstruction of ancestral states given some model of base substitution.

• The likelihood of the tree is the product of the likelihood at each site.

L = L(1) · L(2) · ... · L(N) =
NQ

j=1

L(j)

• The likelihood is reported as the sum of the log likelihhod of the full tree.

lnL = lnL(1) + lnL(2) + ... + lnL(N) =
NP

j=1

lnL(j)
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Modifying branch lengths

At moment for L computation we do not take into acount the posibility of
different branch lengths. However, we can infer that:

• For very short branches, the probability of characters staying the same is
high and the probability of it changing is low.

• For longer branches, the probability of character change becomes higher
and the probability of staying the same is low

• Previous calculations are based on a Certain Evolutionary Distance (CED)

• We can calculate the branch length being 2, 3, 4, ...n times larger (nCED)
by multiplying the substitution matrix P by itself n times.18

18At time the branch length increases, the probability values on the diagonal going down at
time the prob. off the diagonal going up. Why?
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Finally,

• The correct transformation of branch lengths (t) measured in substitutions
per site is computed and maximized by:

P (t) = eQt

Where Q is the instantaneous rate matrix specifying the rate of change between
pairs of nucleotides per instant of time dt.
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10.2. Pros & Cons of ML

• Pros:

– Each site has a likelihood,

– Accurate branch lengths,

– There is no need to correct for ”anything”,

– The model could include: instantaneous substitution rates, estimated
frequencies, among site rate variation and invariable sites,

– If the model is correct, the tree obtained is ”correct”,

– All sites are informative,

• Cons:

– If the model is correct, the tree obtained is ”correct”,

– Very computational intensive,
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10.3. Bayesian inference

♣ Maximum Likelihood will find the tree that is most likely to have pro-
duced the observed sequences, or formally P (D/H) (the probability of seeing
the data given the hypothesis).

♠ A Bayesian approach will give you the tree (or set of trees) that is most
likely to be explained by the sequences, or formally P (H/D) (the probability of
the hypothesis being correct given the data).

♦ Bayes Theorem provides a way to calculate the probability of a model
(tree topology and evolutionary model) from the results it produces (the aligned
sequences we have), what we call a posterior probability19.

P (θ/D) = P (θ)·P (D/θ)
P (D)

19See [57, 47, 46] for a clear explanation on bayesian phylogenetic method.
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The main components of Bayes analysis

• P (θ) The prior probability of a tree represents the probability of the tree
before the observations have been made. Typically, all trees are considered
equally probable.

• P (D/θ) The likelihood is proportional to the probability of the observa-
tions (data sets) conditional on the tree.

• P (θ/D) The posterior probability of a tree is the probability conditional
on the observations. It is obtained combined the prior and the likelihood
using the Bayes’ formula
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How to find the solution

There’s no analytical solution for a Bayesian system. However, giving:

• Data: Sequence data,

• Model: The evolutionary model, base frequencies, among site rate varia-
tion parameters, a tree topology, branch lengths

• Priors distribution on the model parameters, and

• A method for calculating posterior distribution from prior distribution
and data: MCMC technique20

Posterior probabilities can be estimated!!!

20Markov Chain Monte Carlo or the Metropolis-Hastings algorithm. See [57] for an easy
explanation of the techniques.
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• Each step in a Markov chain a random modification of the tree topology,
a branch length or a parameter in the substitution model (e.g. substitution
rate ratio) is assayed.

• If the posterior computed is larger than that of the current tree topol-
ogy and parameter values, the proposed step is taken.

• Steps downhill are not authomatic accepted, depending on the magnitude
of the decrease.

• Using these rules, the Markov chain visits regions of the tree space in
proportion of their posterior.

• Suppose you sample 100,000 trees and a particular clade appears in 74,695
of the sampled trees. The probability (giving the observed data) that the
group is monophyletic is 0.746, because MC visits trees in proportion
to their posterior probabilities.
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10.4. Pros & Cons of BI

• Pros:

– Faster than ML,

– Accurate branch lengths,

– There is no need to correct for ”anything”,

– The model could include: instantaneous substitution rates, estimated
frequencies, among site rate variation and invariable sites,

– If the dataset is correct, the tree obtained is ”correct”,

– All sites are informative,

– There is no neccesary bootstrap interpretations

• Cons:

– To what extent is the posterior distribution influenced by the prior?

– How do we know that the chains have converged onto the stationary
distribution?

– A solution: Compare independent runs starting from different points
in the parameter space
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11. Tree Confidence

11.1. Non-parametric bootstrapping

• For many simple distributions there are simple equations for calculating
confidence intervals around an estimate (e.g., std error of the mean)

• Trees, however are rather complicated structures, and it is extremely dif-
ficult to develop equations for confidence intervals around a phylogeny.

• One way to measure the confidence on a phylogenetic tree is by means
of the bootstrap non-parametric method of resampling the same sample
many times.
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• Each sample from the original sample is a pseudoreplicate. By gener-
ation many hundred or thousand pseudoreplicates, a majority consensus
rule tree can be obtained.

• High bootstrap values > 90% is indicative of strong phylogenetic signal.

• Bootstrap can be viewed as a way of exploring the robustness of phyloge-
netic inferences to perturbations

• Jackkniffe is another non-parametric resampling method that differen-
tiates from bootstrap in the way of sampling. Some proportion of the
characters are randomly selected and deleted (withouth replacement).

• Another technique used exclusively for parsimony is by means of Decay
index or Bremmer support. This is the length difference between
the shortest tree including the group and the shortest tree excluding the
group (The extra-steps require to overturn a group, then when greather
the best!).21

• DI & BPs generally correlates!!

21See [102] for a practical example using PAUP*[100]
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11.2. Paired site tests

The basic idea of paired sites tests is that we can compare two trees for either
parsimony or likelihood or likelihood scores.

• The expected log-likelihood of a tree is the average log-likelihood we would
get per site as the number of sites grows withouth limit.

• If evolution is independent, then if 2 trees have equal expected log-likelihoods,
differences must be zero.

• If we do a statistical test of whether the mean of these differences is zero,
we are also testing whether there is significant statistical evidence that one
tree is better than another.

• The original Kishino & Hasegawa test (KHT) [53] calculates the z
score; z = D√

VD

• The z score is assumend to be normally distribuited. If z-score > 1.96, a
topology is rejected at 0.05%.
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• The RELL test (resampling-estimated log-likelihood) where the variance
of distance log-likelihood differences is obtained by bootstrap method.

• When more than two topologies are contrasted, a multiple topology testing
must be performed. Shimodaira & Hasegawa test (SHT) [93], Gold-
man, Anderson & Rodrigo test (SOWH) [31] and the expected like-
lihood weights method (ELW) [98] are some of the most used methods
to test many alternative topologies.22

22Tree-Puzzle [91] is one of the multiple programs containing many of the tests here discussed.
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12. PC Lab

12.1. Download Programs

• PHYLIP http://evolution.genetics.washington.edu/phylip.html

• PAML http://abacus.gene.ucl.ac.uk/software/paml.html

• MEGA http://www.megasoftware.net/

• TREE-PUZZLE http://www.tree-puzzle.de/

• MrBayes http://morphbank.ebc.uu.se/mrbayes/download.php

• PHYML http://atgc.lirmm.fr/phyml/

• MODELTEST http://darwin.uvigo.es/software/modeltest.html

• PROTESTS http://darwin.uvigo.es/software/prottest.html

• Hyphy http://www.hyphy.org/current/index.php

• TreeView http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

• njplot http://pbil.univ-lyon1.fr/software/njplot.html

http://evolution.genetics.washington.edu/phylip.html
http://abacus.gene.ucl.ac.uk/software/paml.html 
http://www.megasoftware.net/
http://www.tree-puzzle.de/
http://morphbank.ebc.uu.se/mrbayes/download.php
http://atgc.lirmm.fr/phyml/
http://darwin.uvigo.es/software/modeltest.html
http://darwin.uvigo.es/software/prottest.html
http://www.hyphy.org/current/index.php
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://pbil.univ-lyon1.fr/software/njplot.html
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12.2. Download Data Sets

• PHYLIP format

– ADN (HIV) http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_phy.txt

– ADN (MtVert) http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_phy.txt

– Proteins (GPD) http://bioinfo.ochoa.fib.es/hdopazo/download/gpd2_phy.txt

• NEXUS format

– ADN (HIV) http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_nex.txt

– Proteins (GPD) http://bioinfo.ochoa.fib.es/hdopazo/download/gpd2_nex.txt

• MODELTEST format

– ADN (MtVert) http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_mdt.txt

– Lnscores http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_modelscores.txt

• MrBayes format

– ADN (HIV) http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_by.txt

12.3. Excercises

1. Distance using PHYLIP23.
23Remember to put the data set in the exe’ PHYLIP folder.

http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_phy.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_phy.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/gpd2_phy.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_nex.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/gpd2_nex.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_mdt.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/mtv1_modelscores.txt
http://bioinfo.ochoa.fib.es/hdopazo/download/hiv1_by.txt
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• Using hiv-phy.txt and DNADIST program, obtain distance matri-
ces under JC69, F8424 and F84+C 25 models. Compare values.

• Obtain UPGMA from JC69 and NJ trees from F84. Compare topolo-
gies.

• Using mtv1-phy.txt, obtain K80+Γ distances using α = 0.1, 10.
Compare values.

• Obtain NJ trees. Compare both topologies.

• Obtain LS (FM) & ME trees using FITCH program under F84 and
JC69 models. Compare topologies.

• Define all the monophyletic groups.

2. Bootstrap using PHYLIP.

• Obtain 100 hiv-phy.txt randomized matrices with SEQBOOT.

• Obtain the corresponding LS (FM) trees using F84 model.

• Calculate BPs values using CONSENSE program.

3. Parsimony & Likelihood using PHYLIP.

• Using hiv-phy.txt and DNAPARS program, obtain MP tree/s un-
der Fich optimization.

24Warning: Do not re-write outfiles!!!
25Where C represent categories of the 1, 2 and 3 position of the sequences evolving at 2, 1

and 20 relative rates.
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• The same using transversion parsimony.

• Select the correct options to estimate ancestral sequences and char-
acter state changes.

• Compare tree lengths.

• Using hiv-phy.txt, and DNAML program, obtain ML tree with
F84 distances.

• Select the correct options to estimate ancestral sequences.

• Compare likelihoods values.

4. Phylogenies using MEGA.

• Explore MEGA3.0 facilities using Drosophila ADH example.

• See Data explorer and Statistics

• Compute LS, ME, MP and NJ trees.

5. Likelihood using TREE-PUZZLE.

• Using hiv1-phy.txt and mtv1-phy.txt obtain ML tree under HKY+Γ
model using 8 rate categories.

• Observe ML distance matrix. Sequence composition test. Ts:Tv ratio
estimation. Observe Likelihood value. α estimation.

• Using a treefile with 4 alternative topologies (intree.txt) compute
KHT, SHT and ELW test.
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• Make an intree file for hiv1-phy.txt sequences and compute the
above paired site tests.

6. MODELTEST.

• Take your time to see the mtv1-mdt.nex file format.

• Run mtv1-mdt.nex using PAUP*26.

• Run MODELTEST using model.score file.

• bin > Modeltest3.5.win -d2 < mtv1-model.score > mtv1-model.out

• What is the best model of evolution for the data set?

7. Bayesian using Mr Bayes.

• Use the hiv1-by.txt file format.

• Take your time to see the file format.

• Run MrBayes typing execute hiv1-by.txt

• Compare parameters estmated by MrBayes and Modeltest

26Since PAUP* is not free (although not expensive) an alternative is to use PAML package.



Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 89 of 146

Go Back

Full Screen

Close

Quit

13. Phylogenetic Links

• Software:

– The Felsenstein node http://evolution.genetics.washington.edu/phylip/software.

html

– The R. Page Lab. http://taxonomy.zoology.gla.ac.uk/software/software.html

• Courses:

– Molecular Systematics and Evolution of Microorganisms. http://www.dbbm.

fiocruz.br/james/index.html

– Workshop on Molecular Evolution http://workshop.molecularevolution.org/

– P. Lewis MCB/EEB Course http://www.eeb.uconn.edu/Courses/EEB372/

• Tools:

– Clustalw at EBI http://www.ebi.ac.uk/clustalw/

– Phylemon at CIPF http://bioinfo.cipf.es/cgi-bin/mortadelo/cgi/tools.cgi

http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
http://taxonomy.zoology.gla.ac.uk/software/software.html
http://www.dbbm.fiocruz.br/james/index.html
http://www.dbbm.fiocruz.br/james/index.html
http://workshop.molecularevolution.org/
http://www.eeb.uconn.edu/Courses/EEB372/
http://www.ebi.ac.uk/clustalw/
http://bioinfo.cipf.es/cgi-bin/mortadelo/cgi/tools.cgi


Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 90 of 146

Go Back

Full Screen

Close

Quit

14. Credits

This presentation is based on:27

• Major Book or Chapters References:

– Swofford, D. L. et al. 1996. Phylogenetic inference [101].

– Harvey, P. H. et al. 1996. New Uses for New Phylogenies [36].

– Page, R. & Holmes, E. 1998. Molecular evolution. A phylogenetic approach [36].

– Li, W. S. 1997 . Molecular Evolution [60].

– Hartl, D. & Clark, A. 1999 . Principles of population genetics [35].

– Nei, M. & Kumar, S. 1999 . Molecular evolution and phylogenetics [74].

– Salemi, M. & Vandamme, A. (ed.) 2003. The phylogenetic handbook [89].

– Balding, Bishop & Cannings. (ed.) 2003. Handbook of Statistical Genetics [2].

– Felsenstein, J. 2004. Inferring phylogenies [22].

– Nielsen, R. (ed.) 2004. Statistical Methods in Molecular Evolution [15].

• On Line Phylogenetic Resources:

– http://www.dbbm.fiocruz.br/james/index.html .Molecular Systematics and
Evolution of Microorganisms. The Natural History Museum, London and In-
stituto Oswaldo Cruz, FIOCRUZ.

– Peter Foster’s ”The Idiot’s Guide to the Zen of Likelihood in a Nutshell in Seven
Days for Dummies” at http://filogeografia.dna.ac/PDFs/phylo/Foster_01_

EasyIntro_MLPhylo.pdf

27Latex and pdfscreen package. HJD take responsibility for innacuracies of this presentation.

http://www.dbbm.fiocruz.br/james/index.html
http://filogeografia.dna.ac/PDFs/phylo/Foster_01_EasyIntro_MLPhylo.pdf
http://filogeografia.dna.ac/PDFs/phylo/Foster_01_EasyIntro_MLPhylo.pdf
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15. Additional Material

15.1. What are the roots of modern phylogenetics?

Phylogenies have been inferred by systematics since Darwin and Haeckel,

However, since 1950s-60s classifications began to be more numerical, algorithmic
and statistical. Principally due to progress in molecular biology, protein sequence
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data and computer development (initially, using punched card machines) 28.
Roughly, systematists divided in two:

1. Proponents of the ”Evolutionary Systematics” classify organisms us-
ing different historical, ecological, numerical, and evolutionary arguments.
It attemps to represent, not only the branching of phyletic lines (cladoge-
nesis) but also its subsequent divergence (anagenesis) leading the invasion
of a new adaptive zone by a particular class of organisms (a grade). Its
representaties are Ernst Mayr[65] and George G. Simpson[94], among oth-
ers.

2. Proponents who rejected the notion of theory-free method of classification,
introduced objectivity by using explicit numerical approaches.

28See: Chapter 5 of [66] and Chapter 10 of [22] for a detailed discussion on the issue.
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(a) Numerical Taxonomy’s school (Phenetics) originated by Michener[68],
Sneath[96] and Sokal[97] in USA.

• Main idea:
To score pairwise differences between OTU’s (Operational Taxo-
nomic Units) using as many characters as possible.
Cluster by simmilarity using an algorithm that produces a single
dendogram (phenogram)
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(b) Phylogenetic Systematic’s school (Cladistics) originated by Hennig[42,
43] in Germany and followed by Wagner[103], Kluge[54] and Farris[17,
18] in USA.

• Main idea:
To use recency of common ancestry to construct hierarchies of
relationship, NOT similarity.
Relationships depicted by phylogenetic tree, show sequence of
speciation events (cladogram)29.

29 Felsenstein[22] asserts that although Edwards and Cavalli-Sforza introduced parsimony,
modern work on it springs from the paper of Camin and Sokal[8]
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(c) Statistical approaches developed around molecular data sets.

• Edwards and Cavalli-Sforza[9, 10] worked on the spatial repre-
sentation of human gene frequencies differences, developed the
Minimum Evolution and the Least Square distance meth-
ods, respectively. In order to reconcile results, they worked out
an impractical Maximum Likelihood method and found that
it was not equivalent to either of their two methods! Indeed, they
discussed similarities between a Maximum Parsimony method
and likelihood [9].
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• In the 1960s the molecular sequence data was mostly proteins.
Margareth Dayhoff began to accumulate in the first molecular
database! produced in a printed form [14]. In the second edition
of the ”Atlas...” they describe the first molecular parsimony
method, based on a model in wich each of the 20 amino acids
was allowed to change to any of the 19 others in a single step
(unordered method).
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• Although distance methods were first described by Edwards and
Cavalli-Sforza [9, 10], Fitch and Margoliash [28] popularized dis-
tance matrix methods based on least squares. The distances
were fractions of amino acids differences between a particular
pair of sequences. The least squares was weighted with greather
observed distance given less weight. This introduces the con-
cept that large distances would be more prone to random
error owing to the stochasticity of evolution.

• Explicit models of sequence evolution correcting the effects of
multiple replacement was first implemented by Jukes and Can-
tor in 1969 [50].
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Paraphyletic group represents a group of organisms derived from a single
ancestral taxon, but one which does not contain all the descendants of the most
recent common ancestor30.

30Paraphyly derives from the evolutionary differentiation of some lineages, based on the
accumulation of specific autapomorphies (eg: Birds)
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Polyphyletic group represents a group of organisms with the same taxonomic
title derived from two or more distinct ancestral taxa31. Frequently, paraphyletic
or polyphyletic groups are considered grades32

Sometimes is difficult to distinguish clearly between artificial groups.
The important contrast is between monophyletic and

nonmonophyletic groups!!

31Polyphyly derives from convergence, paralelisms or reversion (homoplasy) rather than com-
mon ancestry (homology)

32It is an evolutionary concept supposed to represent a taxon with some level of evolutionary
progress, level of organization or level of adaptation
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15.2. Types of data

All of the experimental data gathered by molecular biologists fall into one of the
two broad categories: discrete characters and similarities or distances.

• A discrete character provides data about an individual species or sequences.

• Character data are often transformed into distances.

• Discrete character data are those for which a data matrix X assigns a
character state xij to each taxon i for each character j.

• Characters may be binary or multistate.

• Multistate characters may be ordered or unordered, depending on whether
an ordering relationship is imposed upon the possible states

• The concepts of character order and character polarity should not be
confused. The former defines the allowed character-states transformations,
whereas the later refers to the direction of evolution.

• Nucleotide sequence data are generally treated as unordered multistate
characters, since there is no a priori reasons to assume, for example, that
state C is intermediate between A and G.
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15.3. Species & Genes trees

It is obvious that all phylogenetic reconstruction of sequences are genes trees.
The naive expectation of molecular systematics is that phylogenies for genes
match those of the organisms or species (species trees). There are many rea-
sons why this needs not be so!!.

1. If there were duplications, (gene family) only the phylogenetic recon-
struction of orthologous sequences could guarantize the expected33 or
true species tree.

33The expected tree is the tree that can be constructed by using infinitely long sequences
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Paralogous genes

123

orthologous orthologous

Ancestral Gene Duplication

 Speciation 
event 1

Speciation 
event 2

321

321

Realized 
Species tree

ortho + para

2. In presence of polymorphic alleles at a locus, the time of gene splitting
(producing polimorphisms) is usually earlier than population or species
splitting.

The probability to obtain the expected species tree depends on T & N and
random processes like lineage sorting [77].
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• If alleles are monophyletic before population or species splitting, at time
T/2N increase (longer times or low pop. numbers-mammals-), the proba-
bility to agree between trees increases (red, A tree pattern).

• This probability decreases if polymorphic alleles are present before the
pop. splitting. For a constant T value, increasing population size reduces
the probability of random processes reducing polymorphism (green, B tree
pattern).

• In such conditions the probability of disagreement between trees is higher
(blue, C tree pattern).
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• Indeed future sorting events could prevent the correct tree gene.
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Sometimes there are local clocks

for example mouse and rat using (hamster as outgroup)34

34See [4] for an actualized review.
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Relative Rate Test

How to test the molecular clock?35

35See [84] and download RRtree!!
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15.4. Neutral theory of evolution

At molecular level, the most frequent changes are those involving fixation
in populations of neutral selective variants [52].

• Allelic variants are functionaly equivalent

• Neutralism does not deny adaptive evolution

• Fixation of new allelic variants occurs at a constant rate µ.

• This rate does not depends on any other population parameter, then
it’s like a clock!! 2Nµ ∗ 1/2N = µ
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15.5. Ultrametric & Additive Properties

Distance to be represented in a tree diagram must be metric and additive.
Let d(a, b) the distance between 2 sequences, d is metric if:

1. d(a, b) ≥ 0 7→ (non-negative),

2. d(a, b) = d(b, a) 7→ (symmetry),

3. d(a, c) ≤ d(a, b) + d(b, c) 7→ (triangle inequality),

4. d(a, c) = 0 if and only if a = b 7→ (distinctness)

♣ A metric is an ultrametric if it satisfies the additional criterion
that:

5. d(a, b) ≥ maximum[d(a, c), d(b, c)] 7→ (the two largest distance are
equal),

♣ Being metric (or ultrametric) is a necessary but not sufficient con-
dition for being a valid measure of evolutionary change. A measure
must also satisfy the the four-point condition:

6. d(a, b) + d(c, d) ≤ maximum[d(a, c) + d(b, d), d(a, d) + d(b, c)]
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15.6. Optimality Criteria

Inferring a phylogeny is an estimate procedure.

We are making a ”best estimate” of an evolutionary history based on
the incomplete information contained in the data.

Because we can postulate evolutionary scenarios by which any chosen phy-
logeny could have produced the observed data, we must have some basis
for selecting one or more preferred trees among the set of possible
phylogenies.

As we have seen, we can define a specific algorithm that leads to the de-
termination of a tree, but also, we can define a criterion for comparing
alternative phylogenies to one another and decide which is better.

Cluster analysis methods combine tree inference and the definition of the
preferred tree into a single statement. In fact, UPGMA and NJ give a
single tree.

Methods using optimality criterion has two logical steps.

The first is to define an objetive function to score trees, and the second
is to find alternative trees to apply the criterion. The last problem will
be covered below the title: ”searching trees”.

This kind of procedure would produce many alternative optimal solu-
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tion.

15.6.1. Least squares family methods

We can now address the problem of choosing a tree from the following
conceptual perspective: We have uncertain data that we want to fit to a
particular mathematical model (and additive tree) and find the opti-
mal value for the adjustable parameters (the topology and the branch
lengths).

Several methods depend on a definition of the disagreement between a tree
and the data based on the following familiy of objective functions:

E =
T−1∑
i=1

T∑
j=i+1

wij | dij − pij |α

Where E defines the error of fitting the distance estimates to the tree, T
is the number of taxa, wij is the weight applied to the separation of taxa
i and j, dij is the pairwise distance estimate (matrix distances), pij is the
length of the path connecting i and j in the given tree36, the vertical bars
represent absolute values, and α = 1 or 2.

Methods depend on the selection of specific α and the weighted scheme wij

36pij is also called as patristic distances
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• If α = 2 and wij = 1, the unweighted squared deviations will be
minimized, assuming that all the distance estimates are subject to
the same magnitude of error (LS of C-S&E)[10].

• If α = 2 and wij = 1/d2
ij, the weighted squared deviations will be

minimized, assuming that the estimates are uncertain by the same
percentage (LS method of F&M)[28].

15.6.2. Minimum Evolution

The minimum evolution method [51, 86, 87, 88] uses a criterion:

the total branch length of the reconstructed tree.

S =
2T−3∑
k=1

| vk |

That is, the optimality criterion is simply the sum of the branch lengths
that minimize the sum of squared deviations between the observed (esti-
mated) and path-length (patristic) distances.

Thus this method makes partial use of the LS (C-S&E) criterion.

Under the ME criterion, a tree is worse than another tree only if its S value
is significantly larger than that of the other tree.
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Thus, all trees whose S values are not significantly different from the min-
imum S value should be regarded as candidates for the true tree37.

Rzhetsky & Nei [86] proposed a fast approximated search of the ME tree
based on the observation that ME tree (below) is almost always identical
to NJ tree.

UPGMA NJ & (LS) methods and values of expected substitutions per se-
quence position

37The statistical procedure for testing different trees will be discussed in ”confidence on
trees”.
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15.7. Parsimony Criteria

A common misconception regarding the use of parsimony methods is that they require
a priori determination of character polarities.

In morphological studies, character polarity is commonly inferred using out-
group comparison, however, it is by no means a prerequisite to the use of
parsimony methods.
Parsimony analysis actually compromises a group of related methods differing
in their underlying evolutionary assumptions.

• Wagner Parsimony [54, 18] ordered, multistate characters with reversib-
lity.

• Fitch Parsimony [25] unordered, multistate characters with reversibility.

• Since both Fitch and Wagner Parsimony allow reversibility, the tree may
be rooted at any point without changing the tree length.
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• Dollo Parsimony [13], reversals allowed, but the derived state may arise
only once 38

• Transversion Parsimony [6], transition substitutions (Pu7→Pu; Py7→Py)
occur more frequently than transversion (Pu7→Py; Py 7→Pu) substitutions.
Pu(A,G); Py(C,T).

38Dollo Parsimony is suggested for restriction site data or for very complex characters that
probably have only arisen once, such as legs in tetrapods or wings in insects. M is an arbi-
trary large number, guaranteeing that only one transformation to each derived state will be
permitted.
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15.8. Searching Trees.

Branch & Bound search[40]

• Much faster, but still guaranteed to find the best tree,

• Determine an upper bound for the shortest tree,

– Use the length of a random tree

• Follow a predictable search path through possible tree topologies, similar to an
exhaustive search,

• Abandon any fork of the search tree when the upper bound is exceeded
before the last taxon is added,

• Does not calculate the length of all trees but finds the best one
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Star Decomposition

• Start with all taxa in an unresolved (star) tree,

• Form pairs of taxa, and determine length of tree with paired taxa.
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Nearest Neighbor Interchange

• Identify an interior branch. It is flanked by four subtrees

• Swap two of the subtrees on opposite ends of the branch

• Two rearrangements are possible
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Subtree Pruning & Regrafting

• Identify and remove a subtree

• Reattach to each possible branch of the remaining tree

• NNI is a subset of SPR
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15.9. Molecular adaptation

A powerfull approach to detecting molecular evolution by positive (Darwinian)
selection derives from comparison of the relative rates of synonymous and non-
synonymous substitutions (citar)39.
Synonymous mutations do not change the amino acid sequence; hence their sub-
stitution rates (dS) is ”neutral”40 with respect to selective pressure on the
protein product.
Nonsynonymous mutations do change the amino acid sequence, so their substi-
tution rate (dN) is a function of selective pressure on the protein.
The ratio of these rates (ω = dN/ dS) is a function of selective pressure.

If nonsynonymous mutations are deleterious, purifying selection will reduce
their fixation rate and dN/dS < 1.

If nonsynonymous mutations are advantageous adaptive, they will be fixed
at a higher rate than synonymous mutations, and dN/dS > 1.

A dN/dS = 1 is consistent with neutral evolution.

39This section is largely based on [109]
40See [11] for a discussion about this issue
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15.9.1. Counting methods

We wish to estimate the number of synonymous substitutions per synonymous
site (dS) and the number of nonsynonymous substitutions per nonsynonymous
site (dN) between two protein-coding sequences. In the past two decades, about
a dozen methods have been proposed for this estimation. They are intuitive and
involve treatment of the data that cannot be justifief rigoroursly.

All counting methods roughly work like this:
Suppose the gene has 300 codons and we observe 5 synonymous and 5
nonsynonymous differences.
Can we conclude that synonymous and nonsynonymous substitution
rates are equal with ω = 1?...NO!

An inspection of the genetic code table suggests that all changes in the sec-
ond position and most changes at the first are nonsynonymous, and
only some changes at the third position are synonymous. Consequently
we do not expect synonymous and nonsynonymous mutations at equal propor-
tions even if there is no selection at the protein level.

Indeed, if mutations from any one nucleotide to any other occur at the same
rate, we expect 25.5% of mutations to be synonymous and 74.% to be nonsyn-
onymous [112].
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If we use those proportions, it is clear that selection on proteins has decreased
the fixation rate of nonsynonymous mutations by about 3 times, since ω =
5/5/(74.5/25.5) = 0.34

There are 900 nucleotides in the gene, so the number of synonymous (S) and
nonsynonymous (N) sites are S=900 x 25.5%=229.5 and N=900 x 74.5%=670.5,
respectively. Then, we have dS=5/229.5=0.0218 and dN=5/670.5=0.0075.

Therefore counting methods involve 3 steps:

• 1. Count the number of sites S and N in the two cDNA sequences

– Complicated by factors such as ts/tv rate bias and base /codon fre-
quency bias.

• 2. Count the number of synonymous and nonsynonymous differences

– This is straigthtforward if the two compared codons differ at one
codon position only. When they differ at 2 or 3 codon positions ,
there exists 4 or 6 pathways from one codon to the other. The multi-
ple pathways may involve different number of synonymous and non-
synonymous and should ideally be weighted appropriately according
to their likelihood of occurrence. Most counting methods use equal
weighting

• 3. Apply a correction for multiple substitution at the same site.



Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 123 of 146

Go Back

Full Screen

Close

Quit

– Counting methods use multiple-hit correction formulas based on nu-
cleotide -substitution models, assuming nucleotides change to 1 of 3
other nucleotides. When those formulas are applied to synonymous
(or nonsynonymous) sites only.

The method of Miyana-Yasunaga [69] and its simplified version (Nei-Gojobori
[73]) are based on nucleotide substitution model of Jukes and Cantor [50]) and
ignore the ts/tv bias or base codon frequency.
Since ts are more likely to be synonymous than tv at 3rd. position, ignoring the
ts/tv rate bias understimate the number of S and overestimate N . This effect is
well known, and different methods account for this ratio (Li et al. [59], Li [58],
Pamilo and Bianchi [78], Ina [48].)

The effect of biased base/codon frequencies can have devastating effects on the
estimation of dN and dS . Qualitatively different conclusions were reached
dpending on wether codon usage bias is accomodated for nucler genes from
mammals and Drosophila [3].

A counting method incorporating both the ts/tv bias and the base/codon fre-
quency bias was implemented by Yang and Nielsen [110].
Many, if not all of them, are incorporated in codeml(PAML) [108].
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15.9.2. Markov model of codon substitutions

In molecular phylogenetics we use a Markov process to describe the change be-
tween nucleotides, amino acids, or codons over evolutionary time [61, 72].

Perviously we describe evolutionary models based on different Markovian pro-
cesses (DNA or amino acid models). Now we describe substitutions between
the sense codons. Stop codons are excluded. The ”Universal” genetic code,
there are 61 sense codons (and 3 stops), therefore 61 states in the Markov
process.

The Markov process is characterized by a rate matrix Q = {qij}, where qij is the
substitution rate from sense codon i to sense codon j (i 6= j). Formally, qij∆t is
the probability that the process is in state j after an infinitesinal time ∆t, given
that it is in state i at time t.

The model accounts for ts/tv bias, unequal synonymous and nonsynony-
mous substitution, and biased base/codon frequencies. Mutations are
assumed to occur independently among the 3 codon positions, and so only one
position is allowed to change instantaneously. Since ts occur more frequently
than tv, the model multiply the rate by ts/tv rate ratio κ if the chage is a tran-
sition. To account for codon usage bias, the model let πj be the equilibrium
frequency of codon j and multiply substitution rates to codon j by πj .
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The model can either use all πj as parameters, with 60 (61-1) free parameters
used, or calculate πj from base frequency at the 3 coson positions, with 9=3x(4-
1) free parameters used.

To account for synonymous and nonsynonymous substitution rates, the model
multiply the rate by ω if the change is nonsynonymous. It is important to note
that that parameters κ and πj characterize processes, including selection, at
the DNA level, while selectionat the protein level has the effect of modifying
parameter ω. If natural selection operates on the DNA as well as on the protein,
the synonymous rate will differ from the mutation rate.

qij =


0, if i and j differ at 2 or 3 codon position,
µπj , if i and j differ by a synonymous tv,
µκπj , if i and j differ by a synonymous ts,
µωπj , if i and j differ by a nonsynonymous tv,
µωκπj , if i and j differ by a nonsynonymous ts,

For example, consider the substitution rates to codon CTG (Leu). We have
qCTC,CTG = µπCTG since the CTC(Leu)→ CTG(Leu) change is a syn tv,
qTTG,CTG = µκπCTG since the TTG(Leu)→ CTG(Leu) change is a syn ts,
qGTG,CTG = µωπCTG since the GTG(Val)→ CTG(Leu) change is a nonsyn tv,
qCCG,CTG = µκωπCCG since the CCG(Pro)→ CTG(Leu) change is a nonsyn ts
qTTT,CTG = 0 since the TTT and CTG differ at 2 positions
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The diagonal elements of the matrix Q = {qij} are determined by mathematical
requirements that each row in the matrix sums to zero.∑

j

qij = 0,for any i

Molecular sequence data do not allow separate estimation of the rate (µ) and
time (t), and only their product (µt) can be identified. We thus fix the rate µ
such that the expected number of nucleotide substitutions per codon is one:

−
∑

i

πiqii =
∑

i

πi

∑
j 6=i

qij = 1

This scaleng means that time t is measured by distance, the expected number
of (nucleotide) substitutions per codon. The transition probability matrix over
time t is

P (t) = {pij(t)} = eQt,

Lastly, the model is time - reversible. This means,

πipij(t) = πjpji(t), for any t, i and j



Objectives

Introduction

Tree Terminology

Homology

Molecular Evolution

Evolutionary Models

Distance Methods

Maximum Parsimony

Searching Trees

Statistical Methods

Tree Confidence

PC Lab

Phylogenetic Links

Credits

Additional Material

Title Page

JJ II

J I

Page 127 of 146

Go Back

Full Screen

Close

Quit

15.9.3. Maximum likelihood estimation

Below we41 describe the ML method for estimating dN and dS (Goldman and
Yang[32]). The data are two aligned protein-coding DNA sequence,

Human GAG CCC TGG CCT CTC ...
Mouse GAG CTC TCG ACT GTT ...

We assume that all the codons are evolving independently according to the same
Markov process. Suppose there are n sites (codons) in the gene, and let the
data at site h be xh = {x1, x2}, where x1 and x2 are the two codons in the
sequences at that site.
In the example, the data at site h = 2 are x1 =CCC, x2 =CTC. The proba-
bility of observing data xh at site h is,

f(xh) =
61∑

k=1

πkpkx1(t1)pkx2(t2)

t
1

t
2

k

x
1

x
2

x
1

x
2

t = t
1
+ t

2

Parameter t1 and t2 cannot be estimated separately, only their sum is estimable.
41Remember we are following Yang[109]
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f(xh) =
61∑

k=1

πkpkx1(t1)pkx2(t2) = πx1px1x2(t1 + t2)

Parameters in the model are: the sequence divergence t, the transition/transversion
rate ratio κ, the nonsynonymous/synonymous rate ratio ω, and the codon fre-
quency πj . The log-likelihood function is then given by

l(t, κ, ω) =
n∑

n=1

logf(xh)

Codon frequencies (π′is) can usually be estimated by using observed base or
codon frequencies. Since there is not an analitical solution, a numerical
hill-climbing algorithm is used to maximize the l
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The table shows the estimations of different counting methods and ML estima-
tion for a pairwise comparison of sequences.
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15.9.4. Phylogenetic estimationm of selective pressure
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15.9.5. Adaptive evolution on amino acid sites
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