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Abstract

We have developed a new method for identification of signal peptides and their cleavage sites
based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences.
The method performs significantly better than previous prediction schemes, and can easily
be applied on genome-wide data sets. Discrimination between cleaved signal peptides and
uncleaved N-terminal signal-anchorsequences is also possible, though with lower precision.
Predictions can be made on a publicly available WWW server.�Present address: Novo Nordisk A/S, Scientific Computing, Building 9M1, Novo Alle, DK-2880 Bagsværd,

Denmark
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Introduction

Signal peptides control the entry of virtually all proteins to the secretory pathway, both in
eukaryotes and prokaryotes (von Heijne, 1990; Gierasch, 1989; Rapoport, 1992). They comprise
the N–terminal part of the amino acid chain, and are cleaved off while the protein is translocated
through the membrane. The common structure of signal peptides from various proteins is
commonly described as a positively charged n-region, followed by a hydrophobic h-region and
a neutral but polar c-region. The (�3,�1)-rule states that the residues at positions �3 and �1
(relative to the cleavage site) must be small and neutral for cleavage to occur correctly (von
Heijne, 1983; von Heijne, 1985).

Strong interest in automated identification of signal peptides and prediction of their cleavage
sites has been evoked not only by the huge amount of unprocessed data available, but also by the
industrial need to find more effective vehicles for production of proteins in recombinant systems.
The most widely used method for predicting the location of the cleavage site is a weight matrix
published in 1986 (von Heijne, 1986). This method is also useful for discriminating between
signal peptides and non-signal peptides by using the maximum cleavage site score. The original
matrices are commonly used today, even though the amount of signal peptide data available has
increased since 1986 by a factor of 5–10.

Here, we present a combined neural network approach to the recognition of signal peptides
and their cleavage sites, using one network to recognize the cleavage site and another network
to distinguish between signal peptides and non-signal peptides. A similar combination of two
pairs of networks has been used with success to predict intron splice sites in pre-mRNA from
humans and the dicotelydoneous plant Arabidopsis thaliana (Brunak et al., 1991; Hebsgaard
et al., 1996). Artificial neural networks have been used for many biological sequence analysis
problems (Hirst and Sternberg, 1992; Presnell and Cohen, 1993). They have also been applied
to the twin problems of predicting signal peptides and their cleavage sites, but until now
without leading to practically applicable prediction methods with significant improvements in
performance compared with the weight matrix method (Ladunga et al., 1991; Schneider and
Wrede, 1993; Arrigo et al., 1991).

Materials and methods

The data were taken from SWISS-PROT version 29 (Bairoch and Boeckmann, 1994). The data
sets were divided into prokaryotic and eukaryotic entries, and the prokaryotic data sets were
further divided into Gram-positive eubacteria (Firmicutes) and Gram-negative eubacteria (Gra-
cilicutes), excluding Mycoplasma and Archaebacteria. Viral, phage, and organellar proteins
were not included. Additionally, two single-species data sets were selected, a human subset of
the eukaryotic data, and an E. coli subset of the Gram-negative data.

From secretory proteins, the sequence of the signal peptide and the first 30 amino acids of
the mature protein were included in the data set. From cytoplasmic and (for the eukaryotes)
nuclear proteins, the first 70 amino acids of each sequence were used. Additionally, a set of
eukaryotic signal anchor sequences, i.e. N-terminal parts of type II membrane proteins (von
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Heijne, 1988), were extracted.
As an example of a large-scale application of the finished method, we used the Haemophilus

influenzae Rd genome — the first genome of a free living organism to be completed (Fleischmann
et al., 1995). We have downloaded the sequences of all the predicted coding regions in
the H. influenzae genome from the WWW server of The Institute for Genomic Research at
http://www.tigr.org/. Only the first 60 positions of each sequence were analysed.

We have attempted to avoid signal peptides where the cleavage sites are not experimentally
determined, but we are not able to eliminate them completely, since many database entries
simply lack information about the quality of the evidence. Details of the data selection are
described in the WWW server and in an earlier paper (Nielsen et al., 1996a).

Redundancy in the data sets was avoided by excluding pairs of sequences which were
functionally homologous, i.e. had more than 17 (eukaryotes) or 21 (prokaryotes) exact matches
in a local alignment (Nielsen et al., 1996a). Redundant sequences were removed using an
algorithm which guarantees that no pairs of homologous sequences remain in the data set
(Hobohm et al., 1992). This procedure removed 13–56% of the sequences. The numbers
of non-homologous sequences remaining in the data sets are shown in Table 1. Redundancy
reduction was not applied to the signal anchor data or the H. influenzae data, since these were
not used as training data.

Neural network algorithms

The signal peptide problem was posed to the neural networks in two ways: Recognition of the
cleavage sites against the background of all other sequence positions, and classification of amino
acids as belonging to the signal peptide or not. In the latter case, negative examples included
both the first 70 positions of non-secretory proteins, and the first 30 positions of the mature part
of secretory proteins.

The neural networks were feed-forward networks with zero or one layer of 2 to 10 hidden
units, trained using back-propagation (Rumelhart et al., 1986) with a slightly modified error
function. The sequence data were presented to the network using sparsely encoded moving
windows (Qian and Sejnowski, 1988; Brunak et al., 1991). Symmetric and asymmetric windows
of a size varying from 5 to 39 positions were tested.

Based on the numbers of correctly and incorrectly predicted positive and negative examples,
we calculate the correlation coefficient (Mathews, 1975). The correlation coefficient of both
training and test sets were monitored during training, and the performance of the training cycle
with the maximal test set correlation was recorded for each training run. The networks chosen
for inclusion in the WWW server have been trained until this cycle only.

Test performances have been calculated by cross-validation: Each data set was divided into
five approximately equal-sized parts, and then every network run was carried out with one part
as test data and the other four parts as training data. The performance measures were then
calculated as an average over the five different data set divisions.

For each of the five data sets, one signal peptide/non-signal peptide network architecture
and one cleavage site/non-cleavage site network architecture was chosen on the basis of test set
correlation coefficients. We did not pick the architecture with the absolutely best performance,
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but instead the smallest network that could not be significantly improved by enlarging the input
window or adding more hidden units.

The trained networks provide two different scores between zero and one for each position
in an amino acid sequence. The output from the signal peptide/non-signal peptide networks,
the S-score, can be interpreted as an estimate of the probability of the position belonging to the
signal peptide, while the output from the cleavage site/non-cleavage site networks, the C-score,
can be interpreted as an estimate of the probability of the position being the first in the mature
protein (position +1 relative to the cleavage site).

If there are several C-score peaks of comparable strength, the true cleavage site may often
be found by inspecting the S-score curve in order to see which of the C-score peaks that
coincides best with the transition from the signal peptide to the non-signal peptide region. In
order to formalize this and improve the prediction, we have tried a number of linear and non-
linear combinations of the raw network scores and evaluated the percentage of sequences with
correctly placed cleavage sites in the five test sets. The best measure was the geometric average
of the C-score and a smoothed derivative of the S-score, termed the Y-score:Yi = qCi�dSi; (1)

where �dSi is the difference between the average S-score of d positions before and d positions
after position i: �dSi = 1d 0@ dXj=1Si�j � d�1Xj=0 Si+j1A : (2)

In Figure 2 A, an example of the values of C-, S- and Y-scores are shown for a typical signal
peptide with a typical cleavage site. The C-score has one sharp peak that corresponds to an
abrupt change in S-score from a high to a low value. Among the real examples, the C-score may
exhibit several peaks, and the S-score may fluctuate. We define a cleavage site as being correctly
located, if the true cleavage site position corresponds to the maximal Y-score (combined score).

For a typical non-secretory protein, the values of C-, S- and Y-scores are lower, as shown in
Figure 2 B. We found the best discriminator between signal peptides and non-secretory proteins
to be the average of the S-score in the predicted signal peptide region, i.e. from position 1 to the
position immediately before the position where the Y-score has maximal value. If this value —
the mean S-score — is larger than 0.5, we predict the sequence in question to be a signal peptide
(cf. Figure 3).

The relationship between the various performance measures and their development during
the training process will be described in detail elsewhere (Nielsen et al., 1996b).

Results and discussion

The optimal network architecture and corresponding predictive performance for all the data
sets are shown in Table 1. The C-score problem is best solved by networks with asymmetric
windows, i.e. windows including more positions upstream than downstream of the cleavage
site. This corresponds well with the location of the cleavage site pattern information which is
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shown as sequence logos (Schneider and Stephens, 1990) in Figure 1. The S-score problem, on
the other hand, is best solved by symmetric or approximately symmetric windows.

Although our method is able to locate cleavage sites and discriminate signal peptides from
non-secretory proteins with reasonably high reliability, the accuracy of cleavage site location
is lower than that reported for the original weight matrix method (von Heijne, 1986): 78% for
eukaryotes and 89% for prokaryotes (not divided into Gram-positive and -negative). When the
original weight matrix is applied to our recent data set, however, the performance is much lower.
This suggests a larger variation in the examples of the signal peptides found since then. It may,
of course, also reflect a higher occurrence of errors in our automatically selected data than in
the manually selected 1986 set.

In order to compare the strength of the neural network approach to the weight matrix method,
we recalculated new weight matrices from our new data and tested the performance of these
(results not shown). The weight matrix method was comparable to the neural networks when
calculating C-score, but was practically unable to solve the S-score problem and therefore did
not provide the possibility of calculating the combined Y-score.

Note that the prediction performances reported here corresponds to minimal values. The test
sets in the cross-validation have very low sequence similarity; in fact, the sequence similarity
is so low that the correct cleavage sites cannot be found by alignment (Nielsen et al., 1996a).
This means that the prediction accuracy on sequences with some similarity to the sequences in
the data sets will in general be higher.

The differences between signal peptides from different organisms are apparent from Figure 1.
Signal peptides from Gram-positive bacteria are considerably longer than those of other organ-
isms, with much more extended h-regions, as previously observed (von Heijne and Abrahmsén,
1989). The prokaryotic h-regions are dominated by Leu (L) and Ala (A) in approximately equal
proportions, and in the eukaryotes dominated by Leu with some occurrence of Val (V), Ala, Phe
(F) and Ile (I). Close to the cleavage site, the (�3,�1) rule is clearly visible for all three data
sets; but while a number of different amino acids are accepted in the eukaryotes, the prokaryotes
accept almost exclusively Alanine in these two positions. In the first few positions of the mature
protein (downstream of the cleavage site) the prokaryotes show certain preferences for Ala,
negatively charged (D or E) amino acids, and hydroxy amino acids (S or T), while no pattern
can be seen for the eukaryotes. In the leftmost part of the alignment, the positively charged
residue Lys (K) (and to a smaller extent Arg (R)) is seen in the prokaryotes; while the eukaryotes
show a somewhat weaker occurrence of Arg (barely visible in the figure) and almost no Lys.
This corresponds well with the hypothesis that positive residues are required in the n-region for
prokaryotes where the N-terminal Met is formylated, but not necessarily for eukaryotes where
the N-terminal Met in itself carries a positive charge (von Heijne, 1985).

The difference in structure is reflected in the performances of the trained neural networks (see
Table 1). Gram-negative cleavage sites have the strongest pattern — i.e. the highest information
content — and consequently they are the easiest to predict, both at the single-position and at
the sequence level. The eukaryotic cleavage sites are significantly more difficult to predict.
Gram-positive cleavage sites are slightly more difficult to predict than the eukaryotic, which
would not be expected from the sequence logos (Figure 1), since they show nearly as high
information content as the Gram-negative cleavage sites, but the longer Gram-positive signal
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peptides means that the cleavage sites have to be located against a larger background of non-
cleavage site positions. The discrimination of signal peptides versus non-secretory proteins, on
the other hand, is better for the eukaryotes than for the prokaryotes. This may be due to the
more characteristic leucine-rich h-regions of the eukaryotic signal peptides.

The logos for the Human and E. coli data sets are not shown, since they show no significant
differences from those of eukaryotes or Gram-negative bacteria, respectively. Accordingly, the
predictive performance was not improved by training the networks on single-species data sets.
On the contrary, the E. coli signal peptides are predicted even better by the Gram-negative
networks than by the E. coli networks (probably due to the relatively small size of the E. coli
data set). In other words, we have found no evidence of species-specific features of the signal
peptides of humans and E. coli.

Signal anchors often have sites similar to signal peptide cleavage sites after their hydrophobic
(transmembrane) region. Therefore, a prediction method can easily be expected to mistake signal
anchors for peptides. In Figure 3, the distribution of the mean S-score for the 97 eukaryotic
signal anchors is included. It shows some overlap with the signal peptide distribution. If the
standard cutoff of 0.5 is applied to the signal anchor data sets, 50% of the eukaryotic signal
anchor sequences are falsely predicted as signal peptides (the corresponding figure for the human
signal anchors is 75% when using human networks and 68% when using eukaryotic networks).
With a cutoff optimized for signal anchor vs. signal peptide discrimination (0.62), we were able
to lower this error rate to 45% for the eukaryotic data set. The mean S-score still gives a better
separation than the maximal C- or Y-score, which indicates that the pseudo-cleavage sites are
in fact rather strong.

However, the pseudo-cleavage sites often occur further from the N-terminal than genuine
cleavage sites do. If we do not accept signal peptides longer than 35 (this will exclude only
2.2% of the eukaryotic signal peptides in our data set), the percentage of false positives among
the signal anchors drop to 28% for the eukaryotic, and 32% for the human signal anchors (39%
when using eukaryotic networks). When taking this into account, our method does provide a
reasonably good discrimination between signal peptides and signal anchors. This has not been
reported by any of the earlier published methods for signal peptide recognition.

Scanning the Haemophilus influenzae genome

We have applied the prediction method with networks trained on the Gram-negative data set
to all the amino acid sequences of the predicted coding regions in the Haemophilus influenzae
genome. The distribution of mean S-score (from position 1 to the position with maximal
Y-score) is shown in Figure 4.

When applying the optimal cutoff value found for the Gram-negative data set, we obtained
a crude estimate of the number of sequences with cleavable signal peptides in H. influenzae:
330 out of 1680 sequences, or approximately 20%. If maximal S-score is used instead of mean
S-score, the estimate comes out as 28%, and with maximal Y-score it is 14% (distributions not
shown). If all three criteria are applied together, leaving only “typical” signal peptides, we get
188 sequences (11%).

Some of the sequences predicted to be signal peptides according to S-score but not according
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to Y-score may be signal anchor-like sequences of type II (single-spanning) or type IV (multi-
spanning) membrane proteins. This hypothesis is strengthened by a hydrophobicity analysis of
the ambiguous examples (results not shown). If we apply the slightly higher cutoff optimized
for discrimination of signal anchors vs. signal peptides in eukaryotes (0.62) to the mean S-score,
the estimate is lowered from 20% to 15%.

On the other hand, some of the sequences predicted to be signal peptides according to the
maximal Y-score but not the mean S-score may be the effect of the initiation codon of the
predicted coding region having been placed too far upstream. In this case, the apparent signal
peptide becomes too long, and the region between the false and the true initiation codon will
probably not have signal peptide character, thereby bringing the mean S-score of the erroneously
extended signal peptide region below the cutoff. This is strengthened by the finding that these
ambiguous examples are longer than average and contains more Methionines.

In conclusion, we estimate that 15–20% of the H. influenzae proteins are secretory. But
a whole-genome analysis like this would be more reliable if combined with other analyses,
notably transmembrane segment predictions and initiation site predictions.

Method and data publically available

The finished prediction method is available both via an e-mail server and a World Wide Web
server. Users may submit their own amino acid sequences in order to predict whether the
sequence is a signal peptide, and if so, where it will be cleaved. We recommend that only the
N-terminal part (say, 50-70 amino acids) of the sequences is submitted, so that the interpretation
of the output is not obscured by false positives further downstream in the protein.

The user is asked to choose between the network ensembles trained on data from Gram-
positive, Gram-negative, or eukaryotic organisms. We did not include the networks trained on
the single-species data sets in the servers, since these did not improve the performance.

The values of C-score, S-score, and Y-score is returned for every position in the submitted
sequence. In addition, the maximal Y-score, maximal S-score, and mean S-score values are
given for the entire sequence and compared with the appropriate cutoffs. If the sequence is
predicted to be a signal peptide, the position with the maximal Y-score is mentioned as the
most likely cleavage site. A graphical plot in postscript format, similar to those in Figure 2,
may be requested from the servers. We strongly recommend that a graphical plot is always
used for interpretation of the output. The plot may give hints about e.g. multiple cleavage sites
or erroneously assigned initiation, which would not be found when using only the maximal or
mean score values.

The address of the mail server is signalp@cbs.dtu.dk. For detailed instructions, send
a mail containing the word “help” only. The World Wide Web server is accessible via the
Center for Biological Sequence Analysis homepage at http://www.cbs.dtu.dk/.

All the data sets mentioned in Table 1 are available from an FTP server at
ftp://virus.cbs.dtu.dk/pub/signalp. Retrieve the file README for detailed de-
scriptions of the data and the format. The FTP server and the mail server can both be accessed
directly from the World Wide Web server.
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Figure 1 (H. Nielsen et al.: Prediction of signal peptides)
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Figure 2 (H. Nielsen et al.: Prediction of signal peptides)
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Figure 3 (H. Nielsen et al.: Prediction of signal peptides)
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Figure 4 (H. Nielsen et al.: Prediction of signal peptides)
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Figure 1: Sequence logos (Schneider and Stephens, 1990) of signal peptides, aligned by their
cleavage sites. The total height of the stack of letters at each position shows the amount
of information, while the relative height of each letter shows the relative abundance of the
corresponding amino acid. The information is defined as the difference between maximal and
actual entropy (Shannon, 1948): Ij = Hmax�Hj = log2 20+P� nj(�)Nj log2 nj(�)Nj , where nj(�)
is the number of occurrences of the amino acid � and Nj is the total number of letters (occupied
positions) at position j. Positively and negatively charged residues are shown in blue and red
respectively, while uncharged polar residues are green and hydrophobic residues are black.

Figure 2: Examples of network output. The values of the C-score (output from cleavage site
networks), S-score (output from signal peptide networks), and Y-score (combined cleavage site
score, Yi = pCi�dSi) are shown for each position in the sequence. The C- and S-scores
are averages over five networks trained on different parts of the data. Note: The C-score and
Y-score is high for the position immediately after the cleavage site, i.e. the first position in the
mature protein.
A is a successfully predicted signal peptide. The true cleavage site is marked with an arrow.
B is a non-secretory protein. For many non-secretory proteins, all three scores are very low
throughout the sequence. In this example, there are peaks of C-score and S-score, but the
sequence is still easily classified as non-secretory, since the C-score peak occurs far away from
the S-score decline, and the region of high S-score is far too short.

Figure 3: Distribution of the mean signal peptide score (S-score) for signal peptides and non-
signal peptides (eukaryotic data only). “Non-secretory proteins” refer to the N-terminal parts
of cytoplasmic or nuclear proteins, while “Signal anchors” are the N-terminal parts of type
II membrane proteins. The mean S-score of a sequence is the average of the S-score over
all positions in the predicted signal peptide region (i.e. from the N-terminal to the position
immediately before the maximum of the Y-score). The bin size of the distribution is 0.02.

Figure 4: Distribution of the mean signal peptide score (S-score) for all predicted Haemophilus
influenzae coding sequences. The mean S-score is calculated using networks trained on the
Gram-negative data set. The bin size of the distribution is 0.02. The arrow shows the optimal
cutoff for predicting a cleavable signal peptide. The predicted number of secretory proteins in
H. influenzae (corresponding to the area under the curve to the right of the arrow) is 330 out of
1680 (20%).
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Data Network architecture Performance
Source Number of sequences (Window / Hidden units) Cleavage site Signal peptide

signal non-secr. location discrimination
peptides proteins C-score S-score (% correct) (correlation)

Human 416 251 15+4 / 2 27 / 4 68.0 (67.9) 0.96 (0.97)
Euk. 1011 820 17+2 / 2 27 / 4 70.2 0.97
E. coli 105 119 15+2 / 2 39 / 0 83.7 (85.7) 0.89 (0.92)
Gram� 266 186 11+2 / 2 19 / 3 79.3 0.88
Gram+ 141 64 21+2 / 0 19 / 3 67.9 0.96

Table 1: Data: The number of sequences of signal peptides and non-secretory (i.e. cytoplasmic
or nuclear) proteins in the data sets after redundancy reduction. The organism groups are:
Eukaryotes, human, Gram-negative bacteria (“Gram�”), E. coli, and Gram-positive bacteria
(“Gram+”). The human data are subsets of the eukaryotic data, and the E. coli data are subsets
of the Gram-negative data. The signal anchor and Haemophilus influenzae data are not shown
in the table.
Network architecture: The size of the input window and the number of hidden computational
units (“neurons”) in the optimal neural networks chosen for each data set. C-score networks
have asymmetrical input windows.
Performance: The percentage of signal peptide sequences where the cleavage site was predicted
to be at the correct location according to the maximal value of the Y-score (see Figure 2). The
ability of the method to distinguish between signal peptides and N-terminals of non-secretory
proteins (based on the mean value of the S-score in the region between position 1 and the
predicted cleavage site position) are measured by correlation coefficient (Mathews, 1975). Both
performance values are measured on the test sets (average of five cross-validation tests). Values
given in parentheses indicate the performance for the human sequences when using networks
trained on all eukaryotic data, and for the E. coli sequences when using Gram-negative networks,
respectively.

15


