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1. To observe patterns of conservation (or variability)

2. To find the common motifs present in both sequences

3. To assess whether it is likely that two sequences evolved from the same 
sequence

4. To find out which sequences from the database are similar to the sequence 
at hand

Sequence Comparison



There are three different types of sequence alignment:

1.Global alignment

2. Local alignment

3.Multiple sequence alignment

Sequence Alignment(s)



�Sequence alignment is the establishment of residue-to-residue
correspondence between two or more sequences such that the order of 
residues in each sequence is preserved.

�A gap, which indicates a residue-to-nothing match, may be introduced in 
either sequence.

�A gap-to-gap match is meaningless and is not allowed.

Sequence Alignment Framework



1. Given two sequences we need a number to associate with each possible 
alignment (“goodness” of alignment).

2. The scoring scheme is a set of rules which assigns the alignment score to 
any given alignment of two sequences: 

1. The scoring scheme is residue-based: it consists of residue substitution 
scores (i.e. score for each possible residue alignment), plus penalties 
for gaps.

2. The alignment score is the sum of substitution scores and gap 
penalties.

Scoring Scheme



A concise way to express the residue substitution costs can be achieved with a 
N x N matrix (N is 4 for DNA and 20 for proteins).

The substitution matrix for the simple scoring scheme:

(DNA) Substitution Matrix 

… a naïve approach
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A, G are purines

T, C are pyrimidines

From evolutionary standpoint purine/pyrimidine mutations are less likely to 
occur compared to purine/purine ( or pyrimidine/pyrimidine) mutations.

A substitution matrix could be:

(DNA) Substitution Matrix 

… a more sophisticated approach
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� Protein substitution matrices are more complex than DNA scoring matrices.

� Proteins are composed of 20 amino acids, and physico-chemical
properties of individual amino acids vary considerably.

� A protein substitution matrix can be based on any property of amino acids: 
size, polarity, charge, hydrophobicity.

� In practice the most important are evolutionary substitution matrices.

Protein Substitution Matrices



Aminoacid residues 

… pick a flavour



� PAM ("point accepted mutation") family: PAM250, PAM120, etc.

� BLOSUM ("Blocks substitution matrix") family: BLOSUM62, BLOSUM50, 
etc.

� The substitution scores of both PAM and BLOSUM matrices are derived 
from …

� The BLOSUM matrices are newer and considered more realistic.

Evolutionary substitution matrices

the analysis of known alignments of closely related proteins.



Substitution matrices

… a probabilistic approach

1. Consider a pair of sequences, x and y, of lengths n and m, respectively. Let xi be the ith
symbol in x and yj the jth symbol of y.

2. Given a pair of aligned sequences we want to assign a score to the alignment that gives a 
measure of the relative likelihood that the sequences are related as opposed to being 
unrelated. 

3. The unrelated or random model R assumes that letter a occurs independently with some 
frequency qa and hence the probability of the two sequences is just the product of the 
probabilities of each amino acid:

4. In the alternative match model M aligned pairs of residues occur with a joint probability pab. 
This value pab can be thought of as the probability that the residues a and b have each been 
derived from some unknown original residue c in their common ancestor. So the probability 
of the whole alignment is:
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Substitution matrices

… a probabilistic approach

5. The ratio of those two likelihoods is known as the odds ratio:

6. In order to arrive at an additive scoring system, we take the logarithm of this ratio known as 
the log-odds ratio:

where

is the log likelihood ratio of the residue pair (a, b) occurring as an aligned pair as opposed to 
an unaligned pair. The s(a, b) scores can be arranged in a matrix, known as score matrix or 
substitution matrix; for proteins such a matrix is a 20 x 20 matrix.
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Deriving score parameters from alignment data

How do we determine the components of the scoring model, the substitution and gap 
scores?

�A simple and obvious approach would be to count the frequencies of aligned residue 
pairs and of gaps in confirmed alignments, and set the probabilities to the normalised 
frequencies (MLE).

�However different pairs of sequences have diverged by different amounts. When two 
sequences have diverged from a common ancestor very recently we expect many of 
their residues to be identical. The probability pab for a ≠ b should be small and hence 
s(a,b) should be strongly negative unless a=b. 

�At the other extreme when long time has passed since two sequences diverged we 
expect pab to tend to the background frequency qaqb so s(a,b) should be close to zero 
for all a, b.

�We should therefore use scores that are matched to the expected divergence of the 
sequences we want to compare.
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Only two observed
substitutions (p = 0.2)
are inferred, while the 
true number of 
substitutions is (p = 1.0)



Observed vs Expected

Observed vs. Expected number of DNA substitutions. As time since divergence increases, multiple 
substitutions start to occur, making number of visible substitutions smaller than the number of actual
ones. Eventually, after long-long time there will be substitutions at every site. Two random sequences 
with equal frequencies of base pairs will differ on average in 3/4 of sites. Correction is required to 
compensate for the difference in observed and expected number of substitutions.
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Dayhoff PAM matrices

1. Dayhoff, Schwartz & Orcutt (1978) took these difficulties into consideration when defining
their PAM matrices. The basis of their approach is to obtain substitution data from 
alignments between very similar proteins allowing for the evolutionary relationships of the 
proteins in families and then extrapolate this information to longer evolutionary distances.

2. They started by constructing hypothetical phylogenetic trees relating the sequences in 71 
families where each pair of sequences differed by no more than 15% of their residues. 

3. To build the trees they used the parsimony method (see phylogenetic trees lecture) which 
provides a list of the residues that are most likely to have occurred at each position in each 
ancestral sequence. 

4. From this they could accumulate an array Aab containing the frequencies of all pairings of 
residues a and b between sequences and their immediate ancestors in the tree.

5. The evolutionary direction of this pairing was ignored both Aab and Aba being incremented 
each time either an a in the ancestral sequence was replaced by a b in the descendant or 
vice versa. Basing the counts on the tree avoided over-counting substitutions because of 
evolutionary relatedness.
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Dayhoff PAM matrices

6. Because they wanted to extrapolate to longer times, the primary value that they 
needed to estimate was not the joint probability Pab of seeing a aligned to b, but 
instead the conditional probability P(b|a,t) that residue a is substituted by b in time t. 

P(b|a,t)=Pab(t)/qa. We can calculate conditional probabilities for a long time interval 
by multiplying those for a short interval. These conditional probabilities are known as 
substitution probabilities. The short time interval estimates for P(b|a) can be derived 
from the Aab matrix by setting P(b|a) = Ba,b = Aab/Σc(Aac).

These values must next be adjusted to correct for divergence time t. The expected 
number of substitutions in a “typical” protein where the residue a occurs at the 
frequency qa, is Σa,b (qa qb Bab). Dayhoff et al. defined a substitution matrix to be a 
1 PAM (point accepted mutation) matrix if the expected number of substitutions was 
1%, i.e. Σa,b (qa qb Bab). = 0.01. 
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Dayhoff PAM matrices

9. To turn their B matrix into a 1 PAM matrix of substitution probabilities, they scaled the 
off-diagonal terms by a factor σ and adjusted the diagonal terms to keep the sum of a 
row equal to 1. More precisely, they defined Cab = σBab for a≠b and Caa = σBaa + 
(1-σ), with σ chosen to make C into a 1 PAM matrix. 

10.We will denote this 1 PAM C by S(1). Its entries can be regarded as the probability of 
substituting a with b in unit time, P(b|a,t=1).

11.To generate substitution matrices appropriate to longer times, S(1) is raised to a power 
n, giving S(n) = S(1)n. For instance S(2), the matrix product of S(1) with itself, has 
entries P(a|b,t=2)= ΣcP(a|c,t=1) P(c|b,t=1), which are the probabilities of the 
substitution of b by a occurring via some intermediate c. 

12.For small n, the off-diagonal entries increase approximately linearly with n. Another 
way to view this is that the matrix S(n) represents the results of n steps of a Markov chain 
with 20 states corresponding to the 20 amino acids, each step having transition 
probabilities given by S(1).
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Dayhoff PAM matrices

13.Finally, a matrix of scores is obtained from S(t). Since P(b|a)= pab/qa, the entries of 
the score matrix for time t are given by

( | , )
( , | ) log

b

P b a t
s a b t

q
=

The values are scaled and rounded to the nearest integer by computational convergence. 
The most widely used matrix is PAM250, which is scaled by 3/log2 to give scores in third-
bits.



BLOSUM matrices

1. The Dayhoff matrices have been one the mainstays of the sequence comparison techniques, but they 
do have their limitations. The entries in S(1) arise mostly from short time interval substitutions and 
raising S(1) to a higher power, to give e.g. PAM250, does not capture the true difference between 
short and long time substitutions. The former are dominated by aminoacid substitutions that arise 
from single base changes in codon triplets, for example L↔I, L↔V, or Y↔F, whereas the latter show 
all types of codon changes.

2. Since the PAM matrices were made, databases have been formed containing multiple alignments of 
more distantly related proteins. A more successful matrix, exploits theses advancements and is 
named BLOSUM (Henikoff & Henikoff 1992). The sequences from each block  were clustered 
putting two sequences into the same cluster whenever their percentage of identical  exceeded some 
level L%. Henikoff & Henikoff then calculated the frequencies Aab of observing residue a in one 
cluster aligned against residue b in another cluster, correcting for the sizes of the clusters by
weighting each occurrence by 1/(n1n2), where n1 and n2 are the respective cluster sizes.

3. From the Aab, they estimated qa and pab by qa = Σb Aab / Σcd Acd, i.e. the fraction of pairings 
between a and b out of all observed pairings. From these they derived the score matrix entries using 
the standard equations s(a,b)=log pab / qa qb (2.3). Again the resulting log-odds score matrices 
were scaled and rounded to the nearest integer value. The matrices for L=62 and L=50 are widely 
used for pairwise alignment and database searching, with blosum62 being standard for ungapped 
matching and blosum50 for gapped alignments. Note that lower L values correspond to longer 
evolutionary time, and are applicable for more distant searches.



BLOSUM matrices

1. The Dayhoff matrices have been one the mainstays of the sequence comparison techniques, but they 
do have their limitations. The entries in S(1) arise mostly from short time interval substitutions and 
raising S(1) to a higher power, to give e.g. PAM250, does not capture the true difference between 
short and long time substitutions. The former are dominated by aminoacid substitutions that arise 
from single base changes in codon triplets, for example L↔I, L↔V, or Y↔F, whereas the latter show 
all types of codon changes.

2. Since the PAM matrices were made, databases have been formed containing multiple alignments of 
more distantly related proteins. A more successful matrix, exploits theses advancements and is 
named BLOSUM (Henikoff & Henikoff 1992). The sequences from each block were clustered
putting two sequences into the same cluster whenever their percentage of identical  exceeded some 
level L%. Henikoff & Henikoff then calculated the frequencies Aab of observing residue a in one 
cluster aligned against residue b in another cluster, correcting for the sizes of the clusters by
weighting each occurrence by 1/(n1n2), where n1 and n2 are the respective cluster sizes.

3. From the Aab, they estimated qa and pab by qa = Σb Aab / Σcd Acd, i.e. the fraction of pairings 
between a and b out of all observed pairings. From these they derived the score matrix entries using 
the standard equations s(a,b)=log pab / qa qb (2.3). Again the resulting log-odds score matrices 
were scaled and rounded to the nearest integer value. The matrices for L=62 and L=50 are widely 
used for pairwise alignment and database searching, with blosum62 being standard for ungapped 
matching and blosum50 for gapped alignments. Note that lower L values correspond to longer 
evolutionary time, and are applicable for more distant searches.



BLOSUM matrices

1. The Dayhoff matrices have been one the mainstays of the sequence comparison techniques, but they 
do have their limitations. The entries in S(1) arise mostly from short time interval substitutions and 
raising S(1) to a higher power, to give e.g. PAM250, does not capture the true difference between 
short and long time substitutions. The former are dominated by aminoacid substitutions that arise 
from single base changes in codon triplets, for example L↔I, L↔V, or Y↔F, whereas the latter show 
all types of codon changes.

2. Since the PAM matrices were made, databases have been formed containing multiple alignments of 
more distantly related proteins. A more successful matrix, exploits theses advancements and is 
named BLOSUM (Henikoff & Henikoff 1992). The sequences from each block were clustered
putting two sequences into the same cluster whenever their percentage of identical  exceeded some 
level L%. Henikoff & Henikoff then calculated the frequencies Aab of observing residue a in one 
cluster aligned against residue b in another cluster, correcting for the sizes of the clusters by
weighting each occurrence by 1/(n1n2), where n1 and n2 are the respective cluster sizes.

3. From the Aab, they estimated qa and pab by qa = Σb Aab / Σcd Acd, i.e. the fraction of pairings 
between a and b out of all observed pairings. From these they derived the score matrix entries using 
the standard equations s(a,b)=log pab / qa qb (2.3). Again the resulting log-odds score matrices 
were scaled and rounded to the nearest integer value. The matrices for L=62 and L=50 are widely 
used for pairwise alignment and database searching, with blosum62 being standard for ungapped 
matching and blosum50 for gapped alignments. Note that lower L values correspond to longer 
evolutionary time, and are applicable for more distant searches.



BLOSUM 50 Substitution Matrix



BLOSUM 50 Substitution Matrix



BLOSUM 62 Substitution Matrix
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a) Perfect match

b) Duplication

c) Palindromic sequences (e.g. ATGCGTA)

d) Partial Palindromic sequences

e) Bold blocks on the main diagonal: repetition of 
the same symbol in both sequences, e.g. (G)50, 
so called microsatellite repeats

f) Parallel lines indicate tandem repeats of a larger 
motif in both sequences, e.g. (AGCTCTGAC)20, 
so called minisatellite patterns. 

g) Mismatch

h) Partial deletion in sequence 1 or insertion in 
sequence 2, so called ‘indel’. 

Dot Plot Patterns

Applet: http://www.vivo.colostate.edu/molkit/dnadot/
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For two sequences of length 
n=100, there are 1060

different global alignments



� A elegant way to reduce the massive number of possibilities that need to 
be considered, yet still guarantees that the best solution will be found (Saul 
Needleman and Christian Wunsch, 1970).

� The basic idea is to build up the best alignment by using optimal 
alignments of smaller sub-sequences.

� The Needleman-Wunsch algorithm is an example of dynamic 
programming, a concept first fuelled by by Richard Bellman in 1940.

Global Alignment

The Needleman-Wunsch algorithm



A divide-and-conquer strategy:

1. Break the problem into smaller sub-problems.

2. Solve the smaller problems optimally.

3. Use the sub-problem solutions to construct an optimal solution for the 
original problem.

Dynamic programming can be applied only to problems exhibiting the 
properties of overlapping sub-problems.

Examples include:

1. Travelling salesman problem.

2. Finding the best chess move.

Dynamic Programming

…the basics
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T  C  G  C  A

T

C

C

A

x

Any given point in matrix can only be 
reached from three possible previous 
positions (you cannot “align backwards”).

=> Best scoring alignment ending in any 
given point in the matrix can be found by 
choosing the highest scoring of the three 
possibilities. 

Global Alignment

The Needleman-Wunsch algorithm
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score(x,y) = max

score(x,y-1) - Gappenalty

x

Global Alignment

The Needleman-Wunsch algorithm
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score(x,y) = max

score(x,y-1) - Gappenalty

score(x-1,y-1) + substitutionscore(x,y)
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score(x,y) = max

score(x,y-1) - Gappenalty

score(x-1,y-1) + substitutionscore(x,y)

score(x-1,y) - Gappenalty

x

Each new score is found by choosing 
the maximum of three possibilities. 

For each square in matrix: keep track of 
where best score came from.

Fill in scores one row at a time, starting 
in upper left corner of matrix, ending in 
lower right corner.

T  C  G  C  A

T

C

C

A

Global Alignment

The Needleman-Wunsch algorithm



Global Alignment

The Needleman-Wunsch algorithm

A  C  G  T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

Gaps: -2
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Global Alignment

The Needleman-Wunsch algorithm

-6

-3

-1



Global Alignment

The Needleman-Wunsch algorithm

-1
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Global Alignment

The Needleman-Wunsch algorithm

T C G C A

: :   : :

T C - C A

1+1-2+1+1 = 2



Local Alignment

The Smith-Waterman algorithm

Global alignment: align full length of both sequences. (The 

“Needleman-Wunsch” algorithm).

Local alignment: find best partial alignment of two sequences 

(the “Smith-Waterman” algorithm).

Global alignment

Seq 1

Seq 2

Local alignment



Modifications relative to the Needleman-Wunsch algorithm:

1. The recursive formula is changed by adding a fourth possibility: zero. 

2. This means local alignment scores are never negative.

3. Trace-back is started at the highest value rather than in lower right corner.

4. Trace-back is stopped as soon as a zero is encountered.

score(x,y) = max

score(x,y-1) - gap-penalty

score(x-1,y-1) + substitution-score(x,y)

score(x-1,y) - gap-penalty

0

Local Alignment

The Smith-Waterman algorithm



Local Alignment

… example



Global alignment

Local alignment

Repeated matches

Hybrid match

Alignment with affine gaps

Overlap matches
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Finite State Automaton (FSA)



Using pairwise alignments to search 
databases for similar sequences

Database Searching



� Alignment algorithms described so far guarantees to find the optimal 
score given a specified scoring scheme.

� They have time complexity of the order of O (n, m), i.e. the product 
of the sequence lengths.

� For a sequence of 1,000 residues and a protein database of 
100,000,000 residues we would need to evaluate ~ 1011 matrix 
cells.

� At 10,000,000 cells per second (single workstation) this would take 
104 seconds.

� Solution: heuristic algorithms to search as small a fraction as possible 
of the cells in the dynamic programming matrix, while still looking at 
all the high scoring alignments.

I am exhausted ! 

… searching with exhaustive algorithms



Heuristic Algorithms

FASTA (Pearson 1995)

1. Uses heuristics to avoid 
calculating the full dynamic 
programming matrix

2. Speed up searches by an order 
of magnitude  compared to full 
Smith-Waterman

3. The statistical side of FASTA is 
still stronger than BLAST

BLAST (Altschul 1990, 1997)

1. Uses rapid word lookup methods to 
completely skip most of the database 
entries

2. Extremely fast; One order of 
magnitude faster than FASTA

3. Two orders of magnitude faster than 
Smith-Waterman

4. Almost as sensitive as FASTA

http://http://http://http://blast.ncbi.nlm.nih.gov/Blast.cgiblast.ncbi.nlm.nih.gov/Blast.cgiblast.ncbi.nlm.nih.gov/Blast.cgiblast.ncbi.nlm.nih.gov/Blast.cgi



Blast-ies

BLASTN
•Nucleotide query sequence
•Nucleotide database

BLASTP
•Protein query sequence
•Protein database

BLASTX
•Nucleotide query sequence
•Protein database
•Compares all six reading 
frames with the database

TBLASTN
•Protein query sequence
•Nucleotide database
•”On the fly” six frame 
translation of database 

TBLASTX
•Nucleotide query sequence
•Nucleotide database
•Compares all reading frames 
of query with all reading frames 
of the database



Significance of scores

�Now that we know how to find an optimal alignment, how can 
we assess the significance of its score?

�How do we decide if it is a biologically meaningful alignment 
giving evidence of a homology or just the best alignment between 
two entirely unrelated sequences?

�Calculate the chance of a match score greater than the observed
value, assuming a null model, i.e. that the underlying sequences
were unrelated.



Significance of scores

… the Bayesian Approach

�What we are really after is the probability that the sequences are related 
as opposed to being unrelated P(M |x,y) rather than the likelihood P(x,y|M). 
We can calculate P(M | x,y) using Bayes’ rule.

�Assumptions: the prior probability that the sequences are related: P(M), 
i.e. the match model is correct and the prior probability that the random 
model is correct: P(R) = 1 – P(M).

�Once we have seen the data, the posterior probability that the match 
model is correct, is:
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The logistic function normalizes the 
output of model and can be considered
as an estimate of the probability that a 
given structure is true, given the model. 
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Significance of scores

… the extreme value distribution

�There is an alternative way to consider significance using a more classical 
statistical framework. We can look at the distribution of the maximum of N
match scores of independent random sequences. 

If the probability of this maximum being greater than the observed best score 
is small, then the observation is considered significant.

�In the simple case of a fixed ungapped alignment the score of a match to a 
random sequence is the sum of many similar random variables and can thus 
be very well approximated by a normal distribution. The asymptotic 
distribution of the maximum MN of a series of N independent normal random 
variables is known and has the form:
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Significance of scores

… the extreme value distribution

( )( ) exp( )x

NP M x KNeλ µ−≤ −�

�There is an alternative way to consider significance using a more classical 
statistical framework. We can look at the distribution of the maximum of N
match scores of independent random sequences. 

�If the probability of this maximum being greater than the observed best 
score is small, then the observation is considered significant.

�In the simple case of a fixed ungapped alignment the score of a match to a 
random sequence is the sum of many similar random variables and can thus 
be very well approximated by a normal distribution. The asymptotic 
distribution of the maximum MN of a series of N independent normal random 
variables is known and has the form:

For some constants K, λ. This form of distribution is known as the extreme 
value distribution or EVD.

(2.18)
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… the extreme value distribution
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Significance of scores

… the extreme value distribution

( ) SE S Kmne λ−=

For local ungapped alignments, Karlin and Altschul (1990) derived the 
approximate EVD distribution analytically.

The number of unrelated matches with score greater than S is approximately 
Poisson distributed, with mean: 

where λ is the positive root of 

(2.19)

(2.20)



Significance of scores

… the extreme value distribution

and Κ is a constant given by a geometrically convergent series 
also dependent on the qa and s(a,b). 
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… the extreme value distribution

and Κ is a constant given by a geometrically convergent series 
also dependent on the qa and s(a,b). 

This K corrects for the non-independence of possible starting 
points for matches. The λ is a scale parameter to convert s(a,b)
into natural scale.

If s(a,b) were initially derived as log likelihood quantities then λ
=1, since eλs(a,b) = pab/qaqb

The probability that there is a match of score greater than S is 
then



( )( ) 1 E SP x S e−> = −

Significance of scores

… the extreme value distribution

and Κ is a constant given by a geometrically convergent series 
also dependent on the qa and s(a,b). 

This K corrects for the non-independence of possible starting 
points for matches. The λ is a scale parameter to convert s(a,b)
into natural scale.

If s(a,b) were initially derived as log likelihood quantities then λ
=1, since eλs(a,b) = pab/qaqb

The probability that there is a match of score greater than S is 
then 

(2.21)

Combining equations 2.19 and 2.21 gives a distribution of the 
same EVD form as 2.18, without the µ.
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Significance of scores

… the extreme value distribution

In fact we do not need to calculate a probability, but just to use a 
requirement that E(S) is significantly less than 1, or to put it simple 
we are after the requirement that:

for some fixed constant T.
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Significance of scores

… the extreme value distribution

In fact we do not need to calculate a probability, but just to use a 
requirement that E(S) is significantly less than 1, or to put it simple 
we are after the requirement that:

for some fixed constant T.

A simple estimate of the number of start points of local matches is the 
product of the lengths of the sequences, nm.

However this is true if all matches had constant length and all start points 
gave independent matches. This is not true, so we need a small 
correction (T) that is independent of nm and depends only on the scoring 
function s.



Biological relationships …

SpeciationSpeciationSpeciationSpeciation
Speciation is the origin of a new species capable of 
making a living in a new way from the species from 
which it arose. As part of this process it has also 
acquired some barrier to genetic exchange with the 
parent species.

HomologHomologHomologHomolog
A gene related to a second gene by descent from a 
common ancestral DNA sequence. The term, 
homolog, may apply to the relationship between 
genes separated by the event of speciation (see 
ortholog) or to the relationship betwen genes 
separated by the event of genetic duplication (see 
paralog).

OrthologOrthologOrthologOrtholog
Orthologs are genes in different species that evolved 
from a common ancestral gene by speciation. 
Normally, orthologs retain the same function in the 
course of evolution. Identification of orthologs is 
critical for reliable prediction of gene function in newly 
sequenced genomes. (See also Paralogs.).

ParalogParalogParalogParalog
Paralogs are genes related by duplication within a 
genome. Orthologs retain the same function in the 
course of evolution, whereas paralogs evolve new 
functions, even if these are related to the original one.
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� Searching a database of unrelated sequences result in scores following an 
extreme value distribution.

� The exact shape and location of the distribution depends on the exact nature 
of the database and the query sequence

Steps
1. Align query sequence to all sequences in database, note scores

2. Determine shape of background distribution (which is an extreme value 
distribution) from distribution of all scores

3. Use fitted extreme-value distribution to predict how many random hits to 
expect for any given score (the “E-value”)

Significance of scores



Values and scores

E-value
Expect value. The E-value is a parameter that describes the number of hits one can “expect” to see by 
chance when searching a database of a particular size. It decreases exponentially with the score (S) that 
is assigned to a match between two sequences. For example, an E-value of 1 assigned to a hit can be 
interpreted as meaning that in a database of the current size, one might expect to see one match with a 
similar score simply by chance. This means that the lower the E-value, or the closer it is to “0”, the 
higher is the “significance” of the match. 

bit score
The value S' is derived from the raw alignment score S in which the statistical properties of the scoring 
system used have been taken into account. By normalizing a raw score , a “bit score” S' is attained, 
which has a standard set of units. Because bit scores have been normalized with respect to the scoring 
system, they can be used to compare alignment scores from different searches.

P-value 
Is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, 
assuming that the null hypothesis is true.

E-value is the average number of times in multiple testing that one expects to obtain a test statistic at 
least as extreme as the one that was actually observed, assuming that the null hypothesis is true. The E-
value is the product of the number of tests and the p-value.

NCBI Glossary: http://www.ncbi.nlm.nih.gov/books/NBK21106/
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Exercise

Find a second equal-
scoring optimal alignment 
in the dynamic 
programming matrix in 
Figure 2.5



http://baba.sourceforge.net/

JAVA Applet: Dynamic Programming Demo



public class Cell {
private Cell prevCell;
private int score;
private int row;
private int col;

}

Cell Class Cell Class Cell Class Cell Class 

Dynamic programming (Java) implementation

Source: http://www.ibm.com/developerworks/java/library/j-seqalign/index.html

L.1L.1L.1L.1



Dynamic ProgrammingDynamic ProgrammingDynamic ProgrammingDynamic Programming initialization codeinitialization codeinitialization codeinitialization code

protected void initializeScores() {
for (int i = 0; i < scoreTable.length; i++) {
for (int j = 0; j < scoreTable[i].length; j++) {
scoreTable[i][j].setScore(getInitialScore(i, j));

}
}

}

protected void initializePointers() {
for (int i = 0; i < scoreTable.length; i++) {
for (int j = 0; j < scoreTable[i].length; j++) {
scoreTable[i][j].setPrevCell(getInitialPointer(i, j));

}
}

}

protected void initialize() {
for (int i = 0; i < scoreTable.length; i++) {
for (int j = 0; j < scoreTable[i].length; j++) {
scoreTable[i][j] = new Cell(i, j);

}
}
initializeScores();
initializePointers();

isInitialized = true;
}

protected abstract Cell getInitialPointer(int row, int col);

protected abstract int getInitialScore(int row, int col);

L.2L.2L.2L.2



abstract protected Object getTraceback();

protected abstract void fillInCell(Cell currentCell, Cell cell
Above,

Cell cellToLeft, Cell cellAboveLeft);

protected void fillIn() {
for (int row = 1; row < scoreTable.length; row++) {
for (int col = 1; col < scoreTable[row].length; col+

+) {
Cell currentCell = scoreTable[row][col];
Cell cellAbove = scoreTable[row - 1][col];
Cell cellToLeft = scoreTable[row][col - 1];
Cell cellAboveLeft = scoreTable[row - 1][col - 1];
fillInCell(currentCell, cellAbove, cellToLeft, cellAbov

eLeft);
}

}

tableIsFilledIn = true;
}

Dynamic ProgrammingDynamic ProgrammingDynamic ProgrammingDynamic Programming code for code for code for code for 
filling in the tablefilling in the tablefilling in the tablefilling in the table

DynamicProgramming.getTracebackDynamicProgramming.getTracebackDynamicProgramming.getTracebackDynamicProgramming.getTraceback()()()()
methodmethodmethodmethod

LCS initialization methodLCS initialization methodLCS initialization methodLCS initialization method

L.3L.3L.3L.3

L.4L.4L.4L.4

protected int getInitialScore(int row, int col) {
return 0;

} L.5L.5L.5L.5



protected void fillInCell(Cell currentCell, Cell cellAbove, Cell cellToLeft,
Cell cellAboveLeft) {

int aboveScore = cellAbove.getScore();
int leftScore = cellToLeft.getScore();
int matchScore;
if (sequence1.charAt(currentCell.getCol() - 1) == sequence2

.charAt(currentCell.getRow() - 1)) {
matchScore = cellAboveLeft.getScore() + 1;

} else {

matchScore = cellAboveLeft.getScore();
}

int cellScore;
Cell cellPointer;
if (matchScore >= aboveScore) {
if (matchScore >= leftScore) {
// matchScore >= aboveScore and matchScore >= leftScore
cellScore = matchScore;
cellPointer = cellAboveLeft;

} else {
// leftScore > matchScore >= aboveScore
cellScore = leftScore;
cellPointer = cellToLeft;

}

} else {
if (aboveScore >= leftScore) {
// aboveScore > matchScore and aboveScore >= leftScore
cellScore = aboveScore;
cellPointer = cellAbove;

} else {
// leftScore > aboveScore > matchScore
cellScore = leftScore;
cellPointer = cellToLeft;

}

}
currentCell.setScore(cellScore);
currentCell.setPrevCell(cellPointer);

}

LCS method for LCS method for LCS method for LCS method for 
filling in a cell's score filling in a cell's score filling in a cell's score filling in a cell's score 
and pointerand pointerand pointerand pointer
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protected Object getTraceback() {
StringBuffer lCSBuf = new StringBuffer();
Cell currentCell = scoreTable[scoreTable.length - 1][scoreTable[0].length - 1];
while (currentCell.getScore() > 0) {
Cell prevCell = currentCell.getPrevCell();
if ((currentCell.getRow() - prevCell.getRow() == 1 && currentCell

.getCol()
- prevCell.getCol() == 1)
&& currentCell.getScore() == prevCell.getScore() + 1) {

lCSBuf.insert(0, sequence1.charAt(currentCell.getCol() - 1));
}
currentCell = prevCell;

}

return lCSBuf.toString();
}

LCS LCS LCS LCS tracebacktracebacktracebacktraceback codecodecodecode
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protected Cell getInitialPointer(int row,
int col) {

if (row == 0 && col != 0) {
return scoreTable[row][col - 1];

} else if (col == 0 && row != 0) {
return scoreTable[row - 1][col];

} else {

return null;
}

}

protected int getInitialScore(int row,
int col) {

if (row == 0 && col != 0) {
return col * space;

} else if (col == 0 && row != 0) {
return row * space;

} else {
return 0;

}
}

NeedlemanNeedlemanNeedlemanNeedleman----WunschWunschWunschWunsch
initialization codeinitialization codeinitialization codeinitialization code
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protected void fillInCell(Cell currentCell, Cell cellAbove, Cell cellToLeft,
Cell cellAboveLeft) {

int rowSpaceScore = cellAbove.getScore() + space;
int colSpaceScore = cellToLeft.getScore() + space;
int matchOrMismatchScore = cellAboveLeft.getScore();
if (sequence2.charAt(currentCell.getRow() - 1) == sequence1

.charAt(currentCell.getCol() - 1)) {
matchOrMismatchScore += match;

} else {
matchOrMismatchScore += mismatch;

}
if (rowSpaceScore >= colSpaceScore) {
if (matchOrMismatchScore >= rowSpaceScore) {
currentCell.setScore(matchOrMismatchScore);
currentCell.setPrevCell(cellAboveLeft);

} else {
currentCell.setScore(rowSpaceScore);
currentCell.setPrevCell(cellAbove);

}
} else {
if (matchOrMismatchScore >= colSpaceScore) {
currentCell.setScore(matchOrMismatchScore);
currentCell.setPrevCell(cellAboveLeft);

} else {
currentCell.setScore(colSpaceScore);
currentCell.setPrevCell(cellToLeft);

}
}

}

NeedlemanNeedlemanNeedlemanNeedleman----WunschWunschWunschWunsch code for code for code for code for 
filling in the tablefilling in the tablefilling in the tablefilling in the table
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protected Object getTraceback() {
StringBuffer align1Buf = new StringBuffer();
StringBuffer align2Buf = new StringBuffer();
Cell currentCell = getTracebackStartingCell();
while (traceBackIsNotDone(currentCell)) {
if (currentCell.getRow() - currentCell.getPrevCell().getRow() == 1) {
align2Buf.insert(0, sequence2.charAt(currentCell.getRow() - 1));

} else {
align2Buf.insert(0, '-');

}
if (currentCell.getCol() - currentCell.getPrevCell().getCol() == 1) {
align1Buf.insert(0, sequence1.charAt(currentCell.getCol() - 1));

} else {
align1Buf.insert(0, '-');

}
currentCell = currentCell.getPrevCell();

}

String[] alignments = new String[] { align1Buf.toString(),
align2Buf.toString() };

return alignments;
}

protected abstract boolean traceBackIsNotDone(Cell currentCell);
protected abstract Cell getTracebackStartingCell();

TracebackTracebackTracebackTraceback code used for both Needlemancode used for both Needlemancode used for both Needlemancode used for both Needleman----
WunschWunschWunschWunsch and Smithand Smithand Smithand Smith----WatermanWatermanWatermanWaterman
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NeedlemanNeedlemanNeedlemanNeedleman----WunschWunschWunschWunsch
tracebacktracebacktracebacktraceback codecodecodecode

protected boolean traceBackIsNotDone(Cell currentCell) {
return currentCell.getPrevCell() != null;

}

protected Cell getTracebackStartingCell() {
return scoreTable[scoreTable.length - 1][scoreTable[0].length - 1];

}

L.11L.11L.11L.11



protected Cell getInitialPointer(int row, int col) {
return null;

}
protected int getInitialScore(int row, int col) {
return 0;

}

SmithSmithSmithSmith----Waterman initializationWaterman initializationWaterman initializationWaterman initialization
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protected void fillInCell(Cell currentCell, Cell cellAbove, Cell cellToLeft,
Cell cellAboveLeft) {

int rowSpaceScore = cellAbove.getScore() + space;
int colSpaceScore = cellToLeft.getScore() + space;
int matchOrMismatchScore = cellAboveLeft.getScore();
if (sequence2.charAt(currentCell.getRow() - 1) == sequence1

.charAt(currentCell.getCol() - 1)) {
matchOrMismatchScore += match;

} else {
matchOrMismatchScore += mismatch;

}
if (rowSpaceScore >= colSpaceScore) {
if (matchOrMismatchScore >= rowSpaceScore) {
if (matchOrMismatchScore > 0) {
currentCell.setScore(matchOrMismatchScore);
currentCell.setPrevCell(cellAboveLeft);

}
} else {
if (rowSpaceScore > 0) {
currentCell.setScore(rowSpaceScore);
currentCell.setPrevCell(cellAbove);

}
}

} else {
if (matchOrMismatchScore >= colSpaceScore) {
if (matchOrMismatchScore > 0) {
currentCell.setScore(matchOrMismatchScore);
currentCell.setPrevCell(cellAboveLeft);

}
} else {
if (colSpaceScore > 0) {
currentCell.setScore(colSpaceScore);
currentCell.setPrevCell(cellToLeft);

}
}

}
if (currentCell.getScore() > highScoreCell.getScore()) {
highScoreCell = currentCell;

}
}

SmithSmithSmithSmith----Waterman Waterman Waterman Waterman 
code for filling in a code for filling in a code for filling in a code for filling in a 
cellcellcellcell
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protected boolean traceBackIsNotDone(Cell currentCell) {
return currentCell.getScore() != 0;

}

@Override
protected Cell getTracebackStartingCell() {
return highScoreCell;

}

SmithSmithSmithSmith----Waterman Waterman Waterman Waterman 
tracebacktracebacktracebacktraceback codecodecodecode
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public static void main(String[] args) throws Exception {
// The alphabet of the sequences. For this example DNA is chosen.
FiniteAlphabet alphabet = (FiniteAlphabet) AlphabetManager

.alphabetForName("DNA");
// Use a substitution matrix with equal scores for every match and every
// replace.
int match = 1;
int replace = -1;
SubstitutionMatrix matrix = new SubstitutionMatrix(alphabet, match,

replace);
// Firstly, define the expenses (penalties) for every single operation.
int insert = 2;
int delete = 2;
int gapExtend = 2;
// Global alignment.
SequenceAlignment aligner = new NeedlemanWunsch(match, replace, insert,

delete, gapExtend, matrix);
Sequence query = DNATools.createDNASequence("GCCCTAGCG", "query");
Sequence target = DNATools.createDNASequence("GCGCAATG", "target");
// Perform an alignment and save the results.
aligner.pairwiseAlignment(query, // first sequence

target // second one
);

// Print the alignment to the screen
System.out.println("Global alignment with Needleman-Wunsch:\n"

+ aligner.getAlignmentString());

// Perform a local alignment from the sequences with Smith-Waterman.
aligner = new SmithWaterman(match, replace, insert, delete, gapExtend,

matrix);
// Perform the local alignment.
aligner.pairwiseAlignment(query, target);
System.out.println("\nLocal alignment with Smith-Waterman:\n"

+ aligner.getAlignmentString());
}

BioJavaBioJavaBioJavaBioJava code code code code 
sequence sequence sequence sequence 
alignment codealignment codealignment codealignment code
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