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We describe the Hanvell-Boeing sparse matrix collection, a set of standard test matrices for sparse 
matrix problems. Our test set comprises problems in linear systems, least squares, and eigenvalue 
calculations from a wide variety of scientific and engineering disciplines. The problems range from 
small matrices, used as counter-examples to hypotheses in sparse matrix research, to large test cases 
arising in large-scale computation. We offer the collection to other researchers as a standard 
benchmark for comparative studies of algorithms. The procedures for obtaining and using the test 
collection are discussed. We also describe the guidelines for contributing further test problems to the 
collection. 

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra-sparse 
and very large systems; G.4 [Mathematics of Computing]: Mathematical Software 
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1. INTRODUCTION 

Research in solving problems involving sparsity has always been motivated by 
the need to solve practical large-scale problems. Thus it is important that the 
evaluation of techniques for exploiting sparsity should be strongly influenced by 
the performance of these techniques on realistic test problems. It is often hard 
for research workers in universities to get access to such problems. People working 
in a laboratory or industrial environment will usually be exposed to relatively 
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few applications and so will not easily know how general their techniques are. 
Published results are often difficult to compare because the problems used for 
evaluation are different. For these reasons we have organized and continue to 
maintain a database of sparse matrices that we offer to other researchers. 

The main goal of our work is to provide: 

(i) an extensive collection of interesting and real test problems in a com- 
mon, general, machine-readable form with detailed documentation on the 
problems; 

(ii) easy access to the test problems and to interesting subsets of the collection; 
and 

(iii) a simple mechanism for adding new problems to the collection. 

Our intention is to allow this test set to be disseminated as widely as possible. 
For most readers the most important issues are the contents of the collection 
and how to access the collection. The current contents are outlined in Section 2. 
The mechanisms for obtaining all or part of the collection are presented in 
Section 3. Section 4 contains the general forms of the matrix representations in 
the collection. Those three sections provide an overview of the current collection. 
In Section 5 we offer readers the opportunity of contributing to the long-term 
value of the collection, and we give guidelines for adding new problems to the 
collection. We conclude with a discussion of the history of this collection and 
remarks on some related areas. We also include as an appendix full details of the 
storage structures and formats used to hold the data in our test set. 

By the publication of this report, we intend to broadcast the availability of our 
set of sparse matrix test problems and to provide information on what is contained 
in our set. The nature of scientific computation changes rapidly, and so we do 
not envisage this current collection as static or complete. For this reason full 
details of the collection are not given in this paper. Instead we are publishing 
separately a Users’ Guide for the Harwell-Boeing Sparse Matrix Collection [l], 
which gives the finer details of the contents and formats of the collection. The 
Users’ Guide is published as a technical report at each of our respective institu- 
tions and will be updated periodically to reflect changes to the collection. The 
Users’ Guide can be obtained by writing to any of the authors. 

2. SUMMARY OF CURRENT CONTENTS 

The Harwell-Boeing Sparse Matrix Collection currently comprises matrices from 
more than 20 disciplines. These disciplines include structural analysis (static and 
dynamic), partial differential equations, circuit analysis, power systems, atomic 
spectra, oil reservoir modeling, linear programming, atmospheric pollution, finite- 
element analysis, simulation, chemical kinetics, solution of stiff ordinary differ- 
ential equations, chemical engineering, demography, and econometrics. 

The problems range in order from 9 to 44,609. Many of these matrices stem 
from actual applications and exhibit numerical pathologies that arise in practice. 
Other matrices also come from practical problems, but we maintain only the 
sparsity structure of these matrices for reasons of space or because the value of 
the problems is strictly for evaluating sparsity-preserving techniques, At present 
there are 292 matrices represented by over 110 Megabytes of data. In Table I, we 
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Table I. Summarv of Collection 

Discioline 
Number of 

Largest matrix in set 

matrices in set Order Number of entries 

Counter-examples-small matrices 3 
Original Harwell test set 36 

Air traffic control 1 
Astrophysics 2 
Chemical engineering 16 
Circuit simulation 1 
Demography 3 
Economic modeling 11 
Nuclear reactor core modeling 3 
Optimal power flow problems 3 
Stochastic modeling 7 

Acoustic scattering 4 
Oil reservoir modeling 19 
Stiff ODE problems 10 

George and Liu test set-mesh problems 21 
Model PDE problems 3 
Navier-Stokes problems 7 
Unassembled finite-element matrices 10 

Oceanography 4 
Power network matrices 14 

Everstine test set-ship structures 30 
Structures-eigenproblems 22 
Structures-linear equations 36 

Least-squares problems 4 

11 

a22 

2,873 
765 

2,021 
991 

3,140 
2,529 
1,374 
4,929 
1,107 

841 
5,005 

760 

3,466 
900 

3,937 
5,976 

1,919 
5,300 

2,680 
15,439 
44,609 

1,850 

76 
4,841 

15,032 
24,382 

7,353 
6,027 

543,162 
90,158 

8,606 
47,369 

5,664 

4,089 
20,033 

5,976 

13,681 
4,322 

25,407 
15,680 

17,159 
13,571 

13,853 
133,840 

1,029,655 

10,608 

Source 

Table II. Summary of Generator Programs 

Description of generator 

Duff and Grimes 

Grimes 

Generator for 5- or g-point discretization of the Laplacian operator 
on a rectangular grid 
Generator for 3-dimensional oil reservoir simulation 

list these matrices in summary form by class. The Users’ Guide lists all of the 
matrices in the collection with relevant information on their properties, history, 
and use in the literature. In addition, we also provide parameterized families 
of sparse matrices of arbitrary size through generator programs. Our present 
generator programs are summarized in Table II. 

3. SYSTEM FOR DISTRIBUTION 

Requests for data from the collection should be made to one of the authors. At 
present there is no charge for this service other than the cost of a tape and 
postage. Requesters can offset this cost (and simplify our work) by supplying 
their own tape. The data will be provided in card-image format in either ASCII 
or EBCDIC blocked format, as requested. 

The sheer size of the collection is an obstacle to its distribution and use. As it 
stands today the total collection requires at least three 2,400-ft. reels of 1,600 
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BP1 tape (a single reel at 6,250 BPI). For most researchers the total collection is 
not relevant. Unsymmetric matrices are not of interest to researchers studying 
orderings for symmetric positive definite problems, for example. Workstation 
users may find problems with millions of entries to be a challenge. Although we 
can provide the complete collection, we have also developed a mechanism for 
extracting subcollections. We discuss this mechanism in some detail in the Users’ 
Guide. In this paper, we describe only the salient features to give a flavor of the 
kind of subsets that can be extracted. 

The basis for extracting subcollections is a small database. For each matrix, 
the information held in the database consists of the unique matrix name or 
identifier, its type, its source and discipline, its order and number of entries, and 
key words, From this information we can select any subset specified according 
to any of the attributes held in the database. A typical request might be of the 
form “all symmetric matrices from structures problems with order greater than 
1,000 but with less than 100,000 entries.” One could also request all matrices 
supplied by Boeing Computer Services, the original Harwell sparse matrix col- 
lection, or matrices from other sources, perhaps with additional qualifications. 
Any of the characteristics held in the database may be used in the selection 
process. 

We use this extraction mechanism ourselves to generate subcollections that 
we consider to be appropriate benchmarks for some standard requirements. On 
request we will provide our benchmark subcollections for: 

linear equation solvers (symmetric) 
linear equation solvers (unsymmetric) 
generalized symmetric eigepproblems 
linear least-squares problems 

The specific contents of each are described in the Users’ Guide. These collections 
all contain systems of medium to large size. We also provide corresponding sets 
of small matrices to assist in debugging. 

4. REPRESENTATION OF MATRICES 

We use three different modes for storing the sparse matrices. For most matrices 
we use an explicit sparse matrix representation. A small number of our problems 
were obtained from finite-element problems in original elemental matrix form. 
We also include generator routines that can be used to provide families of sparse 
matrices with certain regular properties. We give only an overview of the 
representation in this section. Full details are presented in the Appendix. 

All matrices held in explicit form in the sparse matrix test collection are stored 
in a compact format where only the entries corresponding to nonzero values are 
stored. The standard format for matrices uses a column-oriented form so that 
only two vectors of length the number of nonzeros are required. We store only 
the entries of the lower triangle (by columns including the diagonal) of symmetric 
and Hermitian matrices. Our representation is a simple, general, compact scheme 
that is widely used in sparse matrix research. Other schemes exist, but they are 
generally less compact or specialized for specific applications. No provision 
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has been made at this time for the special requirements of an explicit hyper- 
matrix partitioning or for data compression in areas where certain data appear 
repeatedly. 

Unassembled finite-element matrices are stored in a condensed format that 
retains the elemental structure. The entries of each element are stored as a small 
full matrix, where any zero entries are stored explicitly. Our elemental represen- 
tation allows only structurally symmetric matrices, although the matrix and its 
element matrices need not be symmetric. Symmetric storage is used for the 
element matrices when all element matrices (and thus the assembled matrix) are 
symmetric. 

We also allow the storage of right-hand sides. The right-hand-side vectors are 
stored either as full vectors or in a form similar to that for the matrix itself. To 
facilitate comparison of iterative methods, our format permits the inclusion not 
only of right-hand sides, but also of starting vectors and solution vectors. 

For portability, each explicitly held matrix is represented on tape by a sequence 
of card images. The card images contain header records that provide size and 
formatting information and then the actual indices, pointers, and numerical data. 
The specific formats used are described in the Appendix. A prospective user may 
never need these details since we also provide a collection of utility subroutines 
for using the collection. These subroutines include routines that can be called 
from a Fortran program to read a matrix from its database form into the array 
representation described above. Similar routines exist for writing matrices in our 
database format for use by prospective contributors. 

The third representation we have adopted is for easily generated families of 
sparse matrices. The generator subroutines have a common interface that gives 
the representation of a sparse matrix described above and the parameters 
necessary to describe a specific member of the generated family. The generated 
matrices are produced in exactly the same format as described for the explicitly 
held matrices. The input parameters are passed to the subroutine through two 
arrays-one of integer, one of numerical values. Thus all families can be generated 
through a common interface. 

5. GUIDELINES FOR CONTRIBUTIONS 

It has always been our intention to generate a test collection that reflected the 
features of many different application areas, and indeed a principal criterion 
when deciding to augment the test set has been whether the application area is 
already adequately represented. 

In the early days of the collection, we were delighted to accept almost any 
matrix and were prepared to accept it in any format, although it often involved 
significant work to reorganize it into a standard format. Thus we were able to 
build and establish our test collection in a reasonably short time. Now our 
collection stands at nearly 300 matrices and over 110 Mbytes of data covering a 
wide range of applications. We are therefore more particular about adding further 
data to the collection. At the same time we realize that the characteristics of 
interesting scientific problems evolve with time; this collection will maintain its 
value only if new types of problems are added when they are encountered. 
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Therefore, we are still keen to augment the collection but would like any 
prospective contributions to satisfy one (or more) of the following criteria: 

(i) the matrices have unusual numerical or structural properties not currently 
represented; 

(ii) they represent some important or some unusual class of problems; 
(iii) they demonstrate the effectiveness or ineffectiveness of particular solution 

schemes; 
(iv) they are samples of matrices available in parametric form, representing a 

family of matrices, and can be used to demonstrate parametric effects on 
solution techniques; 

(v) they have been widely used as test problems or otherwise referenced in 
existing literature; or 

(vi) they have some other claim to fame!! 

All submissions should, in any case, conform to the standard data representation 
described in Section 4 and the Appendix. Submissions, like requests for the 
collection, may be addressed to any of the authors. Prospective contributors 
should contact any of the authors to discuss the suitability of their material 
before sending any data. 

6. HISTORICAL COMMENTS AND CONCLUDING REMARKS 

Historically, sample test problems have been collected and maintained by indi- 
viduals in various disciplines, with widely differing representations, formats, and 
availability. Curtis and Reid used some test examples generated from the solution 
of ordinary differential equations, supplemented by others from colleagues and 
conferences, in the development of the Harwell MA18 code in 1971. Duff and 
Reid [3] then organized the collection and augmented it. This was known as the 
Harwell collection of sparse matrices and represented the only collection in a 
uniform format covering several disciplines. Despite its lack of coverage in some 
important areas, it has been widely distributed. Researchers at Boeing Computer 
Services were also generating test examples, partly through their development of 
software for finite-element packages and partly through work with the Electric 
Power Research Institute. It was natural to coordinate these efforts, and Duff et 
al. [2] presented the combined Harwell-Boeing collection at the Sparse Matrix 
Meeting at Fairfield Glade, Tennessee. Since then there have been many requests 
for data from that collection. The work reported on here is intended to increase 
the value and coverage of the collection and make the handling of such requests 
easier and more routine. 

We do not know of any comparable set of test matrices, although there are 
collections of large systems from particular application areas. For example, Gay, 
Reid, and Saunders all have sets of linear programming problems held in the 
now standard MPS format. There is also a great need for and interest in 
the creation of a set of problems for large-scale nonlinear programming. 
Although sets for small-scale problems exist (for example, [5]), we know of 
no satisfactory database for the large-scale case. We hope that this organization 
and collection of a linear set will encourage efforts for the nonlinear case, 
although it is not yet clear in what format nonlinear problems should be stored. 
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Very recently Toint [6] and Lenard [4] have presented some initial suggestions 
in this area. 

APPENDIX. SPARSE MATRIX TEST COLLECTION-MATRIX FORMAT 

Each matrix held in explicit form in the sparse matrix test collection is stored in 
one of two compact formats. The first is for arbitrary matrices in standard sparse 
matrix formulation. The second format is used to represent unassembled finite- 
element matrices in an elemental formulation. 

Each matrix in the collection is held as a sequence of formatted records that 
can be read conveniently into FORTRAN arrays. In Sections Al thA, .:h A3, we 
describe the resulting matrix representation. In Section A4, we describe the 
format itself and give two example programs that read it. 

Al. Standard Sparse Matrix Format 

The standard sparse matrix format is column-oriented. That is, the matrix is 
represented by a sequence of columns. Each column is held as a sparse vector, 
represented by a list of the row indices of the entries in an integer array and a 
list of the corresponding values in a separate real array. A single integer array 
and a single real array are used to store the row indices and the values, 
respectively, for all of the columns. (Throughout, we use the term “real” in a 
generic sense so that it should be read as a FORTRAN real, double precision, 
complex, or double-precision complex as appropriate.) Data for each column are 
stored in consecutive locations, the columns are stored in order, and there is no 
space between the columns. A separate integer array holds the location of the 
first entry of each column and the first free location. For symmetric and 
Hermitian matrices, we store only the entries of the lower triangle (including the 
diagonal). For skew symmetric matrices, we hold only the strict lower triangle. 

We illustrate the storage scheme with the following example. The 5 x 5 matrix 

1. -3. 0 -1. 0 
0 0 -2. 0 3. i 1 2. 0 0 0 0 
0 4. 0 -4. 0 
5. 0 -5. 0 6. 

would be stored in the arrays COLPTR (location of first entry), ROWIND (row 
indices), and VALUES (numerical values) according to the following prescription: 

Subscripts 1 2 3 4 5 6 7 8 9 10 11 

COLPTR 1 4 6 8 10 12 

1 
ROWIND 

1-p 
1 3 5 1 4 2 5 1 4 2 5 

VALUES 1. 2. 5. -3. 4. -2. -5. -1. -4. 3. 6. 

We can generate column 5, say, by observing that its first entry is in posi- 
tion COLPTR(5) = 10 of arrays ROWIND and VALUES. This entry is . 
in row ROWIND(lO) = 2 and has value VALUES(10) = 3. Other entries 
in column 5 are found by scanning ROWIND and VALUES to position 
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COLPTR(6) -1, that is position 11. Thus, the only other entry in column 5 
is in row ROWIND(ll) = 5 with value VALUES(ll) = 6. 

A2. Finite-Element Matrices in Unassembled Format 

Matrices arising in finite-element applications are usually assembled from nu- 
merous small elemental matrices. Our collection includes a few sparse matrices 
in original unassembled form. The storage of the unassembled matrices is 
analogous to the explicit form above, which stores each matrix as a list of matrix 
columns. The elemental representation stores the matrix as a list of elemental 
matrices. Each elemental matrix is represented by a list of the row/column 
indices (variables) associated with the element and by a small, dense matrix 
giving the numerical values by columns (in the symmetric case only the lower 
triangular part). The lists of indices are held contiguously, just as for the lists of 
row indices in the standard format. The dense matrices are held contiguously in 
a separate array, with each matrix held by columns. Although there is not a 1: 1 
correspondence between the arrays of integer and numerical values, our repre- 
sentation does not hold the pointers to the beginning of the real values for each 
element. These pointers can be created from the index start pointers (ELTPTR) 
after noting that an element with u variables has u2 real values (u X (u + 1)/2 in 
the symmetric case). 

We illustrate the elemental storage scheme with a small example. Consider a 
5 X 5 symmetric matrix 

5. 0. 0. 1. 2. 
0. 4. 3. 0. 6. I 1 0. 3. 7. 8. 3.. , 
1. 0. 8. 9. 0. 
2. 6. 1. 0. 10. 

generated from four elemental matrices, 

where the variable indices are indicated by the integers before each matrix 
(columns are identified symmetrically to rows). This matrix would be stored 
in arrays ELTPTR (location of first entry), VARIND (variable indices), and 
VALUES (numerical values) according to the following prescription: 

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ELTPTR 1 3 5 8 10 

VARIND 1, !i-i+m 
VALUES 2. 1. 7. 3. 2. 8. 4. 3. 6. 5. 1. 2. 2. 8. 2. 

A3. Right-Hand Sides 

Where the matrices originate in the solution of linear equations and the right- 
hand sides are available, the right-hand-side vectors are stored with the matrices. 
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Usually the right-hand-side vectors are dense, in which case they are stored 
contiguously (as in ordinary FORTRAN array storage). Multiple right-hand sides 
are stored as consecutive vectors, so that the right-hand sides are accessible as 
the columns of a FORTRAN array. 

An alternative form is available in which right-hand sides are represented in 
the same format as the matrix. For unassembled matrices the associated right- 
hand sides can be represented by elemental contributions. Right-hand sides in 
elemental form are stored as a sequence of small dense matrices, each small 
matrix having as many columns as the number of right-hand sides, and with as 
many rows as the corresponding element in the matrix representation. Within 
each elemental right-hand side, the rows correspond to the entries in the variable 
index vector for that element. 

The format for assembled sparse matrices is used to store sparse right-hand 
sides. Applications with sparse right-hand sides are less common, but the sparsity 
can be used to advantage in direct solution techniques. We only allow sparse 
right-hand sides for assembled matrices, in which case we store the right-hand 
sides exactly as a standard sparse matrix, with the same number of rows as the 
coefficient matrix and the same number of columns as right-hand sides. 

We allow the specification of a starting guess for the solution of the problem 
and a vector that purports to be the exact solution. These can only be supplied 
as full arrays and only when right-hand side(s) are present. Either or both of 
these arrays can be present. The starting vector(s) precede the solution vector(s) 
if both are given and the number of such vectors must be equal to the number of 
right-hand sides. 

A4. Detailed Formats 

Our collection is held in an SO-column, fixed-length format for portability. Each 
matrix begins with a multiple-line header block, which is followed by two, three, 
or four data blocks. The header block contains summary information on the 
storage formats and space requirements. From the header block alone, the user 
can determine how much space will be required to store the matrix. Information 
on the size of the representation in lines is given for ease in skipping past 
unwanted data. 

If there are no right-hand side vectors, the matrix has a four-line header block 
followed by two or three data blocks containing, in order, the column (or element) 
start pointers, the row (or variable) indices, and the numerical values. If right- 
hand sides are present, there is a fifth line in the header block and a fourth data 
block containing the right-hand side(s). The blocks containing the numerical 
values and right-hand side(s) are optional. The right-hand side(s) can be present 
only when the numerical values are present. If right-hand sides are present, then 
vectors for starting guesses and the solution can also be present; if so, they appear 
as separate full arrays in the right-hand-side block following the right-hand-side 
vector(s). 

The first line contains the 72-character title and the B-character identifier by 
which the matrix is referenced in our documentation. The second line contains 
the number of lines for each of the following data blocks as well as the total 
number of lines, excluding the header block. The third line contains a three- 
character string denoting the matrix type, as well as the number of rows, columns 
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(or elements), entries, and, in the case of unassembled matrices, the total number 
of entries in elemental matrices. The fourth line contains the variable FORTRAN 
formats for the following data blocks. The fifth line is present only if there are 
right-hand sides. It contains a one-character string denoting the storage format 
for the right-hand sides, as well as the number of right-hand sides, and the 
number of row index entries (for the assembled case). The exact format is given 
by the following, where the names of the FORTRAN variables in the subsequent 
programs are given in parentheses: 

Line 1 (A72, A8) 
Col. l-72 Title (TITLE) 
Col. 73-80 Key (KEY) 

Line 2 (5114) 
Col. 1-14 Total number of lines excluding header (TOTCRD) 
Col. 15-28 Number of lines for pointers (PTRCRD) 
Col. 29-42 Number of lines for row (or variable) indices (INDCRD) 
Col. 43-56 Number of lines for numerical values (VALCRD) 
Col. 57-70 Number of lines for right-hand sides (RHSCRD) 

(including starting guesses and solution vectors if present) 
(zero indicates no right-hand-side data are present) 

Line 3 (A3, 11X, 4114) 
Col. l- 3 Matrix type (see below) (MXTYPE) 
Col. 15-28 Number of rows (or variables) (NROW) 
Col. 29-42 Number of columns (or elements) (NCOL) 
Col. 43-56 Number of row (or variable) indices (NNZERO) 

(equal to number of entries for assembled matrices) 
Col. 57-70 Number of elemental matrix entries (NELTVL) 

(zero in the case of assembled matrices) 

Line 4 (2A16, 2A20) 
Col. 1-16 Format for pointers (PTRFMT) 
Col. 17-32 Format for row (or variable) indices (INDFMT) 
Col. 33-52 Format for numerical values of coefficient matrix (VALFMT) 
Col. 53-72 Format for numerical values of right-hand sides (RHSFMT) 

Line 5 (A3, 11X, 2114) 
Only present if there are right-hand sides present. 

Cal. 1 Right-hand side type: 
F for full storage or 
M for same format as matrix (RHSTYP) 

Cal. 2 G if a starting vector(s) (Guess) is supplied. 
Cal. 3 X if an exact solution vector(s) is supplied. 
Col. 15-28 Number of right-hand sides (NRHS) 
Col. 29-42 Number of row indices (NRHSIX) 

(ignored in case of unassembled matrices) 
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The three character type field on line 3 describes the matrix type. The following 
table lists the permitted values for each of the three characters. As an example 
of the type field, RSA denotes that the matrix is real, symmetric, and assembled. 

First Character: 
R Real matrix 
C Complex matrix 
P Pattern only (no real values supplied) 

Second Character: 
S Symmetric 
U Unsymmetric 
H Hermitian 
Z Skew symmetric 
R Rectangular 

Third Character: 
A Assembled 
E Elemental matrices (unassembled) 

To formalize the logical block structure of the data, we have included two 
pieces of sample FORTRAN code for reading a matrix in the format of the sparse 
matrix test collection. Both codes assume the data comes from input unit LUNIT. 
Neither is a complete code. Real code should include error checking to ensure 
that the target arrays into which the data are read are large enough. The design 
allows the arrays to be read by a separate subroutine that can avoid the use of 
possibly inefficient implicit DO-loops. A complete FORTRAN subroutine for 
reading matrices from the tape is supplied with the collection. 

The first sample code is for the standard case, a sparse matrix in standard 
format with no right-hand sides. 

E SAMPLE CODE FOR READING A SPARSE MATRIX IN STANDARD 
C ~GRMAT 
C 

CHARACTER TITLE*72, KEY*8 MXTYPE*3, 
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20 

INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD, 
1 NROW, NCOL, NNZERO, NELTVL 

INTEGER COLPTR (*), ROWIND (*) 
REAL VALUES (*) 

C 

: ... 
READ IN HEADER BLOCK 

READ (LUNIT, 1000) TITLE, KEY, 
1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD, 
2 MXTYPE, NROW, NCOL, NNZERO, NELTVL, 
3 PTRFMT, INDFMT, VALFMT, RHSFMT 

1000 FORMAT (A72, A8 / 5114 / A3,11X, 4114 / 2A16,2A20) 
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C 
C . . . READ MATRIX STRUCTURE 
C 

READ (LUNIT, PTRFMT) (COLPTR (I), I = 1, NCOL + 1) 
READ (LUNIT, INDFMT) (ROWIND (I), I = 1, NNZERO) 
IF (VALCRD .GT 0) THEN 

C 
C . . . READ MATRIX VALUES 
C 

READ (LUNIT, VALFMT) (VALUES (I), I = 1, NNZERO) 
ENDIF 

The second sample code illustrates the full generality of the representation. 

C 
C . . . SAMPLE CODE FOR READING A GENERAL SPARSE MATRIX, POS- 
C SIBLY WITH RIGHT-HAND-SIDE VECTORS 
C 

CHARACTER TITLE*72, KEY*& MXTYPE*3, RHSTYP*3, 
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20 

INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD, 
1 NROW, NCOL, NNZERO, NELTVL, 
2 NRHS, NRHSIX, NRHSVL, NGUESS, NEXACT 

INTEGER POINTR (*), ROWIND (*), RHSPTR (*), RHSIND (*) 
REAL VALUES (*), RHSVAL (*), XEXACT (*), SGUESS (*) 

C 
C . . . READ IN HEADER BLOCK 
C 

READ (LUNIT, 1000) TITLE, KEY, 
1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD, 
2 MXTYPE, NROW, NCOL, NNZERO, NELTVL, 
3 PTRFMT, INDFMT, VALFMT, RHSFMT 

IF (RHSCRD .GT. 0) 
1 READ (LUNIT, 1001) RHSTYP, NRHS, NRHSIX 

1000 FORMAT (A72, A8 / 5114 / A3,11X, 4114 / 2A16,2A20) 
1001 FORMAT (A3, 11X, 2114) 

C 
C . . . READ MATRIX STRUCTURE 
C 

READ (LUNIT, PTRFMT) (POINTR (I), I = 1, NCOL + 1) 
READ (LUNIT, INDFMT) (ROWIND, (I), I = 1, NNZERO) 
IF (VALCRD .GT. 0) THEN 

C 
C . . . READ MATRIX VALUES 
C 

IF (MXTYPE (3:3) .EQ. ‘A’) THEN 
READ (LUNIT, VALFMT) (VALUES (I), I = 1, NNZERO) 

ELSE 
READ (LUNIT, VALFMT) (VALUES (I), I = 1, NELTVL) 

ENDIF 
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C 
C 
C 

: 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

. . . READ RIGHT-HAND SIDES 

IF (NRHS .GT. 0) THEN 
IF (RHSTYP (1:l) .EQ. ‘F’) THEN 

. . . READ DENSE RIGHT-HAND SIDES 

NRHSVL = NROW * NRHS 
READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSVL) 

ELSE 

. . . READ SPARSE OR ELEMENTAL RIGHT-HAND SIDES 

IF (MXTYPE (3:3) .EQ. ‘A’) THEN 

. . . SPARSE RIGHT-HAND SIDES-READ POINTER ARRAY 

READ (LUNIT, PTRFMT) (RHSPTR (I), I = 1, NRHS + 1) 

. . . READ SPARSITY PATTERN FOR RIGHT-HAND SIDES 

READ (LUNIT, INDFMT) (RHSIND (I), I = 1, NRHSIX) 

. . . READ SPARSE RIGHT-HAND SIDE VALUES 

READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSIX) 
ELSE 

. . . READ ELEMENTAL RIGHT-HAND SIDES 

NRHSVL = NNZERO * NRHS 
READ (LUNIT, RHSFMT) (RHSVAL (I), I = 1, NRHSVL) 

ENDIF 

END IF 

IF (RHSTYP (2:2) .EQ. ‘G’) THEN 

. . . READ STARTING GUESSES 

NGUESS = NROW * NRHS 
READ (LUNIT, RHSFMT) (SGUESS (I), I = 1, NGUESS) 

END IF 

IF (RHSTYP (3:3) .EQ. ‘X’) THEN 

. . . READ SOLUTION VECTORS 

NEXACT = NROW * NRHS 
READ (LUNIT, RHSFMT) (XEXACT (I), I = 1, NEXACT) 

END IF 
END IF 

END IF 
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The code above outlines the structure of the data. The interpretation of the 
row (or variable) index arrays will require knowledge of the matrix and right- 
hand-side types, as read in this code. 
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