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We present a collection of 45 parametrized test matrices. The matrices are mostly square, dense,
nonrandom, and of arbitrary dimension. The collection includes matrices with known inverses or
known eigenvalues, ill-conditioned or rank deficient matrices, and symmetric, positive definite,
orthogonal, defective, involuntary, and totally positive matrices. For each matrix we give a
MATLABM-file that generates it.
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1. INTRODUCTION

Numerical experiments are an indispensable part of research in numerical

analysis. We do them for several reasons:

–to gain insight and understanding into an algorithm that is only partially

understood theoretically;

—to verify the correctness of a theoretical analysis and to see if the analysis

completely explains the practical behavior;

—to compare rival methods with regard to accuracy, speed, reliability, and so

on; and

—to tune parameters in algorithms and codes and to test heuristics.

One of the difficulties in designing experiments is finding good test prob-

lems–ones which reveal extremes of behavior, cover a wide range of diffi-

culty, are representative of practical problems, and (ideally) have known

solutions. In many areas of numerical analysis good test problems have been

identified, and several collections of such problems have been published. For
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example, collections are available in the areas of nonlinear optimization [281,

linear programming [12, 261, ordinary differential equations [10], and partial

differential equations [291.

Probably the most prolific devisers of test problems have been workers in

matrix computations. Indeed, in the 1950s and 1960s it was common for a

paper to be devoted to a particular test matrix: typically its inverse or

eigenvalues would be obtained in closed form. An early survey of test

matrices was given by Rutishauser [32]; most of the matrices he discusses

come from continued fractions or moment problems. Two well-known books

present collections of test matrices. Gregory and Karney [161 deal exclusively

with the topic, while Westlake [361 gives an appendix of test matrices. In the

two decades since these books appeared, several interesting matrices have

been discovered (and in fact both books omit some worthy test matrices that

were known at the time).

Our aim in this work has been to present an up-to-date, well documented

and readily accessible collection of test matrices. With a few exceptions each

of the 45 matrices satisfies the following requirements:

—It is a square matrix with one or more variable parameters, one of which is

the dimension. Thus it is actually a parametrized family of matrices of

arbitrary dimension.

—It is dense.

— It has some property which makes it of interest as a test matrix.

The first criterion is enforced because it is often desirable to explore the

behavior of a numerical method as parameters such as the matrix dimension

vary. The third criterion is somewhat subjective, and the matrices presented

here represent the author’s personal choice. Note that we have omitted

plausible matrices that we thought not “sufficiently different” from others in

the collection. Although all but one of our test matrices is usually real, those

with an arbitrary parameter can be made complex by choosing a nonreal

value for the parameter.

As well as their obvious application to research in matrix computations,

the matrices presented here will be useful for constructing test problems in

other areas, such as optimization (see, for example, Bartels and Joe [1]) and

ordinary differential equations.

We mention three other collections of test matrices that complement ours.

The Harwell-Boeing collection of sparse matrices, largely drawn from practi-

cal problems, is presented in Duff et al, [9]. Zielke [37] gives various

parametrized rectangular matrices of fixed dimension with known general-
ized inverses. Demmel and McKenney [7] present a suite of Fortran 77 codes

for generating random square and rectangular matrices with prescribed

singular values, eigenvalues, band structure, and other properties. Our focus

is primarily on nonrandom matrices but we include a class of random

matrices (see randsvd in Section 3.1) which has some of the features of the

Demmel and McKenney test set.

We present the matrices in the form of MATLAB M-files. (The reader

unfamiliar with MATLAB should consult Coleman and Van Loan [5], Moler et
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al. [271, or Sigmon [33]). There are several reasons for this choice. One is that

the matrices were collected, and have largely been used, in this form. Every

time we come across an interesting matrix we write an M-file to generate it,

and if the matrix turns out to satisfy the above requirements we add it to our

library of M-files. When carefully written, M-files are self-documenting and

so by writing an M-file we capture a matrix and its properties once and for all

in a concise and easily manipulated form. (Compare this with maintaining a

textual scrapbook with formulas, descriptions, references, and matrix in-

stances.) Writing an M-file forces us to think of an appropriate and easily

remembered name for the matrix. Where possible, we choose names epony -

mously since it is easier to remember, for example, “the Kahan matrix” than

“Example 3.8.” For portability reasons we restrict each M-file name to

eight characters (since this is the limit in the MSDOS operating system,

under which the PC version of MATLAB runs). We have written a routine

(matrix in Section 3.2) that accesses the matrices by number rather than by

name; this makes it easy to run experiments on the whole CO1lection of

matrices (with parameters other than the matrix dimension set to their

default values.)

We do not give complete mathematical formulas for the elements of each

matrix, since these are easily reconstructed from the MATLAB code (some-

times the formulas are given in comment lines). Nor do we give exhaustive

descriptions of matrix properties, or proofs of these properties; instead we list

a few key properties and give references where further details can be found.

This project stems from Higham [171 in which empirical observations made

when using some of the matrices here led to several refinements to a matrix

norm estimation algorithm. More recent experiments using this test collec-

tion (see Higham [19]) provided further insight into the algorithm.

The best way to understand and appreciate these matrices is to experiment

with them in MATLAB. For example, look at their eigenvalues, singular

values, and inverse (e ig, svd, and inv). It k also interesting to examine

pictures of the matrices. We have written a routine (see Section 3.2) that

displays four pictures of a matrix in the format

Emesh(A) mesh(pinv(A))

semilogy(svd(A) ) f v (A)

MATLAB’S mesh command plots a three-dimensional mesh surface, lby regard-

ing the entries of a matrix as specifying heights above a plane. pinv (A) is the

pseudo-inverse A+ of A, which is the usual inverse when A is square and

nonsingular. semi logy ( svd (A) ) plots the singular values of A (ordered in

decreasing size) on a logarithmic scale; the singular values are denoted by

crosses, which are joined by a dashed line to emphasise the shape of the

distribution. f v( A) plots the field of values (also called the numerical range),

which is the set { X*AX / X* x: x e C’}; the eigenvalues of A are plotted as

crosses. f v is not a built-in NIATLAB function; see Section 3.2 for details of this
routine. It is perhaps not widely appreciated how useful a tool the field of

values is for visualizing a nnatrix. For an example of how the field of values
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gives insight into the problem of finding a nearest normal matrix see Ruhe

[31]. Figures 1-8 give examples of the pictures. A complete set of these

pictures (for n = 8) is given in Higham [18] along with printouts of each

matrix and its inverse for n = 6.

Our programming style is as follows. Each M-file testmat begins with
comment lines that are displayed when the user types help testmat. Any

further comments and references follow a blank line and so are not displayed

by help. As far as possible, every routine sets default values for any parame-

ters (other than the dimension) that are not specified, so that A = testmat (n)

is usually valid. In general we have strived for conciseness, modularity,

speed, and minimal use of temporary storage in our MATLAB codes. Hence,

where possible, we have replaced for loops by matrix or vector constructs and

have used calls to existing M-files. We check for errors in parameters in

some, but not all, cases. A few of the test matrix routines do not properly

handle the dimension n = 1 (for example, they halt with an error, or return

an empty matrix). We decided not to add extra code for this case, since the
routines are unlikely to be called with n = 1.

The matrices described here can be modified in various ways while still

retaining some or all of their interesting properties. Among the many ways

of constructing new test matrices from old are:

— similarity transformations A + X- lAX,

—orthogonal transformations A + UA V, where u T u = v T v = I,

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991
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—Kronecker products A + A Q B or B Q A (for which MATLAB has a routine

kron), and

–powers A + Ak.

For a discussion of these techniques, and others, see Gregory and Karney

[161. Techniques for obtaining a triangular, orthogonal, or symmetric positive

definite matrix that is related to a given matrix include

–bandwidth reduction using orthogonal transformations (see bandred in

Section 3.2) and

—LU, Cholesky, QR and polar decompositions.

For details of these techniques, see Golub and Van Loan [141.

Another way to generate a new matrix is to perturb an existing one. One

approach is to add a random perturbation. Another is to round the matrix

elements to a certain number of binary places; this can be done using the

routine chop in Section 3.2.
The M-files in the test collection have been developed and tested using

PC-MATLAB version 3.5a (March 1989) on ‘286’- and ‘386’-level PC machines.

We anticipate no major problems in using the M-files with equivalent ver-

sions of MATLAB for other machines. The version number and date of the

collection (both returned by matrix ( I)) are version 1.2, May 30, 1990.

2. TEST MATRICES

Table I provides a summary of the properties of the test matrices. The

column headings have the following meanings:

ACM mansactlons on Mathematical Software, Vol. 17, No. 3, September 1991.
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Table I. Summary of the Properties of the Test Matrices

Matrix Inverse 111-ccmd Rank Symm Pos Def Ortk Eig

augment
cauchy
chebspec
chebvand
chow
circul
clement
compan
condex
Cycol
dingdong
dorr
dramadah
fiedler
forsythe
frank
gallery
gear

gfPP
hadamard
hanowa
hilb
invol
ipjfact
jordan
kahan
kms
krylov
lauchli
lehmer
lotkin
minij
moler
ohess
orthog
pascal
pei
rando
randsvd
riemann
tridiag
triw
vand
wathen
wilk

J
J

J

4

d
J

J
J
J

J

:
J

J
J
J
J
J

J

J

J
.J

J

J

i

J

J

J

d

J
J

J

J
J

J

J

J

J

J
J

J
J

J

J

J
J

J

J :
J
J

J

J
J

J :
J

JJ
J

J
J

J

J

J

J J

J

Inverse: the inverse of the matrix is known explicitly.

Ilkond: the matrix is ill-conditioned for some values of the parameters.

Rank the matrix is rank-deficient for some values of the parameters
(we exclude “trivial” examples such as vand which is singular if

its vector argument contains repeated points).

Symm: the matrix is symmetric for some values of the parameters.
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Pos Defi the matrix is symmetric positive definite for some values of the

parameters.

Orth: the matrix is orthogonal, or a diagonal scaling of an orthogonal

matrix, for some values of the parameters.

Eig: something is known about the eigensystem, ranging from bounds

or qualitative knowledge of the eigenvalues to explicit formulas

for some or all eigenvalues and eigenvectors.

Below we summarize further interesting properties possessed by some of

the matrices. Recall that A is a Hankel matrix if the anti-diagonals are

) idempotent if A2 = A, nilpotent if Ak = O for some k,constant ( a,~ = rL+J ,

involuntary if A2 = 1, totally positive (nonnegative) if the determinant of

every submatrix is positive (nonnegative), and a Toeplitz matrix if the

diagonals are constant ( aLJ = r. ~_ ,). See Horn and Johnson [21] for further

details of these matrix properties.

Some more properties of the matrices are as follows:

defective:

Hankel:

Hessenberg:

idempotent:

involuntary:

nilpotent:

rectangular:

Toeplitz:

totally positive or totally nonnegative:

tridiagonal:

inverse of a tridiagonal matrix:

triangular:

chebspec, gallery, gear, jordan

dingdong, hilb, ipjfact

chow, frank, ohess, randsvd

invol

invol, orthog, pascal

chebspec, gallery

chebvand, cycol, kahan, krylov,

lauchli, rando, randsvd, triw,

vand

chow, dramadah, kms

hilb, lehmer

clement, dorr, gallery, randsvd,

tridiag, wilk

kms, lehmer, minij

dramadah, jordan, kahan, pas-

cal, triw

3. M-FILE SUMMARY

In this section we give a brief description of the M-files in the test matrix

collection. The M-files that generate the test matrices are described in

Section 3.1. In Section 3.2 we describe utility routines that are called by

some of the test matrix M-files, as well as a few extra routines of interest for
viewing and modifying the test matrices.

The comments in the M-files constitute the main documentation: they

provide full details of the matrices and their properties, a description of the

input and output parameters of each routine, and further references in

addition to the selected ones given here.
In this summary we use MATLAB-style notation for submatrices and index

ranges. Thus A( p: q, r: s) denotes the submatrix of A comprising the

intersection of rows p to q and columns r to s, and ‘k = 1: n’ is equivalent to
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‘k=l,2,. ... n’. We also use MATLAB notation for three special n x n matri-

ces: eye (n) is the identity matrix, ones (n) is a matrix of ones, and rand (n) is

a matrix of random numbers.

Whenever an M-file has n as an input parameter it generates an n x n

matrix (lauchli is the scale exception). Routines cycol, kahan, rando,

randsvd and triw allow n tc) be a 2-vector ( nl, rzz), in which case the matrix

returned is nl x rzz.

3.1 Summary of Test Matrix M-files

augment (A) is the square matrix

[1Im A

A* O

of dimension m + n, where A is m x n. It is the symmetric and indefinite

coefficient matrix of the augmented system associated with a least squares

problem minimize II Ax – b II~. As a special case, augment (n) is the same as

augment (rand( p, q)) where n = p + q and p = L(rz + 1)/2J , that is, a ran-

dom augmented matrix of dimension n is produced.

C = cauchy( x, y), where x and y are n-vectors, is the n x n matrix with

C(i, j) = 1/(x(i) + y(j)). Explicit formulas are known for det(C) and the

elements of C-1. Reference: Knuth (1973, p. 36).

C = chebspec( n, k) is a Chebyshev spectral differentiation matrix. For

k = O (’no boundary conditions’), C is nilpotent with C’ = O. For h = 1, C is

nonsingular and well-conditioned, and its eigenvalues have negative real

parts.

C = chebvand( p), where ~D is a vector, is the (primal) Chebyshev Vander-
monde matrix based on the points p, i.e., C( i, J“) = T,. I( p(j)), where T, – I is

the Chebyshev polynomial of degree i – 1. chebvand( m, p) is a rectangular

version of chebvand( p) with m rows.

A = chow(n, u, 8) is a Toeplitz lower Hessenberg matrix A = AT(cx) + 61.,

where H(i, j) = ci-J+l. HI[ct) has p = L(n + 1)/2J zero eigenvalues, the
rest being 4a cos(k T /( n + 2)) 2, k = 1: n – p. Reference: Chow (1969).

C = circul(v) is the circulant matrix whose first row is u. The eigensystem

of C is known explicitly. Reference: Davis (1977).

clement( n, k) is a tridiagonal matrix with zero diagonal entries and eigen -

values equal to plus and minus the numbers n – 1,n – 3, n – 5, . . ., (1 or

O). For k = O the matrix is unsymmetric, while for k = 1 it is symmetric.

Reference: Clement (1959).

compan( p), where p is an ( n + 1)-vector, is the companion matrix whose

first row is –p(2: n + 1)/p(l).

condex( n, k, 0 ) is a ‘counter-example’ to the LINPACK condition estimator
(k = 1 :3) or to a matrix norm estimator of Higham (k = 4). References:

Cline and Rew (1983), Higham (1988).
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A = cycol(n, k) is a matrix of the form A = B(I :n,1: n) where B = [C C

c.. . ] and C = rand( n, k). Thus A’s columns repeat cyclically, and A has

rank at most k (which need not divide n).

A = dingdong( n) is the symmetric Hankel matrix with A(i, j) = 0.5/( n – i

– j + 1.5). The eigenvalues of A cluster around T/2 and – T /2.

dorr( n, /3) is a diagonally dominant, tridiagonal M-matrix which is ill-

conditioned for small values of the parameter 0 >0. Reference: Dorr (1971).

An anti-Hadamard matrix A is a matrix with elements O or 1 for which

,u( A) = II A-1 II ~ is maximal. A = dramadah(rz, k) is a (O, 1) matrix for which

p(A) is relatively large, although not necessarily maximal. The available

types are Toeplitz A (k = 1)with I det( A) I = 1 and W(A) > c(l.75)”, where c

is a constant, and Toeplitz upper triangular A (k = 2). The inverses of both

types have integer entries. Reference: Graham and Sloane (1984).

A = f iedler(c), where c is an n-vector, is the symmetric matrix with

A(i, j) = I c(i) - c(j)l.

f orsythe(n, a, h) is equal to j ordan(n, h) except it has a in the (n, 1)

position. It has the characteristic polynomial det( A – tI) = (A – t) n –

(-l)na.

F = f rank( n, k) is the Frank matrix. It is upper Hessenberg with determi-

nant 1. If k = 1, the elements are reflected about the anti-diagonal (1, n) –

(n, 1). The eigenvalues of F may be obtained in terms of the zeros of the

Hermite polynomials. They are positive and occur in reciprocal pairs. Thus if

n is odd, 1 is an eigenvalue. F has L n /2] ill-conditioned eigenvalues—the

smaller ones. Reference: Frank (1958).

gallery(n) is an n x n matrix with some special property. The values of n

available are n = 3 (badly conditioned), n = 4 (the Wilson matrix—symmet -

ric positive definite with integer inverse), n = 5 (an interesting eigenvalue

problem: defective and nilpotent), n = 8 (the Rosser matrix, a classic sym-

metric eigenvalue problem), and n = 21 (Wilkinson’s tridiagonal WJ1, an-

other eigenvalue problem).

A = gear( n, i, j) has ones on the sub- and super-diagonals, sign(i) in the

(1, I i \ ) position, sign(j) in the (n, n + 1 – I j I ) position, and zeros every-

where else. All eigenvalues are of the form 2 COS(a) and the eigenvectors are

of the form (sin(w + a), sin(w + 2 a), . . . . sin( w + na))~. A is singular, can

have double and triple eigenvalues, and can be defective. Reference: Gear
(1969).

gf pp( 2’) is a matrix of order n for which Gaussian elimination with partial

pivoting yields a growth factor 2”-1. The parameter T is an arbitrary
nonsingular upper triangular matrix of order n – 1. gf pp( T, c) sets all the

multipliers to c (O < c s 1) and gives growth factor (1 + c) n-1. gf pp( n, c) (a

special case) is the same as gf pp(eye( n – 1), c) and generates the well-known

example of Wilkinson. Reference: Higham and Higham (1989).
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hadamard( n) is a Hadamard matrix of order n, that is, a matrix H with

elements 1 or – 1 such that HI? ~ = rd. An n x n Hadamard matrix with

n > 2 exists only if n is divisible by 4. This M-file handles only the cases

where n, n/12 or n/20 is a power of 2.

hanowa( n, d) is defined only for even n = 2 m; it is the block 2 x 2 matrix

[

dI~ -diag(l : m)

diag(l : m) 1dI~ “

It has complex eigenvalues & = d f ki, k = 1: m.

hilb( n) is the Hilbert matrix, with elements 1/( i + j – 1). hilb( n) is

symmetric positive definite, totally positive, and a Hankel matrix.

invol( n) is an involutory and ill-conditioned matrix.

A = ipj f act( n, k) is the Hankel matrix with A(i, j) = (i + j)! (for k = O)

or A(i, j) = l/(i +j)! (for k = 1),

j ordan( n, )$ is a Jordan block with eigenvalue h.

kahan( n, 0) is an upper trapezoidal matrix involving a parameter 0, which

has some interesting properties regarding estimation of condition and rank.

Reference: Kahan (1966).

A = kms( n, p) is the Kac--Murdock-Szego Toeplitz matrix with A(i, j) =

p I ‘-J I (for real p). If p is cc)mplex, then the same formula holds except that

elements below the diagonall are conjugated. A is positive definite l~f and only

if O < I p ] < 1. A–l is tridiagonal.

krylov( A, x, j) is the Krylov matrix [x, Ax, A2X, . . . . AJ - lX], where A is

an n x n matrix and x is an n-vector.

lauchli( n, p) comprises p,l~ augmented with a leading row of ones. It is a

well-known example in least squares and other problems that indicates the

dangers of forming A~A. Reference: Lauchli (1961).

A = lebmer(n) is the symmetric positive definite matrix with A(i, j) = i/j

for j z i. A is totally nonnegative and n s K Z( A) s 4 n2. A-1 is tridiagonal.

lotkin( n) is the Hilbert lmatrix with its first row altered to all ones. It is

unsymmetric, ill-conditioned, and has many negative eigenvalues of small

magnitude. The inverse has integer entries and is known explicitly. Refer-

ence: Lotkin (1955).

A = mini j(n) is the symmetric positive definite matrix with A(i, j) =

min( i, ~“). A – 1 is tridiagonal.

moler( n, a) is the symmetric positive definite matrix U ~ U where U =

triw( n, – 1, a). It has one ~small eigenvalue.

H = ohess( n) is a real, random, orthogonal upper Hessenberg matrix.
Alternatively, H = ohe.s( a:), where x is an arbitrary real n-vector (n. > 1),

constructs H nonrandomly using the elements of x as parameters.
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orthog( n, k) is an orthogonal matrix or a diagonal scaling of an orthogonal

matrix. There are six choices, selected by k.

pascal( n) is the Pascal matrix: a symmetric positive definite matrix with

integer entries, made up from Pascal’s triangle. Its inverse has integer

entries. pascal( n, 1) is the involuntary lower triangular Cholesky factor (up to

signs of columns) of the Pascal matrix. pascal( n, 2) is a transposed and

permuted version of pascal( n, 1) which is a cube root of the identity.

pei( n, a), where a is a scalar, is the symmetric matrix al. + ones(n). The

matrix is singular for a = O, – n.

rando( n, k) is a random matrix whose elements are chosen with equal

probability from {O, 1}, { –1, 1}, or { –1,0, 1}, depending on k.

A = randsvd( n, K, mode, kl, ku) is a (kl, ku)-banded random matrix with

K 2( A) = K. The singular values are from one of five distributions selected by

mode: one large singular value, one small singular value, geometrically

distributed singular values, arithmetically distributed singular values, and

random singular values with uniformly distributed logarithm. As a special

case, if K < 0 then a random, full, symmetric positive definite matrix is

produced with K 2( A) = – K and eigenvalues distributed according to mode

(kl and ku, if present, are ignored).

A = riemann( n) is a matrix such that the Riemann hypothesis is true if and

only if det(A) = 0(n!n–1/2+~ ) for every s >0. Bounds are known on the

eigenvalues of A. Reference: Roesler (1986).

tridiag( x, y, z) is the tridiagonal matrix with subdiagonal x, diagonal y,

and superdiagonal z. Alternatively tridiag( n, c, d, e), yields the Toeplitz

tridiagonal matrix whose subdiagonal, diagonal, and superdiagonal elements

are given by the scalars c, d and e, respectively.

triw( n, u, k) is the upper triangular matrix with ones on the diagonal and

a on the first k > 0 superdiagonals.

vand( p) is a Vandermonde matrix based on the points in the vector p, i.e.,

V(i, j) = p(j)’-l. vand( m, p) is a rectangular version of vand( p) with m

rows.

A = wathen( n,, ny) is a random finite element matrix of dimension 3 nX nY

+ 2 nX + 2 nY + 1. A is precisely the “consistent mass matrix” for a regular

nx x ny g-rid of 8-node (serendipity) elements in two space dimensions. A is
symmetric positive definite and if D is the diagonal part of A then 0.25 s

A,(D - lA) s 4.5 for all i. Reference: Wathen (1987).

[A, 61 = wilk( n) is a matrix or system devised or discussed by Wilkinson.
The values of n available are n = 3 (upper triangular system Ux = 6 illus-

trating inaccurate solution), n = 4 (lower triangular system Lx = b, ill-
conditioned), n = 5 (a scalar multiple of a submatrix of hilb(6), symmetric

positive definite), and n = 21 ( W~l, a tridiagonal eigenvalue problem).
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3.2 Utility M-Files

Z3 = bandred( A, kl, ku) is a lmatrix orthogonally equivalent to A with lower

bandwidth kl and upper bandwidth ku (i.e., B(i, j) = O if i > j + kl or

j > i + ku). The reduction is performed using Householder transformations.

This routine is called by randsvd.

chop( X, t) is the matrix obtained by rounding the elements of X to t

significant binary places.

comp is a comparison matrix. comp( A) (often denoted by M(A) in the

literature) is A with each cliagonal element replaced by its absolute value,

and each off-diagonal element replaced by minus its absolute value. comp( A, 1)

is the same except that each off-diagonal element is replaced by minus the

absolute value of the largest element in absolute value in its row. However, if

A is triangular comp( A, 1) is too.

f v( A, nk, ~~a.) evaluates and plots the field of values (or numerical range)

of the nk largest leading principal submatrices of A, using 19~.X equally

spaced angles in the complex plane. The eigenvalues of A are displayed as

‘x’.

If [U, f?] = house(x) then H = 1 – 6U U* is a Householder matrix such that

Hx = – sign(x(l)) II x II~el.

matrix( k, n) is the n x n instance of the matrix number k in the collection

(including the matrices invlhilb and magic provided with MATLAB), with all

other parameters set to their default. Only those matrices whiclh take an

arbitrary dimension n are included (thus gallery is omitted, for example).

matrix(k) is a string containing the name of the kth matrix. matrix(0) is the

number of matrices, i.e., the upper limit for k. matrix( – 1) returns the

version number and date of the collection.

qmult( A) is QA where 4) is a random real orthogonal matrix from the

Haar distribution, of dimension the number of rows in A. This routine is

called by randsvd. Reference: Stewart (1980).

rq( A, X) is the Rayleigh qpotient of A and x, X*AX /( x*x). This routine is
called by fv.

see(A) displays mesh( A), mesh( A ‘), semilogy(svd( A)), and f v( A) in four

subplot windows.

seqa( a, b, n) produces a row vector comprising n equally spaced numbers

starting at a and finishing at b. If n is omitted then 10 points are generated.

seqcheb( n, k) produces a row vector of n points related to Chebyshev

polynomials, T.. For k = 1 the points are the zeros of T. and for k = 2 they

are the extrema of T._ ~.

seqm( a, b, n) produces a row vector comprising n logarithmically equally
spaced numbers, starting at u # O and finishing at b # O. If ab < 0 and

n > 2 then complex results are produced.
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show(X) displays X in ‘format + ‘ form, with ‘ +‘, ‘ –‘ and blank represent-

ing positive, negative and zero elements, respectively.

skew(A) is the skew-symmetric (Hermitian) part of A, ( A – A*)12. It is

the nearest skew-symmetric (Hermitian) matrix to A in both the 2- and the

Frobenius norms.

sparse( A) plots the sparsity pattern of a matrix A, showing an ‘x’ for

every nonzero element. sparse( A, tol) plots the elements bigger than tol in

absolute value.

S = sparsif y( A, p) is A with elements randomly set to zero (S = S* if

A = A*, i.e., symmetry is preserved). Each element has probability p of

being zeroed. Thus on average 100p percent of the elements of A will be

zeroed.

sub( A, i, j) is the principal submatrix A( i: j, i : j), sub( A, i) is the leading

principal submatrix of order i, A(l : i, 1: i), if i >0, and the trailing princi-

pal submatrix of order I i I if i <0.

SWCX A) is the symmetric (Hermitian) part of A, ( A + A*)/2. It is the
nearest symmetric (Hermitian) matrix to A in both the 2- and the Frobenius

norms.
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