EछwTEpIkं jirófero siarvofiatwr own \mathbb{R}^{3}
Etor \mathbb{R}^{3} opitoopt kar भia akofa $\pi \rho a ̈ \xi ̄ n, ~ \eta$ oroja oropiảezas ejwtepikóo girópevo．

Arz̈iteta $\mu \in$ avto tov ourebaive $\mu \in$ to eowtepiḱ Xirojero，to anotè̀eopa aveís ips mpàj eival èra siàrvópa：

Ar $\vec{a}, \vec{b} \in \mathbb{R}^{3}$ ，Tote $\vec{a} \times \vec{b} \in \mathbb{R}^{3}$ ．
O oplorios tou ga swoouft eivar adjbbplkós Kar，ory ourèxela，θ ，So Soujpe z rewhetpiky＇ Tou onfraoia．

Xpelajetan va Jupridojue Tor oplopió kar us baolkès islótךtes ins opiJovoas evòs 3×3 rivaka： Tla 2×2 mivakes：

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Tla 3×3 mivakes：

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

O Karóras sival：
Kivoüraote katá pijos ens lus rpappins そekivirrtas pe ＋kas eva入入àooortas ta mpóonfa．
Tla $j=1,2,3$ ，j－otos ópos Tou Tpoonfeopévou aspoioparos eivar：To rivofevo tou $a_{1 j}$ eri zur －pisovoa tou 2×2 miraka Tou rроkúmtal ar siejpáqoyte inv \ln rpaferi kan in join oinخn tou apxlkou Mivaka．

1SIotntes twi opisougiov

1) Ar artıpetaièroupe sio rpaphés, tote η opilovore aд入ȧJer teoornfio.
2) H opiJovoa EJaptàtal rpafpicka artò käle rpappi ens, otar keatápe us à $\lambda \lambda \in$ oradepes, $\delta_{n} \lambda \alpha \delta_{n}$ n.x.

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
\lambda a_{21} & \lambda a_{22} & \lambda a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\lambda\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

kar

$$
\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
b_{21} & b_{22} & b_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

3) A_{r} evas Tirakas ext sio rpappis iots, tote η opitovoda ${ }^{\text {ToU sivas ion }}$ He 0 .

Me bjon to (2), to isto w-xít kas ar n fria jeapfy tou niraka Givar mo $\lambda \lambda a n \lambda a ̈ \sigma o ~ e y s ~ \dot{~ a ̀ \lambda y s . ~}$

Opiofuós ēntepikoù firopervoo:
-EvTw $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$, sndasin $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} \in \mathbb{R}^{3}$
kou $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$, jn $\lambda_{\alpha} \delta_{y} \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k} \in \mathbb{R}^{3}$
OpiJoume:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{b} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1}
\end{array}\right| \vec{k}
$$

(H npïry opitoura eival artios èvas oupbodiopios - मia goppoえiounyi tapeãtaory ria va supofarta rlo eikoda in seiten ekceaoyl.

Pia ràpasmyre, av

$$
\vec{a}=\vec{i}-\vec{j}+2 \vec{k} \quad \text { kau } \quad \vec{b}=3 \vec{i}+\vec{j}
$$

Tote

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -1 & 2 \\
3 & 1 & 0
\end{array}\right|=\left|\begin{array}{cc}
-1 & 2 \\
1 & 0
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
1 & -1 \\
3 & 1
\end{array}\right| \vec{k} \\
& \Rightarrow \quad \vec{a} \times \vec{b}=-2 \vec{i}+6 \vec{j}+4 \vec{k}
\end{aligned}
$$

ISIotntes tou ejwtepikou jeropievou

1) $\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})$
2) $(\lambda \vec{a}+\mu \vec{b}) \times \vec{c}=\lambda(\vec{a} \times c)+\mu(\vec{b} \times \vec{c})$
3) $\vec{a} \times \vec{a}=\overrightarrow{0}$

EneTan òu, ar $\vec{b}=\lambda \vec{a}$, toंtf $\pi \dot{a} \lambda, \vec{a} \times \vec{b}=\overrightarrow{0}$

「ewhetpiky effyreia tou ejwteplkoù firopèvou
(i) Aleijuron tou $\vec{a} \times \vec{b}$
 otnr onoid da etarèd Doupf apjotepa:
Ar $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^{3}$, to peikto tous jaröfero civar o apiofos
$\vec{a} \cdot(\vec{b} \times \vec{c}) \quad(\mu \in$ autio in oeipà).
Eotw $\quad \vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right), \vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$.
T! T T

$$
\begin{aligned}
& \sin \alpha \sin \\
& \vec{a} \cdot(\vec{b} \times \vec{c})=\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|,-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|,\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|\right) \\
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& \vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & l_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

Enetan à $\mu \in \sigma \alpha$ ò च :

$$
\begin{aligned}
& \vec{a} \cdot(\vec{a} \times \vec{b})=0 \quad \text { kou } \vec{b} \cdot(\vec{a} \times \vec{b})=0 \\
& (1 \delta, 0 \text { opiJouoriv) }
\end{aligned}
$$

-Apa kal ria kàte reaffiko ourbuaopió

$$
\begin{aligned}
\vec{c}= & \lambda \vec{a}+\mu \vec{b} \\
& \vec{c} \cdot(\vec{a} \times \vec{b})=0
\end{aligned}
$$

$M \in$ àda $\lambda \dot{o} \gamma l a$, to Siàvopa $\vec{a} \times \vec{b}$ eivas $K \dot{a} \theta \in \tau 0$, $T 0$ Enineso Tou mapàjetal anó ta \vec{a}, \vec{b}, av ta $\vec{a}, \vec{b} \quad \delta \in v$ Givas ourfa作ika.
(ii) MĖTpo Tou $\vec{a} \times \vec{b}$

Ar $\vec{a}=\overrightarrow{0}$ in $\vec{b}=\overrightarrow{0}$, baenourt artoa on $\vec{a} \times \vec{b}=\overrightarrow{0}$.
「ia tov utrodo riopio rou fretpou tou $\vec{a} \times \vec{b}$ $\binom{\vec{a} \neq \overrightarrow{0}}{\vec{b} \neq \overrightarrow{0}} \theta_{a}$ xpelaotouke zn

Tautótyta tou Lagrange:
Tla kide $a_{1}, a_{2}, a_{3}, \quad b_{1}, b_{2}, b_{3} \in \mathbb{R}$, Eivas

$$
\begin{aligned}
& \left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
= & \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}
\end{aligned}
$$

Anoseizn: $\quad \pi \rho a \dot{\xi} \in i s$
Thparnpoúfe típa ou:

$$
\begin{aligned}
\text { Ar arpoút } & \vec{a}
\end{aligned}=\left(a_{1}, a_{2}, a_{3}\right), \quad \vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}\{\overrightarrow{0}\}
$$

Eufnepairorff ou $\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\||\sin \theta|$,
 sival $\sin \theta \geqslant 0$, גदa t६Alka

$$
\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\| \sin \theta
$$

$$
\vec{n}=\vec{a} \times \vec{b}
$$

(iii) Popá tou $\vec{a} \times \vec{b}$
'Onus eisape, ar ta \vec{a}, \vec{b} $\delta \in r$ eival ourgeapuikà (Givan reaffikìs arefaptnta), TÖte to $\vec{n}=\vec{a} \times \vec{b}$ Gival $k \dot{a} \theta \in T 0$
OTo eगimeso mou tapajetan ani ta \vec{a}, \vec{b}. кan èx氏 fїто $\|\vec{n}\|=\|\vec{a}\|\|\vec{b}\| \sin \theta$. Yajexpow ofws sio siariofata (ariileta) Hou EXow autri in Sreiduran k an arto to Hèto. Tha ra npoostopirouft nayifus to $\vec{a} \times \vec{b}$ Tpeñer ra nporstopioufe kal in qopà tou. Auti neoostopisetar pe tor karora tou $\delta \in \xi i o j \quad x \in p i o j:$
Ar otpéqurft ta $\delta \dot{x} x$ tura tou $\delta \in \xi$ joi ras xeproì $\pi \alpha e \dot{j} \lambda \lambda \lambda \alpha \quad \mu \in$ To enineso $\operatorname{twr} \vec{a}, \vec{b}, \operatorname{kaj} \dot{\theta}$, $\mu \epsilon$ kateiguven ani to \vec{a} neos to \vec{b}, Totf o arrixereas siret tur kateiburgn tos $\vec{a} \times \vec{b}$. ($\operatorname{HuH} \theta$ Gits ou $\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b})$).

Tapäठeirpa 1

$$
\vec{i} \times \vec{j}=\vec{k} \quad, \quad \vec{j} \times \vec{k}=\vec{i} \quad, \quad \vec{k} \times \vec{i}=\vec{j}
$$

$$
\text { a入入à } \quad \vec{j} \times \vec{i}=-\vec{k} \quad \text { k. } \cdot \Pi \text {. }
$$

B deinoute on fia barki eqapfory
Tou Ejwtepikou riroferou eivan ò u
pas sive eva sixrvofa k $\dot{\alpha}$ ето
Sedofero enineso - apki va jrwpiJoufe

Mapäbeirta q
Bpeite era forasicio giàruofa, to onoio fivas k $\dot{\alpha} \theta \in t_{0} \sigma$ to $\in \pi i m \in \delta o$ mou mapájetas amó Ta siबriofata $\vec{a}=\hat{i}+\vec{j} \quad$ jas $\vec{b}=\vec{j}+\hat{k}$.

Mapāseigua 3
Bpeite èra siaverefa kג̇deto oto elineso (E) Tou siépxeron ano ta onfía
$A(1,2,0), B(0,1,-2)$ kan $r(4,0,1)$
Süo Siarífata tou EMineSou (E) Eivar

Ta $\vec{u}=\overrightarrow{B A}=(1,1,2)$ kar $\vec{w}=\overrightarrow{A T}=(3,-2,1)$

- Apa to $\vec{d}=\vec{u} \times \vec{w}$ eiran kä̈eto oto enimeso (E).

Eiva

$$
\vec{d}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 2 \\
3 & -2 & 1
\end{array}\right|=5 \vec{i}+5 \vec{j}-5 \vec{k}
$$

Өa endrèdoure ota emities , aqou npuita Souje Sio akóth barluks eqaptojes tou EJWteplicoi jiroferrov.

Eqapforin 1 - Eubazör mapa入入nतoдpáffou
Ar ta \vec{a}, \vec{b} eiva rpaffikis, arf $\vec{b} a ̀ p t u t a$, Tóte To $\mu \in$ Teo Tou $\vec{a} \times \vec{b}$ Sivei
 $\mu \in \quad \pi \lambda$ eupès \vec{a}, \vec{b}.
Autoं Givan npoyarés, aqoú, ónws eisatt,

$$
\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\| \cdot \sin \theta
$$

Eisikjtepa，ar ta siarjofata a，bे beiokorta otov \mathbb{R}^{2} ，Sn $\boldsymbol{H}^{\prime} \delta_{\eta}^{\prime}$

$$
\vec{a}=a_{1} \vec{i}+a_{2} \vec{j} \quad \text { kas } \quad \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}, \quad \text { Totr }
$$

To efbasov tou napadAndojeaffou pe naeupès \vec{a}, \vec{b} ，Siverar anò tyv anòjuzen upy eys opijousas $\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|$

$$
E=\left|\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|\right|=\left|a_{1} b_{2}-a_{2} b_{1}\right|
$$

Anos $\lim _{n}$ ．
Eires

$$
E=\|\vec{a} \times \vec{b}\| \text {, ànou } \quad \quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & 0 \\
b_{1} & b_{2} & 0
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \cdot \vec{k}
$$

Apa $\quad \vec{a} \times \vec{b}=\left(a_{1} b_{2}-a_{2} b_{1}\right) \cdot \vec{k}$ ，
$k a y$

$$
E=\|\vec{a} \times \vec{b}\|=\left|a_{1} b_{2}-a_{2} b_{1}\right|
$$

Leoú to \vec{k} सivar forasiaio．

Eqaprofy 2－Orkos Tapcえ入y入大ாInĖSOU
Ar $\quad \vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, \quad \vec{b}=b_{1} i+b_{2} \vec{j}+b_{3} \vec{k}$ ， $\vec{c}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$ eiras tpia reapipicios arejapmta Siarisffata otor xwpo，totk o．．．órkos tou mapa入入nA Tinêfou nou opiJour，Sivetal ano tyr anojutn refy rys opijouras $D=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|, \bar{J}_{n} \lambda_{\alpha} \delta_{n}$

$$
V=\left|\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right|
$$

$U=\|\vec{a}\| \cos \psi$

Amoうも活
Ano en rewhetpia，o ojkos tou mapadanden Minésou isoutal $\mu \in$ to jurofero tou efibajoú tos bajons $\in \pi i$ to arriololxo uчos．
Os bãon θ ewpoufe tur éspa nou opitetas ano Ta \vec{b}, \vec{c}, η onoia èxer GFbajor $\|\vec{b} \times \vec{c}\|$ onws eisaHe，onote to areioroixo iups eival ivo $u \in U=\| \vec{a} l l \cos \psi$ ， ònou ψ ojeia Jwria $\mu \in T \alpha \xi \mathrm{~J}$ Tou \vec{a} kan rys euveias nuu Girar k $\mathrm{a} \theta \in \tau \mathrm{Z}$ oto emineso Twr \vec{b}, \vec{c}, η Sieigurou Ths onoias siretan कnö to siaruofa $\vec{b} \times \vec{c}$ ． Aea

$$
V=\|\vec{a}\| \cdot\|\vec{b} \times \vec{c}\| \cdot \cos \psi
$$

H $t \in$ deutaid ékepaon ópus loovtan $\mu \in$

$$
|\vec{a} \cdot(\vec{b} \times \vec{c})|
$$

 Twr \vec{a} kal $\vec{b} \times \vec{c}$ भnopi va $\psi, \alpha \lambda \lambda \alpha$ رnopti kar $V \alpha$ iovitan $\mu \in \operatorname{un} r \pi-\psi$ ）．

H noboryta féóa our anodurn rupn Eivai to peikto rirojtero Twr $\vec{a}, \vec{b}, \vec{c}$ nov curarijodpf kan rupitepa, to onoio

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Eupnepaivoufe òr

$$
V=\left|\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right|
$$

quotodof $k k \dot{\alpha}$ tor tino $\forall 1 \alpha$ to Epbaso
 anoduth ufi ms opisourds Tou ${ }^{2 \times 2}$ Tiraka Mov opiterar ano us ourterate uferes twr \vec{a}, \vec{b}, EVí o ókKS TOU $\Pi \alpha p \alpha \lambda \lambda_{n} \lambda \in \pi i n \in \delta O U ~ T \omega V ~$ $\hat{a}, \vec{b}, \vec{c}, \quad$ givetar ano tur anoduth refy rins opilourastou 3×3 niraka nou opitetan ano as ourterafféves Twr $\vec{a}, \vec{b}, \vec{c}$.

Eqaprory 3 Ekicwon Eminédou

Oa bpojps ryr ejicuon eros eninésou (E) ótar छepouf Era onftio too $p\left(x_{0}, y_{0}, z_{0}\right)$
kou Era siarrofa

$$
\vec{n}=(A, B, r)
$$

$K \bar{\alpha} \theta \in T 0$ $\sigma \in \alpha \cup \tau 0:$

Eotw $k(x, y, z)$ enfgio tou \quad wipou.

- Exoupe:
$K \in(E) \quad \overrightarrow{P K}$ siavoofa tou (E)

$$
\begin{aligned}
& \Leftrightarrow \overrightarrow{P K} \perp \vec{n} \Leftrightarrow \overrightarrow{P K} \cdot \vec{n}=0 \\
& \Leftrightarrow\left(x-x_{0}\right) \cdot A+\left(y-y_{0}\right) \cdot B+\left(z-z_{0}\right) \cdot \Gamma=0 \\
& \Leftrightarrow A x+B y+\Gamma z=A x_{0}+B y_{0}+\Gamma z_{0}
\end{aligned}
$$

θ ètortas $\quad \Delta=-\left(A x_{0}+B y_{0}+T z_{0}\right) \quad-\sigma t \alpha \theta \in \rho \alpha$,
b λ ènouft ou η EJiowon eros eninésos oto x àpo eivar uns foplỳs
(*)

$$
A x+B y+T z+\Delta=0
$$

onou to $\vec{n}=(A, B, r)$ eivar eiva siavugfa $k a \dot{\text { G to }}$ OTo $\in \Pi i n \in \delta 0$.
Arriotpopa, pnopoufr ra souft ou kג̇ध Ejicusy चns Hopqy) (*), onou ta $A, B, \Gamma \quad \delta \in V$ Gival oda 0 , π aplo7aVGe eva enineso olo xípo. (Aorkyon)

Mapàserpa
Bpeite anr ésiowoy tou emitéjou mou replexg Ta onficia $K(1,1,1), \quad \Lambda(2,0,0), M(1,1,0)$.

Non
Ta Siariorata $\quad \vec{a}=\overrightarrow{k \Lambda}=(1,-1,-1)$
ka, $\vec{b}=\overrightarrow{K M}=(0,0,-1)$ bpiokorta narw
 JE auto to cenine fo sivar to

$$
\vec{n}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -1 & -1 \\
0 & 0 & -1
\end{array}\right|=\vec{i}+\vec{j}
$$

Apa To enineso sivetan ano tia ejiowg ths topgis

$$
x+y+\Delta=0
$$

onou A ordeteरे.
Tla ra npossiopionutf to Δ, bälorhe ou DéGn TWV x, y, z us ourtetafferes evos jrwotoufiou tou enfinesoo,
 Tnv Ejiowon:

$$
\text { ria } x=1, \quad y=1, \quad z=1, \text { n aiproulf }
$$

$$
1+1+\Delta=0 \quad \Rightarrow \quad \Delta=-2
$$

T\&Aim , To $\leftarrow \operatorname{nin} \leqslant \delta 0 \quad \in x \in$ Giow

$$
x+y-2=0
$$

