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Abstract—Netflix is the leading provider of on-demand Internet
video streaming in the US and Canada, accounting for 29.7%
of the peak downstream traffic in US. Understanding the Netflix
architecture and its performance can shed light on how to best
optimize its design as well as on the design of similar on-demand
streaming services. In this paper, we perform a measurement
study of Netflix to uncover its architecture and service strategy.
We find that Netflix employs a blend of data centers and Content
Delivery Networks (CDNs) for content distribution. We also
perform active measurements of the three CDNs employed by
Netflix to quantify the video delivery bandwidth available to
users across the US. Finally, as improvements to Netflix’s current
CDN assignment strategy, we propose a measurement-based
adaptive CDN selection strategy and a multiple-CDN-based video
delivery strategy, and demonstrate their potentials in significantly
increasing user’s average bandwidth.

I. INTRODUCTION

Netflix is the leading subscription service provider for
online movies and TV shows. Netflix attracts more than 23
million subscribers in the United States and Canada, and can
stream out HD (High Definition) quality video with average
bitrate reaching 3.6 Mbps. In fact, Netflix is the single largest
source of Internet traffic in the US, consuming 29.7% of peak
downstream traffic [1]. Its design and traffic management deci-
sions have a substantial impact on the network infrastructure.
Designing such a large scale, fast growing video streaming

platform with high availability and scalability is technically
challenging. The majority of functions used to be hosted in
Netflix’s own data center. Recently, Netflix has resorted to
the use of cloud services [2], Content Distribution Networks
(CDNs), and other public computing services. Amazon AWS
cloud replace in-house IT, and Amazon SimpleDB, S3 and
Cassandra are used for file storage [2]. Video streaming is
served out of multiple CDNs, and UltraDNS, a public DNS
service, is used as its authoritative DNS servers. Microsoft
Silverlight [3] is employed as the video playback platform
for Netflix desktop users. The end result is amazing: Netflix
manages to build its Internet video delivery service with little
infrastructure of its own!
In this paper we provide a detailed analysis of the Netflix

architecture, which is designed to serve massive amounts
of content by combining multiple third party services. This
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architecture can be considered as a possible blue print for a
scalable, infrastructure-less content provider. We discuss the
interaction between the components of this design including
multiple CDNs and HTTP adaptive streaming, and analyze
the algorithms used by Netflix that provide the glue to piece
together the overall system. We also shed light on the implica-
tions the Netflix design decisions have on CDNs, the network
and the end user experience both to understand its performance
and to improve its design. In addition, based on our measure-
ment results, we suggest new video delivery strategies that
can further improve user experience by effectively utilizing
multiple CDNs.
Despite the popularity of Netflix, surprisingly there have

been very few studies looking into its streaming service
platform. The authors of [4] investigate the Netflix secu-
rity framework, while the authors of [5] focus on the rate-
adaptation mechanisms employed by Silverlight player and
experimentally evaluated the Netflix players. To the best of
our knowledge, we are the first to take a systematic look into
the architecture of the Netflix video streaming together with
an extensive measurement study of three CDNs it employs.
The main contributions of this paper can be summarized as

follows:
• We dissect the basic architecture of the Netflix video
streaming platform by monitoring the communications
between the Netflix player and various components of
the Netflix platform. We collect a large number of Netflix
video streaming manifest files to analyze how geographic
locations, client capabilities, and content type affect the
streaming parameters used by Netflix, such as content
formats, video quality levels, CDN ranking, and so forth.

• We analyze how Netflix makes use of multiple CDNs un-
der changing bandwidth conditions. We find that Netflix
players stay attached to a fixed CDN even when the other
CDNs can offer better video quality.

• We perform an extensive bandwidth measurement study
of the three CDNs used by Netflix. The results show that
there is significant variation in CDN performance across
time and location.

• Finally, we explore alternative strategies for improving
video delivery performance by using multiple CDNs. Our
study shows that selecting the best serving CDN based
on a small number of measurements at the beginning of
each video session can deliver more than 12% bandwidth
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TABLE I
KEY NETFLIX HOSTNAMES

Hostname Organization
www.netflix.com Netflix
signup.netflix.com Amazon
movies.netflix.com Amazon
agmoviecontrol.netflix.com Amazon
nflx.i.87f50a04.x.lcdn.nflximg.com Level 3
netflix-753.vo.llnwd.net Limelight
netflix753.as.nflximg.com.edgesuite.net Akamai

improvement over the static CDN assignment strategy
currently employed by Netflix. Furthermore, using mul-
tiple CDNs simultaneously can achieve more than 50%
improvement.

The paper is organized as follows. Section II describes
the architecture of Netflix video streaming system and CDN
selection strategy. Section III presents our measurement study
of the three CDNs. Section IV explores the alternative strate-
gies for CDN assignment in order to improve video delivery
performance. Section V discusses the related work. Finally,
Section VI concludes the paper and discusses the future work.

II. NETFLIX VIDEO STREAMING PLATFORM

We start the section with the overview of Netflix video
streaming platform architecture. We dissect the architecture via
traffic monitoring, DNS resolutions, and WHOIS[6] lookup.
We then present the timeline of serving a single Netflix client
as an example to illustrate the interplay between a Netflix
player and various service components. We further collect a
large number of video streaming manifest files using Tamper
Data add-on[7], and analyze how geographic locations, client
capabilities, and content types influence the streaming parame-
ters. Finally, we focus on the Netflix CDN assignment strategy.
Using dummynet [8] to strategically throttle individual CDN’s
bandwidth, we discover how Netflix makes use of multiple
CDNs in face of bandwidth fluctuation.

A. Overview of Netflix architecture
To observe the basic service behavior, we create a new

user account, login into the Netflix website and play a movie.
We monitor the traffic during all of this activity and record
the hostnames of the servers involved in the process. We
then perform DNS resolutions to collect the canonical names
(CNAMEs) and IP addresses of all the server names that
the browser have contacted. We also perform WHOIS[6]
lookups for the IP addresses to find out their owners. Table
I summarizes the most relevant hostnames and their owners.
Fig. 1 shows the basic architecture for Netflix video streaming
platform. It consists of four key components: Netflix data
center, Amazon cloud, CDNs and players.
• Netflix data centers. Our analysis reveals that Net-

flix uses its own IP address space for the hostname
www.netflix.com. This server primarily handles two
key functions: (a) registration of new user accounts and
capture of payment information (credit card or Paypal ac-
count), and (b) redirect users to movies.netflix.com or

Fig. 1. Netflix architecture

signup.netflix.com based on whether the user is logged
in or not respectively. This server does not interact with the
client during the movie playback, which is consistent with the
recent presentation from Netflix team [9].
• Amazon cloud. Except for www.netflix.com

which is hosted by Netflix, most of the other Netflix
servers such as agmoviecontrol.netflix.com and
movies.netflix.com are served off the Amazon
cloud [10]. [9] indicates that Netflix uses various Amazon
cloud services, ranging from EC2 and S3, to SDB and
VPC [10]. Key functions, such as content ingestion, log
recording/analysis, DRM, CDN routing, user sign-in, and
mobile device support, are all done in Amazon cloud.
• Content Distribution Networks (CDNs). Netflix employs

multiple CDNs to deliver the video content to end users. The
encoded and DRM protected videos are sourced in Amazon
cloud and copied to CDNs. Netflix employs three CDNs:
Akamai, LimeLight, and Level-3. For the same video with the
same quality level, the same encoded content is delivered from
all three CDNs. In Section II-D we study the Netflix strategy
used to select these CDNs to serve videos.
• Players. Netflix uses Silverlight to download, decode and

play Netflix movies on desktop web browsers. The run-time
environment for Silverlight is available as a plug-in for most
web browsers. There are also players for mobile phones and
other devices such as Wii, Roku, etc. This paper, however,
focuses on Silverlight player running on desktop PCs.
Netflix uses the DASH (Dynamic Streaming over HTTP)

protocol for streaming. In DASH, each video is encoded at sev-
eral different quality levels, and is divided into small ‘chunks’
- video segments of no more than a few seconds in length. The
client requests one video chunk at a time via HTTP. With each
download, it measures the received bandwidth and runs a rate
determination algorithm to determine the quality of the next
chunk to request. DASH allows the player to freely switch
between different quality levels at the chunk boundaries.

B. Servicing a Netflix client
We now take a closer look at the interaction between the

client web browser and various web servers involved in the
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Fig. 2. Timeline in serving a Netflix client

video playback process. Fig. 2 shows the timeline along which
the streaming service is provided to a desktop client, and
indicates the involved server entities. The X-axis in this figure
shows the time from the beginning of the experiment to 5
minutes and the Y-axis lists different activities. The client
first downloads the Microsoft Silverlight application from
movies.netflix.com and authenticates the user. After
authentication, the player fetches the manifest file from the
control server at agmoviecontrol.netflix.com, based
on which it starts to download trickplay data and audio/video
chunks from different CDNs. Client reports are sent back to
the control server periodically. We describe further details of
individual activities below.
1) Silverlight player download and user authentication:

Video playback on a desktop computer requires the Microsoft
Silverlight browser plug-in to be installed on the computer.
When the user clicks on “Play Now” button, the browser
downloads the Silverlight application and then that application
starts downloading and playing the video content. This small
Silverlight application is downloaded for each video playback.
2) Netflix manifest file: Netflix video streaming are con-

trolled by instructions in a manifest file that the Silverlight
client downloads. The Netflix manifest file provides the DASH
player metadata to conduct the adaptive video streaming.
The manifest files are client-specific, i.e., they are generated
according to each client’s playback capability. For instance,
if the user player indicates it is capable of rendering h.264
encoded video, h.264 format video is included in the manifest
file. If the player indicates that it can only play back .wmv
format, only .wmv format video is included.
The manifest file is delivered to end user via SSL connection

and hence the content of the file cannot be read over the wire
using packet capture tools such as tcpdump or wireshark. We
use Firefox browser and Tamper Data plug-in to extract the
manifest files. The extracted manifest file is in XML format
and contains several key pieces of information including the
list of the CDNs, location of the trickplay data, video/audio
chunk URLs for multiple quality levels, and timing parameters
such as time-out interval, polling interval and so on. The
manifest file also reveals interesting information on the Netflix
system architecture. For instance, they show that Netflix uses
three CDNs to serve the videos. Different ranks are assigned
to different CDNs to indicate to the clients which CDN is

<nccp:cdns>
<nccp:cdn>

<nccp:name>level3</nccp:name>
<nccp:cdnid>6</nccp:cdnid>
<nccp:rank>1</nccp:rank>
<nccp:weight>140</nccp:weight>

</nccp:cdn>
<nccp:cdn>

<nccp:name>limelight</nccp:name>
<nccp:cdnid>4</nccp:cdnid>
<nccp:rank>2</nccp:rank>
<nccp:weight>120</nccp:weight>

</nccp:cdn>
<nccp:cdn>

<nccp:name>akamai</nccp:name>
<nccp:cdnid>9</nccp:cdnid>
<nccp:rank>3</nccp:rank>
<nccp:weight>100</nccp:weight>

</nccp:cdn>
</nccp:cdns>

Fig. 3. CDN list in manifest file

more preferred than others. A section of one of the manifest
files is shown in Fig. 3, where Level3 is listed as the most
preferred CDN for this client. We will conduct more elaborate
experiments and discuss more details of the manifest files later
in this section.
3) Trickplay: Netflix Silverlight player supports simple

trickplay such as pause, rewind, forward and random seek.
Trickplay is achieved by downloading a set of thumbnail
images for periodic snapshots. The thumbnail resolution, pixel
aspect, trickplay interval, and CDN from where to download
the trickplay file are described in the manifest file. The
trickplay interval for the desktop browser is 10 seconds,
and multiple resolutions and pixel aspects for trickplay are
provided.
4) Audio and video chunk downloading: As shown in

Fig. 2, audio and video contents are downloaded in chunks.
Download sessions are more frequent at the beginning so as
to build up the player buffer. Once the buffer is sufficiently
filled, downloads become periodic. The interval between the
beginning of two consecutive downloads is approximately four
seconds - the playback length of a typical chunk.
The manifest file contains multiple audio and video quality

levels. For each quality level, it contains the URLs for indi-
vidual CDNs, as shown in Fig. 4.
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<nccp:bitrate>560</nccp:bitrate>
<nccp:videoprofile>

playready-h264mpl30-dash
</nccp:videoprofile>
<nccp:resolution>

<nccp:width>512</nccp:width>
<nccp:height>384</nccp:height>

</nccp:resolution>
<nccp:pixelaspect>

<nccp:width>4</nccp:width>
<nccp:height>3</nccp:height>

</nccp:pixelaspect>v
<nccp:downloadurls>

<nccp:downloadurl>
<nccp:expiration>131xxx</nccp:expiration>
<nccp:cdnid>6</nccp:cdnid>
<nccp:url>http://nflx.i.../...</nccp:url>

</nccp:downloadurl>
<nccp:downloadurl>

<nccp:expiration>131xxx</nccp:expiration>
<nccp:cdnid>4</nccp:cdnid>
<nccp:url>http://netflix.../...</nccp:url>

</nccp:downloadurl>
<nccp:downloadurl>

<nccp:expiration>131xxx</nccp:expiration>
<nccp:cdnid>9</nccp:cdnid>
<nccp:url>http://netflix.../...</nccp:url>

</nccp:downloadurl>
</nccp:downloadurls>

Fig. 4. Video downloadable for one quality level

5) User experience reporting: After the playback starts,
Netflix player communicates periodically with the control
server agmoviecontrol.netflix.com. Based upon the
keywords such as “/heartbeat” and “/logblob” in the request
URLs and the periodicity of the communication, we conjecture
that they are periodic keep alive messages and log updates.
However, the actual messages that we have extracted by using
Tamper Data do not appear to be in clear text and hence we
cannot verify it further.

C. Manifest file analysis
A manifest file is delivered over the SSL connection. We

use Tamper Data plug-in for Firefox browser to read the file.
Since the manifest files contain a wealth of information and
shed lights on the Netflix strategies, we conduct a large scale
experiment by collecting and analyzing a number of manifest
files. We are interested in understanding how geographic
locations, client capabilities, and content type (e.g., popular vs
unpopular, movies vs TV shows) may impact the streaming
parameters. We use six different user accounts, 25 movies
of varying popularity, age and type, four computers with
Mac and Windows systems at four different locations for this
experiment. From each computer, we log into Netflix site using
each of the user accounts and play all of the movies for few
minutes to collect the manifest files. In addition to using client
machines located in different geographies, we also configure
those client browsers to use Squid proxy servers running on
ten PlanetLab nodes hosted by US universities in different
geographic regions to collect additional manifest files.
1) CDN ranking and user accounts: Netflix manifest files

rank CDNs to indicate which CDNs are preferred. CDN

ranking determines from which CDN the client downloads
the video and may affect user perceived video quality. We
analyze the collected manifest files to understand the factors
that affect the rankings of the CDNs. For this analysis, we
build a table that lists CDN ranking for each combination of
user account, client computer (or PlanetLab proxy), movie ID
and time of day for several days. Analysis of this table suggests
that the CDN ranking is only based upon the user account.
For a given user account, the CDN ranking in the manifest file
remains the same irrespective of movie types, computers, time
and locations. Furthermore, for the same movie, computer,
location and around the same time, two different users may
see different CDN rankings. We also observe that the CDN
ranking for each user account remains unchanged for at least
several days. As we show in measurement results in the next
section, such assignment of ranking seems to be independent
of available bandwidth from each CDN.
2) Audio/Video bit rates: Netflix serves videos in multiple

formats and bitrates. When a Netflix client requests for the
manifest file from Netflix, the client indicates the formats
of the content it can play. Netflix server then sends back
a manifest file based upon the client request. For instance,
Netflix client running on an older computer (Thinkpad T60
with Windows XP) and a newer computer (Macbook Pro with
Snow Leopard) have different capabilities and receive different
video downloading format and bit rates.
Based on the client capabilities, the server sends URLs for

the video and audio chunks in the returned manifest files.
In general, manifest files contain information about video
chunks encoded in bitrates between 100Kbps to 1750Kbps
(and 2350Kbps and 3600Kbps for videos available in HD) for
the manifest files sent to the newer computer. We see that
videos available in HD can be served in up to 14 different
bitrates whereas non-HD content can be served in up to 12
different bitrates. We also note that Netflix clients do not try
all possible available bitrates when trying to determine the
optimal playback rate.

D. CDN selection strategy
We have seen that a Netflix client can choose different

video bitrates and different CDNs for video downloading. In
this section we conduct experiments to help understand how
Netflix make such choices when bandwidth is dynamic. We
play a single movie from the beginning. Once the playback
starts, we gradually throttle the available bandwidth of the top
ranked CDN in the manifest file. We use dummynet to throttle
the inbound bandwidth to the client.
At the beginning, servers from each CDN are allowed to

send data at 3,900Kbps. After every minute, we reduce the
available bandwidth for the current CDN by 100Kbps till it
reaches 100Kbps. At that point we start throttling the next
CDN in the same way and so on. We plot our observation
in Fig. 5. In this figure, the X-axis shows the time starting
from the beginning of playback. The Y-axis shows both the
throttled bandwidth and the playback rate. In this instance,
Level3, Limelight and Akamai CDNs are ranked first, second
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Fig. 5. CDN switching

Fig. 6. Best CDN at each vantage point

and third respectively. The client starts downloading video
chunks from the first CDN. In the beginning, it starts from
a low bitrate and gradually improves the bitrate in a probing
fashion. As we lower the available bandwidth for the first CDN
while leaving the other CDNs intact, we notice something
interesting. Instead of switching to a different CDN, which
is not throttled, the client keeps lowering the bitrate and stays
with the first CDN. Only when it can no longer support even
the very low quality level (i.e. when the available bandwidth
for the first CDN reaches 100Kbps), it switches to the second
CDN. It repeats almost the same behavior as we leave the first
CDN at 100Kbps and gradually lower the available bandwidth
for the second CDN while leaving the third CDN intact. In
general, the Netflix client appears to stay with the same CDN
as long as possible even if it has to degrade the quality level
of the playback.

III. CDN PERFORMANCE MEASUREMENT

We have observed in the previous section that Netflix CDN
ranking is tied to each user account and remains unchanged
over many days. Even a change in the user geographic location
does not trigger any CDN ranking change. Such assignment
strategy naturally leads to the following questions:

• How does each CDN perform? Can the selected CDN
server consistently support the bandwidth needed for high
quality streaming?

• How do different CDNs compare in terms of perfor-
mance? Is any CDN clearly better or worse than others?

• How far is the current Netflix assignment strategy from
“optimal”?

• Is it possible to improve the assignment strategy to
support higher delivery bandwidth?

In the next two sections, we attempt to address the above
questions by conducting extensive measurement experiments
for the three CDNs used by Netflix from 95 vantage points
across the United States.
We measure the bandwidth throughput between each van-

tage point and a given CDN server by downloading multiple
video chunks from the CDN server. Video file URLs are
collected for all three CDNs from manifest files. Here we
take advantage of the fact that the URLs in the manifest
remain valid for several hours from the time the manifest file is
generated, and the validity of the URLs are not tied to client
IP address. Furthermore, the byte “range” of the download
can be adjusted without affecting the URL validity. Once we
extract the URLs for the three CDNs, we “replay” the GET
request from all vantage points with byte range modified so
that we download video chunks of the same size.
Similar to the actual Netflix video playback, when GET

requests are sent from a vantage point, the hostnames in
the URLs are resolved by DNS server, which returns the
IP address of the edge server assigned by the CDN. To
ensure the measured bandwidth of three CDNs are comparable,
we send GET requests to three CDNs in round-robin order
within a short duration. More specifically, measurement is
repeated in multiple “rounds”, with each round lasting 96
seconds. A round is further partitioned into four “slots”, with
24 seconds for each slot. The first three slots of each round
correspond to three CDNs, respectively, and we download
video chunks of size 1.8MByte. The last slot of each round
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different PlanetLab nodes over the entire period
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Fig. 9. Average bandwidth for the three CDNs at
different residential networks over the entire period

is for a “joint” measurement for all CDNs, i.e., we send GET
requests to the three CDNs simultaneously, each requesting
video chunks for 0.6MByte data. We intend to find out how
much total bandwidth one can get if all three CDNs are used
simultaneously. We pick the size of the chunks and length
of “slots” based upon multiple trial measurements. In our
trials, we find that these numbers make sure that different
experiments do not interfere with each other and chunk size
is sufficiently large so that we can have a good estimate of the
bandwidth. We also send keep-alive messages to each server
every second when no data is transferred to make sure that the
TCP session is alive and sender window size does not drop.
The measurement is conducted for two hours between 8 to

10pm CST, from June 8, 2011 to June 26, 2011. Based on
downloading time, we calculate the instantaneous bandwidth
(i.e., throughput for each GET request), the one-day average
bandwidth (average bandwidth during the two hour period),
and average bandwidth (over entire measurement study). These
metrics allow us to examine CDN performance at multiple
timescales.
We have conducted experiments from both residential sites

and PlanetLab nodes. There are 12 residential sites, 10 in New
Jersey, 1 in Minnesota, and 1 in California. The residential
sites spread across 5 different service providers. To cover
a wider range of geographic locations, we also choose 83
PlanetLab nodes spread across the United States as additional
vantage points. We ensure that all selected PlanetLab nodes
are lightly loaded so that the nodes themselves do not become
the bottleneck and the measurement results reflect the actual
bandwidth that can be supported by the CDN server and the
network.
The rest of this section attempts to address the first two

questions on CDN performance. We will further investigate
the other two questions on performance improvement in the
Section IV. We use CDN A, B, and C to denote the three
CDNs without particular order in the rest of the discussion.

A. Overall CDN performance
Fig. 6 shows the locations of all vantage points in our

experiments as well as the CDN with highest average band-
width at each vantage point during the measurement period.

As the result indicates, no CDN clearly outperforms the others.
In addition, Fig. 7 shows the CDF (Cumulative Distribution
Function) of average bandwidth at the PlanetLab nodes over
the entire measurement period. The available bandwidth at
different PlanetLab nodes varies significantly from location
to location, ranging from 3Mbps to more than 200Mbps. The
CDF curves of three CDNs, however, are close to each other,
indicating similar overall performance.
Figures 8 and 9 further show the average bandwidth at

individual locations for PlanetLab nodes and residential sites,
respectively. The location index is sorted in the ascending or-
der of CDN A’s average bandwidth. CDN bandwidth measured
at PlanetLab nodes appear to have much higher than that of
residential sites in general. This is because most PlanetLab
nodes are located in universities, which typically have better
access links. This also implies that in most cases, the last mile
is still the bottleneck for streaming video. However, even the
residential sites with relatively low bandwidth, e.g. home 1
and 2 in Fig. 9, can support 1.3Mbps on average, enough for
standard definition (SD) videos.
It is also interesting to note that home sites 4, 9, and 11

see significantly different average bandwidth from different
CDNs. In particular, CDN B outperforms all others by a large
margin. We find that these three homes use the same service
provider. It is conceivable that CDN B has a better presence
in this provider’s network.

B. Daily bandwidth variation
Next we examine the bandwidth variation at different sites

from different CDNs over different timescales. We compute
the coefficient of variance of the daily average bandwidth at
all PlanetLab nodes by computing the ratio of the standard
deviation to the mean at each of the locations. Fig. 10
shows the coefficient of variance for the one-day average
bandwidth at different PlanetLab nodes over multiple days.
We indeed see high coefficient of variance at most nodes.
The average coefficient of variance is 0.33, 0.30, and 0.30 for
CDN A, B and C, respectively. At most locations, there is a
significant variation in daily bandwidth for all three CDNs.
We show a few representative locations in Figures 11, 12
and 13, which plot the one-day average bandwidth over the
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Fig. 11. One-day average bandwidth at a PlanetLab
node over time
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Fig. 12. One-day average bandwidth over time at
residential site 7

measurement period at one PlanetLab node and two residential
sites, respectively. The results show significant variation of
average bandwidth on a daily basis.
Furthermore, Figures 11, 12 and 13 show that the per-

formance ranking of different CDNs also change over time.
Although the lowest CDN bandwidth across all three nodes
is still above 3Mbps, sufficient to support standard definition
(SD) levels, the significant variation in bandwidth and ranking
of CDNs indicates a good potential to further increase band-
width for future higher quality video delivery if better CDN
selection strategy is used.

C. Variation in instantaneous bandwidth
We further investigate the instantaneous bandwidth variation

during two hours of video playing. This is important since a
DASH player constantly monitors the available bandwidth to
decide which quality level of video to download. The small
time scale bandwidth may significantly impact the Netflix
users’ viewing experience as two hours is a typical length of
movie. Figures 14, 15 and 16 show the comparison of three
CDNs for the same PlanetLab node and residential nodes.
Although the variance is still significant, there is a “pattern”
in the bandwidth change. For example, bandwidth for CDN B
in Fig. 14 alternates between two levels, one around 35 Mbps
and one around 20 Mbps. The average coefficient of variation
for two hour period is 0.19, 0.21 and 0.18 respectively for
CDNs A, B and C respectively for residential sites.

IV. ALTERNATE VIDEO DELIVERY STRATEGIES
From the measurement study, we observe that Netflix stat-

ically assigns a CDN to users for extended period of time.
Although all three CDNs are available, each user only uses one
in most cases. Other CDNs appear to serve only as backups
and are used only if current CDN server cannot support even
the lowest video quality. On the other hand, our study also
shows that the available bandwidth on all three CDNs vary
significantly over time and over geographic locations. For
instance, as shown in Fig. 6, out of 83 PlanetLab locations,
CDNs A, B, and C perform best at 30, 28 and 25 locations,
respectively. The measurement study of residential hosts shows
similar results. If users are tied to a bad CDN choice, their

video viewing quality may suffer even though other CDNs can
provide them with more satisfying experience. In addition to
improving experience for “unlucky” users, exploring potential
ways of increasing video delivery bandwidth may also open
doors for new bandwidth-demanding services in future, e.g.,
3D movies or multiple concurrent movies in the same house-
hold.
In this section, we first determine how much room there is

for further improvement. In other words, if we could have the
optimal CDN selection strategy in theory, how much better
it would be compared to current static assignment. We then
explore two alternative strategies for CDN assignment that can
easily be used in practice, and demonstrate we can indeed
significantly increase the bandwidth for video delivery to users
despite the simplicity of such strategies.

A. Room for improvement
Given the instantaneous bandwidth trace, the optimal CDN

selection strategy is to choose the top CDN at each point of
time. Although this cannot be done in practice since we do not
know the instantaneous bandwidth beforehand, this theoretical
optimal strategy allows us to find out the highest bandwidth
each client can receive if the best (one) CDN is used at
any given point of time. We refer to the average bandwidth
achieved by the optimal strategy as the upper bound average
bandwidth.
Fig. 17 and Fig. 18 show the average bandwidth of three

CDNs and the upper bound average bandwidth for residential
sites and PlanetLab nodes respectively. Here we use the
average bandwidth over all three CDNs to reflect the static
assignment strategy. The actual assignment may of course be
better or worse depending on which CDN gets selected, but
this gives the expected value. We also show the bandwidth if
one top CDN, i.e., the one with highest average bandwidth
is selected. For the majority of the sites, the upper bound is
much better than the average CDN case, and close to the top
CDN case. In particular, the upper bound is 17% and 33%
better than the average case for residential sites and PlanetLab
nodes respectively, indicating there is significant room for
improvement. Assigning users to top CDN is only 6% to 7%
worse than the theoretical optimal case. This indicates that if
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Fig. 13. One-day average bandwidth over time at
residential site 9
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Fig. 14. Instantaneous bandwidth for the three
CDNs at a PlanetLab node
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Fig. 15. Instantaneous bandwidth for the three
CDNs at residential site 7
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Fig. 16. Instantaneous bandwidth for the three
CDNs at 9-th residential site
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Fig. 17. Average bandwidth for three CDNs and
the upper bound at residential sites
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Fig. 18. Average bandwidth for three CDNs and
the upper bound at PlanetLab nodes

we can estimate which CDN is likely to perform best in next
couple hours, we can achieve average bandwidth that is fairly
close to the upper bound average bandwidth.

B. Measurement based CDN selection
Since selecting the top CDN for users gives good perfor-

mance, we next study how to identify the top CDN effectively.
We propose to have the player conduct the instantaneous
bandwidth measurement multiple times at the beginning, and
assign users the best-performing CDN for the rest of the
movie. Fig. 19 shows the effect of number of measurements
on performance. As reference, two straight lines show the ratio
of the CDN average bandwidth over top CDN bandwidth for
all PlanetLab and residential nodes, respectively. In both cases
we calculate the average CDN bandwidth over all locations,
time, and CDN providers, so they reflect the expected CDN
performance, assuming the three CDNs are equally likely to
be chosen in the static CDN assignment strategy. The other
two curves are ratio of average bandwidth using measurement
based CDN selection strategy over that of using top CDN
for both PlanetLab nodes and residential sites. Using a small
number of measurements (≥ 2), the measurement based
strategy delivers more than 12% improvement over the static
CDN assignment strategy. Although the average improvement
is moderate, for certain users the improvement is significant,
e.g., more than 100% for residential host 4. Given this method

is very straightforward and easy to implement, we believe this
is a favorable approach for improving video delivery.

C. Using multiple CDNs simultaneously
In previous sections, we have assumed that only one CDN

can be used at a time. However, since Silverlight player
downloads video and audio content in chunks, it is possible
to use all three CDNs simultaneously. For instance, the player
can download three different chunks in parallel from three
different CDNs to obtain larger bandwidth. Since the design
of a HTTP adaptive streaming protocol that can best utilize
multiple CDNs is out of the scope of this paper, we try to see
if multiple CDNs can be used, whether they can offer higher
aggregated throughput for end users.
Fig. 20 and Fig. 21 compare the average bandwidth using

top CDN and the average bandwidth obtained by combining
three CDNs for residential and PlanetLab nodes, respectively.
We see that combining all three CDNs can significantly
improve the average bandwidth. Specifically, the aggregate
bandwidth obtained by combining all 3 CDNs is greater than
the bandwidth of the single best CDN by 54% to 70% for
residential sites and PlanetLab nodes, respectively.

V. RELATED WORK

Several recent works have been done in analyzing dif-
ferent aspects of Netflix video streaming. Akhshabi et al.
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Fig. 19. Measurement based CDN selection: effect
of number of measurements
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Fig. 20. Bandwidth from best CDN vs three
combined CDNs for residential hosts
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Fig. 21. Bandwidth from best CDN vs three
combined CDNs for PlanetLab nodes

have studied several video streaming players including Netflix
player and investigated how the streaming clients react to
bandwidth changes [5]. The measurement is done mostly from
one fixed location. Pomelo has also presented an interesting
analysis of Netflix security framework [4]. This work was
done before Netflix is migrated into Amazon cloud. Unlike
the previous work, we investigate a broader set of components
in Netflix video delivery system, and focus on how the player
interacts with different CDNs. To achieve this, we conduct
more extensive measurement from multiple geo locations.
Recent work has also been done for other streaming

platforms [11], [12]. Krishnappa et al. have studied Hulu
streaming with emphasis on improving performance using
prefetching and caching [11]. Adhikari et al. build a measure-
ment infrastructure by using PlanetLab nodes with the goal to
understand the YouTube system architecture [12]. Unlike our
work, such works do not cover behavior of multiple CDNs.
Extensive work has been done to study CDNs such as

Akamai, Limelight and Google/YouTube [13], [14], [12]. But
most work has been focusing on measurement of latency and
does not cover the scenario where the client interacts with
multiple CDNs.
Many techniques have been proposed to measure available

bandwidth on a network path before, such as pathchar [15],
pathload [16] and FabProbe [17]. However, they are not
suitable for our study for two reasons. First, both pathchar
and pathload require control at the target machine of the
measurement. Second, all such tools only measure the in-
path bandwidth and they cannot capture possible bandwidth
shaping at the server side. Additionally, using our method
more accurately reflects the download speed over HTTP than
other generic methods.

VI. CONCLUSIONS
In this paper, we perform active and passive measurements

to uncover the overall architecture of Netflix, currently the
leading on-demand video streaming Internet provider. Since
Netflix uses multiple Content Delivery Networks (CDNs) to
deliver videos to its subscribers, we measure the available
bandwidth of employed CDNs, and investigate its behavior at
multiple time scales and at different geographic locations. We

find that conducting light-weighted measurement at the begin-
ning of the video playback and choosing the best-performing
CDN can improve the average bandwidth by more than 12%
than static CDN assignment strategy, and using all three CDNs
simultaneously can improve the average bandwidth by more
than 50%. This can be very beneficial for future bandwidth-
demanding services such as 3D movies.
Future work can proceed in couple of directions. We are

interested in looking into other video streaming delivery
systems such as Hulu, to see if cloudsourcing and/or multiple
CDN strategy have been adopted. Another venue is to develop
practical HTTP adaptive streaming system that can actually
utilize multiple CDNs simultaneously.
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