
Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 1

Techniques and Applications of Information Data Acquisition on the
World Wide Web During Heavy Client/Server Traffic Periods

Stathes Hadjiefthymiades, Drakoulis Martakos
Department of Informatics, University of Athens

(in "Database and Data Communication Network Systems" (editor Cornelius Leondes), Academic Press,
June 2002.)

1. INTRODUCTION

In the second half of the 90s, the WWW has evolved to the dominant software technol-
ogy and broke several barriers. Despite the fact that it was initially intended for a wide
(universal) area network, the WWW, today, enjoys a tremendous success and penetra-
tion even in corporate environments (intranets). Key players in the software arena, like
Oracle, Informix and Microsoft, recognize the success of this open platform and con-
stantly adapt their products to it. Originally conceived as a tool for the co-operation
between high-energy physicists, this network service is nowadays becoming synony-
mous with the Internet as it is used vastly by the majority of Internet users even for tasks
like e-mail communication.

The universal acceptance of the WWW stimulated the need to provide access to the vast
legacy of existing heterogeneous information1. Such information ranged from proprie-
tary representation formats to engineering and financial databases, which were, since the
introduction of the WWW technology, accessed through specialized tools and individu-
ally developed applications. The vast majority of the various information sources were
stored in Relational DBMS (RDBMS), a technology which enjoys wide acceptance in
all kinds of applications and environments. The advent of the Web provided a unique
opportunity for accessing such data repositories, through a common front-end interface,
in an easy an inexpensive manner. The importance of the synergy of WWW and data-
base technologies is also broadened by the constantly increasing management require-
ments for Web content (“database systems are often used as high-end Web servers, as
webmasters with a million of pages of content invariably switch to a web site managed
by database technology rather than using file system technology”, extract from the Asi-
lomar Report on Database Research [Ber98]).

Initial research on the WWW-database framework did not address performance issues
but since this area is becoming more and more important, relevant concern is beginning
to grow. The main topic of this chapter, namely the study of the behavior exhibited by
WWW-enabled information systems under heavy workload, spans a number of very im-
portant issues, directly associated with the efficiency of service provision. Gateway
specifications (e.g., CGI, ISAPI) are very important due to their use for porting existing
systems and applications to the WWW environment. Apart from the gateway specifica-
tion used, the architecture of the interface towards the information repository (i.e.,

1 The significance of this issue triggered the organization of the workshop on Web Access to Legacy Data,
in parallel to the Fourth International WWW Conference, held in Boston, MA in December 1995.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 2

RDBMS) is also extremely important (even with the same specification quite different
architectures may exhibit quite different behavior in terms of performance). The internal
architecture of HTTP server software is also an important issue is such considerations.
Older single process architectures are surely slower in dispatching clients’ request than
newer multi-threaded schemes. Pre-spawned server instances (processes or threads) also
play an important role.

Lastly, as part of our study, we are considering how existing WWW-based systems are
being measured. We provide a brief description of some of the most important perform-
ance evaluation tools.

It should be noted that the entire chapter is focused on the 3-tier scenario where access
to a legacy information system is always realized through a browser-server combined
architecture (i.e., HTTP is always used), as shown in Figure 1, (as opposed to an applet
based architecture where access to the legacy system can be realized directly, without
the intervention of HTTP; a 2-tier scheme).

Web
browser

Web
server

HTTP
request/response Legacy

systemi/f

Chapter’s focus
area

Figure 1: Basic architectural assumption: a 3-tier scheme

As illustrated in Figure 1, we do not consider network-side aspects (e.g., network la-
tency, HTTP, etc.). The network infrastructure underneath Internet is continuously be-
coming more and more sophisticated with technologies like ATM, xDSL, etc. The best-
effort model for Internet communications is being supplemented with the introduction
of QoS frameworks like Integrated Services/Differentiated Services. Lastly, on the ap-
plication layer, HTTP/1.1, Cascading Style Sheets (CSS) and Portable Network Graph-
ics (PNG) show W3C’s intention to “alleviate Web slowdown” [Kha97].

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 3

2. GATEWAY SPECIFICATIONS

In terms of gateway specifications considerable work has been done in the area of the
Common Gateway Specification (CGI) and its comparison with proprietary interfaces
like ISAPI and NSAPI. Other specifications like Fast CGI, the Servlet API and Net-
scape’s CORBA-based WAI (Web Application Interface) have also emerged and are
extensively used nowadays. In the following paragraphs we will try to set the scene for
studying accesses to legacy systems by providing very brief introductions to major
gateway specifications.

2.1 Common Gateway Interface

The Common Gateway Interface (CGI) is a relatively simple interface mechanism for
running external programs (general purpose software, gateways to existing systems) in
the context of a WWW information server in a platform independent way. The mecha-
nism has been in use in the WWW since 1993. By that time, CGI appeared in the server
developed by the National Center for Supercomputing Applications (NCSA http demon,
httpd). The CGI specification is currently in the Internet Draft status [Coa98]. Practi-
cally, CGI specifies a protocol for information exchange between the information server
and the aforementioned external programs as well as a method for their invocation by
the WWW server (clause 5 of the Internet Draft). Data are supplied to the external pro-
gram by the information server through environment variables or the ‘standard input’
file descriptor. CGI is a language independent specification. Therefore, CGI programs
may be developed in a wide variety of languages like C, C++, Tcl/Tk, Perl, Bourne shell
or even Java. Owing to its simplicity, support for CGI is provided in almost all WWW
servers (WWW-server independence). A very important issue associated with the de-
ployment of CGI is the execution strategy followed by the controlling WWW server.
CGI-based programs (also referred to as scripts) run as short-lived processes separately
to the httpd. As such, they are not into position to modify basic server functionality (i.e.,
logging) or share resources with each-other and the httpd. Additionally, they impose
considerable resource waste and time overhead due to their one process/request scheme.
A more detailed discussion on the pros and cons of the CGI design can be found in Sec-
tion 2.7.

During the evolution of WWW software, key commercial players like Netscape and Mi-
crosoft recognized the deficiency of CGI and introduced their own proprietary interfaces
for extending basic server functionality. Such mechanisms were named NSAPI (Net-
scape Server API) and ISAPI (Internet Server API) respectively. NSAPI was supported
in the Communications/Commerce generation of servers and now, in the Fast-
Track/Enterprise series. ISAPI first appeared in the initial version of Internet Informa-
tion Server (IIS) and is a standard feature of Microsoft server software ever since then.
Other efforts towards the same direction are the FastCGI specification from Open Mar-
ket Inc., the Java Servlet API from Sun, and the Web Application Interface (WAI) from
Netscape Communications.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 4

2.2 Netscape Server API

The NSAPI specification enables the development of server plug-ins (also called Serv-
ice Application Functions or SAFs) in C or C++ that are loaded and invoked during dif-
ferent stages of the HTTP request processing. Since server plug-ins run within the Net-
scape server's process (such plug-ins are initialized and loaded when the server starts
up), the plug-in functions can be invoked with little cost (no separate process needs to
be spawned as in the case of CGI). Also, NSAPI exposes the server's internal procedure
for processing a request. It is, therefore, feasible to develop a server plug-in that is in-
voked during any of the steps in this procedure. These steps are briefly presented below:
� AuthTrans (authorization translation): verification of authorization information in-

cluded in the request.
� NameTrans (name translation): mapping of the request URI into a local file system

path.
� PathCheck (path checking): verification that the local file system path is valid and

that the requesting user is authorized to access it.
� ObjectType (object typing): determination of the MIME-type of the requested re-

source (e.g. text/html, image/gif).
� Service (service): the response is returned to the client.
� AddLog (adding log entries): server’s log file is updated.

The server executes SAFs in response to incoming requests through a MIME mapping
approach. Should the incoming request pertain to a hypothetical MIME type (also called
internal server type), the associated SAF code is invoked to handle the request. Such
mapping is maintained in a basic configuration file. Each SAF has its own settings and
has access to the request information and any other server variables created or modified
by previous SAFs. The SAF performs its operation based on all this information. It may
examine, modify, or create server variables based on the current request and its purpose
within its step.

2.3 Web Application Interface

WAI [Net97] is one of the programming interfaces, provided in the latest Netscape
servers, that allows the extension of their functionality. WAI is a CORBA-based pro-
gramming interface that defines object interfaces to the HTTP request/response data as
well as server information. WAI compliant applications can be developed in C, C++, or
Java (JDK 1.1). WAI applications accept HTTP requests from clients, process them,
and, lastly generate the appropriate responses. Server plug-ins may also be developed
using WAI. Netscape claims that WAI accomplishes considerable performance im-
provements when compared to CGI. Since WAI-compliant modules (or WAI services)
are persistent (in contrast to CGI programs), response times are reduced thus, improving
performance. Additionally, WAI modules are multi-threaded so the creation of addi-
tional processes is unnecessary.

Specifically, WAI allows: accessing the HTTP request headers, accessing server internal
information, reading data transmitted from the browser (i.e., the content of a POST re-
quest triggered by the submission of an HTML form), setting the headers and the status

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 5

in the HTTP response, redirecting the interacting client to another location, or compos-
ing the response that will be send to the client (e.g., an HTML page). WAI modules
may either be applications that run outside the server process in the same or different
machines (the CORBA ORB deals with all the details) or be in the form of server plug-
ins that run within the server's process. Server plug-ins can be shared libraries or dy-
namic link libraries.

2.4 Internet Server API

ISAPI [Mic97a], [Tra96] is an interface to WWW servers that allows the extension of
their basic functionality in an efficient way. ISAPI compliant modules run in Windows
9x/NT environments and have the form of dynamic link libraries (DLL). ISAPI DLLs
can be loaded and called by a WWW server and provide similar functionality to CGI
applications (such ISAPI DLLs are called extensions). The competitive advantage of
ISAPI over CGI is that ISAPI code runs in the same address space as the WWW server
(i.e., in-process) and has access to all the resources available to the server (thus, the
danger of a server crash due to error-prone extension code is not negligible). Addition-
ally, ISAPI extensions, due to their multi-threaded orientation, have lower overhead than
CGI applications because they do not require the creation of additional processes upon
reception of new requests (the creation of a new thread by the server is much faster) and
do not perform time-consuming communications across process boundaries. ISAPI
DLLs may be unloaded if the memory is needed by another process. Interaction between
the ISAPI extension code and the WWW server is performed through a memory struc-
ture called Extension Control Block (ECB). Each request addressed to the ISAPI exten-
sion causes a new ECB structure to be allocated and filled with information such as the
QUERY_STRING parameter [Coa98] encountered in conventional CGI applications.
Filters are another type of ISAPI extensions. Filters are loaded once, upon server’s start-
up, and invoked for each incoming request. Practically, ISAPI Filters allow the customi-
zation of the flow of data within the server process. ISAPI is now used by several Web
servers including Microsoft, Process Software, and Spyglass.

2.5 FastCGI

FastCGI [Bro96a] is basically an effort to provide a “new implementation of CGI”
[Bro96b] that would enjoy the portability of its predecessor while overcoming its per-
formance handicap. FastCGI processes (gateway instances according to the terminology
in this chapter) are persistent in the sense that after dispatching some request remain
memory resident (and do not exit as conventional CGI dictates) awaiting for another re-
quest to arrive. Instead of using environment variables, stdin and stdout, FastCGI com-
municates with the server process - similarly to CGI it runs as a separate process -
through a full duplex Socket connection. Basing the interface on Sockets allows the
execution of the gateway instance on a machine different from that of the WWW server
(a distributed approach). The information communicated over this full-duplex connec-
tion is identical to the one exchanged in the CGI case. Thus, migration from classical
CGI programs to FastCGI is a fairly easy process. FastCGI supports the language inde-
pendence of its predecessor (languages like Tcl/Tk and Perl can be used). FastCGI ap-
plications can be programmed either in a single-threaded or in a multi-threaded way.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 6

The FastCGI framework supports a performance enhancement technique called “session
affinity”. Session affinity allows the server to route incoming requests to specific mem-
ory resident copies of FastCGI processes based on information conveyed within requests
(e.g., username/password of the authentication scheme). The performance benefit comes
from the caching that FastCGI applications are allowed to perform on user-related data.

In a database access scenario presented in [Bro96c], the performance of API-based ap-
plications in a single-threaded server architecture is slightly better than that accom-
plished by FastCGI processes (with internal caching/session affinity disabled). In those
tests, the connections established towards the database system are not torn-down after
the execution of individual queries (database connection caching).

2.6 Servlet Java API

Servlets are protocol- and platform-independent server side components written in Java.
Servlets run within Java enabled web servers (e.g., Java Web Server, Netscape, Apache,
etc.) and are to the server side what applets are to the client side. Servlets can be used in
many ways but generally regarded as a replacement to of CGI for the dynamic creation
of HTML content. Servlets first appeared with the Java Web Server launched in ’97
[Cha97]. Servlets allow the realization of three-tier schemes where access to a legacy
database or another system is accomplished using some specification like Java Database
Connectivity (JDBC) or Internet Inter-ORB Protocol (IIOP). Unlike CGI, the Servlet
code stays resident after the dispatch of an incoming request. To handle simultaneous
requests new threads are spawned instead of processes. A web server uses the Servlet
API, a generic call-back interface to control the behavior of a Servlet (i.e., initialization
- termination through the invocation of specific methods). Servlets may be loaded from
the local file-system or invoked from a remote host much like in the applet case.

As reported in [Cha97], FastCGI and Java Servlets accomplish comparable performance
which is much higher than that of conventional CGI. Specifically, Organic Online, a San
Francisco based Web development company, measured a 3-4 requests/sec throughput
for FastCGI or Servlets while CGI managed to handle only 0.25 requests/sec.

Some concerns about the performance of Servlets in Web servers other than the Java
Web Server are raised in [Maz98]. Servlets execute on top of the Java Virtual Machine
(JVM). Spawning the JVM is a time- and resource-consuming task (a time of 5 seconds
and a memory requirement of 4 MB is reported for a standard PC configuration). Such a
consumption could even compromise the advantage of Servlet over conventional CGI if
a different instance of JVM was needed for each individual request reaching the web
server. In the Java Web Server case there is no need to invoke a new instance of JVM
since the Servlet can be executed by the JVM running the server module (a “two-tier”
scheme). In the Apache case, the Servlet engine is a stand-alone application (called
JServ), running independently to the server process. The web server passes requests to
this pre-spawned engine which then undertakes their execution (a proxy like scheme). A
quite similar scheme is followed in every other Web server whose implementation is not
based in Java. Indicative examples are the latest versions of Microsoft’s IIS and Net-
scape’s FastTrack. Popular external Servlet engines include JRun from Live Software

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 7

Inc. (http://www.livesoftware.com/) and WAICoolRunner from Gefion Software
(http://www.gefionsoftware.com/). WAICoolRunner has been used in some of the ex-
periments documented in subsequent paragraphs.

2.7 Comparisons between CGI and Server APIs

Gateway specifications are compared in terms of characteristics or the performance they
can achieve. A detailed comparative analysis of the characteristics of CGI and server
APIs can be found in [Eve96] and [PJu97].

Specifically, CGI is the most widely deployed mechanism for integrating WWW servers
with legacy information systems. However, its design does not match the performance
requirements of contemporary applications: CGI applications do not run within the
server process. In addition to the performance overhead (new process per request), this
implies that CGI applications can't modify the behavior of the server's internal opera-
tions, such as logging and authorization (see Section 2.2). Finally, CGI is viewed as a
security issue, due to its connection to a user-level shell.

Server APIs can be considered as an efficient alternative to CGI. This is mainly attrib-
uted to the fact that server APIs entail a considerable performance increase and load de-
crease as gateway applications run in or as part of the server processes (practically the
invocation of the gateway module is equivalent to a regular function call2) instead of
starting a completely new process for each new request, as the CGI specification dic-
tates. Furthermore, through the APIs, the operation of the server process can be cus-
tomized to the individual needs of each site. The disadvantages of the API solution in-
clude the limited portability of the gateway code which is attributed to the absence of
standardization (completely different syntax and command sets) and strong dependence
to internal server architecture.

The choice for the programming language in API configurations is extremely restricted
if compared to CGI (C or C++ Vs C, C++, Perl, Tcl/Tk, Rexx, Python and a wide range
of other languages). As API-based programs are allowed to modify the basic functional-
ity offered by the web server, there is always the concern of buggy code that may lead to
crashes.

The two scenarios involve quite different resource requirements (e.g., memory) as dis-
cussed in [PJu97]. In the CGI case, the resource needs are proportional to the number of
clients which are simultaneously served. In the API case, resource needs are substan-
tially lower due to the function-call like implementation of gateways and multi-threaded
server architecture.

In terms of performance, many evaluation reports have been published during the past
years. Such reports clearly show the advantages of server APIs over CGI or other similar

2 Differences arise from the start-up strategies followed: some schemes involve that gateway in-
stances/modules are pre-loaded to the server while others follow the on-demand invocation.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 8

mechanisms but also discuss performance differences between various commercial
products.

In [Hay95], three UNIX-based web servers (NCSA, Netscape and OpenMarket) have
been compared using the WebStone benchmark (see Section 5.1). Under extensive load,
the NSAPI configuration achieved 119% better throughput3 than the CGI configuration
running in NCSA. In terms of connections per second, the Netscape/NSAPI configura-
tion outperformed NCSA/CGI by 73%. OpenMarket/CGI achieved slightly better per-
formance than the NCSA/CGI combination. Under any other load class, NSAPI outper-
formed the other configurations under test but the gap wasn’t as extensive as in the high
load case.

In [Hay96], the comparison between server API implementations and CGI shows the
ISAPI is around 5 times faster than CGI (in terms of throughput). NSAPI, on the other
hand, is reported only 2 times faster than CGI. A quite similar ratio is achieved for the
connections per second metric. In terms of Average Response Times, ISAPI is reported
at the 1/3 of NSAPI’s performance.

In [Min96], published by Mindcraft Inc. (the company that purchased WebStone from
Silicon Graphics), quite different results are reported for the two APIs. Specifically,
NSAPI is shown to outperform, in certain cases, ISAPI by 40%. In other cases, NSAPI
achieves a 82% of the best performance exhibited by ISAPI. Such differences, in the
measurements included in the two aforementioned reports, have been attributed to cer-
tain modifications which were incorporated in the NSAPI code provided with the Web-
Stone benchmark. No clear results can be obtained by the two performance evaluation
tests. Microsoft’s IIS (and ISAPI) seem to be better harmonized with the Windows envi-
ronments while NSAPI is a portable specification (it can be applied to Netscape servers
irrespective of the underlying OS).

3 Throughput measured in MBps.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 9

3. ARCHITECTURES OF RDBMS GATEWAYS

One of the most important application of the WWW platform refers to the integration of
database management systems and RDBMS in particular. Many issues are associated
with this particular type of WWW applications namely the generic architecture, the
stateful operation and performance, which is of prime concern in this chapter.

The first WWW interfaces for relational management systems appeared in the 93-94
period. The first products begun to come into view on ’95 with WebDBC [Nom95] from
Nomad (later StormCloud), Cold Fusion [All96] from Allaire and dbWeb [Lau95] from
Aspect Software Engineering (later acquired by Microsoft). The importance of such
middleware triggered a very rapid pace in the development of this kind of software.
Such interfacing tools have become crucial and indispensable components to the Inter-
net as well as enterprise intranets. The first generation of WWW-RDBMS (e.g.,
WebDBC) interfacing products was mainly intended for the Windows NT platform and
capitalized on the ODBC specification to gain access to databases.

Throughout the development of the generic RDBMS interface presented in [Had96] the
authors observed that, during users’ queries for information, a considerable amount of
time was spent for the establishment of connections towards the relational management
system (Informix in our prototype which was based on the CGI specification). Irrespec-
tively of the efficiency of the adopted gateway mechanism (i.e., the “slow” CGI Vs a
“fast” server API), establishing a new connection (per request) to the relational man-
agement system is a time- and resource-consuming task which should be limited and, if
possible, avoided. Of course, the CGI specification is not efficient in terms of execution
speed (and, in any case aggravates the performance of the system) but if portability and
compliance to standards do necessitate its adoption, a “clever” solution has to be worked
out.

In [Had97] we adopted the scheme of permanent connections towards the database
management system [PJu97]. Permanent connections are established by one or more
demon processes which reside within the serving host and execute queries on the behalf
of specific clients (and gateway instances i.e., CGI scripts). Demons, prevent the ineffi-
cient establishment of a large number of database connections and the relevant resource
waste; the associated cost is incurred by the demon processes (prior to actual hit dis-
patch - query execution) and not by the gateway instances (e.g., CGI script, ISAPI
thread) upon hit dispatch. Thus, no additional time overhead is perceived by the inter-
acting user in his queries for information. The discussed scheme is shown in Figure 2.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 10

W3 Client

W3 Server
(httpd)

Gateway Instance

Database Deamon

HTTP
communication (interface A)

Proprietary
protocol (interface C)

Any gateway
specification (interface B)

Same or separate
processes

DBMS

Any generic
database API
(interface D)

Figure 2: Optimized WWW-DBMS interface

3.1 Generic DBMS Interfaces

A very important issue in the demon-based architecture shown in Figure 2 is the inter-
face towards the DBMS (interface D) as well as the communication mechanism between
the gateway instance (interface C in Figure 2). The demon process should be able to dis-
patch any kind of queries - SQL statements irrespective of database, table and field
structures. This requirement discourages the adoption of a static interface technique like
the embedding of SQL statements in typical 3GLs (i.e., the Embedded SQL API - ISO
SQL-92 standard). Instead, a generic interface towards the database should be used.

Contemporary RDBMS offer, as part of the Embedded SQL framework, the Dynamic
SQL capability [Mic97b], [Inf96], which allows the execution of any type of statement
without prior knowledge of the relevant database schema, table and field structures (un-
like Static SQL, where such information is hard-coded in the respective programs). Dy-
namic SQL statements can be built at runtime and placed in a string host variable. Sub-
sequently, they are posted to the RDBMS for processing. As the RDBMS needs to gen-
erate an access plan at runtime for dynamic SQL statements, dynamic SQL is slower
than its static counterpart. This last statement deserves some more discussion: if a ge-
neric interface towards a DBMS is pursued, then the execution efficiency of the system
could be undermined. Embedded SQL scripts with hard-coded statements execute faster
than CGI scripts with dynamic SQL capabilities. The real benefit, in this architecture,
comes from the de-coupling of the dynamic SQL part (database demon) from the actual
gateway instance (Figure 2).

A second option for generic access to a DBMS is the SQL Call-Level Interface (CLI).
The SQL CLI was originally defined by the SQL Access Group (SAG) to provide a uni-

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 11

fied standard for remote data access. The CLI requires the use of intelligent database
drivers that accept a call and translate it into the native database server’s access lan-
guage. The CLI is used by front-end tools to gain access to the RDBMS; the latter
should incorporate the appropriate driver. The CLI requires a driver for every database
to which it connects. Each driver must be written for a specific server using the server’s
access methods and network transport stack. The SAG API is based on Dynamic SQL
(statements still need to be Prepared4 and then Executed). On the fall of 1994, the SAG
CLI became an X/Open specification (currently it is also referred to as X/Open CLI) and
later-on an ISO international standard (ISO 9075-3). Practically, the X/Open CLI is a
SQL wrapper (a procedural interface to the language); a library of DBMS functions -
based on SQL - which can be invoked by an application. As stated in [Mic97b], “a CLI
interface is similar to Dynamic SQL, in that SQL statements are passed to the RDBMS
for processing at runtime, but it differs from Embedded SQL as a whole in that there are
no embedded SQL statements and no pre-compiler is needed”.

Microsoft’s Open DataBase Connectivity (ODBC) API is based on the X/Open CLI.
The 1.0 version of the specification and the relevant Software Development Kit (SDK),
launched by Microsoft in 1992, have been extensively criticized for poor performance
and limited documentation. Initially, ODBC was confined to the MS-Windows plat-
form, but later was ported to other platforms like Sun’s Solaris. The ODBC 2.0, which
was announced in 1994, has been considerably improved over its predecessor. 32-bit
support contributed to the efficiency of the new generation of ODBC drivers. In 1996,
Microsoft announced ODBC 3.0. Nowadays, most database vendors (e.g., Oracle, In-
formix, Sybase) support the ODBC API in addition to their native SQL APIs. But, a
number of problems and hypotheses undermine the future of ODBC technology. ODBC
introduces substantial overhead (especially in SQL updates and inserts) due to the extra
layers of its architecture (usually, ODBC sits on top of some other vendor-specific mid-
dleware like Oracle’s SQL*Net). It is a specification entirely controlled by Microsoft.
The introduction of the OLE/DB framework gave grounds to the suspicion that Micro-
soft doesn’t seem committed to progress ODBC any more.

Since the advent of the Java programming language, a new SQL CLI has emerged. It is
named JDBC (Java DataBase Connectivity) and was the result of a joint development
effort by Javasoft, Sybase, Informix, IBM and other vendors. JDBC is a portable, object-
oriented CLI, written entirely in Java but very similar to ODBC [Orf98]. It allows the
development of DBMS independent Java code which is, at the same time, independent
of the executing platform. JDBC’s architecture, similarly to ODBC, introduces a driver
manager (JDBC driver manager) for controlling individual DBMS drivers. Applications
share a common interface with the driver manager. A classification of JDBC drivers
suggests that they are either direct or ODBC-bridged. Specifically, there are four types
of JDBC drivers [JDB97]:
� Type 1 refers to the ODBC-bridged architecture and involves the introduction of an

translation interface between the JDBC and the ODBC driver. ODBC binary code,

4 It is requested by the RDBMS to parse, validate, and optimise the involved statement and, subsequently,
generate an execution plan for it.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 12

and the required database client code must be present in the communicating party.
Thus, it is not appropriate for applets running in a browser environment.

� Type 2 drivers are based on the native protocols of individual DBMS (i.e., vendor-
specific) and were developed using both Java and native code (Java methods invoke
C or C++ functions provided by the database vendor).

� Type 3 drivers are exclusively Java based. They use a vendor-neutral protocol to
transmit (over TCP/IP sockets) SQL statements to the DBMS thus, necessitating the
presence of a conversion interface (middleware) on the side of the DBMS.

� Type 4 drivers are also exclusively based on Java (pure Java driver) but, in contrast
to Type 3, use a DBMS specific protocol (native) to deliver SQL statements to the
DBMS.

As discussed in [Nan97], Type 1 drivers are the slowest owing to the bridging tech-
nique. Type 2 drivers are on the extreme other end. Type 3 drivers load quickly (due to
their limited size) but do not execute requests are fast as Type 2. Similarly, Type 4 exe-
cute quite efficiently but are not comparable to Type 2. Type 1 is generally two times
slower than Type 4. In the same article, it is argued that the highest consumption of
CPU power in JDBC drivers comes from conversions between different data types and
the needed translation between interfaces. JDBC is included, as a standard set of core
functions, in Java Development Kit (JDK) ver. 1.1.

3.2 Protocols and Inter-process Communication Mechanisms

Another very important issue in the architecture shown in Figure 2 is the C interface
(i.e., the interface between gateway instances and the database demon). As discussed in
[Had97], the definition of interface C involves the adoption of a protocol between the
two co-operating entities (i.e., the gateway instance and the database demon) as well as
the selection of the proper IPC (Inter-Process Communication) mechanism for its im-
plementation.

In the same paper we proposed a simplistic, request/response, client/server protocol for
the realization of the interface. The gateway instance (ISAPI/NSAPI thread, CGI proc-
ess, Servlet, etc.) transmits to the database demon a ClientRequest message and the da-
tabase demon responds with a ServerResponse. The ClientRequest message indicates
the database to be accessed, the SQL statement to be executed, an identifier of the
transmitting entity/instance as well as the layout of the anticipated results (results are
returned merged with HTML tags). The Backus-Naur Form (BNF) of ClientRequest is:

ClientRequest = DatabaseName SQLStatement [ClientIdentifier] ResultsLayout
DatabaseName = *OCTET
SQLStatement = *OCTET
ClientIdentifier = *DIGIT ; UNIX PID
ResultsLayout = "TABLE" | "PRE" | "OPTION"

ClientIdentifier is the process identifier (integer, long integer) of a CGI script (or thread
identifier in the case of a server API) which generated the request. This field is optional,
depending on the IPC mechanism used and could be avoided in a connection-oriented
communication (e.g., Sockets). *OCTET denotes a sequence of printable characters and

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 13

thus, represents a text field. Results are communicated back to the client processes by
means of the ServerResponse message. The BNF of ServerResponse is:

ServerResponse = ResponseFragment ContinueFlow
ResponseFragmet = *OCTET
ContinueFlow = "YES" | "NO"

The ResponseFragment (text) field contains the actual information which was retrieved
by the demon process from the designated database. As mentioned, such information is
returned to the client, embedded within HTML code. The type of tags used is the one
specified in the ResultsLayout field of ClientRequest. The ContinueFlow field is used
for optimizing, in certain IPC scenarios (e.g., Message Queues), the transmission of re-
sults back to the gateway instance.

The ClientRequest-ServerResponse protocol is very simplistic, and shifts processing
from the gateway instance (client) to the database demon (a “thin” client scheme). More
advanced protocols (i.e., RDA/DRDA) may be used over the C interface to allow more
complicated processing at the side of the gateway instance.

Protocols pertaining to the C interface are deployed using either some IPC mechanism
like Message Queues [Had97], [Had99a] or Sockets [Had99b] (low level middleware)
or some kind of middleware like CORBA/IIOP. Message Queues [Ste90] are a quite
efficient, message oriented, IPC mechanism that allows the simultaneous realization of
more than one dialogs (i.e., various messages, addressed to different processes or
threads, can be multiplexed in the same queue). BSD Sockets are ideal for implementa-
tion scenarios where the web server (and, consequently, the gateway instances) and the
database demon execute on different hosts (a distributed approach). The advent of the
WinSock library for the Microsoft Windows environments rendered Sockets a universal,
platform independent IPC scheme. Message Queues are faster than Sockets but restrict
the communication in a single host since they are maintained at the kernel of the oper-
ating system. In some recent tests, which are also presented in this chapter, for the reali-
zation of a scheme similar to the one shown in Figure 2, we have employed Named
Pipes under the Windows NT environment. A Named Pipe is a one-way or two-way
communication mechanism between a server process and one or more client processes
executing on the same or different nodes (networked IPC). Under Windows NT, Named
Pipes are implemented as a file system and share many characteristics associated with
files with respect to use and manipulation.

A type of middleware, used extensively nowadays in many application domains, is the
CORBA Object Request Broker [OMG97]. CORBA simplifies the development of dis-
tributed applications with components that collaborate reliably, transparently and in a
scaleable way.

The efficiency of CORBA ORB for building interfaces between Java applications is dis-
cussed in [Orf98]. It is reported that CORBA performs similarly (and, in some cases
better) to Socket based implementations while, only buffering entails a substantial im-
provement in Socket communications. Another comparison between several implemen-

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 14

tations of CORBA ORB (e.g., Orbix, ORBeline) and other types of middleware like
Sockets can be found in [Gok96]. In particular, low level implementations such as
Socket-based C modules and C++ wrappers for Sockets significantly outperformed their
CORBA or RPC higher level competitors (tests were performed over high-speed ATM
networks - traffic was generated by the TTCP protocol benchmark tool). Differences in
performance ranged from 20 to 70% depending on the data types transferred through the
middleware (transmission of structures with binary fields has proved considerably
“heavier” than scalar data types). A very important competitor of CORBA is DCOM
developed by Microsoft. DCOM ships with Microsoft operating systems thus, increas-
ing the impact of this emerging specification.

3.3 Experiments and Measurements

In this section, we present two series of experiments which allow the quantification of
the time overheads imposed by conventional gateway architectures and the benefits that
can be obtained by evolved schemes (such as the one shown in Figure 2).

Firstly, we examined the behavior of a web server setup encompassing a Netscape Fast-
Track server and Informix Online Dynamic Server (ver.7.2), both running on a SUN
Ultra 30 workstation (processor: SUN Ultra 250 MHz, OS: Solaris 2.6) with 256 MB of
RAM. In this testing platform we have evaluated the demon-based architecture of Figure
2 and the ClientRequest/ServerResponse protocol of Section 3.2, using, on the B inter-
face, the CGI and NSAPI specifications (all tested scenarios are shown in Figure 3)
[Had99a].

The IPC mechanism that we have adopted was Message Queues, member of the System
V IPC family. Quite similar experiments were also performed with BSD Sockets
[Had99b] but not reported in this Section. Both types of gateway instances (i.e., CGI
scripts or NSAPI SAFs) as well as the server demon were programmed in the C lan-
guage. The server demon, for the D interface, used the Dynamic SQL option of Embed-
ded SQL (Informix E/SQL). Only one database demon existed in the setup. Its internal
operation is shown, by means of a flowchart, in Figure 4. It is obvious, from Figure 4,
that the database demon operates in a generic way, accessing any of the databases han-
dled by the DBMS and executing any kind of SQL statement. If the, until recently, used
DBMS connection (e.g., to a database or specific user account) is the same with the
connection needed by the current gateway request then, that connection is being used.
Lastly, we should note that incoming requests are dispatched by the demon process in an
iterative way.

As shown in Figure 3, we compared the conventional (monolithic) CGI-based Informix
gateway (C and Embedded SQL - Static SQL option) against the CGI � Database De-
mon � Informix scheme (Scenario 2) and the NSAPI SAF � Database Demon � In-
formix combined architecture (Scenario 3). In all three cases, the designated database
access involved the execution of a complicated query over a sufficiently populated In-
formix table (around 50,000 rows). The table contained the access log of a web server
for a period of six months. The layout of the table followed the Common Log Format
found in all web servers and the row size was 196 bytes. The executed query was the

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 15

following: Select the IP address and total size of transmitted bytes (grouping by the IP
address) from the access log table where the HTTP status code equals 200 (Document
follows). The size of the HTML page produced was 5.605 KB in all scenarios (a realis-
tic page size, considering the published WWW statistics [Bra96], [Bar98]). The tuples
extracted by the database were embedded in an HTML table (ResultsLayout = "TA-
BLE").

FastTrack
Web Server

NSAPI
SAF

CGI

CGI Informix

D
at

ab
as

e
D

em
on

1

2

3

• Scenario 1:
CGI - RDBMS
• Scenario 2:
CGI - demon - RDBMS
• Scenario 3:
NSAPI-demon-RDBMS

Figure 3: Database access scenarios (1)

db demon
START

NoInitialise
demon
process

Receive new
request from

gateway

Same con-
nection?

Execute SQL
statement

Release old
connection -

establish new

Yes

Pass results
to gateway

Figure 4: Flowchart for Database Demon operation

The above described experiments were realized by means of an HTTP pinger, a simple
form of the benchmark software discussed in Section 5. The pinger program was con-
figured to emulate the traffic caused by up to 16 HTTP clients. In each workload level
(i.e., number of simultaneous HTTP clients), 100 repetitions of the same request were
directed, by the same thread of the benchmark software, to the WWW server. The re-
corded statistics included:
� Connect Time (ms): the time required for establishing a connection to the server.
� Response Time (ms): the time required to complete the data transfer once the con-

nection has been established.
� Connect rate (connections/sec): the average sustained throughput of the server.
� Total duration (sec): total duration of the experiment.
The pinger program executed on a MS-Windows NT Server (version 4) hosted by a
Pentium II 300 MHz machine with 256 MB of RAM and a PCI Ethernet adapter. Both
machines (i.e., the pinger workstation as well as the web/database server) were inter-

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 16

connected by a 10Mbps LAN and were isolated by any other computer to avoid addi-
tional traffic which could endanger the reliability of the experiments.

From the gathered statistics, we plot, in Figure 5, the Average Response Time per re-
quest. The scatter plot of Figure 5 is also enriched with polynomial fits.

4 8 12 16
No of HTTP clients

4000

8000

12000

16000

20000

24000

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Scenario 1: CGI-RDBMS

Scenario 2: CGI-DB demon

Scenario 3: NSAPI-DB demon

Figure 5: Response Time Vs Number of Clients

Figure 5 shows that the CGI � demon architecture (Scenario 2) performs systematically
better than the monolithic CGI gateway (Scenario 1) and worst than the NSAPI � De-
mon configuration (Scenario 3), irrespective of the number of HTTP clients (i.e., threads
of the pinger program). The performance gap of the three solutions increases propor-
tionally to the number of clients. Figure 5 also suggests that for relatively small/medium
workload (i.e., 16 simultaneous users) the serialization of ClientRequests in Scenarios 2
and 3 (i.e., each ClientRequest incurs a queuing delay due to the iterative nature of the
single database demon) doesn’t undermine the performance of the technical option.

A number of additional tests were performed in order to cover even more specifications
and gateway architectures. Such tests were performed in the Oracle RDBMS (ver. 7.3.4)
running on a Windows NT Server operating system (version 4). The web server setup
included Microsoft’s Internet Information Server (IIS) as well as Netscape’s Fasttrack
Server (not operating simultaneously). Both the web servers and RDBMS were hosted
by a Pentium 133 HP machine with 64MB of RAM. In this setup we employed, on the B
interface (Figure 2), the CGI, NSAPI, ISAPI and Servlet specifications, already dis-
cussed in previous paragraphs. On the D interface we made use of Embedded SQL (both
Static and Dynamic options), ODBC and JDBC. Apart from conventional, monolithic

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 17

solutions, we have also evaluated the enhanced, demon - based architecture of Figure 2.
All the access scenarios that were subject to evaluation are shown in Figure 6.

The IPC mechanism that we adopted for the demon - based architecture was Named
Pipes. All modules were programmed in the C language and compiled using Microsoft’s
Visual C. Similarly to the previous set of experiments, only one database demon (Dy-
namic SQL) existed in this setup. The flowchart of its internal operation is identical to
the one provided in Figure 4. The database schema as well as the executed query were
also identical to the previous series of experiments.

CGI Embedded
SQL (S)

CGI ODBC 3.0

ISAPI Embedded
SQL (S)

Servlet
API JDBC

NSAPI Embedded
SQL (S)

WAI Embedded
SQL (S)

CGI Database
demon

Embedded
SQL (D)

Scenario: 1

Scenario: 2

Scenario: 3

Scenario: 4

Scenario: 5

Scenario: 6

Scenario: 7

Figure 6: Database access scenarios (2)

In this second family of experiments we employed the same HTTP pinger application
with the previously discussed trials. It executed on the same workstation hosting the two
web servers as well as the RDBMS. The pinger was configured to emulate the traffic
caused by a single HTTP user. Each experiment consisted of 10 repetitions of the same
request transmitted towards the web server over the TCP loop-back interface. As in the
previous case, Connect Time, Response Time, Connect Rate and Total Duration were
the statistics recorded. Apart from those statistics, the breakdown of the execution time
of each gateway instance was also logged. This was accomplished by enriching the code
of gateway instances with invocations of the C clock() function which returns the
CPU time consumed by the calling process. Thus, we were able to quantify the time
needed for establishing a connection to the RDBMS (to be referred to as Tcon) as well
as the time needed to retrieve the query results (to be referred to as Tret). Such logging
of CPU times was performed in scenarios:
� 1 (CGI/Embedded SQL),
� 2 (CGI/ODBC),
� 4 (Servlet/JDBC) 5 and
� 7 (CGI � Database Demon/Dynamic SQL).
We restricted the time breakdown logging in those scenarios since they involve different
database access technologies.

Figure 7 plots the Average Response Time for each scenario.

5 Gefion’s WAICoolRunner was used as a Servlet engine in this scenario.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 18

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

Scenario

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Figure 7: Response Times for Scenarios 1-7

Figure 7 shows that the CGI � Demon accomplishes quite similar times to those of the
NSAPI and ISAPI gateways. In the multi-threaded gateway specifications (i.e., NSAPI,
ISAPI and WAI), connections towards the RDBMS are established by the executing
thread (hence, the associated cost is taken into account). Connections by multi-threaded
applications are only possible if mechanisms like Oracle’s Runtime Contexts [Ora96] or
Informix’s dormant connections [Inf96] are used. Other multi-threaded configurations
are also feasible: a database connection (and the associated runtime context) could be
pre-established (e.g., by the DLL or the WAI application) and shared among the various
threads, but such configurations necessitate the use of synchronization objects like
mutexes. In such scenarios a better performance is achieved at the expense of the gener-
ality of the gateway instance (i.e., only the initially opened connection may be re-used).

In Scenario 2, ODBC Connection Pooling was performed by the ODBC Driver Manager
(ODBC 3.0) thus, reducing the time overhead associated with connection establishments
after the initial request. In Scenario 4, the JDBC drivers shipped with Oracle 7.3.4 were
used. Specifically, we employed Type 2 drivers.

In Figure 8 we show where the factors Tcon and Tret range.

Error! Not a valid link.

Figure 8: Time breakdown for Scenarios 1, 2, 4 and 7

As shown in Figure 8, in the ODBC and JDBC scenarios (i.e., Scenarios 2 and 4) a very
important percentage of the execution time of the gateway is consumed for the estab-
lishment of connections towards the DBMS. The Embedded SQL scenario (i.e., Sce-
nario 1) achieves the lowest Tcon. The highest Tret is incurred at Scenario 7 where
query execution is fully dynamic (see Section 3.1 for the Dynamic SQL option of Em-
bedded SQL). Tcon is not plotted in Figure 8 for Scenario 7, as this cost is only incurred
once, in our experiments, by the database demon.

3.4 State Management Issues

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 19

In general, stateful web application impose considerable additional overhead. Extra in-
formation is carried across the network to help identify individual sessions and logically
correlate user interactions. The Cookies mechanism [Kri97] specify additional fields in
the HTTP headers to accommodate state information. Complicated applications, though,
may require a large volume of Cookie information to be transmitted to and from the
browser. At the server’s side, additional processing - handling is required in order to
perform state management. In [Had98] a framework for the adaptation of stateful appli-
cations to the stateless Web has been proposed. This framework involved the placement
of an extra software layer in the browser-database chain. Such additional, server-side,
tier would associate incoming Cookie values with the appropriate threads of a multi-
threaded database application, pass execution information, relay results and assign new
Cookie values to the browser in order to preserve a correct sequence of operations. An
additional entity responsible for handling state information is also required in the archi-
tecture presented in [Iye97]. Considerations concerning the overheads introduced by
state management techniques are also discussed in [PJu97].

3.5 Persistent or Non-persistent Connections to Databases

The database connection persistence problem is mentioned in [PJu97]. A conventional
scheme, with monolithic CGIs establishing connections directly towards the RDBMS,
may exhaust the available licenses due to the sporadic nature of WWW requests. Addi-
tionally, as discussed in previous paragraphs, a substantial time overhead is to be in-
curred in this scheme. Maintaining a database connection per active session (e.g.,
through a server API or FastCGI) may not be a sound strategy as the maximum licenses
limit may also be easily reached while extensive periods of client inactivity cause a ter-
rible waste in resources. In these two scenarios, uncontrolled connection establishment
with the RDBMS is definitely a problem. Persistent database connections may, how-
ever, be beneficial for response times as state management is simplified [Had98].

A demon based architecture, on the other hand, drastically restricts the number of con-
nections simultaneously established towards the RDBMS (controlled rate of connection
establishment). Multiple demons may be established to serve incoming requests in a
more efficient way (so as to reduce potential queuing delays caused by the availability of
a single dispatching entity [Had99a]). In such scenario a regulating entity will be needed
to route requests to idle demons and handle results on the reverse direction (Figure 9).

CGI

CGI

CGI

NSAPI/
ISAPI

Se
rv

er
 P

ro
ce

ss

Regulator

DB demon

DB demon

DB demon

Interface DInterface C

Figure 9: Generalized demon-based architecture

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 20

3.6 Template - based Middleware

Software tools intended for building database-powered WWW sites usually follow a
template approach. A generic engine processes pre-programmed templates (in an inter-
preter-like way) and performs database interactions as needed (run-time binding of re-
usable code, eg. some ODBC interface, with a specializing template). Templates practi-
cally are the combination of HTML with a proprietary tag set (dealing with query speci-
fication, transactions, result set handling, flow control, etc.). An indicative example of a
template-based middleware is Allaire’s Cold Fusion with its Cold Fusion Markup Lan-
guage (CFML)6. Surely, the interpreter like approach dictated by the adoption of tem-
plates causes a slow down in the dispatch of queries. On the other hand, such tools are
extremely efficient programming tools which drastically reduced the time required to
develop database gateways in the old-fashioned way using techniques such as Embed-
ded SQL.

6 Formerly known as DBML - DataBase Markup Language

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 21

4. WEB SERVER ARCHITECTURES

The architecture of HTTP demons (or WWW servers) have been a very important issue
since the advent of the WWW. The concern of the members of the WWW community
about the implications of WWW server architecture on performance is clear in works
like [McG95] and [Yea96]. The very first servers (e.g., NCSA httpd 1.3 and CERN 3.0)
were designed to fork of a new server process for each incoming request (i.e., the server
clones itself upon arrival of a new request). Newer server architectures adopt the so-
called pre-forking (or pool of processes) approach. The pre-forking approach involves
the provisional generation, by the master server process, of a set of slave processes (the
number is customizable). Such processes are awaiting idle until an HTTP request
reaches the master process. Then, the master process accepts the connection and passes
the file descriptor to one of the pre-spawned clients. If the number of simultaneous re-
quests at the server exceeds the number of pre-spawned clients, then the master httpd
process starts forking new instances (similarly to the older techniques). Measurements
reported in [McG95] show that this technique practically doubles the performance of the
WWW server. Such measurements were based on one of the very first benchmarking
tools for WWW servers, the NCSA pinger.

Newer server architectures were designed in the more efficient, multi-threaded para-
digm. Notable examples are Netscape’s FastTrack/Enterprise servers. In those architec-
tures, upon WWW subsystems’ boot, only one server process is spawned. Within this
server process the pool of available instances principle is still followed but on the thread
level. In other words, a number of threads are pre-spawned and left idle, awaiting in-
coming requests to serve. If the threads in the thread pool are all in use, the server can
create additional threads within the same process/address space to handle pending con-
nections. It is suggested that the number of pre-spawned server processes should be
greater to one only in those cases where multi-processor hardware is used. Servers are
optimized on the thread model supported by the underlying OS (e.g. in the HP-UX case
where not native threading is supported a user-level package is provided while in the
Solaris case the many-to-many model is adopted).

Server Process

thread_1 thread_2 thread_3 thread_n

......

SAF
code

SAF
code

Figure 10: Multi-threaded Netscape Server architecture

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 22

As discussed in Section 2.2, gateways can be build in Netscape servers using the NSAPI
specification. Taking into account the server’s multi-threaded architecture, the perform-
ance benefit is two-fold: (a) SAF/plug-in code is pre-loaded in the memory space of the
server process and (b) the server spawns autonomous threads instead of forking proc-
esses for each incoming request (Figure 10). Quite similar behavior is exhibited by Mi-
crosoft servers.

HTTP service handler threads

File Servlet

CGI Servlet

Figure 11: HTTP connection handling in JavaServer

The Java Server (http://jserv.javasoft.com/products/java-server) also adopts the multi-
threaded architecture discussed above, but relies heavily on the Servlet technology (see
Section 2.6). A pool of service handler threads (e.g., HTTP handler threads) is provided
and bound to a specific ServerSocket. Such handler threads, when associated with an
incoming request, know how to dispatch it to HTTP Servlets (after authorization and
name translation). Built-in HTTP Servlets are core Servlets that the HTTP service han-
dler threads use to provide standard functionality. Indicative examples are the File-
Servlet which is used to respond to simple file requests and the CGIServlet to provide
basic CGI functionality (Figure 11). A meta-Servlet, called InvokerServlet, is used for
loading, invoking and shutting down Servlets which were explicitly invoked by the cli-
ent (i.e., using the URL scheme).

5. PERFORMANCE EVALUATION TOOLS

During the past years a number of tools have emerged for the performance evaluation of
web server systems. Some of these tools take the reported Web traffic models into ac-
count (analytic workload generation). The vast majority of tools, however, follows the
so-called trace-driven approach for workload generation. The trace-driven approach,
practically, tries to imitate pre-recorded traffic logs either by sampling or by re-
executing traces.

5.1 Analytic Workload Generation

Traffic modeling for the WWW has been studied in considerable detail in [Cro98]
where a self-similar nature is suggested. Self-similarity is attributed to the multiplexing
of a large number of ON/OFF sources (which in the case of the WWW are interacting

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 23

users). The period spent by the sources in the ON or the OFF states is following heavy-
tailed distributions. In particular, ON times (times corresponding to resource transmis-
sions) are best modeled through the Pareto distribution. OFF times are classified either
as Active (attributed to the processing time of the Web client, rendering time, etc.), or as
Inactive (attributed to user think time). The former are much more extended than the
latter. Different distributions seem suitable for those two time components. The Weibull
distribution is best suited for Active times [Bar98] while the Pareto distribution best ap-
proximates the period of Inactivity. Such time distributions are shown in Figure 12.

time

start of request
resource A
available

Pareto distributed time

transfer of resource A

resource B
available

transfer of embedded reference B

start of new
request

Client processing
time

Weibull
distributed time

Client think time

Pareto distributed time Pareto distributed
time

ON time Active OFF time ON time Inactive
OFF time

Figure 12: Time distributions for WWW traffic

The SURGE (Scaleable URL Reference Generator) tool, presented in [Bar98], is a
workload generator which is compliant with the reported traffic models for the WWW.
Specifically, SURGE follows the Web models for file sizes, request sizes, popularity,
embedded references, temporal locality and OFF times. SURGE manages to put much
more stress on the CPU of the measured system than conventional benchmarks (eg.,
SPECWeb96 - see Section 5.2.2) do. Additionally, under conditions of high workload,
SURGE achieves the generation of self-similar network traffic which is not the case
with other tools.

5.2 Trace-driven Workload Generation

An impressively high number of simpler tools for the performance evaluation of WWW
server systems have appeared during the past years
(http://www.charm.net/~dmg/qatest/qatweb.html). In the following paragraphs we
briefly describe the most popular benchmark tools currently used by the WWW com-
munity.

5.2.1 WebStone

WebStone [Tre95] is a WWW server benchmark - performance evaluation tool origi-
nally developed by Silicon Graphics Inc. (SGI). Currently, the tool is being progressed
by Mindcraft Inc. (http://www.mindcraft.com) which acquired the WebStone rights
from SGI.

WebStone allows the measurement of a series of variables namely the average and
maximum connect time, the average and maximum response time, the data throughput

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 24

rate and, lastly, the number of pages and files retrieved. The benchmark software is exe-
cuted simultaneously in one or more clients positioned in the same network with the
measured server. Each client is capable of spawning a number of processes, named
“WebChildren”, depending on how the system load has been configured. Each
WebChild requests information from the server based on a given configuration file.
WebStone treats the server as a black box (black box testing). The execution of
WebChildren is coordinated by a process called WebMaster. The WebMaster distributes
the WebChildren software and test configuration files to the clients. Then, it starts a
benchmark run and waits for the WebChildren to report back the performance they
measured. Such information is combined in a single report by the WebMaster. Web-
Stone has been extended to allow the performance evaluation of CGI programs and
server API modules (in WebStone 2.5 both ISAPI and NSAPI are supported). The per-
formance measured in largely dependent on the configuration files used by WebChil-
dren. Although such files can be modified, using the standard WebStone file enables the
comparison between different benchmark reports. This standard file, practically, focuses
on the performance of the Web server, operating system, network and CPU speed.

WebStone configuration files determine basic parameters for the testing procedure (e.g.,
duration, number of clients, number of WebChildren, etc.) as well as the workload mix
which should be used. Each workload mix corresponds to a specific set of resources that
should be requested, in a random sequence, from the measured server. Mixes may con-
tain different sizes of graphic files or other multimedia resources (e.g., audio, movies).
As discussed in the previous paragraph, WebStone mixes were recently enriched to in-
voke CGI scripts or ISAPI/NSAPI compliant modules.

5.2.2 SPECWeb96

SPECWeb96 [SPE96] was released from the Standard Performance Evaluation Com-
mittee (SPEC) in 1996. The benchmark tool is quite similar to WebStone; it implements
black box server testing (also termed SUT - System Under Test). Workload is generated
by one or more client processes (“drivers”) running on one or more workstations. Simi-
larly to WebStone, SPECWeb96 can be configured to generate different workloads. To
provide a common indication of server efficiency, SPECWeb96 introduced the
SPECWebOps/sec metric calculated as the number of successfully completed requests
divided by the duration of the test.

SPECWeb’s advantage over WebStone is that the former is a standardized benchmark,
agreed among a number of manufacturers, while the latter represents an individual effort
which has, however, attracted the interest of the WWW community. In general, the
abundance of Web benchmarks renders the comparison of measurements quite difficult
and unreliable. This problem is addressed by SPECWeb96, which, though, is not as so-
phisticated as other tools are.

Although both the WebStone and SPECWeb96 report the number of HTTP operations
per second, their measurements are not comparable since their generated workload is
quite different. Due to its larger file-set sizes and its pattern of access, SPECweb96
gives emphasis on a system's memory and I/O subsystem.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 25

The workload mix in SPECWeb comprises files organized in four classes: files less than
1 KB (35% of all requests), files in the range 1 KB - 10 KB (50% of requests), files
between 10 KB and 100 KB (14%) and, finally, larger files (only 1% of total requests).
Within each class there are 9 discrete sizes. Accesses within a class are not uniformly
distributed. Instead, a Poisson distribution is being used within the limits of the file
class. Files are retrieved from a series of directories with a specific structure; this
scheme tries to emulate real-world conditions. The contents of the directories are com-
patible with the file side distributions discussed above while the number of directories
varies according to the maximum load that is to be reached.

SPECWeb is confined only to the GET HTTP method. SPECWeb cannot handle other
types of requests like POST. Additional, CGI issues are not addressed by the bench-
mark.

According to [Ban97], both the WebStone and SPECWeb96 tools are not capable of
generating client request rates that exceed the capacity of the server being tested or even
emulate conditions of bursty traffic. This is mainly due to certain peculiarities of the
Transport Control Protocol (TCP) which the HTTP uses as a reliable network service.
To tackle the aforementioned problem, the same paper proposes a quite different Socket
connection handling by the benchmark software (called S-Client for scaleable client).
Measurements presented in the same paper show that S-Clients manage to really put the
server software under stress.

Other tools in the Web benchmarking area include: Microsoft’s InetLoad
(http://www.microsoft.com/msdownload/inetload/inetload.html), ZDNet’s WebBench
(http://www.zdnet.com/zdbop/webbench/webbench.html).

6. EPILOGUE

Database connectivity is surely one of the most important issues in the constantly pro-
gressing area of WWW software. More and more companies and organizations are using
the WWW platform for exposing their legacy data to the Internet. On the other hand, the
amazing growth of WWW content forces the adoption of technologies like RDBMS for
the systematic storage and retrieval of such information. Efficiency in the mechanisms
for bridging the WWW and RDBMS is a very crucial topic. Its importance stems from
the stateless character of the WWW computing paradigm which necessitates a high fre-
quency of short-lived connections towards the database management systems. In this
chapter, we have addressed a series of issues associated with the considered area of
WWW technology. We have evaluated different schemes for database gateways (in-
volving different gateway specifications and different types of database middleware).
Although aspects like generality, compliance to standards, state management and port-
ability are extremely important their pursuit may compromise the performance of the
database gateway. The accumulated experience from the use and development of data-
base gateways over the last 5-6 years suggests the use of architectures like the database
demon scheme, which try to meet all the above mentioned requirements to a certain ex-
tend but also exhibit performance close to server APIs.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 26

ACKNOWLEDGMENTS
We are indebted to Mr. J. Varouxis for extremely useful discussions and technical as-
sistance on the preparation of the experiments presented in this chapter.

REFERENCES

[All96] “COLD FUSION User's Guide Ver. 1.5”, Allaire Corp. 1996.
[Ban97] G. Banga, and P. Druschel, “Measuring the Capacity of a

Web Server”, proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, December 1997.

[Bar98] P. Barford, and M. Crovella, “Generating Representative
Web Workloads for Network and Server Performance Evalua-
tion”, proceedings of ACM SIGMETRICS, International Confer-
ence on Measurement and Modeling of Computer Systems, July,
1998.

[Ber98] P. Bernstein et al., “The Asilomar Report on Database
Research”, ACM SIGMOD Record, Vol. 27, No. 4, Dec. 1998.

[Bra96] T. Bray, “Measuring the Web”, Computer Networks and ISDN
Systems, Vol. 28, No. 7-11, 1996.

[Bro96a] M. Brown, “FastCGI Specification”, Open Market Inc.,
http://fastcgi.idle.com/kit/doc/fcgi-spec.html, April 1996.

[Bro96b] M. Brown, “FastCGI: A High Performance Gateway Inter-
face”, Position paper for the workshop “Programming the Web
- a search for APIs”, 5th International WWW Conference,
Paris, France, 1996.

[Bro96c] M. Brown, “Understanding FastCGI Application Perform-
ance”, Open Market Inc.,
http://fastcgi.idle.com/kit/doc/fcgi-perf.html, June 1996.

[Cha97] P.I. Chang, “Inside the Java Web Server: An Overview of
Java Web Server 1.0, Java Servlets, and the JavaServer Ar-
chitecture”, http://java.sun.com/features/1997/aug/jws1.htm,
1997.

[Coa98] K. Coar, and D. Robinson, “The WWW Common Gateway Inter-
face - Version 1.2”, Internet Draft, February, 1998.

[Cro98] M. Crovella, M. Taqqu, and A. Bestavros, “Heavy-Tailed
Probability Distributions in the World Wide Web”, in “A
Practical Guide to Heavy Tails - Statistical Techniques and
Applications”, R. Adler, R. Feldman, and M. Taqqu (ed.),
BIRKHAUSER, 1998.

[Eve96] P. Everitt, “The ILU Requested: Object Services in HTTP
Servers”, W3C Informational Draft, March, 1996.

[Gok96] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High Speed Networks”, proc.
ACM SIGCOMM Conference, 1996.

[Had96] S. Hadjiefthymiades, and D. Martakos, “A Generic Frame-
work for the Deployment of Structured Databases on the World
Wide Web”, Computer Networks and ISDN Systems, Vol. 28, No.
7-11, 1996.

[Had97] S. Hadjiefthymiades, and D. Martakos, “Improving the
Performance of CGI compliant Database Gateways”, Computer
Networks and ISDN Systems, Vol. 29, No. 8-13, 1997.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 27

[Had98] S. Hadjiefthymiades, D. Martakos, and C.Petrou, “State
Management in WWW Database Applications”, proceedings of
IEEE Compsac ’98, Vienna, Aug. 1998.

[Had99a] S. Hadjiefthymiades, D. Martakos, and I. Varouxis,
“Bridging the gap between CGI and server APIs in WWW data-
base gateways”, Technical Report TR99-0003, University of
Athens, 1999.

[Had99b] S. Hadjiefthymiades, S. Papayiannis, D. Martakos, and
Ch. Metaxaki-Kossionides, “Linking the WWW and Relational
Databases through Server APIs: a Distributed Approach”,
Technical Report TR99-0002, University of Athens, 1999.

[Hay95] “Performance Benchmark Tests of Unix Web Servers using
APIs and CGIs”, Haynes & Company - Shiloh Consulting,
http://www.tedhaynes.com/haynes1/bench.html, November 1995.

[Inf96] “Informix-ESQL/C Programmer’s Manual”, Informix Software
Inc., 1996.

[ISO95] IS 9075-3, “International Standard for Database Language
SQL - Part 3: Call Level Interface”, ISO/IEC 9075-3:1995.

[Iye97] A. Iyengar, “Dynamic Argument Embedding: Preserving
State on the World Wide Web”, IEEE Internet Computing,
March-April 1997.

[JDB97] “JDBC Guide: Getting Started”, Sun Microsystems Inc.,
1997.

[Kha97] R.Khare, and I.Jacobs, ”W3C Recommendations Reduce
‘World Wide Wait’”, World Wide Web Consortium,
http://www.w3.org/pub/WWW/Protocols/NL-PerfNote.html, 1997.

[Kri97] D.Kristol, and L.Montuli, “HTTP State Management Mecha-
nism”, RFC 2109, Network Working Group, 1997.

[Lau95] J. Laurel, “dbWeb White Paper”, Aspect Software Engi-
neering Inc., August, 1995.

[Maz98] S. Mazzocchi and P. Fumagalli, “Advanced Apache Jserv
Techniques”, proceedings of ApacheCon ‘98, San Francisco,
CA, October 1998.

[McG95] R. McGrath, “Performance of Several HTTP Demons on an HP
735 Workstation”,
http://www.ncsa.uiuc.edu/InformationServers/Performance/V1.4
/report.html, April, 1995.

[Mic97a] “Internet Server API (ISAPI) Extensions”, MSDN Library,
MS-Visual Studio ’97, Microsoft Corporation, 1997.

[Mic97b] “ODBC 3.0 Programmer’s Reference”, Microsoft Corpora-
tion, 1997.

[Nan97] B. Nance, “Examining the Network Performance of JDBC”,
Network Computing Online, May, 1997.

[Net97] “Writing Web Applications with WAI - Netscape Enterprise
Server/FastTrack Server”, Netscape Communications Co., 1997.

[Nom95] “User's Guide, WebDBC Version 1.0 for Windows NT”, Nomad
Development Co., 1995.

[OMG97] “CORBA: Architecture and Specification”, Object Manage-
ment Group, 1997.

[Ora96] “Programmer’s Guide to the Oracle Pro*C/C++ Precom-
piler”, Oracle Co., February 1996.

[Orf98] R. Orfali and D. Harkey, “Client/Server Programming with
JAVA and CORBA”, Wiley, 1998.

[PJu97] P. Ju, and Pencom Web Works, “Databases on the Web - De-
signing and Programming for Network Access”, M&T Books,
1997.

Hadjiefthymiades and Martakos, "Techniques and Applications of Information Data Acquisition on
the World Wide Web During Heavy Client/Server Traffic Periods"

Page: 28

[SPE96] “An Explanation of the SPECweb96 Benchmark”, Standard
Performance Evaluation Corporation,
http://www.spec.org/osg/web96/webpaper.html, 1996.

[Ste90] W.R. Stevens, “UNIX Network Programming”, Prentice Hall,
1990.

[Tra96] M. Tracy, “Professional Visual C++ ISAPI Programming”,
Wrox Press, 1996.

[Tre95] G. Trent, and M. Sake, “WebSTONE: The First Generation
in HTTP Server Benchmarking”, Silicon Graphics Inc., Febru-
ary 1995.

[XOp94] “Data Management: SQL Call-Level Interface (CLI)”,
X/Open CAE Specification, 1994.

[Yea96] N. Yeager, and R. McGrath, “Web Server Technology - The
Advanced Guide for World Wide Web Information Provides”,
Morgan Kaufmann Publishers, 1996.

