
C H A P T E R

18 Peer-to-peer computing and
overlay graphs

18.1 Introduction

Peer-to-peer (P2P) network systems use an application-level organization of
the network overlay for flexibly sharing resources (e.g., files and multimedia
documents) stored across network-wide computers. In contrast to the client–
server model, any node in a P2P network can act as a server to others
and, at the same time, act as a client. Communication and exchange of
information is performed directly between the participating peers and the
relationships between the nodes in the network are equal. Thus, P2P networks
differ from other Internet applications in that they tend to share data from a
large number of end users rather than from the more central machines and
Web servers. Several well known P2P networks that allow P2P file-sharing
include Napster [25], Gnutella [16,17], Freenet [10], Pastry [30], Chord [32],
and CAN [27].

Traditional distributed systems used DNS (domain name service) to provide
a lookup from host names (logical names) to IP addresses. Special DNS
servers are required, and manual configuration of the routing information is
necessary to allow requesting client nodes to navigate the DNS hierarchy.
Further, DNS is confined to locating hosts or services (not data objects that
have to be a priori associated with specific computers), and host names need
to be structured as per administrative boundary regulations. P2P networks
overcome these drawbacks, and, more importantly, allow the location of
arbitrary data objects.

An important characteristic of P2P networks is their ability to provide a
large combined storage, CPU power, and other resources while imposing a
low cost for scalability, and for entry into and exit from the network. The
ongoing entry and exit of various nodes, as well as dynamic insertion and
deletion of objects is termed as churn. The impact of churn should be as
transparent as possible. P2P networks exhibit a high level of self-organization
and are able to operate efficiently despite the lack of any prior infrastructure
or authority. The philosophy of this model requires that if a node wants to

677

678 Peer-to-peer computing and overlay graphs

Table 18.1 Desirable characteristics and performance features of P2P systems.

Features Performance

Self-organizing Large combined storage, CPU power, and resources
Distributed control Fast search for machines and data objects
Role symmetry for nodes Scalable
Anonymity Efficient management of churn
Naming mechanism Selection of geographically close servers
Security, authentication, trust Redundancy in storage and paths

enjoy the services which other nodes provide, that node should provide service
to other nodes. Some desirable features of P2P systems are summarized in
Table 18.1.

18.1.1 Napster

One of the earliest popular P2P systems, Napster [25], used a server-mediated
central index architecture organized around clusters of servers that store direct
indices of the files in the system. The central server maintains a table with the
following information of each registered client: (i) the client’s address (IP) and
port, and offered bandwidth, and (ii) information about the files that the client
can allow to share. The basic steps of operation to search for content and to
determine a node from which to download the content are the following:

1. A client connects to a meta-server that assigns a lightly loaded server from
one of the close-by clusters of servers to process the client’s query.

2. The client connects to the assigned server and forwards its query along
with its own identity.

3. The server responds to the client with information about the users con-
nected to it and the files they are sharing.

4. On receiving the response from the server, the client chooses one of the
users from whom to download a desired file. The address to enable the
P2P connection between the client and the selected user is provided by
the server to the client.

Users are generally anonymous to each other. The directory serves to provide
the mapping from a particular host that contains the required content, to the
IP address needed to download from it.

18.1.2 Application layer overlays

A core mechanism in P2P networks is searching for data, and this mechanism
depends on how (i) the data, and (ii) the network, are organized. Search algo-
rithms for P2P networks tend to be data-centric, as opposed to the host-centric
algorithms for traditional networks. P2P search uses the P2P overlay, which

679 18.2 Data indexing and overlays

is a logical graph among the peers that is used for the object search and
object storage and management algorithms. Note that above the P2P over-
lay is the application layer overlay, where communication between peers is
point-to-pont (representing a logical all-to-all connectivity) once a connection
is established.

The P2P overlay can be structured (e.g., hypercubes, meshes, butterfly
networks, de Bruijn graphs) or unstructured, i.e., no particular graph structure
is used. Structured overlays use some rigid organizational principles based
on the properties of the P2P overlay graph structure, for the object storage
algorithms and the object search algorithms. Unstructured overlays use very
loose guidelines for object storage. As there is no definite structure to the
overlay graph, the search mechanisms are more “ad-hoc,” and typicaly use
some forms of flooding or random walk strategies. Thus, object storage and
search strategies are intricately linked to the overlay structure as well as to
the data organization mechanisms.

18.2 Data indexing and overlays

The data in a P2P network is identified by using indexing. Data indexing
allows the physical data independence from the applications. Indexing mech-
anisms can be classified as being centralized, local, or distributed:

• Centralized indexing entails the use of one or a few central servers to
store references (indexes) to the data on many peers. The DNS lookup as
well as the lookup by some early P2P networks such as Napster used a
central directory lookup.

• Distributed indexing involves the indexes to the objects at various peers
being scattered across other peers throughout the P2P network. In order
to access the indexes, a structure is used in the P2P overlay to access
the indexes. Distributed indexing is the most challenging of the indexing
schemes, and many novel mechanisms have been proposed, most notably
the distributed hash table (DHT). Various DHT schemes differ in the
hash mapping, search algorithms, diameter for lookup, search diameter,
fault-tolerance, and resilience to churn.

A typical DHT uses a flat key space to associate the mapping between
network nodes and data objects/files/values. Specifically, the node address
is mapped to a logical identifier in the key space using a consistent hash
function. The data object/file/value is also mapped to the same key space
using hashing. These mappings are illustrated in Figure 18.1.

• Local indexing requires each peer to index only the local data objects
and remote objects need to be searched for. This form of indexing is
typically used in unstructured overlays in conjunction with flooding search
or random walk search. Gnutella uses local indexing.

680 Peer-to-peer computing and overlay graphs

Figure 18.1 The mappings
from node address space and
object space in a typical DHT
scheme, e.g., Chord, CAN,
Tapestry.

Object/file
value space

Native node identifier
(address) space

Common key (identifier)
space

An alternate way to classify indexing mechanisms is as being a semantic
index mechanism or a semantic-free index mechanism. A semantic index is
human readable, for example, a document name, a keyword, or a database
key. A semantic-free index is not human readable and typically corresponds
to the index obtained by a hash mechanism, e.g., the DHT schemes. A
semantic index mechanism supports keyword searches, range searches, and
approximate searches, whereas these searches are not supported by semantic-
free index mechanisms.

18.2.1 Distributed indexing

Structured overlays
The P2P network topology has a definite structure, and the placement of
files or data in this network is highly deterministic as per some algorithmic
mapping. (The placement of files can sometimes be “loose,” as in some earlier
P2P systems like Freenet, where “hints” are used.) The objective of such
a deterministic mapping is to allow a very fast and deterministic lookup to
satisfy queries for the data. These systems are termed as lookup systems and
typically use a hash table interface for the mapping. The hash function, which
efficiently maps keys to values, in conjunction with the regular structure of
the overlay, allows fast search for the location of the file.

An implicit characteristic of such a deterministic mapping of a file to a
location is that the mapping can be based on a single characteristic of the file
(such as its name, its length, or more generally some predetermined function
computed on the file). A disadvantage of such a mapping is that arbitrary
queries, such as range queries, attribute queries and exact keyword queries
cannot be handled directly.

Another implicit effect of the tight coupling of the regular overlay structure
and the rigid mapping function to enable fast access is that file insertions and
deletions incur some overhead which may be nontrivial under churn.

681 18.3 Unstructured overlays

Unstructured overlays
The P2P network topology does not have any particular controlled structure,
nor is there any control over where files/data is placed. Each peer typically
indexes only its local data objects, hence, local indexing is used. Node joins
and departures are easy – the local overlay is simply adjusted. File placement
is not governed by the topology. Search for a file may entail high message
overhead and high delays. However, complex queries are supported because
the search criteria can be arbitrary.

Although the P2P network topology does not have any controlled structure,
some topologies naturally emerge. The following topologies are common and
will be studied in later sections:

• Power law random graph (PLRG) This is a random graph where the
node degrees follow the power law. Here, if the nodes are ranked in terms
of their degree, then the ith node has c/i� neighbors, where c is a constant.

• Normal random graph This is a normal random graph where the nodes
typically have a uniform degree.

We study search in unstructured overlay networks in the next section.

18.3 Unstructured overlays

18.3.1 Unstructured overlays: properties

Unstructured overlays have the serious disadvantage that queries may take
a long time to find a file or may be unsuccessful even if the queried object
exists. The message overhead of a query search may also be high.

The following are the main advantages of unstructured overlays such as
the one used by Gnutella:

• Exact keyword queries, range queries, attribute-based queries, and other
complex queries can be supported because the search query can capture
the semantics of the data being sought; and the indexing of the files and
data is not bound to any non-semantic structure.

• Unstructured overlays can accommodate high churn, i.e., the rapid joining
and departure of many nodes without affecting performance.

The following are advantages of unstructured overlays if certain conditions
are satisfied:

• Unstructured overlays are efficient when there is some degree of data
replication in the network.

• Users are satisfied with a best-effort search.
• The network is not so large as to lead to scalability problems during the

search process.

682 Peer-to-peer computing and overlay graphs

18.3.2 Gnutella

Gnutella uses a fully decentralized architecture [16, 17]. In Gnutella logical
overlays, nodes index only their local content. The acutal overlay topology
can be arbitrary as nodes join and leave randomly. A node joins the Gnutella
network by forming a connection to some nodes found in standard Gnutella
directory-like databases. (Note that the function of joining the network cannot
be said to be fully decentralized.) Users communicate with each other, per-
forming the role of both server and client, termed as servent. The following
are the main message types used by Gnutella:

• Ping messages are used to discover hosts, and allow a new host to announce
itself.

• Pong messages are the responses to Pings. The Pong messages indicate
the port and (IP) address of the responder, and some information about the
amount of data (the number and size of files) that node can make available.

• Query messages. The search strategy used is flooding. Query messages
contain a search string and the minimum download speed required of the
potential responder, and are flooded in the network.

• QueryHit messages are sent as responses if a node receiving a Query
detects a local match in response to a query. A QueryHit contains the port
and address (IP), speed, the number of files found, and related information.
The path traced by a Query is recorded in the message, so the QueryHit
follows the same path in reverse.

18.3.3 Search in Gnutella and unstructured overlays

Consider a system with n nodes and m objects. Let qi be the popularity of
object i, as measured by the fraction of all queries that are queries for object
i. All objects may be equally popular, or more realistically, a Zipf-like power
law distribution of popularity exists. Thus [23],

m∑
i=1

qi = 1� (18.1)

uniform: qi = 1/m� Zipf-like: qi ∝ i−�� (18.2)

Let ri be the number of replicas of object i, and let pi be the fraction of all
objects that are replicas of i. Three static replication strategies are: uniform,
proportional, and square root. Thus,

m∑
i=1

ri = R� pi = ri/R� (18.3)

uniform: ri = R/m� proportional: ri ∝ qi� square-root: ri ∝√qi� (18.4)

683 18.3 Unstructured overlays

Under uniform replication, all objects have an equal number of replicas and
hence the performance for all query rates is the same. With a uniform query
rate, proportional and square-root replication schemes reduce to the uniform
replication scheme.

For an object search, some of the more popular metrics of efficiency are:

• the probability of success of finding the queried object;
• delay or the number of hops in finding an object;
• the number of messages processed by each node in a search;
• node coverage, the fraction of (distinct) nodes visited;
• message duplication, which is (#messages − #nodes visited)/#messages;
• maximum number of messages at a node;
• recall, the number of objects found satisfying the desired search criteria.

This metric is useful for keyword, inexact, and range queries;
• message efficiency, which is the recall per message used.

Guided versus unguided search
In unguided or blind search, there is no history of earlier searches, and
hence, each search is inherently independent. In guided search, nodes store
some history of past searches to aid future searches. Various mechanisms
for caching hints to guide and narrow down future searches are used. In
this chapter, we focus on unguided searches in the context of unstructured
overlays.

Search strategies
Flooding [23]
• In order to curtail the high message overhead that flooding introduces,

the initial strategy was to use checking. Here, a node checks back with
the query originator before forwarding a query. Unfortunately, this cause
heavy load on the originator, in addition to excessive delays, and hence is
not practical.

• The next approach is to use the time to live (TTL) field or the hop count.
However, this does not guarantee that a match can be found for the query
even if the object exists in the network, and requires a high value of TTL
to have a high degree of success.

• A refinement that allows more control is the expanding ring strategy.
A node first floods with a small TTL. If the search is not successful, it
starts another flood with a larger TTL, and so on. This strategy is more
successful when objects are replicated.
The expanding ring approach is significantly more successful than the TTL
approach, for all replication strategies, and all query distributions, and the
cost is only a relatively small increase in delay.

Although the expanding ring is superior to TTL, both are flooding-based
strategies and suffer from message duplication.

684 Peer-to-peer computing and overlay graphs

Random walk
Another strategy to use is that of random walking. Here, a query is randomly
forwarded by a node when it is received. Random walk greatly reduces
the message overhead but it increases the search latency. Hence, k random
walkers can be used. To terminate the k random walkers, a “checking-cum-
TTL” strategy is effective. Here, each walker periodically (after a certain
number of hops) checks with the query originator whether to terminate; the
TTL is used to prevent looping, and is usually set to a large value.

Performance
The performance of searches in unstructured overlays has been studied via
simulations and by experiments. The following are some of the relationships
of interest, for both flooding and for k-random walk (for various values of k)
for various graph topologies such as the random graph and the PLRG:

• The success rate as a function of the number of message hops, or TTL.
• The number of messages as a function of the number of message hops, or

TTL.
• The above metrics as the replication ratio and the replication strategy

changes.
• The node coverage, recall, and message efficiency, as a function of the

number of hops, or TTL; and as a function of various replication ratios
and replication strategies.

Guidelines
• Adaptively determining the termination condition is important. Checking

is adaptive whereas TTL is not.
• Message duplication must be minimized, as it represents wasted resources.
• At each step in the search, the number of messages (or number of nodes

visited) should not increase by a large amount.

Overall, k-random walk performs much better than flooding and is more
scalable, for various replication and query distributions, and various graph
topologies.

18.3.4 Replication strategies

Cohen and Shenker [12] studied the degree of replication for blind or unguided
search in random overlay graphs. The various parameters used to study repli-
cation are defined in Table 18.2. Random search is modeled by the following
process. A node is repeatedly drawn at random from a bin, examined for a
match with the copy of the object, and replaced in the bin, until the object
is found. The metric then is the number of nodes drawn (or equivalently, the

685 18.3 Unstructured overlays

Table 18.2 Parameters to study replication.

n number of nodes in the system
m number of objects in the system
qi normalized query rate, where

∑m
i=1 qi = 1

ri number of replicas of object i
� capacity (measured as number of objects) per node
R n� =

∑m
i=1 ri, the total capacity in the system

pi ri/R, the population fraction of object i replicas

number of hops of a random walker) until success. The probability that the
object is found on the kth drawing is:

Pri�k�=
ri
n
�1− ri

n
�k−1�

The average search size for i, denoted as Ai, is:

Ai = Eover all k�Pri�k��=
n∑
k=1

[
k
ri
n

(
1− ri

n

)k−1
]
∼ n

ri
� for large n� (18.5)

Across the system, the average search size A is:

average search size A=
m∑
i=1

qiAi = n
∑
i

qi
ri
� (18.6)

Setting ri to n maximizes A, but requires full replication. As resources are
constrained, assume that average number of replicas per node is �=R/n<m.
(It is easy to see that R≥m≥ �.) Substituting for n with R/� in the equation
above, we have:

average search size A= R

�

∑
i

qi
ri
= 1
�

∑
i

qi
pi
� (18.7)

The utilization rate ui of a replica of object i is the average rate of requests
serviced by a replica of i. With random search, ui = qi/pi = R�qi/ri�. Over
all replicas of object i, the utilization is simply =Rqi. The average utilization
rate over (all copies of) all objects is u=∑m

i=1 ri�ui/R� =
∑m

i=1 pi�qi/pi� = 1.
This average is a constant, and independent of the replication scheme. It is
desirable to have a low maximum utilization rate in order to distribute the
load more uniformly.

The replication problem is formulated as the optimization solution for
Eq. (18.7). We assume that all objects are of uniform size. To simplify
analysis, we also assume that each object that is queried exists in the system
and a search continues until the object is found, i.e., all searches are eventually
successful. (In practice, there is a parameter L – such as TTL – that controls

686 Peer-to-peer computing and overlay graphs

the maximum search size. Search on insoluble queries continues until this
parameter is exceeded. The cost of such queries is fsA+ �1−fs�L, where fs
is the fraction of queries that are soluble.)

Two natural replication strategies are uniform and proportional:

• Uniform ri = R/m, which implies pi = ri/R= 1/m.
The average search size for object i is Ai = n/ri. This equals R/��ri�=

R/��R/mi�=m/� and is the same for all objects.
From Eq. (18.7), the average search size Auniform = �1/��

∑
i�qi/pi� =

1
�

∑
i mqi = �m/��.

The utilization of a replica of i is ui = qi/pi, which is proportional to
the query rate as pi is the same for all objects.

The maximum utilization of a replica of i is maxiui = maxi�qi/pi� =
R�qi/ri�, which can vary significantly.

• Proportional ri = Rqi, which implies pi = qi.
The average search size for object i is Ai = n/ri = n/Rpi = n/�Rqi�=

1/��qi�, which is inversely proportional to the query rate.
From Eq. (18.7), the average search size Aproportional= �1/��

∑
i�qi/pi�=

�1/��
∑m

i=1 1=m/�.
The utilization of a replica of i is ui = qi/pi = 1, a constant for all

replicas of all objects.
The maximum utilization of a replica of i is maxiui = maxi�qi/pi� =

maxi�qi/qi� = 1 for all i.

Both uniform and proportional replication have the same average search size,
which is independent of the query distribution. However, objects whose query
rates are below the average have lower overhead with uniform replication,
while those with query rates larger than the average have lower overhead
with proportional replication.

• Square root The optimal replication strategy that minimizes the average
search size is the square-root replication, which is defined as having pi =
ri/R∝√qi/

∑
j
√
qj , assuming that 1/R≤√qi/

∑
j
√
qj ≤ n/R for all i.

The optimality of square-root replication can be seen as follows. Sub-
stituting 1−∑m−1

i=1 pi for pm in the cost function of Eq. (18.7), we have:

search size Asq−rt =
1
�

∑
i

qi/pi =
1
�

[
m−1∑
i=1

qi/pi+qm
/(

1−
m−1∑
i=1

pi

)]
�

By solving ds/dpi = 0, the value of pi that minimizes Asq−rt is seen to be
pm
√
qi/qm.

Analogous to uniform and proportional replications, the values of A, Ai,
and ui for square-root replication can be dervied. Exercise 18.1 asks you to
show the derivations. The results are summarized in Table 18.3. It can be
seen that to minimize A, ri = R√qi/

∑
j
√
qj .

687 18.3 Unstructured overlays

Table 18.3 Comparison of uniform, proportional, and square-root replication [23].

ri A Ai = n/ri ui = Rqi/ri
Uniform constant, R/m m/� m/� qim
Proportional qiR m/� 1/��qi� 1

Square-root R
√
qi/
∑

j
√
qj �

∑
i

√
qi�

2/�
∑
j
√
qj/
√
qi

�

√
qi
∑

j
√
qj

The square-root replication rate (∝√qi) is more than that of uniform (∝ 1),
but less than that of proportional (∝ qi). It has been shown that:

• any allocation rate “in between” that of uniform and of proportional has a
lower average search size A than that of uniform and proportional;

• any allocation rate either less than that of uniform, or greater than that of
proportional has a higher average search size A than that of uniform and
proportional.

18.3.5 Implementing replication strategies

Proportional and uniform can be trivally implemented. For proportional, each
query creates a copy; for uniform, a fixed number of copies are made when
an object is created [12].

The simple “path replication” scheme, wherein the number of copies made
is proportional to the length of the (successful) search path, implements
square-root replication. Here object i is replicated c�n/ri� times per query,
where c is some constant. Then ri can be captured by the following equation:
dri/dt = qic�n/ri�. Let a= ln�ri/rj�, then:

da

dt
= cn

(
qj

r2
j

− qi
r2
i

)
= 1
rj

drj

dt
− 1
ri

dri
dt
�

Square-root replication, wherein ri = �R/
∑√

qi�
√
qi, is a fixed-point solu-

tion of this equation. Therefore, path replication implements square-root
replication.

The analysis implicitly assumes that replicas also get deleted, in a way
that is independent of their object identity or query rate, and the lifetime of a
replica is a non-decreasing function of its age. (Policies such as random and
FIFO satisfy this condition, but LRU and LFU do not.) Then, during steady
state, the creation rate can equal the deletion rate.

An alternate way of analyzing replication schemes is as follows. Let C be
the number of replicas created on a successful query; C is its average. Then,
in steady state,

pi
pj
= qiCi

qjCj
� (18.8)

688 Peer-to-peer computing and overlay graphs

To implement distributed algorithms for various replication policies, it is
necessary to determine Ci locally without knowing pi or qi:

• For proportional replication, C is the same for all objects.
• For square-root replication, if Ci ∝ 1/

√
qi then pi/pj =

√
qi/qj , by substi-

tuting in Eq. (18.8).
As Ai ∝ nR/pi and pi ∝ qiCi, therefore Ai ∝ 1/�qiCi�.
With path replication, Ci ∝ Ai, hence Ci ∝ Ai ∝ 1/�qiCi�.
In steady state, Ai and Ci are equal. Solving Ci ∝ 1/�qiCi� for the fixed

point, Ci ∝ 1/
√
qi. As pi ∝ qiCi when Ci is steady, this gives pi ∝√qi. In

a practical implementation, it needs to be ensured that convergence occurs
once steady state sets in.

18.4 Chord distributed hash table

18.4.1 Overview

The Chord protocol, proposed by Stoica et al. [32], uses a flat key space to
associate the mapping between network nodes and data objects/files/values.
The node address as well as the data object/file/value is mapped to a logical
identifier in the common key space using a consistent hash function. These
mappings are illustrated in Figure 18.1. Both these mappings should ensure
that the keys are distributed roughly equally among the nodes. This also
insures that with high probability, the overhead of key management when
nodes join or leave the P2P network is low. Specifically, when a node joins
or leaves the network having n nodes, only O�1/n� keys need to be moved
from one location to another.

The Chord key space is flat, thus giving applications flexibility in map-
ping their files/data to keys. Chord supports a single operation, lookup�x�,
which maps a given key x to a network node. Specifically, Chord stores a
file/object/value at the node to which the file/object/value’s key maps. Two
steps are involved:

1. Map the object/file/value to its key in the common address space.
2. Map the key to the node in its native address space using lookup. The

design of lookup is the main challenge.

In Chord, a node’s IP address is hashed to an m-bit identifier that serves
as the node identifier in the common key (identifier) space. Similarly, the
file/data key is hashed to an m-bit identifier that serves as the key identifier.
m is sufficiently large so that the probability of collisions during the hash is
negligible. The Chord overlay uses a logical ring of size 2m. The identifier
space is ordered on the logical ring modulo 2m. Henceforth in this section,
we will assume modulo 2m arithmetic. A key k gets assigned to the first node
such that its node identifier equals or follows the key identifier of k in the

689 18.4 Chord distributed hash table

Figure 18.2 An example
Chord ring with m = 7,
showing mappings to the
Chord address space, and a
query lookup using a simple
scheme [32].

K87

N5

N18

N23

N28 K28

K8 K15

K121

N99

N104

N115
N119

N73

K53

N63

lookup (K8)

common identifier space. The node is the successor of k, denoted succ�k�.
A Chord ring for m = 7 is depicted in Figure 18.2. Nodes N5, N18, N23,
N28, N63, N73, N99, N104, N115, and N119 are shown. Six keys, K8,
K15, K28, K53, K87, and K121, are stored among these nodes as follows:
succ�8�= 18, succ�15�= 18, succ�28�= 28, succ�53�= 63, succ�87�= 99,
and succ�121�= 5.

18.4.2 Simple lookup

A simple key lookup algorithm that requires each node to store only 1 entry in
its routing table works as follows. Each node tracks its successor on the ring,
in the variable successor; a query for key x is forwarded to the successors
of nodes until it reaches the first node such that that node’s identifier y is
greater than the key x, modulo 2m. The result, which includes the IP address
of the node with key y, is returned to the querying node along the reverse of
the path that was followed by the query. This mechanism requires O�1� local
space but O�n� hops, where n is the number of nodes in the P2P network. The
pseudo-code for this simple lookup is given in Algorithm 18.1. The following
convention is assumed. Notation �x� y� represents the left-open right-closed
segment of the Chord logical ring modulo m. Notation x�Proc�·� is a RPC
to execute Proc on node x while x�var is a RPC to read the variable var at
process x.

Example The steps for the query: lookup(K8) initiated at node 28, are
shown in Figure 18.2 using arrows.

690 Peer-to-peer computing and overlay graphs

(variables)
integer: successor←− initial value;

(1) i�Locate_Successor�key�, where key �= i:
(1a) if key ∈ �i� successor� then
(1b) return(successor)
(1c) else return (successor�Locate_Successor�key�).

Algorithm 18.1 A simple object location algorithm in Chord at node i [32].

18.4.3 Scalable lookup

A scalable lookup algorithm that usesO�log n�message hops at the cost ofO�m�
space in the local routing tables, uses the following idea. Each node imaintains a
routing table, called the finger table, with at mostO�log n� distinct entries, such
that the xth entry (1 ≤ x ≤ m) is the node identifier of the node succ�i+2x−1�.
This is denoted by i�finger�x�= succ�i+2x−1�. This is the first node whose key
is greater than the key of node i by at least 2x−1mod 2m. Note that each finger
table entry would have to contain the IP address and port number in addition to
the node identifier, in order that i can communicate with i�finger�x�; henceforth
we will assume this implicitly without showing these entries.

The size of the finger table is bounded by m entries. Due to the logarithmic
structure, the finger table has more information about nodes closer ahead
of it in the Chord overlay, than about nodes further away. Given any key
whose node is to be located, the highly scalable logarithmic search shown in
Algorithm 18.2 is used. For a query on key key at node i, if key lies between

(variables)
integer: successor←− initial value;
integer: predecessor←− initial value;
integer finger�1

m�;

(1) i�Locate_Successor�key�, where key �= i:
(1a) if key ∈ �i� successor� then
(1b) return(successor)
(1c) else
(1d) j←− Closest_Preceding_Node�key�;
(1e) return (j�Locate_Successor�key�).

(2) i�Closest_Preceding_Node�key�, where key �= i:
(2a) for count =m down to 1 do
(2b) if finger�count� ∈ �i� key� then
(2c) break();
(2d) return(finger�count�).

Algorithm 18.2 A scalable object location algorithm in Chord at node i [32].

691 18.4 Chord distributed hash table

5 + 1

N99
N63
N63
N63
N63

5 + 2

Finger table for N5:

Finger table for N28:
Finger table for N99:

N73
N63
N23
N18
N18
N18
N18

5 + 64
5 + 32
5 + 16
5 + 8
5 + 4

N63

N18

N5

N23

28 + 64
28 + 32
28 + 16
28 + 8
28 + 4
28 + 2

N6328 + 1

lookup (K8)

N104
N104
N104
N115
N115
N5

99+1
99+2
99+4
99+8
99+16
99+32

N6399+64 N63
N73

N119

N115

N104

N99

K8

N28

Figure 18.3 An example
showing a query lookup using
the logarithmically-structured
finger tables [32].

i and its successor, the key would reside at the successor and the successor’s
address is returned. If key lies beyond the successor, then node i searches
through the m entries in its finger table to identify the node j such that j most
immediately precedes key, among all the entries in the finger table. As j is
the closest known node that precedes key, j is most likely to have the most
information on locating key, i.e., locating the immediate successor node to
which key has been mapped.

Example The use of the finger tables in answering the query lookup(K8)
at node N28 is illustrated in Figure 18.3. The finger tables of N28, N99, and
N5 that are used are shown.

18.4.4 Managing Churn

The code to manage dynamic node joins, departures, and failures is given in
Algorithm 18.3.

Node joins
To create a new ring, a node i executes Create_New_Ring which creates a
ring with the singleton node. To join a ring that contains some node j, node
i invokes Join_Ring�j�. Node j locates i’s successor on the logical ring and
informs i of its successor. Before i can participate in the P2P exchanges,
several actions need to happen: i’s successor needs to update its predecessor

692 Peer-to-peer computing and overlay graphs

(variables)
integer: successor←− initial value;
integer: predecessor←− initial value;
integer finger�1

 m�;
integer: next_finger←− 1;

(1) i�Create_New_Ring��:
(1a) predecessor←−⊥;
(1b) successor←− i.
(2) i�Join_Ring�j�, where j is any node on the ring to be joined:
(2a) predecessor←−⊥;
(2b) successor←− j�Locate_Successor�i�.
(3) i�Stabilize��: // executed periodically to verify and inform successor
(3a) x←− successor�predecessor;
(3b) if x ∈ �i� successor� then
(3c) successor←− x;
(3d) successor�Notify�i�.

(4) i�Notify�j�: // j believes it is predecessor of i
(4a) if predecessor =⊥ or j ∈ �predecessor� i�� then
(4b) transfer keys in the range �j� i� to j;
(4c) predecessor←− j.
(5) i�Fix_Fingers��: // executed periodically to update the finger table
(5a) next_finger←− next_finger+1;
(5b) if next_finger > m then
(5c) next_finger←− 1;
(5d) finger�next_finger�←− Locate_Successor�i+2next_finger−1�.

(6) i�Check_Predecessor��: // executed periodically to verify whether
// predecessor still exists

(6a) if predecessor has failed then
(6b) predecessor←−⊥.

Algorithm 18.3 Managing churn in Chord. Code shown is for node i [32].

entry to i, i’s predecessor needs to revise its successor field to i, i needs to iden-
tify its predecessor, the finger table at i needs to be built, and the finger tables
of all nodes need to be updated to account for i’s presence. This is achieved
by procedures Stabilize��, Fix_Fingers��, and Check_Predecessor�� that are
periodically invoked by each node.

Figure 18.4 illustrates the main steps of the joining process. A recent joiner
node i that has executed Join_Ring�·� gets integrated into the ring by the
following sequence:

693 18.4 Chord distributed hash table

successor = j

predecessor = i predecessor = i

predecessor = i

j

i

j

ii

j

j

i

successor = isuccessor = i

k

successor = j

predecessor

successor

Step 3: After k executes Stabilize(), which
 triggers step 4

Step 1: After i executes Join_Ring(.)

Step 4: After i executes Notify (k)

Step 2: After i executes Stabilize() and
 j executes Notify (i)

predecessor = ksuccessor = j successor = j

successor = jsuccessor = j

k

k

predecessor = k

k

predecessor = T

predecessor = T

predecessor = T

Figure 18.4 Steps in the
integration of node i in the
ring, where j > i > k [32].

1. The configuration after a recent joiner node i has executed Join_Ring�·�.
2. Node i executes Stabilize��, which allows its successor j to adjust j’s

variable predecessor to i. Specifically, when node i invokes Stabilize��,
it identifies the successor’s predecessor k. If k ∈ �i� successor�, then i

updates its successor to k. In either case, i notifies its successor of
itself via successor�Notify�i�, so the successor has a chance to adjust its
predecessor variable to i.

3. The earlier predecessor k of j (i.e., the predecessor in Step 1) executes
Stabilize�� and adjusts its successor pointer from j to i.

4. Node i executes Fix_Fingers�� to build its finger table, and other nodes
also execute the procedure to update their finger tables if necessary.

Once all the successor variables and finger tables have stabilized, a call by
any node to Locate_Successor�·� will reflect the new joiner i. Until then,
a call to Locate_Successor�·� may result in the Locate_Successor�·� call
performing a conservative scan. The loop in Closest_Preceding_Node that
scans the finger table will result in a search traversal using smaller hops rather
than truly logarithmic hops, resulting in some inefficiency. Still, the node i
will be located although via more hops.

Showing the correctness of the Chord protocol in the face of concurrent
join operations and stablize operations in which pointers are being rewired is
non-trivial. It can be shown that for any set of concurrent join operations, at
some point after the last join operation completes, all the pointers and finger
tables will be correct. However, in the transient period before the Chord ring
stabilizes, an object search can result in three outcomes:

• The finger tables used in a search are up to date and the correct successor
of the key is sought in O�log n� hops.

694 Peer-to-peer computing and overlay graphs

• The finger tables are not up to date but the successor pointers are correct.
The sought key will be located but may take more steps as the full advan-
tage of a logarithmic search space pruning cannot be used.

• If the successor pointers are incorrect, or the key transfer to the new joiners
in procedure Notify has not completed, the search may fail. This is during
a transient duration, and the source has the choice of reissuing the query.

Node failures and departures
When a node j fails abruptly, its successor i on the ring will discover the
failure when the successor i executes Check_Predecessor�� periodically.
Process i gets a chance to update its predecessor field when another node
k causes i to execute Notify�k�. But that can happen only if k’s successor
variable is i. This requires the predecessor of the failed node to recognize
that its successor has failed, and get a new functioning successor. In fact, the
successor pointers are required for object search; the predecessor variables
are required only to accommodate new joiners. Note from Algorithm 18.2
that knowing that the successor is functional, and that the nodes pointed to
by the finger pointers are functional, is essential.

Example In Figure 18.3, assume that node N63 fails. The closest successor
that node N28 can find via the finger table is N99. N73 cannot be detected,
and keys K64 through K73 will effectively be lost.

A solution such as introducing a Check_Successor�� procedure analogous
to Check_Predecessor procedure will not solve the problem because it does
not help to identify the functional successor. The Chord protocol proposes
that, rather than maintain a single successor, each node maintains a list of �
successors, which are the node’s first � successors. If the first successor does
not respond, the node can try the next successor from the list, and so on. Only
the simultaneous failure of all the � successors can then cause the protocol
to fail. Maintaining a list of successors requires some changes to the code
in Algorithm 18.3. Exercise 18.2 asks you to adapt this code to the changes
required for maintaining successor lists.

The provision for a successor list at each node provides a natural mechanism
for the application to manage replicated objects. The replicas get placed at the
node corresponding to the object key, as well as at the nodes in the successor
list of that node. As Chord is able to update its successor list as the successor
list changes, Chord can also interface with the application to let it track the
locations of the replicas.

A voluntary departure from the ring can be treated as a failure. However,
a failed node causes all the data (keys) stored at that node to be lost until
corrective action is taken. When a node departs voluntarily, it should first
transfer all the keys it is responsible for to its successor. The departing
node should also inform its successor and predecessor. This will enable the
successor to update its predecessor to the predecessor of the departing node.

695 18.5 Content addressible networks (CAN)

The predecessor will also be able to update its successor list by deleting the
departing node and adding the last successor of the departing node’s successor
list to its own successor list.

18.4.5 Complexity

The following results on the complexity have a non-trivial correctness proof
and interested readers should consult the Chord papers for the proofs.

1. For a Chord network with n nodes, each node is responsible for at most
�1+ !�K/n keys, with “high probability,” where K is the total number of
keys.

Using consistent hashing, ! can be shown to be bounded by O�log n�.
The “high probability” clause is required because the validity of the result
depends on the randomness and conflict-free mappings of the hash function
used.

2. The search for a successor in Locate_Successor in a Chord network with
n nodes requires time complexity O�log n� with high probability.

This result is based on the observation that assuming completely random
distributions of the key mappings and node mappings, after 2 log n hops,
the distance between the key being searched for and the present node that
the query has reached is at most 1/n.

3. The size of the finger table is log�n�≤m.
4. The average lookup time is 1/2 log�n�.

Exercises 18.2 and 18.3, based on the Chord papers, ask you to prove further
results about the complexity under churn conditions.

18.5 Content addressible networks (CAN)

18.5.1 Overview

A content-addressible network (CAN) is essentially an indexing mechanism
that maps objects to their locations in the network. The CAN project originated
from the observation that the bottleneck to designing a scalable P2P network
is this indexing mechanism. An efficient and scalable CAN is useful not
only for object location in P2P networks, but also for large-scale storage
management systems and wide-area name resolution services that decouple
name resolution and the naming scheme. All these applications inherently
require efficient and scalable addition of and location of objects using arbitrary
location-independent names or keys for the objects.

A CAN supports three basic operations: insertion, search, and deletion
of (key, value) tuples. (A “value” is an object in the context of a CAN.)
A good CAN design is distributed, fault-tolerant, scalable, independent of the

696 Peer-to-peer computing and overlay graphs

naming structure, implementable at the application layer, and autonomic, i.e.,
self-organizing and self-healing. Although CAN is a generic phrase, it also
specifically denotes the particular design of a CAN proposed by Ratnasamy
et al. [27]. We now study this particular CAN design.

CAN is a logical d-dimensional Cartesian coordinate space organized as
a d-torus logical topology, i.e., a virtual overlay d-dimensional mesh with
wrap-around. A two-dimensional torus was shown in Figure 1.5(a) in Chapter
1. The entire space is partitioned dynamically among all the nodes present,
so that each node i is assigned a disjoint region r�i� of the space. As nodes
arrive, depart, or fail, the set of participating nodes, as well as the assignment
of regions to nodes, change.

For any object v, its key k�v� is mapped using a deterministic hash function
to a point -p in the Cartesian coordinate space. The �k� v� pair is stored at the
node that is presently assigned the region that contains the point -p. In other
words, the �k� v� pair is stored at node i if presently the point -p corresponding
to �k� v� lies in region r�i�. Analogously, to retrieve object v, the same hash
function is used to map its key k to the same point -p. The node that is
presently assigned the region that contains -p is accessed (using a CAN routing
algorithm) to retrieve v. The three core components of a CAN design are the
following:

1. Setting up the CAN virtual coordinate space, and partitioning it among the
nodes as they join the CAN.

2. Routing in the virtual coordinate space to locate the node that is assigned
the region containing -p.

3. Maintaining the CAN due to node departures and failures.

18.5.2 CAN initialization

1. Each CAN is assumed to have a unique DNS name that maps to the IP
address of one or a few bootstrap nodes of that CAN. A bootstrap node
is responsible for tracking a partial list of the nodes that it believes are
currently participating in the CAN. These are reasonable assumptions, and
perhaps the most “non-distributed” portions of the CAN design.

2. To join a CAN, the joiner node queries a bootstrap node via a DNS lookup,
and the bootstrap node replies with the IP addresses of some randomly
chosen nodes that it believes are participating in the CAN.

3. The joiner chooses a random point -p in the coordinate space. The joiner
sends a request to one of the nodes in the CAN, of which it learnt in step 2,
asking to be assigned a region containing -p. The recipient of the request
routes the request to the owner old_owner�-p� of the region containing -p,
using the CAN routing algorithm.

4. The old_owner�-p� node splits its region in half and assigns one half to
the joiner. The region splitting is done using an a priori ordering of all

697 18.5 Content addressible networks (CAN)

the dimensions, so as to decide which dimension to split along. This also
helps to methodically merge regions, if necessary. The �k� v� tuples for
which the key k now maps to the zone to be transferred to the joiner, are
also transferred to the joiner.

5. The joiner learns the IP addresses of its neighbors from old_owner�-p�.
The neighbors are old_owner�-p� and a subset of the neighbors of
old_owner�-p�. old_owner�-p� also updates its set of neighbors. The new
joiner as well as old_owner�-p� inform their neighbors of the changes
to the space allocation, so that they have correct information about their
neighborhood and can route correctly. In fact, each node has to send an
immediate update of its assigned region, followed by periodic HEART-
BEAT refresh messages, to all its neighbors.

When a node joins a CAN, only the neighboring nodes in the coordinate
space are required to participate in the joining process. The overhead is thus
of the order of the number of neighbors, which is O�d� and independent of
n, the number of nodes in the CAN.

18.5.3 CAN routing

CAN routing uses the straight-line path from the source to the destination
in the logical Euclidean space. This routing is realized as follows. Each
node maintains a routing table that tracks its neighbor nodes in the log-
ical coordinate space. In d-dimensional space, nodes x and y are neigh-
bors if the coordinate ranges of their regions overlap in d− 1 dimensions,
and abut in one dimension. All the regions are convex and can be char-
acterized as follows. Let region�x� = ��x1

min� x
1
max��

 � �x

d
min� x

d
max��. Let

region�y� = ��y1
min� y

1
max��

 � �y

d
min� y

d
max��. Nodes x and y are neighbors if

there is some dimension j such that xjmax = yjmin and for all other dimensions
i, �ximin� x

i
max� and �yimin� y

i
max� overlap. An example of neighbouring nodes in

two-dimensional space is shown in Figure 18.5.

Figure 18.5 Two-dimensional
CAN space. Seven regions are
shown. The dashed arrows
show the routing from node 2
to the coordinate p shown by
the shaded circle [27].

[[75,100],
[25,50]]

6

[[75,100],
[0,25]]

7

[[50,75],
[0,50]]

[[0,50],[0,50]]

[[0,25],
[50,100]]

[[25,50],
[50,100]]

3 4

1 2

5

(100,100)(0,100)

(0,0) (100,0)

[[50,100],[50,100]]

698 Peer-to-peer computing and overlay graphs

The routing table at each node tracks the IP address and the virtual coor-
dinate region of each neighbor. To locate value v, its key k�v� is mapped to
a point -p whose coordinates are used in the message header. Knowing the
neighbors’ region coordinates, each node follows simple greedy routing by
forwarding the message to that neighbor having coordinates that are closest
to the destination’s coordinates. To implement greedy routing to a destina-
tion node x, the present node routes a message to that neighbor among the
neighbors k ∈ Neighbors, given by

argmink∈Neighbors�min �-x−-k���

Here, -x and -k are the coordinates of nodes x and k.
Assuming equal-sized zones in d-dimensional space, the average number

of neighbors for a node is O�d�. The average path length is �d/4� · n1/d.
The implication on scaling is that each node has about the same number of
neighbors and needs to maintain about the same amount of state information,
irrespective of the total number of nodes participating in the CAN. In this
respect, the CAN structure is superior to that of Chord. Also note that unlike
in Chord, there are typically many paths for any given source-destination pair.
This greatly helps for fault-tolerance. Average path length in CAN scales as
O�n1/d� as opposed to log n for Chord.

18.5.4 CAN maintainence

When a node voluntarily departs from CAN, it hands over its region and
the associated database of �key� value� tuples to one of its neighbors. The
neighbor is chosen as follows. If the node’s region can be merged with that
of one of its neighbors to form a valid convex region, then such a neighbor
is chosen. Otherwise the node’s region is handed over to the neighbor whose
region has the smallest volume or load – the regions are not merged and
the neighbor handles both zones temporarily until a periodic background
region reassignment process runs to integrate the regions and prevent further
fragmentation.

CAN requires each node to periodically send a HEARTBEAT update mes-
sage to each neighbor, giving its assigned region coordinates, the list of its
neighbors, and their assigned region coordinates. When a node dies, the neigh-
bors suspect its death and initiate a TAKEOVER protocol to decide who will
take over the crashed node’s region. Despite this TAKEOVER protocol, the
�key� value� tuples in the crashed node’s database remain lost until the pri-
mary sources of those tuples refresh the tuples. Requiring the primary sources
to periodically issue such refreshes also serves the dual purpose of updating
stale (dirty) objects in the CAN.

The TAKEOVER protocol is as follows. When a node suspects that a
neighbor has died, it starts a timer in proportion to its region’s volume.

699 18.5 Content addressible networks (CAN)

On timeout, it sends a TAKEOVER message, with its region volume pig-
gybacked on the message, to all the neighbors of the suspected failed node.
When a TAKEOVER message is received, a node cancels its bid to take
over the failed node’s region if the received TAKEOVER message contains a
smaller region volume than that of the recipient’s region. This protocol thus
helps in load balancing by choosing the neighbor whose region volume is
the smallest, to take over the failed node’s region. As all nodes initiate the
TAKEOVER protocol, the node taking over also discovers its neighbors and
vica versa. In the case of multiple concurrent node failures in one vicinity of
the Cartesian space (this is rare), a more complex protocol using a expanding
ring search for the TAKEOVER messages can be used.

A graceful departure as well as a failure can result in a neighbor holding
more than one region if its region cannot be merged with that of the departed
or failed node. To prevent the resulting fragmentation and restore the 1→ 1
node to region assignment, there is a background reassignment algorithm that
is run periodically. Conceptually, consider a binary tree whose root represents
the entire space. An internal node represents a region that existed earlier but
is now split into regions represented by its children nodes. A leaf represents
a currently existing region, and (overloading the semantics and the notation),
also the node that represents that region.

When a leaf node x fails or departs, there are two cases:

1. If its sibling node y is also a leaf, then the regions of x and y are merged
and assigned to y. The region corresponding to the parent of x and y

becomes a leaf and it is assigned to node y.
2. If the sibling node y is not a leaf, run a depth-first search in the subtree

rooted at y until a pair of sibling leaves (say, z1 and z2) is found. Merge
the regions of z1 and z2, making their parent z a leaf node, assign the
merged region to node z2, and the region of x is assigned to node z1.

Figure 18.6 illustrates this reassignment. If node 2 fails, its region is assigned
to node 3. If node 7 fails, regions 5 and 6 get merged and assigned to node
5 whereas node 6 is assigned the region of the failed node 7.

A distributed version of the above depth-first centralized tree traversal can
be performed by the neighbors of a departed node. The distributed traversal
leverages the fact that when a region is split, it is done in accordance to a

Figure 18.6 Example showing
region reassignment in a
CAN [27]. 1

2

5

3

4

6

7

1

2 3 4

6

7

5

(entire coordinate space) root

700 Peer-to-peer computing and overlay graphs

particular ordering on the dimensions. Node i performs its part of the depth-
first traversal (initiated by the node to which the region of the departed node
x is assigned in the TAKEOVER protocol) as follows:

1. Identify the highest ordered dimension dima that has the shortest coordinate
range �idima

min � i
dima
max �. Node i’s region was last halved along dimension dima.

2. Identify neighbor j such that j is assigned the region that was split off
from i’s region in the last partition along dimension dima. Node j’s region
abuts i’s region along dimension dima.

3. If j’s region volume equals i’s region volume, the two nodes are siblings
and the regions can be combined. This is the terminating case of the depth-
first tree search for siblings. Node j is assigned the combined region, and
node i takes over the region of the departed node x. This takeover by node
i is done by returning the recursive search request to the originator node,
and communicating i’s identity on the replies.

4. Otherwise, j’s region volume must be smaller than i’s region volume.
Node i forwards a recursive depth-first search request to j.

18.5.5 CAN optimizations

The following design techniques aim to improve one or more of the perfor-
mance factors: the per-hop latency, the path length, fault tolerance, availabil-
ity, and load balancing. These techniques typically demonstrate a trade-off.

• Multiple dimensions As the path length is O�d · n1/d�, increasing the
number of dimensions decreases the path length and increases routing fault
tolerance at the expense of larger state space per node.

• Multiple realities A coordinate space is termed as a reality. The use
of multiple independent realities assigns to each node a different region
in each different reality. This implies that in each reality, the same node
will store different �k� v� tuples belonging to the region assigned to it in
that reality, and will also have a different neighbor set. The data contents
�k� v� get replicated in each reality, leading to higher data availability.
Furthermore, the multiple copies of each �k� v� tuple, one in each reality,
offer a choice – the closest copy can be accessed. Routing fault tolerance
also improves because each reality offers a set of different paths to the
same �k� v� tuple. All these advantages come at the cost of more storage –
for state information for the neighbors in each reality, as well as for the
�k� v� tuples mapped to the region allocated to a node in each reality.

• Delay latency Rather than using just the Cartesian distance as a metric to
make routing decisions, the delay latency (measured using the round-trip
time (RTT)) on each of the candidate logical links can also be used in
making the routing decision.

• Overloading coordinate regions Each region can be shared by multiple
nodes, up to some upper limit. This offers several advantages. First, the

701 18.6 Tapestry

path length and path latency get reduced because overloading is equivalent
to having fewer nodes in the CAN. Second, the fault tolerance improves
because a region becomes empty only if all the nodes assigned to it depart
or fail concurrently. Third, the per-hop latency decreases because a node
can select the closest node from the neighboring region to forward a
message towards the destination. The cost of gaining these advantages is
that many of the aspects of the basic CAN protocol need to be reengineered
to accommodate overloading of coordinate regions (see Exercise 18.5).

• Multiple hash functions The use of multiple hash functions maps each
key to different points in the coordinate space. This replicates each �k� v�
pair for each hash function used. The effect is similar to that of using
multiple realities.

• Topologically sensitive overlay The CAN overlay described so far has
no correlation to the physical proximity or to the IP addresses of domains.
Logical neighbors in the overlay may be geographically far apart, and log-
ically distant nodes may be physical neighbors. By constructing an overlay
that accounts for physical proximity in determining logical neighbors, the
average query latency can be significantly reduced.

18.5.6 CAN complexity

The time overhead for a new joiner is O�d� for updating the new neighbors
in the CAN, and O�d/4 · log�n�� for routing to the appropriate location in
the coordinate space. This is also the overhead in terms of the number of
messages. The time overhead and the overhead in terms of the number of
messages for a node departure is O�d2�, because the TAKEOVER protocol
uses a message exchange between each pair of neighbors of the departed
node. Exercise 18.4 asks you to compute the complexity of the distributed
region reassignment protocol.

18.6 Tapestry

18.6.1 Overview

The Tapestry P2P overlay network provides efficient scalable location-
independent routing to locate objects distributed across the Tapestry nodes
[20,21,30,36]. Much of the design is adapted from an earlier design of Plaxton
trees [26]. The notable enhancements of Tapestry include dealing with node
churn as well as dynamic addition and deletion of objects. As in Chord, nodes
as well as objects are assigned identifiers obtained by mapping from their
native name spaces to a common large identifier space using a uniformly dis-
tributed hash function such as SHA-1. The hashed node identifiers are termed
VIDs (the acronym for virtual i.d.s) and the hashed object identifiers are
termed as GUIDs (acronym for globally unique i.d.s). For brevity, a specific

702 Peer-to-peer computing and overlay graphs

node v’s virtual identifier is denoted vid and a specific object O’s GUID is
denoted OG.

18.6.2 Overlay and routing

Root and surrogate root
Tapestry uses a common identifier space specified using m bit values. This
identifier is typically expressed in hexadecimal notation, i.e., base b = 16,
and presently Tapestry recommends m = 160. Each identifier OG in this
common overlay space is mapped to a set of unique nodes that exists in the
network, termed as the identifier’s root set denoted �GR

. Typically, ��GR
� is

a small constant, and the main purpose of having ��GR
� > 1 is to increase

fault-tolerance. In our discussion, we assume ��GR
� = 1, and refer to a root

node of OG as OGR
.

If there exists a node v such that vid = OGR
, then v is the root of identifier

OG. If such a node does not exist, then a globally known deterministic rule
is used to identify another unique node sharing the largest common prefix
with OG, that acts as the surrogate root. To access object O, the goal is to
reach the root OGR

(whether real or surrogate). Routing to OGR
is done using

distributed routing tables that are constructed using prefix routing information.
Prefix routing in Tapestry is somewhat analogous to prefix routing within
the telephone network, or to address allocation in the Internet using classless
interdomain routing (CIDR). Unlike the telephone numbers or CIDR-assigned
IP addresses, Tapestry’s VIDs are in a virtual space without correlation to
topology, however, topological information can be used to select nodes that
are “close” as per some metric.

Prefix routing
Prefix routing at any node to select the next hop is done by increasing the
prefix match of the next hop’s VID with the destination OGR

. Thus, a message
destined for OGR

= 62C35 could be routed along nodes with VIDs 6****,
then 62***, then 62C**, then 62C3*, and then to 62C35. Let M = 2m. The
routing table at node vid contains b · logb M entries, organized in logbM levels
i = 1�

 � logbM . Each entry is of the form �wid� IP address�. In level i,
there are b entries with the following property:

• Each entry denotes some “neighbor” node VIDs with an �i−1�-digit prefix
match with vid – thus, the entry’s wid matches vid in the �i−1�-digit prefix.
Further, in level i, for each digit j in the chosen base (e.g., 0�1�

 �E�F
when b = 16), there is an entry for which the ith digit position is j.
Specifically, the jth entry (counting from 0) in level i has value j for digit
position i. Let an i digit prefix of vid be denoted as prefix�vid� i�. Then
the jth entry (counting from 0) in level i begins with an i-digit prefix
prefix�vid� i−1�' j. For example, the fifth entry in level 2 at node 9F248
will be 94***, thus having a two-digit prefix “94.”

703 18.6 Tapestry

Figure 18.7 Some example
links of the Tapestry routing
mesh at node with identifier
“7C25”[35]. Three links from
each level 1 through 4 are
labeled by the level.

7C27

7C21

7C2B

4

4

1

122

2
3

3

3

1

4
0672

9833

AA21

7114

7DD0

7C4A

7C13

7CFF

7B28

7C25

Router Table
The nodes in the router table at vid are the neighbors in the overlay, and these
are exactly the nodes with which vid communicates. A part of the routing
mesh at one node is shown in Figure 18.7. For each forward pointer from
node v to v′, there is a backward pointer from v′ to v. Observe the following
regarding the router table construction:

• There is a choice of which entry to add in the router table. For example,
the jth entry in level i can be the VID of any node whose i-digit prefix is
determined; the �m− i�-digit suffix can vary. The flexibility is useful to
select a node that is “close”, as defined by some metric space (e.g., round-
trip time). In fact, this choice also allows a more fault-tolerant strategy for
routing. Multiple VIDs can be stored in the routing table, as follows. For
each prefix � of a node v’s identifier and for each digit j ∈ 	0�

 � b−1�
in the alphabet, define the neighbor set � v

��j as the set of all nodes whose
identifiers share prefix �'j. The nodes in this neighbor set are also referred
to as ��� j� neighbors of v. The b sets, one for each value of j, form the
routing table of level ���+1. �� v

��j� grows exponentially as ��� decreases,
so the size of this set can be limited by a predetermined parameter c.
The closest node in each set is the primary neighbor. Thus the size of the
routing table is: c ·b · logbM .

The route from v0
id (source) to destination j1 ' j2 · · · ' jlogM , is via nodes

v1� v2�

 � vlogM , where v1 ∈ � v0

⊥�j1 (first hop), v2 ∈ � v1

j1�j2
(second hop),

v1 ∈ � v2

j1'j2�j3 (third hop), and so on. The primary neighbor is chosen at
each hop. Observe that this provides location-independent routing, i.e.,
irrespective of the source, the same unique root node is reached.

• The jth entry in level i may not exist because no node meets the criterion.
This is a hole in the routing table. Stated more generally, �� v

��j� may be 0,
signifying a hole for digit j at level ���+1.

Surrogate routing can be used to route around holes. If the jth entry
in level i should be chosen but is missing, route to the next non-empty
entry in level i, using wraparound if needed. All the levels from 1 to
logb 2m need to be considered in routing, thus requiring logb 2m hops. The
code for determining the next hop using NEXT_HOP�i�OG� is shown
in Algorithm 18.4. This is invoked as NEXT_HOP�1�OG� at the source
node. To determine hop i of the route, the node v that executes the function
has a prefix at least i−1 digits in common with OG.

704 Peer-to-peer computing and overlay graphs

(variables)
integer Table�1

 logb 2m�1

 b�; // routing table

(1) NEXT_HOP�i�OG = d1 'd2

 'dlogbM� executed at node vid to route
to OG:
// i is (1 + length of longest common prefix), also level of the table

(1a) while Table�i� di�=⊥ do // dj is ith digit of destination
(1b) di←− �di+1� mod b;
(1c) if Table�i� di�= v then // node v also acts as next hop

// (special case)
(1d) return �NEXT_HOP�i+1�OG�� // locally examine next digit of

// destination
(1e) else return(Table�i� di�). // node Table�i� di� is next hop

Algorithm 18.4 Routing in Tapestry [35]. The logic for determining the next hop at a node with node
identifier v , 1 ≤ v ≤ n, based on the i th digit of OG , i.e., based on the digit in the i th most significant
position in OG .

Example An example of routing is shown in Figure 18.8.

Property 1 Surrogate routing leads to a unique root. If the routing were to
lead to different nodes A and B, let the most significant position in which
the digits of A and B differ be i. This implies level i routing caused the
routing at some nodes X and Y along different digits. However, the first
i digits do not change henceforth, and, assuming synchronized routing
tables, the holes would be consistent in the tables at X and Y . Hence
both should route to the same ith digit, which is a contradiction. It can
now be seen that:

Property 2 For each identifier vid, the routing algorithm identifies a
unique spanning tree rooted at vid.

Figure 18.8 An example of
routing from FAB11 to
62C35 [35]. The numbers on
the arrows show the level of
the routing table used. The
dashed arrows show some
unused links.

62C3A

64000FAB11

62C3A

6C144

62409

62C11
62C35

62C24

4

4 4

5
5

5

4

3

4

3
2

4

3

1
2

2

65011 62006

62CAB

62C7962CFF

62C01

62C31

62655

705 18.6 Tapestry

18.6.3 Object publication and object search

The unique spanning tree used to route to vid is used to publish and locate an
object whose unique root identifier OGR

is vid. A server S that stores object O
having GUID OG and root OGR

periodically publishes the object by routing
a publish message from S towards OGR

. At each hop and including the root
node OGR

, the publish message creates a pointer to the object. Ideally, “each
node between O and OGR

must maintain a pointer to O despite churn.” (Note
that the publishing is done by each server at which a replica of the object
resides, as well as for each GUID of the object. Recall that an object can be
assigned multiple GUIDs, each mapping to a different root node, and giving
rise to the set of root nodes �GR

.) If a node lies on the path from two or
more servers storing replicas, that node will store a pointer to each replica,
sorted in terms of a distance metric (such as latency from itself). This is the
directory information for objects, and is maintained as a soft-state, i.e., it
requires periodic updates from the server, to deal with changes and to provide
fault-tolerance.

Example An example showing publishing of an object with OG = 72EA1
by two replicas, at 1F329 and C2B40 is shown in Figure 18.9.

To search for an object O with GUID OG, a client sends a query destined
for the root OGR

. Along the logb 2m hops, if a node finds a pointer to the object
residing on server S, the node redirects the query directly to S. Otherwise,
it forwards the query towards the root OGR

which is guaranteed to have the
pointer for the location mapping. A query gets redirected directly to the object
as soon as the query path overlaps the publish path towards the same root.
Each hop towards the root reduces the choice of the selection of its next node
by a factor of b; hence, the more likely by a factor of b that a query path

Figure 18.9 An example
showing publishing of object
with identifier 72EA1 at two
replicas 1F329 and C2B40 [35].

72EA8

72EA1

Object pointer

72F11

72E34
7826C

1F32925011

Routing pointerPublish path

BCF35
ServerServer

094ED

C2B40 17202

75BB1 7D4FF

729CC720B4

72E33

70666

7FAB1

706 Peer-to-peer computing and overlay graphs

and a publish path will meet. Furthermore, as the next hop is chosen based
on the network distance metric whenever there is a choice, we also observe
that the closer the client is to the server in terms of the distance metric, the
more likely that their paths to the object root will meet sooner, and the faster
the query will be redirected to the object.

Example Consider the object OG which has identifier 72EA1 and two
replicas at 1F329 and C2B40, as shown in Figure 18.9. A query for the object
from 094ED will find the object pointer at 7FAB1. A query from 7826C will
find the object pointer at 72F11. A query from BCF35 will find the object
pointer at 729CC.

18.6.4 Node insertion

When nodes join the network, the result should be the same as though the
network and the routing tables had been initialized with the nodes as part of
the network. The procedure for the insertion of node X should maintain the
following property of Tapestry:

Property 3 For any node Y on the path between a publisher of object O
and the root GOR

, node Y should have a pointer to O.

More generally, the insertion should satisfy the following properties:

• Nodes that have a hole in their routing table should be notified if the
insertion of node X can fill that hole.

• If X becomes the new root of existing objects, references to those objects
should now lead to X.

• The routing table for node X must be constructed.
• The nodes near X should include X in their routing tables to perform more

efficient routing.

The main steps in node insertion are as follows:

1. Node X uses some gateway node into the Tapestry network to route a
message to itself. This leads to its “surrogate,” i.e., the root node with
identifier closest to that of itself (which is Xid). The surrogate Z identifies
the length � of the longest common prefix that Zid shares with Xid.

2. Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by
essentially creating a logical spanning tree as follows. Acting as a root,
Z contacts all the ��� j� nodes, for all j ∈ 	0�1�

 � b− 1� (tree level
1). These are the nodes with prefix � followed by digit j. Each such
(level 1) node Z1 contacts all the �prefix�Z1� ���+ 1�� j� nodes, for all
j ∈ 	0�1�

 � b−1� (tree level 2). This continues up to level logb2

m−���
and completes the MULTICAST. The nodes at this level are the leaves

707 18.6 Tapestry

of the tree, and initiate the CONVERGECAST, which also helps to detect
the termination of this phase.

All the nodes contacted fill in any holes in their routing table and, if
necessary, transfer any references of pointers that are rooted locally. All
these nodes also contact X with their information, so that X can build its
routing table from level ���+1 up to logb2

m. All these nodes that contact
X have a common prefix of �.

To construct the rest of its routing table from levels 1 through ���,
node X procures similar lists for successively smaller prefixes until it gets
closest b nodes matching the empty prefix. Node X begins with the list of
nodes for level �, corresponding to the level l of its routing table which
is already filled. To construct the level l−1 list, node X contacts all the
nodes in the level l list to find out all the level l−1 nodes they know about
by asking for both forward pointers and backward pointers. Level l−1 of
the routing table is filled in using the k closest nodes from the level l−1
list, for each of the digits 0�

 � b− 1. In this manner, X completes its
routing table, and all the nodes contacted in the process can optimize their
routing tables by using X if it helps.

The insertion protocols are fairly complex and deal with concurrent insertions.

18.6.5 Node deletion

When a node A leaves the Tapestry overlay, the following actions are per-
formed:

1. Node A informs the nodes to which it has (routing) backpointers. It also
provides them with replacement entries for each level from its routing table.
This is to prevent holes in their routing tables. (The notified neighbors can
periodically run the nearest neighbor algorithm to fine-tune their tables.)

2. The servers to which A has object pointers are also notified. The notified
servers send object republish messages.

3. During the above steps, node A routes messages to objects rooted at itself
to their new roots. On completion of the above steps, node A informs the
nodes reachable via its backpointers and forward pointers that it is leaving,
and then leaves.

Node failures are handled by using the redundancy that is built in to the
routing tables and object location pointers. For example, each routing table
entry has up to c neighbors in the neighbor set � v

��j . A node X detects a
failure of another node A by using soft-state beacons or when a node sends
a message but does not get a response. Node X updates its routing table
entry for A with a suitable substitute node, running the nearest neighbor
algorithm if necessary. If A’s failure leaves a hole in the routing table of
X, then X contacts the suggorate of A in an effort to identify a node to fill
the hole. The details of the protocol can be found in the Tapestry papers.

708 Peer-to-peer computing and overlay graphs

In addition to repairing the routing mesh, the object location pointers also
have to be adjusted. Objects rooted at the failed node may be inaccessible
until the object is republished. The protocols for doing so essentially have
to (i) maintain path availability, and (ii) optionally collect garbage/dangling
pointers that would otherwise persist until the next soft-state refresh and
timeout.

Overall, experiments have shown that Tapestry continues to perform well
with high probability, despite dynamic node insertions and failures.

Complexity
• A search for an object is expected to take �logb2

m� hops. However, the
routing tables are optimized to identify nearest neighbor hops (as per the
space metric). Thus, the latency for each hop is expected to be small,
compared to that for CAN and Chord protocols.

• The size of the routing table at each node is c · b · logb2m, where c is
the constant that limits the size of the neighbor set that is maintained for
fault-tolerance.

The larger the Tapestry network, the more efficient is the performance. Hence,
it is better that different applications share the same overlay.

18.7 Some other challenges in P2P system design

18.7.1 Fairness: a game theory application

P2P systems depend on all the nodes cooperating to store objects and allowing
other nodes to download from them. However, nodes tend to be selfish in
nature; thus there is a tendancy to download files without reciprocating by
allowing others to download the locally available files. This behavior, termed
as leaching or free-riding, leads to a degradation of the overall P2P system
performance. Hence, penalties and incentives should be built in the system to
encourage sharing and maximize the benefit to all nodes.

We now examine the classical problem, termed the prisoners’ dilemma,
from game theory, that has some useful lessons on how selfish agents might
cooperate. This problem is an example of a non-zero-sum-game.

In the prisoners’ dilemma, two suspects, A and B, are arrested by the police.
There is not enough evidence for a conviction. The police separate the two
prisoners, and, separately, offer each the same deal: if the prisoner testifies
against (betrays) the other prisoner and the other prsioner remains silent, the
betrayer gets freed and the silent accomplice gets a 10-year sentence. If both
testify against the other (betray), they each receive a 2-year sentence. If both
remain silent, the police can only sentence both to a small 6-month term on
a minor offence.

709 18.7 Some other challenges in P2P system design

Rational selfish behavior dictates that both A and B would betray the
other. This is not a Pareto-optimal solution, where a Pareto-optimal solution
is one in which the overall good of all the participants is maximized. In
the above example, both A and B staying silent results in a Pareto-optimal
solution. The dilemma is that this is not considered the rational behavior of
choice.

In the iterative prisoners’ dilemma, the game is played multiple times, until
an “equilibrium” is reached. Each player retains memory of the last move of
both players (in more general versions, the memory extends to several past
moves). After trying out various strategies, both players should converge to
the ideal optimal solution of staying silent. This is Pareto-optimal.

The commonly accepted view is that the tit-for-tat strategy, described next,
is the best for winning such a game. In the first step, a prisoner cooperates,
and in each subsequent step, he reciprocates the action taken by the other
party in the immediately preceding step.

The BitTorrent P2P system [11] has adopted the tit-for-tat strategy in
deciding whether to allow a download of a file in solving the leaching
problem. Here, cooperation is analogous to allowing others to upload local
files, and betrayal is analogous to not allowing others to upload. The term
choking refers to the refusal to allow uploads. As the interactions in a P2P
system are long-lived, as opposed to a one-time decision to cooperate or
not, optimistic unchoking is periodically done to unchoke peers that have
been choked. This optimistic action roughly corresponds to the re-initiation
of the game with the previously choked peer after some time epoch has
elapsed.

18.7.2 Trust or reputation management

Various incentive-based economic mechanisms to ensure maximum cooper-
ation among the selfish peers inherently depend on the notion of trust. In
a P2P environment where the peer population is highly transient, there is
also a need to have trust in the quality of data being downloaded. These
requirements have lead to the area of trust and trust management in P2P
systems [1, 18, 19]. As no node has a complete view of the other down-
loads in the P2P system, it may have to contact other nodes to evaluate the
trust in particular offerers from which it could download some file. These
communication protocol messages for trust management may be susceptible
to various forms of malicious attack (such as man-in-the-middle attacks and
Sybil attacks), thereby requiring strong security guarantees. The many chal-
lenges to tracking trust in a distributed setting include: quantifying trust and
using different metrics for trust, how to maintain trust about other peers in
the face of collusion, and how to minimize the cost of the trust management
protocols.

710 Peer-to-peer computing and overlay graphs

18.8 Tradeoffs between table storage and route lengths

18.8.1 Unifying DHT protocols

Chord, CAN, and Tapestry are three well-known representative protocols
for managing structured P2P overlays. Despite their seeming differences, Xu
et al. [34] showed that the routing function they perform can be expressed in
a uniform way by generalizing the function of classless interdomain domain
routing (CIDR) used by the IP protocol. We assume that all identifiers are in
the common address space. We also assume modulo arithmetic.

Routing rule
The next-hop routing to node with identifier dest from the current node with
identifier id is as follows.

Let the k entries in a routing table at a node with identifier id be the
tuples �Sid�i� Jid�i�, for 1 ≤ i ≤ k. If �dest− id� ∈ the range Sid�i then route to
R�id+ Jid�i�, where R�x� is the node responsible for key R�x�.

Clearly, we must have that for distinct i and j, Sid�i∩Sid�j = ∅ and Jid�i �=
Jid�j . Further, ∪1≤i≤sSid�i contains all the keys not stored by node id. When
Sid�i and Jid�i are independent of id, as is the case for CAN, Chord, and
Tapestry, the subscript id can be deleted.

• Chord if dest− id ∈ Si = �2i−1�2i� then node id routes to node id+Ji,
where Ji = 2i−1.

This corresponds to looking up the ith entry in the finger table, as
described in Section 18.4.3.

• CAN The greedy routing function for CAN was given in Section 18.5.3.
Here we assume a simple uniform distribution of nodes in the address
space, xd = n, and that nodes are numbered by an integer in base x, where
x is the number of nodes in each dimension. Routing is assumed to be done
dimension by dimension (rather than using greedy routing). Wraparound
routing is assumed in each dimension. Then, for each dimension i, the
following holds: if dest and id differ in dimension i, route to i’s neighbor
in that dimension. Formally,

If dest− id ∈ �Si =��xi−1� xi� then route to id+ Ji, where Ji+ id is a
neighbor node in dimension in i−1 and Ji = kxi−1 for some k≤ x.

• Tapestry Let x= logbn, lvl= 1�

 � x and j ∈ 0�

 � b−1. After delet-
ing the longest common prefix between id and dest, prefix�dest� lvl−1�,
from dest, we have suffix�dest� x− lvl+ 1�. The routing function was
described in Section 18.6.2.

If suffix�dest� x− lvl+ 1� ∈ S�lvl−1�·b+j = �j ·bx−lvl+1� �j+ 1� ·bx−lvl+1�

then node id routes to node prefix�id� lvl− 1� ' suffix�J�lvl−1�·b+j� x−
lvl+1�, where J�lvl−1�·b+j ∈ �j ·bx−lvl+1� �j+1� ·bx−lvl+1�.

These routing relationships are summarized in Table 18.4.

711 18.8 Tradeoffs between table storage and route lengths

Table 18.4 Comparison of representative P2P overlays. d is the number of
dimensions in CAN. b is the base in Tapestry [34].

Protocol Chord CAN Tapestry

Routing table size k= O�log2n� k= O�d� k= O�logbn�
Worst case distance O�log2n� O�n1/d� O��b−1� · logbn�
n, common name space 2k xd bx

Si �2i−1�2i� �xi−1� xi� �j ·bx−lvl+1� �j+1� ·bx−lvl+1�
Ji 2i−1 kxi−1 suffix�J�lvl−1�·b+j� x− lvl+1�

Figure 18.10 Fundamental
asymptotic tradeoffs between
router table size and network
diameter [34].

Maintain full state

Asymptotic tradeoff curve

Chord, Tapestry

Maintain no state

CAN

O(n1/d) O(log n)

n

log n

<= d

0

O(1) O(n)

Routing table size

Worst-case
distance

18.8.2 Bounds on DHT storage and routing distance

Based on Table 18.4, the router table size and network diameter are repre-
sented in Figure 18.10. A fundamental question is whether the asymptotic
bounds on (routing table size, network diameter as determined by the max-
imum number of hops) are �log2 n���log2 n�� as for Chord and Tapestry,
and �d���n1/d�� as for CAN. Xu et al. [34] used the following definitions to
answer this:

• A routing algorithm is weakly uniform if for any nodes id and id′, the
jump sizes Jid�i = Jid′�i. Thus, a weakly uniform algorithm requires the
corresponding “jump sizes” for any index i to be the same for all nodes,
irrespective of the node identifier.

• A routing algorithm is strongly uniform if it is weakly uniform and if for
any nodes id and id′, Sid�i = Sid′�i. A strongly uniform algorithm requires
all routing tables to also have the same corresponding sizes of the index
ranges.

• A network is node-congestion-free (resp., edge-congestion-free) if all
nodes (resp., edges) are handling the same average traffic. A network
is congestion-free it it is node-congestion-free and edge-congestion-free.

712 Peer-to-peer computing and overlay graphs

Chord, CAN, and Tapestry are all congestion-free algorithms. A strongly
uniform algorithm is node-congestion-free.

The following result has been shown by Xu et al. [34]:

• When the routing algorithms are weakly uniform, ��log2 n� and ��n1/d�

are the lower bounds on the diameter in networks with routing tables
of sizes O�log n� and d, respectively. As Chord, CAN, and Tapestry
are strongly uniform, they achieve the asymptotic lower bounds in the
tradeoff.

18.9 Graph structures of complex networks

P2P overlay graphs can have different structures. An intriguing question is to
characterize the structure of overlay graphs. This question is a small part of
a much wider challenge of how to characterize large networks that grow in a
distributed manner without any coordination [4]. Such networks exist in the
following:

• Computer science: the WWW graph (WWW), the Internet graph that
models individual routers and interconnecting links (INTNET), and the
autonomous systems (AS) graph in the Internet.

• Social networks (SOC), the phonecall graph (PHON), the movie actor
collaboration graph (ACT), the author collaboration graph (AUTH), and
citation networks (CITE).

• Linguistics: the word co-occurrence graph (WORDOCC), and the word
synonym graph (WORDSYN).

• The power distribution grid (POWER).
• Nature: in protein folding (PROT), where nodes are proteins and an edge

represents that the two proteins bind together, and in substrate graphs for
various bacteria and micro-organisms (SUBSTRATE), where nodes are
substrates and edges are chemical reactions in which substrates participate.

It is widely intuited that such complex graphs must display some organiza-
tional principles that are encoded in their topology in some subtle ways. This
has driven research on a unification theory to determine a suitable model in
which all such uncontrolled graphs are instantiations.

The first logical attempt to model large networks without any known
design principles is to use random graphs. The random graph model, also
known as the Erdos–Renyi (ER) model [14], assumes n nodes and a link
between each pair of nodes with probability p, leading to n�n− 1�p/2
edges. Many interesting mathematical properties have been shown for ran-
dom graphs. However, the complex networks encountered in practice are
not entirely random, and show some, somewhat intangible, organizational
principles.

713 18.9 Graph structures of complex networks

Three ideas have received much investigative attention in recent times [4]:

• Small world networks Even in very large networks, the path length
between any pair of nodes is relatively small. This principle of a “small
world” was popularized by sociologist Stanley Milgram by the “six degrees
of separation” uncovered between any two people [24].

As the average distance between any pair of nodes in the ER model
grows logarithmically with n, the ER graphs are small worlds.

• Clustering Social networks are characterized by cliques. The degree
of cliques in a graph can be measured by various clustering coefficients,
such as the following. Consider a node i having ki out-edges. Let li be
the actual number of edges among the ki nearest neighbors of i. If these
ki nearest neighbors were in a clique, they would have ki��ki−1�/2 edges
among them. The clustering coefficient for node i is Ci = 2li/�ki�ki−1��.
The network-wide clustering coefficient is the average of all Cis, for all
nodes i in the network.

The random graph model has a clustering coefficient of exactly p. As
most real networks have a much larger clustering coefficient, this random
graph model (ER) is unsatisfactory.

• Degree distributions Let P�k� be the probability that a randomly
selected node has k incident edges. In many networks – such as INTER,
AS, WWW, SUBST – P�k�∼ k−� , i.e., P�k� is distributed with a power-
law tail. Such networks that are free of any characteristic scale, i.e., whose
degree characterization is independent of n, are called scale-free networks.

In a random graph, the degree distribution is Poisson-distributed with a
peak of P��k��, where �k�, which is a function of n, is the average degree
in the graph. Thus, random graphs are not scale-free. While some real
networks have an exponential tail, the actual form of P�k� is still very
different from that for a Poisson distribution.

Current empirical measurements show the following properties of some
commonly occuring graphs:

WWW In-degree and out-degree distributions both follow power laws; it
is a small world; and is a directed graph, but does show a high clustering
coefficient.

INTNET Degree distributions follow power law; small world; shows
clustering.

AS Degree distributions follow power law; small world; shows
clustering.

ACT Degree distributions follow power law tail; small world (similar
path length as ER); shows high clustering.

AUTH Degree distributions follow power law; small world; shows high
clustering.

SUBSTRATE In-degree and out-degree distributions both follow power
laws; small world; large clustering coefficient.

714 Peer-to-peer computing and overlay graphs

PROT Degree distribution has a power law with exponential cutoff.
PHON In-degree and out-degree distributions both follow power laws.
CITE In-degree follows power law, out-degree has an exponential tail.
WORDOCC Two-regime power-law degree distribution; small world;

high clustering coefficient.
WORDSYN Power-law degree distribution; small world; high clustering

coefficient.
POWER Degree distribution is exponential.

Efforts on developing models focus on random graphs to model random
phenomena, small worlds to interpolate between random graphs and struc-
tured clustered lattices, and scale-free graphs to study network dynamics and
network evolutions.

18.10 Internet graphs

18.10.1 Basic laws and their definitions

In this section, we consider some properties of the Internet, that demonstrate
a power-law behavior as measured empirically. The power law informally
implies that large occurrences are very rare, and the frequency of the occur-
rence increases as the size decreases. Examples pertaining to the Web are: the
number of links to a page, the number of pages within a Web location, and
the number of accesses to a Web page. We begin by taking the example of the
popularity of Websites to illustrate the definitions of three related observed
laws [2]: Zipf’s law, the Pareto law, and the Power law:

• Power law P�X = x�∼ x−a
This law is stated as a probability distribution function (PDF). It says that
the number of occurrences of events that equal x is an inverse power of x.
Figure 18.11(a) and (b) show the typical Power law PDF plots on both

visitors

slope b = a − 1

(c) Pareto law
 (log–log scale)

P(site has
 > x visitors)

CDF

Log

Log

slope a

(b) Power Law
 (log–log scale)

PDF

sites

Log

Log# visitors

(a) Power law
 (linear scale)

PDF

sites

visitors Rank of site

slope c = 1 / b

 (log–log scale)
(d) Zipf’s law

PDF

(i.t.o. > y visitors)
Log

Log
visitors

Figure 18.11 The popularity of Websites. (a) Power law showing the PDF using a linear scale. (b)
Power law showing the PDF using a log–log scale. (c) Pareto law showing the CDF using a log–log
scale. (d) Zipf’s law using a log–log scale [2].

715 18.10 Internet graphs

linear and log–log scales, respectively. In the log–log plot, the slope is a.
In our example, this corresponds to the number of sites that have exactly

x visitors.
• Pareto law P�X ≥ x�∼ x−b = x−�a−1�

This law is stated as a cumulative distribution function (CDF). The number
of occurrences larger than x is an inverse power of x. The CDF can be
obtained by integrating the PDF. The exponents a and b of the Pareto
(CDF) and Power laws (PDF) are related as b+ 1 = a. Figure 18.11(c)
shows the Pareto law CDF plot on a log–log scale. In the log–log plot, the
slope is b = a−1.

In our example, this corresponds to the number of sites that have at least
x visitors.

• Zipf’s law n∼ r−c
This law states the count n (i.e., the number) of the occurrences of an
event, as a function of the event’s rank r. It says that the count of the
rth largest occurrence is an inverse power of the rank r. Figure 18.11(d)
shows the Zipf plot on a log–log scale. In the log–log plot, the slope is c,
which, as we see below, is 1/b = 1/�a−1�.

The context initally used by Zipf was the frequency of occurrence of
words in English, where the most frequently occurring word had rank 1.
The Zipf law is widely occurring, e.g., both the magnitude of earthquakes
and the populations of cities also follow this law. In our example, this
corresponds to the number of visits to the rth most popular site.

Clearly, the Pareto law (CDF) and Power law (PDF) are related. Zipf’s
law n ∼ r−c, states that “the r-ranked object has n = r−c occurrences,” and
can be equivalently expressed as: “r objects (x-axis) have n = r−c (y-axis)
or more occurrences.” This becomes the same as the Pareto law’s CDF after
transposing the x and y axes, i.e., by restating as: “the number of occurrences
larger than n= r−c (x-axis) happens for r objects (y-axis).”

From Zipf’s law, n = r−c, hence, r = n−1/c. Hence, the Pareto exponent
b is 1/c. As b = �a− 1�, where a is the Power law exponent, we see that
a = 1+ �1/c�. Hence, the Zipf’s law distribution also satisfies a Power law
PDF.

18.10.2 Properties of the Internet

The Internet is a prime example of a complex entity that exhibits power-law
behavior. Based on extensive empirical measurements, Siganos et al. [31]
showed the following results:

• Rank exponent/Zipf law The nodes in the Internet graph are ranked in
decreasing order of their degree. When the degree di is plotted as a function
of the rank ri on a log–log scale, the graph is like Figure 18.11(d). The
slope is termed the rank exponent �, and di ∝ r�i . If the minimum degree

716 Peer-to-peer computing and overlay graphs

dn = m is known, then m = dn = Cn�, implying that the proportionality
constant C is m/n�. Exercise 18.6 asks you to estimate the number of
edges as a function of the rank exponent and the number of nodes.

• Degree exponent/ PDF and CDF Let the CDF fd of the node degree d
be the fraction of nodes with degree greater than d. Then fd ∝ d� , where
� is the degree exponent that is the slope of the log–log plot of fd as a
function of d.

Analogously, let the PDF be gd. Then gd ∝ d�′ , where �′ is the degree
exponent that is the slope of the log-log plot of gd as a function of d.

Empirically, D′ ∼D+1, as theoretically predicted. Further, �∼ �1/��,
also as theoretically predicted. The imperfect match is attributed to imper-
fect measurements and approximations in curve-fitting. In practice, the
CDF is preferred as it can be estimated with greater accuracy.

• Eigen exponent � For the adjacency matrix A of a graph, its eigen-
value � is the solution to AX = �X, where X is a vector of real num-
bers. The eigenvalues are related to the graph’s number of edges, number
of connected components, the number of spanning trees, the diameter,
and other important topological properties. Let the various eigenvalues
be �i, where i is the order and between 1 and n. Then the graph of
�i as a function of i is a straight line, with a slope of �, the eigen-
exponent. Thus, �i ∝ i� . More intriguingly, when the eigenvalues and the
degree are sorted in descending order, it is found that �i =

√
di, implying

that � =�/2.

The following additional hypotheses have not been very vigorously tested
and verified. Nevertheless, they offer insightful looks into the prevalance and
use of power laws in complex uncontrolled entities such as the Internet. Two
definitions are useful at this stage:

– PN�h� is the number of pairs of nodes within h hops, counting self-pairs,
and counting all other pairs twice due to the dual edge incidence.

– NN�h�, the neighborhood, is the expected number of nodes within h hops.

• Hop-plot exponent, � Experimental measurements have shown that
PN�h� follows a power law regime more closely, rather than the expo-
nential regime as previously estimated. Thus, PN�h� ∝ h� , where � is
the slope of the log-log plot of PN�h� as a function of h for h� dia.
From the definition of PN�h�, observe that PN�1�= n+2l, where l is the
number of edges. Hence,

PN�h�=
{
�n+2l�h� � if h� dia�

n2� if h≥ dia� (18.9)

The hop-plot exponent is useful to estimate the effective diameter diaeff
of the network. Informally, any two nodes in the network are within diaeff

717 18.10 Internet graphs

hops of each other, with “high probability.” When some destination node
whose location is unknown needs to be reached, the use of hop-constrained
broadcast is the standard solution. A large hop count takes too long,
whereas a small hop count may not reach the entire network. If the hop
count is set to diaeff , then with high probability, the destination can be
reached with just the right amount of overhead. Using n, � , and the
number of edges l, the effective diameter is defined as:

diaeff =
(

n2

n+2l

)1/�

�

This effective diameter is estimated as the abscissa of the intersection of
the log–log hop-plot with slope � and the n2 coverage that is expected
within diameter hops.

Observe that the average size of the neighbourhood NN�h� =
�PN�h�/n�− 1. Hence NN�h� = ��n+ 2l�h�/n�− 1. The NN�h� is seen
to be a more accurate estimate of the neighborhood than the traditional
average-degree estimate, NN ′d�h� = d�d− 1�h−1. The NN ′d�h� estimate
assumes that the degree distribution is more uniform, and that each hop
adds d−1 new nodes per node at the boundary of the examined neighbor-
hood. As the degree distribution is highly skewed, the traditional NN ′�h�
metric is not accurate.

For all the cases above, the power law regime has so far been empirically
validated. The exponent itself has been observed to change gradually over
time as the networks evolve. The power law regime provides a good handle
on predicting the future growth of the Internet, and building accurate graphs
for simulations.

Classification of scale-free networks
Scale-free networks of different types – WWW, INTNET, AS, ACT, AUTH,
SUBSTRATE, PROT, PHON, in-degree for CITE, and WORDSYN – have
different degree exponents, typically ranging from 2 to 3. The quest to seek a
more universal and common factor resulted in the analysis of another metric,
called the “betweenness centrality” [15]. For any graph, let its geodesics, i.e.,
set of shortest paths, between any pair of nodes i and j, be denoted S�i� j�.
Let Sk�i� j� be a subset of S�i� j� such that all the geodesics in Sk�i� j� pass
through node k. The betweeness centrality BC of node k, bk, is

∑
i �=j gk�i� j�=∑

i �=j �Sk�i� j��/�S�i� j��. The bk denotes the importance of node k in shortest-
path connections between all pairs of nodes in the network.

The metric BC follows the power law PBC�g� ∼ g−�, where � is the BC-
exponent. Unlike the degree exponent which varies across different network
types, the BC-exponent has been empirically found to take on values of only
2 or 2.2 for these varied network types. This interesting observation is under
further study.

718 Peer-to-peer computing and overlay graphs

Figure 18.12 Impact of attacks
and failures on the diameter of
exponential networks and
scale-free networks, from
Albert et al. [5].

Network
diameter

Exponential (attack & errors)

0.10.05

f, the fraction of nodes removed

0

Scale−free (under attack)

Scale−free (under errors)

18.10.3 Error and attack tolerance of complex networks

Based on the node degree distribution P�k�, two broad classes of small
world networks are the exponential networks and the scale-free networks. In
exponential networks, such as the ER random graph model and the Watts–
Strogatz small world model [33], P�k� reaches a maximum at a k value and
then P�k� decreases exponentially per a Poisson distribution as k increases.
In scale-free networks, such as the Web and the Internet, P�k� decreases as
per a power law, P�k�∼ k−� .

The following are two key differences that leads to different behavior of
exponential networks and of scale-free networks, under errors and attacks:
(i) nodes with a very high degree are statistically significant in scale-free
networks, whereas they are close to an impossibility in exponential networks;
(ii) in an exponential network, all nodes have about the same number of
links, whereas in a scale-free network, some nodes have many links and the
majority of the nodes have a small number of links.

Errors are simulated by removing nodes at random. Attacks are simulated
by removing the nodes with highest degree. Their impact is measured on
network diameter and network partitioning [5].

Impact on network diameter
Figure 18.12 is used to descibe the impact on the diameter. The graph shows
only the relative trends, as empirically verified by simulations for many large
networks, including the Web and Internet. Any numbers simply in the graph
convey an approximate order of magnitude for the particular networks studied
by Albert et al. [5].

• Errors In an exponential network, as all nodes have about the same
degree, the removal of any node has approximately the same amount of
small impact in terms of decrease in connectivity. The network diameter
increases gradually. The diameter of scale-free networks remains almost
same under errors, as nodes that are removed have small degree with very
high probability and are very unlikely to alter the lengths of the paths
among other nodes.

719 18.10 Internet graphs

• Attacks As nodes in an exponential network have about the same degree,
the network behaves similarly under attack as under errors. Under attack,
the diameter of scale-free networks increases dramatically, as the few
nodes with highest connectivity are removed, thereby greatly reducing the
connectivity of the entire network.

Impact on network partitioning
The impact of removal of nodes on partitioning is measured using two metrics:
Smax, the ratio of the size of the largest cluster to the system size, and Sothers,
the average size of all clusters except the largest.

• Exponential networks In Figure 18.13, as f , the fraction of nodes
removed is increased, Sothers increases from 1 to around 2 for some threshold
fraction fthreshold. This implies that for very small f , where Sothers ∼ 1, sin-
gle nodes break off. As f increases, several small but larger partitions set in,
leading to a peak of Sothers at fthreshold. For f > fthreshold, Sothers reduces back
to 1, as the isolated clusters (fragments) in the network further disintegrate.
In terms of Smax, as f is varied from 0 to fthreshold, Smax decreases from 1 to
a low value as small (mostly single-node) partitions break off. As fthreshold is
approached, the main cluster disintegrates, leading to Smax tending to 0. As f
is increased beyond fthreshold, Smax remains near 0.

The impact of attacks on network partitioning is the same as the impact
of errors, for the same reasoning given for the analysis on the diameter.

• Scale-free networks In Figure 18.14, when nodes are randomly
removed, Smax decreases from 1 very gradually. Also, Sothers remains steady
at 1, indicating that singleton nodes get removed from the main network.
There is no threshold fthreshold observed, even for high values of f , such
as 0.5 error rate.

0 0.5

S m
ax

an

d
S o

th
er

s 2

1

Sothers

Partitions at
f > fthreshold

Partitions at
 fthreshold

Partitions at
very low f f. the fraction of nodes removed

under attack and
under errors

under attack and
under errors

Smax

fthreshold

(a) (b) (c) (d)

Figure 18.13 Impact of errors and attacks on cluster size of exponential networks, from Albert
et al. [5]. (a) Graphical trend. (b) Pictoral cluster sizes for low f , i.e., f � fthreshold . (c) Pictoral cluster
sizes for f ∼ fthreshold . (d) Pictoral cluster sizes for f > fthreshold . The pictoral trend in (b)–(d) is also
exhibited by scale-free networks under attack, but for a lower value of fthreshold .

720 Peer-to-peer computing and overlay graphs

Smax

under attackSmax

0.4
f. the fraction of nodes removed

fthreshold0

S m
ax

an

d
S o

th
er

s

2

1 under errors

Sothers

Sothers

under attack

under errors

(a)

Partitions
under errors
(very low f)

(b)

Partitions
under errors
(moderate f)

(c)

Partitions
under errors
(higher f)

(d)

Figure 18.14 Impact of errors on cluster size of scale-free networks, from Albert et al. [5]. The pictoral
impact of attacks on cluster sizes are similar to those in Figure 18.13. (a) Graphical trend. (b) Pictoral
cluster sizes for low f under failure. (c) Pictoral cluster sizes for moderate f under failure. (d) Pictoral
cluster sizes for high f under failure.

However, under attack, when the most connected nodes are removed, the
behavior is similar to (but more acute than) that of the exponential network;
see Figure 18.13. Thus, the threshold fthreshold sets in at a lower value.
This is because the impact of removing the highly connected nodes first
causes disintegration to set in quickly.

18.11 Generalized random graph networks

Random graphs cannot capture the scale-free nature of real networks, which
states that the node degree distribution follows a power law. The generalized
random graph model uses the degree distribution as an input, but is random in
all other respects. Thus, the constraint that the degree distribution must obey
a power law is superimposed on an otherwise random selection of nodes to be
connected by edges. These semi-random graphs can be analyzed for various
properties of interest. Although a simple formal model for the clustering
coefficient is not known, it has been observed that generalized random graphs
have a random distribution of edges similar to the ER model, and hence the
clustering coefficient will likely tend to zero as N increases.

18.12 Small-world networks

Real-world networks are small worlds, having small diameter, like random
graphs, but they have relatively large clustering coefficients that tend to be
independent of the network size.

Ordered lattices tend to satisfy this property that clustering coefficients are
independent of the network size. Figure 18.15(a) shows a one-dimensional

721 18.13 Scale-free networks

lattice in which each node is connected to k= 4 closest nodes. The clustering
coefficient is C = 3�k−2�

4�k−1� .

(a)

(b)

(c)

Figure 18.15. The
Watts–Strogatz random rewiring
procedure [4,33]. (a) Regular.
(b) Small-world. (c) Random.
The rewiring shown maintains
the degree of each node.

The first model for small world graphs with high clustering coefficients
and low path length is the Watts–Strogatz (WS) model [33]:

1. Define a ring lattice with n nodes and each node connected to k closest
neighbors (k/2 on either side). Let n1 k1 ln�n�1 1.

2. Rewire each edge randomly with probability p. When p = 0, there is a
perfect structure, as in Figure 18.15(a). When p= 1, complete randomness,
as in Figure 18.15(c).

A characteristic of small-world graphs is the small average path length.
When p is small, len scales linearly with n, but when p is large, len scales
logarithmically. Through analytical arguments and simulations, it is now
believed that the characteristic path length varies as:

len�n�p�∼ n1/d

k
f�pkn�� (18.10)

where the function f behaves as follows:

f�u�=
{

constant� if u� 1�
ln�u�/u� if u1 1�

(18.11)

The variable u has the intuitive interpretation that it depends on the average
number of random links that provide “jumps” across the graph, and f�u� is
the average factor by which the distance between a pair of nodes gets reduced
by the “jumps.”

18.13 Scale-free networks

Many real networks are scale-free, and even for those that are not scale-
free, the degree distribution follows an exponential tail that is significantly
different from that of the Poisson distribution. Semi-random graphs that are
constrained to obey a power law for the degree distributions and constrained
to have large clustering coefficients yield scale-free networks, but do not
shed any insight into the mechanisms that give birth to scale-free networks.
Rather than modeling the network topology, it is better to model the network
assembly and evolution process. Specifically:

722 Peer-to-peer computing and overlay graphs

Figure 18.16 The simple
Barabasi–Albert model [7].

Initially, there are m0 isolated nodes. At each sequential step, perform one of the
following operations:

Growth Add a new node with m edges, (where m ≤ m0), that link the new node to
m different nodes already in the system.

Preferential attachment The probability
∏

that the new node will be connected
to node i depends on the degree ki, such that:∏

�ki�=
ki∑
j�kj�

� (18.12)

• Rather than begin with a constant number of nodes n that are then randomly
connected or rewired, real networks (e.g., WWW, INTERNET) exhibit
growth by the addition of nodes and edges.

• Rather than assume that the probability of adding (or rewiring) an edge
between two nodes is a constant, real networks exhibit the property of
preferential attachment, where the probability of connecting to a node
depends on the node degree.

The simple Barabasi–Albert model [7], which captures growth and pref-
erential attachment, is described in Figure 18.16. After t time steps, there
are t+m0 nodes and mt edges. Numerically, it is verified that the degree
distribution follows a power law with degree=3, that is independent of the
parameter m.

Two techniques to analyze the degree distribution of models are now
described in the context of the BA model. The master-equation approach
was introduced by Dogorotsev et al. [13] and the rate-equation approach was
introduced by Krapivsky et al. [22].

18.13.1 Master-equation approach

Let p�k� ti� t� denote the probability that, at time t, a node i that was added at
time ti has degree k. When a new node with m edges is added to the graph, the
degree of node i increases by one with probability m ·∏�k� = k/2t. Hence,
we have [4, 13]:

p�k� ti� t+1�= k−1
2t
·p�k−1� ti� t�−

[
1− k

2t

]
·p�k� ti� t�� (18.13)

The first term is the probability that a node with k− 1 degree gets a new
edge; the second term is the probability that a node with degree k does not
get a new edge. Based on this formulation, the degree distribution can be
expressed as:

P�k�= limitt→�
∑
ti

p�k� ti� t�/t� (18.14)

723 18.14 Evolving networks

From Eq. (18.13), it can be shown that:

P�k�=
{

k−1
k+2P�k−1�� if k≥m+1�

2
m+2 � if k=m�

(18.15)

This solves as:

P�k�= 2m�m+1�
k�k+1��k+2�

� (18.16)

18.13.2 Rate-equation approach

Let nk�t� be the average number of nodes having k edges at time t. When a
new node is added, nk�t� changes as follows. New edges are added to some
nodes with degree k−1, new edges are added to some nodes with degree k,
and new nodes with m edges are added. These three changes affect nk�t� in
the following manner:

dnk
dt
=m ·

[
�k−1� ·nk−1�t�∑

k knk�t�
− k ·nk�t�∑

k knk�t�

]
+�k�m� (18.17)

By taking the asymptotic limit, nk�t� = t ·P�k�, and
∑

k knk�t� = 2mt. This
yields the same recursive Eq. (18.15) obtained using the master-equation
approach.

18.14 Evolving networks

The BA algorithm in Figure 18.16 represents a basic model that cannot fully
capture real network properties. For example, the BA model has a fixed
exponent of 3 for the power law, independent of the parameter m. Real
networks have an exponent that varies, typically between 1 and 3. Some
real networks sometimes have exponential cutoffs that are not within the
power law regime. The study of more general and flexible models that can
accurately capture real networks has lead to several notable directions of
investigation:

• Preferential attachment The BA model assumed that the probability∏
�k� that a new node connects to a node i is proportional to the degree

ki. This implied that
∏
�k� is linearly proportional to k.

It has been shown analytically that for sublinear preferential attachment
as well as for superlinear preferential attachment, the scale-free nature of
the network cannot be preserved.

In real networks, there is a finite probability that a new node attaches to an
isolated node, i.e.,

∏
�0� �= 0 and

∏
�k�= C+k�, whereC denotes the intial

724 Peer-to-peer computing and overlay graphs

attractiveness. It can be seen that initial attractiveness changes the degree
exponent but preserves the scale-free nature of the degree distribution.

• Growth The BA model assumed that the rate of addition of nodes and
edges was uniform. Many real networks, such as INTNET, AS, WEB,
SUBSTRATE, and WORDOCC, have the property that the number of
edges increases faster than the number of nodes, implying an increase in
the average degree as the number of nodes increases. It has been shown
analytically that accelerated growth does not affect the power law nature
although the exponent degree is altered.

• Local events Real networks undergo local (microscopic) changes to the
topology, such as node addition and node deletion, edge addition and edge
deletion. A popular model that explores the properties of such local events
is the extended Barabasi–Albert model [3], shown in Figure 18.17.

• Growth constraints Real networks often have bounded capacity for the
number of edges (e.g., connections at a router) or a finite lifetime for the
nodes (as in social networks). In the electrical power distribution network
which exhibits an exponential distribution, there are practical reasons why
the node degree is bounded. In the actors network, which exhibits a power
law with an exponential cutoff for large k, ageing limits the accrual of
new edges. Thus, ageing and finite capacity need to explicitly captured in
a good model for such networks.

• Competition Real-world networks exhibit competition, wherein some
nodes can attract more edges (e.g., via advertising) at the cost of other
nodes. This feature can be modeled by a fitness parameter. Similarly, a
new node may inherit edges belonging to some other node or nodes (e.g.,
modifying a replica of a Web page). This needs to be explicitly modeled.

• Induced preferential attachment Various local-level mechanisms,
such as the copying mechanism (copy edges of another node as in Web

Figure 18.17 The extended
Barabasi–Albert model [3].

Initially, there are m0 isolated nodes. At each sequential step, perform one of
the following operations:

With probability p, add m, where m≤m0, new edges For each new edge,
one end is randomly selected, the other end with probability

∏
�ki�=

ki+1∑
j�kj+1�

� (18.18)

With probability q, rewire m edges To rewire an edge, randomly select
node i, delete some edge �i�w�, add edge �i� x� to node x that is chosen with
probability

∏
�kx� as per Eq. (18.18).

With probability 1−p−q, insert a new node Add m new edges to the new
node, such that with probability

∏
�ki�, an edge connects to a node i already

present before this step.

725 18.14 Evolving networks

pages), and tracing selected walks (as in recursively following the citation
trail in a citation network), need to be modeled because they implicitly
introduce preferential attachment.

18.14.1 Extended Barabasi–Albert model

The extended BA model [3] is an example model for evolving networks.

Continuum theory analysis
In continuum theory, it is assumed that ki changes continuously and the prob-
ability

∏
�ki� then represents the rate at which ki changes. Each of the three

possible events in a sequential step can affect the rate at which ki changes as
follows [3]:

1. With probability p, m new links are added. For each link, one end is
randomly chosen, leading to a change in ki of pm/n. For each link, the
second end attaches preferentially, leading to a change in ki of pm · �ki+1�∑

j �kj+1� .
Hence,

dki
dt
= pm1

n
+pm ki+1∑

j�kj+1�
� (18.19)

2. With probability q, m existing links are rewired. For each rewired link,
a randomly chosen node loses one incident edge, which then attaches
preferentially. Thus, the impact on ki is:

dki
dt
=−qm1

n
+qm ki+1∑

j�kj+1�
� (18.20)

3. With probability �1−p−q�, a new node is added with m links. Each of
the m links connects preferentially, thus:

dki
dt
= �1−p−q�m ki+1∑

j�kj+1�
� (18.21)

Summing the three effects, we have:

dki
dt
= �p−q�m1

n
+m ki+1∑

j�kj+1�
� (18.22)

As the system size and topology varies with time, we have:

n�t�=m0+ �1−p−q�t�
∑
j

kj = 2mt�1−q�−m� (18.23)

726 Peer-to-peer computing and overlay graphs

As t increases, the constants m and m0 can be deleted. Further, for a node
added at ti, we have that ki�ti� = m (the initialization step). Exercise 18.8
asks you to show that the solution to Eq. (18.22) has the form

ki�t�= �A�p�q�m�+m+1�
(
t

ti

)1/B�p�q�m�

−A�p�q�m�−1� (18.24)

A�p�q�m�= �p−q�
(

2m�1−q�
1−p−q +1

)
� B�p�q�m�= 2m�1−q�+1−p−q

m
�

(18.25)

Based on further algebraic derivations, Albert and Barabasi [3] showed
that:

P�k� � �k+%�p�q�m��−��p�q�m�� where %�p�q�m�= A�p�q�m�+1 and

��p�q�m�= B�p�q�m�+1� (18.26)

Equation (18.26) is valid if, for a fixed p and m,

q < qmax =min�1−p� �1−p+m�/�1+2m���

There are now two cases:

q < qmax: Eq. (18.26) is valid and the degree distribution is a power law
and is scale-free.

q > qmax: Eq. (18.26) is invalid, and P�k� can be shown to behave like an
exponential distribution. The model now behaves like the ER and WS
models.

This is similar to the behavior seen in real networks – some networks show
a power law while others show an exponential tail – and a single model
can capture both behaviors by tuning the parameter q. The scale-free regime

SF

q

0
p0 1.0

1.0

E

Figure 18.18 Phase diagram for the extended Barabasi–Albert model [3]. SF denotes the scale-free
regime, which is enclosed by the thick border. E denotes the exponential regime that exists in the
remainder of the lower diagonal region of the graph. The plain line shows the boundary for m = 1,
having a y-axis intercept at 0.67.

727 18.16 Exercises

and the exponential regime are marked in the graph in Figure 18.18. The
boundary between the two regimes depends on the value of m and has slope
−m/�1+2m�. The area enclosed by thick lines shows the scale-free regime;
the dashed line is its boundary whenm→� and the dotted line is its boundary
when m→ 0.

18.15 Chapter summary

Peer-to-peer (P2P) networks allow equal participation and resource sharing
among the users. This chapter first analyzed the different types of P2P net-
works. Unstructured P2P networks are like Gnutella and BitTorrent. We stud-
ied different search mechanisms – flooding, constrained flooding, and blind
search – for such unstructured networks. We also examined some data replica-
tion strategies, and their impact on the search performance. The chapter then
studied three classical structured P2P networks – Chord, CAN, Tapestry –
all of which use the distributed hash table concept in their implementations.
Although all the three mechanisms differ, they are similar in that they repre-
sent different tradeoffs in search efficiency, i.e., path length, and the amount
of local storage for implementing the hash tables. The spectrum of P2P net-
works from unstructured to structured offer a wide range of tradeoffs for user
requirements. The chapter also examined issues such as fairness and trust
management. These issues are important because, in the P2P environment
where there is no control authority, the system must be able to autonomously
alllow for fairness.

The Internet, AS-AS level internets, and Web (WWW) overlays exhibit
some interesting properties about how they grow and evolve. Many network
overlays outside of computer science also exhibit the same properties. The
chapter studied several properties of the Internet and Web graphs. Then, in
a more general setting, the chapter examined random networks, small-world
networks, node degree distributions, scale-free networks, and the impact of
error and attack tolerance on such networks. Networks grow in an uncontrolled
fashion, yet there seems to be some underlying basis for such growth. Of the
several proposals to model the growth of networks, we studied the Barabasi–
Albert model, which appears to be promising in its applicability to not just
computer science networks, but also to networks in other disciplines and
natural phenomena.

18.16 Exercises

Exercise 18.1 (Replication) Derive the values of average search size A, Ai, and
utilization ui for square-root replication. The derived answers should match the entries
in Table 18.3.

728 Peer-to-peer computing and overlay graphs

Exercise 18.2 (Fault-tolerance in Chord) Adapt the code in Algorithm 18.3 so that
the nodes manage a successor list of � successors, rather than a single successor.

Exercise 18.3 (Chord) In the Chord protocol, assume that the successor list at each
node has �=��log n� nodes. Show the following:

1. If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, then Locate_Successor returns the closest functional successor node to
the key being searched with high probability.

2. If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, it takes O�log n� average-case time for Locate_Successor to complete.

Exercise 18.4 (CAN) Compute the time and message complexity of the distributed
region reassignment protocol that is run periodically by the CAN protocol.

Exercise 18.5 (CAN) Identify all the changes to the base CAN protocol to accommo-
date the optimization of overloading coordinate regions, discussed in Section 18.5.5.

Exercise 18.6 (Power law in the Internet [31]) Show that the number of edges l in
the Internet graph that obeys the power law for the rank exponent is given as follows.
Let the graph have n nodes and rank exponent �. Then:

l∼ 1
2��+1�

�1− 1
n�+1

�n�

Exercise 18.7 Show that Eq. (18.15) using the master-equation approach for the
degree distribution in the extended BA model can be solved as Eq. (18.16).

Exercise 18.8 Show that the solution to Eq. (18.22) for the degree distribution in the
extended BA model using continuum theory analysis is given by Eq. (18.25).

18.17 Notes on references

The introduction is based on the survey by Risson and Moors [29] and Androutsellis-
Theotokis and Spinellis [6]. The discussion on replication and search in unstructured
networks is based on Cohen and Shenker [12], and on Lv et al. [23], respectively.
Gnutella [16,17], Napster [25], and Freenet [10] are widely implemented commercial
P2P protocols. The Chord protocol was proposed by Stoica et al. [32]. The content
addressible network (CAN) was proposed by Ratnasamy et al. [27]. The design of
Tapestry [20, 21, 35, 36] and the related Pastry [30] overlay was based on the ideas
of Plaxton trees proposed by Plaxton et al. [26]. Tapestry built on the Plaxton trees by
providing better fault-tolerance and resilience in the face of node joins and departures.
The discussion on fundamental tradeoffs between routing table size and network
diameter is based on Xu et al. [34] and Ratnasamy et al. [28]. The BitTorrent system
was initially proposed by Cohen [11]. The discussion of trust management is based
on Gupta et al. [18, 19] and Aberer and Despotovic [1].

The discussion on the graph structures of complex networks is structured and based
on the excellent survey by Albert and Barabasi [4]. The discussion on power laws and
Zipf’s law is taken from the tutorial by Adamic [2]. The power laws for the Internet

729 References

were discovered by Siganos and the Faloutsos brothers [31]. The discussion on the
betweenness centrality metric for graphs is based on the work by Goh et al. [15].
The random graphs model was proposed and analyzed by Erdos and Renyi [14].
Further results on the properties on random graphs were given by Bollobas [8, 9].
The small worlds model was proposed by Watts and Strogatz [33]. The extended
Barabasi–Albert model for graph evolution was given by Albert and Barabasi [3].
The analysis of error and attack tolerance on exponential networks and on scale-free
networks was done by Albert et al. [5].

References

[1] K. Aberer and Z. Despotovic, Managing trust in a peer-to-peer information
system, Proceedings of the 10th International Conference on Information and
Knowledge Management, Atlanta, Georgia, USA, November 2001, 310–317.

[2] L. Adamic, Zipf, Power-Laws, and Pareto – A Ranking Tutorial, available online
at: www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

[3] R. Albert and A.-L. Barabasi, Topology of evolving networks: local events and
universality, Physical Review Letters, 85(24), 2000, 5234–5237.

[4] R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks, Review
of Modern Physics, 74(1), 2002, 47–97.

[5] R. Albert, H. Jeong, and A. Barabasi, Error and attack tolerance of complex
networks, Nature, 406, 2000, 378–381.

[6] S. Androutsellis-Theotokis and D. Spinellis, A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys, 36(4), 2004, 335–371.

[7] A.-L. Barabasi and R. Albert, Emergence of scaling in random networks, Science,
286, 1999, 509–512.

[8] B. Bollobas, Degree sequences of random graphs, Discrete Math, 33, 1981, 1–9.
[9] B. Bollobas, Random Graphs, London, Academic Press, 1985.

[10] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, Freenet: a distributed anony-
mous information storage and retrieval system, Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, July 2000, 46–66.

[11] B. Cohen, Incentives Build Robustness in BitTorrent, available online at:
www.bittorrent.com/bittorrentecon.pdf.

[12] E. Cohen and S. Shenker, Replication strategies in unstructured peer-to-peer
networks, ACM SIGCOMM, 2002, 177–190.

[13] S. Dogorotsev, J. Mendes, and A. Samukhin, Structure of growing networks:
exact solution of the Barabasi–Albert model, Physical Review Letters, 85, 2000,
4633–4636.

[14] P. Erdos and A. Renyi, Random graphs. 6, 1959, 290–.
[15] K. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim, Classification of scale-free

networks, Proceedings of the National Academy of Sciences, 2002.
[16] Gnutella, www.gnutella.com/.
[17] The Gnutella protocol specification, available online at: www9.limewire.

com/developer/gnutella_protocol_0.4.pdf.
[18] M. Gupta, P. Judge, and M. Ammar, A reputation system for peer-to-peer net-

works, Proceedings of the 13th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video, Monterey, CA, June 2003,
144–152.

730 Peer-to-peer computing and overlay graphs

[19] M. Gupta, M. H. Ammar, and M. Ahamad, Trade-offs between reliability and
overheads in peer-to-peer reputation tracking, Computer Networks, 50(4), 2006,
501–522.

[20] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao, Distributed object location
in a dynamic network, Proceedings of ACM SPAA 2002, 41–52.

[21] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y. Zhao, Distributed object location
in a dynamic network, Theory of Computing Systems, 37, 2004, 405–440.

[22] P. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random
networks, Physical Review Letters, 85, 2000, 4629–4632.

[23] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, Search and replication in unstruc-
tured peer-to-peer networks, International Conference on Supercomputing, 2002,
84–95.

[24] S. Milgram, The small world problem, Psychology Today, 1(2), 1967, 60–67.
[25] Napster, www.napster.com/.
[26] C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing nearby copies of

replicated objects in a distributed environment, Proceedings of ACM SPAA 1997,
311–320.

[27] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker, A scalable
content-addressable network, Proceedings of ACM SIGCOMM 2001, 161–172.

[28] S. Ratnasamy, I. Stoica, and S. Shenker, Routing algorithms for DHTs: some
open questions, Proceedings of IPTPS 2002, 45–52.

[29] J. Risson and T. Moors, Survey of research towards robust peer-to-peer networks:
search methods, Computer Networks, 50(17), 2006, 3485–3521.

[30] A. Rowstron and P. Druschel, Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems, Proceedings of the IFIP/ACM Mid-
dleware 2001, Heidelberg, Germany, November 2001, 329–350.

[31] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, Power laws and the AS-
level internet topology, IEEE/ACM Transactions on Networking, 11(4), 2003,
514–524.

[32] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.F. Kaashoek, F. Dabek,
and H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet
applications, IEEE Transactions on Networking, 11(1), 2003, 17–31.

[33] D. J. Watts and S. H. Strogatz, Collective dynamics of “Small World” networks,
Nature, No. 393, 1998, 440–442.

[34] J. Xu, A. Kumar, and X. Yu, On the fundamental tradeoffs between routing table
size and network diameter in peer-to-peer networks, IEEE Journal on Selected
Areas in Communications, 22(1), 2004, 151–163.

[35] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
Tapestry: a resilient global-scale overlay for service deployment, IEEE Journal
on Selected Areas in Communications, 22(1), 2004, 41–53.

[36] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, Tapestry: An Infrastructure for
Fault-Resilient Wide-Area Location and Routing, Technical Report UC Berkeley,
CSD-01-1141, University of California at Berkeley, Berkeley, CA, 2001.

