Bernstein's Theorem in Affine Space*

B. Huber ${ }^{1}$ and B. Sturmfels ${ }^{2}$
${ }^{1}$ Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
birk@math.cornell.edu
${ }^{2}$ Department of Mathematics, University of California, Berkeley, CA 94720, USA
bernd@math.berkeley.edu

Abstract

The stable mixed volume of the Newton polytopes of a polynomial system is defined and shown to equal (generically) the number of zeros in affine space \mathbf{C}^{n}. This result refines earlier bounds by Rojas, Li, and Wang [5], [7], [8]. The homotopies in [4], [9], and [10] extend naturally to a computation of all isolated zeros in \mathbf{C}^{n}.

Our object of study is a system $F=\left(f_{1}, \ldots, f_{n}\right)$ of polynomial equations of the form

$$
\begin{equation*}
f_{i}=\sum_{\mathbf{q} \in \mathcal{A}_{i}} c_{i, \mathbf{q}} \cdot \mathbf{x}^{\mathbf{q}}, \quad \text { where } \quad c_{i, \mathbf{q}} \in \mathbf{C}^{*} \quad \text { and } \quad \mathbf{x}^{\mathbf{q}}=x_{1}^{\mathbf{q}_{1}} \cdots x_{n}^{\mathbf{q}_{n}} \tag{1}
\end{equation*}
$$

Here \mathcal{A}_{i} is a finite subset of \mathbf{N}^{n}, called the support of f_{i}, and $Q_{i}=\operatorname{conv}\left(\mathcal{A}_{i}\right)$ is the Newton polytope of f_{i}. The mixed volume $\mathcal{M}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ is the coefficient of $l_{1} l_{2} \cdots l_{n}$ in the homogeneous polynomial $\operatorname{Vol}\left(l_{1} Q_{1}+\cdots+l_{n} Q_{n}\right)$, where Vol is the Euclidean volume, and

$$
\begin{equation*}
Q_{1}+\cdots+Q_{n}:=\left\{x_{1}+\cdots+x_{n} \in \mathbf{R}^{n}: x_{i} \in Q_{i} \text { for } i=1, \ldots, n\right\} \tag{2}
\end{equation*}
$$

denotes the Minkowski sum of polytopes [2]. The following toric root count is well known.

Theorem 1 (Bernstein's Theorem [1]). The number of isolated zeros of F in $\left(\mathbf{C}^{*}\right)^{n}$ is bounded above by $\mathcal{M}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$. This bound is exact for generic choices of the coefficients $c_{i, \mathbf{q}}$.

[^0]In many situations, studying all zeros of F in affine space \mathbf{C}^{n}, not just those in the algebraic torus $\left(\mathrm{C}^{*}\right)^{n}$, is preferred. Li and Wang [5] have shown that the number of isolated roots in \mathbf{C}^{n} is bounded above by $\mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \ldots, \mathcal{A}_{n} \cup\{0\}\right)$. Rojas [7] has given an alternative bound on the number of roots in $\mathbf{C}_{l}=\left\{\mathbf{x} \in \mathbf{C}^{n}: x_{i}=0\right.$ only if $\left.i \in I\right\}$, where $I \subseteq\{1, \ldots, n\}$. Note that $\mathbf{C}_{I} \cong\left(\mathbf{C}^{*}\right)^{n-\# I} \times \mathbf{C}^{\# I}$. Our result sharpens the bounds given in [5], [7], and [8].

Theorem 2. The number of isolated zeros of F in C_{I} is bounded above by the I-stable mixed volume $\mathcal{S M} \mathcal{M}_{I}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$. This bound is exact for generic choices of coefficients $c_{i, \mathbf{q}}$, provided F has only finitely many roots in \mathbf{C}_{I} (see Lemma 5).

To define the I-stable mixed volume we modify the process of computing the $\mathrm{Li}-\mathrm{Wang}$ bound $\mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \ldots, \mathcal{A}_{n} \cup\{0\}\right)$ by subdivisions as in [4]. Let $P_{i}=\operatorname{conv}\left(\mathcal{A}_{i} \cup\{0\}\right)$ and $\hat{P}_{i}=\operatorname{conv}\left(\left\{\left(\mathbf{q}, \omega_{i}(\mathbf{q})\right) \in \mathbf{N}^{n+1}: \mathbf{q} \in \mathcal{A}_{i} \cup\{0\}\right\}\right)$, where ω_{i} is the function which maps each point of \mathcal{A}_{i} to zero and, if $0 \notin \mathcal{A}_{i}$, lifts the zero vector 0 to one. A lower face of a polytope in \mathbf{R}^{n+1} is a face which has an inner normal with positive $(n+1)$ st coordinate. The lower facets \hat{C} of the Minkowski sum $\hat{P}_{1}+\cdots+\hat{P}_{n}$ are themselves sums $\hat{C}=\hat{C}_{1}+\cdots+\hat{C}_{n}$, where each \hat{C}_{i} is a lower face of \hat{P}_{i}. Let $\left(\gamma^{C}, 1\right)=\left(\gamma_{1}^{C}, \ldots, \gamma_{n}^{C}, 1\right)$ be the unique inner normal of \hat{C} whose last coordinate is equal to one, and set $C_{i}:=\pi\left(\hat{C}_{i}\right)$, where π is the projection from \mathbf{R}^{n+1} onto \mathbf{R}^{n} deleting the last coordinate. The collection

$$
\begin{equation*}
\Delta_{\omega}=\left\{C_{1}+\cdots+C_{n}: \hat{C} \text { is a lower facet of } \hat{P}_{1}+\cdots+\hat{P}_{n}\right\} \tag{3}
\end{equation*}
$$

is the polyhedral subdivision of $P_{1}+\cdots+P_{n}$ induced by the lifting function ω. An element of Δ_{ω} is called a cell. A cell C of Δ_{ω} is called I-stable if the vector γ^{C} is nonnegative, and in addition $\gamma_{i}^{C}>0$ only if $i \in I$. We define the I-stable mixed volume $\mathcal{S} \mathcal{M}_{I}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ to be the sum of the mixed volumes $\mathcal{M}\left(C_{1}, \ldots, C_{n}\right)$ where $C=C_{1}+\cdots+C_{n}$ runs over all I-stable cells of Δ_{ω}.

Since the points of \mathcal{A}_{i} remain unlifted under ω, the $\operatorname{sum} \operatorname{conv}\left(\mathcal{A}_{1}\right)+\cdots+\operatorname{conv}\left(\mathcal{A}_{n}\right)$ appears as a cell C in the subdivision Δ_{ω}. In fact, it is the unique cell C with $\gamma^{C}=0$. Thus the \emptyset-stable mixed volume $\mathcal{S} \mathcal{M}_{\emptyset}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ is just the mixed volume $\mathcal{M}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right)$ in Theorem 1. On the other extreme, summing the mixed volumes $\mathcal{M}\left(C_{1}, \ldots, C_{n}\right)$ over all cells of Δ_{ω} yields $\mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \ldots, \mathcal{A}_{n} \cup\{0\}\right)$. It follows that, for all I,

$$
\begin{equation*}
\mathcal{M}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right) \leq \mathcal{S} \mathcal{M}_{I}\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right) \leq \mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \ldots, \mathcal{A}_{n} \cup\{0\}\right) \tag{4}
\end{equation*}
$$

Example 3. The inequalities in (4) are generally strict. Consider the bivariate system

$$
\begin{equation*}
a y+b y^{2}+c x y^{3}=d x+e x^{2}+f x^{3} y=0 \tag{5}
\end{equation*}
$$

whose support sets (solid points) are pictured in Fig. 1 along with the subdivision Δ_{ω} tabulated in Table 1. There are, in fact, $S M_{\{1,2\}}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)=6$ isolated roots in \mathbf{C}^{n}, while the Li -Wang bound, $\mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \mathcal{A}_{2} \cup\{0\}\right)=8$, overcounts by two roots. Finally the $\{1\}$ - and $\{2\}$-stable mixed volumes are both 4 , and the \emptyset-stable mixed volume $\mathcal{M}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)=3$. The geometric process of inducing the mixed subdivision in Fig. 1 is depicted in Fig. 2.

Fig. 1. An example in two dimensions.

Proof of Theorem 2. We deform the given system $F=\left(f_{1}, \ldots, f_{n}\right)$ by a homotopy

$$
h_{i}(\mathbf{x}, t):=\left\{\begin{array}{ll}
c_{i, 0} \cdot t+f_{i}(\mathbf{x}) & \text { if } 0 \notin \mathcal{A}_{i} \tag{6}\\
f_{i}(\mathbf{x}) & \text { if } 0 \in \mathcal{A}_{i}
\end{array} \quad(i=1,2, \ldots, n) .\right.
$$

All coefficients $c_{i, 0}$ and $c_{i, q}$ are assumed to be sufficiently generic in the sense of Theorem 1. By Bernstein's theorem, for all but finitely many t, the system (6) has $\mathcal{M}\left(\mathcal{A}_{1} \cup\{0\}, \ldots, \mathcal{A}_{n} \cup\{0\}\right)$ zeros in the torus $\left(\mathbf{C}^{*}\right)^{n}$. For $t \neq 0$ it has no zeros in $\mathbf{C}^{n} \backslash\left(\mathbf{C}^{*}\right)^{n}$. We study the zeros of (6) as algebraic functions $\mathbf{x}(t)$ as the parameter t tends to zero [6]. As was shown in Lemma 2.2 of [5], every isolated zero x of F in \mathbf{C}^{n} is the limit $\mathbf{x}=\lim _{t \rightarrow 0} \mathbf{x}(t)$ of one of the branches $\mathbf{x}(t)$. Hence to prove Theorem 2, we must count how many of the branches $\mathbf{x}(t)$ converge as $t \rightarrow 0$.

In Lemma 3.1 of [4] it was shown that the Puiseux expansion about $t=0$ for each of the branches of the algebraic function $\mathbf{x}(t)$ has the form

$$
\begin{equation*}
\mathbf{x}(t)=\left(z_{1} \cdot t^{\gamma_{1}^{c}}, \ldots, z_{n} \cdot t^{\gamma_{n}^{c}}\right)+\text { higher-order terms in } t, \tag{7}
\end{equation*}
$$

where $\gamma^{C} \in \mathbf{Q}^{n}$ is the normal vector for some cell C of Δ_{ω}, and $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$ is a solution of the restriction of (6) to C. In other words, the vector z is a root of

$$
\begin{equation*}
\sum_{\mathbf{q} \in \mathcal{C}_{i} \cap \mathcal{A}_{i}} c_{i, \mathbf{q}} \cdot \mathbf{z}^{\mathbf{q}}=0 \quad(i=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

Table 1. Cells of Δ_{ω}.

C	γ^{C}	$\mathcal{M}(C)$	$\{1,2\}$-stable
$(\{a, c, 0\},\{f\})$	$(-2,1)$	0	No
$(\{a, 0\},\{d, e\})$	$(0,1)$	1	Yes
$(\{a, 0\},\{e, f\})$	$(-1,1)$	1	No
$(\{b, c\},\{d, 0\})$	$(1,-1)$	1	No
$(\{a, b\},\{d, 0\})$	$(1,0)$	1	Yes
$(\{a, 0\},\{d, 0\})$	$(1,1)$	1	Yes
$(\{c\},\{d, f, 0\})$	$(1,-2)$	0	No
$(\{a, b, c\},\{d, e, f\})$	$(0,0)$	3	Yes

Fig. 2. Inducing the polyhedral subdivision $\Delta_{\boldsymbol{\omega}}$.

By Bernstein's theorem, each cell C contributes $\mathcal{M}(C)$ branches of the form (7). A branch converges to an affine solution as $t \rightarrow 0$ precisely when all the exponents γ_{i}^{C} are nonnegative, while the i th coordinate of such a solution can only vanish when $\gamma_{i}^{C}>0$. The rest of the theorem now follows by a simple deformation argument.

The construction in the proof of Theorem 2 gives rise to the following algorithm.

Algorithm 4 (Homotopy method for finding all roots of a sparse system F in \mathbf{C}_{I}).
(1) Find the I-stable mixed cells of Δ_{ω} and their normals γ^{C} (using the methods in [4] and [10]).
(2) For each I-stable mixed cell C :
(a) Compute all solutions z of (8) (using Algorithm 4.1 of [4]).
(b) For each solution z in (a) set z_{i} to zero if $\gamma_{i}^{C}>0$.

We close with a sufficient (but not necessary) condition for the hypothesis in the second part of Theorem 2. Lemma 5 appears in a different guise in Proposition 1.4 of [3]. The containment " $f_{i} \in\left\langle x_{j}: j \in J\right\rangle$ " is equivalent to the combinatorial condition "supp $(\mathbf{q}) \cap J \neq \emptyset$ for each $\mathbf{q} \in \mathcal{A}$." A more complicated but necessary and sufficient condition is presented in Lemma 3 of [8].

Lemma 5. The system F has only finitely many zeros in \mathbf{C}_{I} if, for each subset J of I,

$$
\begin{equation*}
\# J \geq \#\left\{i \in\{1, \ldots, n\}: f_{i} \in\left\langle x_{j}: j \in J\right\rangle\right\} \tag{9}
\end{equation*}
$$

Proof. We abbreviate $O_{J}:=\left\{\mathbf{x} \in \mathbf{C}^{n}: x_{j}=0\right.$ if and only if $\left.j \in J\right\}$. Note that $O_{J} \simeq$ $\left(\mathbf{C}^{*}\right)^{n-\# J}$ and $\mathbf{C}_{I}=U_{J \subseteq I} O_{J}$. Let n_{J} be the cardinality on the right-hand side of (9). The restriction of f_{i} to O_{J} is zero precisely when f_{i} lies in the ideal $\left\langle x_{j}: j \in J\right\rangle$. Thus the restriction of F to O_{J} is a system of $n-n_{J}$ nonzero Laurent polynomials in $n-\# J \leq n-n_{J}$ variables. Theorem 1 ensures that it has at most finitely many zeros in O_{J}.

References

1. D. N. Bernstein: The number of roots of a system of equations, Functional Analysis and Its Applications 9 (1975), 1-4.
2. T. Bonnesen and W. Fenchel: Theory of Convex Bodies, BCS Associates, Moscow, ID, 1987.
3. D. Eisenbud and B. Sturmfels: Finding sparse systems of parameters, Journal of Pure and Applied Algebra 94 (1994), 143-157.
4. B. Huber and B. Sturmfels: A polyhedral method for solving sparse polynomial systems, Mathematics of Computation, 64 (1995), 1541-1555.
5. T. Y. Li and X. Wang: The BKK root count in $\mathbf{C}^{\boldsymbol{n}}$, Mathematics of Computation, to appear.
6. J. Maurer: Puiseux expansions for space curves, Manuscripta Mathematica 32 (1980), 91-100.
7. M. Rojas: A convex geometrical approach to counting the roots of a polynomial system, Theoretical Computer Science 133 (1994), 105-140.
8. M. Rojas and X. Wang: Counting affine roots of polynomial systems via pointed Newton polytopes, Journal of Complexity, to appear.
9. J. Verschelde, P. Verlinden, and R. Cools: Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM Journal on Numerical Analysis, 31 (1994), 915-930.
10. J. Verschelde, K. Gatermann, and R. Cools: Mixed volume computation by dynamic lifting applied to polynomial system solving, Discrete and Computational Geometry, to appear.

Received February 21, 1995, and in revised form August 10, 1995.

[^0]: * This research was supported by the David and Lucile Packard Foundation and the National Science Foundation.

