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Abstract. The stable mixed volume of the Newton polytopes of a polynomial system is 
defined and shown to equal (generically) the number of zeros in affine space C". This result 
refines earlier bounds by Rojas, Li, and Wang [5], [7], [8]. The homotopies in [4], [9], and 
[ 10] extend naturally to a computation of all isolated zeros in C ". 

Our object of  study is a system F = ( f l  . . . . .  f . )  of  polynomial equations of  the form 

f i =  ~ C i , q ' X  q, where Ci,q~C* and x q = x ~ ' . . . x ~ " .  (1) 
q~l.i  

Here .4i is a finite subset of  N n, called the support of .~, and Qi = conv(.4D is the 
Newton polytope of f,.. The mixed volume .A4 (.41 . . . . .  .An) is the coefficient of  l112"-" In 
in the homogeneous polynomial Vol(ll Ql + "'" + l, Q.) ,  where Vol is the Euclidean 
volume, and 

Q l + . . . + Q . : = { X l + . . . + x ~ E R ~ : x i E Q i f o r i = l  . . . . .  n} (2) 

denotes the Minkowski sum of polytopes [2]. The following toric root count is well 
known. 

Theorem 1 (Bernstein's Theorem [1]). The number of isolated zeros of F in (C*)" 
is bounded above by .M(`41 . . . . .  .4.). This bound is exact for generic choices of the 
coefficients Ci,q. 

* This research was supported by the David and Lucile Packard Foundation and the National Science 
Foundation. 
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In many situations, studying all zeros of F in affine space C,', not just those in 
the algebraic torus (C*) n, is preferred. Li and Wang [5] have shown that the number of 
isolated roots in C," is bounded above by .A4 (.41 U {0} . . . . .  .An U {0}). Rojas [7] has given 
an alternative bound on the number of roots in Ct = {x e C,': xi = 0only i f / e  I}, 
where I _ {1 . . . . .  n}. Note that CI - (C*) ,'-#1 x C #t. Our result sharpens the bounds 
given in [5], [7], and [8]. 

Theorem 2. The number of isolated zeros of F in CI is bounded above by the l-stable 
mixed volume S M  t (,41 . . . . .  ,4,'). This bound is exact for generic choices of coefficients 
Ci,q, provided F has only finitely many roots in Ct (see Lemma 5). 

To define the 1-stable mixed volume we modify the process of computing the Li-Wang 
bound .M(,41 U {0}, . . . .  .An U {0}) by subdivisions as in [4]. Let Pi = conv(Ai U {0}) 
and/3i = conv({(q, w/(q)) ~ N~+1: q ~ Ai U {0}}), where wi is the function which 
maps each point of ,4 i  to zero and, if 0 r , 4 ,  lifts the zero vector 0 to one. A lower 
face of a polytope in R n+l is a face which has an inner normal with positive (n + 1)st 
coordinate. The lower facets C of the Minkowski sum t31 + . - .  +/~," are themselves sums 

~-- C1-]- '"  "+C,' ,whereeachCiisalowerfaceoffii .Let(y c, 1) = (yc  . . . . .  yc ,  1)be 

the unique inner normal of (7 whose last coordinate is equal to one, and set Ci := zr ((7i), 
where Jr is the projection from R n+l onto R n deleting the last coordinate. The collection 

Ato = {C 1 + . . .  -~- C n" C is a lower facet o f  1~1 -[- "" �9 + / ~ n  } (3) 

is the polyhedral subdivision of PI + "'" + P," induced by the lifting function o9. An 
element of A,o is called a cell. A cell C of A,o is called 1-stable if the vector y c  is 
nonnegative, and in addition yi c > 0 only if i ~ I. We define the 1-stable mixed 
volume S.Mt(,41 . . . . .  .4,') to be the sum of the mixed volumes M(CI  . . . . .  C,') where 
C = Cl + . . .  + C," runs over all 1-stable cells of Ao~. 

Since the points of .4i remain unlifted under w, the sum conv(.41) + . . -  + conv(.4n) 
appears as a cell C in the subdivision Ao~. In fact, it is the unique cell C with y c  = 0. Thus 
the 0-stable mixed volume S M ~  (.41 . . . . .  .4,') is just the mixed volume M (.41 . . . . .  .An) 
in Theorem 1. On the other extreme, summing the mixed volumes M(CI  . . . . .  C,') over 
all cells of A,o yields M(,41 U {0} . . . . .  An U {0}). It follows that, for all I, 

.M(,..41 . . . . .  .An)  <7 8 . . ~ / ( . , 4 1  . . . . .  .an) < .M(,41U {0} . . . . .  ,,4.,, U {0}). (4) 

Example 3. The inequalities in (4) are generally strict. Consider the bivariate system 

ay + by 2 -t- cxy 3 = dx + ex 2 + f x3y = 0, (5) 

whose support sets (solid points) are pictured in Fig. 1 along with the subdivision Ao~ 
tabulated in Table 1. There are, in fact, SMI1.2}(,4j, ,42) = 6 isolated roots in C,', 
while the Li-Wang bound, M(,41 U {0}, ,42 U {0}) = 8, overcounts by two roots. 
Finally the { 1 }- and {2}-stable mixed volumes are both 4, and the 0-stable mixed volume 
M(,41, ,42) = 3. The geometric process of inducing the mixed subdivision in Fig. 1 is 
depicted in Fig. 2. 
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Fig. 1. An example in two dimensions. 
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Proof  o f  Theorem 2. We deform the given system F = ( f l  . . . . .  fn) by a homotopy 

ICi,o't+fi(x) if 0 r  
hi(x, t) := [ fi(x) if 0 e Ai (i = 1,2 . . . . .  n). (6) 

All coefficients ci,o and Ci,q are assumed to be sufficiently generic in the sense of  
Theorem 1. By Bernstein's theorem, for all but finitely many t, the system (6) has 
Ad(A] U {0} . . . . .  An u {0}) zeros in the toms (C*)". For t # 0 it has no zeros in 
Cn\(C*) n. We study the zeros of  (6) as algebraic functions x(t) as the parameter t tends 
to zero [6]. As was shown in Lemma 2.2 of  [5], every isolated zero x of  F in C" is the 
limit x = l imi t0  x(t) of one of  the branches x(t). Hence to prove Theorem 2; we must 
count how many of the branches x(t) converge as t ~ 0. 

In Lemma 3.1 of  [4] it was shown that the Puiseux expansion about t = 0 for each of  
the branches of  the algebraic function x(t) has the form 

x(t) = (zl �9 t yc . . . .  , z,  �9 t y'c) + higher-order terms in t, (7) 

where y c  �9 Qn is the normal vector for some cell C of  A~o, andz  = (zl . . . . .  zn) �9 (C*)" 
is a solution of  the restriction of (6) to C. In other words, the vector z is a root of  

E Ci,q'Z q = 0  ( i =  1,2 . . . . .  n) (8) 
q~Ci NAi 

Table 1. Cells of A,,,. 

C yc .A..I (C) { 1,2}-stable 

({a, c, 0}, {f}) (-2, I) 0 No 
({a, 0}, {d, e}) (0, 1) 1 Yes 
({a, 0}, {e, f}) (-1, 1) 1 No 
({b,c},{d,O}) ( l , -1)  l No 
({a, b}, {d, 0]) (1,0) 1 Yes 
({a, 0}, {d, 0}) (I, 1) 1 Yes 
({c}, {d, f, 0}) (l, -2) 0 No 
({a, b, c}, {d, e, f}) (0, 0) 3 Yes 
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Fig. 2. Inducing the polyhedral subdivision A~o. 

By Bernstein's theorem, each cell C contributes .A4(C) branches of the form (7). A 
branch converges to an affine solution as t ~ 0 precisely when all the exponents yi c are 
nonnegative, while the ith coordinate of such a solution can only vanish when yi c > O. 

The rest of the theorem now follows by a simple deformation argument. [] 

The construction in the proof of Theorem 2 gives rise to the following algorithm. 

Algorithm 4 (Homotopy method for finding all roots of a sparse system F in C l ) .  

(1) Find the/-stable mixed cells of Ao, and their normals yC (using the methods in 
[4] and [10]). 

(2) For each/-stable mixed cell C: 
(a) Compute all solutions z of (8) (using Algorithm 4.1 of [4]). 
(b) For each solution z in (a) set zi to zero if yi c > O. 

We close with a sufficient (but not necessary) condition for the hypothesis in the 
second part of Theorem 2. Lemma 5 appears in a different guise in Proposition 1.4 of 
[3]. The containment "f/  ~ (xj: j ~ J )"  is equivalent to the combinatorial condition 
"supp(q) ~ J ~ 13 for each q ~ .A" A more complicated but necessary and sufficient 
condition is presented in Lemma 3 of [8]. 

Lemma 5. The system F has only finitely many zeros in Ct if, for each subset J of I, 

#J >_ #{i E {I ..... n}: j~ E (xj: j E J)}. (9) 

Proof. We abbreviate Os := {x ~ Cn: xj = 0 if and only i f j  ~ J}. Note that Os ~- 
(C*) n-#J and CI = Ujcl Oj. Let n j  be the cardinality on the right-hand side of (9). The 
restriction of j~ to Oj  is zero precisely when j~ lies in the ideal (xj: j e J). Thus the 
restriction of F to Oj is a system o f n - n j  nonzero Laurent polynomials in n - # J  <_ n - n j  
variables. Theorem 1 ensures that it has at most finitely many zeros in Oj .  [] 
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