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Contemporary Mathematis

Curves, Surfaes, and Syzygies

David Cox

Abstrat. This artile surveys reent work with Sederberg, Chen, Goldman,

Zhang, Shenk, Bus�e and D'Andrea on how syzygies an be used to impliitize

rational urves and surfaes. There are also non-tehnial disussions of loal

omplete intersetions, regularity, and saturation.

Introdution

The purpose of this paper is to survey some reent work on the use of syzygies to

give determinantal formulas for the equations of parametrized urves and surfaes.

The paper is organized into �ve setions as follows, where the parentheses indiate

the joint authors involved.

1. Curves (with Sederberg and Chen [8℄)

2. Surfaes without Base Points (with Goldman and Zhang [6℄)

3. Base Points (with Shenk [5℄)

4. Saturation and Regularity

5. Surfaes with Base Points (with Bus�e and D'Andrea [2℄)

One of my goals is to illustrate how the geometri modeling ommunity is asking

interesting and nontrivial questions whih involve some surprisingly sophistiated

ommutative algebra. Setions 1 and 2 are based on [4℄ while Setions 3 and 5

report on subsequent developments. Setion 4 is devoted to a disussion of the

onepts of saturation and regularity.

1. Curves

For urves, the goal is to �nd the impliit equation of a parametrized urve in

the projetive plane P

2

. This means that we want to impliitize a parametrization

of the form

(1.1)

� : P

1

�! P

2

�(s; t) =

�

a(s; t); b(s; t); (s; t)

�

;

where a; b;  are homogeneous of degree n and gd(a; b; ) = 1. In this paper, we will

work over the omplex numbers C . Thus a; b;  lie in the polynomial ring C [s; t℄,

1991 Mathematis Subjet Classi�ation. Primary 14Q10; Seondary 13D02, 14Q05, 65D17.
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2 DAVID COX

and the gd ondition implies that we have no base points to worry about. This is

one of the really nie features of the urve ase.

In pratie, impliitization of urves and surfaes an be done by any of the

three following methods:

� Gr�obner Bases

� Resultants

� Syzygies

This paper will onentrate on the third of these methods.

Moving Lines. A moving line in P

2

is an equation of the form

A(s; t)x +B(s; t)y + C(s; t)z = 0;

for A;B;C are homogeneous of the same degree. We say that the moving line

follows � from (1.1) if

A(s; t)a(s; t) +B(s; t)b(s; t) + C(s; t)(s; t) � 0;

where� 0 means vanishes identially. In algebrai geometry, one says that (A;B;C)

is a syzygy on (a; b; ). This is written

(A;B;C) 2 Syz(a; b; );

where Syz(a; b; ) is the syzygy module of (a; b; ). Note that Syz(a; b; ) is a module

over the ring C [s; t℄. We also let

Syz(a; b; )

k

denote the set of syzygies (A;B;C) where A;B;C are homogeneous of degree k.

Thus Syz(a; b; )

k

is a vetor spae over C . We say that elements of Syz(a; b; )

k

are moving lines of degree k that follow �.

There is one degree whih is espeially important.

Claim 1.1. The moving lines of degree n�1 that follow � determine the impliit

equation of the parametrization �.

To see why this is true, let R = C [s; t℄ and let R

k

denote the vetor spae of

homogeneous polynomials in R of degree k. Then Syz(a; b; )

n�1

is the kernel of

the map

(1.2) R

3

n�1

| {z }

dim 3n

(a;b;)

����! R

2n�1

| {z }

dim 2n

given by dot produt with (a; b; ). Later we will show that this map has maximal

rank. Assuming this, we an �nd n linearly independent moving lines of degree

n� 1, say (A

i

; B

i

; C

i

), i = 0; : : : ; n� 1. Sine eah A

i

; B

i

; C

i

is a polynomial in s; t,

we an write this moving line as

A

i

x+B

i

y + C

i

z =

n�1

X

j=0

L

ij

(x; y; z)s

j

t

n�1�j

;

where L

ij

(x; y; z) is a linear form in the homogeneous oordinates x; y; z of P

2

.

Then we have the following result proved in [8℄.

Theorem 1.2. The impliit equation of � is F = 0, where

F

h

= det(L

ij

(x; y; z))

and h is the generi degree of � : P

1

! P

2

.
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Note that (L

ij

(x; y; z)) is an n�nmatrix of linear forms, so that its determinant

has degree n in x; y; z. This is exatly the degree that we would expet in this ase.

The Hilbert Syzygy Theorem. The next step is to look a little more deeply

into the ommutative algebra involved in this situation. Let I = ha; b; i � R =

C [s; t℄. Then I is an ideal of R and we have an exat sequene

(1.3) 0 �! Syz(a; b; ) �! R(�n)

3

(a;b;)

����! I �! 0:

This is standard notation in ommutative algebra. Sine R(�n)

3

! I sends

(A;B;C) toAa+Bb+C, the exatness of (1.3) simply restates the known fats that

I is generated by a; b;  and that Syz(a; b; ) is the kernel of the map R(�n)

3

! I ,

i.e., Syz(a; b; ) is the syzygy module.

The notation R(�n) in (1.3) means that we are shifting degrees by �n to

ompensate for the fat that multipliation by a; b;  shifts degrees by +n. Thus

R(�n)

k

= R

k�n

, so that in (1.3), (A;B;C) 2 R(�n)

3

k

means that A;B;C have

degree k�n and hene Aa+Bb+C has degree k. It follows that dot produt with

(a; b; ) maps R(�n)

3

k

to I

k

, i.e., this map preseves degrees. This is why notation

like R(�n) is standard in ommutative algebra.

The Hilbert Syzygy Theorem desribes the struture of free resolutions of ho-

mogeneous ideals in polynomial rings. In the ase of two variables, the Syzygy

Theorem implies that the syzygy module Syz(a; b; ) in (1.3) is free, meaning that

every element of the module an be expressed uniquely as a sum of basis elements

multipled by elements of R. Furthermore, using the Hilbert polynomial, one an

show that

(1.4) Syz(a; b; ) ' R(�n� �

1

)�R(�n� �

2

); �

1

+ �

2

= n:

The details of this argument an be found in [8℄. In more down-to-earth terms,

the above isomorphism means that if we set � = �

1

� �

2

= n � �, then there are

syzygies p; q 2 Syz(a; b; ) suh that

Syz(a; b; ) = R p

|{z}

deg �

� R q

|{z}

deg n��

:

We all p; q a �-basis of the parametrization (1.1).

The existene of a �-basis has some strong onsequenes. For example, it

implies that every syzygy of degree n� 1 an be written uniquely as

(1.5) h

1

|{z}

deg n���1

p + h

2

|{z}

deg ��1

q:

Sine there are n � � (resp. �) linearly independent hoies for h

1

(resp. h

2

), it

follows that there are preisely n linearly independent moving lines of degree n� 1

that follow �. Thus (1.2) has maximal rank, as laimed earlier.

Another interesting aspet of (1.5) is that if we let h

1

(resp. h

2

) range over all

monomials of degree n��� 1 (resp. �� 1), then the matrix (L

ij

(x; y; z)) beomes

the Sylvester matrix of p and q. Thus we get the following orollary of Theorem 1.2.

Corollary 1.3. If p; q is a �-basis of the parametrization �, then

Res(p; q) = F

h

;

where F = 0 is the impliit equation of the urve and h is the generi degree of �.
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As explained in [8℄, it is also possible to express F

h

as a (n � �) � (n � �)

determinant with

n� 2� linear rows built from p; and

� quadrati rows built from the Bezoutian of p; q:

More generally, expressing impliit equations and resultants as \mixed" determi-

nants of the above type is an ative area of researh.

Regularity. We should also mention that the existene of a �-basis tells us

about the regularity of the ideal I = ha; b; i. Here, the regularity of I , denoted

reg(I), means the following. Sine a; b;  2 R = C [s; t℄ have no ommon zeros, then

setting t = 1 gives polynomials ~a(s) = a(s; 1);

~

b(s) = b(s; 1); ~(s) = (s; 1) in C [s℄

with no ommon zeros. By the Nullstellensatz, it follows that ~a;

~

b; ~ generate the

unit ideal of C [s℄, i.e., h~a;

~

b; ~i = C [s℄.

In the homogeneous ase, I = ha; b; i an't equal R = C [s; t℄ sine elements of

I have degree at least n. However, it is true that I

k

= R

k

for k suÆiently large

(this follows from the projetive Nullstellensatz). But what does \suÆiently large"

mean? For ideals without base points, this is exatly what regularity tells us. In

other words, reg(I) is the smallest integer k

0

suh that I

k

= R

k

for all k � k

0

.

Using (1.3) and (1.4), one an show that the regularity of I = ha; b; i is

reg(I) = 2n� �� 1:

Thus the �-basis determines the regularity in our situation.

In general, the regularity of a homogeneous ideal I is a subtle number reg(I)

omputed from the minimal free resolution of the ideal. The intuition is that the

regularity of I measures how big k needs to be in order for I

k

to behave niely. In

Setion 3, we will explain what \behave niely" means when I has �nitely many

base points.

Some History. In 1997, Sederberg and Chen onjetured the existene of

�-bases and asked if I had any ideas for how to prove their onjeture. I worked

out an elementary proof (whih appears in [8℄), but I had a nagging suspiion that

something more was involved. To my embarrassment, it was over six months before

I realized that the Hilbert Syzygy Theorem was the answer.

As indiated above, the Syzygy Theorem does a wonderful job of revealing the

underlying struture of what's going on. This led me to believe that I wasn't the

�rst person to look at this ase. Cheking the literature led me to an 1887 paper

of Franz Meyer, where he proves the existene of a �-basis p; q. More generally, he

onjetured that for a olletion of m homogeneous polynomials a

1

; : : : ; a

m

2 R

n

=

C [s; t℄

n

without ommon fators, the syzygy module Syz(a

1

; : : : ; a

m

) should be a

free module with m � 1 generators of degrees �

1

; : : : ; �

m�1

whih sum to n. He

tried very hard to prove the ase m = 4 but failed.

In 1890, just three years after Meyer's paper, Hilbert published his amazing

paper whih proves the Syzygy Theorem and de�nes Hilbert polynomials. This pa-

per is a ornerstone of modern ommutative algebra. And the very �rst appliation

given by Hilbert is to prove Meyer's onjeture! (Referenes to the papers of Meyer

and Hilbert an be found in [8℄.)

For urves, the moral of the story is that ommutative algebra provides pre-

isely the tools needed to understand syzygies and how they relate to the impliit

equation. As we will soon see, surfaes are more ompliated.
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2. Surfaes

We now onsider surfae parametrizations in P

3

. We will begin with the tensor

produt ase, where the parametrization is given by

(2.1)

� : P

1

� P

1

��! P

3

�(s; t; u; v) =

�

a(s; t; u; v); b(s; t; u; v); (s; t; u; v); d(s; t; u; v)

�

:

Here a; b; ; d 2 R = C [s; u; t; v℄ are homogeneous polynomials of bidegree (m;n)

and gd(a; b; ; d) = 1. Unlike the urve ase, the gd ondition still allows for the

possibility of �nitely many base points, whih are points of P

1

� P

1

where a; b; ; d

vanish simultaneously. The possible presene of base points is why we use the

broken arrow ��! in (2.1); it means that � might not be de�ned on all of P

1

�P

1

.

In this setion, we will assume that the map � of (2.1) has no base points and

is generially one-to-one. Thus we an write � as

� : P

1

� P

1

�! S � P

3

;

where S is the image of �. Our goal is to ompute the impliit equation

F = 0

of the surfae S. The degree of F is 2mn sine the generi degree is 1.

Moving Planes and Quadris. In analogy with the moving lines used in

the study of urves, a 4-tuple (A;B;C;D) 2 R

4

of homogeneous polynomials of the

same bidegee gives a moving plane

Ax+By + Cz +Dw = 0

in P

3

, and this moving plane follows � if

A(s; t; u; v) a(s; t; u; v) +B(s; t; u; v) b(s; t; u; v)

+ C(s; t; u; v) (s; t; u; v) +D(s; t; u; v) d(s; t; u; v) � 0:

The set of all moving planes that follow � is the syzygy module Syz(a; b; ; d).

Similarly, a moving quadri is an equation

Ax

2

+Bxy + � � �+ Jw

2

= 0

where (A; : : : ; J) 2 R

10

are homogeneous of the same bidegree, and a moving

quadri follows � if

A(s; t; u; v) a(s; t; u; v)

2

+ � � �+ J(s; t; u; v) d(s; t; u; v)

2

� 0:

The moving quadris that follow � form the syzygy module Syz(a

2

; ab; : : : ; d

2

).

Given a bidegree (k; l), we will let

R

k;l

resp. Syz(a; b; ; d)

k;l

resp. Syz(a

2

; ab; : : : ; d

2

)

k;l

denote the vetor spaes of polynomials resp. moving planes that follow � resp.

moving quadris that follow � of this bidgree.

As in the urve ase, there is one bidegree whih is espeially interesting. First,

the moving planes of bidegree (m� 1; n� 1) that follow � are the kernel of

(2.2) MP : R

4

m�1;n�1

| {z }

dim 4mn

(a;b;;d)

�����! R

2m�1;2n�1

| {z }

dim 4mn

:

If this map has maximal rank, then Syz(a; b; ; d)

m�1;n�1

= f0g, i.e., there are no

moving planes of bidegree (m� 1; n� 1) that follow �.
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Seond, moving quadris of bidegree (m� 1; n� 1) are the kernel of

(2.3) MQ : R

10

m�1;n�1

| {z }

dim 10mn

(a

2

;ab;:::;d

2

)

��������! R

3m�1;3n�1

| {z }

dim 9mn

:

If this map has maximal rank, then Syz(a

2

; ab; : : : ; d

2

)

m�1;n�1

has dimension mn,

i.e., there are mn linearly independent moving quadris of bidegree (m� 1; n� 1)

that follow �.

Let's assume that MQ has maximal rank. This gives mn moving quadris of

degree (m� 1; n� 1) that follow �, say Q

1

; : : : ; Q

mn

. Let u = v = 1 and write

Q

i

= A

i

x

2

+ � � �+ J

i

w

2

=

�

X

j;k

A

i;jk

s

j

t

k

�

x

2

+ � � �+

�

X

j;k

J

i;jk

s

j

t

k

�

w

2

=

X

j;k

�

A

i;jk

x

2

+ � � � + J

i;jk

w

2

| {z }

Q

i;jk

(x; y; z; w)

�

s

j

t

k

:

For eah 0 � j � m � 1 and 0 � k � n � 1, this gives a quadri polynomial

Q

i;jk

(x; y; z; w). So for a �xed i, we get mn quadris, and sine i ranges from 1 to

mn, we get a square matrix of quadris

M = (Q

i;jk

(x; y; z; w)):

Here is the �rst main result of [6℄.

Theorem 2.1. If � : P

1

� P

2

! P

3

has no base points, is generially one-to-

one, and MP has maximal rank, then the impliit equation of the surfae S � P

3

paramatrized by � is

F = det(M);

where M is the matrix desribed above.

The Role of Commutative Algebra. We won't prove Theorem 2.1 in detail,

but we will explain how ommutative algebra is used in the argument. The proof

begins by hanging oordinates in P

3

if neessary so that a; b;  have no base points.

Then onsider the matrix

MQ

0

: R

9

m�1;n�1

| {z }

dim 9mn

(a

2

;ab;:::;d)

��������! R

3m�1;3n�1

| {z }

dim 9mn

given by a

2

; ab; : : : ; d. If we an show that det(MQ

0

) 6= 0, then MQ will have

maximal rank, whih will in turn enable us to onstrut M . Furthermore, as

explained in [6℄, det(MQ

0

) 6= 0 enables us to prove that det(M) is not identially 0.

It follows that det(M) is a polynomial of degree 2mn and vanishes on the surfae

S (sine the moving quadris used to onstrut M all follow the parametrization).

This proves that det(M) = 0 is the impliit equation of S.

Hene, to omplete the proof, we only need to show that det(MQ

0

) 6= 0. Let

us sketh two proofs.

First Proof of det(MQ

0

) 6= 0. Suppose we ould prove that

(2.4) det(MQ

0

) = det(MP )

3

Res(a; b; ):

We are assuming det(MP ) 6= 0, and Res(a; b; ) 6= 0 sine a; b;  have no base

points. Then (2.4) immediately implies that det(MQ

0

) 6= 0. The formula (2.4) was



CURVES, SURFACES, AND SYZYGIES 7

onjetured in Goldman and Zhang in [6℄ and proved by D'Andrea in [9℄. Thus

(2.4) gives a very quik proof that det(MQ

0

) 6= 0.

Seond Proof of det(MQ

0

) 6= 0. If det(MQ

0

) = 0, then the olumns of MQ

0

are

linearly dependent. This gives a relation of the form

Aa

2

+Bab+ � � �+ Id = 0;

where A; : : : ; I have bidegree (m� 1; n� 1). We an write this as

(2.5) 0 = (Aa+Bb+ C+Dd)a+ (Eb+ F+Gd)b+ (H+ Id):

This is a syzygy on a; b;  of degree (2m � 1; 2n � 1). I remember Ron Goldman

asking me if (2.5) implies that

(2.6) H+ Id = �h

1

a� h

3

b

for some polynomials h

1

and h

3

of bidegree (m � 1; n � 1). If this is true, then

(2.6) gives a nontrivial syzygy of bidegree (m � 1; n � 1) among a; b; ; d, whih

ontradits our assumption that MP has maximal rank.

So how do we prove that (2.5) implies (2.6)? The solution (whih fortunately

didn't take me six months to �gure out) uses an objet in ommutative algebra

known as the Koszul omplex. The basi idea is that some obvious syzygies on

a; b;  are given by

 � a+ 0 � b+ (�a) �  = 0

b � a+ (�a) � b+ 0 �  = 0

0 � a+  � b+ (�b) �  = 0:

Furthermore, if we multiply the �rst equation by h

1

, the seond by h

2

, and the

third by h

3

, then we get the Koszul syzygy Aa+Bb+ C = 0, where

(2.7)

A = h

1

+ h

2

b

B = �h

2

a+ h

3



C = �h

1

a� h

3

b:

So a natural question is whether all syzygies on a; b;  are Koszul syzygies.

If we are in the triangular ase and a; b;  2 C [s; t; u℄ are homogeneous of

the same degree, then having no base points implies (by standard arguments in

ommutative algebra) that the entire Koszul omplex is exat, so that in parti-

ular, all syzygies on a; b;  are Koszul. But in the tensor produt ase, even if

a; b;  2 C [s; u; t; v℄ have no base points, it is no longer true that the Koszul om-

plex is exat. In general, ommutative algebra works best in the triangular ase,

where one deals with ordinary homogeneous polynomials.

The solution to this diÆulty in the tensor produt ase is to realize that

while the Koszul omplex is not exat in all bidegrees, it is exat in some. This

is proved using sheaf ohomology, and the result is that every syzygy of bidegree

(2m � 1; 2n � 1), inluding (2.5), is Koszul. Hene (2.6) follows, whih ompletes

the seond proof of det(MQ

0

) 6= 0.

We should also mention that in [9℄, D'Andrea has generalized Theorem 2.1 to

the ase when � is not generially one-to-one. More preisely, he proves that if a

parametrization � as in (2.1) has no base points and the matrix MP has maximal

rank, then the impliit equation F = 0 of the surfae satis�es

F

h

= det(M);
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where h is the generi degree of � and M is the matrix of Theorem 2.1.

Triangular Surfaes. We next desribe briey what happens when we swith

from P

1

� P

1

to P

2

. This means that we have

(2.8)

� : P

2

��! P

3

�(s; t; u) =

�

a(s; t; u); b(s; t; u); (s; t; u); d(s; t; u)

�

;

where a; b; ; d 2 C [s; t; u℄ are homogeneous of degree n and gd(a; b; ; d) = 1. As

in the tensor produt ase, we will assume that � has no base points. Then the

image S � P

3

is a surfae de�ned by an equation

F = 0

of degree n

2

. In this situation, one an de�ne moving planes and quadris that

follow �, and as in the urve ase, the moving planes and quadris of degree n� 1

are those of interest. In this degree, we get matries

(2.9) MP : R

4

n�1

(a;b;;d)

�����! R

2n�1

and

(2.10) MQ : R

10

n�1

(a

2

;ab;:::;d

2

)

��������! R

3n�1

similar to (2.2) and (2.3) whose kernels give the moving planes and quadris of

degree n� 1 that follow �. One surprise is that in the triangular ase, the kernel of

MP has dimension at least n, whih means that there are always at least n linearly

independent moving planes of degree n� 1 that follow �.

In the ase when MP and MQ both have maximal rank, we get

� n linearly independent moving planes of degree n� 1.

� (n

2

+ 7n)=2 linearly independent moving quadris of degree n� 1.

However, eah moving plane gives four moving quadris by multiplying by x; y; z; w.

Thus, in the seond bullet, we have

(n

2

+ 7n)=2� 4n = (n

2

� n)=2

linearly independent moving quadris of degree n�1 whih don't ome from moving

planes. Using these moving quadris, we an onstrut a (n

2

+ n)=2� (n

2

+ n)=2

matrix M built from

� n rows oming from moving planes of degree n� 1.

� (n

2

� n)=2 rows oming from moving quadris of degree n� 1.

Then we an desribe the impliit equation F = 0 of the surfae as follows.

Theorem 2.2. Assume � as in (2.8) has no base points and has preisely n

linearly independent moving planes of degree n� 1 that follow �. Then:

F

h

= det(M);

where h is the generi degree of �.

This is proved in [6℄ when � is generially one-to-one. The general ase is due

to D'Andrea in [9℄.

Regularity. In the triangular ase, Theorem 2.2 has an interesting relation to

the regularity of the ideals I = ha; b; ; di and I

2

= ha

2

; ab; : : : ; d

2

i of R = C [s; t; u℄.

Sine we are assuming that a; b; ; d don't vanish simultaneously, it follows that
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both I and I

2

have no base points. As explained in the last setion, this implies

that regularity has the following meaning for these ideals:

reg(I) = the smallest integer k

0

suh that I

k

= R

k

for k � k

0

reg(I

2

) = the smallest integer k

0

suh that (I

2

)

k

= R

k

for k � k

0

:

We an relate this to the proof of Theorem 2.2 as follows. Similar to what we did

in Theorem 2.1, the key step of the proof is to show that

(2.11) MP has maximal rank)MQ has maximal rank;

where MP and MQ are de�ned by (2.9) and (2.10).

Sine the image of MP is I

2n�1

, it follows that

MP has maximal rank () I

2n�1

= R

2n�1

() 2n� 1 � reg(I):

Similarly, the image of MQ is (I

2

)

3n�1

, so that

MQ has maximal rank () (I

2

)

3n�1

= R

3n�1

() 3n� 1 � reg(I

2

):

It follows that (2.11) is equivalent to the regularity result

reg(I) � 2n� 1) reg(I

2

) � 3n� 1:

when I = ha; b; ; di has no base points. In general, one area of researh in ommu-

tative algebra onerns how the regularity of an ideal relates to the regularity of its

powers. See, for example, [3℄.

As already noted, Setion 3 will explain what regularity means for triangular

surfaes when base points are present. Then, in Setion 5, we will use regularity

results for suh ideals to prove a version of Theorem 2.2 for triangular surfaes with

ertain kinds of base points.

A �nal omment is that the above disussion is speial to the ase of homo-

geneous ideals in C [s; t; u℄. What about the bihomogeneous ideal I = ha; b; ; di �

C [s; u; t; v℄ that we get from a tensor produt parametrization suh as (2.1)? What

does regularity mean in this ase? The answer is that the study of regularity for

P

1

� P

1

is just beginning. Some preliminary results, suh as the forthoming work

of Ho�man and Wang [11℄, indiate that regularity may be a useful tool in studying

tensor produt surfaes.

3. Base Points

Now suppose that a triangular parametrization

� : P

2

��! P

3

�(s; t; u) =

�

a(s; t; u); b(s; t; u); (s; t; u); d(s; t; u)

�

has base points. As in (2.8), we assume that a; b; ; d 2 C [s; t; u℄ are homogeneous of

the same degree and gd(a; b; ; d) = 1. Hene there are at most �nitely many base

points in P

2

where a; b; ; d all vanish simultaneously. We will work with triangular

surfaes sine ommutative algebra works best in this ase.

The goal of this setion is to explain why ertain base points alled loal om-

plete intersetions are espeially nie. We also disuss regularity and saturations.

Loal Complete Intersetion Base Points. Let I � R = C [s; t; u℄ and

assume V(I) � P

2

is �nite. Elements of V(I) are alled the base points of I . Then

I is a loal omplete intersetion (LCI) if for every base point p 2 V(I), I an be

generated by two elements in a neighborhood of p.
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Example 3.1. The ideal I = hs

2

u; stu; t

2

u; t

3

i has base points (1; 0; 0); (0; 0; 1).

This ideal has four generators, but if we work loally near the base points, then

fewer generators are needed:

s = 1 ) I = hu; tu; t

2

u; t

3

i = hu; t

3

i near (1; 0; 0)

u = 1 ) I = hs

2

; st; t

2

; t

3

i = hs

2

; st; t

2

i near (0; 0; 1):

Thus I an be generated by two elements in a neighborhood of (1; 0; 0), so that this

base point is LCI. However, (0; 0; 1) is not LCI beause I is minimally generated

by three elements near this base point. Sine not all base points are LCI, we see

that I is not LCI. �

Syzygies of LCI Base Points. Suppose that a; b;  2 R = C [s; t; u℄ are

homogeneous of degree n with gd(a; b; ) = 1, and suppose that I = ha; b; i has

base points (neessarily �nite in number). What an we say about syzygies in this

situation? As in (2.7), a Kozsul syzygy is a syzygy of the form

A = h

1

+ h

2

b

B = �h

2

a+ h

3



C = �h

1

a� h

3

b:

The observation is that a Koszul syzygy vanishes at the base points (beause a; b; 

vanish at the base points by de�nition). This leads to the question:

(3.1) Is every syzygy vanishing at the base points a Koszul syzygy?

To see the relevane of this question, observe that in (2.5), we had the syzygy

(3.2) 0 = (Aa+Bb+ C+Dd)a+ (Eb+ F+Gd)b+ (H+ Id):

Assuming that a; b; ; d and a; b;  have the same base points, it follows that this

syzygy vanishes at the base points. Hene, if the answer to (3.1) is \yes", then (3.2)

is a Koszul syzygy, whih as in (2.6) gives the equation

H+ Id = �h

1

a� h

3

b

used in the proof of Theorem 2.1. So if we want to adapt the proof to the ase

when base points are present, then question (3.1) arises naturally.

Beause of multipliities, we need a areful de�nition of what it means to vanish

at the basepoints.

Definition 3.2. A syzygy Aa+Bb+C = 0 vanishes at the basepoints of

I = ha; b; i if A;B;C loally lie in I.

In Setion 4, we will explain how the phrase \loally lie in" is related to the

saturation of the ideal I .

It is easy to show that any Koszul syzygy vanishes at the basepoints. Then

(3.1) asks if this neessary ondition is also suÆient. Here is a result proved in [5℄.

Theorem 3.3. Let I = ha; b; i � R = C [s; t; u℄ with V(I) � P

2

�nite. Then

the following are equivalent:

(1) I is LCI.

(2) Every syzygy of a; b;  that vanishes at the base points of I is Koszul.

For me, the interesting feature of this theorem is that it is a result in pure

ommutative algebra yet its underlying idea was suggested by questions raised by

geometri modelers.
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Multipliities and LCI Base Points. Base points of parametrized surfaes

are interesting beause of their e�et on the degree of the surfae. For example,

suppose that

� : P

2

��! P

3

is given by homogeneous polynomials a; b; ; d 2 R = C [s; t; u℄ of degree n with

gd(a; b; ; d) = 1. If � is generially one-to-one, then its image S � P

3

has degree

n

2

�

X

p2V(I)

e(I; p);

where e(I; p) is the multipliity of I at p. Reall that e(I; p) is de�ned as follows.

One loalizes I at p to get an ideal I

p

in the loal ring R

p

(see Chapter 4 of [7℄ for

a disussion of loal rings). Then

e(I; p) = dimR

p

=hf; gi

for generi linear ombinations f; g of the generators of I

p

.

Another important invariant of I

p

� R

p

is its degree, whih is de�ned to be

(3.3) deg(I; p) = dimR

p

=I

p

:

Sine hf; gi � I

p

, it follows that we always have the inequality

(3.4) e(I; p) � deg(I; p):

Here is an example to show that the inequality an be strit.

Example 3.4. Suppose that I = hs

2

; st; t

2

i � C [s; t; u℄. The only base point is

p = (0; 0; 1), and loalizing at p is (essentially) done by setting u = 1. This gives

R

p

=I

p

' C [s; t℄=hs

2

; st; t

2

i. A basis of R

p

=I

p

is given by 1; s; t, so that

deg(I; p) = 3:

To ompute e(I; p), one an show that we an use f = s

2

and g = t

2

in this ase.

Then a basis of R

p

=hf; gi = R

p

=hs

2

; t

2

i is given by 1; s; t; st, so that

e(I; p) = 4:

Thus e(I; p) > deg(I; p) in this ase. �

The interesting observation is that when we ompute e(I; p) as the dimension

of R

p

=hf; gi, the ideal hf; gi is LCI at p sine it is generated by 2 elements. So the

multipliity is omputed using the best approximation of I

p

by an ideal whih is

LCI at p. This means that whenever you onsider the multipliity of a base point,

there is an LCI ideal lurking in the bakground.

In partiular, if I is LCI, then we an let hf; gi = I

p

for eah p, so that

(3.5) e(I; p) = deg(I; p) for all p 2 V(I):

In fat, I is LCI if and only if (3.5) is true.

Moving Planes and LCI Base Points. We next disuss how base points

a�et the number of moving planes that follow the parametrization. The goal

is to show that LCI base points arise naturally when one tries naively to extend

Theorem 2.2 to the ase when base points are present.
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Assume that we have � : P

2

��! P

3

given by a; b; ; d of degree n. When �

has no base points, Theorem 2.2 omputes the impliit equation of the image of �

using a matrix M with

n rows oming from moving planes of degree n� 1

(n

2

� n)=2 rows oming from moving quadris of degree n� 1.

Now introdue base points. The hope is that when a base point drops the impliit

degree by 1, one row of M should swith from quadrati to linear. Thus eah base

point should give a new moving plane that follows �.

To make this intuition more preise, we need to study arefully how base points

a�et the number of moving planes that follow �. Given an integer `, the moving

planes of degree ` are given by the kernel of the matrix

MP

`

: R

4

`

(a;b;;d)

�����! R

`+n

:

(hene MP

n�1

is the matrix MP of (2.9)). The image of this map is I

`+n

, so that

the number of moving planes of degree ` that follow � is determined by the size

I

`+n

. A Hilbert polynomial alulation implies that

(3.6) dimR

`+n

= dim I

`+n

+ deg(I);

for `� 0, where

deg(I) =

X

p2V(I)

deg(I; p)

is the degree of I and deg(I; p) = dimR

p

=I

p

is from (3.3).

Now suppose that (3.6) holds when ` = n� 1. We will see in the next setion

that this is equivalent to assuming that reg(I) � 2n�1. Then we have the following.

Proposition 3.5. Equation (3.6) holds when ` = n� 1 if and only if

dimSyz(a; b; ; d)

n�1

= n+ deg(I):

Proof. Sine MP

n�1

has kernel Syz(a; b; ; d)

n�1

and image I

2n�1

, we have

dim Syz(a; b; ; d)

n�1

= 4dimR

n�1

� dim I

2n�1

:

If (3.6) holds with ` = n� 1, then dimR

2n�1

= dim I

2n�1

+ deg(I). Thus

dimSyz(a; b; ; d)

n�1

= 4dimR

n�1

� (dimR

2n�1

� deg(I)) = n+ deg(I);

where we have used dimR

k

=

�

k+2

2

�

. The onverse is equally easy. �

It follows that if (3.6) holds for ` = n � 1, then the number of moving planes

that follow � inreases from n to n+ deg(I). If we use all of these moving planes

to onstrut a new matrix M , then deg(I) quadrati rows shift to linear rows, so

that the degree of det(M) will drop by

deg(I) =

X

p2V(I)

deg(I; p):

However, the degree of the impliit equation drops by the sum of the multipliities

X

p2V(I)

e(I; p):
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It follows that if det(M) = 0 is to be the impliit equation of the surfae, then

these drops must math, i.e., we must have

X

p2V(I)

e(I; p) =

X

p2V(I)

deg(I; p):

By (3.4), this means

e(I; p) = deg(I; p) for all p 2 V(I);

whih by (3.5) happens if and only if I is LCI. So our naive strategy of extending

Theorem 2.2 an only hope to sueed when the base points are LCI! As we will

explain in Setion 5, this strategy an be made rigorous in ertain ases. But �rst,

we need to learn about regularity and saturation.

4. Saturation and Regularity

In Setion 3, we noted that (3.6) is true for ` suÆiently large. Here, we will

show that the meaning of \suÆiently large" is losed related to the regularity of

the ideal I . But before we an understand this, we need to disuss saturation.

Saturation. Given a homogeneous ideal I � R = C [s; t; u℄ with any number

of generators, its saturation is de�ned to be

sat(I) = ff 2 R j there is k � 0 suh that s

k

f; t

k

f; u

k

f 2 Ig:

One an show that sat(I) is a homogeneous ideal of R. Furthermore:

� I � sat(I). This follows by using k = 0 in the above de�nition. Below we

will give an example to show that sat(I) an be stritly bigger than I .

� I and sat(I) give the same ideal on every aÆne piee of P

2

. For example,

suppose we dehomogenize by setting s = 1. If f 2 sat(I), then s

k

f 2 I

for some k � 0. Sine s

k

f and f have the same dehomogenization when

s = 1, it follows that I and sat(I) dehomogenize to the same ideal in

C [t; u℄. The aÆne piees where t = 1 and u = 1 are handled similarly.

� It follows that I and sat(I) have the same base points whih have the

same degree and the same multipliity. (In more tehnial language, I

and sat(I) de�ne the same subsheme of P

2

.)

One important observation is that sat(I) is the largest ideal that gives the same

ideal as I on every aÆne piee of P

2

. This follows from the above de�nition and

justi�es the statement that sat(I) onsists of all polynomials that loally are in I .

Here is an example of a saturation.

Example 4.1. Let I = hs

5

; t

5

; su

4

; st

2

u

2

i � R = C [s; t; u℄. This is generated

by polynomials of degree 5. Note that

s � s

5

2 I

s � u

5

= u � su

4

2 I

s � t

5

2 I:

It follows that s 2 sat(I), so that sat(I) is stritly bigger than I . Using the

saturate ommand of Maaulay 2 [10℄, one an show that

sat(I) = hs; t

5

i:

The ideal hs; t

5

i learly has the single base point (0; 0; 1) whih is LCI of degree 5

and multipliity 5. By the third of the above bullets, the same is true for I . �
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Conditions Imposed by Base Points. We next interpret saturation in terms

of onditions imposed by base points. To see what this phrase means, onsider

(4.1) R

k

�!

M

p2V(I)

R

p

=I

p

;

where I

p

� R

p

is as in Setion 3. This map is given by dehomogenization followed

by the map to the quotient ring. Note that the dimension of the right-hand side is

P

p2V(I)

dimR

p

=I

p

=

P

p2V(I)

deg(I; p) = deg(I). This is the degree of I de�ned

in Setion 3

The phrase \onditions imposed by base points" refers to the kernel of (4.1)

and thus desribes those polynomials of degree k whih loally belong to I . But

this is the saturation! Hene we have the following result.

Proposition 4.2. The onditions imposed in degree k by the base points of I

desribe sat(I)

k

. Thus

I

k

= sat(I)

k

() the onditions imposed in degree k by

the basepoints of I desribe I

k

exatly.

The next question to ask is whether the base point onditions are independent.

This leads to the following de�nition.

Definition 4.3. We say that the onditions imposed by the base points of I

are independent in degree k if the map (4.1) is onto.

We then get the following basi result.

Proposition 4.4. The onditions imposed by the base points of I are indepen-

dent in degree k if and only if

dim sat(I)

k

+ deg(I) = dimR

k

:

Proof. Let W �

L

p2V(I)

R

p

=I

p

be the image of (4.1). Sine the kernel is

sat(I)

k

, the dimension theorem from linear algebra implies that

dim sat(I)

k

+ dimW = dimR

k

:

The result follows immediately sine deg(I) = dim

L

p2V(I)

R

p

=I

p

. �

Here is an example.

Example 4.5. Consider I = hs

2

u; stu; t

2

u; t

3

i � C [s; t; u℄ from Example 3.1.

In this ase, the map (4.1) beomes

R

k

�! C [t; u℄=hu; t

3

i � C [s; t℄=hs

2

; st; t

2

i;

where f 2 R

k

is sent to (f(1; t; u); f(s; t; 1)). Notie also that deg(I) = 6. Sine

R

1

has dimension 3, it follows that the base points do not impose independent

onditions in degree 1. However, one an easily hek that the base point onditions

are independent in degrees 2 and higher. For later purposes, we note that I is

saturated, i.e., I = sat(I). This is easily heked using Maaulay 2. �

Regularity. We are now ready to disuss regularity. We begin with the speial

ase of a homogeneous ideal I � R with no base points. In this ase, sat(I) = R

sine an empty base point lous means that loally I generates the whole ring. But

now reall that when I has no base points, the regularity reg(I) of I is the smallest

integer suh that I

k

= R

k

for k � reg(I). Sine R

k

= sat(I)

k

, we get the following

nie result.
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Proposition 4.6 (Regularity without base points). Let I � C [s; t; u℄ be a

homogenous ideal with no base points. Then, for any integer k � 0, we have

reg(I) � k () I

k

= R

k

() I

k

= sat(I)

k

:

One useful onsequene of this proposition is that if we know a single degree k

suh that I

k

= R

k

, then we automatially have I

`

= R

`

for all ` � k.

Now let I � R be a homogeneous ideal with �nitely many base points. What

does regularity mean in this ase? The de�nition of regularity given in [1℄ an be

stated in various ways using either sheaf ohomology or minimal free resolutions.

Fortunately, for the ideals of interest to us, regularity an be formulated as follows.

Proposition 4.7 (Regularity with base points). Let I � C [s; t; u℄ be a ho-

mogenous ideal with a �nite positive number of base points. Then, for any integer

k � 0, we have

reg(I) � k () I

k

= sat(I)

k

and dim sat(I)

k�1

+ deg(I) = dimR

k�1

() the onditions imposed by the base points of I desribe

I

k

in degree k and are independent in degree k � 1:

The seond equivalane of the proposition uses Propositions 4.2 and 4.4. One

onsequene is that if we know one degree k where the onditions imposed by the

base points of I desribe I

k

and are independent in degree k � 1, then the same is

true for all larger degrees. Here is an example of Proposition 4.7.

Example 4.8. Consider I = hs

2

u; stu; t

2

u; t

3

i � C [s; t; u℄. In Example 4.5,

we noted that this ideal was saturated and that the base point onditions were

independent in degrees 2 and higher. By Proposition 4.7, it follows that reg(I) = 3.

This an be on�rmed using the regularity ommand in Maaulay 2. �

When dealing with a triangular surfae with base points, Proposition 4.7 an

be simpli�ed as follows.

Theorem 4.9 (Regularity for triangular surfaes with base points). Consider

an ideal I = ha; b; ; di � C [s; t; u℄, where a; b; ; d have degree n and gd(a; b; ; d) =

1. Also assume that n � 2 and that a; b; ; d are linearly independent. Then, if

k � 2n� 2, we have

reg(I) � k () dim I

k

+ deg(I) = dimR

k

() the onditions imposed by the basepoints of I are

independent in degree k and desribe I

k

exatly.

This is proved in Appendix B of [2℄. Here is a orollary of Theorem 4.9 relevant

to the disussion at the end of Setion 3.

Corollary 4.10. Let I be as in Theorem 4.9. Then:

reg(I) � 2n� 1 () dim I

2n�1

+ deg(I) = dimR

2n�1

() (3.6) holds for ` = n� 1

() dimSyz(a; b; ; d)

n�1

= n+ deg(I):

Proof. Set k = 2n� 1 in Theorem 4.9 and use Proposition 3.5. �

Thus the naive idea of extending Theorem 2.2 disussed in Setion 3 leads

naturally to the notion of regularity. We will say more about this in Setion 5.

The intuition behind regularity is that I

k

\behaves niely" when k � reg(I).

We now have a better idea of what this means!
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5. Surfaes with Base Points

In this �nal setion we will show that in ertain ases, the methods of Setion 2

an be extended to the triangular surfae ase when base points are present. Details

an be found in [2℄.

Base Point Conditions. Let I = ha; b; ; di � R = C [s; t; u℄ give the rational

map � : P

2

��! P

3

. Assume the following base point onditions :

BP1: a; b; ; d are homogeneous of degree n and linearly independent over C .

BP2: gd(a; b; ; d) = 1 and I is LCI.

BP3: dimSyz(a; b; ; d)

n�1

= n+ deg(I).

BP4: d 2 sat(ha; b; i).

BP5: Syz(a; b; )

n�1

= f0g.

These onditions give the following result proved in [2℄.

Theorem 5.1. Assume the base point onditions BP1{BP5. Then there is a

(n

2

+ n)=2� (n

2

+ n)=2 matrix M with

n+ deg(I) rows oming from moving planes of degree n� 1

(n

2

� n)=2� deg(I) rows oming from moving quadris of degree n� 1;

suh that the impliit equation F = 0 of the image of � satis�es

F

h

= det(M);

where h is the generi degree of �.

Rather than give the proof, we will instead explain what the �ve base point

onditions mean.

Explain BP1. This is fairly obvious. Notie that if a; b; ; d are linearly dependent,

then the image of � lies in a plane.

Explain BP2. The gd ondition implies that V(I) is �nite. To see why we need

LCI base points, note that the determinant of the matrix M of Theorem 5.1 has

degree n

2

�deg(I), while F

h

has degree n

2

�

P

p2V(I)

e(I; p). These are equal sine

the base points are LCI.

Explain BP3. This ondition is needed to ensure that M has the orret number of

linear rows. Also, by Corollary 4.10, BP3 implies that reg(I) � 2n�1. In the proof

of Theorem 5.1, we use reg(I), together with a result of Chandler [3℄, to bound

the regularity of I

2

. This is needed to understand how the base points a�et the

number of moving quadris that follow �.

Explain BP4. We need d 2 sat(ha; b; i) so that I and ha; b; i have the same LCI

base points. Then we an use Theorem 3.3 to show that (2.5) implies (2.6) just as

in the proof of Theorem 2.1. We an always arrange d 2 sat(ha; b; i) by a suitable

hange of oordinates on P

3

. So this assumption is harmless.

Explain BP5. An important step in the proof is to show that det(M) doesn't vanish

identially. This is done by showing that the oeÆient of w

n

2

�deg(I)

is nonzero.

However, a syzygy of degree n � 1 on a; b;  gives a row of M with no w, whih

means that w

n

2

�deg(I)

does not appear det(M). Hene this messes up the proof that

det(M) is nonzero. One an sometimes avoid this problem by hanging oordinates

on P

3

. However, there are examples where Syz(a; b; )

n�1

6= f0g no matter whih

oordinates we use on P

3

. Hene we are stuk with this assumption.

Here are two examples of Theorem 5.1 in ation.
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Example 5.2. Let � be given by a = s

3

, b = t

2

u,  = s

2

t + u

3

, and d = stu.

One an hek that the base point onditions are satis�ed, and the only base point

is (0; 1; 0), whih is LCI of multipliity 2. Sine n = 3 and deg(I) = 2, we have

(n

2

+ n)=2 = 6. Thus M is a 6� 6 matrix (5 linear rows, one quadrati row) and

det(M) has degree n

2

� deg(I) = 7.

One an ompute that the �ve moving planes of degree 2 that follow � are

P

1

= s

2

w � tu x

P

2

= stw � s

2

y

P

3

= t

2

w � st y

P

4

= tuw � su y

P

5

= u

2

w + t

2

x� st z;

and that the single moving quadri that follows � is

Q = suw

2

� u

2

xy:

If we let the olumns ofM orrespond to the oeÆients of s

2

; st; su; t

2

; tu; u

2

, then

we get the matrix

M =

0

B

B

B

B

B

B

�

w 0 0 0 �x 0

�y w 0 0 0 0

0 �z 0 x 0 w

0 �y 0 w 0 0

0 0 �y 0 w 0

0 0 w

2

0 0 �xy

1

C

C

C

C

C

C

A

:

Thus det(M) = w

7

� x

2

y

3

zw + x

3

y

4

is the impliit equation of the surfae. �

Example 5.3. Now suppose that I = hs

5

; t

5

; su

4

; st

2

u

2

i � R = C [s; t; u℄. In

Example 4.1, we saw that I has a single LCI base point of multipliity 5. Thus the

orresponding surfae in P

3

has degree 5

2

�5 = 20. Also notie that (n

2

+n)=2 = 15,

meaning that M needs to be a 15� 15 matrix.

However, using Maaulay 2, the regularity of I is 10, yet ondition BP3 means

reg(I) � 2 � 5� 1 = 9. In fat, one an ompute that

dimSyz(a; b; ; d)

4

= 11 6= 10 = n+ deg(I):

If we use all moving planes of degree 4 in M , we get 11 linear rows and 4 quadrati

rows, so that det(M) has degree 19. This is learly wrong and shows that the

method fails in this ase. �

A version of Theorem 5.1 should hold for P

1

�P

1

. We don't know how to prove

this sine we don't have a good theory of regularity (though this may hange one

[11℄ appears).

Smaller Matries. There is a version of Theorem 5.1 that uses n� 2 in plae

of n � 1, with a matrix of size (n

2

� n)=2� (n

2

� n)=2. The idea is that one uses

slightly di�erent base point onditions. More preisely, the third and �fth base

point onditions are modi�ed as follows:

BP3: dimSyz(a; b; ; d)

n�2

= deg(I)� n.

BP5: Syz(a; b; )

n�2

= f0g.
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In this ase, the base point onditions imply that

F

h

= det(M);

where M is a (n

2

� n)=2� (n

2

� n)=2 matrix M with

deg(I) � n rows oming from moving planes of degree n� 2

(n

2

+ n)=2� deg(I) rows oming from moving quadris of degree n� 2:

Here is an example of this result.

Example 5.4. Consider the following parametrization (taken from [12℄) of a

ubi surfae with 6 base points:

a = s

2

t+ 2t

3

+ s

2

u+ 4stu+ 4t

2

u+ 3su

2

+ 2tu

2

+ 2u

3

b = �s

3

� 2st

2

� 2s

2

u� stu+ su

2

� 2tu

2

+ 2u

3

 = �s

3

� 2s

2

t� 3st

2

� 3s

2

u� 3stu+ 2t

2

u� 2su

2

� 2tu

2

d = s

3

+ s

2

t+ t

3

+ s

2

u+ t

2

u� su

2

� tu

2

� u

3

:

One an hek with Maaulay 2 that I is saturated and LCI of degree 6, and its

regularity is 3. As shown in [12℄, we have the following basis of syzygies of degree

n� 2 = 1:

(5.1)

s(z � y) + t(�x+ 2w) + u(x� y)

s(x+ w) + t(2y � z) + u(y + 2w)

s x+ t y + u z:

The third syzygy shows that Syz(a; b; )

1

6= 0, so that BP5 is not veri�ed. But if

we onsider a; b; d instead, then it is straightforward to hek that all base point

onditions are satis�ed.

In this ase, M has deg(I) � n = 3 linear rows and (n

2

+ n)=2 � deg(I) = 0

quadrati rows. Thus the above syzygies give the matrix

M =

0

�

z � y �x+ 2w x� y

�x� w z � 2y �y � 2w

x y z

1

A

:

The determinant of M is omputed in [12℄ and is the impliit equation of the

surfae. �

Speial �-Bases for Surfaes. Given a rational map � : P

2

��! P

3

, it an

happen that I = ha; b; ; di is saturated. We saw an example of this in Example 4.5.

While this is a relatively rare phenomenon, it does have some nie onsequenes.

For example, aording to [4℄, we know that

I = ha; b; ; di is saturated () Syz(a; b; ; d) is a free module:

In this situation, one an prove that Syz(a; b; ; d) has free generators p; q; r of

degrees �

1

; �

2

; �

3

suh that

�

1

+ �

2

+ �

3

= n;

where, as usual, n is the degree of a; b; ; d. In analogy with the urve ase disussed

in Setion 1, we all p; q; r a speial �-basis (the adjetive \speial" refers to the

fat that most of the time I isn't saturated, in whih ase p; q; r don't exist).

In the urve ase, the impliit equation is (up to the generi degree) given by

the resultant of the �-basis. Is the same true when a speial �-basis exists? The
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answer is \not always" (see [2℄ for examples). However, when the base points are

LCI, then things work out niely. Here is the preise result from [2℄.

Theorem 5.5. Assume that I = ha; b; ; di satis�es BP1 and BP2 (so the base

points are LCI ). If I is saturated and p; q; r is a speial �-basis, then

F

h

= Res(p; q; r);

where h is the generi degree of �.

We an explain the neessity for LCI base points as follows. Sine p; q; r have

degrees �

1

; �

2

; �

3

, the theory of multivariable resultants (see [7℄) implies that

deg(Res(p; q; r)) = �

1

�

2

+ �

1

�

3

+ �

2

�

3

:

One the other hand, it is shown in [4℄ that I has degree

deg(I) = n

2

� (�

1

�

2

+ �

1

�

3

+ �

2

�

3

):

It follows that

deg(Res(p; q; r)) = n

2

� deg(I) = n

2

�

X

p2V(I)

deg(I; p):

Sine

deg(F

h

) = n

2

�

X

p2V(I)

e(I; p);

we see that Theorem 5.5 holds only if the degree equals the sum of the multipliities,

whih by Setion 3 happens only when the base points are LCI. Hene we get

another example where LCI base points have an interesting role to play.
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