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Mean-Square Error Linear Estimation: The Normal Equations

• The general estimation task is introduced in Chapter 3. There, it is
stated that given two dependent random vectors, y x, the goal of the
estimation task is to obtain a function, g, so as given a value x of x, to
be able to predict (estimate), in some optimal sense, the corresponding
value y of y, i.e., ŷ = g(x).

• The Mean-Square Error (MSE) estimation is also discussed in Chapter
3. The optimal MSE estimate of y given the value x = x is

ŷ = E[y|x].

• In general, this is a nonlinear function. We now turn our attention to
the case where g is constrained to be a linear function. For simplicity
and in order to pay more attention to the concepts, we will restrict our
discussion to the case of scalar dependent variables.

• Let (y,x) ∈ R× Rl be two jointly distributed random entities of zero
mean values. If they are not zero, they are subtracted. Our goal is to
obtain an estimate of θ ∈ Rl in the linear estimator model,

ŷ = θTx,

so that to minimize the Mean-Square Error (MSE) cost function,

J(θ) = E
[
(y − ŷ)2

]
.
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]
.

Sergios Theodoridis, University of Athens. Machine Learning, 2/66



Mean-Square Error Linear Estimation: The Normal Equations

• The general estimation task is introduced in Chapter 3. There, it is
stated that given two dependent random vectors, y x, the goal of the
estimation task is to obtain a function, g, so as given a value x of x, to
be able to predict (estimate), in some optimal sense, the corresponding
value y of y, i.e., ŷ = g(x).
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Mean-Square Error Linear Estimation: The Normal Equations

• In other words, the optimal estimator is chosen so as to minimize the
variance of the error random variable

e = y − ŷ.

• Minimizing the cost function, J(θ), is equivalent with setting its
gradient with respect to θ equal to zero,

∇J(θ) = ∇E
[(

y − θTx
)(

y − xTθ
)]

= ∇
{
E[y2]− 2θTE[xy] + θTE[xxT ]θ

}
= −2p+ 2Σxθ = 0.

• Solving the above leads to

Σxθ∗ = p

where, the input-output cross-correlation vector, p, and the respective
covariance matrix are given by given by

p =
[
E[x1y], ...,E[xly]

]T
= E[xy], Σx = E

[
xxT

]
• Thus, the weights of the optimal linear estimator are obtained via a

linear system of equations, provided that the covariance matrix is
positive definite. Moreover, in this case, the solution is unique.
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The MSE Cost Function

• Elaborating on the MSE cost function, J(θ), we get that

J(θ) = σ2
y − 2θTp+ θTΣxθ.

Adding and subtracting the term θT∗ Σxθ∗ and taking into account the
definition of θ∗ (Σxθ∗ = p), it is readily seen that

J(θ) = J(θ∗) + (θ − θ∗)TΣx(θ − θ∗), (1)

where

J(θ∗) = σ2
y − pTΣ−1

x p = σ2
y − θT∗ Σxθ∗ = σ2

y − pTθ∗, (2)

is the minimum achieved at the optimal solution.

• The following remarks are in order:

The cost at the optimal value θ∗ is always less than the variance
E[y2] of the output variable. This is guaranteed by the positive
definite nature of Σx or Σ−1

x , unless p = 0; however, the latter is
zero if x and y, are uncorrelated. On the contrary, if the
input-output variables are correlated, then observing x removes
part of the uncertainty associated with y.
For any value θ, other than the optimal θ∗, the error variance
increases as (1) suggests, due to the positive definite nature of Σx.
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The MSE Cost Function Surface

• Figure (a) shows the MSE cost function surface and Figure (b) the
corresponding isovalue contours. The latter are in general ellipses,
whose axes are determined by the eigenstructure of Σx. For Σx = σ2I,
where all eigenvalues are equal to σ2, the contours are circles.

(a) (b)

(a) The MSE cost has the form of a (hyper)paraboloid. b) The isovalue contours for the MSE cost function
surface are ellipses; the major axis of each ellipse is determined by the maximum eigenvalue λmax and the minor

one by the smaller, λmin of the Σ of the input random variables. The largest the ratio λmax
λmin

is the more

elongated the ellipses are. The ellipses become circles, if the covariance matrix has the special form of σ2I.
That is, all variables are mutually uncorrelated and they have the same variance. By varying Σ, different shapes

of the ellipses and different orientations result.

Sergios Theodoridis, University of Athens. Machine Learning, 5/66



A Geometric Viewpoint: Orthogonality Condition

• A very intuitive view of what we have said so far comes from the
geometric interpretation of the random variables. The reader can easily
check out that the set of random variables is a vector space over the
field of real (and complex) numbers. Indeed, if x and y are any two
random variables then x + y, as well as αx, are also random variables
for every α ∈ R.

• We can now equip this vector space with an inner product operation,
which also implies a norm and make it a Euclidean space. The mean
value operation has all the properties required for an operation to be
called an inner product. Indeed, for any subset of random variables,

E[xy] = E[yx]
E[(α1x1 + α2x2)y] = α1E[x1y] + α2E[x2y]
E[x2] ≥ 0, with equality if and only if x = 0.

• Thus, the norm induced by this inner product,

‖x‖ :=
√
E[x2],

coincides with the respective standard deviation (assuming E[x] = 0).
From now on, given two uncorrelated random variables, x, y, i.e.,
E[xy] = 0, we can call them orthogonal, since their inner product is
zero.
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A Geometric Viewpoint: Orthogonality Condition

• Let us now rewrite the linear estimator as

ŷ = θ1x1 + . . .+ θlxl.

Thus, the random variable, ŷ, which is now interpreted as a point in a
vector space, results as a linear combination of l vectors in this space.
Thus, the estimate, ŷ, will necessarily lie in the subspace spanned by
these points. In contrast, the true variable, y, will not lie, in general, in
this subspace.

• Since our goal is to obtain ŷ so that to be a good approximation of y,
we have to seek for the specific linear combination that makes the norm
of the error vector, e = y − ŷ, minimum.

• This specific linear combination corresponds to the orthogonal
projection of y onto the subspace spanned by the points x1, x2, ..., xl.
This is equivalent with requiring,

E[exk] = 0, k = 1, ..., l.

• The error vector being orthogonal to every point xk, k = 1, 2, . . . , l, will
be orthogonal to the respective subspace. This is geometrically
illustrated in the following figure.
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• This specific linear combination corresponds to the orthogonal
projection of y onto the subspace spanned by the points x1, x2, ..., xl.
This is equivalent with requiring,

E[exk] = 0, k = 1, ..., l.

• The error vector being orthogonal to every point xk, k = 1, 2, . . . , l, will
be orthogonal to the respective subspace. This is geometrically
illustrated in the following figure.

Sergios Theodoridis, University of Athens. Machine Learning, 7/66



A Geometric Viewpoint: Orthogonality Condition

• Let us now rewrite the linear estimator as
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A Geometric Viewpoint: Orthogonality Condition

Projecting y on the subspace spanned by
x1, x2 guarantees that the deviation between
y and ŷ corresponds to the minimum MSE.

• The set of equations in the orthogonal conditions can now be written as

E
[(

y −
l∑
i=1

θixi
)
xk
]

= 0, k = 1, 2, . . . , l,

or l∑
i=1

E[xixk]θi = E[xky], k = 1, 2, . . . , l,

which leads to the same set of linear equations, Σxθ = p.

• The derivation via the orthogonality conditions is the reason that this
elegant set of equations is known as normal equations. Another name is
Wiener-Hopf equations.
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A Geometric Viewpoint: Orthogonality Condition

• Some remarks:

So far, we have only assumed that x and y are jointly distributed
(correlated) variables. If, in addition, we assume that they are
linearly related according to the linear regression model,

y = θTo x + η, θo ∈ Rk,
where η is a zero mean noise variable independent of x, then, if
the dimension, k, of the true system, θo is equal to the number of
parameters, l, adopted for the model, i.e., the k = l, it turns out
that θ∗ = θo,

and the optimal MSE is equal to the variance of the noise, σ2
η.

Undermodeling. If k > l, then the order of the model is less than
that of the true system; this is known as undermodeling. It is easy
to show that if the variables comprising x are uncorrelated, then,

θ∗ = θ1
o , where θo :=

[
θ1
o

θ2
o

]
, θ1

o ∈ Rl, θ2
o ∈ Rk−l.

In other words, the MSE optimal estimator identifies the first l
components of θo.
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Linear Filtering

• Linear statistical filtering is an instance of the general estimation task,
when the notion of (time) evolution needs to be taken into
consideration and estimates are obtained at each time instant. There
are three major types of problems that emerge:

Filtering, where the estimate at time instant n is based on all
previously received (measured) input information up to and
including the current time index, n.
Smoothing, where data over a time interval, [0, N ], are first
collected and an estimate is obtained at each time instant n ≤ N ,
using all the available information in the interval [0, N ].
Prediction, where estimates at times n+ τ, τ > 0 are to be
obtained based on the information up to and including time
instant n.

• Take for example a time-varying case, where the output variable, at
time instant n, is yn and its value depends on observations included in
the corresponding input vector xn. In filtering, the latter can include
measurements received only at time instants, n, n− 1, . . . , 0. This
restriction in the index set, is directly related to causality. In contrast,
in smoothing, we can also include future time instants, e.g.,
n+ 2, n+ 1, n, n− 1.
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Linear Filtering

• In Signal Processing, the term filtering is usually used in a more specific
context, and it refers to the operation of a filter, which acts on an input
random process/signal (un), to transform it into another one (dn).
Note that we have changed the notation, to stress out that we talk
about processes and not random variables, in general.

• The task in statistical linear filtering is to compute the coefficients
(impulse response) of the filter so that the output process of the filter,

d̂n, when the filter is excited by the input random process, un, to be as
close as possible, to a desired response process, dn. In other words, the
goal is to minimize, in some sense, the corresponding error process.
This is illustrated in the figure below.
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goal is to minimize, in some sense, the corresponding error process.
This is illustrated in the figure below.

In statistical filtering, the impulse response coefficients are estimated so as the error between the output and the
desired response process to be minimised. In MSE linear filtering, the cost function is E[e2

n].
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Linear Filtering

• Assuming that the unknown filter is of a finite impulse response (FIR) ,

denoted as w0, w1, . . . , wl−1, the output d̂n of the filter is given as

d̂n =

l−1∑
i=0

wiun−i = wTun (3)

where,

w = [w0, w1, ..., wl−1]T , and un = [un,un−1, ...,un−l+1]T .

The linear filter is excited by a realization of an input process. The output signal is the convolution between the
input sequence and the filter’s impulse response.

• Alternatively, Eq. (3) can be viewed as the linear estimator function;
given the jointly distributed variables, at time instant n, (dn,un), Eq.

(3) provides the estimator, d̂n, given the values of un. In order to obtain
the coefficients, w, the mean-square error criterion will be adopted.
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Linear Filtering

• Let us now assume that:

The processes, un, dn are wide-sense stationary real random
processes.
Their mean values are equal to zero, i.e., E[un] = E[dn] = 0, ∀n.
If this is not the case, we can subtract the respective mean values
from the processes, un and dn, during a preprocessing stage. Due
to this assumption, the autocorrelation and covariance matrices of
un coincide, i.e., Ru = Σu.

• The normal equations now take the form

Σuw = p, p =
[
E[undn], ...,E[un−l+1dn]

]T
,

and the respective covariance/autocorrelation matrix, of order l, of the
input process is given by,

Σu := E[unu
T
n ] =


r(0) r(1) . . . r(l − 1)
r(1) r(0) . . . r(l − 2)

...
. . .

r(l − 1) r(l − 2) . . . r(0)

 ,
where r(k) is the autocorrelation sequence of the input process.
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MSE Linear Filtering: A Frequency-Domain Point of View

• Let us now turn our attention to the more general case, and assume
that our filter is of infinite impulse response (IIR). Then, the
input-output relation becomes,

d̂n =

+∞∑
i=−∞

wiun−i.

Moreover, we have allowed the filter to be non-causal. Recall that a
system is called causal if the output, d̂n, does depend only on input
values um, m ≤ n. A necessary and sufficient condition for causality is
that, the impulse response is zero for negative time instants, i.e.,
wn = 0, n < 0..

• Following similar arguments as those used to prove the MSE optimality
of E[y|x] (Chapter 3), it turns out that the optimal filter coefficients
must satisfy the following condition,

E
[
(dn −

+∞∑
i=−∞

wiun−i)un−j
]

= 0, j ∈ Z.

Observe that this is a generalization of the orthogonality condition
stated before.
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MSE Linear Filtering: A Frequency-Domain Point of View

• A rearrangement of the terms in the previous equation results in
+∞∑
i=−∞

wiE[un−iun−j ] = E[dnun−j ], j ∈ Z,

and finally to, +∞∑
i=−∞

wir(j − i) = rdu(j), j ∈ Z.

• The above can be considered as the generalization of the normal equations,
Σxθ = p, involving an infinite set of parameters. The way to solve it is to
cross into the frequency domain. Indeed, this can be seen as the convolution
of the unknown sequence (wi) with the autocorrelation sequence of the input
process, which gives rise to the cross-correlation sequence. However, we know
that convolution of two sequences corresponds to the product of the
respective Fourier transforms. Thus, we can now write that

W (ω)Su(ω) = Sdu(ω), (4)

where W (ω) is the Fourier transform of wi and Su(ω) is the power spectral
density of the input process. In analogy, the Fourier transform, Sdu(ω), of the
cross-correlation sequence is known as the cross-spectral density.

• If the latter two quantities are available, then once W (ω) has been computed,
the unknown parameters can be obtained via the inverse Fourier transform.
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Deconvolution: Image Deblurring

• We will now consider an important application in order to demonstrate the
power of MSE linear estimation. Image deblurring is a typical deconvolution
task. An image is degraded due to its transmission via a nonideal system; the
task of deconvolution is to optimally recover (in the MSE sense in our case),
the original undegraded one. Figure (a) shows the original image and Figure
(b) a blurred version (e.g., taken by a non-steady camera) with some small
additive noise.

(a) (b)

• Deconvolution is a process that our human brain performs all the time. The
human vision system is one of the most complex and highly developed
biological systems. Any raw image that falls on the retina of the eye is
severely blurred. Thus, one of the main early processing activities of our
visual system is to deblur it.

Sergios Theodoridis, University of Athens. Machine Learning, 16/66



Deconvolution: Image Deblurring

• We will now consider an important application in order to demonstrate the
power of MSE linear estimation. Image deblurring is a typical deconvolution
task. An image is degraded due to its transmission via a nonideal system; the
task of deconvolution is to optimally recover (in the MSE sense in our case),
the original undegraded one. Figure (a) shows the original image and Figure
(b) a blurred version (e.g., taken by a non-steady camera) with some small
additive noise.

(a) (b)

• Deconvolution is a process that our human brain performs all the time. The
human vision system is one of the most complex and highly developed
biological systems. Any raw image that falls on the retina of the eye is
severely blurred. Thus, one of the main early processing activities of our
visual system is to deblur it.

Sergios Theodoridis, University of Athens. Machine Learning, 16/66



Deconvolution: Image Deblurring

• Before we proceed any further, the following assumptions are adopted:
The image is a wide-sense stationary two-dimensional random
process. Two-dimensional random processes are also known as
random fields, discussed in Chapter 15.
The image is of an infinite extent; this can be justified for the case
of large images. This assumption will grant us the “permission” to
use (4). The fact that an image is a two-dimensional process does
not change anything in the theoretical analysis; the only difference
is that now the Fourier transforms involve two frequency variables,
ω1, ω2, one for each of the two dimensions.

• A gray image is represented as a two-dimensional array. To stay close to the
notation used so far, let d(n,m), n,m ∈ Z be the original undegraded image
(which for us is now the desired response) and u(n,m), n,m ∈ Z be the
degraded one, obtained as

u(n,m) =

+∞∑
i=−∞

+∞∑
j=−∞

h(i, j)d(n− i,m− j) + η(n,m),

where η(n,m) is the realization of a noise field, which is assumed to be zero
mean and independent of the input (undegraded) image. The sequence h(i, j)
is the point spread sequence (impulse response) of the system (e.g., camera).
We will assume that this is known and it has, somehow, been measured.

Sergios Theodoridis, University of Athens. Machine Learning, 17/66



Deconvolution: Image Deblurring

• Before we proceed any further, the following assumptions are adopted:
The image is a wide-sense stationary two-dimensional random
process. Two-dimensional random processes are also known as
random fields, discussed in Chapter 15.
The image is of an infinite extent; this can be justified for the case
of large images. This assumption will grant us the “permission” to
use (4). The fact that an image is a two-dimensional process does
not change anything in the theoretical analysis; the only difference
is that now the Fourier transforms involve two frequency variables,
ω1, ω2, one for each of the two dimensions.

• A gray image is represented as a two-dimensional array. To stay close to the
notation used so far, let d(n,m), n,m ∈ Z be the original undegraded image
(which for us is now the desired response) and u(n,m), n,m ∈ Z be the
degraded one, obtained as

u(n,m) =

+∞∑
i=−∞

+∞∑
j=−∞

h(i, j)d(n− i,m− j) + η(n,m),

where η(n,m) is the realization of a noise field, which is assumed to be zero
mean and independent of the input (undegraded) image. The sequence h(i, j)
is the point spread sequence (impulse response) of the system (e.g., camera).
We will assume that this is known and it has, somehow, been measured.

Sergios Theodoridis, University of Athens. Machine Learning, 17/66



Deconvolution: Image Deblurring

• Our task now is to estimate a two-dimensional filter, w(n,m), which is
applied to the degraded image to optimally reconstruct (in the MSE
sense) the original undegraded one. In the current context, Eq. (4) is
written as,

W (ω1, ω2)Su(ω1, ω2) = Sdu(ω1, ω2).

Furthermore, it can be shown (as in respective section in Chapter 2)
that,

Sdu(ω1, ω2) = H∗(ω1, ω2)Sd(ω1, ω2),

and
Su(ω1, ω2) = |H(ω1, ω2)|2Sd(ω1, ω2) + Sη(ω1, ω2),

where “*” denotes complex conjugation and Sη is the power spectral
density of the noise field. Thus, we finally obtain that

W (ω1, ω2) =
1

H(ω1, ω2)

|H(ω1, ω2)|2

|H(ω1, ω2)|2 +
Sη(ω1,ω2)
Sd(ω1,ω2)

• Once W (ω1, ω2) has been computed, the unknown parameters could be
obtained via an inverse (two-dimensional) Fourier transform.
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Deconvolution: Image Deblurring

• The deblurred image then results as

d̂(n,m) =

+∞∑
i=−∞

w(i, j)u(n− i,m− j).

In practice, since we are not really interested in obtaining the weights of
the deconvolution filter, the above convolution is implemented in the
frequency domain, i.e.,

D̂(ω1, ω2) = W (ω1, ω2)U(ω1, ω2),

and then obtain the inverse Fourier transform. Thus, all the processing
is efficiently performed in the frequency domain. Software packages to
perform Fourier transforms (via the Fast Fourier Transform, FFT) of an
image array are “omnipresent” in the internet.

• Another important issue is that, in practice, we do not know
Sd(ω1, ω2). An approximation, which is usually adopted that renders

sensible results, is to assume that
Sη(ω1,ω2)
Sd(ω1,ω2) is a constant, C. Then, one

tries different values of it and selects the one that results in the best
reconstructed image.
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Deconvolution: Image Deblurring

• Figure (a) shows the deblurred image for C = 2.3× 10−6,
alongside the original one shown in Figure (b). The quality of the
end result depends a lot on the choice of this value.

(a) (b)

a) the deblurred image for C = 2.3× 10−6, and b) the original one. Observe that in spite of the simplicity of
the method, the reconstruction is pretty good. The differences become more obvious to the eye, when the

images are enlarged.

• Needless to say that, other, more advanced techniques, have also
been proposed. For example, one can get a better estimate of
Sd(ω1, ω2) by using information from Sη(ω1, ω2) and Su(ω1, ω2).
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Interference Cancellation

• In interference cancellation, we have access to a mixture of two
signals, e.g., dn = yn + sn. Ideally, we would like to remove one
of them, say yn. We will consider them as realizations of
respective random processes/signals, i.e., dn, yn and sn. To
achieve this goal, the only available information is another signal,
say un, which is statistically related to the unwanted signal, yn.
For example, yn may be a filtered version of un.

• This is illustrated in the figure below, where the corresponding
realizations of the involved processes are shown, on which a real
system works on.
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Interference Cancellation

• Process yn is the output of an unknown system H, whose input is
excited by un. The task is to model H by obtaining estimates of its
impulse response (assuming that it is LTI and of known order). Then,
the output of the model will be an approximation of yn, when this is
activated by the same input, un. We will use dn as the desired response
process.

• The optimal estimates of w0, ..., wl−1 (assuming the order of the
unknown system H to be l) are provided by the normal equations

Σuw∗ = p.
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Interference Cancellation

• However,
p = E [undn] = E

[
un
(
yn + sn

)]
= E [unyn] ,

since the respective input vector un and sn are considered statistically
independent.

• That is, the previous formulation of the problem leads to the same
normal equations as if the desired response was the signal yn, which
we want to remove! Hence, the output of our model will be an
approximation (in the MSE sense), ŷn, of yn and if subtracted from dn
the resulting error signal, en, will be an approximation to sn.

• How good this approximation is depends on whether l is a good
“estimate” of the true order of H. The cross-correlation in the right
hand side of the normal equations can be approximated by computing
the respective sample mean vales, in particular over periods where sn is
absent. In practical systems, adaptive/online versions of this
implementation are usually employed, as those discussed in Chapter 5.

• Interference cancellation schemes are used in many systems such as
noise cancellation, echo cancellation in telephone networks and video
conferencing, and in biomedical applications; for example, in order to
cancel the maternal interference in fetal electrocardiograph.
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implementation are usually employed, as those discussed in Chapter 5.

• Interference cancellation schemes are used in many systems such as
noise cancellation, echo cancellation in telephone networks and video
conferencing, and in biomedical applications; for example, in order to
cancel the maternal interference in fetal electrocardiograph.
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Echo Cancellation In Video Conferencing

• The task of echo cancelation in video conferencing is illustrated in the
figure below. The same set up applies to the hands-free telephone
service in a car.

• The far-end speech signal is considered to be a realization of a random
process, un; through the loudspeakers, it is broadcasted in room A (car)
and it is reflected in the interior of the room. Part of it is absorbed and
part of it enters the microphone; this is denoted as yn.

• The equivalent response of the room (reflections) on un can be
represented by a filter, H, as in the interference cancelation task before.
Signal yn returns back and the speaker in location B listens her/his own
voice, together with the near-end speech signal, sn of the speaker in A.
The goal of the echo canceller is to optimally remove yn.
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System Identification

• System identification is similar in nature to the interference cancellation
task. However, in the latter task, the focus was on replicating the
output yn. In contrast, in the system identification the focus is on the
system’s impulse response.

In system identification, the impulse
response of the model is optimally
estimated so that the output to be close,
in the MSE, to that of the unknown
plant. The red line indicates that the
error is used for the optimal estimation of
the unknown parameters of the filter.

• In system identification, the aim is to model the impulse response of an
unknown plant. To this end, we have access to its input signal as well
as to a noisy version of its output. The task is to design a model whose
impulse response approximates that of the unknown plant. To achieve
this, we optimally design a linear filter whose input is the same signal as
the one that activates the plant and its desired response is the noisy
output of the plant, as shown in the figure above.
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System Identification

• The associated normal equations are,

Σuw∗ = E[undn] = E[unyn] + 0,

assuming that the noise ηn to be statistically independent of un.
Thus, once more, the resulting normal equations are the same as
if we had provided the model with a desired response equal to the
noiseless output of the unknown plant, i.e., dn = yn. Hence,
the impulse response of the model is estimated so that its output
to be close, in the MSE, to the true (noiseless) output of the
unknown plant.

• System identification is of major importance in a number of
applications. In control, it is used for driving the associated
controllers. In data communications, for estimating the
transmission channel in order to build up maximum likelihood
estimators of the transmitted data. In many practical systems,
adaptive/online versions of the System Identification scheme are
implemented, as it is discussed in Chapter 5.
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Deconvolution: Channel Equalization

• Note that in the cancellation task the goal was to “remove” the output
(filtered version of the input signal, un,) of the unknown system H. In
system identification, the focus was on the unknown system itself. In
deconvolution, the emphasis is on the input of the unknown system.
That is, our goal now is to recover, in the MSE optimal sense, a
(delayed) input signal, dn = sn−L+1, where L is the delay in units of
the sampling period, T . The task is also called inverse system
identification.

• The term equalization or channel equalization is used in
communications. The deconvolution task was introduced in the context
of image deblurring. There, the required information about the
unknown input process was obtained via an approximation. In the
current framework, this can be approached via the transmission of a
training sequence.

• The goal of an equalizer is to recover the transmitted information
symbols, by mitigating the so-called inter-symbol interference (ISI), that
any (imperfect) dispersive communication channel imposes on the
transmitted signal; besides ISI, additive noise is also present in the
transmission information bits.
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Deconvolution: Channel Equalization

• Equalizers are “omnipresent” in these days; in our mobile phones, in our
modems, e.t.c. Deconvolution/channel equalization is at the heart of a
number of applications besides communications, such as acoustics,
optics, seismic signal processing, control.

• The figure below presents the basic scheme for an equalizer. The
equalizer is trained so that its output to be as close as possible to the
transmitted data bits delayed by some time lag L; the delay is used in
order to account for the overall delayed imposed by the
channel-equalizer system.
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L time lags.
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Example: Noise Cancellation

• The noise cancellation application is illustrated in the figure below. The
signal of interest is a realization of a process, sn, which is contaminated
by the noise process v1(n).

• For example, sn may be the speech signal of the pilot in the cockpit and
v1(n) the aircraft noise at the location of the microphone. We assume
that v1(n) is an AR process of order one, i.e.,

v1(n) = a1v1(n− 1) + ηn.

• The random signal v2(n) is a noise sequence, which is related to v1(n),
but it is statistically independent of sn. For example, it may be the
noise picked from another microphone positioned at a nearby location.
This is also assumed to be an AR process of the first order,

v2(n) = a2v2(n− 1) + ηn.
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Example: Noise Cancellation

• The goal of the example is to compute estimates of the weights of the
noise canceller, in order to optimally remove (in the MSE sense) the
noise v1(n) from the mixture sn + v1(n). Assume the canceller to be of
order two.

• The input to the canceller is v2(n) and as desired response the mixture
signal, dn = sn + v1(n), will be used. To establish the normal
equations, we need to compute the covariance matrix, Σ2, of v2(n) and
the cross-correlation vector, p2, between the input random vector,
v2(n), and dn.

• Since v2(n) is an AR process of the first order, we know form Chapter 2
that, the autocorrelation coefficients are given by

r2(k) =
ak2σ

2
η

1− a2
2

, k = 0, 1, ...
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Example: Noise Cancellation

• Hence,

Σ2 =

[
r2(0) r2(1)
r2(1) r2(0)

]
=

 σ2
η

1−a2
2

a2σ
2
η

1−a2
2

a2σ
2
η

1−a2
2

σ2
η

1−a2
2

 .
• Next, we are going to compute the cross-correlation vector,

p2(0) := E[v2(n)dn] = E
[
v2(n)

(
sn + v1(n)

)]
= E[v2(n)v1(n)] + 0

= E
[(
a2v2(n− 1) + ηn

)(
a1v1(n− 1) + ηn

)]
= a2a1p2(0) + σ2

η =⇒ p2(0) =
σ2
η

1− a2a1
.

• We used the fact that E[v2(n− 1)ηn] = E[v1(n− 1)ηn] = 0, since
v2(n− 1) and v1(n− 1) depend recursively on previous values
η(n− 1), η(n− 2), ... and also ηn is a white noise sequence, hence the
respective correlation values are zero.
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Example: Noise Cancellation

• For the other value of the cross-correlation vector we have,

p2(1) = E[v2(n− 1)dn] = E
[
v2(n− 1)

(
sn + v1(n)

)]
= E[v2(n− 1)v1(n)] + 0 = E

[
v2(n− 1)

(
a1v1(n− 1) + ηn

)]
= a1p2(0) =

a1σ
2
η

1− a1a2
.

• In general, it is easy to show that,

p2(k) =
ak1σ

2
η

1− a2a1
, k = 0, 1, ... .

Recall that since the processes are real-valued, the covariance matrix is
symmetric, i.e., r2(k) = r2(−k). Also, in order the models to make
sense, (i.e., r2(0) > 0), |a2| < 1. The same holds true for |a1|.
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Example: Noise Cancellation

• Thus, the optimal weights of the noise canceller are given by the
following set of normal equations, σ2

η

1−a22
a2σ2

η

1−a22
a2σ2

η

1−a22
σ2
η

1−a22

w =

[
σ2
η

1−a1a2
a1σ2

η

1−a1a2

]
.

Note that the canceller optimally removes from the mixture,
sn + v1(n), the component which is correlated to the input,
v2(n).

• To demonstrate the validity of the above, we adopted as our
information signal, the sinusoid, sn = cos(ω0n) with
ω0 = 2 ∗ 10−3 ∗ π. Also, dn = sn + v1(n), with a1 = 0.8 and
σ2η = 0.05. To generate v2(n), we used two different values,
namely a2 = 0.75 and a2 = 0.5. The obtained results are shown
in the next figures.
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Example: Noise Cancellation

(a) (b)

(c)

a) The noisy sinusoid signal. b) The de-noised signal for strongly correlated noise sources, v1 and v2, (a2 = 0.75). b)
The obtained de-noised signal for less correlated noise sources, (a2 = 0.5).
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Example: Channel Equalization

• Consider the channel equalization set up of the figure

• The output of the channel, which is sensed by the receiver, is assumed
to be

un = 0.5sn + sn−1 + ηn.

• The goal is to design an equalizer comprising three taps, i.e.,
w = [w0, w1, w2]T , so as

d̂n = wTun,

and estimate the unknown taps using as a desired response sequence
dn = sn−1. We are given that E[sn] = E[ηn] = 0 and

Σs = σ2
sI, Ση = σ2

ηI.

• Note that we have used a delay L = 1. In simple words, to explain why
a delay is used, observe that at time n, most of the contribution to un
comes from the symbol sn−1; hence, it is intuitively natural, at time n,
having received un, to try to obtain an estimate for sn−1.
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Example: Channel Equalization

• Figure (a) shows a realization of the input information sequence sn. It
consists of equiprobable ±1 samples, randomly generated. The effect of
the channel is a) to combine successive information samples together
(ISI) and b) to add noise; the purpose of the equalizer is to optimally
remove both of them. Figure (b) shows the respective realization
sequence of un, which is received at the receiver’s front end. Observe
that, by looking at it, one cannot recognize in it the original sequence;
the noise together with the ISI have really changed its “look”.

(a) (b)

• Following a similar procedure as in the previous example, we obtain

Σu =

1.25σ2
s + σ2

η 0.5σ2
s 0

0.5σ2
s 1.25σ2

s + σ2
η 0.5σ2

s

0 0.5σ2
s 1.25σ2

s + σ2
η

 , p =

 σ2
s

0.5σ2
s

0

 .
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sequence of un, which is received at the receiver’s front end. Observe
that, by looking at it, one cannot recognize in it the original sequence;
the noise together with the ISI have really changed its “look”.

(a) (b)

• Following a similar procedure as in the previous example, we obtain

Σu =

1.25σ2
s + σ2

η 0.5σ2
s 0

0.5σ2
s 1.25σ2

s + σ2
η 0.5σ2

s

0 0.5σ2
s 1.25σ2

s + σ2
η

 , p =

 σ2
s

0.5σ2
s

0

 .
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Example: Channel Equalization

• Solving the normal equations,

Σuw∗ = p,

for σ2
s = 1 and σ2

η = 0.01, results in

w∗ = [0.7462, 0.1195,−0.0474]T .

• Figure (c) shows the recovered sequence by the equalizer (wT
∗ un), after

thresholding. It is exactly the same with the transmitted one; no errors.
Figure (d) shows the recovered sequence, for increased noise variance,
i.e., σ2

η = 1. The corresponding MSE optimal equalizer is equal to

w∗ = [0.4132, 0.1369,−0.0304]T .

This time, the reconstructed by the equalizer sequence has errors, with
respect to the transmitted one (gray lines).
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Extension to Complex-Valued Variables

• Everything that has been said so far can be extended to complex-valued
signals. However, there are a few subtle points involved and this is the
reason that we chose to treat this case separately. Complex-valued
variables are very common in a number of applications, as for example
in communications.

• Given two real-valued variables, (x, y), one can consider them either as
a vector quantity in the two dimensional-space, [x, y]T , or can describe
them as a complex variable, z = x+ jy, where j2 := −1. Adopting the
latter approach, offers the luxury of exploiting the operations available
in the field C of complex numbers, i.e. multiplication and division. The
existence of such operations greatly facilitates the algebraic
manipulations. Recall that such operations are not defined in vector
spaces.

• Let us assume that we are given a complex-valued (output) random
variable,

y := yr + jyi,

and a complex-valued (input) random vector

x = xr + jxi.
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Extension to Complex-Valued Variables

• The quantities yr, yi,xr and xi are real-valued random
variables/vectors. The goal is to compute a linear estimator defined by
a complex-valued parameter vector θ = θr + jθi ∈ Cl, so as to
minimize the respective mean-square error,

E
[
|e|2
]

:= E
[
ee∗] = E[|y − θHx|2

]
.

• Looking at the above, it is readily observed that in the case of complex
variables the inner product operation between two complex-valued
random variables should be defined as E[xy∗], so as to guarantee that
the implied norm by the inner product, i.e., ‖x‖ =

√
E[xx∗], is a valid

quantity. Applying the orthogonality condition as before, we rederive
the normal equations, i.e.,

Σxθ∗ = p,

where now the covariance matrix and cross-correlation vector are given
by Σx = E

[
xxH

]
, p = E [xy∗] .

• The equivalent cost function to be minimized is given by

J(θ) = E[|e|2] = E[|y − ŷ|2] = E[|yr − ŷr|2] + E[|yi − ŷi|2]

where,
ŷ := ŷr + jŷi = θHx. (5)
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Extension to Complex-Valued Variables

• Complex linear estimator: The previous estimator, i.e.,

ŷ := ŷr + jŷi = θHx

can also be written as,

ŷ = (θTr − jθTi )(xr + jxi) = (θTr xr + θTi xi) + j(θTr xi − θTi xr).

• The above equation reveals the true flavor behind the complex notation;
that is, its multichannel nature. In multichannel estimation, we are given
more than one sets of input variables, e.g., xr and xi, and we want to
generate, jointly, more than one output variables, e.g., ŷr and ŷi.

• The last equation can equivalently be written as,[
ŷr
ŷi

]
= Θ

[
xr
xi

]
, (6)

where
Θ :=

[
θTr θTi
−θTi θTr

]
.

• Looking at (6), we observe that the complex linear estimation task,
resulted in a matrix, Θ, of a very special structure.
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Extension to Complex-Valued Variables

• Widely linear Complex estimator: Let us define the linear two-channel
estimation task starting from the definition of a linear operation in
vector spaces. The task is to generate a vector output, ŷ = [ŷr, ŷi]

T ,
y ∈ R2 from the input vector variables, x = [xr,xi]

T ∈ R2l, via the
linear operation,

ŷ =

[
ŷr
ŷi

]
= Θ

[
xr
xi

]
, (7)

where,

Θ :=

[
θT11 θT12

θT21 θT22

]
,

and compute the matrix Θ so as to minimize the total error variance i.e,

Θ∗ := arg min
Θ

{
E
[
(yr − ŷr)

2] + E
[
(yi − ŷi)

2
]}
.

• It turns out that the general formulation of the linear operation in the
two-dimensional space, given in (7) can be equivalently written as

ŷ := ŷr + jŷi = θHx + vHx∗ (8)

where
θr :=

1

2
(θ11 + θ22), θi :=

1

2
(θ12 − θ21),

and
vr :=

1

2
(θ11 − θ22), vi := −1

2
(θ12 + θ21).
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Extension to Complex-Valued Variables

• To distinguish from the complex linear estimation, Eq. (8) is known as
widely linear complex-valued estimator. Note that in this case, both x
as well as its complex conjugate, x∗, are simultaneously used in order to
cover all possible solutions, as those are dictated by the general linear
formulation in a vector space.

• Let us now define,

ϕ :=

[
θ
v

]
and x̃ :=

[
x
x∗

]
.

Then the widely linear estimator is written as,

ŷ = ϕH x̃.

• Adopting the orthogonality condition in its complex formulation, i.e.,

E [x̃e∗] = E
[
x̃
(
y − ŷ

)∗]
= 0,

it turns out that the normal equations are equivalently written as[
Σx Px
P ∗x Σ∗x

] [
θ∗
v∗

]
=

[
p
q∗

]
, where Px := E[xxT ], q := E[xy].
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Extension to Complex-Valued Variables

• Circularity conditions: The matrix Px is known as the pseudo
covariance/autocorrelation matrix. If in the latter orthogonality condition, for
the widely linear estimator, one sets

Px = 0 and q = 0

it leads to v∗ = 0, and the task becomes equivalent to the complex linear
estimator. In this case, we say that the input-output variables are jointly
circular and the input variables in x obey the second order circular condition.

• A stronger condition for circularity is based on the pdf of a complex random
variable: A random variable x is circular (or strictly circular) if x and xejφ are
distributed according to the same pdf; that is, the pdf is rotationally
invariant. Strict circularity implies the second order circularity, but the
converse is not always true. Figure (a) shows the scatter plot of points
generated by a circularly distributed variable and Figure (b) corresponds to a
non-circular one.
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Mean-Square Error Estimation of Linear Models

• We now turn our attention to the case where the underlying model,
that relates the input-output variables, is a linear one. So far, we have
been concerned with the linear estimation task. At no point in the stage
of our discussion, the generation model of the data was brought in. We
just adopted a linear estimator and obtained the MSE solution for it. In
contrast, the emphasis here is on cases where the input-output variables
are related via a linear data generation model.

• Let us assume that we are given two jointly distributed random vectors,
y and θ, which are related according to the following linear model,

y = Xθ+ η,

where η denotes the set of the involved noise variables. Note that such
a model covers the case of our familiar regression task, where the
unknown parameters θ are considered random, which is in line with the
Bayesian philosophy. Once more, we assume zero-mean vectors;
otherwise the respective mean values are subtracted.

• The dimensions of y (η) and θ may not necessarily be the same; to be
in line with the notation used in Chapter 3, let y,η ∈ RN and θ ∈ Rl.
Hence X is a N × l matrix. Note that, matrix X is considered to be
deterministic and not a random one.
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Mean-Square Error Estimation of Linear Models

• Assume the covariance matrices of our zero-mean variables,

Σθ = E[θθT ], Ση = E[ηηT ],

to be known. The goal is to compute a matrix, H, of dimension l ×N ,
so that the linear estimator

θ̂ = Hy,

minimizes the mean-square error cost,

J(H) := E
[
(θ− θ̂)T (θ− θ̂)

]
=

l∑
i=1

E
[
|θi − θ̂i|2

]
.

• Note that this is a multichannel estimation task and it is equivalent
with solving l optimization tasks, one for each component, θi, of θ.

• If we define the error vector as,

ε := θ− θ̂,
then the cost function is equal to the trace of the corresponding error
covariance matrix, i.e.,

J(H) := trace
{
E[εεT ]

}
.
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Mean-Square Error Estimation of Linear Models

• Performing minimization of the previous cost function, and following
standard arguments, that we have already used before, we can show
that (details in the text)

θ̂ = (Σ−1
θ +XTΣ−1

η X)−1XTΣ−1
η y. (9)

• If we allow nonzero mean values for θ and y, it turns out that

θ̂ = E[θ̂] +
(
Σ−1
θ +XTΣ−1

η X
)−1

XTΣ−1
η (y − E[y]) .

The above is the same as the estimator resulting from the Bayesian
inference approach (Chapter 3), provided that the covariance matrix of
the prior (Gaussian) pdf is equal to Σθ and the corresponding mean

θ0 = E[θ̂], for a zero-mean noise variable.

• We know from Chapter 3 that, the optimal MSE estimator of θ, given
the values of y, is given by

E[θ|y].

Furthermore, if θ and y are jointly Gaussian vectors, then the optimal
estimator is linear (affine for nonzero mean variables) and it coincides
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The Gauss-Markov Theorem

• We now turn our attention to the case where θ in the regression model
is considered to be an (unknown) constant, instead of a random
variable. Thus, the linear model is now written as,

y = Xθ + η, (10)

and the randomness of y is solely due to the noise η, which is assumed
to be zero-mean with covariance matrix Ση.

• The goal is to design an unbiased linear estimator, that minimizes the
mean-square error, i.e.,

θ̂ = Hy, (11)

and select H such as

minimize trace
{
E
[
(θ − θ̂)(θ − θ̂)T

]}
s.t. E[θ̂] = θ. (12)

• From (10) and (11), we get that

E[θ̂] = HE[y] = HE
[
(Xθ + η)

]
= HXθ,

which implies that the unbiased constraint is equivalent to

HX = I.
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The Gauss-Markov Theorem

• Employing (11), the error vector becomes

ε = θ − θ̂ = θ −Hy = θ −H(Xθ + η) = Hη.

Hence, the constrained minimization in (12) can now be written as

H∗ = arg min
H

trace{HΣηHT },

s.t. HX = I.

• Employing Lagrange multipliers, the optimal MSE linear unbiased
estimator results as,

θ̂ = (XTΣ−1
η X)−1XTΣ−1

η y,

and it is also known as the best linear unbiased estimator (BLUE) or the
minimum variance unbiased linear estimator. For complex-valued
variables, the transposition is simply replaced by the Hermitian one.

• The BLUE coincides with the maximum likelihood estimator, if η
follows a multivariate Gaussian distribution; under this assumption, the
Cramér-Rao bound is achieved. If this is not the case, there may be
another unbiased estimator (nonlinear), which results in lower MSE.
Moreover, there may be a biased estimator that results in lower MSE.
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Example: Channel Identification

• The task is that of system identification and it is illustrated, once again
for convenience, in the figure below

• Assume that we have access to a set of input-output observations, un
and dn, n = 0, 1, 2, . . . , N − 1. Moreover, we are given that the impulse
response of the system/plant comprises l taps and it is zero-mean and
its covariance matrix is Σw. Also, the second order statistics of the
zero-mean noise are also known and we are given its covariance matrix,
Ση.

• Then, assuming that the plant starts from zero initial conditions, we
can adopt the following model relating the involved random variables,
which is in line with the previously discussed model, i.e., y = Hθ+ η.
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Example: Channel Identification

• The input-output relation of the task is written as,

d :=



d0

d1

...
dl−1

...
dN−1


= U


w0

w1

...
wl−1

+



η0

η1

...
ηl−1

...
ηN−1


,

where

U :=


u0 0 0 · · · 0
u1 u0 0 · · · 0
· · · · · · · · · · · · · · ·
ul−1 ul−2 · · · · · · u0

· · · · · · · · · · · · · · ·
uN−1 · · · · · · · · · uN−l+1

 .

• Note that U is treated deterministically. Then, recalling (9) (i.e.,
θ̂ = (Σ−1

θ +XTΣ−1
η X)−1XTΣ−1

η y) and plugging in the set of obtained
measurements, the following estimate results

ŵ = (Σ−1
w + UTΣ−1

η U)UTΣ−1
η d,

where d is the vector of the desired response observations.
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Constrained Linear Estimation: The Beamforming Case

• We have already dealt with a constrained linear estimation task,
in our effort to obtain an unbiased estimator of a fixed-value
parameter vector. In the current subsection, we will see that the
procedure developed there is readily applicable for cases where
the unknown parameter vector is required to respect more general
linear constraints. The case will be demonstrated in the context
of beamforming, one of the major application areas in modern
communications.

• A beamformer comprises a set of antenna elements. We consider
the case where the antenna elements are uniformly spaced along
a straight line. The goal is to linearly combine the signals
received by the individual antenna elements, so as:

to turn the main beam of the array to a specific direction in space,
to optimally reduce the noise.

The first goal imposes a constraint to the designer, which will
guarantee that the gain of the array is high for the specific desired
direction; for the second goal, we will adopt MSE arguments.
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Constrained Linear Estimation: The Beamforming Case

• The figure below illustrates the basic block diagram of the beamforming
task.

The task of the beamformer is to obtain estimates of the weights w0, ..., wl−1, so that to minimize the effect
of noise and at the same time to impose a constraint which, in the absence of noise, would leave signals

impinging the array from the desired angle, φ, unaffected.
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Constrained Linear Estimation: The Beamforming Case

• In a more formal way, assume that the transmitter is far enough, so that to
guarantee that the wavefronts that the array “sees” are planar. Let s(t) be
the information random process transmitted at a carrier frequency, ωc, hence
the modulated signal is

r(t) = s(t)ejωct.

If ∆x is the distance between successive elements of the array, then a
wavefront that arrives at time t0 at the first element will reach the i-th
element delayed by

∆ti = ti − t0 = i
∆x cosφ

c
, i = 0, 1, ..., l − 1,

where c is the speed of propagation, φ is the angle formed by the array and
the direction propagation of the wavefronts and l the number of array
elements; we know from our basic electromagnetic courses that

c =
ωcλ

2π
,

where λ is the respective wavelength.

• Taking a snapshot at time t, and assuming a relatively low time signal
variation, the signal received from direction φ at the i-th element will be

ri(t) = s(t−∆ti)e
jωc(t−i 2π∆x cosφ

ωcλ
)

' s(t)ejωcte−2πj i∆x cosφ
λ , i = 0, 1, ..., l − 1.
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Constrained Linear Estimation: The Beamforming Case

• After converting the received signals in the baseband (multiplying by
e−jωct), the vector of the received signals (one per array element), at
time t, can be written in the following linear regression-type formulation,

u(t) :=


u0(t)
u1(t)

...
ul−1(t)

 = xs(t) + η(t), where x :=


1

e−2πj∆x cosφ
λ

...

e−2πj
(l−1)∆x cosφ

λ

 ,
and the vector η(t) contains the additive noise plus any other
interference due to signals coming from directions other than φ, i.e.,

η(t) = [η0(t), ...,ηl−1(t)]T ,

and it is assumed to be of zero mean; x is also known as the steering
vector.

• The output of the beamformer, acting on the input vector signal, will be

ŝ(t) = wHu(t),

where the Hermitian operation has to be used, since now the involved
signals are complex-valued.
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Constrained Linear Estimation: The Beamforming Case

• We will first impose the constraint. Ideally, in the absence of noise, one
would like to recover signals, that impinge on the array from the desired
direction, φ, exactly. Thus, w should satisfy the following constraint

wHx = 1,

which guarantees that ŝ(t) = s(t) in the absence of noise. To account
for the noise, we require the MSE,

E
[
|s(t)− ŝ(t)|2

]
= E

[
|s(t)−wHu(t)|2

]
,

to be minimized. However,

s(t)−wHu(t) = s(t)−wH
(
xs(t) + η(t)

)
= −wHη(t).

Hence, the optimal w∗ results by the following constrained task

w∗ := arg min
w

(wHΣηw),

s.t. wHx = 1.

• Employing Lagrange multipliers, we finally obtain,

wH
∗ =

xHΣ−1
η

xHΣ−1
η x

, and ŝ(t) = wH
∗ u(t) =

xHΣ−1
η u(t)

xHΣ−1
η x

.
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Constrained Linear Estimation: The Beamforming Case

• The following figure shows the resulting beam-pattern as a function of
the angle φ. The desired angle for designing the optimal set of weights
is φ = π. The number of antenna elements is l = 10, the spacing has
been chosen as ∆x

λ = 0.5 and the noise covariance matrix as 0.1I. The
beam-pattern amplitude is in dBs, i.e., the vertical axis shows
20 log10(|wH

∗ x(φ)|). Thus, any signal arriving from directions, φ, not
close to φ = π, will be absorbed. The main beam can become sharper,
if more elements are used.
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Time Varying Statistics: Kalman Filtering

• So far, our discussion on the linear estimation task was limited to
stationary environments, where the statistical properties of the involved
random variables are assumed to be invariant with time. However, very
often in practice, this is not the case and the statistical properties may
be different at different time instants. As a matter of fact, a large part
in the book is devoted to study the estimation task under time-varying
environments.

• We will derive the basic recursions of the Kalman filter in the general
context of two jointly distributed random vectors y, x. The task is to
estimate the values of x given observations on y. If ηn ∈ Rl, vn,∈ Rk
are noise sources, let y ∈ Rk and x ∈ Rl be linearly related via the
following set of time-dependent recursions,

xn = Fnxn−1 + ηn, n ≥ 0, State Equation, (13)

yn = Hnxn + vn, n ≥ 0, Output Equation. (14)

• The vector xn is known as the state of the system at time n and yn is
the output, which is the vector which can be observed (measured); ηn
and vn are the noise vectors, known as process noise and measurement
noise, respectively. Matrices Fn and Hn are of appropriate dimensions
and they are assumed to be known.
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Time Varying Statistics: Kalman Filtering

• Observe that the so-called state equation provides the information
related to the time-varying dynamics of the underlying system. It
turns out that a large number of real world tasks can be brought
into the form of (13), (14). The model is known as the
state-space model for yn.

• In order to derive the time-varying estimator, x̂n, given the
measured values of yn, the following assumptions will be
adopted:

E[ηnη
T
n ] = Qn, E[ηnη

T
m] = O, n 6= m.

E[vnv
T
n ] = Rn, E[vnv

T
m] = O, n 6= m.

E[ηnv
T
m] = O, ∀n,m.

E[ηn] = E[vn] = 0, ∀n,
where O denotes a matrix with zero elements. That is, ηn,vn are
uncorrelated; moreover, noise vectors at different time instants
are also considered uncorrelated. Versions where some of these
conditions are relaxed are also available. The respective
covariance matrices, Qn, Rn, are assumed to be known.
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Time Varying Statistics: Kalman Filtering

• The development of the time-varying estimation task evolves
around two types of estimators for the state variables:

The first one is denoted as

x̂n|n−1.

and it is based on all information that has been received up to and
including time instant n− 1; i.e., the observations of
y0,y1, ...,yn−1. This is known as the a-priori or prior estimator.

The second estimator at time n is known as the posterior one, it is
denoted as

x̂n|n,

and it is computed by updating x̂n|n−1 after the observation of yn
has been received.

• For the development of the algorithm, assume that at time n− 1
all required information is available; that is, the value of the
posterior estimator and the respective error covariance matrix,

x̂n−1|n−1, and Pn−1|n−1 := E[en−1|n−1e
T
n−1|n−1],

where
en−1|n−1 := xn−1 − x̂n−1|n−1.
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Time Varying Statistics: Kalman Filtering

• The Kalman Filtering Algorithm
Input: Fn, Hn, Qn, Rn, yn, n = 1, 2, ...

Initialization:

x̂1|0 = E[x1]
P1|0 = Π0

For n = 1, 2, ..., Do

Sn = Rn +HnPn|n−1H
T
n

Kn = Pn|n−1H
T
n S
−1
n

x̂n|n = x̂n|n−1 +Kn(yn −Hnx̂n|n−1)
Pn|n = Pn|n−1 −KnHnPn|n−1

x̂n+1|n = Fn+1x̂n|n
Pn+1|n = Fn+1Pn|nF

T
n+1 +Qn+1

End For

• For complex-valued variables, transposition is replaced by the Hermitian one.
• Observe that Pn|n is computed as the difference of two positive definite

matrices; this may lead to a non-positive definite, Pn|n, due to numerical
errors. This can cause the algorithm to diverge. A popular alternative is the
information filtering scheme, which propagates the inverse covariance
matrices, P−1

n|n, P
−1
n|n−1, usually via respective Cholesky factorization. In

contrast, the above scheme is known as the covariance Kalman algorithm.
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Time Varying Statistics: Kalman Filtering

• Proof: The proof involves four major steps.

Step 1: Using x̂n−1|n−1, predict x̂n|n−1 using the state equation;
that is,

x̂n|n−1 = Fnx̂n−1|n−1.

In other words, ignore the contribution from the noise. This is
natural, since prediction cannot involve the unobserved variable.

Step 2: Obtain the respective error covariance matrix,

Pn|n−1 = E[(xn − x̂n|n−1)(xn − x̂n|n−1)T ].

However,

en|n−1 := xn−x̂n|n−1 = Fnxn−1+ηn−Fnx̂n−1|n−1 = Fnen−1|n−1+ηn.

Combining the last two equations we get,

Pn|n−1 = FnPn−1|n−1F
T
n +Qn.

Step 3: Update x̂n|n−1. To this end, adopt the following recursion

x̂n|n = x̂n|n−1 +Knen, (15)

where
en := yn −Hnx̂n|n−1. (16)
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Time Varying Statistics: Kalman Filtering

• (proof continued: x̂n|n = x̂n|n−1 +Knen),

(Step 3 Continued): Thus, the “new” (posterior) estimate is equal
to the “old” (prior) one, based on the past history plus a
correction term; the latter is proportional to the error en in
predicting the newly arrived measurement and its prediction based
on the “old” estimate. Matrix Kn, known as the Kalman gain,
controls the amount of correction and its value is computed so
that to minimize the mean square error, i.e.,

J(Kn) := E[eTn|nen|n] = trace{Pn|n},
where

Pn|n = E[en|ne
T
n|n], (17)

and
en|n := xn − x̂n|n.

It can be shown that the optimal Kalman gain is equal to

Kn = Pn|n−1H
T
n S
−1
n ,

where
Sn = Rn +HnPn|n−1H

T
n .
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Time Varying Statistics: Kalman Filtering

• (proof continued)

Step 4: The final recursion that is now needed, in order to
complete the scheme, is that for the update of Pn|n. Combining
the definitions in (16) and (17) with (15), the following results,

Pn|n = Pn|n−1 −KnHnPn|n−1.

The algorithm has now been derived. All that is now needed is to
select the initial conditions, which are chosen such as:

x̂1|0 = E[x1]

P1|0 = E
[
(x1 − x̂1|0)(x1 − x̂1|0)T

]
= Π0.

• Extended Kalman Filters Kalman filtering, in a more general
formulation, can be cast as

xn = fn(xn−1) + ηn

yn = hn(xn) + vn

• The vector-functions fn and hn are nonlinear. In the Extended Kalman
Filtering (EKF), the idea is to linearize the functions hn(·) and fn(·), at
each time instant, via their Taylor series expansions, keep the linear
term only and then proceed with the linear Kalman filtering algorithm.
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Example: Autoregressive Process Estimation

• Let us consider an AR process of order l, i.e.,

xn = −
l∑

i=1

aixn−i + ηn, (18)

where ηn is a white noise sequence of variance σ2η. Our task is to
get an estimate x̂n of xn, having observed a noisy version of it,
yn. The corresponding random variables are related as,

yn = xn + vn. (19)

• To this end, the Kalman filtering formulation will be used. Note
that the MSE linear estimation, presented previously, cannot be
used here. As it is discussed in Chapter 2, an AR process is
asymptotically stationary; for finite time samples, the initial
conditions at time n = 0 are “remembered” by the process and
the respective (second) order statistics are time dependent, hence
it is a non-stationary process. However, Kalman filtering is
specially suited for such cases.
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Example: Autoregressive Process Estimation

• Let us rewrite (18) and (19) as
xn

xn−1

xn−2

...
xn−l+1

 =


−a1 −a2 · · · −al−1 −al

1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 1 0




xn−1

xn−2

xn−3

...
xn−l

+


ηn
0
...
0



yn =
[
1 0 · · · 0

]  xn
...

xn−l+1

+ vn

or

xn = Fxn−1 + η

yn = Hxn + vn

where the definitions of Fn ≡ F and Hn ≡ H are obvious and

Qn =

σ2
n 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 , Rn = σ2
v (scalar).
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Example: Autoregressive Process Estimation

• Figure (a) shows the values of a specific realization yn, and Figure (b)
the corresponding realization of the AR(2) (red) together with the
predicted by the Kalman filter sequence x̂n. Observe that the match is
very good. For the generation of AR process we used of l = 2,
α1 = 0.95, α2 = 0.9, σ2

η = 0.5. For the Kalman filter output noise
σ2
v = 1.

(a) (b)

a) A realization of the observation sequence, yn, which is used by the Kalman filter to obtain the predictions of
the state variable. b) The AR process (state variable) in red together with the predicted by the Kalman filter
sequence (gray). The Kalman filter has optimally removed the effect of the noise vn and closely predicts the

state variation.
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