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ABSTRACT This work introduces a decentralized mechanism for the fair and efficient allocation of limited
community-central renewable energy sources (RESs) among consumers with diverse energy demand and risk
attitude levels in an energy community. In the proposed non-cooperative game, the self-interested community
members independently decide whether to compete or not for access to RESs during peak hours and shift
their loads analogously. In the peak hours, a proportional allocation (PA) policy is used to allocate the limited
RESs among the competitors. Conditions for the existence of a Nash equilibrium (NE) or dominant strategies
in this non-cooperative game are derived, and closed-form expressions of the renewable energy demand and
social cost are calculated. Moreover, a decentralized algorithm for choosing consumers’ strategies that lie
on NE states is designed. The work shows that the risk attitude of the consumers can have a significant
impact on the deviation of the induced social cost from the optimal cost as the latter derives by a centralized
minimization with full access to all consumers information. Besides, the proposed decentralized mechanism
with the PA policy is shown to attain a much lower social cost than one using the naive equal sharing policy.

INDEX TERMS energy communities; renewable energy sources; non-cooperative game theory; risk;
demand side management;

I. INTRODUCTION, BACKGROUND & CONTRIBUTIONS

The large-scale penetration of distributed, stochastic and non-
dispatchable Renewable Energy Sources (RESs) has trig-
gered the need for energy management solutions in distribu-
tion systems [1], [2]. In themeantime, growing environmental
and societal awareness coupled with advances in commu-
nication and control technologies have allowed for a more
active involvement of end-users in managing their energy
consumption [3]. In the EU, recent regulatory changes, such
as the 2019 Clean Energy for all Europeans package, and
funding initiatives have placed a strong emphasis on RESs
communities to enable local consumption and citizen-owned
RESs projects [4]. In this context, energy communities, which
coordinate the operation of distributed energy resources pro-
duction and consumption, have become a viable and efficient
solution to facilitate the integration of RESs into distribution
grids, provide services to the grid and reduce procurement
costs for consumers [5]–[7]. The focus of this work is the

study of the interactions among consumers within an energy
sharing community towards the minimization of their elec-
tricity bills.

Several works in the literature have shown the benefits of
energy communities to reduce consumers costs and increase
energy justice by focusing on peer-to-peer (P2P) energy trad-
ing mechanisms [8]–[10]. However, the development of these
energy communities with consumer-owned RESsmay be lim-
ited due to high investment costs [11]. In contrast, recent reg-
ulatory changes have provided an unprecedented opportunity
for the development of P2P energy sharing mechanisms, in
which community-central RESs are allocated among the con-
sumers [12]. Various works in the literature have shown the
potential economic benefits of these energy sharing commu-
nities, both for individual consumers and the community as
a whole [13]–[17]. For instance, the authors in [15] show the
effectiveness of community-central RESs and storage versus
a decentralized ownership using non-cooperative game theo-
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retical tools. Similarly, in [17], it is shown that community-
central assets provide better benefits to energy communities
for both fixed and dynamic tariffs. Given these outcomes, in
this paper, we focus on an energy community where limited
community-central RESs are shared among consumers.

In order to ensure the sustainability and large-scale de-
velopment of these energy sharing communities, it is essen-
tial to design fair and efficient mechanisms to share limited
community-central resources among consumers who have
equal claim to them but different levels of demand [9], [18],
[19]. As highlighted in [20], due to the subjective nature of
fairness, various well-established notions of fairness, such
as proportional and egalitarian, have been introduced in the
literature and no allocation policy is universally accepted
as "the most fair". Additionally, different allocation poli-
cies satisfying one notion of fairness or another, may result
in different levels of efficiency and stability. The work in
[21] showed that allocation policies satisfying the notion of
proportional fairness, such as the well-known proportional
allocation (PA) policy, may provide substantially higher effi-
ciency and a lower "cost of fairness" than other axiomatically
justified notions of fairness (e.g., egalitarian) by being more
considerate to ‘‘strong players’’, i.e., consumers with high
demand. Furthermore, the PA provides a trade-off between
efficiency and fairness, since proportional fairness has been
shown to be both Pareto optimal and a Nash bargaining
solution [22]. However, the PA may lack stability, as ‘‘weak
players’’, i.e., consumers with low demand, may continuously
change strategies to improve their allocation [23]. On the
other hand, the well-established equal sharing (ES) allocation
policy, which satisfies an egalitarian notion of fairness, is
known to provide greater stability than the PA since it allows
small players to be fully satisfied and prevents strong players
from obtaining more resources than other players. Yet, ES
may result in highly inefficient and wasteful utilization of en-
ergy resources. This is a major drawback of ES in the context
of RESs allocation within energy communities studied in this
work and subsequently, in this paper, we apply the PA policy
but extensively compare it with the ES fairness notion both
via analysis and via simulations. In support of this choice, the
recent study in [18] has shown the efficiency of PA adhered
in the context of energy communities.

Although self-consumption is most often promoted in
an energy community setting, its interactions with the grid
should be modeled and planned for ensuring readiness in
handling potential insufficiency of local RESs to satisfy the
totality of the energy community demand. This may be per-
formed either through dynamic price signals, or via organized
local energy and flexibility markets [24]–[26]. Dynamic price
signals, such as Time-of-Use (TOU) tariffs, which reflect
wholesale energy prices and grid tariffs, can be implemented
in a fully decentralized manner. This has made them more
desirable in practice as a decentralized implementation is
scalable and protects the privacy of consumers [27], [28]. In
the literature, a focus has been placed on designing efficient
price signals to incentivize self-interested consumers to in-

dependently schedule their flexible loads in order to reduce
their energy procurement costs and provide services to the
grid (e.g. load shifting and peak load reduction) [29]–[32]. In
this work, TOU tariffs are applied for the interactions of the
energy community with the grid and specifically a high/low
tariff value is assigned for daytime/nighttime consumption
from the grid. Two-interval TOU tariff schemes are also
considered in the literature [33] and are typically used to shift
consumption from peak hours to nighttime, e.g., in Greece
[34].
Another important aspect for enabling sustainable decision

making for RESs sharing in energy communities is appro-
priately modeling consumers interactions. One direction is
to assume that consumers are willing to decide their con-
sumption levels with the common goal of maximizing the
societal welfare [16]. However, in this paper themore realistic
approach of considering consumers as self-interested with
independent and uncoordinated decisions is taken, with non-
cooperative game theory being the most suitable analytical
tool.We consider rational consumers whowould be interested
in paying the lowest possible electricity bill by receiving the
highest possible share of RESs to serve their energy demands.
A game theoretic approach for energy sharing in energy
communities is followed in [10] allowing also for varying
consumer preferences but it is under a setting of consumer-
owned resources. Similarly, non-cooperative and Stackelberg
games are applied in [35] for P2P energy trading among
consumer-owned RESs in energy communities. Closer to the
spirit of this work, a community-central energy storage sys-
tem is fairly and cost-optimaly managed via non-cooperative
game theory in [36].
When developing decentralized approaches using non-

cooperative game theoretical tools, it is important to study the
loss of efficiency arising from the self-interested behavior of
consumers compared to centralized scheduling approaches.
For instance, the authors in [37] have shown the efficiency of
self-interested decentralized decision making for an infinite
population of consumers with identical technical character-
istics and preferences. On the contrary, in [38], the authors
numerically illustrate the potential loss of efficiency of decen-
tralized mechanisms in energy communities with consumers
who have heterogeneous preferences as well as its impact on
the grid under different pricing schemes. In this work, the loss
of efficiency is quantified using the Price of Anarchy (PoA)
metric [39], while we go one step further and show the impact
of consumers preferences and more specifically of their risk
attitude on the PoA.
The above-mentioned game-theoretic works, contrary to

this work, consider resources that are consumer-owned or
not of RESs type and/or consumers competition focuses
on load shifting across time. This work importantly studies
the realistic setting of selfish consumers under community-
central RESs, focusing in addition on sharing multiple energy
resources inmultiple time slots. The framework for the energy
sharing community considered here is related to the multi-
energy energy communities in [40], [41], and extends the
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preliminary work in [42]. Furthermore, this paper analyzes
the interplay between price signals managing the interac-
tions between the energy communities and the grid and the
energy sharing mechanisms in energy communities. More
precisely, we consider the interactions between self-interested
consumers with heterogeneous flexibility preferences in an
energy sharing community, subject to (i) a decentralized De-
mand Response Program (DRP), in which an energy retailer
defines TOU tariffs to allow them scheduling their flexible
loads across two time intervals so as to reduce grid imports
during peak hours; and (ii) an energy sharing mechanism
(ESM) to incentivize consumers to efficiently and fairly uti-
lize the available resources. The problem studied in this paper
can model a wealth of resource allocation problems with a
ternary cost structure beyond smart grids, such as the case of
bandwidth or parking resources [43].

The contributions of this paper are the following:
• Firstly, we introduce a novel Decentralized Energy Sharing
Mechanism (D-ESM) for an energy community, in which
each consumer independently schedules its daily flexible
loads at two different time intervals, based on the avail-
ability and tariff of the different energy resources in each
interval, where the tariff is given by a decentralized DRP.
In the proposed D-ESM, a wide range of consumers with
heterogeneous preferences (namely daily energy demand and
risk attitude) compete for access to multiple energy resources
across two time intervals. This provides a novel application
for the PA policy in a context with multiple energy sources
and time intervals.
• Secondly, we formulate the Centralized Energy Sharing
Mechanism (C-ESM), in which a community manager cen-
trally schedules flexible loads and allocates available re-
sources based on the PA policy, as a linear optimization
problem, and derive analytical solutions to it. This provides
a benchmark against which to compare the efficiency of the
D-ESM.
• Thirdly, we model and analyse the interactions among self-
interested consumers participating in the proposed D-ESM,
using non-cooperative game-theoretical tools. We introduce a
novel game formulation of the proposed D-ESM and examine
the conditions under which there exist dominant stategies or
Nash Equilibria. In particular, NE can exist only for specific
combinations of DRP prices, consumers’ risk attitude and
consumers’ energy demand values. In addition, closed-form
expressions of the stable operational points are derived.
• Fourthly, we provide a novel iterative algorithm which
determines the consumers’ load schedules in a fully dis-
tributed and uncoordinated manner, so that they coincide with
those prescribed by a NE. The proposed algorithm allows
consumers to participate in the D-ESM without revealing
privacy-sensitive information such as their individual loads
and constraints.
• Finally, we provide thorough numerical analysis and com-
parisons between the proposed C-ESM and D-ESM, with
emphasis on the Price-of-Anarchy (PoA) metric. Note that
these results cover comparisons of our proposed uncoordi-

nated scheme with decentralized schemes maximizing the
societal welfare such as the one in [16], since C-ESM can be
seen as the optimal output at convergence of these schemes.
We further compare the efficiency of the proposed D-ESM
with the PA policy to that of a D-ESM based on an ES
allocation policy. Additional fairness properties introduced
via the distributed algorithm’s design are studied. Finally, the
impact of the consumers risk attitude on the PoA is studied.

The rest of the paper is organized as follows. In Section II,
we introduce the energy sharing community, the proposed D-
ESM as well as the game-theoretic model of the interactions
among consumers in the D-ESM. In Section III, we study
the NE mixed strategies under different parameter values. In
Sections IV and V we investigate the solution via a C-ESM.
Section VI provides a distributed, uncoordinated algorithm
with which players can choose NE mixed strategies. Section
VII, presents the numerical evaluations and comparisons.
Finally, Section VIII concludes the paper.

Nomenclature
i Index of consumers ∈ N = {1, ...,N}
ϑi, ϑ Indices of consumer types ∈ Θ = {1, ...M}
RE Community-central RESs limited capacity
cRES RESs tariff
cgrid,d = γcRES Daytime tariff with γ > 1
cgrid,n = βcRES Nighttime tariff with γ > β > 1
Uϑi Daily flexible load
µϑi ∈ [0, 1] Risk aversion degree
Eϑi = µϑiUϑi Daytime energy demand
r = [r1, ..., rM ]T Probability distribution on the con-

sumers types in Θ
0 ≤ rϑ ≤ 1 Probability that a consumer in the commu-

nity is of type ϑ ∈ Θ
DTotal Maximum daytime energy demand of the com-

munity
εϑi =

1
µϑi

Inverse of the risk aversion degree
pϑ = [pdϑ, p

n
ϑ]
T Mixed strategy of consumer type ϑ ∈ Θ

pdϑ ∈ [0, 1] Probability that a consumer of type ϑ ∈ Θ
schedules her daily flexible load during daytime

pnϑ ∈ [0, 1] Probability that a consumer of type ϑ ∈ Θ
schedules her daily flexible load during night-
time

p = {pϑi}i∈N Mixed strategies of all consumer types
Dd(p)/Dn(p) Expected aggregate daytime/nighttime

demand of the community
resPAϑi

(p) Share of total RESs allocated to consumer of
type ϑi ∈ Θ

υdϑi
/υnϑi

Cost of consumer of type ϑi ∈ Θ that schedules
her loads during daytime/nighttime

pNE Vector of mixed strategies at NE
resNEϑ (pNE) RESs share to a consumer of type ϑ ∈ Θ

at NE
CPA(p) Social cost of the community
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II. DECENTRALIZED ENERGY SHARING MECHANISM
This section introduces the proposed D-ESM for an energy
community with a centralized RESs installation to which
all consumers of the energy community have equal claim.
Although the consumers have equal claim to the community-
central RESs, they have different types, i.e., different energy
demand levels and risk attitude. The allocation of the avail-
able RESs generation to the consumers is proportional to
their demand while considering their risk attitude. In addi-
tion, the consumers decide their demand based on the DRP-
determined prices of energy consumption from the main grid
during daytime and nighttime intervals (TOU electricity tariff
values). In the following, we explain in detail the energy
sources that are available in the community, the consumer
preferences, the D-ESM in the sense of how the consumers
loads can be scheduled, how the available RESs are allocated
to them and what are the payment policies. Then, after the
explanations of the framework, which is also illustrated in
Figure 1, the D-ESM is formulated using non-cooperative
game theory. The actions of this D-ESM are the load schedul-
ing mixed strategies of each consumer type. The goal is to
analyze the D-ESM with respect to the existence of NE and
dominant strategies based on the parameters values (Section
III) as well as to provide an algorithm that can be implemented
in a decentralized manner among consumers and leads to NE
load scheduling decisions (Section VI). Achieving a decen-
tralized scheme for reaching NE states ensures stability in the
operation of the energy community without sacrificing scal-
ability with respect to the number of participating consumers
and consumers privacy.

A. ENERGY SHARING COMMUNITY
The energy community consists of N consumers, indexed by
i ∈ N = {1, ...,N}, who have access to multiple energy
sources in order to cover their flexible loads (Figure 1).

1) Energy Sources
We consider that the energy community has access to two dis-
tinct types of energy sources, namely local production from
community-central RESs, and imports from the distribution
grid. We consider that the local RESs production is available
only during daytime (e.g., PV panels) with a limited capacity
RE > 0, whereas the community’s imports from the grid
are unlimited and available both during daytime and during
nightime. The different energy sources are assigned different
electricity tariff values that determine their attractiveness to
the consumers. Production from the community-central RESs
is priced by the community manager at a constant low tariff
cRES (in units per energy), whereas imports from the grid are
priced by an energy retailer using TOU tariffs, typically for
daytime and nighttime consumption. In particular, daytime
and nighttime tariffs are defined with reference to the RESs
tariff, as cgrid,d = γcRES and cgrid,n = βcRES , respectively,
with γ > β > 1.

These TOU tariffs reflect the sum of energy prices and
grid tariffs and are designed to incentivize consumers to

shift their flexible loads from daytime to nighttime to reduce
energy production costs and congestion during peak hours. In
addition, the low cost of the local RESs production promotes
self-consumption within the community and reduction of grid
imports. Note that since the available RESs are community-
central and already deployed, it makes sense for the commu-
nity to utilize them as much as possible. We assume that the
energy source-related parameters Ω = {RE , cRES , β, γ} are
perfectly known by all consumers in the community at the
beginning of the day. Based on all the above, during nighttime
the community’s aggregate load is fully covered by imports
from the grid, and, during daytime if the community’s aggre-
gate load exceeds the available RES capacity, the remainder
is covered by imports from the grid. If the available RESs
capacity exceeds the aggregate consumer demand, the surplus
energy can be either curtailed or exported to the grid but this
does not affect our analysis. Grid exports are not considered
and this is not limiting since many countries worldwide (such
as the UK or the EU), have reduced or removed feed-in tariffs
[17], [44].

2) Consumers Preferences

The consumers have a broad range of flexible loads (Figure
1), namely, (i) shiftable appliances (e.g. washing machines)
that do not need to be scheduled every day, (ii) batteries
or electric vehicles (EVs) with flexible state-of-charge re-
quirements at the end of the day, and (iii) thermostatically
controlled loads (e.g., water heater, heat pumps) with flexible
set-points. The level of consumption and the time-schedule of
these loads are flexible. For instance, an EV owner has a daily
inflexible load required to cover her daytime transportation
needs, and a daily flexible load, representing the additional
energy to achieve a desired state-of-charge by the end of
the day. However, once scheduled, these loads cannot be
interrupted or shifted to another time interval. As a result,
consumers whose daily flexible loads are scheduled during
daytime incur the risk of paying for high-priced imports
from the grid if the community’s aggregate daytime energy
demand exceeds the available local RES production. When
scheduling their daily flexible loads across different time
intervals, consumers wish to achieve a trade-off between their
desired daily energy consumption, and the financial risks
incurred. And, risk-averse consumers may choose to reduce
their daily energy consumption if they are scheduled during
daytime, to mitigate the financial risks incurred. For instance,
if scheduled during nighttime, a risk-averse EV owner may
prefer to consume enough energy to fully charge her EV by
the end of the day, whereas, if scheduled during daytime, she
may prefer to consume a smaller amount of energy in order
to charge her EV at e.g., 75% by the end of the day.

The risk attitude and daily energy consumption preferences
of each consumer i ∈ N in the community can be represented
by her type ϑi ∈ Θ = {1, ...M}. The type accounts for
consumer’s (i) daily flexible load Uϑi > 0 (in energy unit);
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FIGURE 1: Illustration of the energy community, the DRP electricity tariffs and the consumer types. There exist N consumers
in the community that belong in 3 consumer types with different energy demand levels and risk aversion degrees. The energy
community has a central PV installation to which all consumers have equal claim and interacts with the main grid via the DRP
electricity tariff values that differ between daytime and nighttime.

and (ii) risk-aversion degree1 µϑi ∈ [0, 1], representing the
share of her daily flexible load that she is willing to consume
if scheduled during daytime.

With this parametric representation of the consumers’ flex-
ibility preferences, if the daily flexible load of a consumer i of
type ϑi is scheduled during daytime, her daytime energy de-
mand is Eϑi = µϑiUϑi (and the remainder of her daily flexible
load (1− µϑi)Uϑi is deferred to the following day), whereas,
if her daily flexible load is scheduled during nighttime, her
nighttime demand is Uϑi . Therefore, µϑi = 1 represents
a risk-seeking consumer, and µϑi < 1 a risk-conservative
consumer.

3) Assumptions and Remarks
At the beginning of each day, each consumer knows her own
flexibility preferences and type, but this information is con-
sidered private. We assume that the community manager and
consumers in the have information on (i) the possible existing
consumer types in Θ, as well as the probability distribution
r = [r1, ..., rM ]T overΘ, where 0 ≤ rϑ ≤ 1 is the probability
that a consumer in the community is of type ϑ ∈ Θ, (ii) a
highly accurate forecast of the available community-central
RESs capacity,RE and (iii) the TOU tariffs, i.e., cRES , β, γ.
Furthermore, the consumers’ preferences, and therefore their
types, can vary from day to day. Since this paper studies a
single scheduling day, the daily time indices are omitted.

Following the law of large numbers, the number of con-
sumers of type ϑ ∈ Θ can be approximated as rϑ · N . Thus,
based on the above, the maximum daytime energy demand of

1In this paper, the risk-aversion degrees are assumed given. Behavioral
economics models may be used for their determination [45].

the community, i.e., if the daily flexible loads of all consumers
are scheduled during daytime is

DTotal = N
∑
ϑ∈Θ

rϑ Eϑ. (1)

For notational simplicity, in the remainder of the paper, we
introduce εϑi =

1
µϑi

, such that Uϑi = εϑi · Eϑi . Thus, εϑi =

1 represents a risk-seeking consumer i, and εϑi > 1 a risk-
conservative consumer. Finally, we assume without loss of
generality that E1 ≤ E2 ≤ ... ≤ EM .
Note that grid constraints are not taken into account as

the emphasis is on studying the mechanism of RESs sharing
among selfish rational consumers and through a simplemodel
identifying interesting relations among the DRP prices and
the consumer preferences for stability to hold. This is a mild
assumption for two main reasons. First, we consider flexible
loads that should be covered within a TOU interval, chosen by
the consumer, which has duration equal to a whole daytime
or a whole nighttime. Thus, consumers loads scheduled for a
particular TOU interval could potentially spread along it, so
that voltage and ampacity constraints are satisfied, if needed.
However the problem of how to spread the loads within a
TOU interval falls out of the scope of our work. Second, if
one wants to handle grid losses, this can be approximately
considered in our setting via a slight increase of the con-
sumer’s daily energy demand by around 4%, which derives
by corresponding calculations of the losses in [46].

B. DECENTRALIZED ENERGY SHARING MECHANISM
(D-ESM)
The problem faced by the energy sharing community is to
schedule the daily flexible loads of all consumers across the
different TOU intervals and to allocate the different energy
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sources among them within each TOU interval. The role
of the community manager is to design a mechanism that
optimally coordinates the interactions among consumers in
the community towards desirable outcomes, namely: (i) min-
imizing the social cost for the community as a whole (given
later by Eq. (12)), and (ii) sharing the community-central
assets among the consumers fairly. We introduce below the
proposed decentralized energy sharing mechanism (D-ESM)
for this energy sharing community.

1) Load Scheduling
In the proposedD-ESM, each consumer independently sched-
ules her own daily flexible loads across the different TOU
intervals, at the beginning of the day, in order to maximize
her own utility under the set energy source allocation and
payment policies. In contrast, in a Centralized ESM (C-ESM),
the community manager would schedule the daily flexible
loads of all consumers across the different TOU intervals
in order to minimize the social cost of the community as a
whole under the set energy source allocation and payment
policies (Section IV). As implementing this centralized ap-
proach would require for the community manager to have
information on each consumer’s preferences, it can only be
considered as an ideal benchmark against which to compare
the efficiency of the proposed D-ESM.

In this paper, we studymixed strategies of consumer types.
A mixed strategy is a probability distribution pϑ = [pdϑ, p

n
ϑ]
T ,

with pdϑ ∈ [0, 1] denoting the probability that a consumer of
type ϑ ∈ Θ schedules her daily flexible load during daytime,
and pnϑ ∈ [0, 1] during nighttime. At the beginning of the
day a consumer i determines her mixed strategy based on
her type ϑi ∈ Θ, pϑi . Then, she schedules her daily flexible
loads either in daytime or in nighttime with probabilities pdϑ,
pnϑ, correspondingly. Let also p be the collection of mixed
strategies of all consumers, i.e., p = {pϑi}i∈N .

2) Energy Source Allocation and Payment Policies
Once the daily flexible loads of all consumers have been
scheduled, the community manager must allocate the avail-
able energy sources at each TOU interval (daytime or night-
time) among them. During nighttime, all scheduled loads are
covered by grid imports since this is the sole available energy
source for this TOU interval. During daytime, the community
manager allocates in priority the local RESs production to
cover the scheduled daytime loads, in order to maximize local
consumption from the community and reduce energy costs.
However, if the expected aggregate daytime energy demand
exceeds the available local RESs production, the commu-
nity manager must share this limited resource among those
consumers with loads scheduled during daytime. This raises
the challenging issue of allocating fairly a limited resource
among users with equal claims to it.

In order to ensure a notion of fairness among community
members, the community manager allocates to each con-
sumer i of type ϑi a share of the local RESs production pro-
portional to her daytime load schedule. As a result, under this

PA policy, the local RESs production allocated to a consumer
whose daily flexible load is scheduled during daytime is

resPAϑi (p) =
Eϑi

max(RE ,Dd(p))
RE , (2)

where Dd(p) denotes the expected aggregate daytime de-
mand of the community. Each consumer i of type ϑi must then
pay for the different energy sources covering her scheduled
load at each TOU interval.

C. NON-COOPERATIVE GAME FORMULATION
Based on the proposed D-ESM framework, if a consumer
schedules her daily flexible load during daytime, she com-
petes with other consumers to use the limited local RESs pro-
duction and incurs a financial risk. This competition among
the consumers participating in the proposed D-ESM (for one
single day) can be modeled as an Energy Sharing Game
(ESG)2:

Definition 1. An Energy Sharing Game (ESG) is a single-
shot noncooperative game, defined by the tuple
Γ = (N , {Pϑi}i∈N , {υϑi}i∈N ), where:

• N = {1, ...,N} is the set of players, i.e., the consumers
in the energy sharing community.

• Pϑi = {pϑi |pϑi : Ai ∈ A → pAiϑi
∈

R+, with
∑

Ai∈A pAiϑi
= 1} is the set of mixed strategies

of player i of type ϑi over the set of pure strategies
A = {d , n}, consisting of the choices to schedule her
daily flexible load during daytime (Ai = d) or during
nighttime (Ai = n). Therefore, each consumer i of type ϑi
with a mixed strategy pϑi , plays this game by randomly
selecting an action Ai ∈ A with probability pAiϑi

3.

• υϑi : Ai ∈ A → υAiϑi
is the payoff function of a consumer

i of type ϑi over the set of pure strategies A. The cost
of a consumer i of type ϑi who plays the pure strategy
Ai = d, is

υdϑi = cRESresPAϑi (p) + cgrid,d(Eϑi − resPAϑi (p)), (3)

and depends on the strategy profile p of all consumers
via the community’s expected aggregate daytime energy
demand Dd(p). The cost of a consumer who plays the
pure strategy Ai = n is

υnϑi = Uϑic
grid,n, (4)

and is not dependent on other consumers’ mixed strate-
gies. Before making their decisions all players have
perfect knowledge of the energy sources parameters in

2Our formulation and analysis assume rational players which is justified in
our setting since consumers decisions are based on statistics on the consumers
types, thus, cannot be affected by isolated irrational behaviors, e.g., a fake
high demand for a single day.

3Note that a pure strategy is a special case of a mixed strategy where one
action has a probability equal to 1 (and the remaining have 0).
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the set Ω and their own preferences and type, and have
prior knowledge on the probability distribution r over
the other consumers types.

A consumer of type ϑ ∈ Θ repeatedly playing the mixed
strategy pϑ over multiple instances of the ESG would have
an expected daytime and nighttime energy demand equal to
Dd

ϑ = pdϑEϑ and Dn
ϑ = pnϑUϑ, respectively. Therefore, the

mixed strategy of a consumer i of type ϑi can alternatively
be interpreted as splitting her daily flexible loads between
daytime and nighttime, such that her daytime load schedule
is equal to Dd

ϑi
, and their nighttime load schedule is equal to

Dn
ϑi
.With these notations, the expected aggregate daytime and

nighttime energy demands of the community are respectively:

Dd(p) = N
∑
ϑ∈Θ

rϑ p
d
ϑ Eϑ,, Dn(p) = N

∑
ϑ∈Θ

rϑ p
n
ϑ Uϑ. (5)

III. ANALYSIS OF THE DECENTRALIZED ENERGY
SHARING MECHANISM
In this section, we study analytically the uncoordinated de-
cisions of the self-interested consumers participating in the
proposed D-ESM. In the following, we study the condi-
tions on the parameter values for the existence of dominant
strategies and mixed-strategy NE under the proposed PA and
payment policies, and provide closed-form formulations of
these equilibrium states, i.e., ranges on the values of the
vector of mixed strategies at NE, denoted as pNE and an
analytical expression on the value of the expected aggregate
daytime energy demand. The proofs of the theoretical results
presented below are available in Appendix A.

First, we recall that, for a mixed-strategy NE to exist, the
expected costs of each consumer for all pure strategies in the
support of the mixed-strategy NE must be equal. Using the
expressions of the costs in (3) and (4), we obtain that the
amount of RESs allocated to a consumer type ϑ ∈ Θ at a
NE must satisfy:

resNEϑ (pNE) =
γ − εϑβ

γ − 1
Eϑ, ∀ϑ ∈ Θ. (6)

Thus, in the ESG, a mixed-strategy NE exists under the
condition:

resPAϑ (pNE) = resNEϑ (pNE), ∀ϑ ∈ Θ, (7)

where resPAϑ (pNE) is defined in (2). In the following analysis,
we obtain themixed-strategyNE competing probabilitiespNE

by solving Equation (7). We further distinguish cases with
respect to the available RESs production, TOU tariffs, and
consumers’ types.

Case 1: RE exceeds DTotal

As consumers have knowledge ofRE andDTotal , it is straight-
forward to show that the dominant-strategy for all consumers
is to schedule their daily flexible loads during daytime. As
a result, the competing probabilities that lead to equilibrium
states are equal to pd,NEϑ = 1 for all consumer types ϑ ∈ Θ.

Case 2: RE is lower than DTotal

In this case, the strategies of the consumers depend on their re-
spective risk aversion degrees and the TOU tariffs. We define
two complementary subsets of consumer types, depending on
their risk aversion degrees: Σ1 =

{
ϑ ∈ Θ : εϑ ≥ γ/β

}
⊂

Θ, and Σ2 =
{
ϑ ∈ Θ : 1 ≤ εϑ < γ/β

}
⊂ Θ.

Firstly, the dominant strategy for all consumers i whose
type ϑi is in the set Σ1 is to schedule their daily flexible loads
during daytime, i.e., to play the pure strategy Ai = d with
probability pd,NEϑi

= 1.
Secondly, the strategies of the consumers i whose type ϑi

is in the set Σ2 depend on their daily flexible loads and risk-
aversion degrees. We define two distinct subsets of consumer
types in Σ2: Σ2,1 =

{
ϑ ∈ Σ2 : Eϑ > RE (γ−1)

(γ−εϑβ)

}
and

Σ2,2 =
{
ϑ ∈ Σ2 : Eϑ ≤ RE (γ−1)

(γ−εϑβ)

}
.

For consumers i whose type ϑi is in the set Σ2,1, the
dominant strategy is to schedule their daily flexible loads
during nighttime, i.e., to play the pure strategy Ai = n with
probability pn,NEϑi

= 1 and Ai = d with probability pd,NEϑi
= 0.

For consumers i whose type ϑi is in the set Σ2,2, a mixed-
strategy NE under the PA policy exists if and only if the
following condition holds:

RE (γ − 1)

(γ − εϑβ)
− Eϑ = RE (γ − 1)

(γ − εϑ̃β)
− Eϑ̃, ∀ϑ, ϑ̃ ∈ Σ2,2. (8)

Assuming that all consumers of the same type play the same
mixed strategy, the competing probabilities that lead to NE
states lie in the range pminϑ ≤ pd,NEϑ ≤ pmaxϑ for all consumer
types ϑ ∈ Σ2,2 with:

pmaxϑ = min

1,

RE(γ−1)
(γ−εϑβ)

− DTotalΣ1

N rϑ Eϑ

 , (9)

pminϑ = max

0,

RE(γ−1)
(γ−εϑβ)

− DTotal
Σ1

⋃
Σ2,2\{ϑ}

N rϑ Eϑ

 , (10)

where for any subset of consumer types S ⊂ Θ, DTotal
S repre-

sents the maximum aggregate daytime demand of consumers
whose type is in S, e.g., DTotal

Σ1
= N

∑
θ∈Σ1

rθEθ.
As a result, the expected aggregate daytime demand,Dd,NE

at NE is

Dd,NE = DTotalΣ1

+min

DTotalΣ2,2
,max

N
(

RE(γ−1)
(γ−εϑβ)

− Eϑ − DTotalΣ1

)
(N − 1)

, 0


 . (11)

Remark 1. Note that condition (8) can hold, and therefore
a NE can exist, only if for any pair ϑ, ϑ̃ ∈ Σ2,2 such that
ϑ ≤ ϑ̃, it holds that εϑ ≤ εϑ̃. Since by assumption, Eϑ ≤ Eϑ̃,
this means that consumers with lower daytime energy demand
levels should be more risk-seeking than those with higher
ones.

Remark 2. In particular, if all consumers whose type is in
Σ2,2 are risk-seeking (i.e., εϑ = 1,∀ϑ ∈ Σ2,2), a NE can
only exist if Eϑ = Eϑ̃, ∀ϑ, ϑ̃ ∈ Σ2,2.
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According to Remark 1, NE exists only if consumers with
lower daytime energy demand levels are more risk-seeking
than those with higher ones. This is a logical assumption
to hold in energy communities; i.e., it is meaningful that
the lower the energy demand of a consumer is, the most
possible is that the consumer will take the risk to engage it
all during the day. A nice observation can be made at this
point regarding the importance of considering the risk factors.
According to Remark 2, if all consumers are risk-seeking,
which is practically equivalent to not considering the risk
atitude, then the condition of existence of a NE reduces to all
having the same energy demand that is unrealistic. Therefore,
integrating the risk aversion behavior of consumers inside the
model leads to logical and easy to meet conditions for the
existence of NE.

IV. CENTRALIZED ENERGY SHARING MECHANISM

In this section we study an ideal centralized scheduling prob-
lem, in which an energy community manager with perfect
knowledge of the available energy sources and types of the
consumers in the community, centrally schedules their daily
flexible loads.

A. PROBLEM FORMULATION

Based on the available information, the community manager
aims at finding the optimal load schedule of each consumer
type, which minimize the social cost of the community under
the chosen PA and payment policy. The community’s social
cost CPA(p) can be expressed as a function of the expected
aggregate daytime energy demand (Dd(p)) and nighttime
energy demand (Dn(p)) of the community (as defined in
Section II-C), such that:

CPA(p) = min{RE ,Dd(p)} · cRES

+max{0,Dd(p)−RE} · cgrid,d + Dn(p) · cgrid,n, (12)

where the probabilities pdϑ and pnϑ (as defined in Section II-C)
can be interpreted as the proportion of consumers of type ϑ
that the community manager schedules during daytime and
nighttime, respectively. Appendix B shows the derivation of
the social cost by summing the individual costs of all con-
sumers given by (3) and (4). Although this objective cost is
non-convex, we observe that during daytime, for any expected
aggregate load schedule, the community manager minimizes
the cost from grid imports. Therefore, by introducing the op-
timization variable Dgrid representing the expected aggregate
grid imports during daytime, we can write the community
manager’s optimal load scheduling problem under the PA
policy as a linear optimization problem, as follows:

min
p,Dgrid

cgrid,dDgrid + cRES
(
N
∑
ϑ∈Θ

rϑp
d
ϑEϑ − Dgrid

)
+ cgrid,nN

∑
ϑ∈Θ

rϑp
n
ϑUϑ (13a)

s.t. pdϑ + pnϑ = 1, ∀ϑ ∈ Θ, (13b)

0 ≤ pdϑ, p
n
ϑ, ∀ϑ ∈ Θ, (13c)

Dgrid ≥ ER− N
∑
ϑ∈Θ

rϑp
d
ϑEϑ, (13d)

Dgrid ≥ 0. (13e)

This problem minimizes the social cost of the community
(13a), subject to constraints on the daytime and nighttime
probabilities (13b)-(13c) as well as to lower bounds on the
expected aggregate grid imports during daytime (13d)-(13e).

B. SOLUTION ANALYSIS
In the following, we provide insights and analytical formula-
tions of the optimal solutions p∗ of this centralized mecha-
nism in different cases. The proofs are available in Appendix
C.

Case 1: RE exceeds DTotal

In this trivial case, the optimal solutions to the C-ESM is to
schedule all consumers’ daily flexible loads during daytime,
such that pd,∗ϑ = 1, ∀ϑ ∈ Θ, and the expected grid imports
Dgrid,∗ = 0.

Case 2: RE is lower than DTotal

In this case, it is optimal for the centralized ESM to schedule
loads during the day so that the total RES capacity is fully uti-
lized. To perform the analysis, we use the two complementary
subsets of consumer types, Σ1 and Σ2, as defined in Section
III.

For all consumers whose type ϑ ∈ Σ1, it is optimal for the
community to schedule them during daytime, such that pd,∗ϑ =
1. For the optimal load schedule of the remaining consumers
whose type ϑ ∈ Σ2, we observe that the consumer types are
scheduled during daytime in order of increasing risk aversion
(i.e., decreasing εϑ), until the local RESs production is fully
utilized. Therefore, the optimal competing probabilities for
the consumers whose types are in Σ2 = {ϑ̃1, ϑ̃2, . . . , ϑ̃K},
can be expressed as:

pd,∗
ϑ̃k

= max

{
min

{
1,

(
RE − DTotalΣ1

− N
∑k−1

i=1 rϑ̃iEϑ̃ip
d,∗
ϑ̃i

)
Nrϑ̃kEϑ̃k

}
, 0

}
,

∀k ∈ {1, ...,K}, (14)

where the consumer types in Σ2 are ordered such that εϑ̃1 ≥
εϑ̃2 ≥ ... ≥ εϑ̃K .

V. EFFICIENCY LOSS OF D-ESM VS. C-ESM
The (in)efficiency of equilibrium strategies in the D-ESM
compared to the optimal C-ESM solution is quantified by the
Price of Anarchy (PoA) metric [39], representing the ratio
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of the worst case social cost among all mixed strategy NE,
denoted as CPA,NE

WC , over the optimal minimum social cost of
the C-ESM, such that:

PoA =
CPA,NE
WC

CPA(p∗)
. (15)

First observe that CPA(p
∗
) is uniquely determined for each

particular case (Section IV). Now, in order to obtain CPA,NE
WC

when there exist multiple possible NE, we can maximize the
social cost CPA(pNE) (Eq. (12)) with respect to pNE.

VI. DISTRIBUTED ALGORITHM TO OBTAIN NE
In this section, we design a distributed, uncoordinated algo-
rithm that computes consumers’ mixed-strategies that lie on
NE for the ESGwhen there does not exist a dominant-strategy
for each consumer, i.e., for the consumers in the set Σ2,2 of
Case 2. Note that given their knowledge on the setΩ (Section
II), the consumers can know whether they have a dominant
strategy and in such a case they can directly compute it.
The proposed distributed iterative algorithm, Algorithm 1, is
based on a best response scheme and requires minimum infor-
mation exchange among consumers. In particular, there is no
need of central coordinator or direct communication channels
between consumer pairs since the required information can be
just broadcasted from the consumer that has performed the
most recent computation to the remaining ones.

The outer loop represents the algorithm’s steps, and the
inner loop iterates over all consumers who are randomly
ordered in a list Σ and at each iteration, they update their
strategies. All consumers with a certain type share the same
strategy in each algorithm’s step. Hence, if consumer i’s type
has already been assigned a probability by another consumer
of the same type in a previous iteration of the inner loop,
consumer i just retrieves this probability value (line 12),
otherwise it computes the best response of its type to the types
that have already played (lines 16-20). Although, the inner
loop practically computes consumer type strategies, it iterates
over all consumers and not over all consumer types so as to
allow for distributed operation; otherwise a central entity is
needed to compute the consumer type strategies.

As we aim to limit information exchange, the chosen strate-
gies are not communicated. Instead the consumers update
and broadcast three common variables, which encode this
information:
1) the variable XΣ that is equal to the total current daytime
energy demand;
2) the vector EQT that indicates which consumer types
have played in the previous iterations of an algorithm’s step
(EQT (ϑ) = 1 if type ϑ ∈ Θ has played), and is re-initialized
to 0M at the beginning of each outer loop;
3) the vector EQP that contains the current mixed strategies
values for all consumer types and is updated each time a
consumer type updates its strategy (line 20).

Based on the values of these common variables, each
consumer type ϑ ∈ Θ, in its turn, updates its strategy by
minimizing its expected cost of energy (line 17), given by:

cost(pdϑ) = pdϑ
[
resPAϑ (p) · cRES + (Eϑ − resPAϑ (p)) · γ · cRES

]
+ (1− pdϑ) · Uϑ · β · cRES . (16)

A limitation of the best response scheme is that the first
consumer that plays at an algorithm’s step can freely choose
her daytime RES demand. In order to mitigate this effect, we
introduce a capping system at the inner loop, which multiplies
the best response with a parameter cap ∈ [0, 1]4 (line 18),
such that the adjusted response is

f cap(pdϑ) = cap · pdϑ. (17)

As a result, even after the completion of an algorithm’s
step, it is possible that the total available RES capacity has
not been allocated. In this case, additional outer steps are
needed in order to reach an equilibrium state. In practice, the
algorithm continues until one of the two following conditions
hold: (i) a NE is reached, which means that the players do
not wish to change their actions unilaterally with respect to
the previous step, or (ii) a maximum number of steps (Nstep)
is reached. Based on the latter observation, the complexity of
Algorithm 1 is in the order ofO(N ·Nstep), which, if choosing
Nstep << N , is close to linear. Note that the assumption
Nstep << N is mild for a high number of players.
Further privacy concerns can be handled by encrypting the

values of EQT and EQP at each iteration and appropriately
authenticating users that will be able to decrypt only the en-
tries of EQT and EQP that correspond to their type. However,
if the first and second consumers to play are of the same type,
then the second in row consumermay infer the type of the first
one. To avoid this we should enforce that the second consumer
type to play does not have the same energy profile as the first
one. In the special case of N = M , broadcasting EQT and
EQP is not needed; the computing consumer requires only
the current value of XΣ.

Finally, this algorithm schedules consumers’ loads in day-
time and nighttime intervals, only once a day, namely in the
beginning of a daytime interval. As such, it can be incor-
porated into a day-ahead market as a second step following
the determination of the prices. However, in future work, we
intend to study its repetition in a Model Predictive Control
fashion over an intra-day time scale with time intervals of
several hours, where at each repetition: (i) the consumers
reconsider their daily energy demand profiles and exclude
already served loads, (ii), the consumers reconsider their risk
aversion degrees, and (iii) the forecast RE of the RES is
updated.

VII. NUMERICAL EVALUATIONS
A. CASE STUDY SETUP
We consider a smart grid with N = 1000 consumers, divided
into 5 distinct consumer types, with a maximum daytime
energy demand DTotal = 4250 kWh. Table 1 summarizes the

4cap can be constant through the algorithm or drawn from a uniform
distribution. This will be discussed in the numerical evaluations.
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Algorithm 1: Distributed algorithm for NE.

1 Input Nstep: number of algorithm’s steps
2 Output EQP: Vector of NE mixed strategies for each
consumer type;

3 Initialization:
4 (pdϑ, p

n
ϑ)← (0, 1), ∀ϑ ∈ Θ ;

5 XΣ ← N
∑

ϑ∈Σ1
rϑEϑ, Σ← Σ2,2 ;

6 EQP← vector of size M with zero entries for ϑ ∈ Σ
and unary entries for ϑ ∈ Σ1;

7 for step← 1 to Nstep do
8 EQT ← 0M ;
9 EQPold ← EQP;

10 for each consumer i ∈ Σ do
11 if EQT (ϑi) = 1 then
12 Consumer i retrieves pdϑi

from EQP(ϑi);
13

14 end if
15 else
16 resPAϑi (p

d
ϑi
)← Eϑi ·RE

XΣ+(N−1) rϑi p
d
ϑi
Eϑi+Eϑi

;

17 pd,∗ϑi
← argmin

pd
ϑi

cost(pdϑi), from (16);

18 pd
cap

ϑi
← f cap(pd,∗ϑi

), from (17) ;
19 EQT (ϑi)← 1, ;
20 EQP(ϑi)← EQP(ϑi) + pd

cap

ϑi
;

21 XΣ ← XΣ + (N − 1) rϑi p
dcap
ϑi

Eϑi

22

23 end if
24

25 end for
26 if |EQP− EQPold | ≤ tol then
27 Exit;
28

29 end if
30

31 end for

Type ϑ 0 1 2 3 4
Eϑ (kWh) 2 3 5 10 15

rϑ 0.20 0.40 0.30 0.07 0.03

TABLE 1: Game parameters for residential smart-grid.

consumer types parameters. The consumer type distribution
and the daytime energy demand levels are selected to be con-
sistent with European households [47]. Most households are
moderately energy efficient (types 1 and 2), combined with
many highly efficient households (type 0) and few inefficient
ones (types 3 and 4). Consumers of type 0 are assumed to
be risk-seeking (ε0 = 1) and the risk-aversion degrees of all
other types are determined by (8), but are close to 1. We set
the RES price as cRES = 1 e/kWh.

The proposed D-ESM with the PA policy is compared to
a D-ESM with the ES policy for reference. Under ES, a so-
called fair share of RESs capacity is computed as

sh(pNE) =
RE

N
∑

ϑ∈Θ rϑ p
d,NE
ϑ

. (18)

Under ES, consumers of type ϑ ∈ Θ that compete for RES
and have a daytime demand Eϑ ≤ sh(pNE) are allocated
their full daytime demand Eϑ, as well as an extra energy equal
to sh(pNE) − Eϑ that will remain unused. On the contrary,
the consumers of type ϑ ∈ Θ that play the pure strategy d
and have a daytime demand Eϑ > sh(pNE) will be allocated
the fair share and their remaining daytime energy demand
Eϑ − sh(pNE) will be served by the highly priced peak-
load generation. Therefore, the share of RESs received by
a consumer i of type ϑi ∈ Θ that plays the strategy d is
rseESϑi

(pNE) = min
(
Eϑi , sh(p

NE
)
). Note that this allocation

policy may result in large inefficiencies due to unused RES
capacity, even when the total aggregate demand for RESs
D(pNE) is higher than RE . Therefore, this allocation policy
is solely used as a base-case comparison to the PA allocation.
The definitions and/or analysis of the D-ESM and the C-ESM
under the ES policy are provided in Appendix C.

Note that comparing our proposedD-ESMwith the C-ESM
via the PoA metric is similar to comparing our D-ESM with
the best possible outcome (at theoretical convergence) of a
decentralized scheme maximizing the societal welfare such
as the one of [16].

Finally, the convergence properties of the proposed decen-
tralized algorithm under PA are studied for three capping
systems, namely, (i) equal cap: cap stays constant and equal
to 0.1; (ii) random cap: cap is sampled from the uniform
distribution cap ∼ U(0, 1) (evaluated over multiple trials
with varying values of cap); and (iii) no cap: equivalent to
cap = 1.

B. NUMERICAL RESULTS
1) Social Cost and PoA under Varying Parameters
The first set of numerical evaluations studies the proposed D-
ESM under various tariff values, namely with β = {2, 2.5}
and γ = 3, as well as under varying available RES capacities
RE , ranging from 5% to 125% of DTotal .
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FIGURE 2: Social cost and PoA under PA rule for residential
grid with β = 2.

As illustrated in Fig. 2(a), the optimal social cost (given by
Eq. (27)) as derived by C-ESM, denoted by OPT, decreases
linearly with RE . Indeed, since all risk-aversion degrees
are equal or close to 1, the cost function can be approxi-
mated asRE(1− γ)cRES +N

∑
ϑ∈Σ2

[
rϑEϑ (γ − β) pd,∗ϑ

]
cRES +
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FIGURE 3: Social cost (given by Eq. (12)) and PoA under the
PA rule for residential grid with β = 2.5.

DTotalβcRES ≈ RE(1 − β)cRES + DTotalβcRES , which is constant
with respect to the competing probabilities and linearly de-
creasing with RE . Note that since γ = 3, β = 2 and all risk
aversion degrees are close to 1, all consumers belong in the
set Σ2. Furthermore, we have observed that the minimization
by C-ESM results in "big players" competing for RESs (i.e.,
playing the strategy d) at the expense of smaller ones. It is
indeed observed that consumers with lower daytime energy
demand play the strategy d with non-zero probability only
if there is remaining RES capacity when all consumers with
higher daytime energy demand compete for RES with proba-
bility 1. This is aligned with the theoretical solution of the C-
ESM in Section IV-B, since according to Remark 2, the larger
the daytime energy demand of the player is the lower her risk
aversion degree should be. Thus, larger players are prioritized
in getting the highest probabilities values for competing for
RES also according to the theoretical analysis.

On the other hand, as seen in Fig. 2(a), for the D-ESM,
the social cost is almost constant with the initial increase
in the RES capacity due to the fact that consumers tend to
over-compete for RES (i.e., play more often the strategy d)
as can be observed in the obtained values of the competing
probabilities. However, for RE ∈ [0.5DTotal ,DTotal ], the so-
cial cost decreases when RE increases, because there exists
less excess demand for RES and thus the amount of required
highly priced daytime non-RES energy is reduced.

As illustrated in Fig. 2(b), the PoA values are rather small
for all values of RE . The PoA peaks for RE ≈ 0.5 · DTotal ,
which is the point at which the social cost for the decentral-
ized mechanism begins decreasing. This graph can provide
valuable insights into how much RES capacity should be
installed to increase the efficiency of the D-ESM. We can
identify two zones of high efficiency, namely for low and high
RES capacity. In the first zone, this is due to the small gains
in cost offered by low RES capacity in both the centralized
and the decentralized mechanisms. In the second zone, the
NE solution has almost converged to the optimal solution and
thus social costs are optimal.

In addition, the value of RE at which the PoA reaches its
peak (most inefficient outcome) depends on the systemmodel
parameters and most importantly on the price parameters β
and γ. In particular, from Fig. 3(a) we observe that the cost
values of both C-ESM and D-ESM are higher for β = 2.5,
compared to β = 2 (Fig. 2(b)), because setting β = 2.5
results in higher night-time costs. However, for β = 2.5,

the cost curve of D-ESM starts decreasing at lower values
of available RES capacity, namely at RE = 20% · DTotal .
Moreover, as seen in Fig. 3(b), the PoA attains significantly
lower values for higher β and peaks at around 1.16. Therefore,
when the nighttime cost increases, D-ESM behaves closer to
the optimal solution. More results on how the tariff values’
changes (via the parameters γ and β) affect the NE can be
found in [42].
In Fig. 5, the PoA is compared for different values of risk

aversion of the energy community with β = 2. In particular,
the inverse risk aversion degree of consumers of type 0 are
set to values between ε0 = 1 and ε0 = 2 (as indicated in the
legend) and the risk-aversion degrees of all other consumer
types are determined by (8). It turns out that all inverse
risk-aversion degrees are either equal or very close to ε0,
and, thus, the consumers in the energy community have all
approximately the same risk aversion. It can be observed that
as consumers become less risk seeking (i.e., εϑ increases and
thus µϑ decreases), the PoA values decrease for allRE/DTotal

ratios exceeding 50% in this plot. Thus, our proposed dis-
tributed scheme reveals that the achieved social cost of a
less risk seeking community moves closer to the optimal
for all possible NE and in particular, for εϑ ≥ 1.5 (or for
µϑ ≤ 0.67) the PoA values are optimal (i.e., equal to 1) for all
values of RE/DTotal . As a conclusion, under conditions such
as those associated with Fig. 5, less risk seeking behavior by
the community can yield NE inducing a social cost arbitrarily
close to the optimal (PoA be reduced to as low as 1). Notice
from Fig. 5 that a deviation of the social cost of about 33%
from the optimal social cost (PoA = 1.33 for εϑ = 1
and RE/DTotal ratio of 50%) can be entirely eliminated by
adopting a less risk seeking behavior ( εϑ ≥ 1.5).
Overall, we can state that the PoA values achieved by our

D-ESM (based on Figures 3, 4, 5) are quite low compared to
such values in the literature. For instance in the work of [39],
which refers to a more general setting the guaranteed PoA
is around 1.5, whereas in our evaluation results it is at most
equal to 1.35 and most often around 1.1.

2) Comparison of ES and PA Policies
As observed in Fig. 4(a), both C-ESM and D-ESM yield
higher social costs under the ES than under the PA policy for
all values of RES capacity. This observation can be attributed
to the potential waste of RES under the ES policy: i) the
RES capacity assigned to consumers’ types whose demand
for RES is lower than the fair share remains unused; and ii)
the daytime non-RES energy required to cover the unsatisfied
demand of consumers’ types whose demand for RES is higher
than the fair share leads to increase in the social cost. On
the contrary, under the PA policy, the RES share for each
consumer type is proportional (thus, always lower or equal)
to its demand and therefore the available RES capacity is not
wasted. In addition, under the ES policy, even for a case where
RE = 125% · REmax and a centralized mechanism is used,
the competing probabilities may not be all equal to 1, because
the competing probabilities of smaller players may have to be
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FIGURE 4: Social cost and PoA under ES for residential
smart grid with β = 2.
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reduced in favor of increasing the RES utilization.
The social cost of both D-ESM and C-ESM mechanisms

decrease with increasing RE , but not linearly contrary to the
PA policy, due to the non-linearity of the cost functions with
respect toRE under the ES policy. Moreover, we observe that
the social cost of D-ESM under ES follows a similar trend as
under PA, namely, it is constant for small values of RE and
then starts to decrease. This shows that, similarly to the PA
rule, consumers tend to over-compete for RES under the ES
policy, especially for lower values of the RES capacity.

Additionally, as seen in Fig. 4(b), the ES policy achieves
lower PoA than the PA policy for most values of the RES
capacity. However, the D-ESM under ES achieves 100%
efficiency only when the RES capacity reachesRE = 125% ·
DTotal , whereas, for the PA policy, the PoA is equal to 1
for lower values of RES capacity RE ≥ 110% · DTotal .
Hence, to achieve 100% efficiency of the D-ESM, using the
ES policy may be more expensive than using the PA, in the
sense that ES requires increased RES capacity compared to
PA. Furthermore, due to the non-linearity of the social cost
function with RE under the ES policy, the PoA curve does
not decrease monotonously after the initial peak.

3) Evaluation of Distributed Algorithm
Here, we evaluate the performance and convergence of Al-
gorithm 1. For easier visualization, we have implemented the
algorithm in a smart grid with N = 500 consumers divided
into two consumer types, using the following parameter val-
ues: E0 = 100 kWh, E1 = 200 kWh, DTotal = 65000 kWh,
r0 = 0.7, r1 = 0.3, ε0 = 1, ε1 = 1.004, cRES = 100 e/kWh,
β = 2, γ = 4, andRE = 25% · DTotal = 16250 kWh.
Table 2 summarizes the evaluation results on the social

cost, the aggregate daytime energy demand (Eq. (11)) and
the PoA for the optimal centralized solution as well as for
the solution of the distributed algorithm for the three capping
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FIGURE 6: Decentralized algorithmic solutions for different
capping systems.
systems.
All three capping methods lead to similar social cost and

PoA values. Thus, the choice of cappingmethodmostly influ-
ences the competing probabilities to introduce an additional
fairness level for sharing the RES capacity among the con-
sumer types, without affecting the social cost. To clarify, the
fairness level introduced by the capping system is with respect
to the mixed strategies level due to the fact that the order that
consumers play has an influence; whereas the fairness of the
allocation policy is with respect to the assignment of the avail-
able RES to those that finally compete for RES. Furthermore,
Table 2 highlights that if we do not apply a capping scheme
the algorithm converges the fastest 5 at the expense of fairness.
This is because we do not restrict the rate at which the solution
reaches a NE. Introducing a constant capping system slightly
deteriorates convergence, but it stays within the same order
of magnitude. Lastly, the random capping system provides
no control over the convergence speed, and we observe a
large variance in the required number of steps (outer loops) to
convergence. Note that lower cap values increase the required
number of steps for convergence. Most importantly, for all
three capping systems, we observe that the number of steps
until convergence is much lower than the number of players
(N = 500), which showcases the efficiency of the algorithm.
Figure 6 illustrates the solution paths given by the dis-

tributed algorithm for all three capping systems. It can be
observed that all solution paths converge to a theoretically
proven NE, represented by the blue line. For the constant
cap (cap = 0.1), the solution path oscillates around the 45◦

line. Therefore, the achieved NE solution consists of similar
competing probability values for both consumer types. Lower
constant cap values increase fairness among consumer types,
and greatly dampen any bias towards any type. If the random
cap method is implemented, the solution path is naturally
random. Lastly, with the no cap system, the consumer type
that plays first gains a considerable advantage.

5The tolerance is set to tol = 10−4.

Social Cost (106) Demand PoA Number of steps
Centralized 11.37 16250 1 -
Equal cap 13.00 24321 1.14 18

Random cap 12.99 24286 1.14 17-27
No cap 13.01 24324 1.14 14

TABLE 2: Social cost, demand, PoA, and number of itera-
tions until convergence under the PA rule for centralized and
distributed algorithmic solutions.
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VIII. CONCLUSIONS
In this paper, we analyze the uncoordinated decisions of self-
interested risk-aware consumers participating in an energy
sharing community and a decentralized ESM through a non-
cooperative game-theoretic framework. We derive conditions
on the existence of dominant solutions and/or NE depending
on the energy tariff values, the RESs allocation policies and
the consumers’ risk-aversion and energy demand. For low and
medium values of RESs production, consumers are shown
to over-compete for RESs compared to the optimal solution
giving rise to higher cost values. However, the incorporation
of consumers’ attitude toward risk in the model considered
in this work has revealed that the PoA peaks can be reduced
and even alleviated as the energy community becomes more
risk conservative. Moreover, the PA policy outperforms ES
in terms of social cost. Finally, choosing a fair NE among all
possible ones is also studied using a distributed algorithm for
choosing consumers’ actions.

From a methodological point of view, a natural direction
for further investigation is to account for more complex
behavioral human-driven models of consumers’ decision-
making (e.g., [48]). Also, performing analysis for dominant
strategies and NE under a higher number of TOU intervals
will be under investigation in future work in addition to
comparing various tariff schemes. Finally, the authors in [49]
showed that information has a major impact on the efficiency
loss in decentralized DRPs. Thus, future work will analyze
consumer competition in an energy community under more
realistic assumptions of imperfect information including irra-
tional consumer behavior and inaccurate forecasts.
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APPENDIX A PROOFS FOR CASE 2 OF THE D-ESM
For the consumers in Σ1, we need to show that υdϑ(p) <
υnϑ(p), ∀p and ∀ϑ ∈ Σ1. Assume a consumer type ϑ ∈ Σ1

and that her allocated RES energy is E ′. Then, we have that
υdϑ(p) = E ′ · cRES + (Eϑ − E ′) · γ · cRES and υnϑ(p) =
εϑ · Eϑ · β · cRES . The inequality υdϑ(p) < υnϑ(p) is then
equivalent to E ′(1−γ) ·cRES < Eϑ · (εϑ ·β−γ) ·cRES , which
is true by assumption, since (1−γ) < 0 and (εϑ ·β−γ) > 0.
Next, for the consumers in Σ2,1, we need to show that

υdϑ(p) > υnϑ(p), ∀p and ∀ϑ ∈ Σ2,1. Assume a consumer
type ϑ ∈ Σ2,1 and that her allocated RES energy is E ′.
Then, the inequality υdϑ(p) > υnϑ(p) is equivalent to the
inequality Eϑ > E ′ (γ−1)

(γ−εϑβ)
, which is true by assumption,

since E ′ < RE .
Now, we prove the condition of existence of a mixed

strategies NE for the consumers in Σ2,2. Recall that in the
ESG under the PA policy, a mixed strategy NE, pNE, among
consumers in Σ2,2 exists under the condition

resPAϑ (pNE) = resNEϑ (pNE),∀ϑ ∈ Σ2,2. (19)

To derive condition (8) we re-write (7) first with assuming
that a consumer i of type ϑi ∈ Σ2,2 plays the pure strategy

Ai = d (in (20)) and second with assuming that a consumer j
with type ϑj ∈ Σ2,2 \ {ϑi} plays the pure strategy Aj = d (in
(21)):

RE (γ − 1)

(γ − εϑiβ)
− Eϑi = DTotal

Σ1
+

∑
ϑ′∈Σ2,2

rϑ′ (N − 1) Eϑ′ pd,NEϑ′ ,

(20)

RE (γ − 1)

(γ − εϑjβ)
− Eϑj = DTotal

Σ1
+

∑
ϑ′∈Σ2,2

rϑ′ (N − 1) Eϑ′ pd,NEϑ′ .

(21)

Note that to derive (20) we consider that if a consumer i
in Σ2,2 of type ϑi plays the pure strategy Ai = d , then, the
aggregate expected daytime energy of the consumers in Σ2,2,
DΣ2,2

(pNE) can be expressed as Eϑi +
∑

ϑ′∈Σ2,2
rϑ′ (N −

1) Eϑ′ pd,NEϑ′ for a large number of consumers and similarly
also for (21). Then, since the right-hand sides of (20)-(21) are
equal, the left-hand sides will be also equal and (8) derives.

To derive the probability bounds, we re-write (7) assuming
that all consumers of the same type play the same mixed
strategy, i.e.,

RE (γ − 1)

(γ − εϑiβ)
= DTotal

Σ1
+ N

∑
ϑ′∈Σ2,2

rϑ′ Eϑ′ pd,NEϑ′ . (22)

The minimum bound on the probability for competing for
RESs, pmin

ϑ , derives by setting in (24) pd,NE
ϑ̃

= 1, ∀ϑ̃ ∈ Σ2,2

with ϑ̃ ̸= ϑ = ϑi. Similarly, the maximum bound on the
probability for competing for RESs, pmax

ϑ , derives by setting
in (24) pd,NE

ϑ̃
= 0, ∀ϑ̃ ∈ Σ2,2 with ϑ̃ ̸= ϑ = ϑi.

Finally, the expression for the aggregate expected daytime
energy demand given in (11) is constructed as follows. First
we can write that

Dd,NE = DTotal
Σ1

+ N
∑

ϑ′∈Σ2,2

rϑ′ Eϑ′ pd,NEϑ′ . (23)

Second, by multiplying (20) with N
N−1 , we obtain:

N
∑

ϑ′∈Σ2,2

rϑ′ Eϑ′ pd,NEϑ′ =
N

N − 1

[
RE(γ − 1)

(γ − εϑiβ)
− Eϑi − DTotal

Σ1

]
.

(24)

Third, by replacing (24) in (23) we obtain (11), where
the min{.}, max{.} operators account for the case that the
initially obtained probability values by (20) do not lie in the
range [0, 1] and should be set to the values 1 or 0, correspond-
ingly.

APPENDIX B DERIVATION OF SOCIAL COST

The social cost in (12) derives by summing the individual
costs for all consumers given by (3) and (4) for daytime and
nighttime, correspondingly. In particular,
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CPA(p) = N
∑
ϑ∈Θ

rϑp
d
ϑυ

d
ϑ + N

∑
ϑ∈Θ

rϑp
n
ϑυ

n
ϑ

=N
∑
ϑ∈Θ

rϑp
d
ϑ[c

RESresPAϑ (p) + cgrid,d(Eϑ − resPAϑ (p))]

+ N
∑
ϑ∈Θ

rϑp
n
ϑUϑc

grid,n

=N
∑
ϑ∈Θ

rϑp
d
ϑres

PA
ϑ (p)cRES + N

∑
ϑ∈Θ

rϑp
d
ϑ(Eϑ − resPAϑ (p))cgrid,d

+ Dn(p)cgrid,n. (25)

Using (2), we obtain that if Dd(p) ≤ RE , then,
N
∑

ϑ∈Θ rϑp
d
ϑres

PA
ϑ (p) = Dd(p) elseN

∑
ϑ∈Θ rϑp

d
ϑres

PA
ϑ (p) =

RE . In other words,N
∑

ϑ∈Θ rϑp
d
ϑres

PA
ϑ (p) = min{RE ,Dd(p)}.

Based on this observation, the social cost CPA(p) takes the
form of Eq. (12). Note that N

∑
ϑ∈Θ rϑp

d
ϑ(Eϑ− resPAϑ (p)) =

Dd(p)−min{RE ,Dd(p)} = max{0,Dd(p)−RE}.

APPENDIX C PROOFS FOR CASE 2 OF THE C-ESM
In this case, it is optimal for the C-ESM to schedule loads
during the day so that the total RES capacity is fully utilized,
i.e., the expected aggregate daytime energy demand is greater
than or equal to the RES capacity:

N
∑
ϑ∈Θ

rϑ Eϑ p
d
ϑ ≥ RE . (26)

Therefore, the social cost reduces to:

C(p) = RE · cRES +

[
N
∑
ϑ∈Θ

rϑ p
d
ϑ Eϑ −RE

]
γ · cRES

+ N

[∑
ϑ∈Θ

rϑ
(
1− pdϑ

)
εϑ Eϑ

]
β · cRES , (27)

and the C-ESM optimization problem (13) is equivalent to
minimizing N

∑
ϑ∈Θ

[
rϑEϑ (γ − εϑβ) pdϑ

]
cRES , subject to

constraints (13b)-(13e) and (26). Below, we derive closed-
form expressions of the solutions of this linear optimization
problem.

We define two complementary subsets of consumer types,
depending on their risk aversion degrees: Σ1 =

{
ϑ ∈ Θ :

εϑ ≥ γ/β
}
⊂ Θ, and Σ2 =

{
ϑ ∈ Θ : 1 ≤ εϑ < γ/β

}
⊂

Θ.
For all consumers whose type ϑ ∈ Σ1, it is optimal for the

C-ESM to schedule them during daytime, such that pd,∗ϑ = 1.
Therefore, the optimal schedule for the remaining consumers
whose type ϑ ∈ Σ2 can be found by solving the following
linear optimization problem:

min
p

N
∑
ϑ∈Σ2

[
rϑ Eϑ (γ − εϑβ) p

d
ϑ

]
cRES (28a)

s.t. (13b)− (13e) (28b)

N
∑
ϑ∈Σ2

rϑ Eϑ p
d
ϑ ≥

RE − N
∑
ϑ∈Σ1

rϑEϑ

 . (28c)

And the dual function of this optimization problem is

max
λ≥0

min
p

N
∑

ϑ∈Σ2

[
rϑEϑ (γ − εϑβ) p

d
ϑ

]
cRES

− λ

N
∑

ϑ∈Σ2

rϑEϑp
d
ϑ −

RE − N
∑

ϑ∈Σ1

rϑEϑ

 ,

(29)

subject to (28b), where λ represents the dual variable associ-
ated with (28c) and let λ∗ represent its optimal value.
It results that:

• for all ϑ ∈ Σ2 where 1 ≤ εϑ <
γcRES − λ∗

βcRES
, pd,∗ϑ = 0,

• for all ϑ ∈ Σ2 where εϑ =
γcRES − λ∗

βcRES
, 0 < pd,∗ϑ < 1,

• for all ϑ ∈ Σ2 where
γcRES − λ∗

βcRES
< εϑ <

γ

β
, pd,∗ϑ = 1.

This means that the consumer types are fully dispatched
during the day in the order of increasing risk aversion degree
(or decreasing εϑ), until constraint (28c) is satisfied.

APPENDIX D ANALYSIS FOR THE ES ALLOCATION
POLICY
A. DECENTRALIZED ENERGY SHARING MECHANISM
UNDER ES
The analysis and proofs of this section follow similar lines
as the analysis and proofs for the PA policy. Most proofs are
however omitted for brevity.
In the ESG with the ES policy, a mixed-strategy NE exists

under the condition:

rseESϑi (p
NE) = resNEϑ (pNE), ∀ϑ ∈ Θ. (30)

Let us distinguish the following cases:

Case 1: RE exceeds DTotal

As consumers have knowledge ofRE andDTotal , it is straight-
forward to show that the dominant-strategy for all consumers
is to schedule their daily flexible loads during daytime. As
a result, the competing probabilities that lead to equilibrium
states are equal to pd,NEϑ = 1 for all consumer types ϑ ∈ Θ.

Case 2: RE is lower than DTotal

In this case, the strategies of the consumers depend on their re-
spective risk aversion degrees and the TOU tariffs. We define
two complementary subsets of consumer types, depending on
their risk aversion degrees: Σ1 =

{
ϑ ∈ Θ : εϑ ≥ γ/β

}
⊂

Θ, and Σ2 =
{
ϑ ∈ Θ : 1 ≤ εϑ < γ/β

}
⊂ Θ.

Firstly, the dominant strategy for all consumers i whose
type ϑi is in the set Σ1 is to schedule their daily flexible
loads during daytime, i.e., to play the pure strategy Ai = d
with probability pd,NEϑi

= 1. Their expected aggregate daytime
energy demand is then DTotal

Σ1
= N

∑
θ∈Σ1

rθEθ.
Secondly, the strategies of the consumers i whose

type ϑi is in the set Σ2 depends on their daily flex-
ible loads and risk-aversion degrees. Therefore, we de-
fine two distinct subsets of consumer types in Σ2:
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Σ2,1 =
{
ϑ ∈ Σ2 : Eϑ > RE (γ−1)

(γ−εϑβ)

}
and Σ2,2 ={

ϑ ∈ Σ2 : Eϑ ≤ RE (γ−1)
(γ−εϑβ)

}
.

For consumers i whose type ϑi is in the set Σ2,1, the
dominant strategy is to schedule their daily flexible loads
during nighttime, i.e., to play the pure strategy Ai = n with
probability pn,NEϑi

= 1, andAi = d with probability pd,NEϑi
= 0.

For consumers whose types are in the set Σ2,2, a mixed-
strategy NE with the ES policy exists if and only if the
following condition holds:

(γ − εϑβ) · Eϑ = (γ − εϑ̃β) · Eϑ̃, ∀ϑ, ϑ̃ ∈ Σ2,2. (31)

To derive condition (31) we re-write (30) first with assum-
ing that a consumer i of type ϑi ∈ Σ2,2 plays the strategy
Ai = d with probability pd,NEϑi

= 1 (in (32)) and second with
assuming that a consumer j with type ϑj ∈ Σ2,2 \ {ϑi} plays
the strategy Aj = d with probability pd,NEϑj

= 1 (in (33)).

DTotal
Σ1

+ 1 +
∑

ϑ′∈Σ2,2

rϑ′ (N − 1) pd,NEϑ′ =
RE(γ − 1)

Eϑi(γ − εϑiβ)
, (32)

DTotal
Σ1

+ 1 +
∑

ϑ′∈Σ2,2

rϑ′ (N − 1) pd,NEϑ′ =
RE(γ − 1)

Eϑj(γ − εϑjβ)
. (33)

Then, since the right-hand sides of (32)-(33) are equal, the
left-hand sides will be also equal and (31) derives.

Additionally, for the consumers of type ϑ ∈ Σ2,2, the
competing probabilities that lead to NE states lie in the range
pminϑ ≤ pd,NEϑ ≤ pmaxϑ , where:

pminϑ =

max

0,

RE(γ−1)
Eϑ(γ−εϑβ)

−
∑

ϑ̃∈Σ2,2∪Σ1\{ϑ}
Nrϑ̃

Nrϑ

 , (34)

pmaxϑ = min

1,

RE(γ−1)
Eϑ(γ−εϑβ)

−
∑

ϑ̃∈Σ1

Nrϑ̃

Nrϑ

 . (35)

To derive the probability bounds, we re-write (30) assum-
ing that all consumers of the same type play the same mixed
strategy, i.e.,

DTotal
Σ1

+
∑

ϑ′∈Σ2,2

N rϑ′ pd,NEϑ′ =
RE(γ − 1)

Eϑi(γ − εϑiβ)
. (36)

The minimum bound on the probability for playing RES,
pmin
ϑ , derives by setting in (36) pd,NE

ϑ̃
= 1, ∀ϑ̃ ∈ Σ2,2

with ϑ̃ ̸= ϑ = ϑi. Similarly, the maximum bound on the
probability for playing RES, pmax

ϑ , derives by setting in (36)
pd,NE
ϑ̃

= 0, ∀ϑ̃ ∈ Σ2,2 with ϑ̃ ̸= ϑ = ϑi.

The Remarks 3 and 4, which are stated for the PA allocation
policy in Section III, also hold in case of the ES allocation
policy.

The social cost under the ES policy can be expressed as

CES(pNE) = N
∑
ϑ∈Θ

rϑ min{sh(pNE),Eϑ} pd,NEϑ cRES

+

D(pNE)− N
∑
ϑ∈Θ

rϑ min{sh(pNE),Eϑ} pd,NEϑ

 cgrid,d

+N

∑
ϑ∈Θ

rϑ pn,NEϑ εϑ Eϑ

 cgrid,n. (37)

B. CENTRALIZED ENERGY SHARING MECHANISM UNDER
ES POLICY
Similar to C-ESM under the PA policy (Section IV), the
C-ESM under the ES policy is modeled as an optimization
problem, defined as:

min
p

CES(p) (38a)

s.t. pdϑ, p
n
ϑ ≥ 0, ∀ϑ ∈ Θ (38b)

pdϑ + pnϑ = 1, ∀ϑ ∈ Θ. (38c)

The problem (38) is non-convex due to its objective func-
tion and the form of the equal share sh(pNE) (Eq. (18)). In
our simulations in Section VII-B2, we solve it with genetic
algorithms using the Global Optimization Toolbox of MAT-
LAB.
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