POISSON PROCESSES
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COUNTING (ARRIVAL) PROCESS

Ni(w)
{N;(w);+>0} defined on some o—
sample space 2 is called a o
counting process provided o—
that: o
(1) it is non-decreasing Lt hit T

(2) it increases by jumps only
(3) it is right continuous
(4) No(w)=0
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POISSON PROCESS

A counting process that satisfies:

1. Each jump is of unit magnitude

2. (independent increments) For any t,s 20, N,,,-N; is
independent of {N,(w);ust}

3. (stationarity) For any t,s > 0, the distribution of
N;.s-N; is independent of t

Lemma 1 : For every t >0, P{N,=0}=e*' for some A >0
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Proof : {O arrivals in [0,t+s]}
< {0 arrivals in [0,t]} and {O arrivals in [t,1+s]} , or

{N,,,=0} < {N,=0} and {N,,-N, =0}

P {N;.;=0}= P{N,=0} P{N,,,~N, =0} (indep. increments)

P {N,.=0}= P{N,;=0} P{N,=0}  (stationary increments) (*)
Let P{N;=0}=f(t) , then

(*) f(t+s)=f(1)f(s) , 0«f(t) <1, 1,520

the only non-zero f(t) satisfying (*) is e*", A20

Thus P{N,=0}= e"** , A0
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Lemma 2: lin(}%P{N, >21=0
t—

t—0
i.e., Prob{ > 2 arrivals over a small t} — O faster that ¢

Lemma 3: lin(}%P{N , =1}=A4 (arrivalrate 4)
=
Proof : P{N, =1} =1-P{N, =0} - P{N, 22} =

1 e
lim=- P{N, =1} =lim{ - - —— -~ P{N, > 2}
t—0 ¢ t—>0| ¢ t t
-l
Climi ¢ =
t—0 t

t—0
i.e., Prob{1arrivals over a small t} — A¢
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Theorem : If {N,;+>0}is Poisson then

P{N;=k}=e** (At)</Kl , k=0,1,2,.. forsomeA20

Notice on short term behavior : (8 small)

P{O arrivals in (t,1+8)} = 1-A8+0(32)
P{1 arrivals in (t,t+3)} = Ad+0(8?)
P{>1 arrivals in (t,t+3)} = 0(3?)
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Moments of Poisson process

e E(N}= znP{N—n} i MW) -’“’Z(MH At =2t

1 (n=1D)!
.E{Nfz}:E{Nt(Nt_1)+Nt}22n(n—l)m+/u
n=0 n!
i 7,1z(/1t)n72(/1t) 2t =) +i 7]"’(/1)?)

=o%f—‘(ﬂ 2)H(n—Dn

= (1)’ + At
eVar{N,} = E{N’} —(E{N,})* = At (compare with Wiener's)
Note: E{N,} =Var{N,} = At (high for large ¢)
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® Ry (t,,t,)=E{N, N, }=E{N;+(N,_-N,)N,}=

= At + (A + AL, —t)At, = At + A1ty (8, <t,)

= Amin{t,,t,} + A’tt, (Compare with Wiener's)
o ky(t,,t,) = Ry (t,,1,) — E{N, }E{N, } = Amin{t,,1,}

(Compare with Wiener's)

Note : Above moments similar to those of the Wiener process
as aresult of the independent increment property,

common to both.

Corrolary :if {N,;¢ = 0} is Poisson, then
P{N N, =k|N_u<t} = P{N,

ind. incr.

~N, =k}

gy g0

stationary incr. k!

t+s t+s
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Alternative definition of Poisson Process - A

(by checking in samples the validity of the independent
and stationary increment property)

{N,; 120} is Poisson with rate A iff

(a) N;(w) has unit magnitude jumps for almost all w
(b) 1,520 , E{N,.-N;IN_,uct}=As
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Alternative definition of Poisson Process - B

(by checking in samples the validity of the Poisson
distribution)

{N,.1:0} is Poisson with rate A iff

P{Ng=k}=e**(Ab)</k! , k=01,2,..

For any subset B of R, that is the union of a finite
number of disjoint intervals whose length sums up to
b.
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Uniformity of distribution of time of given arrival(s)
or Conditional distribution of arrival(s)

» Assume we are told that one event occurred at some point within
(0, ). The question is: when is it more likely for that event to
have cccurred?

Pr(Y: < s, N(t) =1)
Pr(N{g) = 1)
Pr(1 event in (0, s)) Pr(0 events in (s, t))
Pr(1 event in (0, f)

(As)! =2 o ()x(r&s))O e—)\(t—s)is

2 =
Gef o-x F W3

PriYi <s|N(f)=1) =

» Thus, Y is uniformly distributed on (0, t): Y ~ U(0, t)
» This result was expected given the memoryless nature of the
Poisson process.
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Proposition: (Uniformity of the distribution of the time of
Poisson arrival occurrences over aninterval)
Let A, UA, U..UA =B, {A}, disjoint | A |=q (length)
k,+k, +..+k =k, allinN,|B|=b. Then (multinomial distr)
Kl

a ki a, kn
- - - Ky (& a
P{NAI —k INAZ _kZI".INAn _k" |NBd_ k} - kil‘”k"!( bj ...( b j

P{c,d} _P{c} PN, =ki}..P(N, =k}
P{d} P{d} P{N, =K}
{N,} independent since {A}; disjoint.

Proof:P{c|d}=

(write each prob as a Poisson over each sub-interval
and manipulate)
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On the estimation of A:

StrongLaw of Large Numbers (SLLN) justifies: A = l|m M(w ))

Proof : Use discrete unit time axis, n
*) N, =N +(N2 _N1)+(N3 _Nz)“‘--- +(Nn _Nn—l)

are alli.i.d. withmean A=SLLN holds

On the limiting behavior of N, :
From (*) = N, is the sumof i.i.d.RV's =
Central Limit Theorem implies

_ X v
lim P{N* AL x} - j %e Zdy (PDF forN(0,1))
(good approximation for At > 10 - At is the variance)
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Proposition: (distribution of interarrival fimes)
P{T,. -T <s|Tp.Tp,.. T.}=1-e™ s>0
i.e.,itis exponentially distributed and
independent of past arrival times.

Proof:

P(T,. ~ T, > To. T T} =PIN, =Ny =0Ty, Ty, T, )

=P{N; —N; =0[N,;u<T,}=(indep.incr. of Poisson)

=P{NTn+s _NT“ =O}=8_AS
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Memorylessness of interarrival times

Since exponential, the distribution of T,,;-T, is memoryless:

P{Tn+1'Tn>T+5 | Tn+1'Tn>T}=P{Tn+1-Tn>S}

i.e., knowing that t time units have passed since the last arrival does
not affect the time when the next arrival will occur, which
remains exponential with the same parameter A.

Stated differently: No matter which time instant t I observe the
system, the evolution of future arrival times is independent of t
and past arrival times.

Thus, there is no need to maintain any record regarding past
arrivals to determine future ones (great simplification in
system modeling).
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Minimum and comparison of exponential variables

» Let Xi,..., X, be aset of nindependent and exponentially
distributed random variables with rates Aq, ..., A, respectively.

Primin{Xy, X, ..., Xy} > t) = e~ 2™ (8)

» Let X; ~ exp(Ay) and Xy ~ exp(Ay)

Al
PriXp < Xp) = (9)
ALt Ao
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Example: Reliability

» Let us consider a car with three components subject of failure: The
engine with rate 1 failure every 10 years, the electricity system with

rate 2 failures every b vears and the air conditioning with rate 1
failure every 2 years.

» Assume we start at time t = 0. Find the probability to have at least
one failure on the first year:
We use random variable Xuire to model the time until the first
failure. This is exponentially distributed with rate
Ay = % + % + % =1 failure per year
Therefore: P{Xejiwre < lyear) =1—e™!

» Find the probability that the engine fails before any other component:
P(Xy < min{Xp, X3}) = e 1

A _ _
A1+(>\§+>\3) T 1/1042/541/2 T 10
» Find the probability that the engine fails twice in a row before any
other failure:

11

101
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Burstiness of Poisson arrivals
Let 1 be the generic RV for 1,=T,,;-T,

P{1¢s}=1-es of (s)=Ae s \ A
Since f.(s) decreases with s = B
P{r=L,} = A > B = P{r=L,} (for L,<L,)
| < <
L, L, s
Thus, short interarrival times occur more frequently than long
ones.
it 1t It it f

Thus arrivals appear in bursts (clusters) (Poisson is a fairly
bursty arrival process)

Make the distinction between “burstiness of arrivals” and
"uniformity of the times of arrivals over an interval”
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Alternative definition of Poisson Process - C

A counting (arrival) process is Poisson iff the associated
interarrival times are independent and identically distributed
exponential RVs.

Moments of interarrival times:

I 1
E{T,-T}=|eMdt==
{n+1 n} .([6 A

1

Var (T,; - Ty}= a
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On the arrival (not interarrival) times Poisson Process

Momentsof arrivaltimes, T,
T=Ti+ (L -T)+(TG-T)+..+(T, - T.u)
E(T.}= A—nz , Var{T}= A—nz (sinceT, —T, , indep.)

Distributon of arrivaltimes, T, (Erlang-n)
n-1 e—AT(A t ) k
P{T, <t}=P{N >n}=1-P{N <n}=1—zT
k=0 :
AATY e ™

WlTZO

£(1)=

Note:
Erlang-nis thedistributon of theinterarriwl timesof groupsof nPoissonarrivals
Erlang-nis thedistributon of the sumof nexponentid andidenticalRV's
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Example :
{U,}.: are carinterarrival times (assumedindep.)
U, is erlang -2 distributed, i.e.,
P{U <t}=1-e™-Ate™ , t>0

U, may be viewed as the sum of two interarrival times
in a Poisson process {N,} with rate A.Let {T, },., be
the arrival times of that Poisson.
Then
U=T, , U=Ta-Tz , Uy=Ts-Ts ,...

If M, =# cars that passed by before or at t
P{M, =k} =P{2k <N, <2(k+1)} =P{N, =2k} +P{N, =2k +1}
_ e—M( A .r)Zk . e—M( A 1,)2k+1

k=012,..
2Kl (k+1) e
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Example : (hardware lifetime and replacement cost)

Assume exponential lifetime of a piece of hardware which is replaced
by an identical upon failure. Replacement cost is 5 and the discount rate
of moneyis & (i.e., 1$ spent at time ¢ has present value e ™,

« is the interest rate). Find the expected cost.

N, =#of failuresin [0, t]

{N, } s Poisson due to the indep. and expon. lifetimes
T, () = nth failure for realization

L@ = present value of the cost of nth replacement
C(w) = total cost for the (particular) realization @

Clw) = Zﬂe"’T"(‘”) , weQ

n=1

E(C} = E(C(@)} = B B} = B3 Ele™™)

n=1
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to use the i.i.d. property of inter - failures write :
T,=T+(,-T)+T-T)+..+(T, -T,)

EiC) = ﬂzw: E{e"”' e—a(Tz—Tnme—a(T,,—TH)}

n=1

= By Ete BT Ele Ty = Y [Ele )

n=1 n=1

Efe™ M\ = je*“ﬂ Ae M dt = % , thus

v +a
A
S Y A+a BA
E{C}= = =
{c ﬂ;(“aj ﬂl_ =
A+a

The result may be derived by setting £ ()= ge™™ , f(T,)=pe™"
and using the following (see next page)

In particular, if the mean lifetime is 5,000 hours, replacement cost 800 dol-
lars, and the interest rate 24 percent per year, then 8 = 800, A = 1/5,000,
o = 0.24/(365 X 24) = 0.01/365, and hence E[C] = 800 X 36,500/5,000 =

5840 dollars. OJ -
M105 - AvéAuon kai Movtehotoinon AikTOwv - lwdvvng Ztaupakdkng (EKMA) - 2023
Proposition : for a non - negative function f(-)on R,
B\ [T =2] f (0t
n=1 0
where T, 1s the occurrence time (arrival) of the nth
event in a Poisson process with rate A.
Proof :
ﬂe—lt (ﬂ,t)n 1
E{f(T)}= j f(t)—l)'dt , thus
© —At n—1
E{Y ST = ij(t)—dt
n=1 n=1 ( - 1)'
—At n-1
= At
_ j H0Y < ( )) dt = ﬂjf(t)dt
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Stopping time of an arrival process

A RV T is a stopping time of an arrival process {N,} if
the occurrence of the event {T<t} is determined by
{N,ust}, i.e., by knowing the history of the arrival
process up to t.

Example 1: Tg=the time of the 5™ arrival is stopping
time since {N, ust} determines if {Ts¢<t}.

Example 2: T=first time interarrival time exceeds some
value C. It is a stopping time.
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Poisson arrivals over [T,T+s] , for T a RV

If T=t (a fixed random point in time) we know that
Nr.s-N+ is independent from {N,;u¢s} and Poisson with rate As.

If Tis not fixed but a RV then above holds if T is stopping time
and then

P{N1,c-Ny=k| N, usT}=e*s(As)</kl , k=01,..

e.g., T=T, is a stopping time

T= time of occurrence of the largest interarrival is not a stopping
time since {T<t} cannot be determined by {N,;ust} since the
future evolution of the arrival process is needed as well.
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Example: Buses arrive as Poisson with A=0.2 per minute. Inspector
arrives at time of the 5™ bus arrival after time t, and will stay
for 60 minutes. Find the distribution of buses to arrive within
these 60 minutes.

Answer:
Time of arrival of inspector? = TNt (@)+5 @€ Q
0
T'is a stopping time. Thus,
—12, 4k
e 12
P{Np, ¢~ Np=ki= — k=0,,..
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Forward Recurrence Times
_— Vz(w):TN,(w)+1_t
| |

|
T, N (@) t T, N, (@)+

V, = (remaining) time between current time ¢ and the next arrival

Theorem: P{V,<u|N;s<ti=1-e¢™ , u>0

(i.e., the distribution of 7/ is the same as that of an interarrival )

Proof: {V, Sup={Ty , —t<u}={T, ,—t>u}’
={Ty,a > 1+ui" ={N,, —N, =0}
Thus, P{/,<u|N;s<t}=P{{N,,,—N,=0}|N;s<t}
=1-P{N,,,—N,=0|N;s<t}=1-P{N,,,—N,=0}
=1-P{N,=0}=1-¢™
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1 1
Note: E{V/{=— and FE{T  -T'=—
{ t} ﬁ { n+l n} ﬁ

E{TN,+1 _TN,} :E{TN,+1 _t+t_TN,} :E{Vz}+E{1_TNt}

1
:z+E{t_TN,}

That is, the interarrival interval that we happen to observe
(that includes ¢) is larger, on average, than an ordinary such

interval between two arrivals!!!
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Example :

The time between the two consecutive arrivals

containing our time of arrival o the bus stopis almost twice
aslarge, on the average, as the typical bus interarrival time,
assuming Poisson bus arrivals.

(Reason why the bus is always more late than usual

- or claimed by the company -
when we arrive at the bus stop)
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Uniqueness of Poisson superposition property: If L & M
are renewal processes and their superposition N is
renewal, then all 3 are Poisson (renewal process: i.i.d.
but not necessarily exponential interarrival times).

Decomposition of a Poisson process: N={N,;t>0} Poisson
with rate A, {X,;n=1,2,..} Bernoulli with param. p

{S,; n=1,2,..}=# of successes in n trials

N;(w) trials (i.e., arrivals that are split based on p) are
carried out in [0,t]

M (W)=S \iw)(W) is the number of successes over [0,1]

Li(w)= Ny(w)-M,(w) is the number of failures over [0,1]
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Theorem: M ={M,;t>0} & L={L,;t >0} are Poisson
with rate Ap and A(1 — p), respectively and M & L are independent.
Proof : Suffices to show that

PM, , —M,=m,L,,,— L, =k|M,,L;u<t}=
e Ops)” (- ps)” . km=0,12...
m! k!
YV t,s2>0.
M, ,—M,=m,L, . —L =k}< (bringinN,)
{Nyyy =N, =m+k,M,  —M, =m}< (bringin Sy )

{Nys =N, =m+k,Sy - Sy =mi=A
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Now,{M,,Lu<t} &> {N, u<t,X,X,,..X,}=B
Notice that N, — N, &S, -, (and thus A)are indep. of B

t+s

=N, =m+k,S, —Sy =m}

t+s

P(A) = iP{N, =n,N

P{N

t

n,N, =m+k+n,S S =m}

m+k+n ~ Pn

P{N,=n,N,,, =n+m+k}P{S -S, =m}

m+k+n

Il
RN

PN, =n,N,.,~N,=m+k}P{S, ., =m)

=
I
(=]

v

=P{N,, —N,=m+k}P{S

e (As)™* (m+k)! .
miby i PP
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mik — m}

Example: N is the Poisson arrival process of cars (rate
A). N, N2, .., N° are the arrival processes of cars with
1,2,..5 passengers (0.3,0.3,0.2,0.1,0.1 are the
passenger occupancy probabilities for 1,2,..,5).

NI, N2,.., N° are Poisson
with rates 0.3A,0.3A,0.2A,0.1A,0.1A.

Expected # of passengers per unit time:

E{N1+2N2 +3N3 *4N* +5N5}=
0.3A+2*0.3A+3*0.2A+4*0.1A+5*0.1A
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Addition and sampling of Poisson processes

» Two more (very important) properties of the Poisson process:

Addition Let Ny (t) and Ny(t) be two Poisson processes with
rates A; and Az respectively. Then, the process
Nyor = N (£) + No(t) is also a Poisson process with rate
Aot = AL+ Ap

Sampling Let N(t) be a Poisson process with rate A, and let
0 < p =<1 besome sampling probability. Then, the
process obtained by sampling the events of N(t) with
probability p is also a Poisson process with rate Ap. The
events left apart is also a Poisson process with rate

AM1—p).
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Addition and sampling of Poisson processes. Example

» Consider an Ethernet switch with 24 input ports and 2 output
ports. Each input port injects packets to the switch as a Poisson
process with rate A = 10 packets/sec. The routing tables state
that 70% of the packets must go to output port number 1, while
the other 30% must go to the second output port.

The counting process at the switch is also Poisson because it is the
combination of 24 Poisson processes. T he total rate is then
Ator = 24 % 10 = 240 packets/sec.

The counting process of cutgoing packets on the two ports are also
Poisson because the are random samples of a Poisson process. The
first output port has got a rate of A,y = 0.7 x 240 = 168
packets/sec, and the second A,y = 0.3 x 240 = 72 packets/sec.
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Compound Poisson process

(allowing jumps of any size in a Poisson process)

Definition A: Z={Z,;+>0} is a compound Poisson provided
that:

(a) Z,(w) has only finitely many jumps in any finite
interval (a.e.)

(b) for all t,520 , Z,,.-Z, is indep. of {Z ust}

(c) for all 1,520 , the distribution of Z,,,-Z, depends on s
(indep. of t)
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Note:

if N={N,;120} is the process that counts the number of jumps in
(0,11, then (b) & (c) ==> N is Poisson.

Z & N differ in the fact that jumps in Z are not all equal to one
(1) but are RV's {X;,X5,..}.
(b) & (c) ==> {X1,X;,..} are i.i.d. and, thus, indep. of {T;,T,,..}.

If {T,,T,,.} are Poisson arrivals times & {X;,X,,..} are i.i.d. RV's
indep. of {T,T5,..} then the sum of all X; such that T<t, Z,,
forms a compound Poisson process.

Definition: Z is a compound Poisson iff its jump times form a
Poisson process & the magnitudes of its jumps are i.i.d RV's
independent of the jump times.
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