
Computer Communications 52 (2014) 71–81
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Performance evaluation of a peer-to-peer backup system using buffering
at the edge
http://dx.doi.org/10.1016/j.comcom.2014.06.002
0140-3664/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: erwan.lemerrer@technicolor.com (E. Le Merrer).
Anne-Marie Kermarrec b, Erwan Le Merrer a,⇑, Nicolas Le Scouarnec b, Romaric Ludinard a, Patrick Maillé c,
Gilles Straub a, Alexandre Van Kempen a

a Technicolor, ZAC des Champs Blancs, 35576 Cesson Sévigné, France
b INRIA-Rennes, Campus Universitaire de Beaulieu, 35042 Rennes, France
c Telecom Bretagne, rue de la Châtaigneraie, 35576 Cesson Sévigné, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 October 2013
Received in revised form 6 June 2014
Accepted 10 June 2014
Available online 27 June 2014

Keywords:
Storage
Backup
Availability
Peer-to-peer
The availability of end devices of peer-to-peer storage and backup systems has been shown to be critical
for usability and for system reliability in practice. This has led to the adoption of hybrid architectures
composed of both peers and servers. Such architectures mask the instability of peers thus approaching
the performances of client–server systems while providing scalability at a low cost. In this paper, we
advocate the replacement of such servers by a cloud of residential gateways, as they are already present
in users’ homes, thus pushing the required stable components at the edge of the network. In our gateway-
assisted system, gateways act as buffers between peers, compensating for their intrinsic instability. We
model such a system, for quick dimensioning and estimation of gains. We then evaluate our proposal
using statistical distributions based on real world traces, as well as a trace of residential gateways for
availability (that we have collected and now make available). Results show that the time required to
backup data in the network is substantially improved, as it drops from days to a few hours. As gateways
are becoming increasingly powerful in order to enable new services, we expect such a proposal to be
leveraged on a short term basis.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

While digital data clearly dominates, backup is of the utmost
importance. More specifically, online (i.e. off-site) backup is often
preferred over simple backup on external devices as it ensures data
persistence regardless of the damage cause (e.g. failures, burglars
or even fires). To enable their deployment, online backup systems
should run in the background and provide reasonable
performances so that archives can be stored safely in reasonable
time. While cloud backup systems are increasingly adopted by
users (e.g., justcloud, SugarSync, Egnyte HybridCloud, Amazon S3
or DropBox), their peer-to-peer alternatives, potentially offering
virtually unlimited storage for backup [1,2], are still not appealing
enough performance-wise, as e.g. retrieval times for saved data
can be an order of magnitude higher that the time required for
direct download [3]. A particularly illustrative example is the
Wuala case: the Wuala company gained fame by proposing a
peer-assisted (advertised as fully peer-to-peer) and practical
storage service; nevertheless, this technical choice was abandoned
to move to a centralized architecture [4], probably for cost/perfor-
mance matters. Beside this initial example and academic systems,
we are not aware of a peer-to-peer storage system deployed at
large scale for common needs.

Indeed, peer-to-peer backup systems are limited by the low to
medium availabilities of participating peers and by the slow
up-links of peers’ network connections. This limits the amount of
data that peers can transfer and places peer-to-peer systems way
behind datacenter-based systems [5]. Not only this may impact
the reliability of the stored content but also this does not provide
a convenient system for users. We focus on this performance prob-
lem and investigate a new way of performing efficient backup on
commodity hardware in a fully peer-to-peer way. Other specific
issues with peer-to-peer solutions include security or QoS [6],
but are out of the scope of this article.

In this article, we propose a new architecture for peer-to-peer
backup, where residential gateways are turned into a stable
buffering layer between the peers and the Internet. The residential
gateways are ideal to act as stable buffers: they lay at the edge of
the network between the home network and the Internet, and are
highly available since they remain powered-on most of the
time [7]. Our idea is to temporarily store data on gateways to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.06.002&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.06.002
mailto:erwan.lemerrer@technicolor.com
http://dx.doi.org/10.1016/j.comcom.2014.06.002
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

10000

13000

16000

19000

22000

25000

Jul 1
Sep 1

Nov 1
Jan 1

Feb 11

G
at

ew
ay

s
up

School holidays in France

(a) Number of gateways simultaneously connected,
across the monitored period (7.5 months).

0

0.2

0.4

0.6

0.8

1

0.1

C
D

F

Total time spent up in hours
(b) CDF of uptime periods in the trace.

0

0.2

0.4

0.6

0.8

1

0.1

1 10 100 1000 10000

1 10 100 1000 10000
C

D
F

Periods of un availability in hours
(c) CDF of dowtime periods in the trace.

Fig. 1. Availability of residential gateways mesured on a French ISP. The dataset has
been acquired sending pings to a random sample of gateway IPs.

72 A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81
compensate for peers transient availability. In this article, we advo-
cate the use of gateways as buffers and not storage; this choice is
motivated by the increasing number of devices embedding storage,
within the home and attached to a gateway. Dimensioning the
storage of the gateway accordingly would be costly and would
break the peer-to-peer paradigm by creating a central point in
charge of hosting resources of attached devices durably: the
contributed resources would no longer scale with the number of
clients. In our buffer model, each device is required to provide a
portion of its available space [1,2], to participate to the global
backup system. Such a system enhances the backup system’s
performance along two lines:

� The network connection can be used more efficiently: if devices
upload data continuously while they are up, the available
bandwidth can be exploited typically 21 h/day instead of only
6–12 h/day on average, based on actual measured availabilities.
This leads to significant enhancements. For example, we
observe that the time to backup a 1 GB archive is reduced from
few weeks in a pure peer-to-peer system to around one day in
our system.
� Additionally, the gateways, offering a high availability (86% on

average, according to our measurements), can act as rendezvous
to allow any two peers to communicate efficiently, even if they
are not up at the same time. In our application, this enhance-
ment mainly has an impact on the time to restore.

Our proposal differs from existing approaches [4,5,8–13] by tak-
ing into account the low-level structure of the network. Indeed,
most peer-to-peer applications ignore the presence of a gateway
in between each peer and the Internet. We believe that leveraging
the gateway storage space may render peer-to-peer systems viable
alternatives for backup. This should provide a reasonable solution
even when peers experience a low availability as long as they con-
nect frequently enough to the system. Using those gateways as
buffers between peers participating in a backup or restore opera-
tion, enables to implement a stable rendezvous point between
transient peers.

The remainder of this article is structured as follows. In
Section 2, we briefly review some pieces of work that motivated
our proposal. In Section 3, we detail our architecture and sketch
the storage system. We then propose in Section 4 a model for this
system, in order to estimate its performance. Section 5 introduces a
framework for comparison of our proposal to that of competitors,
and presents our evaluation study. We discuss respectively some
specific points and related work in Sections 6 and 7. Finally, we
conclude the article in Section 8.
1 This trace and additional information can be found at the following URL http://
www.thlab.net/lemerrere/trace_gateways/.
2. Background

Peer-to-peer storage systems initially relied on the set of all par-
ticipating peers, typically constituted of users’ desktop PCs, without
any further infrastructure [8,9]. However, it has been acknowl-
edged since then [14,15] that those pure peer-to-peer architectures
may fail to deliver reliable storage by exploiting the resources of
peers, mainly due to the low availability of peers and the slow
up-link of their network connections. One straightforward solution
is to exclude peers with a low availability or a slow network con-
nection to access the service [16]; this nevertheless excludes many
participants and significant amounts of exploitable resources [1,2].

Hybrid architectures, where both servers and peers coexist,
have been proposed in various contexts, in order to move towards
practical system deployment while still leveraging users’ resources
[17]. The problem of sharing files while mitigating the load of
central servers is addressed in [18]. This article proposes a
BitTorrent like server-assisted architecture where central servers
act as permanently available seeders. Lastly, a server assisted
peer-to-peer backup system is described in [5]. In this system,
which can be referred to as CDN-assisted, the CDN enables to reduce
the time needed to backup data, while the use of peers guarantees
that the burden of storage and communication on the data center
remains low. In this last approach, a peer uploads data to a set of
other peers if they are available, and falls back on the datacenter
otherwise, thus using the datacenter as a stable storage provider.

Finally, another aspect of interest is the network setting of
home networks. Residential gateways connect home local area net-
works (LAN) to the Internet. They act as routers between their
WAN interface (Cable or DSL) and their LAN interfaces (Ethernet
and WiFi). They started to be deployed in homes to share Internet
access among different devices and got additional functions as ser-
vices (VoIP, IPTV) were delivered over the Internet. It is now fairly
common to have home gateways embedding a hard drive, acting as
Network Attached Storage to provide storage services to other
home devices and offering some other ones to the outside world
[7,19–21].
3. A gateway assisted system

3.1. Stability of residential gateways

As residential gateways provide not only Internet connectivity,
but also often VoIP, IPTV and other services to the home, the
intuition tells us that they remain permanently powered on. To
confirm this assumption, we extracted a trace of residential
gateways of the French ISP Free, using active measurements.1 We

http://www.thlab.net/lemerrere/trace_gateways/
http://www.thlab.net/lemerrere/trace_gateways/

Fig. 2. Availability statistics extracted from the raw trace of gateways. (Values are given in hours.)

Internet
6-12h/24h

66 kB/s

(a) With passive gateways

Internet
7MB/s

6-12h/24h
66 kB/s
21h/24h

(b) With active gateways

Fig. 3. A global picture of the network connecting the peers to the service. Those
end-devices are available 6–12 h/day. If we allow the gateway, which is available
21 h/day, to perform buffering, we can benefit from the speed difference between
local links (7 MB/s) and ADSL links (66 KB/s).

2 Note that even if fiber technology can solve part of the asymmetry problem, it is
still far from being the norm in most countries (please refer to OECD studies for
numbers [27]).

A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81 73
periodically ping-ed a set of IP addresses randomly chosen in the
address range of this ISP, which has a static IP addressing scheme.
We obtained the uptime patterns of 25,000 gateways for 7.5 months,
covering week-patterns [22,23], and holidays. Availability statistics
are provided on Fig. 2. We plot the availability of those devices
against time, in the classical representation of availability, on
Fig. 1a. Some clear acquisition artifacts appear due to both the unre-
liability of the ICMP monitoring and temporary failures on the path
between our platform and the targeted network. Yet, as seen on
Fig. 1b and c (a gateway that has rebooted participates with its
corresponding number of uptimes periods to those plots), the trace
confirms the common intuition about the stability of those devices,
in spite of a few users having power-off habits (on a daily or a holi-
day basis, see Fig. 1c), thus slightly reducing the average availability.
The average availability of gateways in this trace is 86%, which
confirms the results observed in [7], where the authors used traces
from a biased sample (only BitTorrent users) [24]. This has to be con-
trasted with the low to medium availabilities of peers generally
recorded in the literature, as e.g., 27% in [5], or 50% in [25].

For completeness, we provide statistics on this trace by using
the Failure Trace Archive toolbox; this is useful to compare to
the other 9 availability traces which are available and studied in
[26].

For modeling uptime periods in this trace, two distributions are
good fits:

� Weibull (p-value: KS-test = 0.22, AD-test = 0.34 [26]), with
parameters scale ¼ 46:96 and shape ¼ 0:42.
� Log-Normal (p-value: KS-test = 0.31, AD-test = 0.48) with

parameters mean ¼ 2:65 and std:dev: ¼ 2:29.

3.2. System rationale

In this article, we propose to decentralize the buffer logic
implemented in [5] by a CDN, in order to provide a reliable backup
system despite the dynamic nature of peers composing the
network. Our system is specifically tailored for the current
architecture of residential Internet access. Indeed, most previous
works assume that peers are directly connected to the network
(see Fig. 3a) while, in most deployments, a residential gateway is
inserted in between the peers in the home network and the Inter-
net. Hence, a realistic low-level network structure is composed of
(i) peers, connected to the gateway through Ethernet or Wifi, (ii)
residential gateways, providing the connection to the Internet,
and (iii) the Internet, which we assume to be over provisioned
(architecture depicted on Fig. 3b). In our approach, we propose to
use storage resources of residential gateways, thus creating a
highly available and distributed buffer to be coupled with peers.

Such an architecture is appealing as it takes into account (i) the
availability that differs between peers and gateways and (ii) the
bandwidth that differs between the LAN and the Internet connec-
tion. Firstly, the peers tend to have a low to medium availability
(i.e., from 25% or 6 h/day on average on a Jabber trace, to 50% on
a Skype trace which we introduce later on) while gateways have
a high availability (i.e., 86% or 21 h/day on average). Secondly,
peers are connected to the gateways through a fast network (at
least 7 MB/s) while the Internet connection (between gateways
and the Internet) is fairly slow (i.e., 66 kB/s on average for ADSL
or Cable, which is consistent with the 2 Mb/s and 3:5 Mb/s values
respectively advertised by providers, in OECD studies [27]). Exact
throughput numbers are bound to evolve positively, but the crucial
factor is the steady gap between LAN and WAN speeds. Our archi-
tecture exploits the major difference of throughput between the
LAN and the Internet connection (WAN)2 by offloading tasks from
the peer to the corresponding gateway quickly, thus using the Inter-
net connection more efficiently (i.e., 21 h/day instead of only 6–12 h/
day on average).

This enables the large-scale deployment of online storage appli-
cations by fixing the issues provoked by the combination of slow
up-links and short connection periods (as in the case of pure
peer-to-peer). These issues are becoming increasingly important
as the size of the content to backup increases while ADSL band-
width has not evolved significantly over the past years. For exam-
ple, uploading 1 GB (a 300 photo album) to online storage requires
at least 4 h30 of continuous uptime. Hence, these applications
require users to modify their habits (e.g., users must leave their
computers powered on during the whole night to be able to upload
large archives, even if they usually turn them off); this limits their
deployment and makes automated and seamless backup close to
impossible. Our approach precisely aims at combining peers’ fast
but transient connections with gateways’ slow but permanent
connections. Following this logic, if peers upload directly to the
Internet, they can upload on average 1:4–2:8 GB/day (Fig. 3a); if
we consider that the gateway is an active equipment that can per-
form buffering, a peer can upload 148–296 GB/day to the gateway
and the gateway can upload on average 4:8 GB/day (Fig. 3b). We
then advocate that turning the gateway into an active device can
significantly enhance online storage services, be they peer-to-peer
or cloud systems.

In the last part of this section, we propose the design of a gate-
way-assisted peer-to-peer storage system (noted GWA) based on
these observations, and relying on two entities: (i) users’ gateways,
present in homes and providing Internet connectivity and (ii)

74 A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81
peers, being users’ devices connected to the Internet (through a
gateway) and having some spare resources to contribute to the
storage system.

3.3. Gateway-assisted storage system

We consider a general setting to backup data to third parties on
the Internet, generic enough for us to compare approaches from
related work in the same framework.

The content to be backed up is assumed to be ciphered prior to
its introduction in the system, for privacy concerns. The content
can be located in the distributed storage system through an index,
which can be maintained, for example by a distributed hash table
connecting each piece of content stored to the set of peers hosting
it. We consider that users upload data from one peer, under the
form of archives. In order to achieve a sufficient reliability, the sys-
tem adds redundancy to the content stored. To this end, it splits
the archive into k blocks, and adds redundancy by expanding this
set of k blocks into a bigger set of n blocks using erasure correcting
codes [28] so that any subset of k out of n blocks allows recovering
the original archive. This enables to increase the file availability as
the resulting system-wide availability is:

A ¼
Xn

i¼k

n

i

� �
�pið1� �pÞn�i

; ð1Þ

where �p is the average availability of peers, which is smaller than A.
In the rest of this article, we set a target Atarget for the system-wide
availability so that n must be the smallest n ensuring that A > Atarget .
Intuitively, the availability targeted by the application is the portion
of time a backed up data is online for restore. High availability rates
have been shown cumbersome to reach in dynamic systems [14], so
a reasonable trade-off should be considered [3].

For a backup operation, the client peer uploads the file and the
redundancy blocks to other peers as follows:

1. Prepare. As soon as it gets connected, the client peer starts
pushing the archive at LAN speed to its gateway, which buffers
the data. At this point, the data has been partially backed up but
the final level of reliability is not yet guaranteed.
2. Backup. In our system, the gateway is in charge of adding the
redundancy; this allows faster transfer from the peer to the
gateway as a lower volume of data is concerned. Once done, it
starts uploading data to other gateways, at WAN speed (left-
hand side of Fig. 4). Gateways are active devices that can serve
peer requests thus ensuring data availability and durability
even if data is not fully pushed to remote peers. Therefore, data
can be considered totally backed up when all blocks have
reached the selected set of independent remote gateways.
3. Offload. Finally, remote gateways offload, at LAN speed, the
content to their attached peers (right-hand side on Fig. 4) as
soon as the attached peer becomes available.

A user can request access to its data at anytime; the success of
immediate data transfer from the storage system to the requesting
peer depends on the targeted availability of the backup, that has
LAN

Peer and
Gateway 1

Gateway 2
(Buffer)

Peer 2

Sent at 8:00AM
while Peer 2

is offline

WAN LAN

Sent at 1:00PM
when Peer 2
comes back

Stored
temporarily

Fig. 4. Backup operation: buffering a block at a random gateway.
been set by the system administrator. To reclaim backed up data,
the role of all elements in the system are reversed and the restore
is performed as follows:

1. Fetch. To access a data, the requesting client peer informs its
gateway of the blocks it is interested in. The client gateway car-
ries on the download on behalf of the client peer by contacting
the remote gateways handling peers where the data was
uploaded. If the data was offloaded to some peer, it is fetched
as soon as possible by the corresponding remote gateway.
2. Restore. The remote gateway sends the data to the request-
ing client gateway.
3. Retrieve When the client gateway has succeeded in getting
the whole content (the data has been restored), it informs the
client peer that its retrieval request has been completed, as
soon as it connects back.

4. Markov modeling of the storage system

We now present a mathematical model for the gateway-
assisted storage system just introduced. Such a model is particu-
larly interesting to (i) estimate order of magnitudes for time to
backup and time to restore, based on system’s core parameters
and to (ii) dimension gateway hard drives, in order for the system
to be viable.
4.1. Model parameters

In our model, we consider a very large number N of peers, such
that the contribution of each individual peer on the total backup
requests is infinitesimal. That reasonable assumption will lead to
some simplifications of the model.

The availability behavior of the peers is modeled by a simple
random process where each peer remains connected during a ran-
dom time, that we assume follows an exponential distribution
with parameter k, independent of all the rest. Similarly, the dura-
tions of offline periods are modeled by independent exponentially
distributed random variables with parameter l. As a result, the
average availability of each peer is �p ¼ l

kþl.
The backup operation requests are supposed to occur over time

independently among peers, and the average number of backup
requests per peer and per time unit is denoted by hb. Note that
the model allows heterogeneous backup behaviors among peers,
hb being an average over all peers. However, we impose that this
average number of backup requests remain stationary over time
(i.e., no ‘‘peak backup hours’’), which is a reasonable assumption
if we consider that peers are spread worldwide.

Each backup request is supposed to consist in one archive of
total size S, that is split into k blocks of individual size s. Redun-
dancy is then added to form n > k blocks of size b, and each block
is sent to the gateway of a peer, selected randomly and uniformly
among all peers.3

Take the point of view of a particular peer, and consider a time
period of duration t > 0 during which R backup requests are issued
in the whole system. Define r :¼ R=N. On that period, the number
of blocks sent to the considered peer’s gateway for storage then
follows a binomial distribution BðnrN;1=NÞ, that converges to a
Poisson distribution with mean nr when N gets large. But notice
then r ¼ R=N tends to thb, so that the number of blocks received
by the gateway on any period of duration t follows a Poisson distri-
bution with mean nthb. Formulated differently, the time between
3 Since the number of peers is assumed very large, the probability that two blocks
are sent to the same peer, or that a peer has to store one block it emitted, is negligible.

On 0 1 2
. . .

C −1 C

λ η η η η η

μ
μ

μ

μ
μ

Fig. 5. Transition diagram for the Markov chain describing the evolution of KðtÞ, the number of blocks received and buffered in the peer’s gateway. That number is 0 as soon as
the peer is online (state ‘‘On’’).

A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81 75
two block receptions follows an exponential distribution with
parameter nhb.

Since LAN speeds are considerably larger than WAN transmis-
sion rates, the former are considered infinite (i.e., the transfer times
between a peer and its gateway are neglected). All gateways are
assumed to benefit from the same upload transfer rate, that we
denote by du. The download rates of gateways is considered not
to be a limiting factor (the bottleneck therefore is at the sending
gateway). Finally, we assume that the n blocks to store onto the
system are sent in parallel to the recipients’ gateways, the transfer
therefore taking a constant time ns

du
.

Finally, one dimensioning parameter will be the memory size to
put into the gateway, in order to keep the backup blocks received
from the other peers. We focus on the download memory here,
whose capacity, in number of blocks, is denoted by C. Some upload
memory would also be needed in case the peer sends a backup
request and goes offline before the packets are sent to the storing
peer gateways. We can reasonably dimension that uplink memory
to n blocks, which is sufficient if there is only one ongoing backup
request at any time: this occurs for example if new backups replace
the previous ones (even if not completed).

In case the same memory can be indifferently used for uplink
and downlink, a sufficient dimensioning is to set the total memory
to maxðC;nÞ blocks. Indeed:

� under our assumptions the downlink buffer of the gateway is
empty as soon as the peer is online;
� the worst case is then when the peer goes offline just after

sending a backup request, and its gateway receives several
blocks. But even then, the memory empties at speed du which,
in the very unlikely case when more than n blocks are then
simultaneously received from other nodes, would just slightly
slow down those transfers.

4.2. Markov modeling

Let us consider a given peer. We analyze the evolution over time
of the number of blocks kept at the gateway of that peer, waiting
for that peer to appear online. When the peer is offline:

� either it comes back online, after some random time that
follows an exponential distribution with parameter l and then
the gateway memory is emptied;
� or a new block is received by the peer’s gateway, after some

random time exponentially distributed with parameter
g :¼ nhb, as developed before.

If the download buffer of the gateway can store C blocks, the
number KðtÞ of blocks in that buffer at time t is a continuous-time
Markov chain, whose transition diagram is drawn in Fig. 5.

As being irreducible and with a finite number of states, the
Markov chain is ergodic and therefore admits a steady-state
distribution. We denote by pi the steady-state probability of state
i. In addition, we notice that the probability pOn that the peer is
online, simply equals pOn ¼ l

kþl, due to our assumptions on the
peer’s behavior.

Using the stationary conditions, we easily obtain that for all
0 6 i 6 C � 1,

pi ¼
g

gþ l

� �i k
gþ l

l
kþ l

and

pC ¼
g
l

pC�1 ¼
g

gþ l

� �C k
kþ l

ð2Þ
4.2.1. Dimensioning the gateway reception buffers
Because of the PASTA (Poisson Arrivals See Time Averages)

property, the probability pC expressed in (2) is also the probability
that a block is lost at the peer. Dimensioning the downlink buffer of
the gateway is then straightforward: with a target loss rate of
etarget, we find:

pC 6 etarget () C P
logðetargetð1þ l=kÞÞ

logðg=ðgþ lÞÞ :

The values of C depending on the block arrival rate g are plotted
in Fig. 6, for different target loss values, and with average online
and offline durations of 17 and 7 h, respectively, leading to the
availability pOn � 0:7.

4.2.2. Backup duration
We focus here on the time needed before the backup data are

safely stored, i.e., the time between a backup request and the
instant when all (or a sufficient part of) the data is stored on the
receiving peers.

The duration of the transmission to the gateways of the receiv-
ing peers is constant under our assumptions, and equals ns

du
. After

that time, the gateways need to offload the received blocks to
the peer, which occurs with negligible time when the peer is
online. Two cases are possible upon the arrival of a block (assum-
ing the block is not rejected, which is reasonable if we took etarget

small enough):

� if the peer is online when the block is received – which is the
case with probability l

kþl, then there is no extra delay incurred;
� on the contrary, if the peer is offline upon its gateway receiving

a block, then the time T before that block is stored by the peer is
a random variable, exponentially distributed with parameter l,
i.e., PðT 6 tÞ ¼ 1� e�lt .

Consequently, through a conditioning on the number of peers
that are online when their gateway receives a block of the consid-
ered backup request, we can express the random part Tbackup of the

0 2 4 6 8 10

0

200

400

600

800

1,000

Block arrival rate η = nθb

G
at

ew
ay

bu
ffe

r
ca

pa
ci

ty
C

(b
lo

ck
s)

εtarget = 0.01
εtarget = 0.001
εtarget = 0.0001

Fig. 6. Buffer dimensioning (l ¼ 1=12 h�1, k ¼ 1=12 h�1).

76 A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81
backup duration (i.e., removing the constant time ns
du

to send the
blocks to the receiving gateways). If we consider that the backup
is over when the n peers received their assigned block, we have:

PðTbackup 6 tÞ ¼
Xn

i¼0

n

i

� �
k

kþ l

� �i l
kþ l

� �n�i

|ffl{zffl}
Pði peers among n are offlineÞ

1� e�lt
� �i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Pðthey come online before tÞ

;

with n
i

� �
¼ n!

i!ðn�i!Þ.

That distribution is plotted in Fig. 7 for different values of n.
Note that we could also compute the time before ‘ 6 n blocks

are stored by the peers: taking ‘ P k, we could consider that
enough data is safely stored. The distribution of that time Tbackup‘

is then such that:

PðTbackup‘ > tÞ ¼
Xn

i¼n�‘þ1

n

i

� �
k

kþ l

� �i l
kþ l

� �n�i

|ffl{zffl}
Pði peers among n are offlineÞ

Ui
n�‘þ1ðtÞ; ð3Þ

with Ui
jðtÞ the probability that at least j peers among i initially

offline remain offline during t, i.e.:

Ui
jðtÞ ¼

Xi

m¼j

i

m

� �
e�mltð1� e�ltÞi�m

: ð4Þ

The index i in (3) represents the number of peers that are offline
after the gateways receive the blocks (i.e., some time ns

du
after the

backup request).
For example, the distribution of the time before a proportion

15=16 of the blocks are stored on peers’ disks (i.e., ‘ ¼ 15n
16 , which
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

t (hours)

P
(T

ba
ck

up
≤

t)

n=16
n=32
n=64
n=128

Fig. 7. Distribution of the backup duration (time before all n blocks are stored on
peer’s machines), to be added to the constant component ns

du
. (Parameters:

k ¼ 1=12 h�1, l ¼ 1=12 h�1.)
corresponds to a sufficient backup with a redundancy factor of
16=15) is plotted in Fig. 8, illustrating (in comparison with Fig. 7)
how redundancy helps reduce backup times in addition to improv-
ing data availability. Remark also that as n increases, the variance
of the backup time decreases due to the law of large numbers (the
distribution function is steeper).

4.2.3. Restore duration
We consider here a restore request, that consists in gathering a

minimum of k blocks among the n peers where a block has been
stored. The reasoning is actually very similar to the one followed
to obtain (3), since we focus on the time until at least k peers have
been seen online. This leads to (still ignoring the transmission
duration, that is s

du
if the storing peers do not have other uplink

traffic):

PðTrestore > tÞ ¼
Xn

i¼n�kþ1

n

i

� �
k

kþ l

� �i l
kþ l

� �n�i

|ffl{zffl}
PðipeersamongnareofflineÞ

Ui
n�kþ1ðtÞ;

with Ui
jðtÞ given in (4).

5. A comparison framework for backup schemes

In this section, we detail the simulation framework we have
built in order to assess the performances of our backup scheme,
and perform simulations. As compared to the model introduced
in previous section, this allows us to (i) extend performance anal-
ysis by using additional metrics, that are difficult to capture with a
theoretical model. (ii) As it well understood that exponential laws
are sufficient for system dimensioning, but does not capture fine-
grained reality, this simulator takes as an input a probability distri-
bution that has been shown to fit well real availability traces.
Finally, it allows to (iii) fairly compare our approach to its direct
competitors, within the same framework and using the same
metrics.

5.1. Competitors

We compare the performance of our GWA scheme against the
two main classes of related backup systems, within the same sim-
ulation framework.

5.1.1. P2P system
The vast majority of peer-to-peer storage protocols historically

presents a purely decentralized system with one-to-one uploads/
downloads, without servers [8,9]. They assume that gateways are
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

t (hours)

P
(T

ba
ck

up
≤

t)

n=16
n=32
n=64
n=128

Fig. 8. Distribution of the partial-backup duration (time before a proportion 15=16
of the n blocks are stored on peer’s machines), to be added to the constant
component ns

du
. (Parameters: k ¼ 1=12 h�1, l ¼ 1=12 h�1.)

A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81 77
passive devices that cannot store and forward but only route pack-
ets. This protocol is similar to the protocol we described in the pre-
vious section but does not have active gateways acting as buffers.

5.1.2. CDNA system
A possible enhancement consists in introducing a CDN to miti-

gate the low availability of peers [5]. CDNA then stands for CDN-
assisted. The actual CDN is a central service in the core network,
having unbounded capacity. We consider the most representative
peer-to-peer variant of the protocol in [5] (i.e., the opportunistic
one). In this protocol, the peers upload content to other peers in
priority and upload to the CDN only when the whole bandwidth
is not used (i.e., not enough remote peers are available). This
enables to lower time to backup by avoiding waiting times. How-
ever, the CDN does not upload the content to remote peers, but cli-
ent peers eventually upload again to remote peers thus uploading
twice in some cases. Indeed, pricing schemes at CDN implies that
uploading from the CDN should be avoided so as to reduce costs.
A schematic view is given in Fig. 9. The CDN never fails, hence, a
single copy of the content on CDN is enough to ensure an availabil-
ity of 100%. As a result, a data backup is successful as soon as s frag-
ments have been uploaded to the storage server and t fragments to
the peers so that the targeted availability is guaranteed, as stated
in (5):

Xt

i¼k�s

t

i

� �
�pið1� �pÞt�i

> Atarget; ð5Þ

where �p is the average availability of a peer and Atarget is the targeted
availability.

5.1.3. GW&CDN system
For completeness, we enhance [5] with our concept of active

gateways. This aggregate of two approaches is intended to provide
an upper bound on performances, in a realistic deployment sce-
nario. GW&CDN then stands for system with gateways and a CDN.

5.2. Parameters and data sets

The setting we described in previous section comes with the
following set of parameters:

5.2.1. Peer availability
In order to model the up-time of personal computing devices

(i.e., peers), we rely on four availability traces, representing four
stability categories:

� Jabber. Provided by the authors of [5], the Jabber trace repre-
sents a highly volatile system (instant messaging). The average
availability of its devices is 27%, based on the behavior of
Internet
6-12h/24h

66 kB/s

Fig. 9. A global picture of the network connecting peers and CDN, as used in [5].
Note that the CDN (Server) has an infinite capacity and 100% availability. However,
since the bandwidth used at the CDN is billed, the CDN is not used as a relay but as
another kind of end-storage (i.e., it does not upload content to other peers but only
stores content temporarily until the backing up peers have uploaded content to
enough peers.)
10,000 users. By using the FTA toolbox, we extracted the follow-
ing parameters for modeling this trace, using the Log-Normal
distribution: mean ¼ 1:16 and std:dev: ¼ 3:25 (and
mean ¼ 1:64 and std:dev: ¼ 3:54 for unavailability).
� Skype. In this trace [25] of about 1269 peers, the average avail-

ability of peers is around 50%, which represents a medium
availability when considering peer-to-peer systems (distribu-
tion parameters given are in paper [26]).
� Microsoft. The Microsoft availability dataset [29] contains

uptime of around 50,000 desktop PCs, for an average uptime
of 80%.
� DNS. Finally, a highly stable trace is the one constituted by

around 60,000 DNS servers [30], for an average availability of
98%.

Characteristics of the last three traces are analyzed in depth in
paper [26].

5.2.2. Gateway availability
To model the up-time of residential gateways, we rely on our

gateway trace presented in Section 3. We use the parameters
extracted though the Failure Trace Archive toolbox to parametrize
the best fitting law, which is Log-Normal (with parameters indi-
cated in Section 3). Since the gateway and peer traces have been
obtained independently, they do not capture the correlation
between the behavior of a peer and of the associated gateway.
Hence, we randomly assign a gateway to each peer. In order to
avoid unrealistic scenarios where the peer is up while the gateway
is down, we assume a gateway to be available when one of its
attached peers is up, to allow communication between them: we
rely on the gateway trace only for gateway to gateway
communication.

5.2.3. Redundancy policy
As explained previously, the redundancy policy is based on era-

sure correcting codes and is entirely determined by the number of
blocks k each archive is split into and by the targeted availability
Atarget , which is set by the administrator. The backup is thus consid-
ered as complete when there are enough redundancy blocks n
backed up in the network to guarantee a system-wide availability
of at least Atarget . In the evaluation section, settings are
k ¼ 16; Atarget ¼ 0:7, and n values are derived from expressions
(1) and (5).

5.3. Evaluation

We have implemented an event-based simulator for comparing
all approaches in different scenarios. We first present the simula-
tion protocol, before presenting quality metrics for assessing
system performances. We then validate this simulator against
the theoretical model, before we present actual simulations.

5.3.1. Simulation protocol
We set the simulation with N ¼ 1000 nodes running the same

protocol (P2P, CDNA, GWA or GW&CDN). Each node alternates
between up and down sessions. When a node becomes available,
it performs its uncompleted backup operations and restore que-
ries; we then take three random values: Tdown; Tbackup; Trestore.
Tdown follows the user availability law. We consider that each node
performs three backups a month while performing only one
restore a month. We model this behavior with a Poisson process.

If we have Tbackup 6 Tdown, a backup is performed. In this case, we
randomly choose a file size according to a normal distribution
centered on 1 GB file with a 128 MB standard deviation. Then
backup blocks are sent to n among N uniformly chosen other nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 10. TTB for the four considered backup systems. Host availabilities are modeled
using an Exponential distribution, allowing for comparison with the Markov model
results presented in Section 4.

78 A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81
(n corresponding to the number of redundancy blocks). Blocks are
transferred at a constant 1:2 MB s�1 rate.

In the same way, if Trestore 6 Tdown and there are completed back-
ups, a restore query is processed. In this case, we uniformly choose
a backup among the completed ones to restore it. Then, the node
contacts the backup hosts which in turn send back the data. A
restore is completed when the first k blocks are received by the
current node.

Finally, a node becomes unavailable after a random delay fol-
lowing the considered unavailability law. In addition, for protocols
GWA and GW&CDN, random delays are chosen for the availability
of the gateways: this delay follows a Log-Normal distribution
derived from the availability of residential gateways presented in
Section 3.
5.3.2. Quality metrics
We evaluate the three systems according to the following four

metrics:
5.3.3. Time to backup
Noted TTB. A backup request is considered successful when the

data is stored safely. Safe storage is achieved when n blocks have
been uploaded to the CDN or the remote peers for CDNA, to the
remote gateways for GWA, and to the remote peers for the P2P,
thus satisfying the targeted availability described earlier for each
system. The time to backup is evaluated as the difference between
the time the nth block has been uploaded and the time of the
backup request.
5.3.4. Time to offload
A variant measure for CDNA, GWA and GW&CDN is the time to

fully offload an archive to the remote peers. This means that no
data is left on the CDN or on gateways, accordingly. We note this
variant CDNA-peers and GWA-peers respectively.
4 Results are consistent with results in paper [5], where 40 days are necessary to
upload 1 GB on a 27% mean availability trace (90-th percentile), while we measure
25 days (60 h) on the 50% Skype trace in our simulations.
5.3.5. Time to restore
Noted TTR. A restore request is considered successful as soon as

the data is restored safely at the user’s place, that is to say when at
least k blocks have been retrieved on the client peer, or on the gate-
way of the client peer for GWA. The time to restore is evaluated as
the difference between the time the kth block has been down-
loaded and the time of the restore request. We measure this time
for random files after a long enough period, so that the selected
files have been offloaded to peers. This represents the worst case
for TTR, and this assumption reflects the fact that restore requests
are more likely to happen long after backups.
5.3.6. Data buffered
It describes the size of the buffer that is required on gateways,

and is of interest for dimensioning purposes.
5.3.7. Simulator validation
We begin our evaluation by validating the simulator we devel-

oped, running it with the same input used for the model presented
in Section 4. An exponential distribution for peer availability is
used, like it was also used for plotting Fig. 7. Results are plotted
in Fig. 10. The curve to consider in Fig. 10 for comparison with
the system modeled in Section 4 is the P2P curve, as transfer time
between a gateway and its peer has been assumed negligible in the
model. We observe that the TTB for 90% of the data is around 100 h
in Fig. 10, while full completion is around 100 h in Fig. 7; this is a
good fit considering the simplifying assumptions used in the model
section.

Additionally, we remark that leveraging the gateways in the
simulator (as seen on the GWA and GW&CDN curves), causes
reduced TTB as compared to the P2P and CDNA systems.

In the rest of this section, we simulate the different scenarios
using a Log-Normal distribution, as it has been shown in paper
[26] to fit very well existing availability traces, including the Skype,
Microsoft and DNS traces.
5.3.8. Simulations for TTB
Figs. 11–14 present results for TTB for the four availability clas-

ses on the left, while time to offload is presented on the right. First
learning is that TTB, for CDNA, GWA and GW&CDN, are nearly
immediate. This is due to the fact that near-always up hosts are
in front of backup requests for storing the blocks, in addition to
the fact that more stable systems need less redundancy than vola-
tile ones, which turns into less blocks to upload in order to reach
the availability target. On the contrary, backup is significantly
longer on the P2P system, especially for the two less available
traces. This confirms the need to introduce stable third parties
for providing efficient backup systems.

The second learning is that when we consider full offload to
peers in all systems (figures on the right), gateway-assisted
approaches outperform both P2P and CDNA.4 In fact, both P2P and
CDNA suffer from the low upload capacities combined with the
transient nodes presence, while in GWA and GW&CDN, the upload
is carried by the gateway thus masking the uploading node unavail-
ability. In the Skype-based system (Fig. 13), this translates by a TTB
decreasing from days to few hours, as e.g., 600 h for CDNA and only
32 h for GWA (90-th percentile).
5.3.9. Simulations for TTR
Results are consistent and similar for all four availability clas-

ses, we then just present results on the Skype trace on Fig. 15.
GWA and GW&CDN systems slightly improve upon P2P and CDNA,
due to the fact that a restore is considered complete when blocks
have been gathered on the home gateway of the requesting node,
regardless of its online or offline presence.

For TTR, as well for TTB, we remark that there is no substantial
improvement to be awaited when implementing the GW&CDN, as
compared to GWA. The gateways are available enough to provide
a stable layer between more volatile peers, and no centralized
server is mandatory in this setting. This is an interesting result
for arguing on the relevance of fully decentralized systems for effi-
cient and price-competitive storage solutions.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 11. Backup time for the system based on DNS availability; TTB (left) and time to offload on peers (right).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 12. Backup time for the system based on Microsoft availability; TTB (left) and time to offload on peers (right).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 13. Backup time for the system based on Skype availability; TTB (left) and time to offload on peers (right).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GW&CDN

GWA
P2P

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 14. Backup time for the system based on Jabber availability; TTB (left) and time to offload on peers (right).

A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81 79

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

C
D

F
of

 r
es

to
re

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Fig. 15. Restore time (TTR) for the system based on Skype availability (similar
results for DNS and Microsoft traces).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

cd
f

of
 b

uf
fe

re
d

da
ta

buffer size in GB

Skype
Microsoft

DNS

Fig. 16. Amount of buffered data at the gateways, for the GWA.

Fig. 17. Time to backup in the gateway-assisted system, for 90-th percentile on the
Skype trace, for various archive sizes.

80 A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81
5.3.10. Simulations for amount of data buffered
It is of interest to study the need for storage space on gateways

that is required to implement our proposal. Fig. 16 plots the CDF of
the maximum amount of data stored at any peer in the GWA
system, while considering the four availability classes. The more
stable the system is, the less storage space has to be provisioned.
Indeed, as chosen remote nodes for storage (or requesting nodes)
are online most of the time, backup or restore requests do not stack
up within the gateway buffer, then reducing the maximum block
queue on the disk. The curve presents an experiment with an
unbounded disk capacity; in practice a selected node would refuse
a storage request for a block if buffer is full, then making it possible
to control the actual size of the buffer to be shipped within gate-
ways. In this setting, 10 GB disks would suffice to implement most
use cases.

We now make archive size vary over one of the less available
systems, Skype. Results are reported for the 90-th percentile of
completed backups, over a full system simulation run, and are pre-
sented in Fig. 17. Those results show a linear time increase, as a
function of the archive size.

We do not vary the size of the network, N. This is because the
time to process a backup or a restore does not depends on N but
only on n, the number of nodes where blocks are stored; N does
not have in practice a significant impact on the overall system
when it is large.
6. Discussion

Our results clearly indicate that our proposal efficiently distrib-
utes the centralized buffer scheme of [5], while increasing general
backup performances and represents a significant improvement
over previous approaches.
The Web architecture, in particular when considering CDN,
relies on cache servers close to clients [31]. However, these servers
are located within the Internet and cannot benefit from the
difference of throughput between the local home network and
the Internet. Our system relies on the specific place of the gateway
in between the home network and the Internet to leverage this dif-
ference. Moreover, cache servers are generally passive (e.g.,, HTTP
proxy) while in our system, the gateway is not only a cache but
also an active participant that can serve directly other peers when
data is requested.

Additionally, from the user’s standpoint, our storage system
could enable the bandwidth usage to be smoothed to provide users
with a more transparent service (i.e., using the upload for backup
when users are not using their computer/Internet connection).
Indeed, using an important part of the upload bandwidth to
quickly complete the backup operation may severely affect the
user’s experience of Internet browsing or activity. A user’s gateway
is able to upload, as long as there is some available bandwidth and
even if the user’s computer is turned off (typically at night). A sim-
ilar advantage, appealing for Internet and service providers [32], is
that such an architecture enables the implementation of schedul-
ing policies for delaying transfers from gateways to the Internet
so as to smooth the usage of the core network.

Lastly, this method also solves another issue that might appear
when the distributed application operates worldwide. It has been
shown that peers’ availability patterns can vary according to local
time (depending on geographical location) [22,23]; in systems
where some resources are insufficiently replicated, this could lead
to an asynchrony of presence between a requesting peer and
another peer hosting the resource. At best, the overlap of presence
of both peers is sufficient to download the file, while it may also
require a few sessions to complete, due to insufficient time over-
lap. As our GWA proposal relies on the hosting peer to upload the
requested file to a more stable component (its gateway), asyn-
chrony is no longer an issue as gateways provide stable rendezvous
point between requesters and providers. This is of interest for
delay tolerant applications such as backup[33], allowing the
service to be operated with much lower costs on storage. Beyond
the practical problem of using gateways in home environments,
our solution then makes the case for leveraging clouds of stable
components inserted in the network, to make them act as buffers
in order to mask availability issues introduced in dynamic systems.
7. Related work

We compared our approach to the peer-assisted one presented
in [5] that leverages a central server and offloads backed up data to
peers when they become available. Such a server-centric approach
is also to be found in [17], where authors propose an hybrid archi-
tecture coupling low I/O bandwidth but high durability storage
units (being an Automated Tape Library or a storage utility such
as Amazon S3 [34]) with a P2P storage system offering high I/O
throughput by aggregating the I/O channels of the participating
nodes but low durability due to the device churn. This study
provides a dimensional and system provisioning analysis via an
analytical model that captures the main system characteristics
and a simulator for detailed performance predictions. The simula-
tor uses synthetic traces, mainly to be able to increase the failure

A.-M. Kermarrec et al. / Computer Communications 52 (2014) 71–81 81
density and to reveal the key system trends. This work explores the
trade-offs of this hybrid approach arguing it is providing real ben-
efits compared to pure P2P systems [8–12]. Durability of the low
I/O bandwidth unit is considered as perfect, but it always comes
at a certain cost. In our approach, we do not assume we have such
nodes and show that our approach is sustainable under known
availability traces. Finally, FS2You [18] proposes a BitTorrent-like
file hosting, aiming to mitigate server bandwidth costs; this proto-
col is not designed to provide persistent data storage.

The increasing power of residential gateways has enabled
numerous applications to be deployed on them. This may allow
savings in terms of power. One widely deployed system is the
implementation of BitTorrent clients in those boxes (see e.g., FON
[35] or [21]), which avoids the user to let her computer powered
on [19]. Another example is the concept of Nano Data Centers
[7], where gateways are used to form a P2P system to offload data
centers. Similarly, some approaches were proposed to move tasks
from computers to static devices as set-top boxes, for VoD [20,36]
and IPTV [37]. Yet, those applications fully run on gateways while,
in our approach, the gateway only acts as buffering stage.
8. Conclusion

This paper addresses the problem of efficient data backup on
commodity hardware. It has been widely acknowledged that
availability of transient peers is a key parameter, that can by itself
forbid a realistic service deployment if too low. We propose to
address this inherently transient behavior of end peers by masking
it through the use of more stable hardware, already present in
home environments, namely gateways. Our experiments show that
this architectural paradigm shift, significantly improves the user
experience of backup systems over previous approaches, while
remaining scalable and bear comparison with over-provisioned
CDN servers.
References

[1] W.J. Bolosky, J.R. Douceur, D. Ely, M. Theimer, Feasibility of a serverless
distributed file system deployed on an existing set of desktop PCs, in:
SIGMETRICS, 2000.

[2] H. Huang, W. Hung, K.G. Shin, FS2: dynamic data replication in free disk space
for improving disk performance and energy consumption, in: SOSP, 2005.

[3] L. Pamies-Juarez, P. García-López, M. Sánchez-Artigas, Availability and
redundancy in harmony: measuring retrieval times in P2P storage systems,
in: P2P, 2010.

[4] T. Mager, E. Biersack, P. Michiardi, A measurement study of the Wuala on-line
storage service, in: P2P, 2012.

[5] L. Toka, M. Dell’Amico, P. Michiardi, Online data backup: a peer-assisted
approach, in: P2P, 2010.

[6] N. Daswani, H. Garcia-Molina, B. Yang, Open problems in data-sharing peer-to-
peer systems, in: ICDT, 2002.

[7] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, P. Rodriguez, Greening the
internet with nano data centers, in: CoNext, 2009.
[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao,
OceanStore: an architecture for global-scale persistent storage, SIGPLAN Not.
35 (2000) 190–201.

[9] A. Rowstron, P. Druschel, Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility, in: SOSP, 2001.

[10] L.P. Cox, C.D. Murray, B.D. Noble, Pastiche: making backup cheap and easy,
SIGOPS Oper. Syst. Rev. 36 (2002) 285–298.

[11] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, M. Isard, A cooperative
internet backup scheme, in: Usenix ATC, 2003.

[12] M. Landers, H. Zhang, K.-L. Tan, Peerstore: better performance by relaxing in
peer-to-peer backup, in: P2P, 2004.

[13] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, K. Ramchandran, Network
coding for distributed storage systems, in: IEEE Transactions on Information
Theory, vol. 56(9), 2010.

[14] C. Blake, R. Rodrigues, High availability, scalable storage, dynamic peer
networks: pick two, in: HOTOS, 2003.

[15] K. Tati, G.M. Voelker, On object maintenance in peer-to-peer systems, in:
IPTPS, 2006.

[16] P. Maille, L. Toka, Managing a peer-to-peer data storage system in a selfish
society, IEEE J. Sel. Areas Commun. 26 (7) (2008) 1295–1301.

[17] A. Gharaibeh, M. Ripeanu, Exploring data reliability tradeoffs in replicated
storage systems, in: HPDC, 2009.

[18] F. Liu, Y. Sun, B. Li, B. Li, X. Zhang, FS2You: peer-assisted semipersistent online
hosting at a large scale, IEEE Trans. Parall. Distrib. Syst. 21 (2010) 1442–1457.

[19] G. Fedak, J.-P. Gelas, T. Herault, V. Iniesta, D. Kondo, L. Lefevre, P. Malécot, L.
Nussbaum, A. Rezmerita, O. Richard, DSL-lab: a low-power lightweight
platform to experiment on domestic broadband internet, in: ISPDC, 2010.

[20] J. Muñoz Gea, A. Nafaa, J. Malgosa-Sanahuja, T. Rohmer, Design and analysis of
a peer-assisted VOD provisioning system for managed networks, Multimed.
Tools Appl. (2012) 1–36.

[21] I. Kelé andnyi, A. Ludá andnyi, J. Nurminen, Using home routers as proxies for
energy-efficient bittorrent downloads to mobile phones, Commun. Mag., IEEE
49 (6) (2011) 142–147.

[22] J.R. Douceur, Is remote host availability governed by a universal law? in:
SIGMETRICS, 2003.

[23] R. Bhagwan, S. Savage, G. Voelker, Understanding Availability, in: IPTPS, 2003.
[24] M. Dischinger, A. Haeberlen, K.P. Gummadi, S. Saroiu, Characterizing

residential broadband networks, in: IMC, 2007.
[25] S. Guha, N. Daswani, R. Jain, An experimental study of the Skype peer-to-peer

VoIP system, in: IPTPS, 2006.
[26] D. Kondo, B. Javadi, A. Iosup, D. Epema, The failure trace archive: enabling

comparative analysis of failures in diverse distributed systems, in: CCGrid,
2010.

[27] OECD broadband statistics. <http://www.oecd.org/sti/broadband/>.
[28] W.K. Lin, D.M. Chiu, Y.B. Lee, Erasure code replication revisited, in: P2P, 2004.
[29] W.J. Bolosky, J.R. Douceur, D. Ely, M. Theimer, Feasibility of a serverless

distributed file system deployed on an existing set of desktop pcs, in:
SIGMETRICS, 2000.

[30] J. Pang, J. Hendricks, A. Akella, R. De Prisco, B. Maggs, S. Seshan, Availability,
usage, and deployment characteristics of the domain name system, in: IMC,
2004.

[31] T. Leighton, Improving performance on the internet, Commun. ACM 52 (2)
(2009) 44–51, http://dx.doi.org/10.1145/1461928.1461944. <http://doi.acm.
org/10.1145/1461928.1461944>.

[32] N. Laoutaris, G. Smaragdakis, P. Rodriguez, R. Sundaram, Delay tolerant bulk
data transfers on the internet, in: SIGMETRICS, 2009.

[33] K. Huguenin, E. Le Merrer, N. Le Scouarnec, G. Straub, Hoop: HTTP POST
offloading from user devices onto residential gateways, in: ICWS, 2014.

[34] Amazon web services. <http://s3.amazonaws.com>.
[35] Fon. <http://corp.fon.com>.
[36] V. Janardhan, H. Schulzrinne, Peer assisted VoD for set-top box based IP

network, in: P2P-TV, 2007.
[37] M. Cha, P. Rodriguez, S. Moon, J. Crowcroft, On next-generation telco-managed

P2P TV architectures, in: IPTPS, 2008.

http://refhub.elsevier.com/S0140-3664(14)00223-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0155
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0160
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0160
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0165
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0170
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0175
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0180
http://refhub.elsevier.com/S0140-3664(14)00223-0/h0180
http://www.oecd.org/sti/broadband/
http://dx.doi.org/10.1145/1461928.1461944
http://doi.acm.org/10.1145/1461928.1461944
http://doi.acm.org/10.1145/1461928.1461944
http://s3.amazonaws.com
http://corp.fon.com

	Performance evaluation of a peer-to-peer backup system using buffering at the edge
	1 Introduction
	2 Background
	3 A gateway assisted system
	3.1 Stability of residential gateways
	3.2 System rationale
	3.3 Gateway-assisted storage system

	4 Markov modeling of the storage system
	4.1 Model parameters
	4.2 Markov modeling
	4.2.1 Dimensioning the gateway reception buffers
	4.2.2 Backup duration
	4.2.3 Restore duration

	5 A comparison framework for backup schemes
	5.1 Competitors
	5.1.1 P2P system
	5.1.2 CDNA system
	5.1.3 GW&CDN system

	5.2 Parameters and data sets
	5.2.1 Peer availability
	5.2.2 Gateway availability
	5.2.3 Redundancy policy

	5.3 Evaluation
	5.3.1 Simulation protocol
	5.3.2 Quality metrics
	5.3.3 Time to backup
	5.3.4 Time to offload
	5.3.5 Time to restore
	5.3.6 Data buffered
	5.3.7 Simulator validation
	5.3.8 Simulations for TTB
	5.3.9 Simulations for TTR
	5.3.10 Simulations for amount of data buffered

	6 Discussion
	7 Related work
	8 Conclusion
	References

