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Recommending Paths: Follow or Not Follow?
Yunpeng Li, Costas Courcoubetis, and Lingjie Duan

Abstract—Mobile social network applications constitute an
important platform for traffic information sharing, helping users
collect and share sensor information about the driving conditions
they experience on the traveled path in real time. In this paper we
analyse the simple but fundamental model of a platform choosing
between two paths: one with known deterministic travel cost and
the other that alternates over time between a low and a high
random cost states, where the low and the high cost states are
only partially observable and perform respectively better and
worse on average than the fixed cost path. The more users are
routed over the stochastic path, the better the platform can infer
its actual state and use it efficiently.

At the Nash equilibrium, if asked to take the riskier path,
in many cases selfish users (that are allowed to have access
to the information collected by the platform) will myopically
disregard the optimal path suggestions of the platform, leading to
a suboptimal system without enough exploration on the stochastic
path. We prove the interesting result that if the past collected
information is hidden from users, the system becomes incentive
compatible and even ‘sophisticated’ users (in the sense that they
have full capability to reverse-engineer the platform’s recommen-
dation and derive the path state distribution conditional on the
recommendation) prefer to follow the platform’s recommenda-
tions. In a more practical setting where the platform implements
a model-free Q-learning algorithm to minimise the social travel
cost, our analysis suggests that increasing the accuracy of the
learning algorithm increases the range of system parameters
for which sophisticated users follow the recommendations of
the platform, becoming in the limit fully incentive compatible.
Finally, we extend the two-path model to include more stochastic
paths, and show that incentive compatibility holds under our
information restriction mechanism.

I. INTRODUCTION

Given millions of inter-connected smartphones1 and in-
vehicle sensors sold annually, it is promising to leverage
the crowd for data sensing and sharing. Mobile social net-
work applications constitute an important platform for traffic
information sharing, helping users collect and share real-
time sensor information about the driving conditions they
experience on the traveled path, see [2]. Platforms inform
new travelers of the paths they should take by aggregating
information from other users that used these paths in the past
and recommending a path with the least estimated current cost
for travelling. For example, Waze uses a mobile social network
platform for drivers to share traffic and road information.
Another example is Google Map which uses real-time traffic
data shared by hundreds of millions of people around the world
to analyse traffic and road conditions [3].

Y. Li, C. Courcoubetis and L. Duan are with the Engineering Sys-
tems and Design Pillar, Singapore University of Technology and De-
sign, Singapore 487372 (e-mail: yunpeng li@mymail.sutd.edu.sg, {costas,
lingjie duan}@sutd.edu.sg).

1 Smartphones are equipped with various sensors such as camera, GPS
and accelerometer which enable mobile users to easily sense many real-time
traffic conditions when they drive [1].

All these platforms estimate the current average cost of
the alternative paths and suggest the least costly paths to
their travelers. Obviously, a selfish user will follow such a
myopic suggestion. But would she follow the suggestions of
an optimal (social cost optimising in the long run) platform
that frequently explores riskier paths in case these become
superior over time? This incentive issue becomes even more
important since our Price of Anarchy analysis (see Section IV)
suggests that myopic platforms whose recommendations users
are likely to follow can be arbitrarily bad in term of efficiency
compared to the optimal platform.

In this paper we illustrate the above issues by considering
the simple but fundamental case of jointly routing and learning
in a context where users decide their trips from point A to
point B by choosing between two paths P1 and P2. P2 has
a fixed user driving cost whereas P1 has driving conditions
(e.g., visibility, ‘black ice’ segments, congestion) that alternate
between a ‘good’ and a ‘bad’ states according to a two-
state partially observable Markov chain with known transition
probabilities, influencing the expected driving cost over the
path. When in good (bad) condition, P1 has lower (higher)
expected cost than P2. By aggregating information about the
actual cost experienced by users that traveled over P1, a
mobile platform can estimate its current state, and make the
appropriate recommendation to future travelers. Selfish users
deciding on their current trip would prefer P1 only if its current
expected cost conditioned on the available information is less
than the known cost of P2.

But there are additional reasons to explore P1 even if it
momentarily looks on average worse than P2. An ‘altruistic’
user would take this ex-ante costlier path in order to increase
system information about P1. With little luck, finding P1 in
its good state will benefit future travelers which will exploit
this information. Hence a socially optimal platform would
advise at appropriate times some of the users to use paths
that are myopically suboptimal to them. Unfortunately, this is
not a Nash equilibrium strategy for the system since without
appropriate incentives, selfish users will always choose the
path with the least current expected cost. This results in
exploring the stochastic path P1 less frequently than socially
desired.

We show that the myopic routing strategy achieves a Price
of Anarchy (PoA) that can be arbitrarily large compared
to the case that users follow the recommendations of the
optimal platform. We prove that by restricting information the
incentives of the users become aligned with the incentives of
the social planner: simply hide the information reported by the
past travellers and recommend the socially optimal path choice
to current travelers. Using a correlated equilibrium concept, we
show that the equilibrium strategy of the users is to follow the
recommendations of the optimal platform.
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Numerous works have been done on traffic estimation based
on information sharing by travelers (e.g., [4], [5]). Our paper
does not deal with technical details on how to aggregate and
process information or on how to architect such systems. It
provides a simple conceptual model for user incentive mecha-
nism design when there are exploration-exploitation trade-offs.
On a different direction, exploration-exploitation in optimal
decision making is well studied in classical multi-armed bandit
problems where decisions are made centrally (e.g., [6]). In our
model we have multiple bandits (corresponding to paths) but
we cannot force the optimal sequence of choosing arms due to
users’ selfishness. Each machine will be played in a myopic
sense if full information is disclosed.

Incentive mechanism design for participation in crowdsens-
ing platforms has been well studied recently (e.g., [7], [8],
[9]). In our case participation is not an issue since we prove
that users always gain by participating. As a parallel to the
case of allocating tasks to agents, our goal is to incentivise
agents to accept tasks that may not be optimal for them, but
create the best results for the rest of the community. Similar
to our idea, in the economics literature there are some recent
work ([10], [11]) for motivating the wisdom of the crowd. Yet,
[10] did not look at a dynamic Markov chain model for long-
term forecasting and [11] requires incentive payments (which
is not possible for many traffic recommendation applications).
Instead, we model and analyze a more interesting but complex
partially observable Markov decision process (POMDP), and
propose a payment-free incentive mechanism for the POMDP
model. Further, we study the incentive compatibility of model-
free reinforcement learning, which approximates the complex
POMDP policy and is easy to implement in practice. Our main
contributions are:

• We formulate a joint routing and learning model for users
making travel path choices. The POMDP model is simple
but powerful enough to formulate some key problems in
incentive compatible platform design. The optimal policy
for recommending paths may prefer paths with higher
average costs to exploit their low cost states. This policy
serves as a benchmark for efficiency comparisons with
other policies.

• Although the optimal policy cannot be derived in closed
form, we compute the Price of Anarchy (PoA) of myopic
decision making by comparing to the optimum. If plat-
forms (or users) minimise the short term travel cost, PoA
is equal to 1/(1 − β), where β ∈ (0, 1) is the discount
factor used in the optimal policy. This tells that myopic
platforms whose recommendations users are likely to
follow can be arbitrarily bad.

• We consider the challenging case of ‘sophisticated’ users:
such a user has full system information (i.e., system
parameters and the used POMDP to derive the optimal
policy). If we allow such users to access the travel
information collected by the platform from past travelers,
the system with sophisticated users has an equilibrium
that corresponds to using the myopic policy. Accordingly,
we propose an information restriction mechanism such
that the equilibrium is to follow the recommendations of

the optimal policy, achieving PoA =1.
• In practice, an approximation of the optimal policy can

be obtained via reinforcement learning. We consider the
incentive compatibility of the platform using Q-learning.
We numerically show that the more accurate the learning
algorithm is, the ‘more’ incentive compatible the system
with restricted information becomes. We further extend
the two-path model to include more stochastic paths, and
show that the incentive compatibility is easier to ensure
under our information restriction mechanism.

The rest of the paper is organized as follows. Section II
introduces the network model and formulates the problem as
a POMDP over a belief state about the paths. Section III
presents the optimal platform design and Section IV presents
two myopic platforms as comparison benchmarks. Section
V shows the incentive mechanism design for myopic users.
Section VI presents the model-free optimization technique of
Q-learning and analyses the incentive compatibility issues, and
Section VII extends the two-path model for examining users’
incentive compatibility. Section VIII concludes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As mentioned in the Introduction, we model selfish be-
haviour of platform users. To make the problem non-trivial
we consider the challenging case that such users are ‘infinitely
sophisticated’ in terms of analytical and computational capa-
bilities and have full information about the system parameters
and the platform algorithms. We like to investigate the actions
of such users and the corresponding results in social cost if i)
there is no platform recommending an action, ii) the platform
besides recommending a path is also making available the full
information collected so far by other users, and iii) such infor-
mation is hidden and only the current path recommendation is
available. To make the above problem well defined we use as
a benchmark the case of an optimal platform and then analyse
what happens in the practical case of a platform that uses
machine learning, in particular using the Q-learning algorithm.

Our optimal platform makes routing decisions under uncer-
tainty capturing the fundamental tradeoff between exploring
new possibilities versus exploiting optimally the current infor-
mation. To make the problem analytically tractable, we choose
a network model that is simple but fundamental enough to
capture the essential aspects of making such routing decisions.

A. Network Model

We consider the simplest case where there are only two
paths for our users to choose from: one with deterministic
cost and another that alternates randomly between two states,
each such state generating a different average cost. A platform
user that travels along the stochastic path probes the path and
experiences some actual cost which is reported to the platform.
The platform collects these cost reports into a path history
and uses Bayesian inference to determine the probability that
the path is in high or low cost state. Though simple, this
two-path network model captures the fundamental exploration-
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Two possible cost states: H, L 

with expected travel cost 𝑐𝐻, 𝑐𝐿

Path P1

Path P2
one user

Deterministic cost c𝑀

𝐵𝐴

(a) A two travel path network

𝑞𝐿𝐿 𝑞𝐻𝐻

𝑝𝐿

1 − 𝑞𝐿𝐿

1 − 𝑞𝐻𝐻 𝑝𝐻

𝑐𝐻 = 𝑝𝐻 ∙ 𝑐 + (1 − 𝑝𝐻) ∙ 0𝑐𝐿 = 𝑝𝐿 ∙ 𝑐 + (1 − 𝑝𝐿) ∙ 0

𝑝𝐻,𝐿: probability of ‘bad’ event

𝐻𝐿

(b) The Markov chain for P1

Fig. 1: Users that travel on P1 incur cost c with probability pH , pL (pH > pL) that depends on the cost sate of the path, which
alternates between H and L according to the two-state Markov chain in Fig. 1(b) .

exploitation tradeoffs in making routing decisions, and makes
users face the incentive problems we like to analyse.2

Our (road) network model with source node A and destina-
tion node B is in Fig. 1(a), with two paths from the set {P1,
P2}. We consider an infinite discrete time horizon t = 1, 2, . . .,
and assume that during each discrete epoch there is a single
user of our platform that must travel from A to B and must
choose between paths P1 and P2. In this abstract model a trip
takes a single epoch to complete3.

We define the road condition experienced by a traveler on
path P1 as a binary random variable Y :

• Y = 1 is the event that a hazard occurs to the traveler
(e.g., poor visibility, ‘black ice’ segments, congestion),
i.e., driving on the path generates some positive fixed
driving cost c.

• Y = 0 is the event that no hazard occurs to the traveler;
without loss of generality we associate with this case a
zero driving cost.

Users that drive on P1 observe the value of Y , and incur the
corresponding cost depending whether Y = 1 or Y = 0.

To capture the randomness of the road condition of P1, we
assume that P1 alternates between two states H and L during
t = 1, 2, . . . as a Markov chain with transition probabilities as
in Fig. 1(b), and in each such state Y is i.i.d. with a different
distribution. In state H the probability of incurring a hazard
P [Y = 1|H] = pH , whereas in state L this probability is
P [Y = 1|L] = pL, where pL < pH . Path P2 is always in
a known cost state, generating cost cM such that 0 ≤ cM ≤
c.4 Since pL < pH , H corresponds to the high (expected)
travel cost state, with average cost per traveller cH = pH · c.
Similarly, L is the low travel cost state with average cost cL =
pL · c. Note that if P1 is in the high cost state, there is always
some probability 1 − pH that a traveller incurs no hazard.

2Note that our analysis can be easily extended to include multiple paths
with deterministic costs in a larger network, by removing all the deterministic
paths apart from the one with the smallest cost for routing consideration.
Yet the analysis for multiple paths with time-varying costs is more involved
and we need to update and balance the belief states of all stochastic paths.
Still, Section VII provides some interesting results for developing the optimal
threshold-based policy and examining the incentive compatibility for users to
follow the platform recommendations.

3We can easily extend the model where a trip takes any fixed number of
epochs.

4Otherwise, P2 will never be chosen due to its always higher cost than P1.

Similarly, if P1 is in the low cost state, there is still some
probability pL that a traveller incurs a hazard.

A user that travels on P1 observes Y . If Y = 1(0) we
say that her observation is 1(0). A user travelling along P2
observes nothing about the condition of path P1, in which case
we say her observation is ∅ (provides no information about
P1 due to travel on P2). A user always shares her observation
about Y with the platform. We denote the observation of a user
that traveled at time t by yt, where yt ∈ {0, 1, ∅}. The history
of observations available to the platform by time t corresponds
to (y1, y2, . . . , yt).

B. Platform Information Model

We next introduce how the platform works. Given the
history of observations (y1, y2, . . . , yt), it determines the
probability that the path is in state H or L using Bayesian
inferencing. To avoid keeping an ever-increasing history of
observations, we summarize the available information equiva-
lently into a single belief state xt, the probability that path P1
is in state H just before the travel of the user at time t. We
denote the platform’s initial belief state as x1.

To make our Bayesian inferencing precise, we need to define
in our model our refined sequence of events from t to t + 1.
To do that we refine time and use t−, t, t+ as ‘micro’ time
refinements around time t (where t+ < (t+ 1)−).
• At time t− there is no event occurring; we just summarise

our belief about P1’s state based on the previous history:
compute the prior probability xt, i.e., the probability for
P1 being in H just before t.

• At time t a user probes the paths by traveling and she
supplies her trip observation yt. We use yt to update our
posterior probability x′t for the state of P1 being H at
time t after the trip observation.

• At time t+ the Markov chain of the path state makes a
transition.

In this model we consider that road conditions in P1 change
in time scales slower or equal to the time scale of user trip
arrivals. Then two consecutive users do not see P1 in its steady
state distribution, and hence the probability for Y = 1 depends
on the history of the observations.

The belief state xt+1 can be derived in a recursive way
from the observations yt and xt. Let at ∈ {1, 2} be the choice
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of path of the user who travels at time t. Consider first that
at = 1. If yt = 0, then by Bayes’ Theorem, the posterior
probability that the cost state is H after time t is

x′t = Pr[H|yt = 0, xt] =
Pr[H, yt = 0, xt]

Pr[H, yt = 0, xt] + Pr[L, yt = 0, xt]

=
xt(1− pH)

xt(1− pH) + (1− xt)(1− pL)
,

(1)

where we use the fact that the path state does not change
during t−, t. Similarly, if yt = 1, we obtain

x′t =
xtpH

xtpH + (1− xt)pL
. (2)

If at = 2, then yt = ∅ and the posterior probability is the
same as the prior probability, i.e., x′t = xt.

Given the posterior probability x′t, we can finally compute
the probability that P1 is in state H at (t+ 1)− as

xt+1 = x′tqHH + (1− x′t)(1− qLL). (3)

Observe that a user offering positive information to the plat-
form by travelling on P1 incurs an average cost of

(xtpH + (1− xt)pL)c = xtcH + (1− xt)cL, (4)

which might be more than the safe travel on P2 with fixed cost
cM . This creates a tension between individual incentives and
social optimality as we analyse next in the optimal platform
design problem.

III. THE OPTIMAL PLATFORM BY SOLVING POMDP

The optimal platform operation is modelled as a Markov
decision process (MDP) where the state is our belief state xt,
decisions correspond to path choices for travelers, and the cost
function is the total discounted cost from travel. In fact, our
problem can be seen as a partially observable Markov decision
process (POMDP), and it is a standard solution method to
reformulate it as an MDP over a belief state. Though this
optimal design problem is notoriously difficult to solve, it
provides a performance upper bound to evaluate i) myopic
platforms and ii) model-free machine learning platforms.

A stationary routing policy is a function π that specifies
an action π(x) for each state x at any time. Given the initial
belief x1, the goal of the optimal platform is to find an optimal
stationary policy π to minimize the expected total discounted
driving cost (social cost) over an infinite time horizon, i.e.,

min
π
V (x, π) = min

π
lim
τ→∞

Eπ

[
τ∑
t=1

βt−1C(xt, at)|x1 = x

]
, (5)

where 0 < β < 1 is the discount factor over time and C(xt, at)
is either (4) or cM if the specified routing action π(xt) is
1 or 2. We refer to the minimum cost value solution of the
Bellman equation (5) as the ‘value function’. According to our

discussion of belief state updating in Section II-B, the specific
optimality equation of our problem can be written as follows:

V (x) = min{xcH + (1− x)cL + β(xpH + (1− x)pL)·

V

(
xpHqHH + (1− x)pL(1− qLL)

xpH + (1− x)pL

)
+

β(x(1− pH) + (1− x)(1− pL))·

V

(
x(1− pH)qHH + (1− x)(1− pL)(1− qLL)

x(1− pH) + (1− x)(1− pL)

)
,

cM + βV (xqHH + (1− x)(1− qLL))}
= min{Q(x, 1), Q(x, 2)}. (6)

For ease of reading, we denote by Q(x, 1) and Q(x, 2) the first
and second terms in the minimum operator of (6), respectively.
Hence, Q(x, a) is the expected discounted cost staring from
state x if action a is taken at the first time epoch and optimal
policy is followed thereafter. Once we determine the exact
value function, the optimal policy πopt can be obtained for
any state x as,

πopt(x) := arg min
a∈{1,2}

Q(x, a). (7)

We can easily show that the optimal platform might recom-
mend users to travel to P1 even when the expected travel cost
in (4) is higher than cM of P2 (i.e., when the myopic decision
is P2) for exploration benefit in the future.

Although our analysis of the above POMDP and the corre-
sponding incentive issues is possible for any set of parameters,
to illustrate better our key ideas and results we choose a
specific set of parameters as follows.

Assumption 1. The Markov chain in Fig. 1(b) is symmetric
with qHH = qLL = q where q ∈ [1/2, 1), and the probabilities
pH and pL are complementary, i.e., pH = p and pL = 1− p
where p ∈ [1/2, 1].

In the rest of the paper, we assume that Assumption 1 holds.
Without it, the more general problem can still be analysed in
a similar way and yields the same theoretical results.

Before solving (6) we can first prove it has a unique
solution by using the contraction mapping theorem. Note that
the minimum operator in (6) is a contraction operator since
β < 1. Furthermore, we prove that the value function V (x)
is a piecewise-linear concave function of the belief state x
by mathematical induction. Besides, we show that V (x) is an
increasing function of x. Here we skip detailed proofs due to
page limit.

Proposition 2. There exists a unique solution to the optimality
equation (6) and it is a piecewise-linear, increasing and
concave function of the belief state x.

The proof is given in Appendix A. Although the existence
of solution to (6) is guaranteed, it is still difficult to solve it
analytically. An intuitive conjecture5 about the optimal policy

5 Our POMDP model is similar (but not the same) to the well studied
problem of searching for a moving object [12]. To prove the same conjecture
for that problem still remains an open problem. This suggests that proving (or
disproving) the threshold property for the optimal policy in our case can be
extremely challenging. Yet using extensive numerical analysis for a very fine
grid of parameter values we have observed that Conjecture 3 remains true.
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is that it is of threshold type.

Conjecture 3. There exists a threshold value x∗ ∈ [0, 1] such
that it is optimal to choose path P1 when the belief state is
in [0, x∗), choose P2 when the belief state is in (x∗, 1], and
choose any of the two paths at x∗.

We have been able to formally prove our conjecture for a
restricted set of parameters as follows, by using the concavity
of the value function V (x).

Proposition 4. If β(2q − 1) < 2/3, the optimal policy is of
threshold type.

The proof is given in Appendix B. We have the following
corollary which directly follows from Proposition 4.

Corollary 5. If q ∈ [1/2, 5/6] or β ∈ [0, 2/3), the optimal
policy is of threshold type.

For our experimental analysis we will discretise finely the
state space [0, 1], use value iteration to compute the value
function in (6), and finally compute the optimal policy at each
given belief state by solving (7).

How much would society lose compared to the optimum if
a myopic platform (always chooses the least current cost path)
is in place? We see in the next section that this performance
loss can be arbitrarily large.

IV. MYOPIC PLATFORMS AND POA

Myopic platforms such as Waze and Google Maps estimate
the travel cost of different paths and suggest to users the
path with the smallest cost. In this section we introduce two
basic myopic platforms: a platform that does not use feedback
information from users, and a platform that uses such feedback
to update the current cost estimate. We analyse these platforms
and characterise their performance gaps with the optimal
platform in Section III in term of price of anarchy (PoA). The
large PoA values resulting from our analysis suggest that the
optimal platform is definitely desired, but such platform is not
incentive compatible. This motivates our incentive alignment
proposal in the rest of the paper.

A. Myopic Platform without Information Sharing

In this case the platform uses long-run average path costs
to make recommendations. For our specific model parameters,
cost states H and L have each probability 1/2 and the expected
cost to travel through path P1 is (cH + cL)/2. The routing
policy of the myopic platform is straightforward. Let π∅ denote
the routing policy without information sharing, then

π∅(x) =

{
1 if cM ≥ (cH + cL)/2,

2 if cM < (cH + cL)/2,

which is independent of x. Thus, π∅ either chooses path P1 all
the time or path P2. We can now calculate the value function.
If cM < (cH + cL)/2, π∅ always chooses path P2 to incur
immediate cost cM to users over time, we have

Vπ∅(x) =
cM

1− β
.

If cM ≥ (cH + cL)/2, π∅ always chooses P1. Given some
initial probability x about path P1 (assumed known to the
platform), the value function satisfies

Vπ∅(x) = xcH + (1− x)cL + βVπ∅(xq + (1− x)(1− q)).

Similar to the proof of Proposition 2, we can prove the
existence and uniqueness of Vπ∅(x). We can also prove by
mathematical induction that Vπ∅(x) is a linear function of x.
It follows that,

Vπ∅(x) =
cH − cL

1 + β − 2qβ
x+

(β − qβ)cH + (1− qβ)cL
(1 + β − 2qβ)(1− β)

.

PoA > 1 is defined as the ratio between the maximum
expected total discounted cost incurred under this myopic
policy π∅ and the minimum expected total discounted cost
V (x) in (6), by searching over all possible network parameters.
That is,

PoAπ∅ = max
p,q,c,cM ,x

Vπ∅(x)

V (x)
. (8)

Proposition 6. Given β < 1 and cM > 0, the policy π∅
achieves an infinite price of anarchy, i.e., PoAπ∅ =∞.

Sketch of Proof: Lets rescale costs so that cL = 0. To
determine the PoA, we purposely create a worse case scenario
where π∅ always chooses path P2 (p = 1 and c > 2cM ).
Furthermore, let the initial P1 state be L (i.e., x = 0) and let
the Markov chain change very slowly (q → 1). Then path P1
will remain in L for a very long time. Since π∅ always chooses
path P2, its cost value is a constant cM

1−β . Since 1−p = 0 there
is zero average cost in state L and the Markov chain is fully
observable; hence the optimal policy will choose path P1 until
a change of state occurs, i.e., non-zero cost is observed. But
the time of such a transition can be made arbitrarily large
since q → 1 while our cost discount factor remains constant
and equal to β. A more formal argument in Appendix D can
be used to prove that the price of anarchy of π∅ is infinity.

To prove Proposition 6, we can purposely create the worst
case scenario with properly chosen initial state x and costs
c and cM , where π∅ always chooses path P2 but the optimal
policy chooses path P1 until a non-zero cost is observed. In
this case, the expected cost of optimal policy can be made
arbitrarily close to zero.

Even though π∅ can be arbitrarily worse than the optimal
policy, users will still follow the platform recommendation
under π∅. Without any other information, sophisticated users
can reproduce the calculations of the platform and hence will
follow π∅.

B. Myopic Platform with Information Sharing

We now consider a myopic platform where travelers share
information online. The difference from the optimal platform
is that here it chooses actions that myopically minimise
immediate average costs. Given the current belief x about P1,
the immediate expected cost is xcH+(1−x)cL for path P1 and
cM for path P2. By equating the two costs and solving for the
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corresponding threshold belief state x̂, we obtain x̂ = cM−cL
cH−cL .

The myopic policy of this platform is

πm(x) =

{
1 if x ≤ x̂,
2 if x > x̂.

Note that users will follow the recommendation of the platform
as their objectives are aligned.

Let Vπm(x) be the cost value function under the myopic
policy πm. Similar to (5), we obtain

Vπm(x) =


xcH + (1− x)cL + β

(
xp+ (1− x)(1− p)

)
·

Vπm(xpq+(1−x)(1−p)(1−q)
xp+(1−x)(1−p) ) + β

(
(1− x)p+ x(1− p)

)
·Vπm(x(1−p)q+(1−x)p(1−q)

x(1−p)+(1−x)p ), if 0 ≤ x ≤ x̂,
cM + βVπm(xq + (1− x)(1− q)) if x̂ < x ≤ 1.

(9)

It is rather obvious that this myopic platform behaves the
same way as the Nash equilibrium of a system that deploys
the optimum platform but users have full information about
travel history, i.e., can reconstruct x. This is because in the
optimal platform users will still use (9) to choose paths, and
hence the two systems will have the same sample paths on
our probability space.

Fact 1. On any sample path, the Nash equilibrium of the
optimal platform with information sharing and selfish users
is the same as the Nash equilibrium of the myopic platform
(with information sharing and selfish users) using πm.

One can easily prove the intuitive result that πm is more
conservative than πopt in the sense that if πm prefers the risky
path P1, then clearly πopt should also prefer it since it obtains
the additional/future benefit of learning the path state more
accurately. Obviously, the reverse does not hold: if πopt prefers
P1, it does not imply that πm should also prefer P1. This is
formally stated in the following proposition and will be used
in our proof for incentive compatibility in Section V.

Proposition 7. For any x ∈ [0, x̂] the optimal policy πopt
chooses path P1.

Proof. Note that when x ∈ [0, x̂],

xcH + (1− x)cL ≤ x̂cH + (1− x̂)cL = cM .

By the concavity of the value function V (x),

β(xpH + (1− x)pL) · V
(
xpHqHH + (1− x)pL(1− qLL)

xpH + (1− x)pL

)
+ β(x(1− pH) + (1− x)(1− pL))·

V

(
x(1− pH)qHH + (1− x)(1− pL)(1− qLL)

x(1− pH) + (1− x)(1− pL)

)
≤ βV (xqHH + (1− x)(1− qLL)).

By combining the above two inequalities, we obtain Q(x, 1) ≤
Q(x, 2) when x ∈ [0, x̂]. This completes the proof.

Note that if Conjecture 3 is true, a corollary is that x∗ > x̂.
Similar to (8) the price of anarchy of πm is defined as

PoAπm = max
p,q,c,cM ,x

Vπm(x)

V (x)
.

Proposition 8. Given β < 1 and cM > 0, the policy πm
achieves PoAπm = 1

1−β .

Sketch of Proof: Let’s rescale costs so that cL = 0. Let
the Markov chain be fully observable (i.e., p = 1), and let it
change very slowly (i.e., q → 1). Let the initial probability
x > 0 be very small. Thus, with a very high probability, path
P1 starts in state L and remain in that state for very long time
thereafter. Now choose cM slightly smaller than xcH + (1 −
x)cL = xcH so that πm chooses path P2 at the beginning.
Without exploring path P1, the belief state x will gradually
increase with time and in turn πm continues choosing path P2
instead of exploring path P1. Hence, policy πm will always
choose path P2 generating cost cM in every time epoch. But
the optimal policy would like to take a little risk exploring
path P1 at the beginning to exclude the possibility that it is
in state H (which is highly improbable) to keep exploiting
the zero cost of state L if this turns out to be the case. If
the cost state turns out to be H (which occurs with very low
probability), we switch to path P2 thereafter imitating πm.
Hence exploring path P1 at the beginning generates a cost of
xcH ≈ cM , but from the second time epoch and for a very
long time forward the cost under the optimal policy is either
always cM (with prob. x) or cL = 0 (with prob 1−x).Simple
calculations give the result as x → 0. The detailed proof can
be found in Appendix C.

Similar to the proof idea of Proposition 6, we still purposely
create the worst case, where πm always chooses path P2 but
the optimal policy chooses path P1 until a non-zero cost is
observed. But with information sharing, we cannot make the
expected cost of the optimal policy arbitrarily close to zero.
Thus, unlike π∅, PoA of πm is bounded. This is because
obtaining information from travelers allows the platform to
significantly reduce the immediate cost. Without such infor-
mation, the platform can make terrible routing decision from
the start. However, even with information sharing, the decision
making of the platform can still be arbitrarily poor in the
long term. The performance of the myopic platform becomes
worse compared to the optimal policy as the discount factor
β increases and future costs become more important. As
β approaches 1, PoA approaches infinity, indicating a great
performance loss due to the myopic nature of πm. As this
performance loss can be huge, it is crucial to design incentive
mechanisms for πopt for achieving incentive compatibility.

V. INFORMATION RESTRICTION MECHANISM FOR
INCENTIVE COMPATIBILITY OF πopt

To provide incentives for users to follow the recommenda-
tions of the optimal platform, we propose a novel information
restriction mechanism. The idea is to hide from users the in-
formation collected by the platform from the previous travelers
and supply only the path recommendation. This is equivalent
to keep private the information about the current value of the
belief state x that the optimal platform has constructed. Hence,
a user knows only her current path recommendation besides
knowing the statistical properties of the paths and the platform
algorithm.
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We use the concept of correlated equilibrium (proposed by
Robert Aumann [13]). In this model the platform provides
a private signal to the players which then act in their best
interest under information uncertainty. In our case the platform
offers a private signal (its recommendation) and users decide
to follow it or not. If no user would want to deviate from the
recommendation assuming the others don’t deviate, we say all
users following recommendations is a correlated equilibrium.
The mechanism we propose here does not require the optimal
policy to be of threshold type (Conjecture 3), and its incentive
properties are just related to properties of the value function
of the optimal policy.

The optimal policy always produces a partition of the belief
state space X = [0, 1] into two sets X1, X2, where Xa, a =
1, 2 is the set of belief states for which the optimal policy
πopt chooses action a. Our signalling mechanism is defined
as follows.

Definition 1. Information Restriction Mechanism (IRM): The
platform hides the history of observations (hence the belief
state information x) from the users. It follows πopt in (7) and
recommends P1 when the belief state x ∈ X1 and P2 when
x ∈ X2.

IRM is incentive compatible if no user wants to deviate
from her path recommendation unilaterally.

Next, we analyse the users’ actions (to follow the recom-
mendation or not) in the correlated equilibrium under this
mechanism. Although users have no knowledge of x in real
time, they are aware of the actual Markov chain model of the
paths, the value of the parameters and the algorithm of the
platform. They will reverse-engineer the platform recommen-
dation to estimate the possible values of the actual belief state
and based on that decide on following the recommendation or
not. More specifically, when the recommendation is P2, the
user will infer that the current system state x must be in X2,
which implies that x ≥ x̂ by Proposition 7. Note that the user
benefits from choosing P1 for x ≤ x̂ and P2 for x > x̂. Thus,
the user will follow the recommendation of P2. When the
recommendation is P1, the user infers that the current system
state x must be in X1. We can prove that in the average sense
she benefits by choosing P1 assuming the rest of the users do
the same, and hence she will follow the recommendation of
IRM. The incentive compatibility and the efficiency of IRM
are formally stated in the next theorem.

Theorem 9. Under IRM, all users following the optimal
platform’s recommendation is a correlated equilibrium. Thus,
our IRM achieves optimality and PoA = 1 .

Proof. Consider a user’s point of view at time t who as-
sumes that all the other users follow the optimal platform’s
recommendation. Lacking any information about the history
of the path state and assuming that the system operates
already for very long time and the rest of the users follow
the recommendation of the platform, her best estimate of the
belief state x is the stationary distribution Pπopt(x) under the
optimal policy πopt which then can be conditioned on the
recommendation for P1 or P2. To prove our result we don’t
need to evaluate this distribution analytically, but we need to

establish certain properties of Pπopt(x). To do that we use
Pπopt(x) to evaluate the long-run un-discounted average cost
λπopt that the system would incur if the platform uses the
discounted cost optimal policy πopt and users follow it6. Then
λπopt can be computed according to the stationary distribution
Pπopt .

λπopt =

∫
X1

(xcH + (1− x)cL)dPπopt(x) +

∫
X2

cMdPπopt(x)

≤ cM , (10)

where we used the claim that λπopt is less than cM (to be
proved later). The formula above simply states that when in
x ∈ X1 the average cost of a user following the recommen-
dations is xcH + (1 − x)cL and when x ∈ X2 this cost is
cM .

When the recommendation is P2, the user can reverse
engineer the recommendation to infer that the current belief
state x must be in X2. According to Proposition 7, whenever
x ∈ X2, it follows that

xcH + (1− x)cL ≥ cM . (11)

The user can compute the expected cost of travelling along P1
when the recommendation is P2 according to the stationary
distribution Pπopt of the belief state x. By (11) it is larger
than cM , that is,

EPπopt [xcH + (1− x)cL|x ∈ X2]

=

∫
X2

(xcH + (1− x)cL)dPπopt(x)∫
X2

dPπopt(x)

≥
∫
X2
cMdPπopt(x)∫
X2

dPπopt(x)
= cM .

Hence, the platform user will follow the recommendation to
choose P2. When the recommendation is P1, the user infers
that the current system state x must be in X1. She will compute
the expected cost of travelling along P1 according to Pπopt .
By using (10), this cost is smaller than cM since

EPπopt [xcH + (1− x)cL|x ∈ X1]

=

∫
X1

(xcH + (1− x)cL)dPπopt(x)∫
X1

dPπopt(x)

=
λπopt −

∫
X2
cMdPπopt(x)∫

X1
dPπopt(x)

≤
cM −

∫
X2
cMdPπopt(x)∫

X1
dPπopt(x)

= cM .

Hence, each myopic user will follow the recommendation to
choose P1.

Now we still need to prove our claim that (10) holds. As-
sume the initial distribution of the belief state is the stationary
distribution Pπopt . Then, the belief state xt at any time t has
the same probability distribution Pπopt . Since policy πopt is
optimal for the total discounted cost minimization problem,

6Note that this is not the cost minimised by the platform and we only use
it to establish a relation involving Pπopt (x) to be used later in the proof.
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the resulting optimal expected total discounted cost averaged
over the initial state distribution Pπopt is

∞∑
t=1

βt−1

(∫
X1

(xcH + (1− x)cL)dPπopt(x)+∫
X2

cMdPπopt(x)

)
=

∞∑
t=1

βt−1λπopt =
λπopt
1− β

.

Note that one can always choose path P2 at each time epoch
and the resulting expected total discounted cost is

∞∑
t=1

βt−1cM =
cM

1− β
,

which must be larger than the optimal cost. Thus,

λπopt
1− β

≤ cM
1− β

or λπopt ≤ cM . Thus, (10) holds and this completes the proof.

VI. REINFORCEMENT LEARNING PLATFORM

In practice, it may be difficult to develop an exact POMDP
model for analysing the routing policy, either because of the
many unknown parameter values or because such a Markovian
model may not be sensible. Hence we expect that platforms
will resort to model-free reinforcement learning techniques
such as Q-learning [14]. We want to obtain some insights
on how reinforcement learning, which leads to sub-optimal
platforms, affects our mechanism results regarding incentive
compatibility. In particular, we want to make the following
conjecture which we have been able to test with experiments.

Conjecture 10. Under the IRM, as the machine learning
algorithm becomes more efficient in reducing the average
system cost, the range of system parameters for which the
users follow the recommendations of the platform increases.
In particular, in the case of Q-learning algorithms (see (12)),
as K →∞, IRM induces IC.

In simple terms, increasing platform efficiency combined
with hiding information induces incentive compatibility in
a wider range of systems. In this section we analyse the
performance of such a learning platform and measure its
performance loss from the optimal platform benchmark.

The classical Q-learning algorithm estimates the Q-value
function in an online fashion and computes the optimal policy
according to Q-values computed for all possible system states
and actions. In this case, state y records the latest K obser-
vations (cost reports by the last K travelers), where K is a
parameter of the learning algorithm. For each possible action
a in state y the Q-value maps the state-action tuple (y, a) to
the anticipated cost, and the optimal action corresponding to
the minimum Q-value is chosen. The platform updates the Q-
values for each (y, a) over time by learning from the path
observations the actual costs that such actions generate in the
given context.

We expect the performance of Q-learning to improve as K
increases, since the system makes decisions in a more detailed
context. Another way to see this is that a larger K allows for
a better estimate of the correct value of the belief state x
that the POMDP-based optimal platform would like to use for
its decisions. But larger values of K come at an exponential
increase of the size of the state-space Y (which is 3K with each
observation being 0/1/∅) and influence the time Q-learning
needs to converge in its optimal choices. Our numerical results
later suggest that a small K such as K = 3 already provides
near-optimal performance. Next we describe the Q-learning
algorithm adapted to our problem.

Given observation history yt before time t, the platform
takes action at and incurs actual cost c′t, and updates the
observation vector from yt to y′. The Q-value is updated as:

Qt+1(y, a) =
αt(y, a)(c

′
t + β min

a′∈{1,2}
Qt(y

′, a′))

+(1− αt(y, a))Qt(y, a) if y = yt, and a = at,

Qt(y, a) otherwise,

(12)

where αt is the learning rate. It is known from [15] that Q-
learning converges if each (y, a) tuple is performed infinitely
often and αt(y, a) satisfies for each tuple (y, a),

∞∑
t=1

αt(y, a) =∞ and
∞∑
t=1

α2
t (y, a) <∞.

In our implementation we use αt(y, a) = 1
(1+N(y,a,t))ω where

N(y, a, t) is the number of times that the platform observes
y and performs a until time t and ω ∈ (0.5, 1] (as suggested
in [16]). We next show that Q-learning has good performance
when applied to the benchmark POMDP path model and then
investigate incentive compatibility for users of this platform.

A. Performance Analysis of Q-learning Platform

In this subsection we provide a methodology for calculating
the parameters of Q-learning after it converges and hence
solving the path selection policy obtained by Q-learning. This
allows us to compare this policy with the optimal policy
πopt of the POMDP and formulate the incentive compatibility
problem faced by the users in Q-learning platform.

Using the results in [17] regarding the steady state values
of the parameters of the Q-learning algorithm, we obtain that
our Q-learning algorithm converges with probability 1 to the
solution for each y ∈ Y of the following system of equations:

Q(y, 1) = (Pr[H|y]p+ Pr[L|y](1− p))(c+ β min
a∈{1,2}

Q(y′(1), a))

+ (Pr[L|y]p+ Pr[H|y](1− p))(0 + β min
a∈{1,2}

Q(y′(0), a)),

Q(y, 2) = cM + β min
a∈{1,2}

Q(y′(∅), a). (13)

Here, y′ is the sequence of latest K observations after the
transition by appending the last observation (0, 1, or ∅) to
the vector y after removing its first element. Pr[H|y], Pr[L|y]
are the asymptotic probabilities that the underlying cost state
is H , L, respectively, given that the sequence of K latest
observations is y.

We can use (2) and (3) to compute xt+1 from some initial
state x1 (assumed 1/2 in our specific case or equal to the
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Fig. 2: The expected total discounted cost of πQ̄ compared to
the optimal total expected discounted cost for different values
of K. For small values of K, the Q-learning is suboptimal
leading to higher values of cost compared to the optimal
policy. As K increases, the expected total discounted cost of
πQ̄ becomes closer to the optimal total expected discounted
cost. Here we set β = p = q = 0.9, c = 1, cM = 0.5.

steady state distribution of the path Markov chain in general)
and any sequence of observations y = (y1, . . . , yt). This
defines Pr[H|y] (and Pr[L|y] = 1 − Pr[H|y]) in (13) for all
possible values y ∈ Y .

Let Q̄(y, a) be the solution to equation (13) with corre-
sponding (asymptotic) policy πQ̄. This takes the action with
the minimum Q-value, i.e.,

πQ̄(y) = arg min
a∈{1,2}

Q̄(y, a), ∀ y ∈ Y, (14)

where Y is the set of all possible K latest observations and
its size is 3K . Clearly, (13) cannot be solved analytically and
thus we obtain policy πQ̄ numerically using value iteration.

In Fig. 2, we plot the expected total discounted costs of
policy πQ̄ for different values of K ∈ {1, 2, 3, 4} and compare
these costs to the optimal policy πopt as functions of the initial
belief state x. Since Q-learning does not deal with belief states,
we convert any initial x into an appropriate initial state y(x)
for Q-learning, by choosing the y ∈ Y to make the value of
x most probable:

y(x) = min
y∈Y
|Pr[H|y]− x| .

In Fig. 2 we first observe the curves for small values of K = 1
and 2. When initial belief state x is close to 0 or 1, the gap
between πQ̄ and πopt is more obvious. This is because if y
has few elements with y = 1 or y = 0, it cannot approximate
x at the two extremes near 0 and 1. Since Y is a finite set,
the corresponding values of x are Pr[H|y] ∈ [1 − q, q] for
all values of y, not containing x = 0 and x = 1. We further
observe that as K increases, the expected total discounted cost
of πQ̄ becomes closer to the optimal cost.

We conclude that as K increases, the Q-learning policy πQ̄
approximates the optimal policy more accurately. To see this
imagine that we run two versions of Q-learning, both using the
belief state x instead of the vector y, by discretising (finely)
[0, 1] to make the state space x ∈ X finite (since Q-learning
operates over a finite set of states). In the first version we
use Bayesian updates for x. In the second version we directly
construct x from the K-vector y of last observations. We
expect as the state space of x becomes finer, the first algorithm

converges to the solution of the POMDP, while the second
algorithm converges to the original Q-learning based on y.
Now as K →∞, the value of x used in both algorithms will
tend to be the same. Hence we expect as K →∞, Q-learning
approaches the solution πopt of the POMDP.

B. Information Restriction for Q-learning Platform

We continue with the analysis of user incentives for the Q-
learning Platform as in the case of the optimal platform. Again
we assume that users are sophisticated, have full information in
how Q-learning works and can reverse-engineer the Q-leaning
policy πQ̄ to decide whether to follow or not. We define our
IRM mechanism as before: the platform hides the history of
user observations. At each time, when the history of latest K
observations is y ∈ Y1 it recommends P1 and when y ∈ Y2

it recommends P2, as dictated by πQ̄. Here Ya is the set of y
under which πQ̄ recommends action a.

As before, knowing πQ̄ and assuming that all users follow
it, a sophisticated user computes the asymptotic probability
distribution PπQ̄(y) of the last K observation vector y. Let
c1(y) be the expected cost of taking action P1 given y,

c1(y) = (Pr[H|y]p+ Pr[L|y](1− p))c. (15)

If a user receives path recommendation P1, then she can
infer that y ∈ Y1 and the expected cost of travelling through
path P1 is

∑
y∈Y1

PπQ̄(y|y ∈ Y1)c1(y). This user will follow

recommendation P1 if and only if∑
y∈Y1

PπQ̄(y|y ∈ Y1)c1(y) =
∑
y∈Y1

PπQ̄(y)c1(y)∑
y∈Y1

PπQ̄(y)
≤ cM . (16)

Similarly, the user will follow recommendation P2 if and only
if ∑

y∈Y2

PπQ̄(y|y ∈ Y2)c1(y) =
∑
y∈Y2

PπQ̄(y)c2(y)∑
y∈Y1

PπQ̄(y)
> cM . (17)

Therefore, given a fixed combination of system parameters’
values, the Q-learning platform is incentive compatible if and
only if both (16) and (17) hold. An interesting question is to
determine the range of parameters in the parameter space of
the two-path model for which incentive compatibility may not
hold.

Fig. 3(a) examines the incentive compatibility (IC) as a
function of cM and K. We let β = p = q = 0.9, c = 1,
and cM = 0, 0.001, · · · , 1, and by solving (16) and (17) we
find the regime of all possible cM values in which the IC does
not hold. We observe that IC does not hold for all instances.
As K increases, the interval of values of cM in which IC
does not hold becomes smaller. We also examine the incentive
compatibility regarding q in Fig. 3(b) and regarding β in Fig.
3(c). In Fig. 3(b), we set β = p = 0.9, cM = 0.8, c = 1, and
q = 0.5, 0.501, · · · , 0.999. In Fig. 3(c)), we set p = q = 0.9,
cM = 0.8, c = 1, and β = 0.001, 0.002, · · · , 0.999. As K
increases, the interval of values of β in which IC does not hold
also becomes smaller. In all the three subfigures, we observe
that the regime in which the IC does not hold becomes trivial
once K ≥ 6.
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Fig. 3: From left to right, we plot in red the regimes of (a) all possible cM and K values, (b) all possible q and K values
and (c) all possible p and K values for which incentive compatibility does not hold. In general we see that IC holds for large
range of instances and as K increases, the interval of regime in which the IC does not hold becomes smaller. In Fig. 3(a), we
set β = p = q = 0.9, c = 1, and cM = 0, 0.001, 0.002, · · · , 0.999, 1. In Fig. 3(b), we set β = p = 0.9, cM = 0.8, c = 1, and
q = 0.5, 0.501, · · · , 0.999. In Fig. 3(c), we set p = q = 0.9, cM = 0.8, c = 1, and β = 0.001, 0.002, · · · , 0.999.

One may wonder the reason behind. As K increases, the Q-
learning policy becomes more accurate as an approximation
of the optimal policy and by Theorem 9 IC holds for the
optimal policy over all range of system parameters under
IRM. Thus, as the accuracy of the Q-learning policy increases,
the information restriction mechanism should become ‘more’
incentive compatible in the sense that the instances for which
IC does not hold become rare.

VII. EXTENSION TO A MULTI-PATH LEARNING MODEL

In this section, we consider a more general network with
three parallel paths where one more stochastic path P1′ is
added to our two-path model in Fig. 1(a). This new stochastic
path P1′ follows the same Markov model as path P1 in Fig.
1(b). Unlike our simple two-path model, we need to update
the belief states of both stochastic paths now. Thus we use a
belief state vector x = (x1, x1′) whose updating follows the
Bayesian inferencing process as in Section II-B.

We similarly denote the value function by V (x1, x1′) with
V (x1, x1′) = V (x1′ , x1) due to symmetry. Similar to (6), we
define Q(x1, x1′ , a) as the expected discounted cost staring
from x = (x1, x1′) if action a is taken at the first time epoch
and the optimal policy is followed thereafter. Q(x1, x1′ , a) can
be similarly written down as follows:

Q(x1, x1
′
, 0) = x1cH + (1− x1)cL + β(x1pH + (1− x1)pL)·

V

(
x1pHqHH + (1− x1)pL(1− qLL)

x1pH + (1− x1)pL
,

x1
′
qHH + (1− x1

′
)(1− qLL)

)
+

β(x1(1− pH) + (1− x1)(1− pL))·

V

(
x1(1− pH)qHH + (1− x1)(1− pL)(1− qLL)

x1(1− pH) + (1− x1)(1− pL)
,

x1
′
qHH + (1− x1

′
)(1− qLL)

)
;

Q(x1, x1
′
, 1) = Q(x1

′
, x1, 0);

Q(x1, x1
′
, 1′) = cM + βV (x1qHH + (1− x1)(1− qLL),

x1
′
qHH + (1− x1

′
)(1− qLL)).
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Fig. 4: Optimal policy of path choices for problem (18). We
set p = q = β = 0.9, c = 1 and cM = 0.7.

Similar to (7), the optimality equation of our three-path model
is:

V (x1, x1
′
) = min

a∈{1,1′,2}
{Q(x1, x1

′
, a)}. (18)

Similar to Proposition 2, we can prove (18) has a unique
solution by using the contraction mapping theorem. As it is not
in closed-form, we compute the value function using standard
numerical methods such as value iteration. We first discretise
and partition the belief state space [0, 1]2 for x1, x1′ equally
into 100×100 grids. In each iteration step, we directly evaluate
the value function in each grid by solving (18). Once the value
function is obtained, the platform computes the optimal policy
for each given belief state. We plot the optimal policy for
problem (18) in Fig. 4 where we let p = q = β = 0.9, c = 1
and cM = 0.7. We observe in Fig. 4 that here when cost belief
x1 (x1′ ) is small the optimal policy uses stochastic path P1
(P1′), and when both x1 and x1′ are large the optimal policy
uses deterministic path P2, which is similar to Proposition
4. We observe that the optimal policy is more complex and
cannot be defined in terms of simple threshold rules.

Without hiding any information, users will not follow the
path recommendations of the optimal platform, and we can
still use IRM for achieving incentive compatibility as in
Theorem 9. As for machine learning platforms, extensive nu-
merical experiments show that Q-learning becomes incentive
compatible (i.e., users following the platform suggestion is
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TABLE I: The range of system parameters under which
IC holds for the Q-learning platform. For the row of cM
regime for IC, we let p = q = β = 0.9, c = 1,
cM = 0, 0.01, · · · , 0.99, 1. For the row of q regime, we let
p = β = 0.9, c = 1, cM = 0.8, q = 0.5, 0.51, · · · , 0.99. For
the row of β regime, we let p = q = 0.9, c = 1, cM = 0.8,
β = 0.01, 0.01 = 2, · · · , 0.99. Note that 0 ≤ cM ≤ 1,
0.5 ≤ q < 1, and 0 < β < 1.

K 1 2 3 4
cM regime [0,1] [0,1] [0,1] [0,1]
q regime [0.5,0.99] [0.5,0.99] [0.5,0.99] [0.5,0.99]
β regime [0.01,0.99] [0.01,0.99] [0.01,0.99] [0.01,0.99]

a correlated equilibrium) under IRM, for any value of K.
Table I summarise the range of system parameters under which
IC holds, by examining IC constraints in (16) and (17) for
K = 1, 2, 3, 4 and other parameter values exhaustively. We
observe that the Q-learning platform is incentive compatible
for all instances, which is different from Fig. 3 for two
paths. With more stochastic paths, the quality of Q-learning
algorithms improves and it has close performance to the
optimal platform for ensuring incentive compatibility.

VIII. CONCLUSION

In this paper we analyse incentive compatibility issues
related to users following recommendations by travel path
optimizing platforms. We show that socially optimal path
recommendations based on past user travel cost history are
not always incentive compatible since users like to myopi-
cally optimise their travel cost. We discover the surprising
result that if users have only access to the socially optimal
platform recommendations (besides full information on system
parameters), following these recommendation is a Nash equi-
librium. Numerical results suggest an interesting conjecture
for practical platforms: information hiding induces incentive
compatibility for a wider range of system/network parameters
as the platform approximates closer the optimal platform (i.e.,
combining path exploration with path exploitation).
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APPENDIX A
PROOF OF PROPOSITION 2

First we prove that there is a unique value function V (x)
satisfying the optimality equation (6) and it is continuous.

Let Vk(x) be the value function of the k-stage problem, that
is,

Vk(x) = min
π
Eπ

[
k∑
t=1

βk−1C(xt, at)|x1 = x

]
.

When k = 1, we have

V1 = min{xcH + (1− x)cL, cM}.

For any k ≥ 2

Vk(x) = min{xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

Vk−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+ β

(
(1− x)p+ x(1− p)

)
·

Vk−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
,

cM + βVk−1(xq + (1− x)(1− q))}.

Note that V1 is a continuous function in [0, 1], that is, V1 ∈
C[0, 1]. For any function f ∈ C[0, 1], define

Tf(x) = min{xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

f

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+ β

(
(1− x)p+ x(1− p)

)
·

f

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
,

cM + βf(xq + (1− x)(1− q))}.

Then T is a map from C[0, 1] to itself. It follows that

Vk = TVk−1 = T k−1V1.

http://www.techinsider.io/how-google-maps-knows-about-traffic-2015-11
http://www.techinsider.io/how-google-maps-knows-about-traffic-2015-11
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For any element f in the space C[0, 1], define the following
norm,

||f || = max
0≤x≤1

|f(x)|.

With respect to this norm, C[0, 1] is a Banach space. Note that
T is a contraction map, we can show that

||Tf − Tg|| ≤ β||f − g||.

We need to first show that the following fact is true for any
two functions h and l defined on the set {0, 1},

min
u∈{0,1}

h(u)− min
u∈{0,1}

l(u) ≤ max
u∈{0,1}

[h(u)− l(u)]. (19)

Assume

uh ∈ arg min
u∈{0,1}

h(u), ul ∈ arg min
u∈{0,1}

l(u).

Then,

min
u∈{0,1}

h(u)− min
u∈{0,1}

l(u)

=h(uh)− l(ul)
=h(uh)− h(ul) + h(ul)− l(ul)
≤h(ul)− l(ul) ≤ max

u∈{0,1}
[h(u)− l(u)].

Apply (19), we have for any x ∈ [0, 1]

Tf(x)− Tg(x)

≤max{β(xp+ (1− x)(1− p))||f − g||
+ β(x(1− p) + (1− x)p)||f − g||, β||f − g||}

=β||f − g||.
Thus,

||Tf − Tg|| ≤ β||f − g||.

By contracting mapping theorem, there is a unique element V
in C[0, 1] such that

V = lim
k→∞

Vk,

and that
V = TV.

Thus, there is a unique value function V satisfying the DP
equation. V (x) is a continuous function of x.

Next, we prove that V (x) is an increasing function of
x. Note that V1(x) is an increasing function of x. Assume
Vk−1(x) is an increasing function of x, then we can prove
that Vk(x) is the minimum of two increasing functions of x.
First, it is clear that

cM + βVk−1(xq + (1− x)(1− q))

is an increasing function of x since q ≥ 1/2. Also, xcH +
(1− x)cL is increasing in x. We only need to prove that

β(xp+ (1− x)(1− p))·

Vk−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+

β
(
(1− x)p+ x(1− p)

)
·

Vk−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)

is increasing in x. Consider any y ∈ [0, 1] such that y < x,
since p, q ≥ 1

2 , it is straightforward to prove that

xpq + (1− x)(1− p)(1− q)
xp+ (1− x)(1− p)

>
ypq + (1− y)(1− p)(1− q)

yp+ (1− y)(1− p)
,

xpq + (1− x)(1− p)(1− q)
xp+ (1− x)(1− p)

>
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

>
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p
,

and
xp+ (1− x)(1− p) > yp+ (1− y)(1− p).

Then, it follows from the induction hypothesis that

β(xp+ (1− x)(1− p))Vk−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+ β

(
(1− x)p+ x(1− p)

)
·

Vk−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
>β(yp+ (1− y)(1− p))Vk−1

(
ypq + (1− y)(1− p)(1− q)

yp+ (1− y)(1− p)

)
+ β((xp+ (1− x)(1− p))− (yp+ (1− y)(1− p)))·

Vk−1

(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

)
+

β((1− x)p+ x(1− p))Vk−1

(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

)
=β(yp+ (1− y)(1− p))Vk−1

(
ypq + (1− y)(1− p)(1− q)

yp+ (1− y)(1− p)

)
+ β((1− y)p+ y(1− p))·

Vk−1

(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

)
.

Thus, Vk(x) is also an increasing function of x. By induction,
for any k, Vk(x) is an increasing function of x. Given x ≥ y,
we have

V (x)− V (y) = lim
k→∞

Vk(x)− lim
k→∞

Vk(y)

= lim
k→∞

[Vk(x)− Vk(y)] ≥ 0.

Finally, we prove the concavity of V (x). One possible way
is similar to the proof of Lemma 3.1 in Section III of [12]:

Let x = λx1 + (1 − λ)x2 where 0 < λ < 1 and suppose
that the cost state of P1 is originally chosen as follows: A
coin having probability λ of landing heads is flipped. If heads
appears, then H is chosen as the cost state with probability x1

and if tails appears, then it is chosen with probability x2. Now
the best that we can do if we are not to be told the outcome
of the coin flip is V (λx1 + (1− λ)x2) = V (x). On the other
hand, if we are to be told the outcome of the flip, then our
minimal expected cost is λV (x1) + (1 − λ)V (x2). Because
this must be at least as good as the case in which we are to be
given no information about the coin flip (one possible strategy
is to ignore this information apriori), we see that

λV (x1) + (1− λ)V (x2) ≤ V (λx1 + (1− λ)x2)

which shows that V (x) is concave.
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Another way is to prove it by induction. Note that V1(x) is
the minimum of two linear functions of x. Assume Vk−1(x)
is the minimum of some collection of linear functions of x it
follows that the same can be said of Vk(x). Thus, by induction,
Vk(x) is a concave function of x and

λVk(x1) + (1− λ)Vk(x2) ≤ Vk(λx1 + (1− λ)x2)

holds for every k. Thus, V (x) is concave.

APPENDIX B
PROOF OF PROPOSITION 4

Assume β(2q−1) < 2/3. To prove Proposition 4, it suffices
to prove the following statement: for any x, y ∈ [0, 1] such
that x > y,

Q(x, 1)−Q(y, 1) > Q(x, 2)−Q(y, 2). (20)

This is because if (20) holds for any x > y, the difference of
the travel costs of P1 and P2 are monotone, i.e.,

Q(x, 1)−Q(x, 2) (21)

is strictly increasing in x. Note that when x = 0, (21) is less
or equal to 0 and when x = 1, (21) is nonnegative. Since V (x)
is continuous, there is a unique threshold value x∗ such that
(21) is equal to zero and it is optimal to use P1 when x ≤ x∗
and use P2 when x ≥ x∗ . Now we consider three cases.
Case 1: x ≥ 1/2 and y ≤ 1/2. Define

A(x, y) = Q(x, 1)−Q(y, 1), B(x, y) = Q(x, 2)−Q(y, 2).

By optimality equation (6) we can prove that

V (x)− V (y) = TV (x)− TV (y)

∈ [min{A(x, y), B(x, y)},max{A(x, y), B(x, y)}]. (22)

We prove (22) by considering the following four cases:
i) If V (x) = Q(x, 1) and V (y) = Q(y, 1), it is clear that

(22) holds.
ii) If V (x) = Q(x, 2) and V (y) = Q(y, 2), it is clear that

(22) holds.
iii) If V (x) = Q(x, 1) ≤ Q(x, 2) and V (y) = Q(y, 2) ≤

Q(y, 1), it follows that

Q(x, 1)−Q(y, 1) ≤ V (x)− V (y) ≤ Q(x, 2)−Q(y, 2)

and (22) holds.
iv) If V (x) = Q(x, 2) ≤ Q(x, 1) and V (y) = Q(y, 1) ≤

Q(y, 2), it follows that

Q(x, 2)−Q(y, 2) ≤ V (x)− V (y) ≤ Q(x, 1)−Q(y, 1)

and (22) holds.
Since x ≥ 1/2 ≥ y, we have

x ≥ xq + (1− x)(1− q) ≥ 1/2 ≥ yq + (1− y)(1− q) ≥ y.

We have already proven that V (x) is an increasing function
of x, thus

V (x) ≥ V (xq+(1−x)(1−q)) ≥ V (yq+(1−y)(1−q)) ≥ V (y).

It follows that

V (x)− V (y)

≥V (xq + (1− x)(1− q))− V (yq + (1− y)(1− q))
≥βV (xq + (1− x)(1− q))− βV (yq + (1− y)(1− q)).

If the equality holds, then V (z) is constant for any z ≥ y.
Then the proposition follows. Now we assume the equality
does not hold, i.e.,

B(x, y) =βV (xq + (1− x)(1− q))− βV (yq + (1− y)(1− q))
<V (x)− V (y) ≤ max{A(x, y), B(x, y)}.

As a consequence, A(x, y) > B(x, y).
Case 2: x ≤ 1/2 and y ≤ 1/2. We have{

y ≤ x ≤ xq + (1− x)(1− q),
y ≤ yq + (1− y)(1− q) ≤ xq + (1− x)(1− q).

If x ≥ yq + (1 − y)(1 − q), from the concavity of V (x) it
follows that

V (yq+(1−y)(1−q))−V (y) ≥ V (xq+(1−x)(1−q))−V (x).

If x ≤ yq + (1 − y)(1 − q), from the concavity of V (x) it
follows that

V (x)−V (y) ≥ V (xq+(1−x)(1−q))−V (yq+(1−y)(1−q)).

Similar to Case 1, we can prove that (20) holds.
Case 3: y ≥ 1/2. First, we prove

V (x)− V (y) ≤ cH − cL
1− β(2q − 1)

(x− y) (23)

holds for any x > y ≥ 1/2 by induction. It is clear that
(23) holds for V1(x). Assume (23) holds for Vk−1(x). We
can define Ak(x, y) and Bk(x, y) similarly as in Case 1 and
similar to (22), we can prove that

Vk(x)− Vk(y) = TVk−1(x)− TVk−1(y) ∈
[min{Ak−1(x, y), Bk−1(x, y)},max{Ak−1(x, y), Bk−1(x, y)}].

From the induction hypothesis, it follows that

Ak−1(x, y)

=xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

Vk−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+

β
(
(1− x)p+ x(1− p)

)
Vk−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
− (ycH + (1− y)cL)− β(yp+ (1− y)(1− p))·

Vk−1

(
ypq + (1− y)(1− p)(1− q)

yp+ (1− y)(1− p)

)
−

β
(
(1− y)p+ y(1− p)

)
Vk−1

(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

)
≤(x− y)(cH − cL) + β(2q − 1)

cH − cL
1− β(2q − 1)

(x− y)

≤ cH − cL
1− β(2q − 1)

(x− y),
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and that
Bk−1(x, y) =cM + βVk−1(xq + (1− x)(1− q))−

(cM + βVk−1(yq + (1− y)(1− q)))

≤β(2q − 1)(x− y)
cH − cL

1− β(2q − 1)

≤ cH − cL
1− β(2q − 1)

(x− y).

Thus, (23) holds for Vk(x). Therefore, (23) holds for any x >
y ≥ 1/2.

From the concavity of V (x), it follows that

(Q(x, 1)−Q(x, 2))− (Q(y, 1)−Q(y, 2))

=(x− y)(cH − cL) + β(yp+ (1− y)(1− p))·(
V

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
−

V

(
ypq + (1− y)(1− p)(1− q)

yp+ (1− y)(1− p)

))
+

β((2p− 1)(x− y))

(
V

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
−

V

(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

))
+

β(x(1− p) + (1− x)p)

(
V

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)

− V
(
y(1− p)q + (1− y)p(1− q)

y(1− p) + (1− y)p

))
−

β(V (xq + (1− x)(1− q))− V (yq + (1− y)(1− q)))

≥(x− y)(cH − cL)− 1

2
β
(
V (xq + (1− x)(1− q))−

V (yq + (1− y)(1− q))
)
.

From (23) and β(2q − 1) < 2/3, it follows that

(Q(x, 1)−Q(x, 2))− (Q(y, 1)−Q(y, 2))

≥(x− y)(cH − cL)− 1

2
β
(
V (xq + (1− x)(1− q))−

V (yq + (1− y)(1− q))
)

≥(x− y)(cH − cL)− 1

2
β(2q − 1)(x− y)

cH − cL
1− β(2q − 1)

=(x− y)(cH − cL)
1− 3

2β(2q − 1)

1− β(2q − 1)

>0.

Thus, (20) holds for any x > y ≥ 1/2 and the proposition
follows.

APPENDIX C
PROOF OF PROPOSITION 8

When β = 0, the optimal policy is the same as the myopic
policy. Thus, PoA = 1

1−β = 1 and the proposition holds. We
will assume β ∈ (0, 1) and first show that the price of anarchy
must be larger than or equal to 1

1−β .

Let p = 1 and q ∈ (1/2, 1). Then cL = 0, cH = c and the
optimality equation (6) can be written as

V (x) = min{x+ β(xV (q) + (1− x)V (1− q)),
cM + βV (xq + (1− x)(1− q))}.

(24)

Since cM > 0, we can choose q close enough to 1 and
c large enough such that (1 − q)c < cM < c/2. We will
compute value function of the myopic policy, i.e., Vπm(x).
When xc ≤ cM , myopic policy chooses path P1. Then,

Vπm(x) = xc+ β(xVπm(q) + (1− x)Vπm(1− q)).

When xc > cM , myopic policy chooses path P2. Then,

Vπm(x) = cM + βVπm(xq + (1− x)(1− q)) =
cM

1− β
.

Next we will bound the value function of the optimal policy.
Note that

V (x) ≤ xc+ β(xV (q) + (1− x)V (1− q)),

and
V (x) ≤ cM

1− β
.

It follows that,{
V (q) ≤ cM

1−β ,

V (1− q) ≤ (1− q)c+ β(1− q)V (q) + βqV (1− q).

Thus, {
V (q) ≤ cM

1−β ,

V (1− q) ≤ (1−q)c+β(1−q) cM1−β
1−βq ,

and

V (x) ≤ (
(1− β)c+ βcM

1− β
)(x+ (1− x)

β(1− q)
1− βq

).

Choose a small enough positive number ε, let

(1− q)(cM + ε)

cM
< x <

1

2

and c = cM+ε
x . Note that such x and c satisfy (1 − q)c <

cM < c/2 and xc > cM . It follows that

Vπm(x) =
cM

1− β
,

and

V (x) ≤ (
(1− β)c+ βcM

1− β
)(x+ (1− x)

β(1− q)
1− βq

).

Thus,

PoA ≥
cM
1−β

( (1−β)c+βcM
1−β )(x+ (1− x)β(1−q)

1−βq )

q→1−−−→
cM
1−β

(1−β)(cM+ε)+βcMx
1−β

x,ε→0−−−−→ 1

1− β
.

Next we will show that the price of anarchy must be less than
or equal to 1

1−β .
Note that for any x,

Vπm(x) ≤ cM
1− β

. (25)
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We can prove (25) by induction or by arguing that the cost for
each time period can not be larger than cM since the myopic
policy always chooses the path with minimal cost.

Let Vπm,k(x) be the k-stage cost of myopic policy, then,

Vπm,1 = min{xcH + (1− x)cL, cM},
and for any k ≥ 2, if xcH + (1− x)cL ≤ cM , then

Vπm,k(x) =xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

Vπm,k−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+

β
(
(1− x)p+ x(1− p)

)
·

Vπm,k−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
,

if xcH + (1− x)cL > cM , then

Vπm,k(x) = cM + βVπm,k−1(xq + (1− x)(1− q)).
Similar to the proof of Proposition 2, we can prove that

Vπm(x) = lim
k→∞

Vπm,k(x)

by contracting mapping theorem.
Then we prove by induction that for any k and x,

Vπm,k(x) ≤ Vk(x)

1− β
. (26)

When k = 1, (26) follows from the fact

Vπm,1(x) = V1(x).

Assume that (26) holds for k−1 and any x. We need to show
that it also holds for k and any x. Given any x ∈ [0, 1], if
xcH + (1− x)cL > cM , then it follows from (25) that

Vk(x) ≥ min{xcH+(1−x)cL, cM} = cM ≥ (1−β)Vπm,k(x).

Then (26) holds. If xcH + (1− x)cL ≤ cM , then

Vπm,k(x) =xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

Vπm,k−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+

β
(
(1− x)p+ x(1− p)

)
·

Vπm,k−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
,

and

Vk(x) =xcH + (1− x)cL + β(xp+ (1− x)(1− p))·

Vk−1

(
xpq + (1− x)(1− p)(1− q)

xp+ (1− x)(1− p)

)
+

β
(
(1− x)p+ x(1− p)

)
·

Vk−1

(
x(1− p)q + (1− x)p(1− q)

x(1− p) + (1− x)p

)
,

It follows from the induction hypothesis that
Vπm,k(x)

Vk(x)
≤ 1

1− β
.

Thus, (26) holds for any k and any x. Then by letting k →∞,
we get

Vπm(x)

V (x)
≤ 1

1− β
.

Therefore, PoA ≤ 1
1−β .

APPENDIX D
PROOF OF PROPOSITION 6

We consider the similar instance in the proof of Proposition
8 where p = 1 and q ∈ (1/2, 1). Then cL = 0, cH = c. Here,
different from the proof of Proposition 8, we let x = 0, and
c > 2cM , then

Vπ∅(x) =
cM

(1− β)
.

If β ∈ (0, 1), according to the proof of Proposition 8

V (x) ≤(
(1− β)c+ βcM

1− β
)(x+ (1− x)

β(1− q)
1− βq

)

=
(1− β)c+ βcM

1− β
β(1− q)
1− βq

.

It follows that

PoA ≥
cM

(1−β)

(1−β)c+βcM
1−β

β(1−q)
1−βq

q→1−−−→∞.

If β = 0, then V (x) = 0. Thus, PoA =∞.
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