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The Runge–Kutta (RK)–Butcher algorithm is used to study time-invariant and time-varying non-linear
singular systems. The results (discrete solutions) obtained using the RK method based on the arithmetic
mean (RKAM), single-term Walsh series (STWS) and RK–Butcher algorithms are compared with the
exact solutions of the non-linear singular systems for the time-invariant and time-varying cases. It is
found that the solution obtained using the RK–Butcher algorithm is closer to the exact solutions of
the non-linear singular systems. Stability regions for the RKAM, STWS and RK–Butcher algorithms
are presented. Error graphs for discrete and exact solutions are presented in a graphical form to
highlight the efficiency of this method. The RK–Butcher algorithm can easily be implemented using
a digital computer and the solution can be obtained for any length of time for both time-invariant
and time-varying cases for these non-linear singular systems, which is an added advantage of this
algorithm.

Keywords: Time-invariant non-linear singular systems; Time-varying non-linear singular systems;
STWS algorithm; RKAM algorithm; RK–Butcher algorithm

C.R. Category: G1.7

1. Introduction

Most realistic non-linear systems, in particular singular non-linear systems, do not admit
any analytical solution and hence must be solved using a numerical technique. Conventional
methods, such as the Euler, Taylor series and Adams–Moultan methods, are restricted to a very
small step size in order to obtain a stable solution, which naturally requires much computer
time. Many new methods have been developed to overcome this step-size constraint imposed
by numerical stability, and these are reviewed by Butcher [1], Murugesan and colleagues [2–7]
and Park et al. [8].
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132 D. J. Evans et al.

Runge–Kutta (RK) methods have been used by many researchers [2–6, 9–16] to determine
numerical solutions for problems, which are modelled as initial value problems (IVPs) involv-
ing differential equations, that arise in the fields of Science and Engineering. Although the
RK method was introduced at the beginning of the twentieth century, research in this area is
still very active and its applications are enormous because of its extending accuracy in the
determination of approximate solutions and its flexibility.

RK methods have become very popular, both as computational techniques and in research
applications [1, 14, 17]. The method was developed by Runge in the mid-1890s and extended
by Kutta a few years later. They developed algorithms which solve differential equations
efficiently and yet are the equivalent of approximating the exact solutions by matching n
terms of the Taylor series expansion.

RK algorithms have always been considered to be excellent tools for the numerical integra-
tion of ordinary differential equations (ODEs). The fact that RK methods are self-starting, easy
to program and extremely accurate and versatile in ODE problems has led to their continuous
analysis and use in mathematical research. The beauty of the RK pair is that it requires no
extra function evaluations, which is the most time-consuming aspect of all ODE solvers. This
breakthrough has initiated a search for RK algorithms of increasingly high-order for better
error estimates.

Butcher [17] derived the best RK pair, together with an error estimate, and this is known as
the RK–Butcher algorithm. It is nominally considered to be sixth order since it requires six
function evaluations (it looks like a sixth-order method but in fact is a fifth-order method). In
practice, the ‘working order’ is closer to 5 (fifth order), but the accuracy of the results obtained
exceeds that of all other algorithms examined, including the RK–Fehlberg, RK–centroidal
mean (RKCeM) and RK–arithmetic mean (RKAM) methods.

Bader [18, 19] introduced the RK–Butcher algorithm for finding the truncation error esti-
mates and intrinsic accuracies and the early detection of stiffness in coupled differential
equations that arises in theoretical chemistry problems. Recently, Murugesan et al. [7] and
Park et al. [8] applied the RK–Butcher algorithms for finding the numerical solutions of an
industrial robot arm control problem and optimal control of linear singular systems. In this
article, we present a new approach for solving the time-invariant and time-varying non-linear
singular systems using RK–Butcher algorithms with more accuracy.

2. RK–Butcher algorithms

The normal order of an RK algorithm is the approximate number of leading terms of an
infinite Taylor series, which calculates the trajectory of a moving point, which was discussed
by Shampine and Gordon [20]. The remainder of the infinite sum excluded is referred to as the
local truncation error (LTE). RK algorithms are forward-looking predictors, that is, they use
no information from preceding steps to predict the future position of a point. For this reason,
they require a minimum of input data and consequently are very easy to program and simple
to use.

The general p-stage Runge–Kutta method for solving an IVP is

ẏ = f (x, y) (1)

with the initial condition y(x0) = y0 is defined by

yn+1 = yn + h

p∑
i=1

biki
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Non-linear singular ODE systems 133

where

ki = f


xn + cih, yn + h

p∑
j=1

aij kj


 , i = 1, 2, 3, . . . , p

and

ci =
p∑

j=1

aij ; i = 1, 2, . . . , p

with c and b are p dimensional vectors and A(aij ) be the p × p matrix. Then the Butcher
array is of the form

c1 a11

c2 a21 a22

c3 a31 a32 a33

· · · ·
· · · ·
· · · ·
· · · ·
cp ap1 ap2 . . . ap,p−1 ap,p

b1 b2 bp−1 bp

then the RK–Butcher algorithm of the above equation (1) is of the form

k1 = hf (xn, yn)

k2 = hf

(
xn + h

4
, yn + k1

4

)

k3 = hf

(
xn + h

4
, yn + k1

8
+ k2

8

)

k4 = hf

(
xn + h

2
, yn − k2

2
+ k3

)

k5 = hf

(
xn + 3h

4
, yn + 3k1

16
+ 9k4

16

)

k6 = hf

(
xn + h, yn − 3k1

7
+ 2k2

7
+ 12k3

7
− 12k4

7
+ 8k5

7

)

(2)

5th order predictor

yn+1 = yn + 1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6)

4th order predictor

y∗
n+1 = yn + 1

6
(k1 + 4k4 + k6)
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134 D. J. Evans et al.

Local Truncation Error Estimate (EE)

EE = yn+1 − y∗
n+1

Then the formation of the Butcher array of the above equation (2) takes the following form

0

1

4

1

4
1

4

1

8

1

8
1

2
0 −1

2
1

3

4

3

16
0 0

9

16

1 −3

7

2

7

12

7
−12

7

8

7

7

90
0

32

90

12

90

32

90

7

90
1

6
0 0

4

6
0

1

6

This Butcher array plays a vital role in the stability regions and is presented in the next
section.

3. Stability regions

Consider the test equation ẏ = λy where λ is a complex constant and it is used to determine
the stability regions of these methods.

k1 = f (yn) = λyn

k2 = f

(
yn + hk1

4

)
= λyn

(
1 + hλ

4

)

k3 = f

(
yn + hk1

8
+ hk2

8

)
= λyn

(
1 + hλ

8
+ hλ

8

(
1 + hλ

4

))

k4 = f

(
yn − hk2

2
+ hk3

)
= λyn

(
1 − hλ

2

(
1 + hλ

4

)
+ hλ

(
1 + hλ

8
+ hλ

8

(
1 + hλ

4

)))

k5 = f

(
yn − 3hk1

16
+ 9hk4

16

)
= λyn


1 + 3hλ

16
+ 9hλ

16



1 − hλ

2

(
1 + hλ

4

)

+hλ

(
1 + hλ

8
+ hλ

8

(
1 + hλ

4

))
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Non-linear singular ODE systems 135

k6 = f

(
yn − 3hk1

7
+ 2hk2

7
+ 12hk3

7
− 12hk4

7
+ 8hk5

7

)

= λyn




1 − 3hλ

7
+ 2hλ

7

(
1 + hλ

4

)
+ 12hλ

7

(
1 + hλ

8
+ hλ

8

(
1 + hλ

4

))

−12hλ

7

(
1 − hλ

2

(
1 + hλ

4

)
+ hλ

(
1 + hλ

8
+ hλ

8

(
1 + hλ

4

)))

+8hλ

7

(
1+ 3hλ

16
+ 9hλ

16

(
1− hλ

2

(
1+ hλ

4

)
+hλ

(
1+ hλ

8
+ hλ

8

(
1+ hλ

4

))))




Substituting z = hλ we get

k1 = f (yn) = λyn

k2 = λyn

(
1 + z

4

)

k3 = λyn

(
1 + z

8
+ z

8

(
1 + z

4

))

k4 = λyn

(
1 − z

2

(
1 + z

4

)
+ z

(
1 + z

8
+ z

8

(
1 + z

4

)))

k5 = λyn

(
1 + 3z

16
+ 9z

16

(
1 − z

2

(
1 + z

4

)
+ z

(
1 + z

8
+ z

8

(
1 + z

4

))))

k6 = λyn




1 − 3z

7
+ 2z

7

(
1 + z

4

)
+ 12z

7

(
1 + z

8
+ z

8

(
1 + z

4

))

−12z

7

(
1 − z

2

(
1 + z

4

)
+ z

(
1 + z

8
+ z

8

(
1 + z

4

)))

+8z

7

(
1 + 3z

16
+ 9z

16

(
1 − z

2

(
1 + z

4

)
+ z

(
1 + z

8
+ z

8

(
1 + z

4

))))




Then the 5th order predictor formula is

yn+1 = yn + h

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6),

Substituting the values of k1, k2, k3, k4, k5 and k6 then we obtain

yn+1 = yn + hλyn

90

(
90 + 90

2
z + 30

2
z2 + 30

8
z3 + 30

40
z4 + 30

240
z5

)

divide both sides by yn then the stability polynomial Q(z) = yn+1/yn is given as

Q(z) = 1 + z + z2

2! + z3

3! + z4

4! + z5

5! + z6

6! .

Figure 1 show that a comparative study of the stability regions of the RKAM method,
STWS and the RK–Butcher algorithm. In this stability region, the range for the real part of
λ in RKAM is −3.463 < Re(λ) < 0.0, STWS is −3.284 < Re(λ) < 0.0 and where as in the
RK–Butcher algorithm it is −2.780 < Re(λ) < 0.0. It reveals that the RK–Butcher algorithm
converges faster than the other two discussed methods RKAM and STWS.



D
ow

nl
oa

de
d 

By
: [

H
EA

L-
 L

in
k 

C
on

so
rti

um
] A

t: 
16

:0
5 

12
 A

pr
il 

20
07

 

136 D. J. Evans et al.

Figure 1. Stability regions for RKAM, STWS and RK–Butcher algorithms.

4. Non-linear singular systems

Consider the time invariant non-linear singular system of the form

Kẋ(t) = Ax(t) + f (x(t)) (3)

with x(0) = x0, where K is an n × n singular matrix, A is an n × n matrix, x(t) is an n-state
vector and f is an ‘n’ vector function. In order to make the above system (3) time varying case
some of the components (not necessarily all the elements) in the system (3) are converted to
time varying and then the system will be of the following form

K(t)ẋ(t) = A(t)x(t) + f (x(t)) (4)

with x(0) = x0, where this K(t) is an n × n singular matrix, A(t) is an n × n matrix, x(t) is
an n-state vector and f is an ‘n’ vector function. The time varying singular non-linear systems
are much more difficult to solve than the time invariant systems. Therefore, many authors have
tried various transform methods to over come these difficulties. In this article, we introduce
RK–Butcher algorithms with more accuracy to solve these time-invariant and time-varying
singular non-linear systems.

5. Numerical examples

In this section, two examples are presented, one is for time invariant and the other is for
time varying case. Numerical solutions are obtained using three methods like RKAM method,
STWS and RK–Butcher algorithms.

5.1 Example

Consider the following time invariant nonlinear singular system (Campbell [21], Lin and
Yang [22])

K =
[

0 1
0 0

]
, A =

[−1 0
0 2

]
and f (x(t)) =

[
0

−x2

]
(5)

with initial condition x(0) = [0 0]T .
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Non-linear singular ODE systems 137

Table 1. Solutions for time-invariant system (5) for various values of ‘x1’.

Discrete solution x1-values

Exact RKAM RKAM STWS STWS RK–Butcher RK–Butcher
S. No. Time solutions solutions error solutions error solutions error

1 0 0 0 0 0 0 0 0
2 0.25 −0.25 −0.25640 0.00640 −0.254 0.004 −0.25002 0.00002
3 0.5 −0.50 −0.50295 0.00295 −0.504 0.004 −0.50007 0.00007
4 0.75 −0.75 −0.75673 0.00673 −0.754 0.004 −0.75009 0.00009
5 1 −1.00 −1.00729 0.00729 −1.004 0.004 −1.00014 0.00014
6 1.25 −1.25 −1.25651 0.00651 −1.254 0.004 −1.25017 0.00017
7 1.5 −1.50 −1.50652 0.00652 −1.504 0.004 −1.50019 0.00019
8 1.75 −1.75 −1.75239 0.00239 −1.754 0.004 −1.75022 0.00022
9 2 −2.00 −2.00200 0.00200 −2.004 0.004 −2.00026 0.00026

The exact solutions are

x1(t) = −t

x2(t) = t2

2
(6)

The results (discrete solutions) obtained using RKAM, STWS and RK–Butcher algorithms
(with step size time t = 0.25) along with the exact solutions and its absolute errors between
them are calculated and are presented in tables 1 and 2. To highlight the efficiency of the
RK–Butcher algorithms and to distinguish the effect of the errors in accordance with the exact
solutions, a graphical representation is presented in figures 2 and 3 for selected values of ‘x1’
and ‘x2’, using three-dimensional effect.

5.2 Example

Consider the time varying non-linear singular system of the following form (Hsiao and Wang
[23] and Sepehrian and Razzaghi [24])


0 1 0

0 0 t2

0 0 0


 ẋ(t) =


 tx1(t) + x2(t)

exp(t)x1(t)x2(t)

x2(t)(x1(t) + x3(t))


 x(t) +


 0

2t2 exp(−t)

0


 , (7)

Table 2. Solutions for time-invariant system (5) for various values of ‘x2’.

Discrete solution x1-values

Exact RKAM RKAM STWS STWS RK–Butcher RK–Butcher
S. No. Time solutions solutions error solutions error solutions error

1 0 0 0 0 0 0 0 0
2 0.25 0.031 0.031974 0.000974 0.032 0.001 0.031002 0.000002
3 0.5 0.125 0.125492 0.000492 0.127 0.002 0.125007 0.000007
4 0.75 0.281 0.281510 0.000510 0.285 0.004 0.281009 0.000009
5 1 0.500 0.500759 0.000759 0.505 0.005 0.500014 0.000014
6 1.25 0.781 0.781651 0.000651 0.787 0.006 0.781017 0.000017
7 1.5 1.125 1.125658 0.000658 1.132 0.007 1.125019 0.000019
8 1.75 1.531 1.531662 0.000662 1.540 0.009 1.531022 0.000022
9 2 2.000 2.000982 0.000982 2.010 0.010 2.000026 0.000026
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138 D. J. Evans et al.

Figure 2. Error graph for ‘x1’ at various time intervals.

Figure 3. Error graph for ‘x2’ at various time intervals.

with initial condition

x(0) =

 2

0
−2


 .

The exact solutions are

x(t) =



2 exp(−t)(1 − t)

t2 exp(−t)

−2 exp(−t)(1 − t)


 (8)

The results (discrete solutions) were obtained using the RKAM method; STWS and RK–
Butcher algorithms (with step size time t = 0.25) along with the exact solutions and the
absolute errors between them were calculated and are presented in tables 3–5. To highlight
the efficiency of the RK–Butcher algorithms and to distinguish the effect of the errors in
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Non-linear singular ODE systems 139

Table 3. Solutions for time varying system (7) at various values of ‘x1’.

Discrete solution x1-values

Exact RKAM RKAM STWS STWS RK–Butcher RK–Butcher
S. No. Time solutions solutions error solutions error solutions error

1 0 2 2 0 2 0 2 0
2 0.25 0.778801 0.779801 0.001 0.783458 0.00466 0.778805 4E–06
3 0.5 0 −0.00935 0.00935 −0.09452 0.09452 0.000006 6E–06
4 0.75 −0.47236 −0.47423 0.00187 −0.49452 0.02216 −0.47239 3E–05
5 1 −0.73575 −0.73857 0.00282 −0.76504 0.02929 −0.73579 4E–05
6 1.25 −0.85951 −0.86015 0.00064 −0.89451 0.035 −0.85956 5E–05
7 1.5 −0.89252 −0.89658 0.00406 −0.94892 0.0564 −0.89258 6E–05
8 1.75 −0.86886 −0.86836 0.0005 −0.92765 0.05879 −0.86893 7E–05
9 2 −0.81201 −0.81394 0.00193 −0.88310 0.07109 −0.81209 8E–05

Table 4. Solutions for time-varying system (7) at various values of ‘x2’.

Discrete solution x2-values

Exact RKAM RKAM STWS STWS RK–Butcher RK–Butcher
S. No. Time solutions solutions error solutions error solutions error

1 0 0 0 0 0 0 0 0
2 0.25 0.048675 0.048875 0.0002 0.054867 0.00619 0.048676 1E–06
3 0.5 0.151632 0.152032 0.0004 0.175132 0.0235 0.151634 2E–06
4 0.75 0.265706 0.266306 0.0006 0.296506 0.0308 0.265709 3E–06
5 1 0.367879 0.368679 0.0008 0.403879 0.036 0.367883 4E–06
6 1.25 0.447663 0.448663 0.001 0.494763 0.0471 0.447667 4E–06
7 1.5 0.502042 0.508642 0.0066 0.552042 0.05 0.502048 6E–06
8 1.75 0.532182 0.539882 0.0077 0.605382 0.0732 0.532189 7E–06
9 2 0.541341 0.550041 0.0087 0.635141 0.0938 0.541349 8E–06

accordance with the exact solutions, a graphical representation is presented in figures 4–6 for
selected values of ‘x1’, ‘x2’ and ‘x3’, using three-dimensional effect.

6. Conclusions

The obtained results (discrete solutions) of the non-linear singular systems for time-invariant
and time-varying cases show that the RK–Butcher algorithm works well for finding the state

Table 5. Solutions for time-varying system (7) at various values of ‘x3’.

Discrete solution x3-values

Exact RKAM RKAM STWS STWS RK–Butcher RK–Butcher
S. No. Time solutions solutions error solutions error solutions error

1 0 −2 −2 0 −2 0 −2 0
2 0.25 −0.77880 −0.77890 1E–04 −0.78880 0.01 −0.77881 1E–05
3 0.5 0 0.000089 0.00009 0.000009 9E–06 0 0
4 0.75 0.472366 0.472466 1E–04 0.472367 1E–06 0.472367 1E–06
5 1 0.735758 0.735958 0.0002 0.735760 2E–06 0.735760 2E–06
6 1.25 0.859514 0.859914 0.0004 0.859517 3E–06 0.859517 3E–06
7 1.5 0.892521 0.892921 0.0004 0.892525 4E–06 0.892525 4E–06
8 1.75 0.868869 0.869569 0.0007 0.868875 6E–06 0.868876 7E–06
9 2 0.812011 0.813011 0.001 0.812019 8E–06 0.812019 8E–06
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140 D. J. Evans et al.

Figure 4. Error graph for ‘x1’ at various time intervals for time-varying case.

Figure 5. Error graph for ‘x2’ at various time intervals for time-varying case.

vector. From tables 1–5, we can observe that for most of the time intervals, the absolute error
is less (almost no error) in the RK–Butcher algorithms when compared to the Runge–Kutta
Arithmetic Mean (RKAM) method, Single Term Walsh Series (STWS) Technique, which
yields a small error, along with the exact solutions. From figure 1 can be noted that the
stability region of the RK–Butcher algorithm is smaller than the stability region of RKAM
and STWS methods. It reveals that the RK–Butcher algorithm converges faster than the other
two methods discussed here. From figures 2–6, one can predict that the error is much less in
the RK–Butcher algorithm when compared to the RKAM and STWS methods discussed by
Balachandran and Murugesan [25] and Sepehrian and Razzaghi [24]. Hence the RK–Butcher
algorithm is more suitable for studying the time-invariant and time-varying non-linear singular
systems.
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Figure 6. Error graph for ‘x3’ at various time intervals for time-varying case.
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