Photo-Detectors

- Photodetector: Generates an electrical current proportional to the incident optical power
- Front-end amplifier: Increases the power of the generated electrical signal to a usable level
- Decision circuit: Estimates the data from the output of the frontend amplifier
 - \Rightarrow The design depends on the modulation scheme used to transmit the data
- Optical amplifier: Optionally placed before the photodetector to act as a preamplifier

Block diagram of a receiver in a digital communication system

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- **Photodetectors** are made of **semiconductor materials**
- Sector Stress Stres
- Quantum mechanics principle: Each electron can absorb only one photon to transit between energy levels
- **\bigcirc** Energy of the incident photon: at least equal to E_g

Cutoff wavelength (λ_{cutoff}): The largest λ for which the relation is satisfied
Silicon photodetectors: Widely used in 0.8 µm band

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- In practice, the use of a semiconductor slab as a photodetector does not achieve high efficiencies
- It is necessary to sweep the generated conduction band electrons rapidly out of the semiconductor
- Solution: Impose an electric field in the region where electrons are generated
- Photodiode: Uses a *pn*-junction semiconductor and applies a reverse-bias voltage to it
- ➔ The depletion region creates a built-in electric field

- Both the depletion region and the built-in electric field can be enhanced by applying a reverse-bias voltage
- Drift: The electrons generated by photon absorption within or close to the depletion region will be swept into the *n*-type semiconductor before they recombine with the holes in the *p*-type semiconductor ⇒ Current in the external circuit

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Photonics Technology Laboratory

- Electron-hole pairs generated far away from the depletion region travel primarily under the effect of diffusion and may recombine without giving rise to a current in the external circuit
 - \Rightarrow This reduces the efficiency η of the photodetector
 - ⇒ Diffusion is a much slower process than drift ⇒ The diffusion current will not respond quickly to incident optical signal intensity changes ⇒ The photodiode bandwidth is reduced

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Photonics Technology Laboratory

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

http://www.optcomm2.di.uoa.gr/

PIN Photodiodes

- *pin* photodiodes: Introduction of a very lightly doped intrinsic semiconductor between the *p*-type and *n*-type semiconductors Improves the photodetector efficiency
- The depletion region extends completely across this intrinsic semiconductor
- The widths of the *p*-type and *n*-type semiconductors are small compared to the intrinsic region ⇒ Increased efficiency and responsivity
- $\lambda_{cutoff,InP} = 0.92 \ \mu m$
- $\lambda_{cutoff,InGaAs} = 1.65 \ \mu m$

p-type and *n*-type regions are transparent at the wavelength of interest

PIN photodiode based on a **heterostructure**

p	i	n
InP	InGaAs	InP

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

PIN Photodiodes

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

http://www.optcomm2.di.uoa.gr/

Avalanche Photodiodes

- In the described photodetectors, one photon can generate only one electron → Low responsivities
- Avalanche Photo-Diode (APD): The generated electron is subjected to a very high electric field ⇒ It can acquire sufficient energy to knock off more electrons from the valence band to the conduction band ⇒ These secondary electron-hole pairs generate even further electron-hole pairs when they are accelerated to sufficient levels
- **•** <u>Multiplicative gain (G_m) </u>: The mean number of secondary electron-hole pairs generated by the avalanche multiplication process by a single electron

 \Rightarrow This number is random

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Avalanche Photodiodes

- Avalanche breakdown: The APD multiplicative gain is made infinite
- ⇒ Large G_m ⇒ Larger photocurrent variance ⇒ Affects the APD noise performance
- Trade-off between the multiplicative gain and the noise factor: APDs usually have a moderate value of multiplicative gain that optimizes their performance

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Qualitative Comparison of PIN and Avalanche Photodiodes

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

11

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

http://www.optcomm2.di.uoa.gr/

Bandgap energies and cutoff wavelengths for a number of semiconductor materials

In_{1-x}Ga_xAs: a fraction 1-x of the Ga atoms in GaAs are replaced by In atoms In_{1-x}Ga_xAs_yP_{1-y}: a fraction 1 - y of the As atoms are replaced by P atoms

Material	E _g (eV)	$\lambda_{cutoff} (\mu m)$
Si	1.17	1.06
Ge	0.775	1.6
GaAs	1.424	0.87
InP	1.35	0.92
In _{0.55} Ga _{0.45} As	0.75	1.65
$In_{1-0.45y}Ga_{0.45y}As_yP_{1-y}$	0.75 – 1.35	1.65-0.92

InGaAs and InGaAsP:

photodetectors in the **1310 nm** and **1550 nm bands**

<u>Ge</u>: photodetectors in both these bands, but it has a reduced efficiency

13

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- Efficiency, n: The fraction of the optical signal energy which is absorbed giving rise to a photocurrent
- It is important to design the photodetector to achieve an η as close to 1 as possible

⇒ Achieved by using a semiconductor slab of sufficient thickness

➡ Power absorbed by a semiconductor slab:

$$P_{abs} = \left(1 - e^{-aL}\right)P_{in}$$

- \Rightarrow *L* (µm): slab thickness
- $\Rightarrow P_{in}$: incident optical signal power
- \Rightarrow *a*: material absorption coefficient
 - Depends on the wavelength

For
$$\lambda > \lambda_{\text{cutoff}}$$
, $a = 0$

$$\eta = \frac{P_{abs}}{P_{in}} = 1 - e^{-aL}$$

Typically α is on the order of 10⁴/cm \Rightarrow To achieve $\eta > 0.99$, the slab's thickness should be on the order of 10 μ m

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- Photodetector area: Sufficiently large ⇒ All the incident optical power can be captured
- Photodetector operating bandwidth: Very wide
 - ⇒ A photodetector at some wavelength serves as a photodetector at all smaller wavelengths as well
- **Carter** Responsivity, *R*:

$$R = \frac{I_p}{P_{in}} A/W$$

 $\Rightarrow I_p \text{ (Amperes): mean current produced by a photodetector} \\\Rightarrow P_{in} \text{ (Watts): incident optical power}$

$$R = \frac{\eta e}{h f_c} A/W$$

C The responsivity is commonly expressed in terms of λ :

$$R = \frac{\eta e \lambda}{hc} = \frac{\eta \lambda}{1.24} \,\mathrm{A/W}$$

 $\Rightarrow \lambda$: expressed in μm

 \Rightarrow *R* is on the order of 1 A/W in the 1310 nm band and 1.2 A/W in the 1550 nm band

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

I-V characteristics of an illuminated junction

□ The photodiode therefore has an I-V characteristic:

$$I = I_0(\exp(eV/k_BT) - 1) - I_p$$

□ This is the usual I-V curve of a p-n junction with an added photocurrent $-I_p$ proportional to the photon flux.

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Short-circuit current and open-circuit voltage

□ The *short-circuit current* (V = 0) is the *photocurrent* I_p . □ The *open-circuit voltage* (I = 0) is the *photovoltage* V_p .

$$(I = 0) \Longrightarrow V_p = (k_B T/e) \ln(I_p/I_0 + 1)$$

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Photocurrent and photovoltage

- □ As the light intensity increases, the short-circuit current increases linearly $(I_p \propto G)$;
- □ The open-circuit voltage increases only logarithmically ($V_p \propto \ln (I_p/I_0)$) and limits by the equilibrium contact potential.

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Open-circuit voltage

- □ The photogenerated, field-separated, majority carriers (+ve charge on the p-side, -ve charge on the n-side) forward-bias the junction.
- □ The appearance of a forward voltage across an illuminated junction (photovoltage) is known as the photovoltaic effect.
- □ The limit on V_p is the equilibrium contact potential V_0 as the contact potential is the maximum forward bias that can appear across a junction. (drift current vanishes with $V_p = V_0$)

National and Kapodistrian University of Athens Department of Informatics and Telecommunications **Optical Communications & Photonics Technology Laboratory**

Photoconductive and photovoltaic modes

- □ There are *two* modes of operation for a junction photodiode: *photoconductive* and *photovoltaic*
- □ The device functions in *photoconductive* mode in the *third* quadrant of its current-voltage characteristics, including the *short-circuit condition* on the vertical axis for V = 0. (*acting as a current source*)
- It functions in *photovoltaic* mode in the *fourth* quadrant, including the *open-circuit condition* on the horizontal axis for I = 0. (acting as a voltage source with output voltage limited by the equilibrium contact potential)
- □ The mode of operation is determined by the *bias condition* and the *external circuitry*.

National and Kapodistrian University of Athens Department of Informatics and Telecommunications **Optical Communications & Photonics Technology Laboratory**

Photoconductive mode under reverse bias

For silicon photodiodes, $V_0 \approx 0.7 \text{ V}$, V_B can be up to -5 - -10 V)

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

Basic circuitry and load line for the photoconductive mode

- □ Keep $V_{out} < V_B$ so that the photodiode is <u>reverse</u> biased (V_B is sufficiently large)
- □ Under these conditions and before it saturates, a photodiode has the following *linear response*: $V_{out} = (I_0 + I_p) R_L$

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

Basic circuitry and load line for the photovoltaic mode

- *Does not require a bias voltage* but requires a *large load resistance*.
- $R_L >> R_i$, so that the current I flowing through the diode and the load resistance is negligibly small.

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Operation regimes of an illuminated junction

Photoconductive:

Power (+ve) is delivered *to the device by the external circuit* (photodetector)

Photovoltaic:

Power (-ve) is delivered *to the load by the device* (solar cell/ energy harvesting)

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

Front-End Amplifiers (1/4)

- Two kinds of front-end amplifiers are used in optical communication systems:
 - ⇒ High-impedance front end amplifier
 - ➡ Transimpedance front end amplifier

Photodiode

Equivalent circuit for a high-impedance front-end amplifier

•<u>The capacitance C includes</u>:

-the capacitance due to the photodiode

- -the amplifier input capacitance
- -other parasitic capacitances

Photodiode

Equivalent circuit for a **transimpedance front-end amplifier**

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

Operating regimes

Α: Καμπύλες Ι-V υπό ορθή και ανάστροφη πόλωση

Β: Λειτουργία σε Φ/Β τρόπο ανοικτού κυκλώματος

C: Λειτουργία σε βραχυκυκλωμένο τρόπο

D: Λειτουργία με ανάστροφη πόλωση σε ενισχυτή τάσης

Ε: Λειτουργία σε μορφή ενισχυτή διαντιστάσεως

F: Λειτουργία ως δίοδος Χιονοστοιβάδος

26

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

- \square Main design issue: the choice of the load resistance R_L
- \bigcirc The thermal noise current is inversely proportional to R_L
- The **bandwidth** of the photodiode is **inversely proportional to** R_p $\Rightarrow R_p$: the output load resistance seen by the photodiode
- **S** <u>High-impedance front end amplifier</u>: $R_p = R_L$
 - \Rightarrow We must choose R_L small enough to accommodate the bit rate of the system \Rightarrow Trade-off between the photodiode bandwidth and its noise performance
- **Transimpedance front end amplifier**: $R_p = R_L/(A+1)$
 - \Rightarrow *A*: the amplifier gain
 - ⇒ <u>Advantage</u>: Increased bandwidth
 - ⇒ <u>Drawback</u>: Higher thermal noise current
- Thus the transimpedance front end is chosen over the highimpedance one for most optical communication systems

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- Dynamic range: The difference between the largest and smallest signal levels that the front-end amplifier can handle
- Not an important consideration for many optical communication links
 - \Rightarrow The power level seen by the receivers is usually more or less fixed
- Very important consideration for networks where the received signal level can vary by a few orders of magnitude, depending on the location of the source in the network

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

- **The transimpedance amplifier has** a significantly **higher dynamic range** than the high-impedance one
 - ⇒ <u>Transimpedance amplifier</u>: A change ΔI_p in the photocurrent ⇒ A change in voltage $\Delta I_p R_L$ across the resistance R_L ⇒ A voltage change across the inputs of the amplifier of only $\Delta I_p R_L/(A+1)$
 - \Rightarrow <u>High-impedance amplifier</u>: Voltage change across the amplifier inputs = $\Delta I_p R_L$
- ➡ Field-Effect Transistor (FET): Has a very high input impedance Is often used as the amplifier in the front end
- pinFET device: A pin photodiode and an FET integrated on the same semiconductor substrate

National and Kapodistrian University of Athens Department of Informatics and Telecommunications Optical Communications & Photonics Technology Laboratory http://www.optcomm2.di.uoa.gr/

Small-signal equivalent circuits

- A photodiode has an *internal resistance* R_i and an *internal capacitance* C_i *across its junction*.
- The series resistance R_s takes into account both resistance in the homogeneous regions of the diode and parasitic resistance from the contacts.
- The *external parallel capacitance* C_p is the *parasitic capacitance* from the contacts and the package.
- The series inductance L_s is the parasitic inductance from the wire or transmission-line connections.
- The values of R_s, C_p, and L_s can be minimized with careful design, processing, and packaging of the device.

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory

InGaAs fiber-optic pin photodetector

Spectral response	800 – 1700 nm	
Peak response	0.95 A/W @ 1550 nm	
Rise/fall time	0.1 ns	
Diode capacitance	0.7 pF (typ)	
NEP @ 1550 nm	1.0 x 10 ⁻¹⁵ W/√Hz	
Dark current	0.7nA (typ), 1.0nA (max)	
PD Active diameter	0.1 mm	
Bandwidth	1 GHz (min)	
Damage threshold	100 mW CW	
Bias (reverse)	12V battery	
Coupling lens	0.8" dia. Ball lens	
Coupling efficiency	92% (typ) from both single- and multi- mode fibers over full spectral response	

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

Optical Communications & Photonics Technology Laboratory