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Abstract

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive 

data are available on the extent, direction, rate, and consequences of changes in the effects 

of mutations as protein sequences evolve. Here we characterize the temporal dynamics of 

epistatic change by using deep mutational scanning to measure the functional effect of every 

possible amino-acid mutation in a phylogenetic series of reconstructed ancestral and extant 

proteins, using the steroid receptor DNA-binding domain as a model. Across a 700-million-year 

historical trajectory, the effects of most mutations became completely or partially decorrelated 

from their initial effects. Epistatic interactions caused windows of evolutionary accessibility for 

most mutations to open and close transiently, shaping the historical fate not only of the mutations 

that fixed during history but also the far greater number that never did. Most mutations’ effects 

evolved under Brownian motion: gradual change without directional bias, at a rate that was largely 

constant across time but varied dramatically among mutations, indicating a neutral process caused 

by many weak interactions. Protein sequences therefore drift inexorably into contingency and 

unpredictability, but that process itself is statistically predictable, given sufficient phylogenetic and 

experimental data.
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Epistatic drift causes the effect and fate of most mutations to gradually become unpredictable 

during protein evolution.

A mutation’s evolutionary fate depends on its phenotypic effects. If the effects are stable 

over time, knowledge of them in the present can help predict the future course of evolution 

and explain the causes of evolutionary change in the past. Epistatic interactions, however, 

may cause a mutation’s effects to change over time and its evolutionary accessibility to 

become contingent on the particular sequence changes that preceded it during history (1, 2).

Despite a recent tide of information about epistatic interactions within proteins, we lack 

a comprehensive understanding of changes in the effects of mutations (the set of all 

potential amino-acid changes) caused by interactions with substitutions (the subset of 

mutations that fix during evolution). What fraction of mutations change in their effects 

over evolutionary time, and how drastically? Do they change gradually or episodically, 

and at what rate? What are the consequences for evolutionary outcomes? Deep mutational 

scanning (DMS) experiments have detected epistasis among mutations within present-day 

proteins (3–9), but these studies do not address interactions with historical substitutions or 

reveal changes in mutations’ effects over evolutionary time. Some mutations have different 

effects when introduced into various present-day proteins, implying epistatic interactions 

with the substitutions that occurred as these proteins diverged from each other (10–14), but 

without polarizing and calibrating these differences with respect to time, it is not possible 

to illuminate the rate, direction, or regularity of the process by which mutations’ effects 

changed during evolution. Ancestral protein reconstruction studies have shown that the 

effects of particular mutations changed during particular phylogenetic intervals (15–22), but 

these works have examined only the beginning and end of an interval and therefore cannot 

reveal the temporal dynamics of epistasis.

Here we address this knowledge gap by using DMS to comprehensively assess the effect 

of introducing every possible amino-acid mutation into a series of reconstructed ancestral 

and extant proteins along a densely sampled phylogenetic trajectory. We used as a model 

the DNA-binding domain (DBD) of steroid hormone receptors, a family of essential 

transcription factors in bilaterian animals that mediate the actions of sex and adrenal steroids 

by binding to specific DNA sequences and regulating the expression of target genes (23–25). 

This approach allowed us to measure changes in the functional effect of every possible 

amino-acid mutation during a series of defined intervals across 700 million years of DBD 

evolution. To analyze these data, we developed a quantitative framework that treats each 

mutation’s effect as a trait that evolves probabilistically on a phylogeny, which we used 

to characterize the temporal dynamics, evolutionary consequences, and underlying genetic 

architecture of epistatic interactions.

Results

Phylogenetic deep mutational scanning

We first inferred the phylogeny of steroid and related receptors (Fig. 1A and fig. S1) 

and reconstructed the maximum a posteriori protein sequences of 7 ancestral DBDs: the 
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ancient progenitor protein whose duplication and divergence gave rise to the first steroid 

receptor (AncNR3), the ancestor of all extant steroid receptors (AncSR, which existed in the 

ancestor of all bilaterians), and 5 descendants of AncSR along two lineages – one leading 

to human glucocorticoid receptor (GR) and the other to the steroid receptor of the annelid 

Capitella teleta, which are among the most diverged of all functionally characterized extant 

DBDs (Fig. 1B and fig. S2). These 9 DBDs are separated by 8 phylogenetic intervals, 

each involving 3 to 42% sequence divergence. We constructed a yeast strain carrying a 

GFP reporter driven by a DNA response element for these DBDs and confirmed that all 

reconstructed ancestral DBDs bind to it, as expected based on prior studies (25). GFP 

fluorescence in this strain correlates well with binding affinity previously measured using 

fluorescence anisotropy (fig. S4D).

For each of the 7 ancestral and 2 extant DBDs, we generated a library of variants that 

contains all 19 possible amino-acid mutations at all 76 sites (fig. S3). We used a bulk assay 

of fluorescence-activated cell sorting (FACS) coupled with deep sequencing to quantify the 

GFP fluorescence of each variant with very high repeatability (r2 = 0.99 across 3 replicates; 

Fig. 1C and figs. S4 and S5). We calculated the effect of a mutation as the difference in the 

mean log10-GFP fluorescence (ΔF) between variants that differ by a single amino acid; we 

applied this approach to all mutations from the wild-type amino acid in any of the 9 DBDs 

to all other 19 amino acids.

Differences in the effect of a mutation between successive nodes on the phylogeny 

(ΔΔF) indicate that the mutation interacts with historical substitutions that occurred during 

that interval (Fig. 1D). We normalized mutations’ effects to remove global background-

dependence caused by different wild-type activity levels (fig. S6); after this correction, 

differences in a mutation’s effect among the 9 DBDs are attributable to specific epistatic 

interactions with intervening substitutions on the phylogeny.

Pervasive random changes in the effects of mutations

To analyze the evolutionary dynamics of epistasis over time, we adapted a classic 

quantitative framework for modeling trait evolution on phylogenies (26, 27), including 

the extent, direction, and rate of evolutionary change of the trait, the underlying genetic 

architecture, and the relative roles of selection and genetic drift. Our approach treats 

the phenotypic effect of each mutation as a trait that changes probabilistically across 

phylogenetic intervals, allowing us to ask these questions about epistatic change during 

historical DBD evolution.

Sixty percent of all mutations display significantly different effects among the 9 

backgrounds, and 22% differ in the direction of their effects (FDR ≤ 0.1; Fig. 2A). Most 

of the mutations that show no evidence of epistasis destroy protein function regardless of 

genetic background (ΔF always at the lower bound of measurement, −1.3). Only 5% of 

mutations have a nondestructive effect that did not vary significantly across the phylogeny.

Epistatic changes occurred during all 8 phylogenetic intervals (Fig. 2B and fig. S7A). 

Even in the shortest interval – during which there were only two sequence substitutions – 

the effects of more than 200 mutations changed significantly. During the other intervals, 
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even more mutations changed in effect. On average, each substitution is associated with 

significant changes in the effects of about 60 mutations (fig. S7B).

These epistatic changes were unbiased over time. Changes in the effects of mutations 

(ΔΔF) are distributed almost symmetrically around 0 (mean = −0.01; Fig. 2C). The fraction 

of mutations that reduce activity was nearly constant among the 9 intervals, as was the 

fraction of mutations that destroy activity (Fig. 2D). No individual mutations had effects 

that changed with a significant bias in either direction over time (fig. S7C). These data 

indicate that directional selection did not drive long-term epistatic changes in the effects 

of mutations, and mutational robustness did not change systematically over time. Further, 

the variance of the distribution of ΔΔF in each interval increased linearly with sequence 

divergence, rather than plateauing (Fig. 2, E and F), suggesting no role for stabilizing 

selection to maintain the effects of mutations within defined limits.

The effects of most mutations drifted gradually

To test whether epistatic change was gradual or episodic, we fit probabilistic models of 

trait evolution to the trajectory of changes in the effect of each mutation. Brownian motion 

represents a simple model of gradual evolution at a constant rate without directional bias: 

changes in the trait value among phylogenetic intervals are normally distributed when 

normalized for the length of the interval, with a mean change of zero and constant variance 

per unit sequence divergence (which represents the rate of evolution). In the alternative 

model of episodic evolution, the normalized variance is a free parameter for each interval, 

which allows the rate to differ among intervals (Fig. 3A). We fit both models to the 8 ΔΔF 
values of each mutation and used a likelihood-ratio test to compare the fit of the two models.

We found that the Brownian motion model was the best-fit model for 92% of mutations that 

changed epistatically (Fig. 3, B and C), irrespective of whether mutations’ effects changed 

rapidly or slowly (Fig. 3D). For the 8% of mutations best fit by the episodic model, effects 

were nearly constant in most intervals with dramatic changes during one or a few intervals. 

The functional effects of most mutations therefore evolved as a random variable that changes 

gradually along the phylogeny at a characteristic rate and without bias. We call this process 

epistatic drift.

Phylogenetic cross-validation confirmed that the effects of most mutations evolved at a 

steady rate across the phylogeny (Fig. 3E). For each mutation, we predicted the epistatic 

change expected in each of the 8 intervals given the rate of epistatic change estimated from 

the 7 other intervals and then compared these predictions to experimental observations, 

pooling mutations with similar estimated rates (Fig. 3F). Predicted and observed epistatic 

changes were strongly correlated (Spearman’s ρ ≥ 0.94 for every interval; Fig. 3G), 

indicating that mutations’ relative rates of epistatic change did not strongly vary along 

the phylogeny. The absolute rate of epistatic change, however, was systematically faster 

than predicted in some intervals and slower in others: the mean rate of epistatic change 

for all mutations in each interval ranges from 0.7 to 1.4 of the average across the 

phylogeny (Fig. 3H). Epistatic change in the effect of each mutation therefore varies 

stochastically across intervals (consistent with Brownian motion), but this variation is 

correlated among mutations; as a result, the total amount of epistatic change across all 
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mutations is systematically greater in some intervals than others. This pattern is likely to 

arise because the total epistatic change depends on the particular substitutions that fixed 

during an interval, and some substitutions are more epistatic than others, interacting more 

strongly or with a larger number of mutations. The mean rate of epistatic change was not 

systematically different during intervals following gene duplications.

These observations have two major implications for evolution and the genetic architecture of 

epistatic interactions (Fig. 3I). First, epistatic interactions within the DBD are dense: most 

mutations’ effects changed gradually because of weak interactions with many substitutions, 

and each substitution typically modified the effects of many mutations (Fig. 2B). If most 

epistatic changes were triggered by rare, large-effect modifiers, the distribution of ΔΔF 
would be enriched near zero and at extreme values, a pattern that we observed for only a 

small fraction of mutations. Most historical contingency is therefore the cumulative result of 

many small-effect epistatic modifications. Against this background of gradual epistatic drift, 

a few mutations occasionally undergo dramatic changes in their effects.

Second, some mutations are more epistatically sensitive than others, with effects that 

diverged more rapidly as substitutions accumulated. Conversely, some substitutions are more 

epistatic than others, changing the effects of more target mutations or causing changes 

of greater magnitude. As a result, there are systematic differences among intervals in the 

average rate of epistatic change across all mutations.

Mutations vary in memory length and the timescale of contingency

Because the effect of each mutation drifts at random at a steady rate, there should be 

a characteristic time period after which the mutation’s effect can no longer be reliably 

predicted from its known effect at some other time. We call this period the mutation’s 

memory length, the measure of which is the memory half-life – the amount of sequence 

divergence over which the correlation of a mutation’s effect is reduced by half. To estimate 

the memory half-life, we partitioned mutations into deciles by their rate of epistatic change 

and calculated for each decile how correlated the effects of mutations are between each 

pair of DBDs (Fig. 4, A to D). We modeled the correlation coefficient as an exponentially 

decaying function of sequence divergence. We then used this relationship to estimate the 

memory half-life of each mutation from its rate of epistatic change.

Reflecting the wide variation in the rate of epistatic change among mutations, memory 

half-lives range from just 3% sequence divergence to virtually infinite (Fig. 4E). Mutations 

with the shortest half-lives therefore forget the effects they had in the past after just a few 

sequence substitutions at other sites: at any moment, their effect and likely fate depend 

primarily on the substitutions that occurred most recently during their history.

Relative to the timescale of DBD evolution, about one fourth of all mutations have short 

memories (half-life < 50% sequence divergence); in this group, the effects in present-day 

human GR are almost completely independent of their initial effects in AncSR (r2 = 0.10, 

Fig. 4F). 20% of mutations have medium memory (half-life 50 to 200%), with present-day 

effects that can be partially predicted from their initial effects (r2 = 0.68). The remaining 
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54% of mutations have long memories (>200% divergence) and interacted negligibly with 

historical substitutions, retaining their initial effects throughout DBD evolution (r2 = 0.98).

Contingency of historical sequence evolution

We next focused on the subset of mutations that occurred during historical DBD evolution. 

We first assessed the functional effects of the 79 substitutions that occurred during the 

phylogenetic intervals that we experimentally characterized (Fig. 5, A and B). When 

measured in the ancestral background in which they historically occurred, substitutions 

that reduce activity by ΔF < −0.2 were nearly absent; of the few exceptions, most fixed 

during intervals immediately after gene duplication (fig. S8A). This represents a 29-fold 

depletion compared to the set of all mutations, the majority of which have ΔF < −0.2. These 

results imply that the DBD evolved primarily under purifying selection against mutations 

that strongly reduce activity, and they establish ΔF = −0.2 as a boundary that roughly defines 

the evolutionary accessibility of mutations under purifying selection.

Epistasis shaped the fate of most historical substitutions, which occurred during limited 

windows when they were transiently accessible. Of all substitutions that fixed between 

AncSR and any extant steroid receptor on our phylogeny, 43% have short or medium 

memories (Fig. 5C). Among the short-memory substitutions, the majority were inaccessible 

in AncSR (ΔFAncSR < −0.2), implying that they became accessible in one or more 

descendant proteins because of permissive epistatic substitutions, which render otherwise 

deleterious mutations neutral or advantageous. The remaining short-memory substitutions 

were accessible in AncSR (ΔFAncSR ≥ −0.2), but almost all of these became subsequently 

inaccessible because of restrictive substitutions, which render previously neutral or 

advantageous substitutions deleterious (fig. S8B). By contrast, 95% of long-memory 

substitutions were accessible in AncSR and remained so across the entire phylogeny (fig. 

S8B). Medium-memory substitutions displayed an intermediate pattern. The evolutionary 

fate of long-memory substitutions could therefore have been reliably predicted from their 

initial effects, but the accessibility of substitutions with short or medium memory depended 

on other substitutions that occurred during history.

Epistasis also shaped the fate of the many mutations that did not become substitutions. Of 

all short-memory mutations that were accessible in AncSR, 90% became inaccessible in 

one or more descendant proteins, indicating that evolutionary paths to them were closed by 

restrictive substitutions (Fig. 5D). Conversely, 55% of the short-memory mutations that were 

inaccessible in AncSR subsequently became accessible because of permissive substitutions. 

Overall, two-thirds of short-memory mutations and one-third of medium-memory mutations 

changed in accessibility among the 9 DBDs we tested, with each category of mutations 

being accessible in 2.4 and 4.9 of the 9 DBDs on average (Fig. 5E).

These data indicate that epistatic interactions with the particular set of substitutions that 

occurred along the phylogeny contingently determined the evolutionary fate not only of 

the mutations that fixed historically because of permissive substitutions, but also of those 

that did not have the opportunity to fix because of restrictive substitutions. Studying only 

the sequence changes that occurred during evolution therefore underestimates the role of 

historical contingency: doing so cannot detect the many evolutionary roads that were closed 
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off contingently, but which could have been taken if the trajectory of sequence changes at 

interacting sites had unfolded differently.

Causes of variation in memory length

Finally, we sought to identify the factors that determine a mutation’s memory length. Some 

variation in memory length is attributable to the sequence site at which a mutation occurs: 

the median memory half-life of mutations to any of the 19 mutant states at the same site 

varies among sites from 11% to >200% divergence (Fig. 6A). But this variation is not 

associated with any obvious structural or functional properties: the median memory half-life 

of a site is poorly correlated with relative solvent accessibility, rate of substitution, rate of 

substitution at physically adjacent sites, distance to the DNA-binding residues, and distance 

to the dimerization interface (r2 < 0.1 for every factor; fig. S9). Further, memory length 

varies extensively within each site, with 59 of 76 sites in the DBD containing both short- and 

long-memory mutations. As a consequence, predicting a mutation’s memory half-life by the 

median of all mutations at that site achieves r2 of only 0.25 (Fig. 6B).

Another possibility is that certain types of mutations (to and from the same pair of states) 

might be consistently associated with memory length, irrespective of the sites at which they 

occur. But predicting the memory length of individual mutations from the median memory 

length of all mutations of the same type at any site achieved r2 of only 0.13 (Fig. 6C). 

Explaining memory length variation therefore requires analysis of each particular mutation 

at each site in the protein.

Estimating a mutation’s memory length requires experiments in multiple genetic 

backgrounds across a phylogenetic trajectory. But how many backgrounds are necessary? 

When the rate of epistatic change of mutations is estimated from 2 backgrounds randomly 

chosen from the 9 we assayed, the correlation with the rate measured using all 9 

backgrounds is on average r2 = 0.40, and the rate of epistatic change is systematically 

underestimated (Fig. 6, D and E). The correlation improves as more backgrounds are 

sampled and reaches 0.8 when estimates are based on 5 backgrounds. A moderate number 

of experiments is therefore sufficient to provide a rough estimate of a mutation’s rate of 

epistatic change and hence its memory length.

Robustness to uncertainty in ancestral sequence reconstruction

Our conclusions are robust to uncertainties in the reconstruction of ancestral sequences. 

The ancestral DBDs were generally inferred with high confidence and contained zero to 

10 sites at which more than one amino acid state is plausible. For each ancestral DBD, 

we generated an “Alt-All” reconstruction, which contains the alternative plausible amino 

acid at all ambiguously reconstructed sites (28); this sequence represents the least likely of 

all plausible reconstructions and allows a conservative estimate of robustness to sequence 

uncertainty. We then constructed a complete DMS library of each Alt-All protein and 

repeated all of our experiments and analyses. Although the effects of some mutations differ 

between the Alt-All and maximum-posterior-probability reconstructions, all conclusions 

concerning the temporal dynamics of epistasis were unchanged (fig. S10).
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Quantifying evolutionary unpredictability

Prior experimental studies have identified cases in which the functional effects of a few 

mutations changed dramatically during particular intervals of evolutionary history (12, 15–

18, 29, 30). Our observations show that such rare, large-effect epistatic modifications occur 

against a background of pervasive gradual drift in the effects of the majority of mutations 

(11, 20, 31–36). Most epistatic changes across DBD history were of small magnitude when 

they occurred, but across an evolutionary trajectory of moderate length (<50% sequence 

divergence), they were sufficient to completely or partially decorrelate the effects of the 

majority of mutations from their initial effects and dramatically alter the set of available 

opportunities for future sequence change. Because the fold and function of all proteins 

depend on interactions among many residues, we expect that epistatic drift will be a 

widespread feature of protein evolution, but the temporal dynamics and distribution of 

memory lengths may depend on each protein’s structural architecture, function, and the 

selective regime under which it evolved.

Our findings establish strong limits on the ability to predict future evolution and interpret 

evolutionary history, but they also provide a quantitative framework for understanding those 

limits. Classical evolutionary theories assume that the constraints imposed by purifying 

selection do not change as sequences diverge, so the effects and evolutionary fate of 

mutations can be predicted or retroactively inferred based on their effects measured in the 

present. Our results show that this assumption of constancy and independence is wrong for 

about half of DBD mutations, which have short or medium memories. Because epistatic 

modification occurs at a mostly constant rate for each mutation, however, an estimate of 

memory length from experimental data across phylogenetic time can quantify the extent to 

which any mutation’s effect can be predicted at any point in time, either future or past. 

Further, although point projections of the effects of short- and medium-memory mutations 

across long timescales are unreliable, a probability distribution of those effects can be 

generated if we know any mutation’s memory length and its effect at some other time. 

Ancestral protein reconstruction can replace predictions with experimental knowledge, but 

only for proteins in the past.

A probabilistic description of contingency and uncertainty using memory length does not 

require detailed knowledge of the particular genetic interactions that cause epistatic change. 

If we had microscopic knowledge of all the interactions that modify each mutation’s effect 

and a dense phylogenetic reconstruction of past trajectories of sequence change, we could 

reliably predict the effect of every possible mutation in any genetic background. But 

even complete knowledge like this would not be sufficient to predict future evolutionary 

trajectories: the accessibility of each future mutation depends on the chain of epistatic 

substitutions that occur before it, many of which will occur by chance. We can use 

experimental and phylogenetic data to tame evolutionary uncertainty by recognizing and 

quantifying it, but the future will always surprise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Phylogenetic deep mutational scanning.
(A) Phylogeny of the DNA-binding domain (DBD) of steroid and related receptors. Circles, 

DBDs characterized here by deep mutational scanning. SRs, steroid receptors; ERs, estrogen 

receptors; kSRs, ketosteroid receptors—including glucocorticoid receptor (GR). Complete 

phylogeny in fig. S1. (B) Phylogenetic relations among the 9 characterized DBDs. Colors 

distinguish trajectories to C. teleta SR and human GR. Sequence divergence (percent) and 

number of sequence differences (parentheses) in each interval are shown. (C) Sort-seq 

assay for DBD activity. For each DBD, a library containing all possible single-amino acid 

mutations was generated using microarray-based synthesis and cassette assembly (fig. S3) 

and cloned into yeast carrying a GFP reporter; ERE, estrogen response element. Activity of 

each mutant was measured by sorting the library of cells into fluorescence bins, inferring the 

distribution of each mutant among bins by sequencing, and calculating the mean log10-GFP 

fluorescence (F). Hypothetical distributions for 3 variants with high, medium, and low F 
are shown. (D) Tracing epistatic change in mutational effect across the phylogeny using 

example mutation S9P. The effect on each DBD’s activity (points) was quantified as the 

change in mean log10-GFP fluorescence (ΔF). Horizontal axis, each DBD in order on the 

phylogeny, positioned by sequence divergence and colored by trajectory. ΔΔF, change in the 

mutation’s effect between a pair of DBDs, caused by epistatic interactions with intervening 

substitutions. Error bars, SEM (n = 3). Dashed lines, upper and lower measurement bounds.
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Fig. 2. Pervasive random changes in the effects of mutations.
(A) Maximum and minimum effect of each mutation (points) across the 9 DBDs, colored 

according to the stacked column at right, which shows the proportion of mutations in four 

categories: pink, significant effect of DBD background on ΔF and the sign of ΔF different 

between the maximum and minimum; red, significant effect of background but no sign 

difference; black, no significant effect of background and ΔF within measurement limits; 

blue, ΔF at the lower bound of measurement in all 9 DBDs. Significance was evaluated 

by Welch’s ANOVA, Benjamini-Hochberg FDR ≤ 0.1. (B) Number of mutations in each 

phylogenetic interval that changed significantly in ΔF (t-test between parent and child node, 

FDR ≤ 0.1), plotted versus the number of amino acids that diverged in the interval. (C) 

Distribution of epistatic change in the effect of every mutation during every phylogenetic 

interval (ΔΔF). Dark grey, ΔΔF significantly different from 0. Mutations always at the lower 

bound of measurement were excluded. (D) Fraction of mutations in each DBD with ΔF < 

0 (circles) or ΔF at the lower bound of measurement (triangles). (E) Distribution of ΔΔF 
of all mutations for the protostome-annelid interval or the AncSR1-human GR interval. 

The variance of the distribution (Var) quantifies the total epistatic change in the effects of 

all mutations during an interval. d, sequence divergence. (F) Total epistatic change as a 

function of sequence divergence across the phylogeny. Red dots, each of the 8 independent 

phylogenetic intervals between characterized DBDs; black, all composite intervals. Dashed 

lines, best-fit power function for all (black) or the 8 independent intervals (red).
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Fig. 3. Effects of most mutations changed gradually at characteristic rates.
(A) Models of the tempo of epistatic change. Null model, the amount of change in a 

mutation’s effect per substitution in an interval (unit ΔΔF) is randomly drawn from a normal 

distribution centered at 0; the variance is the same among intervals, so the mutation’s effect 

changes gradually at a constant expected rate as substitutions accrue. Alternative model, 

the variance may differ among phylogenetic intervals (blue vs. red), leading to episodic 

changes in a mutation’s effect. (B) Distribution of the p-value of the likelihood-ratio test 

(LRT) comparing gradual and episodic models for each mutation. Darker grey, mutations for 
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which the gradual model is rejected (FDR ≤ 0.2). Mutations always at the lower bound of 

measurement were excluded from this analysis. (C) Distribution of the normalized amount 

of epistatic change in each interval, for all mutations better fit by the gradual model (left) 
or the episodic model (right). Normalized ΔΔF, ΔΔF of a mutation in an interval divided by 

σd1/2, where σ is that mutation’s average rate of epistatic change and d is the length of the 

interval. Gray columns, observed data; red line, distribution expected under the null model. 

(D) Trajectory of changes in the effect of two example mutations that are better fit by the 

gradual model (left) or episodic model (right); in each category, one evolves rapidly and the 

other slowly. Each mutation’s p-value in the LRT is shown; gray box, normalized changes 

in the mutation’s effect across each of the 8 intervals. (E) Phylogenetic cross-validation. In 

the example shown, ΔΔF in interval 1 is predicted from the average rate of epistatic change 

measured across intervals 2–8 (grey box). (F) Distribution of observed ΔΔF during interval 

1 (gray columns) and predicted by cross validation (red line). Mutations were grouped into 

deciles by their rate of epistatic change across intervals 2–8; predictions are shown for 

deciles with the slowest, median, or fastest rates. (G) Mutations’ relative rates of epistatic 

change are consistent across phylogenetic intervals. Points, deciles of mutations grouped 

by the predicted rate of epistatic change; observed epistatic change in an plotted against 

that predicted by cross-validation. r, Pearson’s correlation coefficient; ρ, Spearman’s rank 

correlation; dashed line, linear regression. (H) Among-interval differences in average rate 

of epistatic change. Each column shows the mean rate of epistatic change of all mutations 

in one phylogenetic interval, normalized so that the mean across all intervals equals 1. 

Error bars, estimated standard deviation obtained by bootstrap-resampling of mutations. 

Asterisks, intervals immediately following gene duplication. (I) Inferring the architecture of 

epistatic interactions between substitutions (black boxes) and a focal mutation (star) from 

phylogenetic DMS. Left, gradual changes in the mutation’s effect during evolution arise if 

many substitutions act as epistatic modifiers (arrows, with thickness showing the strength of 

interaction), yielding a normal distribution of ΔΔF per substitution. Right, episodic changes 

arise from interactions with only a few substitutions, yielding a distribution heavy at zero 

and the tails. In either case, strong vs. weak interactions cause rapid (top) vs. slow (bottom) 

epistatic change. The fraction of all mutations in each category in our experiments is shown.

Park et al. Page 15

Science. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Memory length of mutations and the timescale of historical contingency.
(A-D) Measuring the memory length of mutations. (A) Mutations were grouped into deciles 

by their rate of epistatic change (σ, expected standard deviation of ΔΔF per 1% sequence 

divergence). (B) The effects of mutations in each decile were compared between every pair 

of DBDs; shown are comparisons between AncSR and human GR (42% divergence). (C) 

The squared Pearson correlation coefficient (r2) for each DBD pair was plotted against the 

sequence divergence of that pair. Dotted line, best-fit exponential decay curve; memory half-

life, sequence divergence at which r2 = 0.5. (D) Relationship between the rate of epistatic 

change and memory half-life inferred by fitting a power function (red) to the mean rate of 

epistatic change and memory half-life of the deciles. This relationship was used to calculate 

the memory half-life of each mutation from its rate of epistatic change. E) Distribution 

of memory half-life among mutations. Mutations were classified into short-, medium-, and 

long-memory categories using cutoffs of 50% and 200% divergence. (F) Comparing the 

effects of mutations between AncSR and human GR (42% divergence) for each memory 

category. Red dots, mutations with significant difference in ΔF (t-test, FDR ≤ 0.1); black, no 

significant difference.
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Fig. 5. Impact on sequence evolution of memory length and initial functional effect.
(A) The effect of a substitution at the time it fixed during history was calculated as the mean 

of ΔFs measured by DMS in the nearest ancestral and descendant nodes. (B) Comparing 

the effects of the 79 substitutions that occurred along the phylogenetic trajectories we 

characterized to the effects of all possible mutations. Substitutions are 29-fold enriched for 

ΔF ≥ −0.2 compared to mutations, providing an estimate of the threshold of accessibility 

during DBD evolution. (C) Distribution of the initial effect (ΔF on AncSR) of 275 

substitutions that fixed between AncSR and any extant DBD in our phylogeny. Distributions 

are shown by memory half-life category. Enrichment of substitutions with ΔF ≥ −0.2 relative 

to mutations is shown. (D) Left, proportion of initially accessible mutations (ΔFAncSR 

≥ −0.2) that become inaccessible in at least one descendant DBD. Right, proportion of 
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initially inaccessible mutations that become accessible in at least one descendant DBD. (E) 

Distribution of the number of characterized DBDs in which each mutation is accessible 

(ΔF ≥ −0.2), classified by memory-length category. The percentage of mutations that were 

accessible in some but not all DBDs is shown.
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Fig. 6. Variation of memory half-life of mutations among and within sites.
(A) Distribution of memory half-life among sites. Each line shows the range of memory 

half-life of all mutations at one site in the DBD sequence. (B-C) Predicting the memory 

half-life of a mutation (points) by the median memory half-life of all possible mutations 

at the same site (B) or by the median of mutations of the same type (between the same 

wild type and mutant amino acid) at all sites (C). Dashed line, linear regression. (D-E) 

Effect of number of DBDs characterized by DMS on estimates of rate of epistatic change. 

The rate of epistatic change of every mutation was estimated using a subset of the 9 DMS 

experiments; the relationship between the estimated rate from each subset to that estimated 

from all 9 experiments was analyzed by linear regression. The graphs show the distribution 

of correlation coefficient (D) and best-fit regression slope (E) across every possible subset of 

a given size.
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