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Airway remodeling encompasses the structural alterations in
asthmatic compared with normal airways. Airway remodeling in
asthmatic patients involves a wide array of pathophysiologic
features, including epithelial changes, increased smooth muscle
mass, increased numbers of activated fibroblasts/myofibroblasts,
subepithelial fibrosis, and vascular changes. Multiple cytokines,
chemokines, and growth factors released from both inflammatory
and structural cells in the airway tissue create a complex signaling
environment that drives these structural changes. However, recent
investigations have changed our understanding of asthma from a
purely inflammatory disease to a disease in which both
inflammatory and structural components are equally involved.
Several reports have suggested that asthma primarily develops
because of serious defects in the epithelial layer that allow
environmental allergens, microorganisms, and toxins greater
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access to the airway tissue and that can also stimulate the release of
mediators from the epithelium, thus contributing to tissue
remodeling. Lung-resident fibroblasts and smooth muscle cells
havealsobeen implicated in thepathogenesis ofairwayremodeling.
Remodeling is assumed to result in persistent airflow limitation, a
decrease in lung function, and airway hyperresponsiveness.
Asthmatic subjects experience an accelerated decrease in lung
function compared with healthy subjects, which is proportionally
related to the duration and severity of their disease. (JAllergy Clin
Immunol 2011;128:451-62.)

Key words: Asthma, remodeling, airway smooth muscle, fibrosis,
corticosteroid
Airway remodeling encompasses alterations in structural cells
and tissues in asthmatic as opposed to healthy airways. This was
first described more than 85 years ago by Huber and Koessler1 in
their classic description of fatal asthma. However, it was not until
recently that these alterations were found to contribute to the path-
ogenesis of asthma. Asthma was previously presumed to develop
as the result of abnormal contraction of airway smooth muscle
(ASM; bronchospasm) caused by an intrinsic abnormality in
airway myocytes. The central role of inflammation in the patho-
genesis of asthma was proposed after numerous reports demon-
strating the influx of various inflammatory cells and mediators
within bronchial biopsy specimens obtained from patients with
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varying disease severity.2-4 Moreover, the beneficial clinical ef-
fect of steroids has confirmed the key role inflammation plays
in the pathogenesis of asthma. Although these reports have set
the groundwork for the ‘‘inflammation theory’’ of asthma, airway
structural alterations revealed by various groups5-9 have added
more complexity to the understanding of the development of
asthma. These alterations have been shown to contribute to the
symptoms and physiologic abnormalities seen in asthmatic pa-
tients. It is now believed that chronic inflammation drives the re-
modeling response, leading to structural alterations responsible
for the pathogenesis and clinical manifestations of asthma.

TISSUE REMODELING

Remodeling in general
Tissue remodeling refers to modifications to the normal

composition and structural organization of tissues, which usually
occur in response to various mechanical or physiologic forms of
stress. Remodeling occurs in a wide range of tissues and organs,
including the skin,10 blood vessels,11 heart,12 gastrointestinal
tract,13,14 airways, and lung, and can be observed in almost all tis-
sues susceptible to chronic injury, inflammation, or both.
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Airway remodeling
Airway remodeling occurs in patients with several pulmonary

disorders, such as asthma, chronic obstructive pulmonary disease,
cystic fibrosis, idiopathic pulmonary fibrosis, and systemic scle-
rosis. In patients with these diseases, inflammatory conditions are
associated with cellular and structural changes that result in
thickening of the airway wall, thereby leading to airway
narrowing and airflow limitation. Whereas remodeling in patients
with chronic obstructive pulmonary disease involves structural
changes to the small airways and remodeling in patients with
cystic fibrosis is characterized by fibrotic, glandular, muscular,
and vascular changes throughout the lung, airway remodeling in
patients with asthma involves a wide array of pathophysiologic
features, including epithelial changes, increased smooth muscle
mass, increased numbers of activated fibroblasts/myofibroblasts,
subepithelial fibrosis, and vascular changes primarily around the
large airways. However, an important involvement of the small
airways in the pathogenesis of asthma has been described.
HISTOPATHOLOGIC FEATURES OF REMODELING

IN ASTHMATIC PATIENTS

Epithelial alterations
Morphologic changes to the airway epithelium are a key

feature of airway remodeling in asthmatic patients. Epithelial
alterations in asthmatic patients include shedding of the epithe-
lium, loss of ciliated cells (Fig 1, A and B, white arrows), goblet
cell hyperplasia, and upregulation of growth factors, cytokines,
and chemokines.15-19 Many reports have also suggested that the
barrier function of the airway epithelium in asthmatic patients
is dysfunctional, exhibiting a breakdown in epithelial tight
junction integrity along with impaired repair after injury.20,21

However, it is important to note that epithelial changes are not a
characteristic feature only of asthma and can be observed in
patients with various pathologic conditions of the lung.
MUCUS: A substance lining membranes that functions to preserve the

membranes, to act as a barrier, and to transport trapped material (in

conjunction with cilia). Normal airway mucus is 90% water, and the

remaining 10% is composed of protein, carbohydrate, and lipid.Mucin is

a glycoprotein constituent of mucus.

OPTICAL COHERENCE TOMOGRAPHY: A new bronchoscopic imaging

technique that has higher spatial resolution than computed tomography

and does not involve ionizing radiation.

REACTIVE OXYGEN SPECIES (ROS): Substances typically generated at

a low frequency during oxidative phosphorylation in the mitochondria

and in a variety of other cellular reactions. ROS are capable of exerting

cellular damage by reacting with intracellular constituents, such as DNA

and membrane lipids.

TIGHT JUNCTION: A dynamic network of proteins that help seal the

apical space between epithelial cells and regulate epithelial permeabil-

ity. Proteins that are found in the tight junction can include junctional

adhesion molecule 1, occludin, and claudins. The cysteine and serine

protease components of the house dust mite allergen (Der p 1) can

cleave junctional proteins.

VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF): The dominant

growth factor controlling angiogenesis. Anti-VEGF neutralizing anti-

bodies are used in cancer therapy.

e glossary.



FIG 1. Histopathology of severe asthma. A and B, Bronchial biopsy specimens stained with hematoxylin

and eosin at low magnification (Fig 1, A) and higher magnification (Fig 1, B) demonstrate structural altera-

tions of the airway wall in asthma, including epithelial shedding (white arrows) and increased airway

smooth muscle mass (gray arrows). C, Severe asthma is also associated with increased subepithelial colla-

gen deposition (red stain; black arrow).
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Mucus secretion and goblet cells
Mucus hypersecretion of the mucins MUC5AC and MUC5B

by goblet cells is a pathophysiologic feature of airway remodeling
in asthmatic patients.22 The origin of these goblet cells is not well
understood, although Clara cells and ciliated cells have been im-
plicated as goblet cell progenitors.22 TH2 cytokines (predomi-
nantly IL-9 and IL-13), as well as IL-1b, TNF-a, and COX-2
and their associated intracellular signaling pathways, have been
shown to be involved in the upregulation of mucin synthesis
and the development of goblet cell hyperplasia.

Subepithelial fibrosis
Fibroblasts are large, flat stellate cells that reside in close

proximity to the basal epithelium. In an inflammatory environment
such as the asthmatic airway, fibroblasts are activated/differenti-
ated into myofibroblasts, which secrete proinflammatory media-
tors and extracellular matrix (ECM) proteins, including collagens
I, III, andV; fibronectin; tenascin; lumican; and biglycan.23-26 The
ECM compartment of the airway wall is dynamic, reflecting the
net balance of synthesis and degradation that is regulated by the
actions of matrix metalloproteinases (MMPs) and tissue inhibi-
tors of metalloproteinases (TIMPs).27 However, a shift in this
balance toward increased matrix deposition results in fibrosis,
leading to altered structure and abnormal mechanical properties.
In asthmatic patients susceptibility to injury and aberrant repair
responses result in persistent activation of fibroblasts, leading to
subepithelial fibrosis (Fig 1, C, black arrow).28

Increased smooth muscle mass
ASM cells constitute the main structural cells within the

bronchi, and the remodeling of ASM is considered to be the
primary cause of airway obstruction (Fig 1,A and B, gray arrows).
This is because in asthmatic airways ASM mass significantly in-
creases because of ASM cell proliferation (hyperplasia) and in-
creased cell size (hypertrophy). Additionally, the migration of
ASM cells toward the epithelium is a contributing factor. In addi-
tion to structural changes, ASM cells participate in the inflamma-
tory and remodeling process through the expression of cellular
adhesion molecules (CAMs), receptors for cytokines (eg, TNF-
a), chemokines (RANTES, eotaxin, macrophage inflammatory
protein 1a, and IL-8), and Toll-like receptors.29,30 A wide range
of inflammatory mediators, such as TNF-a, IL-1b, and IFN-g,
have been shown to induce the expression of intercellular adhe-
sion molecule 1 (ICAM-1) and vascular cell adhesion molecule
1 (VCAM-1) on cultured ASM cells.31 The surface expression
of CAMs by ASM cells might be pivotal in regulating interactions
with a variety of inflammatory cells, including eosinophils and
T cells.31,32

Angiogenesis
Accumulating evidence has indicated an abnormal increase in

the number and size of microvessels within bronchial tissue in
remodeled airways.33 This has been observed mainly below the
basal lamina in the space between the muscle layer and the sur-
rounding parenchyma. An imbalance between vascular endothe-
lial growth factor (VEGF) and angiopoietin-1 has been shown to
be involved in these abnormalities.34 In fact, VEGF acts by in-
creasing the permeability of these abnormal blood vessels,35 re-
sulting in vessel dilation and edema, which contribute to airway
narrowing. In addition to providing nutrition to the airways, these
vessels are the source of inflammatory cells and plasma-derived
mediators and cytokines.33

MECHANISMS OF AIRWAY REMODELING

Inflammation
Inflammation is believed to be the driving force behind most

features of airway remodeling (Fig 2).Multiple cytokines, chemo-
kines, and growth factors released from both inflammatory and
structural cells in the airway tissue create a complex signaling en-
vironment that drives airway remodeling. It is now believed that
IgE and mast cells are implicated in the acute response and eosin-
ophils and their highly basic granule-associated proteins in the late
response, with T-cells, particularly TH2 cells, orchestrating these
responses through the production of cytokines, such as IL-4, IL-5,
IL-9, and IL-13.36-39 In asthmatic patients airway inflammation
usually involves TH2 cells, which are thought to modulate the in-
flammatory response through the release of TH2 cytokines that are
essential for IgE synthesis, chemokine production, airway eosin-
ophilia, smooth muscle hyperplasia, and mucus production.40-42

Although TH2 cells are central to the pathogenesis of mild-to-
moderate asthma, as the disease becomes more severe and
chronic, TH1 cells begin to play a role, possibly by mediating a
regulatory function in patientswith allergic asthma through the se-
cretion of IFN-g, which inhibits TH2 cell proliferation.

42

Recently, a third subset of effector TH cells has been identified
in patients with severe asthma that exclusively produces IL-17 cy-
tokines (TH17 cells).43-45 The involvement of TH17 responses in
the pathogenesis of asthma has been shown by the overexpression
of IL17 mRNA in the airways in a murine asthma model.46 This
was confirmed by Al-Ramli et al,47 who showed that IL-17



FIG 2. Inflammatory mediators and cell types involved in the pathogenesis of airway remodeling in

asthmatic patients. Asthma-associated inflammation primarily involves TH2 and TH17 pathways. MCP-1,

Monocyte chemoattractant protein 1; MIP-1a, macrophage inflammatory protein 1a.
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expression was significantly increased in the airways of asthmatic
subjects compared with that seen in healthy control subjects.
A critical role for TH17-related cytokines in airway remodeling
has now been suggested, which could be due to interactions be-
tween these cytokines and structural cells.
Eosinophils play a critical role in tissue remodeling. They

constitute the main source of the profibrotic cytokine TGF-b,
which plays an important role in orchestrating tissue remodel-
ing.4,48 Moreover, eosinophils support fibroblast proliferation,
collagen synthesis, and myofibroblast maturation.49,50 In the air-
ways of asthmatic subjects, IL-3, GM-CSF, and eotaxins 1, 2, and
3 drive the development of eosinophils fromCD341 bonemarrow
precursor cells, whereas IL-5 enhances their maturation and re-
cruitment into the airways.51,52 Eosinophils are a rich source of
granule basic proteins, eicosanoids, cysteinyl leukotrienes,
tissue-damaging reactive oxygen species, and a range of cyto-
kines and chemokines.53

However, the central role of eosinophils in the inflammatory
response of asthmatic patients has recently been challenged.
Three injections of a humanized anti–IL-5 mAb given 2 weeks
apart to asthmatic patients had a dramatic effect on circulating
and sputum eosinophil counts but paradoxically did not affect any
of the clinical outcome measures of asthma, including lung
function.54,55 Other studies, however, have demonstrated that eo-
sinophil depletion through this approach was able to modify cer-
tain matrix proteins in the subepithelial basement membrane,
such as tenascin C, lumican, and procollagen III.56 Persistence
of some eosinophils in asthmatic airway tissue despite IL-5
blockade could be due to the loss of IL-5 receptors on eosinophils
on their recruitment into the airways.57,58 These remnant eosino-
phils have been suggested to be responsible for sustained clinical
manifestations of asthma. Other studies have clearly indicated
that anti–IL-5 should only be administered to asthmatic patients
with high eosinophil counts to be effective.59
Epithelial injury
Recent intensive investigations have changed our understand-

ing of asthma from a purely inflammatory disease to a disease in
which both inflammatory and functionally active structural
components are equally involved. The bronchial epithelium
represents the barrier that protects the internal milieu of the
lung against external environmental factors.28 Several reports
have suggested that asthma primarily develops because of serious
defects in the epithelial layer that allow environmental allergens,
microorganisms, and toxins greater access to the airway tis-
sue.28,60 This injury to the epithelial layer in asthmatic patients
is believed to be associated with an impaired repair process that
drives the inflammatory and remodeling responses in the underly-
ing submucosa.61 Environmental (pathogens, allergens, pollu-
tants, and cigarette smoke) or mechanical stress factors
resulting in epithelial injury can also stimulate the release of me-
diators from the epithelium, which contributes to tissue remodel-
ing. Holgate20 and others have recently reported defective
epithelial tight junctions in biopsy specimens from asthmatic pa-
tients and in association with impaired barrier function.
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Several important mediators of remodeling, including TGF-b
and chemokines, are released from damaged/repairing epithelium
or in response to inflammatory mediators, such as IL-13. These
mediators have been shown to play an important role in the
development of subepithelial fibrosis and increased ASM
mass.48,62 This has led Holgate et al63 to propose that asthma ini-
tially develops as a disorder in epithelial-mesenchymal interac-
tions. Mesenchymal (structural), vascular, and neural networks
play a critical role in airway development and are programmed
to interact closely with the epithelium, defined as the epithelial-
mesenchymal trophic unit. In fact, Holgate60 has recently
proposed that the epithelial-mesenchymal trophic unit becomes
chronically reactivated in asthmatic patients, leading to a micro-
environment that supports chronic inflammatory responses. An
additional role of the epithelium in airway remodeling in patients
with severe asthma has recently been shown by Johnson et al.64

This study demonstrated that the epithelial-to-mesenchymal tran-
sition, which is classically considered to be primarily active dur-
ing development, can occur in the airway epithelia of mice
chronically exposed to an aeroallergen. In this process epithelial
cells downregulate tight/adherens junction proteins; increase
their expression of mesenchymal proteins, such as procollagen I
and a-smooth muscle actin; and cross the basement membrane
to take up residence in the airway submucosa. However, more re-
search is needed to determine the physiologic contributions of the
epithelium in the pathogenesis of asthma and to identify novel
therapeutic targets able to protect the airways from asthma-
triggering environmental factors.
Cell-cell interactions
Cell-cell interactions have been shown to be critical for the

interaction of many inflammatory and structural cells leading to
airway tissue remodeling.Mast cells have been reported to trigger
the release of fibroblast-derived IL-6 through direct cell contact.65

In addition, Ramos-Barbon et al66 have recently shown that CD41

T cells might directly enhance ASM proliferation through cell-
cell interactions in vivo, resulting in increased airway hyperres-
ponsiveness (AHR). Moreover, Lazaar et al67 have shown that
activated T lymphocytes can adhere to cultured ASM, an interac-
tion that is mediated through ICAM-1, VCAM-1, and CD44 on
ASM cells, leading to the upregulation of cell adhesion molecules
and the stimulation of DNA synthesis in ASM cells.68 Further-
more, other inflammatory cells, including eosinophils,32 neutro-
phils,69 and mast cells, were also shown to interact with ASM
cells through ICAM-1 and VCAM-1.31,70 These studies have
clearly suggested that interactions of ASM cells with inflamma-
tory cells through CAMs can directly contribute to tissue airway
remodeling in asthmatic patients.
Inflammatory mediators
Inflammatory mediators, cytokines, chemokines, and growth

factors released by inflammatory and structural cells are believed
to be key players in initiating and synchronizing airway remod-
eling. Several mediators of remodeling have been identified thus
far, including profibrotic cytokines (TGF-b and IL-11), TH2 cyto-
kines (IL-4, IL-9, IL-13, and IL-5), TH17 cytokines (IL-17A, IL-
17F, and IL-17E [IL-25]), epithelium-derived chemokines
(RANTES, macrophage inflammatory protein 1a, IL-8, and
eotaxin), and MMPs.71
TGF-b is a pleiotropic cytokine with different functions
depending on the microenvironment or cellular conditions.
Although many cell types secrete TGF-b, eosinophils constitute
one of themain sources of this cytokine in asthmatic patients.3,4,56

TGF-b has been shown to affect many structural cells in vitro and
in vivo and has been implicated in the remodeling process in pa-
tients with asthma and other inflammatory and immune-
mediated lung diseases.64,72 TGF-b promotes the differentiation
of fibroblasts to myofibroblasts73 and induces the expression of
MMPs and TIMPs, both of which are major regulators of ECM
turnover.74 Moreover, TGF-b has been shown to enhance the pro-
liferation of ASM cells through the activation of the mitogen-
activated protein kinase pathway.75 Recently, we have reported
a role for TGF-b in enhancing ASM cell migration toward the ep-
ithelium to form new bundles.76 We have also shown that TGF-b,
in the presence of platelet-derived growth factor, upregulates the
expression ofMMPs and TIMPs in ASM cells, thereby enhancing
their migration.76

Other profibrotic cytokines, such as IL-11, have been shown to
be involved in subepithelial fibrosis, airway wall thickening,
myofibroblast differentiation, and smooth muscle cell prolifera-
tion. In fact, IL-11–transgenic mice have been shown to have
asthma-like symptoms and hyperresponsiveness to methacho-
line.77 We have also shown that the level of IL-11 expression cor-
relates with asthma severity and subepithelial fibrosis, suggesting
a role for this cytokine in enhancing airway remodeling.78

TH2 cytokines, including IL-4, IL-5, IL-9, and IL-13, play criti-
cal roles in the development of airway remodeling in asthmatic pa-
tients. Allergen-specific TH2 cells are thought to be present in the
lung tissues of almost all patients with asthma, particularly patients
with allergic asthma.39TH2 cytokines regulate the allergen-specific
synthesis of IgE (IL-4), the recruitment of eosinophils (IL-5), the
recruitment and growth of mast cells (IL-9), and the regulation of
AHR, amajor feature of asthma (IL-13).41 They also inducemucus
gene expression in airway epithelial cells, trigger subepithelial fi-
brosis, and enhance hypertrophy of the epithelium.62

IL-17 is a newly discovered cytokine critical for the immune
responses associated with severe asthma. The main IL-17 cyto-
kines known to be involved in asthma are IL-17A, IL-17F, and
IL-17E. The combination of TGF-b and IL-6 skews the balance
toward differentiation of TH cells into IL-17–producing TH17
cells.79,80 In addition to TH17 cells, gd T cells,81 natural killer
(NK) T cells,82 neutrophils,83 and macrophages84 produce IL-
17, which has been shown to be a potent neutrophil chemotactic
agent.85 IL-17E (IL-25) is expressed by lung epithelial cells after
exposure to allergens,86-88 as well as by activated eosinophils,
bone marrow–derived mast cells, and basophils.89 It has been de-
tected in the eosinophil-infiltrated bronchial submucosa of asth-
matic patients.90 Several reports have indicated that IL-17E acts
on both the innate and adaptive immune systems to amplify
TH2 immune responses.91-93

Chemokines have recently been shown to play a major role in
the development of airway remodeling and can be expressed by a
number of cell types in the lung, including epithelial cells94,95 and
ASM cells in asthmatic subjects.96 In addition to their role in re-
cruiting inflammatory cells to the site of inflammation, chemo-
kines are able to mobilize airway structural cells and hence
contribute to airway remodeling during asthma. ASM cells ex-
press receptors for epithelium-derived CC and CXC chemokines,
such as CCR3, CCR1, CCR5, and CXCL1/2,29,97,98 which, on
stimulation by their ligands, induce the migration of ASM cells



FIG 3. Mechanisms of airway remodeling in asthmatic patients. Asthma-associated inflammatory media-

tors exert their effects on different cell types in the lung, leading to fibrosis, excess mucus production,

angiogenesis, and increased airway smooth muscle mass. MIP-1a, Macrophage inflammatory protein 1a.
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toward the epithelium.99 Furthermore, using a murine model of
AHR, Gonzalo et al100 have shown that neutralizing chemokines,
such as eotaxin, RANTES, and monocyte chemoattractant pro-
teins (MCPs), significantly reduced bronchial hyperresponsive-
ness, as well as leukocyte infiltration.
Imbalance between repair and removal of ECM

proteins
ECM proteins form a network of collagenous and noncollag-

enous structures that surrounds cells in the airway tissue and
affects many aspects of cellular behavior, including migration,
differentiation, survival, and proliferation.101 The main ECM el-
ements include collagens, elastic fibers, fibronectin, and members
of the MMP family (MMP-1, MMP-2, MMP-9, and MMP-12) in
addition to TIMP-1 and TIMP-2, which are inhibitors of MMPs.
Abnormal deposition of ECM elements has been described in the
submucosal and adventitial areas of the large and small airways
of asthmatic patients.102-105 Although deposition of collagen IV
and elastin is decreased in the airway walls of asthmatic patients,
collagens I, III, and V; fibronectin; tenascin; hyaluronan; versi-
can; and laminin a2/b2 chain levels are increased compared
with those seen in healthy subjects.23,106-109
In addition to the submucosal and adventitial areas of the large
and small airways,102-105 ECM elements have been described
within the ASM layer in fatal cases of asthma.110 ASM cells se-
creteMMPs, as well as their regulators, TIMPs,111 and hence con-
tribute to the regulation of ECM composition. In fact, ECM
composition within the ASM layer might constrain shortening
of the ASM bundles and prevent excessive airway narrowing. Di-
gestion of ECM proteins associated with ASM bundles results in
increased force generation and shortening of ASM strips
ex vivo.112 Therefore fibrosis of the airway wall might protect
against the collapse of the airway lumen by an exaggerated con-
traction of the increased ASM mass.
CLINICAL RELEVANCE OF REMODELING IN

ASTHMATIC PATIENTS

Structural-physiologic relationship
Remodeling is assumed to result in persistent airflow limita-

tion, a decrease in lung function, and AHR. Structural changes in
the asthmatic airway (Fig 3), particularly increased smooth
muscle mass, angiogenesis, and subepithelial fibrosis, have
been correlated with airflow limitation.113-115 Moreover, cellular
infiltration in the asthmatic airways is associated with a decrease
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in lung function.116 The relationship between airway remodeling
andAHR, on the other hand, is more elusive. A study on asthmatic
children has demonstrated that the degree of bronchial hyperres-
ponsiveness and presumably airway remodeling early in life is
predictive of impaired lung function later.117 However, although
structural changes are thought to enhance AHR, especially in-
creased smooth muscle mass in the asthmatic airway,118-120 one
study in patients with severe asthma has demonstrated that airway
reactivity tomethacholine is inversely correlatedwith airwaywall
thickening, as assessed by means of noninvasive high-resolution
computerized tomographic scanning.121 The mechanical proper-
ties of altered ASM are a plausible explanation for these surpris-
ing data.122 Recently, Siddiqui et al123 studied the mechanism of
AHR in asthmatic patients and demonstrated that mast cell local-
ization in ASM bundles, but not structural remodeling of the air-
way wall, was associated with AHR in asthmatic patients.
Asthma exacerbation and remodeling
The role of asthma exacerbations in airway remodeling has

attracted many recent studies. The increased levels of proinflam-
matory cytokines and remodeling genes, including tenascin, pro-
collagen I, procollagen III, heat shock protein 47, and a-smooth
muscle actin, have been shown in endobronchial biopsy specimens
from patients with mild asthma after allergen inhalation. Interest-
ingly, although these inflammatorymarkers resolved within 7 days
of the exacerbation, the remodelingmarkers persisted.124,125 Addi-
tionally, although no histopathologic evidence of remodeling was
documented, Bai et al126 have demonstrated a greater decrease in
lung function associatedwith a higher frequency of asthma exacer-
bations in nonsmoking patients with moderate-to-severe asthma
whowere followed for at least 5 years. Although low-dose inhaled
steroids might reduce acute exacerbations in patients with mild
persistent asthma, it seems that this intervention has no effect in
mitigating the decrease in lung function.127
Viral infection and remodeling
Viral infections are major triggers of acute asthma exacerba-

tions. Human rhinoviruses, including new species, are the most
common triggers in children and adults.128-130 After viral infec-
tion, an inflammatory cascade is initiated with significant release
of inflammatorymediators, including proinflammatory cytokines,
chemokines, interferons, and growth factors.131,132 It has been re-
cently shown that cultured epithelial cells infected with rhinovi-
rus express markers that play major roles in remodeling,
including amphiregulin (an epidermal growth factor that alters
the repair process), activin A (a member of TGF-b superfamily),
and VEGF (a major proangiogenic activator in asthmatic air-
ways).131,133 The susceptibility to viral infections in asthmatic pa-
tients is not limited to epithelial cells. In fact, rhinovirus has been
detected in subepithelial layers and cells, including fibroblasts in
asthmatic airways, probably because of a disrupted and inflamed
epithelium.134,135 It was recently found that fibroblasts from asth-
matic patients enhance the replication of rhinovirus and induce a
subsequent vigorous proinflammatory response with IL-6 and IL-
8 production.136 Furthermore, such rhinovirus replication was
augmented in TGF-b–treated fibroblasts from asthmatic pa-
tients.137 The cytopathic effects of viral infection on epithelial
cells predispose to an acute inflammatory response and could en-
hance airway remodeling.138-141
Tobacco smoking and remodeling
Tobacco smoking is relatively prevalent among asthmatic

patients, reaching up to 20%.142 Its contributions to asthma sever-
ity, airway inflammation, accelerated decrease in lung function,
and impaired responses to corticosteroid therapy have been re-
cently recognized.143-147 Several inflammatory and structural
changes have been demonstrated in nonasthmatic smokers, which
include increased cellular inflammatory infiltration; increased ex-
pression of certain cytokines, such as IL-1b and IL-8; and in-
creased deposition of tenascin and laminin under the basement
membrane.148,149 However, little is known about the effect of
smoking on structural changes in asthmatic airways. It has been
shown that tobacco smoking can alter the inflammatory profile
in asthmatic airways, as shown by abundant neutrophilia in the in-
duced sputum of smoking asthmatic patients.150

In addition, the large airways of smoking asthmatic patients
show reduced numbers of CD831 mature dendritic cells and B
cells, whichmight render these patients less responsive to cortico-
steroid therapy and more susceptible to infection.151 Moreover,
increased expression of arginase I and ornithine decarboxylase
in the airways of smoking compared with nonsmoking asthmatic
patients has also been reported.152 In a small but interesting study
analyzing bronchial biopsy specimens from steroid-naive young
patients with mild asthma, the bronchial mucosa from smoking
asthmatic patients showed squamous cell metaplasia and in-
creased expression of neutrophil elastase, IFN-g, and IL-8, which
might contribute to an impaired response to therapy and poor clin-
ical outcome.153
Natural history of airway remodeling
Several studies have demonstrated that asthmatic patients

experience an accelerated decrease in lung function more than
healthy subjects and that this is proportionally related to the
duration and severity of their disease.143,154,155 However, other
studies have reported that asthmatic children have poor lung func-
tion, suggesting that remodeling could start early in the course of
the disease.156-158 Despite the clear evidence that inflammatory
changes start very early, as demonstrated in wheezing in-
fants,159-163 the onset of airway remodeling in asthmatic patients
is not yet well characterized. No significant structural changes
were seen in bronchial biopsy specimens from young children
with wheezing and reversible airway obstruction.164,165 How-
ever, a thickened reticular basement membrane, epithelial in-
jury, and eosinophilic inflammation were evident by the age
of 3 years.166 These structural changes were consistently re-
ported in children with moderate-to-severe asthma.159,160,167,168

Large longitudinal cohorts have demonstrated that persistent
wheezers (children with recurrent wheezing in the first 3 years
of life and still wheezing at the age of 6 years) had significantly
poorer lung function compared with late-onset wheezers (chil-
dren who had wheezing at the age of 6 years but no wheezing
before the age of 3 years). In both groups the loss in lung func-
tion was evident at the age of 6 years, with no major deteriora-
tion after that age.155,169,170 On the other hand, data from the
Childhood Asthma Management Program showed an acceler-
ated decrease in lung function between the ages of 5 and 18
years in children with mild-to-moderate asthma.171 On the basis
of these functional and structural studies, Martinez172 has sug-
gested the concept of a ‘‘developmental window of opportunity’’
in the first 3 years of life in which abnormal inflammatory
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responses to viruses could predispose to airway remodeling in
patients with persistent asthma.
Therapeutic interventions and remodeling
Airway remodeling has been the focus of a significant amount

of research in the last decade; however, the crucial question
remains to be answered as to whether therapeutic intervention has
any influence on remodeling.
Because of their effect on inflammatory modulation in asth-

matic airways, inhaled corticosteroids (ICSs) have a great poten-
tial to influence airway remodeling. However, the available data
to date are rather contradictory and elusive.6 Several studies have
demonstrated an in vitro antiproliferative effect of corticosteroids
on ASM from asthmatic patients.173-175 In addition to their apo-
ptotic effects on airway epithelial cells,176 corticosteroids have
been shown to decrease the proliferation and inflammatory medi-
ator release of lung fibroblasts.177,178 Some studies have reported
that ICS may reduce basement membrane thickness in airway
biopsies from asthmatic subjects andmay therefore influence sub-
epithelial fibrosis, a major feature of remodeling.179 On the other
hand, other studies have reported a modest or no effect on base-
ment membrane thickness.180-183 These conflicting data could
be related to the dose and duration of ICS therapy. Moreover,
functional studies have failed to prove a substantial effect of
ICS on inhibiting the decrease in lung function in patients with
chronic asthma.184,185 However, studies in asthmatic patients186

and murine models of asthma187 have demonstrated an effect of
corticosteroids or combined corticosteroid/long-acting broncho-
dilator treatment on airway remodeling only in the context of
allergen avoidance. Collectively, there is little evidence that cor-
ticosteroids can reverse airway remodeling in asthmatic patients.
Montelukast (a cysteinyl leukotriene receptor antagonist) is

another medication used in the treatment of asthma that might
have the potential to alter remodeling in asthmatic airways based
on its anti-inflammatory effect.188 Lymphocyte andmyofibroblast
counts have been shown to be diminished after allergen challenge
in asthmatic subjects at the completion of 8 weeks of montelukast
therapy.189 Further long-term studies are required to clinically
validate the potential antiremodeling effect of antileukotriene
therapy in asthmatic patients.
Omalizumab, a humanized anti-IgE antibody, is a newly

introduced treatment for severe asthma with steroid-sparing
effects.190 It has been shown to decrease IgE levels, sputum and
tissue eosinophilia,190,191 and circulating TH2 cytokine levels
and to improve lung function in patients with moderate-to-
severe asthma192; however, no data are available to support the ef-
ficacy of anti-IgE therapy on airway remodeling.
Bronchial thermoplasty is a novel therapeutic intervention that

alters airway structure by means of physical destruction of the
smooth muscle and thereby affects airway remodeling.193,194

However, the sustained effect of this intervention remains to be
determined, although promising results of persistent improve-
ment have been demonstrated 1 year after treatment.193

Tools to measure airway remodeling
As to the methods by which airway remodeling is assessed,

asthmatic patients fall into 2 broad categories: invasive and
noninvasive. Invasive methods involve direct sampling of the
airway structure by the collection of biopsy specimens, often with
an endoscope inserted into the bronchus through the nose ormouth.
The flexible bronchoscope has been used since the 1960s as a
diagnostic tool for the assessment of altered airway structure. This
device can contain a number of tools and is capable of collecting
various specimens, such as tissue biopsy specimens (with forceps or
a needle), bronchial brushings, and bronchoalveolar lavage and can
also be used to assess airway remodeling by means of endobron-
chial ultrasonography.195 Although this procedure is safe, with low
morbidity (0.1% to 2.5%) and very low mortality (<0.5%),196

variability in the quality of the samples and the invasive nature of
the technique limit its use for long-term assessment of the natural
history of airway remodeling in asthmatic patients.
Noninvasive methods for assessing structural changes to the

airway in asthmatic patients constitute a novel approach to
investigating this aspect of the disease. Noninvasive imaging
techniques used for this purpose include computed tomography
(CT), magnetic resonance imaging,197 and optical coherence to-
mography.198 Of these methods, CT is the most well character-
ized. This method can be used for qualitative description of
various changes to lung structure, in particular airway wall thick-
ening, in asthmatic patients.199 Several studies have also per-
formed quantitative assessments of airway remodeling by using
this method,200-202 and attempts have been made to correlate
CT findings of airway remodeling to measures of lung func-
tion.121 Interestingly, a combination of CT imaging and hyperpo-
larized 3Hemagnetic resonance imaging has recently been used to
investigate the regionality of airway structural changes in the
lungs of asthmatic patients and to correlate these changes with
functional alterations in airflow.197 However, further studies in
asthmatic patients with varying degrees of disease severity must
be performed to fully validate these methods.
FUTURE DIRECTIONS
The last 2 decades have witnessed significant advances in our

understanding of the pathogenesis of asthma. We have moved
beyond the belief that asthma is an intrinsic abnormality of the
airway myocyte to the belief that inflammation is the cornerstone
of the pathogenesis of asthma. We now have evidence clearly
indicating that functional abnormalities in asthmatic patients are
the result of tissue remodeling responses and structural alterations
in the airway. This concept, however, requires further testing and
evaluation. We need to know how each of these features of the
remodeled airway contributes to the symptoms, abnormal phys-
iology, and natural history of asthma.More investigations are also
needed to determine the types of interventions capable of altering
the various features of airway remodeling and the effect of these
interventions on the clinical manifestations of the disease.
Moreover, we are in need of better pathophysiologic noninvasive
tools and specific biomarkers that will help us precisely determine
different subpopulations of asthmatic patients. More importantly,
studies should to be directed at investigating the genetic factors
associated with different types and degrees of tissue remodeling
and the functional translation of these genetic modifications.
These and other studies will profoundly affect our understanding
of the pathogenesis of asthma and will shape the types of
strategies we use to control asthma.
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