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Karma Police, arrest this man, he talks in maths, he buzzes like a fridge, he’s like 
a detuned radio.

Radiohead, ‘Karma Police’, OK Computer (1997)

Introduction

Many social science students (and researchers for that matter) despise statistics. For one 
thing, most of us have a non-mathematical background, which makes understanding com-
plex statistical equations very difficult. Nevertheless, the evil goat-warriors of Satan force our 
non-mathematical brains to apply themselves to what is, essentially, the very complex task of 
becoming a statistics expert. The end result, as you might expect, can be quite messy. The one 
weapon that we have is the computer, which allows us to neatly circumvent the considerable 
disability that is not understanding mathematics. The advent of computer programs such as 
SAS, SPSS, R and the like provides a unique opportunity to teach statistics at a conceptual 
level without getting too bogged down in equations. The computer to a goat-warrior of Satan 
is like catnip to a cat: it makes them rub their heads along the ground and purr and dribble 
ceaselessly. The only downside of the computer is that it makes it really easy to make a com-
plete idiot of yourself if you don’t really understand what you’re doing. Using a computer 
without any statistical knowledge at all can be a dangerous thing. Hence this book. Well, 
actually, hence a book called Discovering Statistics Using SPSS.

I wrote Discovering Statistics Using SPSS just as I was finishing off my Ph.D. in Psychology. 
My main aim was to write a book that attempted to strike a good balance between theory and 
practice: I wanted to use the computer as a tool for teaching statistical concepts in the hope 
that you will gain a better understanding of both theory and practice. If you want theory 
and you like equations then there are certainly better books: Howell (2006), Stevens (2002) 
and Tabachnick and Fidell (2007) are peerless as far as I am concerned and have taught me 
(and continue to teach me) more about statistics than you could possibly imagine. (I have an 
ambition to be cited in one of these books but I don’t think that will ever happen.) However, 
if you want a book that incorporates digital rectal stimulation then you have just spent your 
money wisely. (I should probably clarify that the stimulation is in the context of an example, 
you will not find any devices attached to the inside cover for you to stimulate your rectum 
while you read. Please feel free to get your own device if you think it will help you to learn.)

A second, not in any way ridiculously ambitious, aim was to make this the only statistics 
textbook that anyone ever needs to buy. As such, it’s a book that I hope will become your 
friend from first year right through to your professorship. I’ve tried to write a book that can 
be read at several levels (see the next section for more guidance). There are chapters for first-
year undergraduates (1, 2, 3, 4, 5, 6, 9 and 15), chapters for second-year undergraduates (5, 
7, 10, 11, 12, 13 and 14) and chapters on more advanced topics that postgraduates might use 
(8, 16, 17, 18 and 19). All of these chapters should be accessible to everyone, and I hope to 
achieve this by flagging the level of each section (see the next section).

PREFACE

00-Field_R-4368-Prelims.indd   21 29/02/2012   5:52:50 PM



My third, final and most important aim is make the learning process fun. I have a sticky 
history with maths because I used to be terrible at it:

Above is an extract of my school report at the age of 11. The ‘27=’ in the report is to say 
that I came equal 27th with another student out of a class of 29. That’s almost bottom of 
the class. The 43 is my exam mark as a percentage. Oh dear. Four years later (at 15) this 
was my school report:

What led to this remarkable change? It was having a good teacher: my brother, Paul. In 
fact I owe my life as an academic to Paul’s ability to do what my maths teachers couldn’t: 
teach me stuff in an engaging way. To this day he still pops up in times of need to teach 
me things (many tutorials in computer programming spring to mind). Anyway, the reason 
he’s a great teacher is because he’s able to make things interesting and relevant to me. He 
got the ‘good teaching’ genes in the family, but they’re wasted because he doesn’t teach for 
a living; they’re a little less wasted though because his approach inspires my lectures and 
books. One thing that I have learnt is that people appreciate the human touch, and so I 
tried to inject a lot of my own personality and sense of humour (or lack of) into Discovering 
Statistics Using … books. Many of the examples in this book, although inspired by some of 
the craziness that you find in the real world, are designed to reflect topics that play on the 
minds of the average student (i.e., sex, drugs, rock and roll, celebrity, people doing crazy 
stuff). There are also some examples that are there just because they made me laugh. So, 
the examples are light-hearted (some have said ‘smutty’ but I prefer ‘light-hearted’) and by 
the end, for better or worse, I think you will have some idea of what goes on in my head 
on a daily basis. I apologize to those who think it’s crass, hate it, or think that I’m under-
mining the seriousness of science, but, come on, what’s not funny about a man putting an 
eel up his anus?

Did I succeed in these aims? Maybe I did, maybe I didn’t, but the SPSS book on which 
this R book is based has certainly been popular and I enjoy the rare luxury of having many 
complete strangers emailing me to tell me how wonderful I am. (Admittedly, occassionally 
people email to tell me that they think I’m a pile of gibbon excrement but you have to take 
the rough with the smooth.) It also won the British Psychological Society book award in 
2007. I must have done something right. However, Discovering Statistics Using SPSS has 
one very large flaw: not everybody uses SPSS. Some people use R. R has one fairly big 
advantage over other statistical packages in that it is free. That’s right, it’s free. Completely 
and utterly free. People say that there’s no such thing as a free lunch, but they’re wrong: 
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R is a feast of succulent delights topped off with a baked cheesecake and nothing to pay at 
the end of it.

It occurred to me that it would be great to have a version of the book that used all of 
the same theory and examples from the SPSS book but written about R. Genius. Genius 
except that I knew very little about R. Six months and quite a few late nights later and I 
know a lot more about R than I did when I started this insane venture. Along the way I have 
been helped by a very nice guy called Jeremy (a man who likes to put eels in his CD player 
rather than anywhere else), and an even nicer wife. Both of their contributions have been 
concealed somewhat by our desire to keep the voice of the book mine, but they have both 
contributed enormously. (Jeremy’s contributions are particularly easy to spot: if it reads 
like a statistics genius struggling manfully to coerce the words of a moron into something 
approximating factual accuracy, then Jeremy wrote it.)

What are you getting for your money?

This book takes you on a journey (possibly through a very narrow passage lined with 
barbed wire) not just of statistics but of the weird and wonderful contents of the world and 
my brain. In short, it’s full of stupid examples, bad jokes, smut and filth. Aside from the 
smut, I have been forced reluctantly to include some academic content. Over many editions 
of the SPSS book many people have emailed me with suggestions, so, in theory, what you 
currently have in your hands should answer any question anyone has asked me over the 
past ten years. It won’t, but it should, and I’m sure you can find some new questions to ask. 
It has some other unusual features:

MM Everything you’ll ever need to know: I want this to be good value for money so the 
book guides you from complete ignorance (Chapter 1 tells you the basics of doing 
research) to being an expert on multilevel modelling (Chapter 19). Of course no 
book that you can actually lift off the floor will contain everything, but I think this 
one has a fair crack at taking you from novice to postgraduate level expertise. It’s 
pretty good for developing your biceps also.

MM Stupid faces: You’ll notice that the book is riddled with stupid faces, some of them 
my own. You can find out more about the pedagogic function of these ‘characters’ 
in the next section, but even without any useful function they’re still nice to look at.

MM Data sets: There are about 100 data files associated with this book on the companion 
website. Not unusual in itself for a statistics book, but my data sets contain more 
sperm (not literally) than other books. I’ll let you judge for yourself whether this is 
a good thing. 

MM My life story: Each chapter is book-ended by a chronological story from my life. 
Does this help you to learn about statistics? Probably not, but hopefully it provides 
some light relief between chapters. 

MM R tips: R does weird things sometimes. In each chapter, there are boxes containing 
tips, hints and pitfalls related to R. 

MM Self-test questions: Given how much students hate tests, I thought the best way to 
commit commercial suicide was to liberally scatter tests throughout each chapter. 
These range from simple questions to test what you have just learned to going back 
to a technique that you read about several chapters before and applying it in a new 
context. All of these questions have answers to them on the companion website. They 
are there so that you can check on your progress. 
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The book also has some more conventional features:

MM Reporting your analysis: Every single chapter has a guide to writing up your
analysis. Obviously, how one writes up an analysis varies a bit from one discipline to 
another and, because I’m a psychologist, these sections are quite psychology-based. 
Nevertheless, they should get you heading in the right direction.

MM Glossary: Writing the glossary was so horribly painful that it made me stick a vacuum 
cleaner into my ear to suck out my own brain. You can find my brain in the bottom 
of the vacuum cleaner in my house.

MM Real-world data: Students like to have ‘real data’ to play with. The trouble is that real 
research can be quite boring. However, just for you, I trawled the world for examples 
of research on really fascinating topics (in my opinion). I then stalked the authors of 
the research until they gave me their data. Every chapter has a real research example. 

Goodbye

The SPSS version of this book has literally consumed the last 13 years or so of my life, 
and this R version has consumed the last 6 months. I am literally typing this as a withered 
husk. I have no idea whether people use R, and whether this version will sell, but I think 
they should (use R, that is, not necessarily buy the book). The more I have learnt about R 
through writing this book, the more I like it.

This book in its various forms has been a huge part of my adult life; it began as and con-
tinues to be a labour of love. The book isn’t perfect, and I still love to have feedback (good 
or bad) from the people who matter most: you. 

Andy

MM Contact details: http://www. discoveringstatistics.com/html/email.html

MM Twitter: @ProfAndyField

MM Blog: http://www.methodspace.com/profile/ProfessorAndyField
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When the publishers asked me to write a section on ‘How to use this book’ it was obvi-
ously tempting to write ‘Buy a large bottle of Olay anti-wrinkle cream (which you’ll need 
to fend off the effects of ageing while you read), find a comfy chair, sit down, fold back the 
front cover, begin reading and stop when you reach the back cover.’ However, I think they 
wanted something more useful. 

What background knowledge do I need?

In essence, I assume you know nothing about statistics, but I do assume you have some very 
basic grasp of computers (I won’t be telling you how to switch them on, for example) and 
maths (although I have included a quick revision of some very basic concepts so I really 
don’t assume anything). 

Do the chapters get more difficult as I go through 
the book?

In a sense they do (Chapter 16 on MANOVA is more difficult than Chapter 1), but in other 
ways they don’t (Chapter 15 on non-parametric statistics is arguably less complex than Chapter 
14, and Chapter 9 on the t-test is definitely less complex than Chapter 8 on logistic regression). 
Why have I done this? Well, I’ve ordered the chapters to make statistical sense (to me, at least). 
Many books teach different tests in isolation and never really give you a grip of the similari-
ties between them; this, I think, creates an unnecessary mystery. Most of the tests in this book 
are the same thing expressed in slightly different ways. So, I wanted the book to tell this story. 
To do this I have to do certain things such as explain regression fairly early on because it’s the 
foundation on which nearly everything else is built.

However, to help you through I’ve coded each section with an icon. These icons are 
designed to give you an idea of the difficulty of the section. It doesn’t necessarily mean 
you can skip the sections (but see Smart Alex in the next section), but it will let you know 
whether a section is at about your level, or whether it’s going to push you. I’ve based the 
icons on my own teaching so they may not be entirely accurate for everyone (especially as 
systems vary in different countries!):

1 	 This means ‘level 1’ and I equate this to first-year undergraduate in the UK. These are 
sections that everyone should be able to understand.

2 	 This is the next level and I equate this to second-year undergraduate in the UK. These 
are topics that I teach my second years and so anyone with a bit of background in sta-
tistics should be able to get to grips with them. However, some of these sections will 
be quite challenging even for second years. These are intermediate sections.

HOW TO USE THIS BOOK
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3 	 This is ‘level 3’ and represents difficult topics. I’d expect third-year (final-year) UK 
undergraduates and recent postgraduate students to be able to tackle these sections. 

4 	 This is the highest level and represents very difficult topics. I would expect these sec-
tions to be very challenging to undergraduates and recent postgraduates, but post-
graduates with a reasonable background in research methods shouldn’t find them too 
much of a problem.

Why do I keep seeing stupid faces everywhere?

Brian Haemorrhage: Brian’s job is to pop up to ask questions and look permanently 
confused. It’s no surprise to note, therefore, that he doesn’t look entirely different from 
the author (he has more hair though). As the book progresses he becomes increasingly 
despondent. Read into that what you will.

Curious Cat: He also pops up and asks questions (because he’s curious). Actually the only 
reason he’s here is because I wanted a cat in the book … and preferably one that looks like 
mine. Of course the educational specialists think he needs a specific role, and so his role is 
to look cute and make bad cat-related jokes.

Cramming Sam: Samantha hates statistics. In fact, she thinks it’s all a boring waste of time 
and she just wants to pass her exam and forget that she ever had to know anything about 
normal distributions. So, she appears and gives you a summary of the key points that you 
need to know. If, like Samantha, you’re cramming for an exam, she will tell you the essen-
tial information to save you having to trawl through hundreds of pages of my drivel.

Jane Superbrain: Jane is the cleverest person in the whole universe (she makes Smart Alex 
look like a bit of an imbecile). The reason she is so clever is that she steals the brains of 
statisticians and eats them. Apparently they taste of sweaty tank tops, but nevertheless she 
likes them. As it happens she is also able to absorb the contents of brains while she eats 
them. Having devoured some top statistics brains she knows all the really hard stuff and 
appears in boxes to tell you really advanced things that are a bit tangential to the main text. 
(Readers should note that Jane wasn’t interested in eating my brain. That tells you all that 
you need to know about my statistics ability.)

Labcoat Leni: Leni is a budding young scientist and he’s fascinated by real research. He says, 
‘Andy, man, I like an example about using an eel as a cure for constipation as much as the 
next man, but all of your examples are made up. Real data aren’t like that, we need some real 
examples, dude!’ So off Leni went; he walked the globe, a lone data warrior in a thankless quest 
for real data. He turned up at universities, cornered academics, kidnapped their families and 
threatened to put them in a bath of crayfish unless he was given real data. The generous ones 
relented, but others? Well, let’s just say their families are sore. So, when you see Leni you know 
that you will get some real data, from a real research study to analyse. Keep it real.
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Oliver Twisted: With apologies to Charles Dickens, Oliver, like the more famous fictional 
London urchin, is always asking ‘Please Sir, can I have some more?’ Unlike Master Twist 
though, our young Master Twisted always wants more statistics information. Of course he 
does, who wouldn’t? Let us not be the ones to disappoint a young, dirty, slightly smelly 
boy who dines on gruel, so when Oliver appears you can be certain of one thing: there is 
additional information to be found on the companion website. (Don’t be shy; download it 
and bathe in the warm asp’s milk of knowledge.)

R’s Souls: People who love statistics are damned to hell for all eternity, people who like R even 
more so. However, R and statistics are secretly so much fun that Satan is inundated with new 
lost souls, converted to the evil of statistical methods. Satan needs a helper to collect up all the 
souls of those who have been converted to the joy of R. While collecting the souls of the statis-
tical undead, they often cry out useful tips to him. He’s collected these nuggets of information 
and spread them through the book like a demonic plague of beetles. When Satan’s busy spank-
ing a goat, his helper pops up in a box to tell you some of R’s Souls’ Tips.

Smart Alex: Alex is a very important character because he appears when things get par-
ticularly difficult. He’s basically a bit of a smart alec and so whenever you see his face you 
know that something scary is about to be explained. When the hard stuff is over he reap-
pears to let you know that it’s safe to continue. Now, this is not to say that all of the rest 
of the material in the book is easy, he just lets you know the bits of the book that you can 
skip if you’ve got better things to do with your life than read all 1000 pages! So, if you 
see Smart Alex then you can skip the section entirely and still understand what’s going on. 
You’ll also find that Alex pops up at the end of each chapter to give you some tasks to do 
to see whether you’re as smart as he is.

What is on the companion website?

In this age of downloading, CD-ROMs are for losers (at least that’s what the ‘kids’ tell me) 
so I’ve put my cornucopia of additional funk on that worldwide interweb thing. This has 
two benefits: 1) the book is slightly lighter than it would have been, and 2) rather than 
being restricted to the size of a CD-ROM, there is no limit to the amount of fascinating 
extra material that I can give you (although Sage have had to purchase a new server to fit 
it all on). To enter my world of delights, go to www.sagepub.co.uk/dsur.

How will you know when there are extra goodies on this website? Easy-peasy, Oliver 
Twisted appears in the book to indicate that there’s something you need (or something 
extra) on the website. The website contains resources for students and lecturers alike:

MM Data files: You need data files to work through the examples in the book and they 
are all on the companion website. We did this so that you’re forced to go there and 
once you’re there Sage will flash up subliminal messages that make you buy more of 
their books.

MM R script files: if you put all of the R commands in this book next to each other and printed 
them out you’d have a piece of paper that stretched from here to the Tarantula Nebula 
(which actually exists and sounds like a very scary place). If you type all of these com-
mands into R you will wear away your fingers to small stumps. I would never forgive 
myself if you all got stumpy fingers so the website has script files containing every single 
R command in the book (including within chapter questions and activities).
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MM Webcasts: My publisher thinks that watching a film of me explaining what this book 
is all about will get people flocking to the bookshop. I think it will have people flock-
ing to the medicine cabinet. Either way, if you want to see how truly uncharismatic I 
am, watch and cringe. There are also a few webcasts of lectures given by me relevant 
to the content of the book.

MM Self-Assessment Multiple-Choice Questions: Organized by chapter, these will allow 
you to test whether wasting your life reading this book has paid off so that you can 
walk confidently into an examination much to the annoyance of your friends. If you 
fail said exam, you can employ a good lawyer and sue. 

MM Additional material: Enough trees have died in the name of this book, but still it 
gets longer and still people want to know more. Therefore, we’ve written nearly 300 
pages, yes, three hundred, of additional material for the book. So for some more 
technical topics and help with tasks in the book the material has been provided elec-
tronically so that (1) the planet suffers a little less, and (2) you won’t die when the 
book falls off of your bookshelf onto your head.

MM Answers: each chapter ends with a set of tasks for you to test your newly acquired 
expertise. The chapters are also littered with self-test questions and Labcoat Leni’s 
assignments. How will you know if you get these correct? Well, the companion web-
site contains around 300 pages (that’s a different 300 pages to the 300 above) of 
detailed answers. Will we ever stop writing?

MM Powerpoint slides: I can’t come and personally teach you all. Instead I rely on a crack 
team of highly skilled and super intelligent pan-dimensional beings called ‘lecturers’. 
I have personally grown each and every one of them in a greenhouse in my garden. 
To assist in their mission to spread the joy of statistics I have provided them with 
powerpoint slides for each chapter.

MM Links: every website has to have links to other useful websites and the companion 
website is no exception.

MM Cyberworms of knowledge:  I have used nanotechnology to create cyberworms that 
crawl down your broadband connection, pop out of the USB port of your computer 
then fly through space into your brain. They re-arrange your neurons so that you 
understand statistics. You don’t believe me? Well, you’ll never know for sure unless 
you visit the companion website …

Happy reading, and don’t get sidetracked by Facebook and Twitter.
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This book (in all its SPSS, SAS and R versions) wouldn’t have happened if it hadn’t been 
for Dan Wright, who not only had an unwarranted faith in a then-postgraduate to write the 
first SPSS edition, but also read and commented on draft chapters in all three SPSS editions. 
Numerous other people have contributed to the SPSS versions of this book, on which this R 
edition is based. I won’t list them all here, but particular thanks go to David Hitchin, Laura 
Murray, Gareth Williams, Lynne Slocombe and Kate Lester, who have given me significant 
amounts of feedback in various incarnations of this text. Hadley Wickham very kindly gave 
feedback on my graphing chapter in this R version, which led to significant improvements, 
and Rand Wilcox was incredibly helpful when I couldn’t get one of his R functions to work. 
Thanks to them both for generously giving me help.

I have incorporated data sets from real research papers. All of these research papers are 
studies that I find fascinating and it’s an honour for me to have these researchers’ data in 
my book: Hakan Çetinkaya, Tomas Chamorro-Premuzic, Graham Davey, Mike Domjan, 
Gordon Gallup, Eric Lacourse, Sarah Marzillier, Geoffrey Miller, Peter Muris, Laura 
Nichols and Achim Schüetzwohl.

Not all contributions are as tangible as those above. With the possible exception of them 
not understanding why sometimes I don’t answer my phone, I could not have asked for 
more loving and proud parents – a fact that I often take for granted. Also, very early in my 
career Graham Hole made me realize that teaching research methods didn’t have to be dull. 
My whole approach to teaching has been to steal all of his good ideas and I’m pleased that 
he has had the good grace not to ask for them back! He is also a rarity in being brilliant, 
funny and nice. 

The people at Sage very generously co-funded my wife to help with this book. My editor 
Mike takes his fair share of crap from me (but what does he expect, he supports Tottenham), 
he is unfaltering in his efforts to support me and make things happen. Ziyad and Karen at 
Sage have also been incredibly supportive over many years, and Ian and numerous other 
people at Sage do magical things. Alex Lee did a fantastic job of turning the characters in my 
head into characters on the page. 

I always write listening to music. For this R edition I predominantly enjoyed the fol-
lowing: 1349, Anathema, Behemoth, Blut Aus Nord, Daft Punk, Deathspell Omega, Dio, 
Enslaved, Genesis, Immortal, I, Iron Maiden, Jethro Tull, Liturgy, Manowar, Marillion, 
Mastodon, Metallica, Megadeth, Negură Bunget, Opeth, Rush, Sylosis, Týr, W.A.S.P.

Extra big fluffy thanks go to Jeremy Miles for his help with this book. As if this wasn’t 
enough, he also stopped me making a complete and utter fool of myself (in the book – sadly 
his powers don’t extend to everyday life) by pointing out some glaring errors; he’s also been 
a very nice person to know over the past few years (apart from when he’s saying that draft 
sections of my books are, and I quote, ‘bollocks’). I particularly enjoyed sharing ranty emails 
with him about R.

All this book-writing nonsense requires many lonely hours (mainly late at night) of typ-
ing. Without some wonderful friends to drag me out of my dimly lit room from time to time 
I’d be even more of a gibbering cabbage than I already am. My eternal gratitude goes to 
Graham Davey, Ben Dyson, Martin Watts, Sam Cartwright-Hatton, Mark Franklin and their 
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lovely families for reminding me that there is more to life than work. My eternal gratitude 
to my brothers of metal Doug Martin and Rob Mepham for letting me deafen them with my 
drumming on a regular basis (www.myspace.com/fracturepattern).

I’ve saved the best until last: I don’t think the words exist to do justice to the thanks 
deserved by my wife Zoë. Not only has she got a never-ending supply of patience, love and 
support (even when her husband is being a grumpy, sleep-deprived, withered husk) but she 
also single-handedly produced the accompanying web materials for this book. I never for-
get, not even for a nanosecond, how lucky I am.
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Mathematical operators

Σ This symbol (called sigma) means ‘add everything up’. So, if you see something 
like Σxi it just means ‘add up all of the scores you’ve collected’.

Π This symbol means ‘multiply everything’. So, if you see something like Π xi it just 
means ‘multiply all of the scores you’ve collected’.

√x This means ‘take the square root of x’.

Greek symbols

α The probability of making a Type I error

β The probability of making a Type II error

βi Standardized regression coefficient

χ2 Chi-square test statistic

χ2
F Friedman’s ANOVA test statistic

ε Usually stands for ‘error’

η2 Eta-squared

µ The mean of a population of scores

ρ The correlation in the population

σ2 The variance in a population of data

σ The standard deviation in a population of data

σx– The standard error of the mean

τ Kendall’s tau (non-parametric correlation coefficient)

ω2 Omega squared (an effect size measure). This symbol also means ‘expel the 
contents of your intestine immediately into your trousers’; you will understand why in 
due course.
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English symbols

bi The regression coefficient (unstandardized)

df Degrees of freedom

ei The error associated with the ith person

F F-ratio (test statistic used in ANOVA)

H Kruskal–Wallis test statistic

k The number of levels of a variable (i.e. the number of treatment conditions), or the 
number of predictors in a regression model

ln Natural logarithm

MS The mean squared error. The average variability in the data

N, n, ni The sample size. N usually denotes the total sample size, whereas n usually 
denotes the size of a particular group

P Probability (the probability value, p-value or significance of a test are usually 
denoted by p)

r Pearson’s correlation coefficient

rs Spearman’s rank correlation coefficient

rb, rpb Biserial correlation coefficient and point–biserial correlation coefficient respectively

R The multiple correlation coefficient

R2 The coefficient of determination (i.e. the proportion of data explained by the model)

s2 The variance of a sample of data

s The standard deviation of a sample of data

SS The sum of squares, or sum of squared errors to give it its full title

SSA The sum of squares for variable A

SSM The model sum of squares (i.e. the variability explained by the model fitted to the data)

SSR The residual sum of squares (i.e. the variability that the model can’t explain – the 
error in the model)

SST The total sum of squares (i.e. the total variability within the data)

t Test statistic for Student’s t-test

T Test statistic for Wilcoxon’s matched-pairs signed-rank test

U Test statistic for the Mann–Whitney test

Ws Test statistic for the Shapiro–Wilk test and the Wilcoxon’s rank-sum test

X
–
 or x– The mean of a sample of scores

z A data point expressed in standard deviation units
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1	 Two negatives make a positive: Although in life two wrongs don’t make a right, in 
mathematics they do! When we multiply a negative number by another negative 
number, the result is a positive number. For example, −2 × −4 = 8.

2	 A negative number multiplied by a positive one make a negative number: If you 
multiply a positive number by a negative number then the result is another negative 
number. For example, 2 × −4 = −8, or −2 × 6 = −12.

3	 BODMAS: This is an acronym for the order in which mathematical operations 
are performed. It stands for Brackets, Order, Division, Multiplication, Addition, 
Subtraction and this is the order in which you should carry out operations within an 
equation. Mostly these operations are self-explanatory (e.g., always calculate things 
within brackets first) except for order, which actually refers to power terms such as 
squares. Four squared, or 42, used to be called four raised to the order of 2, hence the 
reason why these terms are called ‘order’ in BODMAS (also, if we called it power, 
we’d end up with BPDMAS, which doesn’t roll off the tongue quite so nicely). Let’s 
look at an example of BODMAS: what would be the result of 1 + 3 × 52? The answer 
is 76 (not 100 as some of you might have thought). There are no brackets so the 
first thing is to deal with the order term: 52 is 25, so the equation becomes 1 + 3 × 
25. There is no division, so we can move on to multiplication: 3 × 25, which gives 
us 75. BODMAS tells us to deal with addition next: 1 + 75, which gives us 76 and 
the equation is solved. If I’d written the original equation as (1 + 3) × 52, then the 
answer would have been 100 because we deal with the brackets first: (1 + 3) = 4, 
so the equation becomes 4 × 52. We then deal with the order term, so the equation 
becomes 4 × 25 = 100!

4	 www.bbc.co.uk/schools/gcsebitesize/maths is a good site for revising basic maths.

SOME MATHS REVIS ION
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1

1
Why is my evil lecturer 
forcing me to learn statistics?

FIGURE 1.1
When I grow up, 
please don’t let 
me be a statistics 
lecturer

1.1.  What will this chapter tell me? 1

I was born on 21 June 1973. Like most people, I don’t remember anything about the first 
few years of life and like most children I did go through a phase of driving my parents 
mad by asking ‘Why?’ every five seconds. ‘Dad, why is the sky blue?’, ‘Dad, why doesn’t 
mummy have a willy?’, etc. Children are naturally curious about the world. I remember 
at the age of 3 being at a party of my friend Obe (this was just before he left England 
to return to Nigeria, much to my distress). It was a hot day, and there was an electric 
fan blowing cold air around the room. As I said, children are natural scientists and my 
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2 D ISCOVER ING STAT IST ICS  US ING R

little scientific brain was working through what seemed like a particularly pressing ques-
tion: ‘What happens when you stick your finger in a fan?’ The answer, as it turned out, 
was that it hurts – a lot.1 My point is this: my curiosity to explain the world never went 
away, and that’s why I’m a scientist, and that’s also why your evil lecturer is forcing you 
to learn statistics. It’s because you have a curious mind too and you want to answer new 
and exciting questions. To answer these questions we need statistics. Statistics is a bit like 
sticking your finger into a revolving fan blade: sometimes it’s very painful, but it does 
give you the power to answer interesting questions. This chapter is going to attempt 
to explain why statistics are an important part of doing research. We will overview the 
whole research process, from why we conduct research in the first place, through how 
theories are generated, to why we need data to test these theories. If that doesn’t con-
vince you to read on then maybe the fact that we discover whether Coca-Cola kills sperm 
will. Or perhaps not.

1.2.  What the hell am I doing here?  
I don’t belong here 1

You’re probably wondering why you have bought this book. Maybe you liked the pic-
tures, maybe you fancied doing some weight training (it is heavy), or perhaps you need 
to reach something in a high place (it is thick). The chances are, though, that given the 
choice of spending your hard-earned cash on a statistics book or something more enter-
taining (a nice novel, a trip to the cinema, etc.) you’d choose the latter. So, why have you 
bought the book (or downloaded an illegal pdf of it from someone who has way too much 
time on their hands if they can scan a 1000-page  textbook)? It’s likely that you obtained 
it because you’re doing a course on statistics, or you’re doing some research, and you 
need to know how to analyse data. It’s possible that you didn’t realize when you started 
your course or research that you’d have to know this much about statistics but now find 
yourself inexplicably wading, neck high, through the Victorian sewer that is data analysis. 
The reason you’re in the mess that you find yourself in is because you have a curious 
mind. You might have asked yourself questions like why people behave the way they 
do (psychology), why behaviours differ across cultures (anthropology), how businesses 
maximize their profit (business), how the dinosaurs died (palaeontology), does eating 
tomatoes protect you against cancer (medicine, biology), is it possible to build a quantum 
computer (physics, chemistry), is the planet hotter than it used to be and in what regions 
(geography, environmental studies)? Whatever it is you’re studying or researching, the 
reason you’re studying it is probably because you’re interested in answering questions. 
Scientists are curious people, and you probably are too. However, you might not have 
bargained on the fact that to answer interesting questions, you need two things: data and 
an explanation of those data. 

The answer to ‘what the hell are you doing here?’ is, therefore, simple: to answer 
interesting questions you need data. Therefore, one of the reasons why your evil sta-
tistics lecturer is forcing you to learn about numbers is because they are a form of data  
and are vital to the research process. Of course there are forms of data other than 
numbers that can be used to test and generate theories. When numbers are involved 
the research involves quantitative methods, but you can also generate and test theories 
by analysing language (such as conversations, magazine articles, media broadcasts and so on). 

1 In the 1970s fans didn’t have helpful protective cages around them to prevent idiotic 3-year-olds sticking their 
fingers into the blades.
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This involves qualitative methods and it is a topic for another book not written by me. 
People can get quite passionate about which of these methods is best, which is a bit 
silly because they are complementary, not competing, approaches and there are much 
more important issues in the world to get upset about. Having said that, all qualitative 
research is rubbish.2

How do you go about answering an interesting question? The research proc-
ess is broadly summarized in Figure 1.2. You begin with an observation that you 
want to understand, and this observation could be anecdotal (you’ve noticed 
that your cat watches birds when they’re on TV but not when jellyfish are on)3 
or could be based on some data (you’ve got several cat owners to keep diaries 
of their cat’s TV habits and have noticed that lots of them watch birds on TV). 
From your initial observation you generate explanations, or theories, of those 
observations, from which you can make predictions (hypotheses). Here’s where 
the data come into the process because to test your predictions you need data. 
First you collect some relevant data (and to do that you need to identify things 
that can be measured) and then you analyse those data. The analysis of the data 
may support your theory or give you cause to modify the theory. As such, the processes of 
data collection and analysis and generating theories are intrinsically linked: theories lead to 
data collection/analysis and data collection/analysis informs theories! This chapter explains 
this research process in more detail.

2 This is a joke. I thought long and hard about whether to include it because, like many of my jokes, there are 
people who won’t find it remotely funny. Its inclusion is also making me fear being hunted down and forced to eat 
my own entrails by a hoard of rabid qualitative researchers. However, it made me laugh, a lot, and despite being 
vegetarian I’m sure my entrails will taste lovely.

3 My cat does actually climb up and stare at the TV when it’s showing birds flying about.

How do I do
research?

Graph Data
Fit a Model

Generate Hypothesis

Collect Data to Test Theory

Initial Observation

(Research Question)

Generate Theory

Analyse Data

Identify Variables

Measure Variables

 

 

Data FIGURE 1.2
The research 
process

01-Field_R-4368-Ch-01.indd   3 28/02/2012   3:22:59 PM



4 D ISCOVER ING STAT IST ICS  US ING R

1.3.  Initial observation: finding something that 
needs explaining 1

The first step in Figure 1.2 was to come up with a question that needs an answer. I spend 
rather more time than I should watching reality TV. Every year I swear that I won’t get 
hooked on Big Brother, and yet every year I find myself glued to the TV screen waiting 
for the next contestant’s meltdown (I am a psychologist, so really this is just research – 
honestly). One question I am constantly perplexed by is why every year there are so many 
contestants with really unpleasant personalities (my money is on narcissistic personality 
disorder4) on the show. A lot of scientific endeavour starts this way: not by watching Big 
Brother, but by observing something in the world and wondering why it happens.

Having made a casual observation about the world (Big Brother contestants on the whole 
have profound personality defects), I need to collect some data to see whether this obser-
vation is true (and not just a biased observation). To do this, I need to define one or more 
variables that I would like to measure. There’s one variable in this example: the personal-
ity of the contestant. I could measure this variable by giving them one of the many well-
established questionnaires that measure personality characteristics. Let’s say that I did this 
and I found that 75% of contestants did have narcissistic personality disorder. These data 
support my observation: a lot of Big Brother contestants have extreme personalities.

1.4.  Generating theories and testing them 1

The next logical thing to do is to explain these data (Figure 1.2). One explanation could be 
that people with narcissistic personality disorder are more likely to audition for Big Brother 
than those without. This is a theory. Another possibility is that the producers of Big Brother 
are more likely to select people who have narcissistic personality disorder to be contestants 
than those with less extreme personalities. This is another theory. We verified our original 
observation by collecting data, and we can collect more data to test our theories. We can 
make two predictions from these two theories. The first is that the number of people turn-
ing up for an audition that have narcissistic personality disorder will be higher than the 
general level in the population (which is about 1%). A prediction from a theory, like this 
one, is known as a hypothesis (see Jane Superbrain Box 1.1). We could test this hypothesis 
by getting a team of clinical psychologists to interview each person at the Big Brother audi-
tion and diagnose them as having narcissistic personality disorder or not. The prediction 
from our second theory is that if the Big Brother selection panel are more likely to choose 
people with narcissistic personality disorder then the rate of this disorder in the final con-
testants will be even higher than the rate in the group of people going for auditions. This is 
another hypothesis. Imagine we collected these data; they are in Table 1.1. 

In total, 7662 people turned up for the audition. Our first hypothesis is that the percent-
age of people with narcissistic personality disorder will be higher at the audition than the 
general level in the population. We can see in the table that of the 7662 people at the audi-
tion, 854 were diagnosed with the disorder; this is about 11% (854/7662 × 100), which is 
much higher than the 1% we’d expect. Therefore, hypothesis 1 is supported by the data. 
The second hypothesis was that the Big Brother selection panel have a bias to chose people 
with narcissistic personality disorder. If we look at the 12 contestants that they selected, 9 
of them had the disorder (a massive 75%). If the producers did not have a bias we would 

4 This disorder is characterized by (among other things) a grandiose sense of self-importance, arrogance, lack of 
empathy for others, envy of others and belief that others envy them, excessive fantasies of brilliance or beauty, the 
need for excessive admiration and exploitation of others.
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have expected only 11% of the contestants to have the disorder. The data again support 
our hypothesis. Therefore, my initial observation that contestants have personality disor-
ders was verified by data, then my theory was tested using specific hypotheses that were 
also verified using data. Data are very important!5

Table 1.1  A table of the number of people at the Big Brother audition split by whether they 
had narcissistic personality disorder and whether they were selected as contestants by the 
producers

No Disorder Disorder Total

Selected 3 9 12

Rejected 6805 845 7650

Total 6808 854 7662

be empirically tested. So, statements such as ‘The Led 
Zeppelin reunion concert in London in 2007 was the best 
gig ever’,5 ‘Lindt chocolate is the best food’ and ‘This is 
the worst statistics book in the world’ are all non-scientific; 
they cannot be proved or disproved. Scientific statements 
can be confirmed or disconfirmed empirically. ‘Watching 
Curb Your Enthusiasm makes you happy’, ‘having sex 
increases levels of the neurotransmitter dopamine’ and 
‘velociraptors ate meat’ are all things that can be tested 
empirically (provided you can quantify and measure the 
variables concerned). Non-scientific statements can 
sometimes be altered to become scientific statements, 
so ‘The Beatles were the most influential band ever’ is 
non-scientific (because it is probably impossible to quan-
tify ‘influence’ in any meaningful way) but by changing the 
statement to ‘The Beatles were the best-selling band ever’ 
it becomes testable (we can collect data about worldwide 
record sales and establish whether The Beatles have, in 
fact, sold more records than any other music artist). Karl 
Popper, the famous philosopher of science, believed that 
non-scientific statements were nonsense, and had no 
place in science. Good theories should, therefore, pro-
duce hypotheses that are scientific statements.

A good theory should allow us to make statements about 
the state of the world. Statements about the world are 
good things: they allow us to make sense of our world, 
and to make decisions that affect our future. One current 
example is global warming. Being able to make a defini-
tive statement that global warming is happening, and 
that it is caused by certain practices in society, allows 
us to change these practices and, hopefully, avert catas-
trophe. However, not all statements are ones that can 
be tested using science. Scientific statements are ones 
that can be verified with reference to empirical evidence, 
whereas non-scientific statements are ones that cannot 

JANE SUPERBRAIN 1.1

When is a hypothesis not a hypothesis? 1

5 It was pretty awesome actually.

I would now be smugly sitting in my office with a contented grin on my face about how 
my theories and observations were well supported by the data. Perhaps I would quit while 
I was ahead and retire. It’s more likely, though, that having solved one great mystery, my 
excited mind would turn to another. After another few hours (well, days probably) locked 
up at home watching Big Brother I would emerge triumphant with another profound 
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observation, which is that these personality-disordered contestants, despite their obvious 
character flaws, enter the house convinced that the public will love them and that they will 
win.6 My hypothesis would, therefore, be that if I asked the contestants if they thought that 
they would win, the people with a personality disorder would say yes.

Let’s imagine I tested my hypothesis by measuring their expectations of success in the 
show, by just asking them, ‘Do you think you will win Big Brother?’. Let’s say that 7 of 
9 contestants with personality disorders said that they thought that they will win, which 
confirms my observation. Next, I would come up with another theory: these contestants 
think that they will win because they don’t realize that they have a personality disorder. 
My hypothesis would be that if I asked these people about whether their personalities were 
different from other people they would say ‘no’. As before, I would collect some more data 
and perhaps ask those who thought that they would win whether they thought that their 
personalities were different from the norm. All 7 contestants said that they thought their 
personalities were different from the norm. These data seem to contradict my theory. This 
is known as falsification, which is the act of disproving a hypothesis or theory. 

It’s unlikely that we would be the only people interested in why individuals 
who go on Big Brother have extreme personalities and think that they will win. 
Imagine these researchers discovered that: (1) people with narcissistic personal-
ity disorder think that they are more interesting than others; (2) they also think 
that they deserve success more than others; and (3) they also think that others 
like them because they have ‘special’ personalities.

This additional research is even worse news for my theory: if they didn’t real-
ize that they had a personality different from the norm then you wouldn’t expect 
them to think that they were more interesting than others, and you certainly 
wouldn’t expect them to think that others will like their unusual personalities. 
In general, this means that my theory sucks: it cannot explain all of the data, 
predictions from the theory are not supported by subsequent data, and it cannot 

explain other research findings. At this point I would start to feel intellectually inadequate 
and people would find me curled up on my desk in floods of tears wailing and moaning 
about my failing career (no change there then).

At this point, a rival scientist, Fester Ingpant-Stain, appears on the scene with a rival 
theory to mine. In his new theory, he suggests that the problem is not that personality-dis-
ordered contestants don’t realize that they have a personality disorder (or at least a person-
ality that is unusual), but that they falsely believe that this special personality is perceived 
positively by other people (put another way, they believe that their personality makes them 
likeable, not dislikeable). One hypothesis from this model is that if personality-disordered 
contestants are asked to evaluate what other people think of them, then they will over-
estimate other people’s positive perceptions. To test this hypothesis, Fester Ingpant-Stain 
collected yet more data. When each contestant came to the diary room7 they had to fill out 
a questionnaire evaluating all of the other contestants’ personalities, and also answer each 
question as if they were each of the contestants responding about them. (So, for every con-
testant there is a measure of what they thought of every other contestant, and also a meas-
ure of what they believed every other contestant thought of them.) He found out that the 
contestants with personality disorders did overestimate their housemates’ view of them; in 
comparison the contestants without personality disorders had relatively accurate impres-
sions of what others thought of them. These data, irritating as it would be for me, support 
the rival theory that the contestants with personality disorders know they have unusual 
personalities but believe that these characteristics are ones that others would feel positive 
about. Fester Ingpant-Stain’s theory is quite good: it explains the initial observations and 

6 One of the things I like about Big Brother in the UK is that year upon year the winner tends to be a nice person, 
which does give me faith that humanity favours the nice.

7 The diary room is a private room in the house where contestants can talk to ‘big brother’ about whatever is on 
their mind.

Are Big Brother
contestants odd?
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brings together a range of research findings. The end result of this whole process (and my 
career) is that we should be able to make a general statement about the state of the world. 
In this case we could state: ‘Big Brother contestants who have personality disorders overes-
timate how much other people like their personality characteristics’.

SELF-TEST

ü	 Based on what you have read in this section, 
what qualities do you think a scientific theory 
should have?

1.5.  Data collection 1: what to measure 1

We have seen already that data collection is vital for testing theories. When we collect data 
we need to decide on two things: (1) what to measure, (2) how to measure it. This section 
looks at the first of these issues.

1.5.1.    Variables 1

1.5.1.1.  Independent and dependent variables 1

To test hypotheses we need to measure variables. Variables are just things that can change 
(or vary); they might vary between people (e.g., IQ, behaviour) or locations (e.g., unem-
ployment) or even time (e.g., mood, profit, number of cancerous cells). Most hypotheses 
can be expressed in terms of two variables: a proposed cause and a proposed outcome. For 
example, if we take the scientific statement ‘Coca-Cola is an effective spermicide’8 then the 
proposed cause is Coca-Cola and the proposed effect is dead sperm. Both the cause and the 
outcome are variables: for the cause we could vary the type of drink, and for the outcome 
these drinks will kill different amounts of sperm. The key to testing such statements is to 
measure these two variables.

A variable that we think is a cause is known as an independent variable (because its value 
does not depend on any other variables). A variable that we think is an effect is called a 
dependent variable because the value of this variable depends on the cause (independent 
variable). These terms are very closely tied to experimental methods in which the cause is 
actually manipulated by the experimenter (as we will see in section 1.6.2). In cross-sectional 
research we don’t manipulate any variables and we cannot make causal statements about the 
relationships between variables, so it doesn’t make sense to talk of dependent and independ-
ent variables because all variables are dependent variables in a sense. One possibility is to 
abandon the terms dependent and independent variable and use the terms predictor variable 
and outcome variable. In experimental work the cause, or independent variable, is a predic-
tor, and the effect, or dependent variable, is simply an outcome. This terminology also suits 
cross-sectional work where, statistically at least, we can use one or more variables to make 
predictions about the other(s) without needing to imply causality.

8 Actually, there is a long-standing urban myth that a post-coital douche with the contents of a bottle of Coke is 
an effective contraceptive. Unbelievably, this hypothesis has been tested and Coke does affect sperm motility, and 
different types of Coke are more or less effective – Diet Coke is best apparently (Umpierre, Hill, & Anderson, 
1985). Nevertheless, a Coke douche is ineffective at preventing pregnancy. 
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1.5.1.2.  Levels of measurement 1

As we have seen in the examples so far, variables can take on many different forms and levels 
of sophistication. The relationship between what is being measured and the numbers that 
represent what is being measured is known as the level of measurement. Broadly speaking, 
variables can be categorical or continuous, and can have different levels of measurement.

A categorical variable is made up of categories. A categorical variable that you should be 
familiar with already is your species (e.g., human, domestic cat, fruit bat, etc.). You are a 
human or a cat or a fruit bat: you cannot be a bit of a cat and a bit of a bat, and neither a 
batman nor (despite many fantasies to the contrary) a catwoman (not even one in a nice 
PVC suit) exist. A categorical variable is one that names distinct entities. In its simplest 
form it names just two distinct types of things, for example male or female. This is known 
as a binary variable. Other examples of binary variables are being alive or dead, pregnant 
or not, and responding ‘yes’ or ‘no’ to a question. In all cases there are just two categories 
and an entity can be placed into only one of the two categories.

When two things that are equivalent in some sense are given the same name (or number), 
but there are more than two possibilities, the variable is said to be a nominal variable. It 
should be obvious that if the variable is made up of names it is pointless to do arithmetic 
on them (if you multiply a human by a cat, you do not get a hat). However, sometimes 
numbers are used to denote categories. For example, the numbers worn by players in a 
rugby team. In rugby, the numbers of shirts denote specific field positions, so the number 
10 is always worn by the fly-half (e.g., England’s Jonny Wilkinson),9 and the number 2 is 
always the hooker (the ugly-looking player at the front of the scrum). These numbers do 
not tell us anything other than what position the player plays. We could equally have shirts 
with FH and H instead of 10 and 1. A number 10 player is not necessarily better than a 
number 1 (most managers would not want their fly-half stuck in the front of the scrum!). 
It is equally as daft to try to do arithmetic with nominal scales where the categories are 
denoted by numbers: the number 10 takes penalty kicks, and if the England coach found 
that Jonny Wilkinson (his number 10) was injured he would not get his number 4 to give 
number 6 a piggy-back and then take the kick. The only way that nominal data can be used 
is to consider frequencies. For example, we could look at how frequently number 10s score 
tries compared to number 4s.

9 Unlike, for example, NFL American football where a quarterback could wear any number from 1 to 19.

             CRAMMING SAM’S TIPS    Some important terms

	 When doing research there are some important generic terms for variables that you will encounter:

·	 Independent variable: A variable thought to be the cause of some effect. This term is usually used in experimental research 
to denote a variable that the experimenter has manipulated.

·	 Dependent variable: A variable thought to be affected by changes in an independent variable. You can think of this variable 
as an outcome.

·	 Predictor variable: A variable thought to predict an outcome variable. This is basically another term for independent vari-
able (although some people won’t like me saying that; I think life would be easier if we talked only about predictors and 
outcomes).

·	 Outcome variable: A variable thought to change as a function of changes in a predictor variable. This term could be synony-
mous with ‘dependent variable’ for the sake of an easy life.
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So far the categorical variables we have considered have been unordered (e.g., differ-
ent brands of Coke with which you’re trying to kill sperm), but they can be ordered too 
(e.g., increasing concentrations of Coke with which you’re trying to skill sperm). When 
categories are ordered, the variable is known as an ordinal variable. Ordinal data tell us 
not only that things have occurred, but also the order in which they occurred. However, 
these data tell us nothing about the differences between values. The X Factor is a TV 
show that is broadcast across the globe in which hopeful singers compete to win a record-
ing contract. It is a hugely popular show, which could (if you take a depressing view) 
reflect the fact that Western society values ‘luck’ more than hard work. (This comment 
in no way reflects my bitterness at spending years learning musical instruments and try-
ing to create orginal music, only to be beaten to musical fame and fortune by a 15-year-
old who can sing other people’s songs, a bit.) Anyway, imagine the three winners of a 
particular X Factor series were Billie, Freema and Elizabeth. The names of the winners 
don’t provide any information about where they came in the contest; however, labelling 
them according to their performance does – first, second and third. These categories are 
ordered. In using ordered categories we now know that the woman who won was better 
than the women who came second and third. We still know nothing about the differences 
between categories, though. We don’t, for example, know how much better the winner 
was than the runners-up: Billie might have been an easy victor, getting many more votes 
than Freema and Elizabeth, or it might have been a very close contest that she won by 
only a single vote. Ordinal data, therefore, tell us more than nominal data (they tell us 
the order in which things happened) but they still do not tell us about the differences 
between points on a scale.

The next level of measurement moves us away from categorical variables and into con-
tinuous variables. A continuous variable is one that gives us a score for each entity and can 
take on any value on the measurement scale that we are using. The first type of continu-
ous variable that you might encounter is an interval variable. Interval data are consider-
ably more useful than ordinal data and most of the statistical tests in this book rely on 
having data measured at this level. To say that data are interval, we must be certain that 
equal intervals on the scale represent equal differences in the property being measured. For 
example, on www.ratemyprofessors.com students are encouraged to rate their lecturers on 
several dimensions (some of the lecturers’ rebuttals of their negative evaluations are worth 

who gives a rating of 10 found Billie more talented than 
one who gave a rating of 2, but can we be certain that 
the first judge found her five times more talented than 
the second? What about if both judges gave a rating 
of 8: could we be sure they found her equally talented? 
Probably not: their ratings will depend on their subjec-
tive feelings about what constitutes talent (the quality of 
singing? showmanship? dancing?). For these reasons, 
in any situation in which we ask people to rate some-
thing subjective (e.g., rate their preference for a product, 
their confidence about an answer, how much they have 
understood some medical instructions) we should prob-
ably regard these data as ordinal although many scien-
tists do not.

A lot of self-report data are ordinal. Imagine if two judges 
on The X Factor were asked to rate Billie’s singing on 
a 10-point scale. We might be confident that a judge 

JANE SUPERBRAIN 1.2

Self-report data 1
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a look). Each dimension (i.e., helpfulness, clarity, etc.) is evaluated using a 5-point scale. 
For this scale to be interval it must be the case that the difference between helpfulness rat-
ings of 1 and 2 is the same as the difference between say 3 and 4, or 4 and 5. Similarly, the 
difference in helpfulness between ratings of 1 and 3 should be identical to the difference 
between ratings of 3 and 5. Variables like this that look interval (and are treated as interval) 
are often ordinal – see Jane Superbrain Box 1.2.

Ratio variables go a step further than interval data by requiring that in addition to the 
measurement scale meeting the requirements of an interval variable, the ratios of values 
along the scale should be meaningful. For this to be true, the scale must have a true and 
meaningful zero point. In our lecturer ratings this would mean that a lecturer rated as 4 
would be twice as helpful as a lecturer rated with a 2 (who would also be twice as helpful as 
a lecturer rated as 1!). The time to respond to something is a good example of a ratio vari-
able. When we measure a reaction time, not only is it true that, say, the difference between 
300 and 350 ms (a difference of 50 ms) is the same as the difference between 210 and 
260 ms or 422 and 472 ms, but also it is true that distances along the scale are divisible: a 
reaction time of 200 ms is twice as long as a reaction time of 100 ms and twice as short as 
a reaction time of 400 ms. 

can be measured in discrete terms; for example, when we 
measure age we rarely use nanoseconds but use years (or 
possibly years and months). In doing so we turn a continu-
ous variable into a discrete one (the only acceptable values 
are years). Also, we often treat discrete variables as if they 
were continuous. For example, the number of boyfriends/
girlfriends that you have had is a discrete variable (it will be, 
in all but the very weird cases, a whole number). However, 
you might read a magazine that says ‘the average number 
of boyfriends that women in their 20s have has increased 
from 4.6 to 8.9’. This assumes that the variable is continu-
ous, and of course these averages are meaningless: no 
one in their sample actually had 8.9 boyfriends.

The distinction between discrete and continuous variables 
can be very blurred. For one thing, continuous variables 

JANE SUPERBRAIN 1.3

Continuous and discrete variables 1

Continuous variables can be, well, continuous (obviously) but also discrete. This is quite 
a tricky distinction (Jane Superbrain Box 1.3). A truly continuous variable can be measured 
to any level of precision, whereas a discrete variable can take on only certain values (usu-
ally whole numbers) on the scale. What does this actually mean? Well, our example in the 
text of rating lecturers on a 5-point scale is an example of a discrete variable. The range of 
the scale is 1–5, but you can enter only values of 1, 2, 3, 4 or 5; you cannot enter a value 
of 4.32 or 2.18. Although a continuum exists underneath the scale (i.e., a rating of 3.24 
makes sense), the actual values that the variable takes on are limited. A continuous variable 
would be something like age, which can be measured at an infinite level of precision (you 
could be 34 years, 7 months, 21 days, 10 hours, 55 minutes, 10 seconds, 100 milliseconds, 
63 microseconds, 1 nanosecond old).
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1.5.2.    Measurement error 1

We have seen that to test hypotheses we need to measure variables. Obviously, it’s also 
important that we measure these variables accurately. Ideally we want our measure to be 
calibrated such that values have the same meaning over time and across situations. Weight 
is one example: we would expect to weigh the same amount regardless of who weighs 
us, or where we take the measurement (assuming it’s on Earth and not in an anti-gravity 
chamber). Sometimes variables can be directly measured (profit, weight, height) but in 
other cases we are forced to use indirect measures such as self-report, questionnaires and 
computerized tasks (to name but a few). 

Let’s go back to our Coke as a spermicide example. Imagine we took some Coke and 
some water and added them to two test tubes of sperm. After several minutes, we measured 
the motility (movement) of the sperm in the two samples and discovered no difference. A 
few years passed and another scientist, Dr Jack Q. Late, replicated the study but found that 
sperm motility was worse in the Coke sample. There are two measurement-related issues 
that could explain his success and our failure: (1) Dr Late might have used more Coke in 
the test tubes (sperm might need a critical mass of Coke before they are affected); (2) Dr 
Late measured the outcome (motility) differently than us.

The former point explains why chemists and physicists have devoted many hours to 
developing standard units of measurement. If you had reported that you’d used 100 ml 
of Coke and 5 ml of sperm, then Dr Late could have ensured that he had used the same 
amount – because millilitres are a standard unit of measurement we would know that Dr 
Late used exactly the same amount of Coke that we used. Direct measurements such as the 
millilitre provide an objective standard: 100 ml of a liquid is known to be twice as much 
as only 50 ml.

The second reason for the difference in results between the studies could have been to 
do with how sperm motility was measured. Perhaps in our original study we measured 

             CRAMMING SAM’S TIPS    Levels of measurement

	 Variables can be split into categorical and continuous, and within these types there are different levels of 
measurement:

·	 Categorical (entities are divided into distinct categories):

	 Binary variable: There are only two categories (e.g., dead or alive).
	 Nominal variable: There are more than two categories (e.g., whether someone is an omnivore, vegetarian, vegan, or 

fruitarian).

·	 Ordinal variable: The same as a nominal variable but the categories have a logical order (e.g., whether people got a fail, a 
pass, a merit or a distinction in their exam).

·	 Continuous (entities get a distinct score):

	 Interval variable: Equal intervals on the variable represent equal differences in the property being measured (e.g., the 
difference between 6 and 8 is equivalent to the difference between 13 and 15).

	 Ratio variable: The same as an interval variable, but the ratios of scores on the scale must also make sense (e.g., a score 
of 16 on an anxiety scale means that the person is, in reality, twice as anxious as someone scoring 8).
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motility using absorption spectrophotometry, whereas Dr Late used laser light-scattering 
techniques.10 Perhaps his measure is more sensitive than ours.

There will often be a discrepancy between the numbers we use to represent the thing 
we’re measuring and the actual value of the thing we’re measuring (i.e., the value we would 
get if we could measure it directly). This discrepancy is known as measurement error. For 
example, imagine that you know as an absolute truth that you weigh 80 kg. One day 
you step on the bathroom scales and it says 83 kg. There is a difference of 3 kg between 
your actual weight and the weight given by your measurement tool (the scales): there is a 
measurement error of 3 kg. Although properly calibrated bathroom scales should produce 
only very small measurement errors (despite what we might want to believe when it says 
we have gained 3 kg), self-report measures do produce measurement error because factors 
other than the one you’re trying to measure will influence how people respond to our 
measures. Imagine you were completing a questionnaire that asked you whether you had 
stolen from a shop. If you had, would you admit it, or might you be tempted to conceal 
this fact?

1.5.3.    Validity and reliability 1

One way to try to ensure that measurement error is kept to a minimum is to determine 
properties of the measure that give us confidence that it is doing its job properly. The first 
property is validity, which is whether an instrument actually measures what it sets out to 
measure. The second is reliability, which is whether an instrument can be interpreted con-
sistently across different situations.

Validity refers to whether an instrument measures what it was designed to measure; 
a device for measuring sperm motility that actually measures sperm count is not valid. 
Things like reaction times and physiological measures are valid in the sense that a reaction 
time does in fact measure the time taken to react and skin conductance does measure the 
conductivity of your skin. However, if we’re using these things to infer other things (e.g., 
using skin conductance to measure anxiety) then they will be valid only if there are no 
other factors other than the one we’re interested in that can influence them.

Criterion validity is whether the instrument is measuring what it claims to measure (does 
your lecturer helpfulness rating scale actually measure lecturers’ helpfulness?). In an ideal 
world, you could assess this by relating scores on your measure to real-world observations. 
For example, we could take an objective measure of how helpful lecturers were and com-
pare these observations to students’ ratings on ratemyprofessor.com. This is often imprac-
tical and, of course, with attitudes you might not be interested in the reality so much as 
the person’s perception of reality (you might not care whether they are a psychopath but 
whether they think they are a psychopath). With self-report measures/questionnaires we 
can also assess the degree to which individual items represent the construct being meas-
ured, and cover the full range of the construct (content validity). 

Validity is a necessary but not sufficient condition of a measure. A second consideration 
is reliability, which is the ability of the measure to produce the same results under the same 
conditions. To be valid the instrument must first be reliable. The easiest way to assess reli-
ability is to test the same group of people twice: a reliable instrument will produce similar 
scores at both points in time (test–retest reliability). Sometimes, however, you will want to 
measure something that does vary over time (e.g., moods, blood-sugar levels, productiv-
ity). Statistical methods can also be used to determine reliability (we will discover these in 
Chapter 17).

10 In the course of writing this chapter I have discovered more than I think is healthy about the measurement of 
sperm motility.
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SELF-TEST

ü	 What is the difference between reliability and validity?

1.6.  Data collection 2: how to measure 1

1.6.1.    Correlational research methods 1

So far we’ve learnt that scientists want to answer questions, and that to do this they have 
to generate data (be they numbers or words), and to generate good data they need to use 
accurate measures. We move on now to look briefly at how the data are collected. If we 
simplify things quite a lot then there are two ways to test a hypothesis: either by observing 
what naturally happens, or by manipulating some aspect of the environment and observing 
the effect it has on the variable that interests us.

The main distinction between what we could call correlational or cross-sectional research 
(where we observe what naturally goes on in the world without directly interfering with it) 
and experimental research (where we manipulate one variable to see its effect on another) 
is that experimentation involves the direct manipulation of variables. In correlational 
research we do things like observe natural events or we take a snapshot of many vari-
ables at a single point in time. As some examples, we might measure pollution levels in a 
stream and the numbers of certain types of fish living there; lifestyle variables (smoking, 
exercise, food intake) and disease (cancer, diabetes); workers’ job satisfaction under differ-
ent managers; or children’s school performance across regions with different demograph-
ics. Correlational research provides a very natural view of the question we’re researching 
because we are not influencing what happens and the measures of the variables should not 
be biased by the researcher being there (this is an important aspect of ecological validity). 

At the risk of sounding like I’m absolutely obsessed with using Coke as a contraceptive 
(I’m not, but my discovery that people in the 1950s and 1960s actually tried this has, I 
admit, intrigued me), let’s return to that example. If we wanted to answer the question ‘Is 
Coke an effective contraceptive?’ we could administer questionnaires about sexual prac-
tices (quantity of sexual activity, use of contraceptives, use of fizzy drinks as contracep-
tives, pregnancy, etc.). By looking at these variables we could see which variables predict 
pregnancy, and in particular whether those reliant on Coca-Cola as a form of contraceptive 
were more likely to end up pregnant than those using other contraceptives, and less likely 
than those using no contraceptives at all. This is the only way to answer a question like this 
because we cannot manipulate any of these variables particularly easily. Even if we could, 
it would be totally unethical to insist on some people using Coke as a contraceptive (or 
indeed to do anything that would make a person likely to produce a child that they didn’t 
intend to produce). However, there is a price to pay, which relates to causality.

1.6.2.    Experimental research methods 1

Most scientific questions imply a causal link between variables; we have seen already that 
dependent and independent variables are named such that a causal connection is implied 
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(the dependent variable depends on the independent variable). Sometimes the causal link 
is very obvious, as in the research question ‘Does low self-esteem cause dating anxiety?’. 
Sometimes the implication might be subtler – for example, in the question ‘Is dating anxi-
ety all in the mind?’ the implication is that a person’s mental outlook causes them to be 
anxious when dating. Even when the cause–effect relationship is not explicitly stated, most 
research questions can be broken down into a proposed cause (in this case mental outlook) 
and a proposed outcome (dating anxiety). Both the cause and the outcome are variables: 
for the cause some people will perceive themselves in a negative way (so it is something 
that varies); and for the outcome, some people will get anxious on dates and others won’t 
(again, this is something that varies). The key to answering the research question is to 
uncover how the proposed cause and j14the proposed outcome relate to each other; is it 
the case that the people who have a low opinion of themselves are the same people that 
get anxious on dates?

David Hume (see Hume, 1739–40, 1748, for more detail),11 an influ-
ential philosopher, said that to infer cause and effect: (1) cause and 
effect must occur close together in time (contiguity); (2) the cause must 
occur before an effect does; and (3) the effect should never occur with-
out the presence of the cause. These conditions imply that causality can 
be inferred through corroborating evidence: cause is equated to high 
degrees of correlation between contiguous events. In our dating example, 
to infer that low self-esteem caused dating anxiety, it would be sufficient 
to find that whenever someone had low self-esteem they would feel anx-
ious when on a date, that the low self-esteem emerged before the dating 
anxiety did, and that the person should never have dating anxiety if they 
haven’t been suffering from low self-esteem.

In the previous section on correlational research, we saw that variables are often meas-
ured simultaneously. The first problem with doing this is that it provides no information 
about the contiguity between different variables: we might find from a questionnaire study 
that people with low self-esteem also have dating anxiety but we wouldn’t know whether 
the low self-esteem or the dating anxiety came first!

Let’s imagine that we find that there are people who have low self-esteem but do not get 
dating anxiety. This finding doesn’t violate Hume’s rules: he doesn’t say anything about 
the cause happening without the effect. It could be that both low self-esteem and dating 
anxiety are caused by a third variable (e.g., poor social skills which might make you feel 
generally worthless but also put pressure on you in dating situations). This illustrates a sec-
ond problem with correlational evidence: the tertium quid (‘a third person or thing of inde-
terminate character’). For example, a correlation has been found between having breast 
implants and suicide (Koot, Peeters, Granath, Grobbee, & Nyren, 2003). However, it is 
unlikely that having breast implants causes you to commit suicide – presumably, there is an 
external factor (or factors) that causes both; for example, low self-esteem might lead you 
to have breast implants and also attempt suicide. These extraneous factors are sometimes 
called confounding variables or confounds for short. 

The shortcomings of Hume’s criteria led John Stuart Mill (1865) to add a further crite-
rion: that all other explanations of the cause–effect relationship be ruled out. Put simply, 
Mill proposed that, to rule out confounding variables, an effect should be present when the 
cause is present and that when the cause is absent the effect should be absent also. Mill’s 
ideas can be summed up by saying that the only way to infer causality is through compari-
son of two controlled situations: one in which the cause is present and one in which the 
cause is absent. This is what experimental methods strive to do: to provide a comparison of 
situations (usually called treatments or conditions) in which the proposed cause is present 
or absent.

11 Both of these can be read online at http://www.utilitarian.net/hume/ or by doing a Google search 
for David Hume.

What’s the difference
between experimental and

correlational research?
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As a simple case, we might want to see what effect motivators have on learning about 
statistics. I might, therefore, randomly split some students into three different groups in 
which I change my style of teaching in the seminars on the course:

MM Group 1 (positive reinforcement): During seminars I congratulate all students in this 
group on their hard work and success. Even when they get things wrong, I am sup-
portive and say things like ‘that was very nearly the right answer, you’re coming 
along really well’ and then give them a nice piece of chocolate.

MM Group 2 (punishment): This group receives seminars in which I give relentless verbal 
abuse to all of the students even when they give the correct answer. I demean their 
contributions and am patronizing and dismissive of everything they say. I tell students 
that they are stupid, worthless and shouldn’t be doing the course at all.

MM Group 3 (no motivator): This group receives normal university style seminars (some 
might argue that this is the same as group 2!). Students are not praised or punished 
and instead I give them no feedback at all.

The thing that I have manipulated is the teaching method (positive reinforcement, pun-
ishment or no motivator). As we have seen earlier in this chapter, this variable is known 
as the independent variable and in this situation it is said to have three levels, because it 
has been manipulated in three ways (i.e., motivator has been split into three types: positive 
reinforcement, punishment and none). Once I have carried out this manipulation I must 
have some kind of outcome that I am interested in measuring. In this case it is statistical 
ability, and I could measure this variable using a statistics exam after the last seminar. We 
have also already discovered that this outcome variable is known as the dependent vari-
able because we assume that these scores will depend upon the type of teaching method 
used (the independent variable). The critical thing here is the inclusion of the no-motivator 
group because this is a group in which our proposed cause (motivator) is absent, and we 
can compare the outcome in this group against the two situations where the proposed 
cause is present. If the statistics scores are different in each of the motivation groups (cause 
is present) compared to the group for which no motivator was given (cause is absent) then 
this difference can be attributed to the type of motivator used. In other words, the motiva-
tor used caused a difference in statistics scores (Jane Superbrain Box 1.4).

effect on an outcome (the effect). In correlational research 
we observe the co-occurrence of variables; we do not 
manipulate the causal variable first and then measure the 
effect, therefore we cannot compare the effect when the 
causal variable is present against when it is absent. In 
short, we cannot say which variable causes a change in 
the other; we can merely say that the variables co-occur 
in a certain way. The reason why some people think that 
certain statistical tests allow causal inferences is because 
historically certain tests (e.g., ANOVA, t-tests) have been 
used to analyse experimental research, whereas others 
(e.g., regression, correlation) have been used to ana-
lyse correlational research (Cronbach, 1957). As you’ll 
discover, these statistical procedures are, in fact, math-
ematically identical.

People sometimes get confused and think that certain 
statistical procedures allow causal inferences and others 
don’t. This isn’t true, it’s the fact that in experiments we 
manipulate the causal variable systematically to see its 

JANE SUPERBRAIN 1.4

Causality and statistics 1
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1.6.2.1.  Two methods of data collection 1

When we collect data in an experiment, we can choose between two methods of data col-
lection. The first is to manipulate the independent variable using different participants. 
This method is the one described above, in which different groups of people take part in 
each experimental condition (a between-groups, between-subjects, or independent design). 
The second method is to manipulate the independent variable using the same participants. 
Simplistically, this method means that we give a group of students positive reinforcement 
for a few weeks and test their statistical abilities and then begin to give this same group 
punishment for a few weeks before testing them again, and then finally giving them no 
motivator and testing them for a third time (a within-subject or repeated-measures design). 
As you will discover, the way in which the data are collected determines the type of test 
that is used to analyse the data.

1.6.2.2.  Two types of variation 1

Imagine we were trying to see whether you could train chimpanzees to run the economy. 
In one training phase they are sat in front of a chimp-friendly computer and press but-
tons which change various parameters of the economy; once these parameters have been 
changed a figure appears on the screen indicating the economic growth resulting from 
those parameters. Now, chimps can’t read (I don’t think) so this feedback is meaningless. 
A second training phase is the same except that if the economic growth is good, they get a 
banana (if growth is bad they do not) – this feedback is valuable to the average chimp. This 
is a repeated-measures design with two conditions: the same chimps participate in condi-
tion 1 and in condition 2.

Let’s take a step back and think what would happen if we did not introduce an experi-
mental manipulation (i.e., there were no bananas in the second training phase so condition 
1 and condition 2 were identical). If there is no experimental manipulation then we expect 
a chimp’s behaviour to be similar in both conditions. We expect this because external fac-
tors such as age, gender, IQ, motivation and arousal will be the same for both conditions 
(a chimp’s gender etc. will not change from when they are tested in condition 1 to when 
they are tested in condition 2). If the performance measure is reliable (i.e., our test of how 
well they run the economy), and the variable or characteristic that we are measuring (in 
this case ability to run an economy) remains stable over time, then a participant’s perform-
ance in condition 1 should be very highly related to their performance in condition 2. So, 
chimps who score highly in condition 1 will also score highly in condition 2, and those who 
have low scores for condition 1 will have low scores in condition 2. However, performance 
won’t be identical, there will be small differences in performance created by unknown fac-
tors. This variation in performance is known as unsystematic variation. 

If we introduce an experimental manipulation (i.e., provide bananas as feedback in one 
of the training sessions), then we do something different to participants in condition 1 than 
what we do to them in condition 2. So, the only difference between conditions 1 and 2 is 
the manipulation that the experimenter has made (in this case that the chimps get bananas 
as a positive reward in one condition but not in the other). Therefore, any differences 
between the means of the two conditions is probably due to the experimental manipula-
tion. So, if the chimps perform better in one training phase than the other then this has to 
be due to the fact that bananas were used to provide feedback in one training phase but not 
the other. Differences in performance created by a specific experimental manipulation are 
known as systematic variation.

Now let’s think about what happens when we use different participants – an independ-
ent design. In this design we still have two conditions, but this time different participants 
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participate in each condition. Going back to our example, one group of chimps receives 
training without feedback, whereas a second group of different chimps does receive feed-
back on their performance via bananas.12 Imagine again that we didn’t have an experimen-
tal manipulation. If we did nothing to the groups, then we would still find some variation 
in behaviour between the groups because they contain different chimps who will vary in 
their ability, motivation, IQ and other factors. In short, the type of factors that were held 
constant in the repeated-measures design are free to vary in the independent-measures 
design. So, the unsystematic variation will be bigger than for a repeated-measures design. 
As before, if we introduce a manipulation (i.e., bananas) then we will see additional vari-
ation created by this manipulation. As such, in both the repeated-measures design and the 
independent-measures design there are always two sources of variation:

MM Systematic variation: This variation is due to the experimenter doing something to all 
of the participants in one condition but not in the other condition.

MM Unsystematic variation: This variation results from random factors that exist between 
the experimental conditions (natural differences in ability, the time of day, etc.).

The role of statistics is to discover how much variation there is in performance, and then 
to work out how much of this is systematic and how much is unsystematic.

In a repeated-measures design, differences between two conditions can be caused by 
only two things: (1) the manipulation that was carried out on the participants, or (2) any 
other factor that might affect the way in which a participant performs from one time to 
the next. The latter factor is likely to be fairly minor compared to the influence of the 
experimental manipulation. In an independent design, differences between the two condi-
tions can also be caused by one of two things: (1) the manipulation that was carried out on 
the participants, or (2) differences between the characteristics of the participants allocated 
to each of the groups. The latter factor in this instance is likely to create considerable 
random variation both within each condition and between them. Therefore, the effect 
of our experimental manipulation is likely to be more apparent in a repeated-measures 
design than in a between-group design because in the former unsystematic variation can 
be caused only by differences in the way in which someone behaves at different times. In 
independent designs we have differences in innate ability contributing to the unsystematic 
variation. Therefore, this error variation will almost always be much larger than if the same 
participants had been used. When we look at the effect of our experimental manipulation, 
it is always against a background of ‘noise’ caused by random, uncontrollable differences 
between our conditions. In a repeated-measures design this ‘noise’ is kept to a minimum 
and so the effect of the experiment is more likely to show up. This means that, other things 
being equal, repeated-measures designs have more power to detect effects than independ-
ent designs.

1.6.3.    Randomization 1

In both repeated-measures and independent-measures designs it is important to try to keep 
the unsystematic variation to a minimum. By keeping the unsystematic variation as small 
as possible we get a more sensitive measure of the experimental manipulation. Generally, 
scientists use the randomization of participants to treatment conditions to achieve this goal. 

12 When I say ‘via’ I don’t mean that the bananas developed little banana mouths that opened up and said ‘well 
done old chap, the economy grew that time’ in chimp language. I mean that when they got something right they 
received a banana as a reward for their correct response.
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Many statistical tests work by identifying the systematic and unsystematic sources of varia-
tion and then comparing them. This comparison allows us to see whether the experiment 
has generated considerably more variation than we would have got had we just tested 
participants without the experimental manipulation. Randomization is important because 
it eliminates most other sources of systematic variation, which allows us to be sure that 
any systematic variation between experimental conditions is due to the manipulation of 
the independent variable. We can use randomization in two different ways depending on 
whether we have an independent- or repeated-measures design.

Let’s look at a repeated-measures design first. When the same people participate in more 
than one experimental condition they are naive during the first experimental condition but 
they come to the second experimental condition with prior experience of what is expected 
of them. At the very least they will be familiar with the dependent measure (e.g., the task 
they’re performing). The two most important sources of systematic variation in this type 
of design are:

MM Practice effects: Participants may perform differently in the second condition because 
of familiarity with the experimental situation and/or the measures being used.

MM Boredom effects: Participants may perform differently in the second condition because 
they are tired or bored from having completed the first condition.

Although these effects are impossible to eliminate completely, we can ensure that they 
produce no systematic variation between our conditions by counterbalancing the order in 
which a person participates in a condition. 

We can use randomization to determine in which order the conditions are completed. 
That is, we randomly determine whether a participant completes condition 1 before condi-
tion 2, or condition 2 before condition 1. Let’s look at the teaching method example and 
imagine that there were just two conditions: no motivator and punishment. If the same 
participants were used in all conditions, then we might find that statistical ability was 
higher after the punishment condition. However, if every student experienced the punish-
ment after the no-motivator seminars then they would enter the punishment condition 
already having a better knowledge of statistics than when they began the no-motivator 
condition. So, the apparent improvement after punishment would not be due to the experi-
mental manipulation (i.e., it’s not because punishment works), but because participants 
had attended more statistics seminars by the end of the punishment condition compared 
to the no-motivator one. We can use randomization to ensure that the number of statistics 
seminars does not introduce a systematic bias by randomly assigning students to have the 
punishment seminars first or the no-motivator seminars first.

If we turn our attention to independent designs, a similar argument can be applied. We 
know that different participants participate in different experimental conditions and that 
these participants will differ in many respects (their IQ, attention span, etc.). Although we 
know that these confounding variables contribute to the variation between conditions, 
we need to make sure that these variables contribute to the unsystematic variation and 
not the systematic variation. The way to ensure that confounding variables are unlikely to 
contribute systematically to the variation between experimental conditions is to randomly 
allocate participants to a particular experimental condition. This should ensure that these 
confounding variables are evenly distributed across conditions.

A good example is the effects of alcohol on personality. You might give one group of 
people 5 pints of beer, and keep a second group sober, and then count how many fights 
each person gets into. The effect that alcohol has on people can be very variable because 
of different tolerance levels: teetotal people can become very drunk on a small amount, 
while alcoholics need to consume vast quantities before the alcohol affects them. Now, 
if you allocated a bunch of teetotal participants to the condition that consumed alcohol, 
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then you might find no difference between them and the sober group (because the teetotal 
participants are all unconscious after the first glass and so can’t become involved in any 
fights). As such, the person’s prior experiences with alcohol will create systematic variation 
that cannot be dissociated from the effect of the experimental manipulation. The best way 
to reduce this eventuality is to randomly allocate participants to conditions.

SELF-TEST

ü	 Why is randomization important?

1.7.  Analysing data 1

The final stage of the research process is to analyse the data you have collected. When the 
data are quantitative this involves both looking at your data graphically to see what the 
general trends in the data are, and also fitting statistical models to the data.

1.7.1.    Frequency distributions 1

Once you’ve collected some data a very useful thing to do is to plot a graph of how many 
times each score occurs. This is known as a frequency distribution, or histogram, which is a 
graph plotting values of observations on the horizontal axis, with a bar showing how many 
times each value occurred in the data set. Frequency distributions can be very useful for 
assessing properties of the distribution of scores. We will find out how to create these types 
of charts in Chapter 4.

Frequency distributions come in many different shapes and sizes. It is 
quite important, therefore, to have some general descriptions for common 
types of distributions. In an ideal world our data would be distributed sym-
metrically around the centre of all scores. As such, if we drew a vertical 
line through the centre of the distribution then it should look the same on 
both sides. This is known as a normal distribution and is characterized by 
the bell-shaped curve with which you might already be familiar. This shape 
basically implies that the majority of scores lie around the centre of the 
distribution (so the largest bars on the histogram are all around the central 
value). Also, as we get further away from the centre the bars get smaller, 
implying that as scores start to deviate from the centre their frequency 
is decreasing. As we move still further away from the centre our scores 
become very infrequent (the bars are very short). Many naturally occurring 
things have this shape of distribution. For example, most men in the UK are about 175 cm 
tall,13 some are a bit taller or shorter but most cluster around this value. There will be very 
few men who are really tall (i.e., above 205 cm) or really short (i.e., under 145 cm). An 
example of a normal distribution is shown in Figure 1.3.

13 I am exactly 180 cm tall. In my home country this makes me smugly above average. However, I’m writing this 
in the Netherlands where the average male height is 185 cm (a massive 10 cm higher than the UK), and where I 
feel like a bit of a dwarf. 

What is a frequency
distribution and

when is it normal?
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There are two main ways in which a distribution can deviate from normal: (1) lack of 
symmetry (called skew) and (2) pointyness (called kurtosis). Skewed distributions are not 
symmetrical and instead the most frequent scores (the tall bars on the graph) are clustered 
at one end of the scale. So, the typical pattern is a cluster of frequent scores at one end 
of the scale and the frequency of scores tailing off towards the other end of the scale. A 
skewed distribution can be either positively skewed (the frequent scores are clustered at 
the lower end and the tail points towards the higher or more positive scores) or negatively 
skewed (the frequent scores are clustered at the higher end and the tail points towards the 
lower or more negative scores). Figure 1.4 shows examples of these distributions.
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A ‘normal’ 
distribution (the 
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FIGURE 1.4    A positively (left-hand figure) and negatively (right-hand figure) skewed distribution
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Distributions also vary in their kurtosis. Kurtosis, despite sounding like some kind of 
exotic disease, refers to the degree to which scores cluster at the ends of the distribution 
(known as the tails) and how pointy a distribution is (but there are other factors that can 
affect how pointy the distribution looks – see Jane Superbrain Box 2.3). A distribution with 
positive kurtosis has many scores in the tails (a so-called heavy-tailed distribution) and is 
pointy. This is known as a leptokurtic distribution. In contrast, a distribution with negative 
kurtosisis is relatively thin in the tails (has light tails) and tends to be flatter than normal. 
This distribution is called platykurtic. Ideally, we want our data to be normally distributed 
(i.e., not too skewed, and not too many or too few scores at the extremes!). For everything 
there is to know about kurtosis read DeCarlo (1997).

In a normal distribution the values of skew and kurtosis are 0 (i.e., the tails of the dis-
tribution are as they should be). If a distribution has values of skew or kurtosis above or 
below 0 then this indicates a deviation from normal: Figure 1.5 shows distributions with 
kurtosis values of +4 (left panel) and −1 (right panel).
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FIGURE 1.5    Distributions with positive kurtosis (leptokurtic, left) and negative kurtosis (platykurtic, right)

1.7.2.    The centre of a distribution 1

We can also calculate where the centre of a frequency distribution lies (known as the 
central tendency). There are three measures commonly used: the mean, the mode and the 
median. 
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1.7.2.1.  The mode 1

The mode is simply the score that occurs most frequently in the data set. This is easy to spot in 
a frequency distribution because it will be the tallest bar! To calculate the mode, simply place 
the data in ascending order (to make life easier), count how many times each score occurs, 
and the score that occurs the most is the mode! One problem with the mode is that it can 
often take on several values. For example, Figure 1.6 shows an example of a distribution with 
two modes (there are two bars that are the highest), which is said to be bimodal. It’s also pos-
sible to find data sets with more than two modes (multimodal). Also, if the frequencies of cer-
tain scores are very similar, then the mode can be influenced by only a small number of cases.

1500

900

1100

1200

1300

1400

1000

800

700

600

500

400

300

200

100

0

F
re

q
u

en
cy

FIGURE 1.6
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distribution

What are the mode,
median and mean?

1.7.2.2.  The median

Another way to quantify the centre of a distribution is to look for the middle 
score when scores are ranked in order of magnitude. This is called the median. 
For example, Facebook is a popular social networking website, in which users 
can sign up to be ‘friends’ of other users. Imagine we looked at the number 
of friends that a selection (actually, some of my friends) of 11 Facebook users 
had. Number of friends: 108, 103, 252, 121, 93, 57, 40, 53, 22, 116, 98.

To calculate the median, we first arrange these scores into ascending order: 
22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252.

Next, we find the position of the middle score by counting the number of 
scores we have collected (n), adding 1 to this value, and then dividing by 2. 
With 11 scores, this gives us (n + 1)/2 = (11 + 1)/2 = 12/2 = 6. Then, we 
find the score that is positioned at the location we have just calculated. So, in 

this example we find the sixth score:

22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252

Median
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This works very nicely when we have an odd number of scores (as in this example) but 
when we have an even number of scores there won’t be a middle value. Let’s imagine that 
we decided that because the highest score was so big (more than twice as large as the next 
biggest number), we would ignore it. (For one thing, this person is far too popular and we 
hate them.) We have only 10 scores now. As before, we should rank-order these scores: 
22, 40, 53, 57, 93, 98, 103, 108, 116, 121. We then calculate the position of the middle 
score, but this time it is (n + 1)/2 = 11/2 = 5.5. This means that the median is halfway 
between the fifth and sixth scores. To get the median we add these two scores and divide 
by 2. In this example, the fifth score in the ordered list was 93 and the sixth score was 98. 
We add these together (93 + 98 = 191) and then divide this value by 2 (191/2 = 95.5). 
The median number of friends was, therefore, 95.5.

The median is relatively unaffected by extreme scores at either end of the distribution: 
the median changed only from 98 to 95.5 when we removed the extreme score of 252. The 
median is also relatively unaffected by skewed distributions and can be used with ordinal, 
interval and ratio data (it cannot, however, be used with nominal data because these data 
have no numerical order).

1.7.2.3.  The mean 1

The mean is the measure of central tendency that you are most likely to have heard of 
because it is simply the average score and the media are full of average scores.14 To calculate 
the mean we simply add up all of the scores and then divide by the total number of scores 
we have. We can write this in equation form as:

X
x

n

i

i

n

= =
∑

1 (1.1)

This may look complicated, but the top half of the equation simply means ‘add up all of 
the scores’ (the xi just means ‘the score of a particular person’; we could replace the letter i 
with each person’s name instead), and the bottom bit means divide this total by the number 
of scores you have got (n). Let’s calculate the mean for the Facebook data. First, we add 
up all of the scores:

xi
i

n

= + + + + + + + + + +

=
=
∑

1

22 40 53 57 93 98 103 108 116 121 253

1063

We then divide by the number of scores (in this case 11):

X
x

n

i

i

n

= = ==
∑

1 1063
11

96 64.

The mean is 96.64 friends, which is not a value we observed in our actual data (it would 
be ridiculous to talk of having 0.64 of a friend). In this sense the mean is a statistical model – 
more on this in the next chapter.

14 I’m writing this on 15 February 2008, and to prove my point the BBC website is running a headline about how 
PayPal estimates that Britons will spend an average of £71.25 each on Valentine’s Day gifts, but uSwitch.com said 
that the average spend would be £22.69!
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SELF-TEST

ü	 Compute the mean but excluding the score of 
252.

If you calculate the mean without our extremely popular person (i.e., excluding the 
value 252), the mean drops to 81.1 friends. One disadvantage of the mean is that it can 
be influenced by extreme scores. In this case, the person with 252 friends on Facebook 
increased the mean by about 15 friends! Compare this difference with that of the median. 
Remember that the median hardly changed if we included or excluded 252, which illus-
trates how the median is less affected by extreme scores than the mean. While we’re being 
negative about the mean, it is also affected by skewed distributions and can be used only 
with interval or ratio data.

If the mean is so lousy then why do we use it all of the time? One very important reason 
is that it uses every score (the mode and median ignore most of the scores in a data set). 
Also, the mean tends to be stable in different samples. 

1.7.3.    The dispersion in a distribution 1

It can also be interesting to try to quantify the spread, or dispersion, of scores in the data. 
The easiest way to look at dispersion is to take the largest score and subtract from it the 
smallest score. This is known as the range of scores. For our Facebook friends data, if we 
order these scores we get 22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252. The highest 
score is 252 and the lowest is 22; therefore, the range is 252 − 22 = 230. One problem 
with the range is that because it uses only the highest and lowest score it is affected dra-
matically by extreme scores.

SELF-TEST

ü	 Compute the range but excluding the score of 
252.

If you have done the self-test task you’ll see that without the extreme score the range 
drops dramatically from 230 to 99 – less than half the size!

One way around this problem is to calculate the range when we exclude values at the 
extremes of the distribution. One convention is to cut off the top and bottom 25% of 
scores and calculate the range of the middle 50% of scores – known as the interquartile 
range. Let’s do this with the Facebook data. First we need to calculate what are called quar-
tiles. Quartiles are the three values that split the sorted data into four equal parts. First we 
calculate the median, which is also called the second quartile, which splits our data into two 
equal parts. We already know that the median for these data is 98. The lower quartile is the 
median of the lower half of the data and the upper quartile is the median of the upper half 
of the data. One rule of thumb is that the median is not included in the two halves when 
they are split (this is convenient if you have an odd number of values), but you can include 
it (although which half you put it in is another question). Figure 1.7 shows how we would 
calculate these values for the Facebook data. Like the median, the upper and lower quartile 
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need not be values that actually appear in the data (like the median, if each half of the data 
had an even number of values in it then the upper and lower quartiles would be the aver-
age of two values in the data set). Once we have worked out the values of the quartiles, we 
can calculate the interquartile range, which is the difference between the upper and lower 
quartile. For the Facebook data this value would be 116−53 = 63. The advantage of the 
interquartile range is that it isn’t affected by extreme scores at either end of the distribu-
tion. However, the problem with it is that you lose a lot of data (half of it in fact !).

22 40 53 57 93

Interquartile Range

Lower Quartile Median
Second Quartile

Upper Quartile

98 103 108 116 121 252

FIGURE 1.7
Calculating 
quartiles and 
the interquartile 
range

SELF-TEST

ü	 Twenty-one heavy smokers were put on a 
treadmill at the fastest setting. The time in 
seconds was measured until they fell off from 
exhaustion: 18, 16, 18, 24, 23, 22, 22, 23, 26, 29, 
32, 34, 34, 36, 36, 43, 42, 49, 46, 46, 57

Compute the mode, median, mean, upper and lower 
quartiles, range and interquartile range

1.7.4.    Using a frequency distribution to go beyond the data 1

Another way to think about frequency distributions is not in terms of how often scores 
actually occurred, but how likely it is that a score would occur (i.e., probability). The 
word ‘probability’ induces suicidal ideation in most people (myself included) so it seems 
fitting that we use an example about throwing ourselves off a cliff. Beachy Head is a large, 
windy cliff on the Sussex coast (not far from where I live) that has something of a reputa-
tion for attracting suicidal people, who seem to like throwing themselves off it (and after 
several months of rewriting this book I find my thoughts drawn towards that peaceful 
chalky cliff top more and more often). Figure 1.8 shows a frequency distribution of some 
completely made-up data of the number of suicides at Beachy Head in a year by people of 
different ages (although I made these data up, they are roughly based on general suicide 
statistics such as those in Williams, 2001). There were 172 suicides in total and you can 
see that the suicides were most frequently aged between about 30 and 35 (the highest 
bar). The graph also tells us that, for example, very few people aged above 70 committed 
suicide at Beachy Head.

I said earlier that we could think of frequency distributions in terms of probability. To 
explain this, imagine that someone asked you ‘How likely is it that a person who commit-
ted suicide at Beachy Head is 70 years old?’ What would your answer be? The chances are 
that if you looked at the frequency distribution you might respond ‘not very likely’ because 
you can see that only 3 people out of the 172 suicides were aged around 70. What about 
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if someone asked you ‘how likely is it that a 30-year-old committed suicide?’ Again, by 
looking at the graph, you might say ‘it’s actually quite likely’ because 33 out of the 172 
suicides were by people aged around 30 (that’s more than 1 in every 5 people who commit-
ted suicide). So based on the frequencies of different scores it should start to become clear 
that we could use this information to estimate the probability that a particular score will 
occur. We could ask, based on our data, ‘what’s the probability of a suicide victim being 
aged 16–20?’ A probability value can range from 0 (there’s no chance whatsoever of the 
event happening) to 1 (the event will definitely happen). So, for example, when I talk to my 
publishers I tell them there’s a probability of 1 that I will have completed the revisions to 
this book by April 2011. However, when I talk to anyone else, I might, more realistically, 
tell them that there’s a .10 probability of me finishing the revisions on time (or put another 
way, a 10% chance, or 1 in 10 chance that I’ll complete the book in time). In reality, the 
probability of my meeting the deadline is 0 (not a chance in hell) because I never manage 
to meet publisher’s deadlines! If probabilities don’t make sense to you then just ignore the 
decimal point and think of them as percentages instead (i.e., .10 probability that something 
will happen = 10% chance that something will happen).

I’ve talked in vague terms about how frequency distributions can be used to get a rough 
idea of the probability of a score occurring. However, we can be precise. For any distribu-
tion of scores we could, in theory, calculate the probability of obtaining a score of a certain 
size – it would be incredibly tedious and complex to do it, but we could. To spare our 
sanity, statisticians have identified several common distributions. For each one they have 
worked out mathematical formulae that specify idealized versions of these distributions 
(they are specified in terms of a curved line). These idealized distributions are known as 
probability distributions and from these distributions it is possible to calculate the prob-
ability of getting particular scores based on the frequencies with which a particular score 
occurs in a distribution with these common shapes. One of these ‘common’ distributions is 
the normal distribution, which I’ve already mentioned in section 1.7.1. Statisticians have 
calculated the probability of certain scores occurring in a normal distribution with a mean 
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showing the 
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of 0 and a standard deviation of 1. Therefore, if we have any data that are 
shaped like a normal distribution, then if the mean and standard deviation 
are 0 and 1 respectively we can use the tables of probabilities for the normal 
distribution to see how likely it is that a particular score will occur in the data 
(I’ve produced such a table in the Appendix to this book).

The obvious problem is that not all of the data we collect will have a mean 
of 0 and standard deviation of 1. For example, we might have a data set that 
has a mean of 567 and a standard deviation of 52.98. Luckily any data set 
can be converted into a data set that has a mean of 0 and a standard deviation 
of 1. First, to centre the data around zero, we take each score (X) and sub-
tract from it the mean of all scores (X– ). Then, we divide the resulting score 
by the standard deviation (s) to ensure the data have a standard deviation of 
1. The resulting scores are known as z-scores and, in equation form, the conversion that 
I’ve just described is:

z
X X

s
=

– (1.2)

The table of probability values that have been calculated for the standard normal dis-
tribution is shown in the Appendix. Why is this table important? Well, if we look at our 
suicide data, we can answer the question ‘What’s the probability that someone who threw 
themselves off Beachy Head was 70 or older?’ First we convert 70 into a z-score. Suppose 
the mean of the suicide scores was 36, and the standard deviation 13; then 70 will become 
(70−36)/13 = 2.62. We then look up this value in the column labelled ‘Smaller Portion’ 
(i.e., the area above the value 2.62). You should find that the probability is .0044, or, put 
another way, only a 0.44% chance that a suicide victim would be 70 years old or more. By 
looking at the column labelled ‘Bigger Portion’ we can also see the probability that a suicide 
victim was aged 70 or less. This probability is .9956, or, put another way, there’s a 99.56% 
chance that a suicide victim was less than 70 years old.

Hopefully you can see from these examples that the normal distribution and z-scores 
allow us to go a first step beyond our data in that from a set of scores we can calculate 
the probability that a particular score will occur. So, we can see whether scores of a cer-
tain size are likely or unlikely to occur in a distribution of a particular kind. You’ll see 
just how useful this is in due course, but it is worth mentioning at this stage that certain 
z-scores are particularly important. This is because their value cuts off certain important 
percentages of the distribution. The first important value of z is 1.96 because this cuts 
off the top 2.5% of the distribution, and its counterpart at the opposite end (−1.96) cuts 
off the bottom 2.5% of the distribution. As such, taken together, this value cuts off 5% 
of scores, or, put another way, 95% of z-scores lie between −1.96 and 1.96. The other 
two important benchmarks are ±2.58 and ±3.29, which cut off 1% and 0.1% of scores 
respectively. Put another way, 99% of z-scores lie between −2.58 and 2.58, and 99.9% 
of them lie between −3.29 and 3.29. Remember these values because they’ll crop up 
time and time again.

SELF-TEST

ü	 Assuming the same mean and standard 
deviation for the Beachy Head example above, 
what’s the probability that someone who threw 
themselves off Beachy Head was 30 or younger?

What is the
normal distribution?
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1.7.5.    Fitting statistical models to the data 1

Having looked at your data (and there is a lot more information on different ways to do 
this in Chapter 4), the next step is to fit a statistical model to the data. I should really just 
write ‘insert the rest of the book here’, because most of the remaining chapters discuss the 
various models that you can fit to the data. However, I do want to talk here briefly about 
two very important types of hypotheses that are used when analysing the data. Scientific 
statements, as we have seen, can be split into testable hypotheses. The hypothesis or pre-
diction that comes from your theory is usually saying that an effect will be present. This 
hypothesis is called the alternative hypothesis and is denoted by H1. (It is sometimes also 
called the experimental hypothesis but because this term relates to a specific type of meth-
odology it’s probably best to use ‘alternative hypothesis’.) There is another type of hypoth-
esis, though, and this is called the null hypothesis and is denoted by H0. This hypothesis is 
the opposite of the alternative hypothesis and so would usually state that an effect is absent. 
Taking our Big Brother example from earlier in the chapter we might generate the follow-
ing hypotheses:

MM Alternative hypothesis: Big Brother contestants will score higher on personality disor-
der questionnaires than members of the public.

MM Null hypothesis: Big Brother contestants and members of the public will not differ in 
their scores on personality disorder questionnaires.

The reason that we need the null hypothesis is because we cannot prove the experi-
mental hypothesis using statistics, but we can reject the null hypothesis. If our data give us 
confidence to reject the null hypothesis then this provides support for our experimental 
hypothesis. However, be aware that even if we can reject the null hypothesis, this doesn’t 
prove the experimental hypothesis – it merely supports it. So, rather than talking about 
accepting or rejecting a hypothesis (which some textbooks tell you to do) we should be 
talking about ‘the chances of obtaining the data we’ve collected assuming that the null 
hypothesis is true’.

Using our Big Brother example, when we collected data from the auditions about the 
contestant’s personalities we found that 75% of them had a disorder. When we analyse our 
data, we are really asking, ‘Assuming that contestants are no more likely to have personal-
ity disorders than members of the public, is it likely that 75% or more of the contestants 
would have personality disorders?’ Intuitively the answer is that the chances are very low: 
if the null hypothesis is true, then most contestants would not have personality disorders 
because they are relatively rare. Therefore, we are very unlikely to have got the data that 
we did if the null hypothesis were true.

What if we found that only 1 contestant reported having a personality disorder (about 
8%)? If the null hypothesis is true, and contestants are no different in personality than the 
general population, then only a small number of contestants would be expected to have 
a personality disorder. The chances of getting these data if the null hypothesis is true are, 
therefore, higher than before.

 When we collect data to test theories we have to work in these terms: we cannot talk 
about the null hypothesis being true or the experimental hypothesis being true, we can 
only talk in terms of the probability of obtaining a particular set of data if, hypothetically 
speaking, the null hypothesis was true. We will elaborate on this idea in the next chapter.

Finally, hypotheses can also be directional or non-directional. A directional hypothesis 
states that an effect will occur, but it also states the direction of the effect. For example, 
‘readers will know more about research methods after reading this chapter’ is a one-
tailed hypothesis because it states the direction of the effect (readers will know more). A 
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non-directional hypothesis states that an effect will occur, but it doesn’t state the direction 
of the effect. For example, ‘readers’ knowledge of research methods will change after they 
have read this chapter’ does not tell us whether their knowledge will improve or get worse. 

What have I discovered about statistics? 1

Actually, not a lot because we haven’t really got to the statistics bit yet. However, we have 
discovered some stuff about the process of doing research. We began by looking at how 
research questions are formulated through observing phenomena or collecting data about 
a ‘hunch’. Once the observation has been confirmed, theories can be generated about why 
something happens. From these theories we formulate hypotheses that we can test. To test 
hypotheses we need to measure things and this leads us to think about the variables that 
we need to measure and how to measure them. Then we can collect some data. The final 
stage is to analyse these data. In this chapter we saw that we can begin by just looking at 
the shape of the data but that ultimately we should end up fitting some kind of statistical 
model to the data (more on that in the rest of the book). In short, the reason that your 
evil statistics lecturer is forcing you to learn statistics is because it is an intrinsic part of the 
research process and it gives you enormous power to answer questions that are interest-
ing; or it could be that they are a sadist who spends their spare time spanking politicians 
while wearing knee-high PVC boots, a diamond-encrusted leather thong and a gimp mask 
(that’ll be a nice mental image to keep with you throughout your course). We also discov-
ered that I was a curious child (you can interpret that either way). As I got older I became 
more curious, but you will have to read on to discover what I was curious about.

Key terms that I’ve discovered
Alternative hypothesis
Between-group design
Between-subject design
Bimodal
Binary variable
Boredom effect
Categorical variable
Central tendency
Confounding variable
Content validity
Continuous variable
Correlational research
Counterbalancing
Criterion validity
Cross-sectional research
Dependent variable
Discrete variable
Ecological validity

Experimental hypothesis
Experimental research
Falsification
Frequency distribution
Histogram
Hypothesis
Independent design
Independent variable
Interquartile range
Interval variable
Kurtosis
Leptokurtic
Level of measurement
Lower quartile
Mean
Measurement error
Median
Mode
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Multimodal
Negative skew
Nominal variable 
Normal distribution
Null hypothesis
Ordinal variable 
Outcome variable
Platykurtic
Positive skew
Practice effect
Predictor variable
Probability distribution
Qualitative methods
Quantitative methods 
Quartile
Randomization

Range
Ratio variable
Reliability
Repeated-measures design
Second quartile
Skew
Systematic variation
Tertium quid
Test–retest reliability
Theory
Unsystematic variation
Upper quartile
Validity
Variables
Within-subject design
z-scores

Smart Alex’s tasks

Smart Alex knows everything there is to know about statistics and R. He also likes nothing 
more than to ask people stats questions just so that he can be smug about how much he 
knows. So, why not really annoy him and get all of the answers right!

MM Task 1: What are (broadly speaking) the five stages of the research process? 1

MM Task 2: What is the fundamental difference between experimental and correlational 
research? 1

MM Task 3: What is the level of measurement of the following variables? 1

a.	 The number of downloads of different bands’ songs on iTunes.
b.	The names of the bands that were downloaded.
c.	 The position in the iTunes download chart.
d.	The money earned by the bands from the downloads.
e.	 The weight of drugs bought by the bands with their royalties.
f.	 The type of drugs bought by the bands with their royalties.
g.	 The phone numbers that the bands obtained because of their fame.
h.	The gender of the people giving the bands their phone numbers.
i.	 The instruments played by the band members.
j.	 The time they had spent learning to play their instruments.

MM Task 4: Say I own 857 CDs. My friend has written a computer program that uses 
a webcam to scan the shelves in my house where I keep my CDs and measure how 
many I have. His program says that I have 863 CDs. Define measurement error. What 
is the measurement error in my friend’s CD-counting device? 1

MM Task 5: Sketch the shape of a normal distribution, a positively skewed distribution 
and a negatively skewed distribution. 1

Answers can be found on the companion website.
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Further reading
Field, A. P., & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather 

biased, but I think this is a good overview of basic statistical theory and research methods.)
Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 

introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)
Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a 

very gentle introduction to statistical theory.)

Interesting real research
Umpierre, S. A., Hill, J. A., & Anderson, D. J. (1985). Effect of Coke on sperm motility. New 

England Journal of Medicine, 313(21), 1351.
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2
Everything you ever wanted 
to know about statistics 
(well, sort of)

FIGURE 2.1
The face of 
innocence … 
but what are the 
hands doing?

2.1.  What will this chapter tell me? 1

As a child grows, it becomes important for them to fit models to the world: to be able to 
reliably predict what will happen in certain situations. This need to build models that accu-
rately reflect reality is an essential part of survival. According to my parents (conveniently 
I have no memory of this at all), while at nursery school one model of the world that I was 
particularly enthusiastic to try out was ‘If I get my penis out, it will be really funny’. No 
doubt to my considerable disappointment, this model turned out to be a poor predictor 
of positive outcomes. Thankfully for all concerned, I soon learnt that the model ‘If I get 
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my penis out at nursery school the teachers and mummy and daddy are going to be quite 
annoyed’ was a better ‘fit’ of the observed data. Fitting models that accurately reflect the 
observed data is important to establish whether a theory is true. You’ll be delighted to 
know that this chapter is all about fitting statistical models (and not about my penis). We 
edge sneakily away from the frying pan of research methods and trip accidentally into the 
fires of statistics hell. We begin by discovering what a statistical model is by using the mean 
as a straightforward example. We then see how we can use the properties of data to go 
beyond the data we have collected and to draw inferences about the world at large. In a 
nutshell, then, this chapter lays the foundation for the whole of the rest of the book, so it’s 
quite important that you read it or nothing that comes later will make any sense. Actually, 
a lot of what comes later probably won’t make much sense anyway because I’ve written it, 
but there you go.

2.2.  Building statistical models 1

We saw in the previous chapter that scientists are interested in discovering something about 
a phenomenon that we assume actually exists (a ‘real-world’ phenomenon). These real-
world phenomena can be anything from the behaviour of interest rates in the economic 
market to the behaviour of undergraduates at the end-of-exam party. Whatever the phe-
nomenon we desire to explain, we collect data from the real world to test our hypotheses 
about the phenomenon. Testing these hypotheses involves building statistical 
models of the phenomenon of interest. 

The reason for building statistical models of real-world data is best 
explained by an analogy. Imagine an engineer wishes to build a bridge across 
a river. That engineer would be pretty daft if she just built any old bridge, 
because the chances are that it would fall down. Instead, an engineer collects 
data from the real world: she looks at bridges in the real world and sees what 
materials they are made from, what structures they use and so on (she might 
even collect data about whether these bridges are damaged!). She then uses 
this information to construct a model. She builds a scaled-down version of 
the real-world bridge because it is impractical, not to mention expensive, to 
build the actual bridge itself. The model may differ from reality in several 
ways – it will be smaller for a start – but the engineer will try to build a model 
that best fits the situation of interest based on the data available. Once the 
model has been built, it can be used to predict things about the real world: for example, 
the engineer might test whether the bridge can withstand strong winds by placing the 
model in a wind tunnel. It seems obvious that it is important that the model is an 
accurate representation of the real world. Social scientists do much the same thing as 
engineers: they build models of real-world processes in an attempt to predict how these 
processes operate under certain conditions (see Jane Superbrain Box 2.1 below). We 
don’t have direct access to the processes, so we collect data that represent the processes 
and then use these data to build statistical models (we reduce the process to a statisti-
cal model). We then use this statistical model to make predictions about the real-world 
phenomenon. Just like the engineer, we want our models to be as accurate as possible 
so that we can be confident that the predictions we make are also accurate. However, 
unlike engineers we don’t have access to the real-world situation and so we can only 
ever infer things about psychological, societal, biological or economic processes based 
upon the models we build. If we want our inferences to be accurate then the statisti-
cal model we build must represent the data collected (the observed data) as closely as  

Why do we build
statistical models?
Why do we build

statistical models?
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possible. The degree to which a statistical model represents the data collected is known 
as the fit of the model.

Figure 2.2 illustrates the kinds of models that an engineer might build to represent the 
real-world bridge that she wants to create. The first model (a) is an excellent representation 
of the real-world situation and is said to be a good fit (i.e., there are a few small differ-
ences but the model is basically a very good replica of reality). If this model is used to make 
predictions about the real world, then the engineer can be confident that these predictions 
will be very accurate, because the model so closely resembles reality. So, if the model col-
lapses in a strong wind, then there is a good chance that the real bridge would collapse also. 
The second model (b) has some similarities to the real world: the model includes some of 
the basic structural features, but there are some big differences from the real-world bridge 
(namely the absence of one of the supporting towers). This is what we might term a moder-
ate fit (i.e., there are some differences between the model and the data but there are also 
some great similarities). If the engineer uses this model to make predictions about the real 
world then these predictions may be inaccurate and possibly catastrophic (e.g.the model 
predicts that the bridge will collapse in a strong wind, causing the real bridge to be closed 
down, creating 100-mile tailbacks with everyone stranded in the snow; all of which was 
unnecessary because the real bridge was perfectly safe – the model was a bad representa-
tion of reality). We can have some confidence, but not complete confidence, in predictions 
from this model. The final model (c) is completely different from the real-world situation; 
it bears no structural similarities to the real bridge and is a poor fit (in fact, it might more 
accurately be described as an abysmal fit!). As such, any predictions based on this model 
are likely to be completely inaccurate. Extending this analogy to science, we can say that 
it is important when we fit a statistical model to a set of data that this model fits the data 
well. If our model is a poor fit of the observed data then the predictions we make from it 
will be equally poor.

The Real World

(a) Good Fit (b) Moderate Fit (c) Poor Fit

FIGURE 2.2
Fitting models 
to real-world 
data (see text for 
details)
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a straight (left) or curved (right) line. These graphs illus-
trate how we can fit different types of models to the 
same data. In this case we can use a straight line to 
represent our data and it shows that the more chap-
ters a person reads, the less their spiritual enrichment. 
However, we can also use a curved line to summarize 
the data and this shows that when most, or all, of the 
chapters have been read, spiritual enrichment seems 
to increase slightly (presumably because once the 
book is read everything suddenly makes sense – yeah, 
as if!). Neither of the two types of model is necessarily 
correct, but it will be the case that one model fits the 
data better than another and this is why when we use 
statistical models it is important for us to assess how 
well a given model fits the data.

It’s possible that many scientific disciplines are pro-
gressing in a biased way because most of the models 
that we tend to fit are linear (mainly because books like 
this tend to ignore more complex curvilinear models). This 
could create a bias because most published scientific 
studies are ones with statistically significant results and 
there may be cases where a linear model has been a 
poor fit to the data (and hence the paper was not pub-
lished), yet a non-linear model would have fitted the data 
well. This is why it is useful to plot your data first: plots tell 
you a great deal about what models should be applied 
to data. If your plot seems to suggest a non-linear model 
then investigate this possibility (which is easy for me to 
say when I don’t include such techniques in this book!).

As behavioural and social scientists, most of the models 
that we use to describe data tend to be linear models. 
For example, analysis of variance (ANOVA) and regres-
sion are identical systems based on linear models 
(Cohen, 1968), yet they have different names and, in 
psychology at least, are used largely in different contexts 
due to historical divisions in methodology (Cronbach, 
1957).

A linear model is simply a model that is based upon 
a straight line; this means that we are usually trying to 
summarize our observed data in terms of a straight 
line. Suppose we measured how many chapters of this 
book a person had read, and then measured their spiri-
tual enrichment. We could represent these hypotheti-
cal data in the form of a scatterplot in which each dot 
represents an individual’s score on both variables (see 
section 4.5). Figure 2.3 shows two versions of such a 
graph summarizing the pattern of these data with either 

JANE SUPERBRAIN 2.1

Types of statistical models 1

FIGURE 2.3
A scatterplot of 
the same data 
with a linear 
model fitted 
(left), and with a 
non-linear model 
fitted (right)
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2.3.  Populations and samples 1

As researchers, we are interested in finding results that apply to an entire population of 
people or things. For example, psychologists want to discover processes that occur in all 
humans, biologists might be interested in processes that occur in all cells, economists want 
to build models that apply to all salaries, and so on. A population can be very general (all 
human beings) or very narrow (all male ginger cats called Bob). Usually, scientists strive to 
infer things about general populations rather than narrow ones. For example, it’s not very 
interesting to conclude that psychology students with brown hair who own a pet hamster 
named George recover more quickly from sports injuries if the injury is massaged (unless, 
like René Koning,1 you happen to be a psychology student with brown hair who has a pet 
hamster named George). However, if we can conclude that everyone’s sports injuries are 
aided by massage this finding has a much wider impact. 

Scientists rarely, if ever, have access to every member of a population. Psychologists can-
not collect data from every human being and ecologists cannot observe every male ginger 
cat called Bob. Therefore, we collect data from a small subset of the population (known as 
a sample) and use these data to infer things about the population as a whole. The bridge-
building engineer cannot make a full-size model of the bridge she wants to build and so 
she builds a small-scale model and tests this model under various conditions. From the 
results obtained from the small-scale model the engineer infers things about how the full-
sized bridge will respond. The small-scale model may respond differently than a full-sized 
version of the bridge, but the larger the model, the more likely it is to behave in the same 
way as the full-size bridge. This metaphor can be extended to scientists. We never have 
access to the entire population (the real-size bridge) and so we collect smaller samples 
(the scaled-down bridge) and use the behaviour within the sample to infer things about 
the behaviour in the population. The bigger the sample, the more likely it is to reflect the 
whole population. If we take several random samples from the population, each of these 
samples will give us slightly different results. However, on average, large samples should 
be fairly similar.

2.4.  Simple statistical models 1

2.4.1.   The mean: a very simple statistical model 1

One of the simplest models used in statistics is the mean, which we encountered in sec-
tion 1.7.2.3. In Chapter 1 we briefly mentioned that the mean was a statistical model of 
the data because it is a hypothetical value that doesn’t have to be a value that is actually 
observed in the data. For example, if we took five statistics lecturers and measured the 
number of friends that they had, we might find the following data: 1, 2, 3, 3 and 4. If we 
take the mean number of friends, this can be calculated by adding the values we obtained, 
and dividing by the number of values measured: (1 + 2 + 3 + 3 + 4)/5 = 2.6. Now, we 
know that it is impossible to have 2.6 friends (unless you chop someone up with a chain-
saw and befriend their arm, which frankly is probably not beyond your average statistics 
lecturer) so the mean value is a hypothetical value. As such, the mean is a model created to 
summarize our data.

1 A brown-haired psychology student with a hamster called Sjors (Dutch for George, apparently) who, after 
reading one of my web resources, emailed me to weaken my foolish belief that this is an obscure combination of 
possibilities.
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2.4.2.  �  Assessing the fit of the mean: sums of squares, 
variance and standard deviations 1

With any statistical model we have to assess the fit (to return to our bridge analogy we need 
to know how closely our model bridge resembles the real bridge that we want to build). 
With most statistical models we can determine whether the model is accurate by looking 
at how different our real data are from the model that we have created. The easiest way 
to do this is to look at the difference between the data we observed and the model fitted. 
Figure 2.4 shows the number of friends that each statistics lecturer had, and also the mean 
number that we calculated earlier on. The line representing the mean can be thought of as 
our model, and the circles are the observed data. The diagram also has a series of vertical 
lines that connect each observed value to the mean value. These lines represent the devi-
ance between the observed data and our model and can be thought of as the error in the 
model. We can calculate the magnitude of these deviances by simply subtracting the mean 
value (x–) from each of the observed values (xi).

2 For example, lecturer 1 had only 1 friend 
(a glove puppet of an ostrich called Kevin) and so the difference is x1− x– = 1 − 2.6 = −1.6. 
You might notice that the deviance is a negative number, and this represents the fact that 
our model overestimates this lecturer’s popularity: it predicts that he will have 2.6 friends 
yet in reality he has only 1 friend (bless him!). Now, how can we use these deviances to 
estimate the accuracy of the model? One possibility is to add up the deviances (this would 
give us an estimate of the total error). If we were to do this we would find that (don’t be 
scared of the equations, we will work through them step by step – if you need reminding 
of what the symbols mean there is a guide at the beginning of the book):

total error sum of deviances=

= ( ) ( . ) ( . ) ( . ) ( .x xi − = − + − + +∑ 1 6 0 6 0 4 0 4)) ( . )+ =1 4 0

So, in effect the result tells us that there is no total error between our model and the 
observed data, so the mean is a perfect representation of the data. Now, this clearly isn’t 
true: there were errors but some of them were positive, some were negative and they have 

2 The xi simply refers to the observed score for the ith person (so the i can be replaced with a number that rep-
resents a particular individual). For these data: for lecturer 1, xi = x1 = 1; for lecturer 3, xi = x3 = 3; for lecturer 5, 
xi = x5 = 4.
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simply cancelled each other out. It is clear that we need to avoid the problem of which 
direction the error is in and one mathematical way to do this is to square each error,3 that 
is multiply each error by itself. So, rather than calculating the sum of errors, we calculate 
the sum of squared errors. In this example:

sum of squared errors (SS)	 = ∑(xi − x–)(xi − x–)
		  = (−1.6)2 + (−0.6)2 + (0.4)2 + (0.4)2 + (1.4)2

		  = 2.56 + 0.36 + 0.16 + 0.16 + 1.96
		  = 5.20

The sum of squared errors (SS) is a good measure of the accuracy of our model. However, it 
is fairly obvious that the sum of squared errors is dependent upon the amount of data that 
has been collected – the more data points, the higher the SS. To overcome this problem 
we calculate the average error by dividing the SS by the number of observations (N). If 
we are interested only in the average error for the sample, then we can divide by N alone. 
However, we are generally interested in using the error in the sample to estimate the error 
in the population and so we divide the SS by the number of observations minus 1 (the rea-
son why is explained in Jane Superbrain Box 2.2). This measure is known as the variance 
and is a measure that we will come across a great deal:

variance (s )= 
SS2

N

x x

N
i

−
=

−
−

= =∑
1 1

5 20
4

1 3
2( ) .

. 	 (2.1)

where he plays – there is only one position left. Therefore 
there are 14 degrees of freedom; that is, for 14 players 
you have some degree of choice over where they play, but 
for 1 player you have no choice. The degrees of freedom 
are one less than the number of players.

In statistical terms the degrees of freedom relate to the 
number of observations that are free to vary. If we take 
a sample of four observations from a population, then 
these four scores are free to vary in any way (they can be 
any value). However, if we then use this sample of four 
observations to calculate the standard deviation of the 
population, we have to use the mean of the sample as 
an estimate of the population’s mean. Thus we hold one 
parameter constant. Say that the mean of the sample was 
10; then we assume that the population mean is 10 also 
and we keep this value constant. With this parameter fixed, 
can all four scores from our sample vary? The answer is 
no, because to keep the mean constant only three values 
are free to vary. For example, if the values in the sample 
were 8, 9, 11, 12 (mean = 10) and we changed three of 
these values to 7, 15 and 8, then the final value must be 
10 to keep the mean constant. Therefore, if we hold one 
parameter constant then the degrees of freedom must 
be one less than the sample size. This fact explains why 
when we use a sample to estimate the standard deviation 
of a population, we have to divide the sums of squares by 
N − 1 rather than N alone.

Degrees of freedom (df) are a very difficult concept to 
explain. I’ll begin with an analogy. Imagine you’re the man-
ager of a rugby team and you have a team sheet with 15 
empty slots relating to the positions on the playing field. 
There is a standard formation in rugby and so each team 
has 15 specific positions that must be held constant for 
the game to be played. When the first player arrives, you 
have the choice of 15 positions in which to place him. You 
place his name in one of the slots and allocate him to a 
position (e.g., scrum-half) and, therefore, one position on 
the pitch is now occupied. When the next player arrives, 
you have the choice of 14 positions but you still have the 
freedom to choose which position this player is allocated. 
However, as more players arrive, you will reach the point 
at which 14 positions have been filled and the final player 
arrives. With this player you have no freedom to choose 

JANE SUPERBRAIN 2.2

Degrees of freedom 2

3 When you multiply a negative number by itself it becomes positive.
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The variance is, therefore, the average error between the mean and the observations 
made (and so is a measure of how well the model fits the actual data). There is one 
problem with the variance as a measure: it gives us a measure in units squared (because 
we squared each error in the calculation). In our example we would have to say that the 
average error in our data (the variance) was 1.3 friends squared. It makes little enough 
sense to talk about 1.3 friends, but it makes even less to talk about friends squared! For 
this reason, we often take the square root of the variance (which ensures that the measure 
of average error is in the same units as the original measure). This measure is known as 
the standard deviation and is simply the square root of the variance. In this example the 
standard deviation is:

s =
−

−
=
=

∑( )

.
.

x x

N
i

1

1 3
1 14

2

	 (2.2)

The sum of squares, variance and standard deviation are all, therefore, measures of the 
‘fit’ (i.e., how well the mean represents the data). Small standard deviations (relative to the 
value of the mean itself) indicate that data points are close to the mean. A large standard 
deviation (relative to the mean) indicates that the data points are distant from the mean 
(i.e., the mean is not an accurate representation of the data). A standard deviation of 0 
would mean that all of the scores were the same. Figure 2.5 shows the overall ratings (on 
a 5-point scale) of two lecturers after each of five different lectures. Both lecturers had an 
average rating of 2.6 out of 5 across the lectures. However, the first lecturer had a stan-
dard deviation of 0.55 (relatively small compared to the mean). It should be clear from the 
graph that ratings for this lecturer were consistently close to the mean rating. There was a 
small fluctuation, but generally his lectures did not vary in popularity. As such, the mean 
is an accurate representation of his ratings. The mean is a good fit to the data. The second 
lecturer, however, had a standard deviation of 1.82 (relatively high compared to the mean). 
The ratings for this lecturer are clearly more spread from the mean; that is, for some lec-
tures he received very high ratings, and for others his ratings were appalling. Therefore, 
the mean is not such an accurate representation of his performance because there was a 
lot of variability in the popularity of his lectures. The mean is a poor fit to the data. This 
illustration should hopefully make clear why the standard deviation is a measure of how 
well the mean represents the data.
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SELF-TEST

ü	 In section 1.7.2.2 we came across some data 
about the number of friends that 11 people had on 
Facebook (22, 40, 53, 57, 93, 98, 103, 108, 116, 
121, 252). We calculated the mean for these data as 
96.64. Now calculate the sums of squares, variance 
and standard deviation.

ü	 Calculate these values again but excluding the 
extreme score (252).

represents the data well then most of the scores will clus-
ter close to the mean and the resulting standard devia-
tion is small relative to the mean. When the mean is a 
worse representation of the data, the scores cluster more 
widely around the mean (think back to Figure 2.5) and 
the standard deviation is larger. Figure 2.6 shows two 
distributions that have the same mean (50) but different 
standard deviations. One has a large standard deviation 
relative to the mean (SD = 25) and this results in a flatter 
distribution that is more spread out, whereas the other 
has a small standard deviation relative to the mean (SD = 
15) resulting in a more pointy distribution in which scores 
close to the mean are very frequent but scores further 
from the mean become increasingly infrequent. The main 
message is that as the standard deviation gets larger, the 
distribution gets fatter. This can make distributions look 
platykurtic or leptokurtic when, in fact, they are not.

As well as telling us about the accuracy of the mean 
as a model of our data set, the variance and standard 
deviation also tell us about the shape of the distribu-
tion of scores. As such, they are measures of dispersion 
like those we encountered in section 1.7.3. If the mean 

JANE SUPERBRAIN 2.3

The standard deviation and the shape of the 
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2.4.3.    Expressing the mean as a model 2

The discussion of means, sums of squares and variance may seem a sidetrack from the ini-
tial point about fitting statistical models, but it’s not: the mean is a simple statistical model 
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that can be fitted to data. What do I mean by this? Well, everything in statistics essentially 
boils down to one equation:

outcome model errori i= +( ) 	 (2.3)

This just means that the data we observe can be predicted from the model we choose to 
fit to the data plus some amount of error. When I say that the mean is a simple statistical 
model, then all I mean is that we can replace the word ‘model’ with the word ‘mean’ in 
that equation. If we return to our example involving the number of friends that statistics 
lecturers have and look at lecturer 1, for example, we observed that they had one friend 
and the mean of all lecturers was 2.6. So, the equation becomes:

outcome

1 2.6
lecturer lecturer

lecturer

1 1

1

= +
= +

X ε

ε

From this we can work out that the error is 1 − 2.6, or −1.6. If we replace this value 
in the equation we get 1 = 2.6 − 1.6 or 1 = 1. Although it probably seems like I’m 
stating the obvious, it is worth bearing this general equation in mind throughout this 
book because if you do you’ll discover that most things ultimately boil down to this one 
simple idea!

Likewise, the variance and standard deviation illustrate another fundamental concept: 
how the goodness of fit of a model can be measured. If we’re looking at how well a 
model fits the data (in this case our model is the mean) then we generally look at devia-
tion from the model, we look at the sum of squared error, and in general terms we can 
write this as:

deviation observed model= ∑( )− 2 	 (2.4)

Put another way, we assess models by comparing the data we observe to the model we’ve 
fitted to the data, and then square these differences. Again, you’ll come across this funda-
mental idea time and time again throughout this book.

2.5.  Going beyond the data 1

Using the example of the mean, we have looked at how we can fit a statistical model to 
a set of observations to summarize those data. It’s one thing to summarize the data that 
you have actually collected, but usually we want to go beyond our data and say something 
general about the world (remember in Chapter 1 that I talked about how good theories 
should say something about the world). It’s one thing to be able to say that people in our 
sample responded well to medication, or that a sample of high-street stores in Brighton 
had increased profits leading up to Christmas, but it’s more useful to be able to say, based 
on our sample, that all people will respond to medication, or that all high-street stores in 
the UK will show increased profits. To begin to understand how we can make these general 
inferences from a sample of data we can first look not at whether our model is a good fit to 
the sample from which it came, but whether it is a good fit to the population from which 
the sample came.
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2.5.1.    The standard error 1

We’ve seen that the standard deviation tells us something about how well the mean repre-
sents the sample data, but I mentioned earlier on that usually we collect data from samples 
because we don’t have access to the entire population. If you take several samples from a 
population, then these samples will differ slightly; therefore, it’s also important to know 
how well a particular sample represents the population. This is where we use the standard 
error. Many students get confused about the difference between the standard deviation and 
the standard error (usually because the difference is never explained clearly). However, 
the standard error is an important concept to grasp, so I’ll do my best to explain it to you.

We have already learnt that social scientists use samples as a way of estimating the behav-
iour in a population. Imagine that we were interested in the ratings of all lecturers (so lec-
turers in general were the population). We could take a sample from this population. When 
someone takes a sample from a population, they are taking one of many possible samples. 
If we were to take several samples from the same population, then each sample has its own 
mean, and some of these sample means will be different.

Figure 2.7 illustrates the process of taking samples from a population. Imagine that we 
could get ratings of all lecturers on the planet and that, on average, the rating is 3 (this is the 
population mean, µ). Of course, we can’t collect ratings of all lecturers, so we use a sample. 
For each of these samples we can calculate the average, or sample mean. Let’s imagine we 
took nine different samples (as in the diagram); you can see that some of the samples have 
the same mean as the population but some have different means: the first sample of lectur-
ers were rated, on average, as 3, but the second sample were, on average, rated as only 2. 
This illustrates sampling variation: that is, samples will vary because they contain different 
members of the population; a sample that by chance includes some very good lecturers 
will have a higher average than a sample that, by chance, includes some awful lecturers! 
We can actually plot the sample means as a frequency distribution, or histogram,4 just like 
I have done in the diagram. This distribution shows that there were three samples that 
had a mean of 3, means of 2 and 4 occurred in two samples each, and means of 1 and 5 
occurred in only one sample each. The end result is a nice symmetrical distribution known 
as a sampling distribution. A sampling distribution is simply the frequency distribution of 
sample means5 from the same population. In theory you need to imagine that we’re taking 
hundreds or thousands of samples to construct a sampling distribution, but I’m just using 
nine to keep the diagram simple.6 The sampling distribution tells us about the behaviour 
of samples from the population, and you’ll notice that it is centred at the same value as the 
mean of the population (i.e., 3). This means that if we took the average of all sample means 
we’d get the value of the population mean. Now, if the average of the sample means is the 
same value as the population mean, then if we knew the accuracy of that average we’d 
know something about how likely it is that a given sample is representative of the popula-
tion. So how do we determine the accuracy of the population mean?

Think back to the discussion of the standard deviation. We used the standard deviation 
as a measure of how representative the mean was of the observed data. Small standard 
deviations represented a scenario in which most data points were close to the mean, a large 
standard deviation represented a situation in which data points were widely spread from 
the mean. If you were to calculate the standard deviation between sample means then this 
too would give you a measure of how much variability there was between the means of 

4 This is just a graph of each sample mean plotted against the number of samples that has that mean – see section 
1.7.1 for more details.

5 It doesn’t have to be means, it can be any statistic that you’re trying to estimate, but I’m using the mean to keep 
things simple.

6 It’s worth pointing out that I’m talking hypothetically. We don’t need to actually collect these samples because 
clever statisticians have worked out what these sampling distributions would look like and how they behave.
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different samples. The standard deviation of sample means is known as the standard error 
of the mean (SE). Therefore, the standard error could be calculated by taking the difference 
between each sample mean and the overall mean, squaring these differences, adding them 
up, and then dividing by the number of samples. Finally, the square root of this value would 
need to be taken to get the standard deviation of sample means, the standard error.

Of course, in reality we cannot collect hundreds of samples and so we rely on approxi-
mations of the standard error. Luckily for us some exceptionally clever statisticians have 
demonstrated that as samples get large (usually defined as greater than 30), the sampling 
distribution has a normal distribution with a mean equal to the population mean, and a 
standard deviation of:

σ X

s
=

N
	 (2.5)

This is known as the central limit theorem and it is useful in this context because it means 
that if our sample is large we can use the above equation to approximate the standard error 
(because, remember, it is the standard deviation of the sampling distribution).7 When the 
sample is relatively small (fewer than 30) the sampling distribution has a different shape, 
known as a t-distribution, which we’ll come back to later.

             CRAMMING SAM’S TIPS    The standard error

The standard error is the standard deviation of sample means. As such, it is a measure of how representative a 
sample is likely to be of the population. A large standard error (relative to the sample mean) means that there is a 
lot of variability between the means of different samples and so the sample we have might not be representative of 
the population. A small standard error indicates that most sample means are similar to the population mean and 
so our sample is likely to be an accurate reflection of the population.

7 In fact it should be the population standard deviation (σ) that is divided by the square root of the sample size; 
however, for large samples this is a reasonable approximation.

2.5.2.    Confidence intervals 2

2.5.2.1.  Calculating confidence intervals 2

Remember that usually we’re interested in using the sample mean as an estimate of the 
value in the population. We’ve just seen that different samples will give rise to different val-
ues of the mean, and we can use the standard error to get some idea of the extent to which 
sample means differ. A different approach to assessing the accuracy of the sample mean 
as an estimate of the mean in the population is to calculate boundaries within which we 
believe the true value of the mean will fall. Such boundaries are called confidence intervals. 
The basic idea behind confidence intervals is to construct a range of values within which 
we think the population value falls.

Let’s imagine an example: Domjan, Blesbois, and Williams (1998) examined the learnt 
release of sperm in Japanese quail. The basic idea is that if a quail is allowed to copulate 
with a female quail in a certain context (an experimental chamber) then this context will 
serve as a cue to copulation and this in turn will affect semen release (although during the 
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FIGURE 2.7
Illustration of 
the standard 
error (see text 
for details)

Population

4

3

2

F
re

q
u

en
cy

Mean = 3
SD = 1.22

1

0

Sample Mean

3210 4 5 6

X = 3

X = 3

X = 3

X = 2

X = 2

X = 5

X = 4

X = 4

X = 1

µ = 3

test phase the poor quail were tricked into copulating with a terry cloth with an embalmed 
female quail head stuck on top).8 Anyway, if we look at the mean amount of sperm released 
in the experimental chamber, there is a true mean (the mean in the population); let’s 
imagine it’s 15 million sperm. Now, in our actual sample, we might find the mean amount 
of sperm released was 17 million. Because we don’t know the true mean, we don’t really 
know whether our sample value of 17 million is a good or bad estimate of this value. What 
we can do instead is use an interval estimate: we use our sample value as the mid-point, but 
set a lower and upper limit as well. So, we might say, we think the true value of the mean 
sperm release is somewhere between 12 million and 22 million spermatozoa (note that 17 
million falls exactly between these values). Of course, in this case the true value (15 million) 

8 This may seem a bit sick, but the male quails didn’t appear to mind too much, which probably tells us all we 
need to know about male mating behaviour.
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does falls within these limits. However, what if we’d set smaller limits, what if we’d said we 
think the true value falls between 16 and 18 million (again, note that 17 million is in the 
middle)? In this case the interval does not contain the true value of the mean. Let’s now 
imagine that you were particularly fixated with Japanese quail sperm, and you repeated the 
experiment 50 times using different samples. Each time you did the experiment again you 
constructed an interval around the sample mean as I’ve just described. Figure 2.8 shows 
this scenario: the circles represent the mean for each sample with the lines sticking out of 
them representing the intervals for these means. The true value of the mean (the mean in 
the population) is 15 million and is shown by a vertical line. The first thing to note is that 
the sample means are different from the true mean (this is because of sampling variation as 
described in the previous section). Second, although most of the intervals do contain the 
true mean (they cross the vertical line, meaning that the value of 15 million spermatozoa 
falls somewhere between the lower and upper boundaries), a few do not.

Up until now I’ve avoided the issue of how we might calculate the 
intervals. The crucial thing with confidence intervals is to construct 
them in such a way that they tell us something useful. Therefore, we 
calculate them so that they have certain properties: in particular, they 
tell us the likelihood that they contain the true value of the thing we’re 
trying to estimate (in this case, the mean).

Typically we look at 95% confidence intervals, and sometimes 99% 
confidence intervals, but they all have a similar interpretation: they are 
limits constructed such that for a certain percentage of the time (be that 
95% or 99%) the true value of the population mean will fall within 
these limits. So, when you see a 95% confidence interval for a mean, 
think of it like this: if we’d collected 100 samples, calculated the mean 
and then calculated a confidence interval for that mean (a bit like in Figure 2.8) then for 
95 of these samples, the confidence intervals we constructed would contain the true value 
of the mean in the population.

To calculate the confidence interval, we need to know the limits within which 95% of 
means will fall. How do we calculate these limits? Remember back in section 1.7.4 that I 
said that 1.96 was an important value of z (a score from a normal distribution with a mean 
of 0 and standard deviation of 1) because 95% of z-scores fall between −1.96 and 1.96. 
This means that if our sample means were normally distributed with a mean of 0 and a 
standard error of 1, then the limits of our confidence interval would be −1.96 and +1.96. 
Luckily we know from the central limit theorem that in large samples (above about 30) the 
sampling distribution will be normally distributed (see section 2.5.1). It’s a pity then that 
our mean and standard deviation are unlikely to be 0 and 1; except not really because, as 
you might remember, we can convert scores so that they do have a mean of 0 and standard 
deviation of 1 (z-scores) using equation (1.2):

z
X X

s
=

−

If we know that our limits are −1.96 and 1.96 in z-scores, then to find out the correspond-
ing scores in our raw data we can replace z in the equation (because there are two values, 
we get two equations):

1 96 1 96. .=
−

− =
−X X

s
X X

s

We rearrange these equations to discover the value of X:

1.96 × s = X - X–	 -1.96 × s = X - X–

(1.96 × s) + X– = X	 (-1.96 × s) + X– = X

What is a confidence
interval?
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Therefore, the confidence interval can easily be calculated once the standard deviation (s 
in the equation above) and mean (X– in the equation) are known. However, in fact we use 
the standard error and not the standard deviation because we’re interested in the variability 
of sample means, not the variability in observations within the sample. The lower bound-
ary of the confidence interval is, therefore, the mean minus 1.96 times the standard error, 
and the upper boundary is the mean plus 1.96 standard errors:

lower boundary of confidence interval = X– - (1.96 × SE)
upper boundary of confidence interval = X– + (1.96 × SE)

As such, the mean is always in the centre of the confidence interval. If the mean rep-
resents the true mean well, then the confidence interval of that mean should be small. 
We know that 95% of confidence intervals contain the true mean, so we can assume this 
confidence interval contains the true mean; therefore, if the interval is small, the sample 
mean must be very close to the true mean. Conversely, if the confidence interval is very 
wide then the sample mean could be very different from the true mean, indicating that it is 
a bad representation of the population. You’ll find that confidence intervals will come up 
time and time again throughout this book.

FIGURE 2.8
The confidence 
intervals of the 
sperm counts of 
Japanese quail 
(horizontal axis) 
for 50 different 
samples (vertical 
axis)
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2.5.2.2.  Calculating other confidence intervals 2

The example above shows how to compute a 95% confidence interval (the most common 
type). However, we sometimes want to calculate other types of confidence interval such as 
a 99% or 90% interval. The −1.96 and 1.96 in the equations above are the limits within 
which 95% of z-scores occur. Therefore, if we wanted a 99% confidence interval we could 
use the values within which 99% of z-scores occur (−2.58 and 2.58). In general, then, we 
could say that confidence intervals are calculated as:

lower boundary of confidence interval = X SEp− ×





−z1
2

upper boundary of confidence interval = X SEp+ ×





−z1
2

in which p is the probability value for the confidence interval. So, if you want a 95% con-
fidence interval, then you want the value of z for (1−0.95)/2 = 0.025. Look this up in the 
‘smaller portion’ column of the table of the standard normal distribution (see the Appendix) 
and you’ll find that z is 1.96. For a 99% confidence interval we want z for (1−0.99)/2 = 
0.005, which from the table is 2.58. For a 90% confidence interval we want z for (1−0.90)/2 
= 0.05, which from the table is 1.64. These values of z are multiplied by the standard error 
(as above) to calculate the confidence interval. Using these general principles, we could 
work out a confidence interval for any level of probability that takes our fancy. 

2.5.2.3.  Calculating confidence intervals in small samples 2

The procedure that I have just described is fine when samples are large, but for small 
samples, as I have mentioned before, the sampling distribution is not normal, it has a 
t-distribution. The t-distribution is a family of probability distributions that change shape 
as the sample size gets bigger (when the sample is very big, it has the shape of a normal dis-
tribution). To construct a confidence interval in a small sample we use the same principle 
as before but instead of using the value for z we use the value for t:

lower boundary of confidence interval = X t SEn− ×−( )1

upper boundary of confidence interval = X t SEn+ ×−( )1

The n − 1 in the equations is the degrees of freedom (see Jane Superbrain Box 2.2) and tells 
us which of the t-distributions to use. For a 95% confidence interval we find the value of t 
for a two-tailed test with probability of .05, for the appropriate degrees of freedom.

SELF-TEST

ü	 In section 1.7.2.2 we came across some data 
about the number of friends that 11 people had on 
Facebook. We calculated the mean for these data as 
96.64 and standard deviation as 61.27. Calculate a 
95% confidence interval for this mean.

ü	 Recalculate the confidence interval assuming that 
the sample size was 56.
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2.5.2.4.  Showing confidence intervals visually 2

Confidence intervals provide us with very important information about the 
mean, and, therefore, you often see them displayed on graphs. (We will discover 
more about how to create these graphs in Chapter 4.) The confidence interval 
is usually displayed using something called an error bar, which just looks like 
the letter ‘I’. An error bar can represent the standard deviation, or the standard 
error, but more often than not it shows the 95% confidence interval of the 
mean. So, often when you see a graph showing the mean, perhaps displayed as 
a bar or a symbol (section 4.9), it is often accompanied by this funny I-shaped 
bar. Why is it useful to see the confidence interval visually?

We have seen that the 95% confidence interval is an interval constructed such 
that in 95% of samples the true value of the population mean will fall within its 

limits. We know that it is possible that any two samples could have slightly different means 
(and the standard error tells us a little about how different we can expect sample means 
to be). Now, the confidence interval tells us the limits within which the population mean 
is likely to fall (the size of the confidence interval will depend on the size of the standard 
error). By comparing the confidence intervals of different means we can start to get some 
idea about whether the means came from the same population or different populations.

Taking our previous example of quail sperm, imagine we had a sample of quail and 
the mean sperm release had been 9 million sperm with a confidence interval of 2 to 16. 
Therefore, we know that the population mean is probably between 2 and 16 million sperm. 
What if we now took a second sample of quail and found the confidence interval ranged 
from 4 to 15? This interval overlaps a lot with our first sample:

What’s an error bar?What’s an error bar?
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The fact that the confidence intervals overlap in this way tells us that these means could 
plausibly come from the same population: in both cases the intervals are likely to contain 
the true value of the mean (because they are constructed such that in 95% of studies they 
will), and both intervals overlap considerably, so they contain many similar values. What if 
the confidence interval for our second sample ranges from 18 to 28? If we compared this 
to our first sample we’d get:
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Now, these confidence intervals don’t overlap at all. So, one confidence interval, which 
is likely to contain the population mean, tells us that the population mean is somewhere 
between 2 and 16 million, whereas the other confidence interval, which is also likely to 
contain the population mean, tells us that the population mean is somewhere between 18 
and 28. This suggests that either our confidence intervals both do contain the population 
mean, but they come from different populations (and, therefore, so do our samples), or 
both samples come from the same population but one of the confidence intervals doesn’t 
contain the population mean. If we’ve used 95% confidence intervals then we know that 
the second possibility is unlikely (this happens only 5 times in 100 or 5% of the time), so 
the first explanation is more plausible.

OK, I can hear you all thinking ‘so what if the samples come from a different popula-
tion?’ Well, it has a very important implication in experimental research. When we do an 
experiment, we introduce some form of manipulation between two or more conditions 
(see section 1.6.2). If we have taken two random samples of people, and we have tested 
them on some measure (e.g., fear of statistics textbooks), then we expect these people to 
belong to the same population. If their sample means are so different as to suggest that, 
in fact, they come from different populations, why might this be? The answer is that our 
experimental manipulation has induced a difference between the samples.

To reiterate, when an experimental manipulation is successful, we expect to find that our 
samples have come from different populations. If the manipulation is unsuccessful, then 
we expect to find that the samples came from the same population (e.g., the sample means 
should be fairly similar). Now, the 95% confidence interval tells us something about the 
likely value of the population mean. If we take samples from two populations, then we 
expect the confidence intervals to be different (in fact, to be sure that the samples were from 
different populations we would not expect the two confidence intervals to overlap). If we 
take two samples from the same population, then we expect, if our measure is reliable, the 
confidence intervals to be very similar (i.e., they should overlap completely with each other).

This is why error bars showing 95% confidence intervals are so useful on graphs, because 
if the bars of any two means do not overlap then we can infer that these means are from 
different populations – they are significantly different.

             CRAMMING SAM’S TIPS    Confidence intervals

	 A confidence interval for the mean is a range of scores constructed such that the population mean will fall within 
this range in 95% of samples. 

The confidence interval is not an interval within which we are 95% confident that the population mean will fall.

2.6.  Using statistical models to test  
research questions 1

In Chapter 1 we saw that research was a five-stage process:

1	 Generate a research question through an initial observation (hopefully backed up by 
some data).

2	 Generate a theory to explain your initial observation.
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3	 Generate hypotheses: break your theory down into a set of testable predictions.

4	 Collect data to test the theory: decide on what variables you need to measure to test 
your predictions and how best to measure or manipulate those variables.

5	 Analyse the data: fit a statistical model to the data – this model will test your
original predictions. Assess this model to see whether or not it supports your initial 
predictions.

This chapter has shown that we can use a sample of data to estimate what’s happening 
in a larger population to which we don’t have access. We have also seen (using the mean 
as an example) that we can fit a statistical model to a sample of data and assess how well 
it fits. However, we have yet to see how fitting models like these can help us to test our 
research predictions. How do statistical models help us to test complex hypotheses such as 
‘is there a relationship between the amount of gibberish that people speak and the amount 
of vodka jelly they’ve eaten?’ or ‘is the mean amount of chocolate I eat higher when I’m 
writing statistics books than when I’m not?’. We’ve seen in section 1.7.5 that hypotheses 
can be broken down into a null hypothesis and an alternative hypothesis.

SELF-TEST

ü	 What are the null and alternative hypotheses for the 
following questions:

1.	 ‘Is there a relationship between the amount of 
gibberish that people speak and the amount of 
vodka jelly they’ve eaten?’

2.	 ‘Is the mean amount of chocolate eaten higher when 
writing statistics books than when not?’

Most of this book deals with inferential statistics, which tell us whether the alternative 
hypothesis is likely to be true – they help us to confirm or reject our predictions. Crudely 
put, we fit a statistical model to our data that represents the alternative hypothesis and see 
how well it fits (in terms of the variance it explains). If it fits the data well (i.e., explains 
a lot of the variation in scores) then we assume our initial prediction is true: we gain 
confidence in the alternative hypothesis. Of course, we can never be completely sure that 
either hypothesis is correct, and so we calculate the probability that our model would fit if 
there were no effect in the population (i.e., the null hypothesis is true). As this probability 
decreases, we gain greater confidence that the alternative hypothesis is actually correct and 
that the null hypothesis can be rejected. This works provided we make our predictions 
before we collect the data (see Jane Superbrain Box 2.4).

To illustrate this idea of whether a hypothesis is likely, Fisher (1925/1991) (Figure 2.9) 
describes an experiment designed to test a claim by a woman that she could determine, by 
tasting a cup of tea, whether the milk or the tea was added first to the cup. Fisher thought 
that he should give the woman some cups of tea, some of which had the milk added first 
and some of which had the milk added last, and see whether she could correctly identify 
them. The woman would know that there are an equal number of cups in which milk was 
added first or last but wouldn’t know in which order the cups were placed. If we take the 
simplest situation in which there are only two cups then the woman has a 50% chance of 
guessing correctly. If she did guess correctly we wouldn’t be that confident in concluding 
that she can tell the difference between cups in which the milk was added first from those 
in which it was added last, because even by guessing she would be correct half of the time. 
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However, what about if we complicated things by having six cups? There are 20 orders 
in which these cups can be arranged and the woman would guess the correct order only 
1 time in 20 (or 5% of the time). If she got the correct order we would be much more 
confident that she could genuinely tell the difference (and bow down in awe of her finely 
tuned palette). If you’d like to know more about Fisher and his tea-tasting antics see David 
Salsburg’s excellent book The Lady Tasting Tea (Salsburg, 2002). For our purposes the 
take-home point is that only when there was a very small probability that the woman could 
complete the tea-task by luck alone would we conclude that she had genuine skill in detect-
ing whether milk was poured into a cup before or after the tea.

It’s no coincidence that I chose the example of six cups above (where the tea-taster had 
a 5% chance of getting the task right by guessing), because Fisher suggested that 95% is a 
useful threshold for confidence: only when we are 95% certain that a result is genuine (i.e., 
not a chance finding) should we accept it as being true.9 The opposite way to look at this 
is to say that if there is only a 5% chance (a probability of .05) of something occurring by 
chance then we can accept that it is a genuine effect: we say it is a statistically significant 
finding (see Jane Superbrain Box 2.5 to find out how the criterion of .05 became popular!).

9 Of course, in reality, it might not be true – we’re just prepared to believe that it is!

before the tournament, but I can’t then change my mind 
half way through, or after the final game!

The situation in research is similar: we can choose any 
hypothesis (rugby team) we like before the data are col-
lected, but we can’t change our minds halfway through 
data collection (or after data collection). Likewise we 
have to decide on our probability level (or betting odds) 
before we collect data. If we do this, the process works. 
However, researchers sometimes cheat. They don’t write 
down their hypotheses before they conduct their experi-
ments, sometimes they change them when the data are 
collected (like me changing my team after the World Cup 
is over), or, worse still, decide on them after the data are 
collected! With the exception of some complicated pro-
cedures called post hoc tests, this is cheating. Similarly, 
researchers can be guilty of choosing which significance 
level to use after the data are collected and analysed, like 
a betting shop changing the odds after the tournament.

Every time that you change your hypothesis or the 
details of your analysis you appear to increase the chance 
of finding a significant result, but in fact you are making 
it more and more likely that you will publish results that 
other researchers can’t reproduce (which is very embar-
rassing!). If, however, you follow the rules carefully and 
do your significance testing at the 5% level you at least 
know that in the long run at most only 1 result out of every 
20 will risk this public humiliation.

(With thanks to David Hitchin for this box, and with 
apologies to him for turning it into a rugby example!)

The process I describe in this chapter works only if you 
generate your hypotheses and decide on your criteria for 
whether an effect is significant before collecting the data. 
Imagine I wanted to place a bet on who would win the 
Rugby World Cup. Being an Englishman, I might want 
to bet on England to win the tournament. To do this I’d: 
(1) place my bet, choosing my team (England) and odds 
available at the betting shop (e.g., 6/4); (2) see which 
team wins the tournament; (3) collect my winnings (if 
England do the decent thing and actually win).

To keep everyone happy, this process needs to be 
equitable: the betting shops set their odds such that 
they’re not paying out too much money (which keeps 
them happy), but so that they do pay out sometimes 
(to keep the customers happy). The betting shop can 
offer any odds before the tournament has ended, but it 
can’t change them once the tournament is over (or the 
last game has started). Similarly, I can choose any team 

JANE SUPERBRAIN 2.4

Cheating in research 1
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(Fisher, 1925)10 Fisher produced tables of these critical 
values, but to save space produced tables for particular 
probability values (.05, .02 and .01). The impact of this 
book should not be underestimated (to get some idea of 
its influence 25 years after publication see Mather, 1951; 
Yates, 1951) and these tables were very frequently used 
– even Neyman and Pearson admitted the influence that 
these tables had on them (Lehmann, 1993). This disas-
trous combination of researchers confused about the 
Fisher and Neyman–Pearson approaches and the avail-
ability of critical values for only certain levels of probability 
led to a trend to report test statistics as being significant 
at the now infamous p < .05 and p < .01 (because critical 
values were readily available at these probabilities).

However, Fisher acknowledged that the dogmatic 
use of a fixed level of significance was silly: ‘no scientific 
worker has a fixed level of significance at which from year 
to year, and in all circumstances, he rejects hypotheses; 
he rather gives his mind to each particular case in the 
light of his evidence and his ideas’(Fisher, 1956).

The use of effect sizes (section 2.6.4) strikes a balance 
between using arbitrary cut-off points such as p < .05 
and assessing whether an effect is meaningful within the 
research context. The fact that we still worship at the shrine 
of p < .05 and that research papers are more likely to be 
published if they contain significant results does make 
me wonder about a parallel universe where Fisher had 
woken up in a p < .10 kind of mood. My filing cabinet full 
of research with p just bigger than .05 gets published and I 
am Vice-Chancellor of my university (although, if this were 
true, the parallel universe version of my university would 
be in utter chaos, but it would have a campus full of cats).

This criterion of 95% confidence, or a .05 probability, forms 
the basis of modern statistics, and yet there is very little 
justification for it. How it arose is a complicated mystery to 
unravel. The significance testing that we use today is a blend 
of Fisher’s idea of using the probability value p as an index of 
the weight of evidence against a null hypothesis, and Jerzy 
Neyman and Egron Pearson’s idea of testing a null hypoth-
esis against an alternative hypothesis. Fisher objected to 
Neyman’s use of an alternative hypothesis (among other 
things), and Neyman objected to Fisher’s exact probability 
approach (Berger, 2003; Lehmann, 1993). The confusion 
arising from both parties’ hostility to each other’s ideas led 
scientists to create a sort of bastard child of both approaches.

This doesn’t answer the question of why we use .05. 
Well, it probably comes down to the fact that back in the 
days before computers, scientists had to compare their 
test statistics against published tables of ‘critical values’ 
(they did not have R to calculate exact probabilities for 
them). These critical values had to be calculated by excep-
tionally clever people like Fisher. In his incredibly influen-
tial textbook Statistical Methods for Research Workers 

JANE SUPERBRAIN 2.5

Why do we use .05? 1

10 You can read this online at http://psychclassics.yorku.ca/Fisher/Methods/

FIGURE 2.9
Sir Ronald A. 
Fisher, probably 
the cleverest 
person ever 
(p < .0001) 
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2.6.1.    Test statistics 1

We have seen that we can fit statistical models to data that represent the hypotheses that we 
want to test. Also, we have discovered that we can use probability to see whether scores are 
likely to have happened by chance (section 1.7.4). If we combine these two ideas then we 
can test whether our statistical models (and therefore our hypotheses) are significant fits of 
the data we collected. To do this we need to return to the concepts of systematic and unsys-
tematic variation that we encountered in section 1.6.2.2. Systematic variation is variation 
that can be explained by the model that we’ve fitted to the data (and, therefore, due to the 
hypothesis that we’re testing). Unsystematic variation is variation that cannot be explained 
by the model that we’ve fitted. In other words, it is error, or variation not attributable to 
the effect we’re investigating. The simplest way, therefore, to test whether the model fits the 
data, or whether our hypothesis is a good explanation of the data we have observed, is to 
compare the systematic variation against the unsystematic variation. In doing so we compare 
how good the model/hypothesis is at explaining the data against how bad it is (the error):

test statistic
variance explained by the model

variance not
=

  explained by the model
effect
error

=

This ratio of systematic to unsystematic variance or effect to error is a test statistic, and 
you’ll discover later in the book there are lots of them: t, F and χ2 to name only three. The 
exact form of this equation changes depending on which test statistic you’re calculating, 
but the important thing to remember is that they all, crudely speaking, represent the same 
thing: the amount of variance explained by the model we’ve fitted to the data compared to 
the variance that can’t be explained by the model (see Chapters 7 and 9 in particular for a 
more detailed explanation). The reason why this ratio is so useful is intuitive really: if our 
model is good then we’d expect it to be able to explain more variance than it can’t explain. 
In this case, the test statistic will be greater than 1 (but not necessarily significant).

A test statistic is a statistic that has known properties; specifically, we know how frequently 
different values of this statistic occur. By knowing this, we can calculate the probability of 
obtaining a particular value (just as we could estimate the probability of getting a score of a cer-
tain size from a frequency distribution in section 1.7.4). This allows us to establish how likely it 
would be that we would get a test statistic of a certain size if there were no effect (i.e., the null 
hypothesis were true). Field and Hole (2003) use the analogy of the age at which people die. 
Past data have told us the distribution of the age of death. For example, we know that on aver-
age men die at about 75 years old, and that this distribution is top heavy; that is, most people 
die above the age of about 50 and it’s fairly unusual to die in your twenties. So, the frequen-
cies of the age of demise at older ages are very high but are lower at younger ages. From these 
data, it would be possible to calculate the probability of someone dying at a certain age. If we 
randomly picked someone and asked them their age, and it was 53, we could tell them how 
likely it is that they will die before their next birthday (at which point they’d probably punch 
us!). Also, if we met a man of 110, we could calculate how probable it was that he would have 
lived that long (it would be a very small probability because most people die before they reach 
that age). The way we use test statistics is rather similar: we know their distributions and this 
allows us, once we’ve calculated the test statistic, to discover the probability of having found a 
value as big as we have. So, if we calculated a test statistic and its value was 110 (rather like our 
old man) we can then calculate the probability of obtaining a value that large. The more varia-
tion our model explains (compared to the variance it can’t explain), the bigger the test statistic 
will be, and the more unlikely it is to occur by chance (like our 110-year-old man). So, as test 
statistics get bigger, the probability of them occurring becomes smaller. When this probability 
falls below .05 (Fisher’s criterion), we accept this as giving us enough confidence to assume that 
the test statistic is as large as it is because our model explains a sufficient amount of variation to 
reflect what’s genuinely happening in the real world (the population). The test statistic is said 
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Significant results: OK, we may not be able to 
accept the null hypothesis as being true, but we can at 
least conclude that it is false when our results are sig-
nificant, right? Wrong! A significant test statistic is based 
on probabilistic reasoning, which severely limits what 
we can conclude. Again, Cohen (1994), who was an 
incredibly lucid writer on statistics, points out that formal 
reasoning relies on an initial statement of fact followed 
by a statement about the current state of affairs, and 
an inferred conclusion. This syllogism illustrates what I 
mean:

•	 If a man has no arms then he can’t play guitar:

o	 This man plays guitar.
o	 Therefore, this man has arms.

The syllogism starts with a statement of fact that allows 
the end conclusion to be reached because you can deny 
the man has no arms (the antecedent) by denying that he 
can’t play guitar (the consequent).11 A comparable ver-
sion of the null hypothesis is:

•	 If the null hypothesis is correct, then this test statistic 
cannot occur:

o	 This test statistic has occurred.
o	 Therefore, the null hypothesis is false.

This is all very nice except that the null hypothesis is not 
represented in this way because it is based on probabili-
ties. Instead it should be stated as follows:

•	 If the null hypothesis is correct, then this test statistic 
is highly unlikely:

o	 This test statistic has occurred.
o	 Therefore, the null hypothesis is highly unlikely.

If we go back to the guitar example we could get a similar 
statement: 

•	 If a man plays guitar then he probably doesn’t play 
for Fugazi (this is true because there are thousands of 
people who play guitar but only two who play guitar in 
the band Fugazi!):

o	 Guy Picciotto plays for Fugazi.
o	 Therefore, Guy Picciotto probably doesn’t play 

guitar.

This should hopefully seem completely ridiculous – the 
conclusion is wrong because Guy Picciotto does play 
guitar. This illustrates a common fallacy in hypothesis 
testing. In fact significance testing allows us to say very 
little about the null hypothesis.

The importance of an effect: We’ve seen already that 
the basic idea behind hypothesis testing involves us gen-
erating an experimental hypothesis and a null hypoth-
esis, fitting a statistical model to the data, and assessing 
that model with a test statistic. If the probability of obtain-
ing the value of our test statistic by chance is less than 
.05 then we generally accept the experimental hypoth-
esis as true: there is an effect in the population. Normally 
we say ‘there is a significant effect of …’. However, don’t 
be fooled by that word ‘significant’, because even if the 
probability of our effect being a chance result is small 
(less than .05) it doesn’t necessarily follow that the effect 
is important. Very small and unimportant effects can turn 
out to be statistically significant just because huge num-
bers of people have been used in the experiment (see 
Field & Hole, 2003: 74).

Non-significant results: Once you’ve calculated your 
test statistic, you calculate the probability of that test sta-
tistic occurring by chance; if this probability is greater than 
.05 you reject your alternative hypothesis. However, this 
does not mean that the null hypothesis is true. Remember 
that the null hypothesis is that there is no effect in the 
population. All that a non-significant result tells us is that 
the effect is not big enough to be anything other than a 
chance finding – it doesn’t tell us that the effect is zero. As 
Cohen (1990) points out, a non-significant result should 
never be interpreted as (despite the fact that it often is) ‘no 
difference between means’ or ‘no relationship between 
variables’. Cohen also points out that the null hypothesis 
is never true because we know from sampling distribu-
tions (see section 2.5.1) that two random samples will 
have slightly different means, and even though these dif-
ferences can be very small (e.g., one mean might be 10 
and another might be 10.00001) they are nevertheless 
different. In fact, even such a small difference would be 
deemed as statistically significant if a big enough sample 
were used. So, significance testing can never tell us that 
the null hypothesis is true, because it never is!

JANE SUPERBRAIN 2.6
What we can and can’t conclude from a  

significant test statistic  2

11 Thanks to Philipp Sury for unearthing footage that disproves my point (http://www.parcival.org/2007/05/22/
when-syllogisms-fail/).
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to be significant (see Jane Superbrain Box 2.6 for a discussion of what statistically significant 
actually means). Given that the statistical model that we fit to the data reflects the hypothesis 
that we set out to test, then a significant test statistic tells us that the model would be unlikely 
to fit this well if the there was no effect in the population (i.e., the null hypothesis was true). 
Therefore, we can reject our null hypothesis and gain confidence that the alternative hypothesis 
is true (but, remember, we don’t accept it – see section 1.7.5).

2.6.2.    One- and two-tailed tests 1

We saw in section 1.7.5 that hypotheses can be directional (e.g., ‘the more someone reads 
this book, the more they want to kill its author’) or non-directional (i.e., ‘reading more 
of this book could increase or decrease the reader’s desire to kill its author’). A statistical 
model that tests a directional hypothesis is called a one-tailed test, whereas one testing a 
non-directional hypothesis is known as a two-tailed test.

Mean of group 1 was
smaller than the mean
of group 2, or there is
a negative relationship

Mean of group 1 was
bigger than the mean
of group 2, or there is
a positive relationship

Probability
= .05

Probability
= .025

Test Statistic

−4 −2 0 2 4

F
re

q
u

en
cy

FIGURE 2.10
Diagram to show 
the difference 
between one- and 
two-tailed tests

Imagine we wanted to discover whether reading this book increased or decreased the 
desire to kill me. We could do this either (experimentally) by taking two groups, one who 
had read this book and one who hadn’t, or (correlationally) by measuring the amount of 
this book that had been read and the corresponding desire to kill me. If we have no direc-
tional hypothesis then there are three possibilities. (1) People who read this book want to 
kill me more than those who don’t so the difference (the mean for those reading the book 
minus the mean for non-readers) is positive. Correlationally, the more of the book you 
read, the more you want to kill me – a positive relationship. (2) People who read this book 
want to kill me less than those who don’t so the difference (the mean for those reading the 
book minus the mean for non-readers) is negative. Correlationally, the more of the book 
you read, the less you want to kill me – a negative relationship. (3) There is no difference 
between readers and non-readers in their desire to kill me – the mean for readers minus 
the mean for non-readers is exactly zero. Correlationally, there is no relationship between 
reading this book and wanting to kill me. This final option is the null hypothesis. The 
direction of the test statistic (i.e., whether it is positive or negative) depends on whether 
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the difference is positive or negative. Assuming there is a positive difference or 
relationship (reading this book makes you want to kill me), then to detect this 
difference we have to take account of the fact that the mean for readers is bigger 
than for non-readers (and so derive a positive test statistic). However, if we’ve 
predicted incorrectly and actually reading this book makes readers want to kill 
me less then the test statistic will actually be negative.

What are the consequences of this? Well, if at the .05 level we needed to get a 
test statistic bigger than say 10 and the one we get is actually −12, then we would 
reject the hypothesis even though a difference does exist. To avoid this we can 
look at both ends (or tails) of the distribution of possible test statistics. This means 
we will catch both positive and negative test statistics. However, doing this has a 
price because to keep our criterion probability of .05 we have to split this prob-
ability across the two tails: so we have .025 at the positive end of the distribution 

and .025 at the negative end. Figure 2.10 shows this situation – the tinted areas are the areas 
above the test statistic needed at a .025 level of significance. Combine the probabilities (i.e., 
add the two tinted areas together) at both ends and we get .05, our criterion value. Now if 
we have made a prediction, then we put all our eggs in one basket and look only at one end 
of the distribution (either the positive or the negative end, depending on the direction of the 
prediction we make). So, in Figure 2.10, rather than having two small tinted areas at either 
end of the distribution that show the significant values, we have a bigger area (the lined 
area) at only one end of the distribution that shows significant values. Consequently, we can 
just look for the value of the test statistic that would occur by chance with a probability of 
.05. In Figure 2.10, the lined area is the area above the positive test statistic needed at a .05 
level of significance. Note on the graph that the value that begins the area for the .05 level 
of significance (the lined area) is smaller than the value that begins the area for the .025 level 
of significance (the tinted area). This means that if we make a specific prediction then we 
need a smaller test statistic to find a significant result (because we are looking in only one 
tail of the distribution), but if our prediction happens to be in the wrong direction then we’ll 
miss out on detecting the effect that does exist. In this context it’s important to remember 
what I said in Jane Superbrain Box 2.4: you can’t place a bet or change your bet when the 
tournament is over. If you didn’t make a prediction of direction before you collected the 
data, you are too late to predict the direction and claim the advantages of a one-tailed test.

2.6.3.    Type I and Type II errors 1

We have seen that we use test statistics to tell us about the true state of the world (to a cer-
tain degree of confidence). Specifically, we’re trying to see whether there is an effect in our 
population. There are two possibilities in the real world: there is, in reality, an effect in the 
population, or there is, in reality, no effect in the population. We have no way of knowing 
which of these possibilities is true; however, we can look at test statistics and their associated 
probability to tell us which of the two is more likely. Obviously, it is important that we’re as 
accurate as possible, which is why Fisher originally said that we should be very conservative 
and only believe that a result is genuine when we are 95% confident that it is – or when 
there is only a 5% chance that the results could occur if there was not an effect (the null 
hypothesis is true). However, even if we’re 95% confident there is still a small chance that 
we get it wrong. In fact there are two mistakes we can make: a Type I and a Type II error. A 
Type I error occurs when we believe that there is a genuine effect in our population, when in 
fact there isn’t. If we use Fisher’s criterion then the probability of this error is .05 (or 5%) 
when there is no effect in the population – this value is known as the α-level. Assuming there 
is no effect in our population, if we replicated our data collection 100 times we could expect 

Why do you need
two tails?

02-Field_R-4368-Ch-02.indd   56 29/02/2012   3:36:30 PM



57CHAPTER 2   EVERYTH ING YOU EVER WANTED TO  KNOW ABOUT STAT IST ICS  (WELL ,  SORT  OF)

that on five occasions we would obtain a test statistic large enough to make us think that 
there was a genuine effect in the population even though there isn’t. The opposite is a Type 
II error, which occurs when we believe that there is no effect in the population when, in real-
ity, there is. This would occur when we obtain a small test statistic (perhaps because there is 
a lot of natural variation between our samples). In an ideal world, we want the probability 
of this error to be very small (if there is an effect in the population then it’s important that 
we can detect it). Cohen (1992) suggests that the maximum acceptable probability of a Type 
II error would be .2 (or 20%) – this is called the β-level. That would mean that if we took 
100 samples of data from a population in which an effect exists, we would fail to detect that 
effect in 20 of those samples (so we’d miss 1 in 5 genuine effects).

There is obviously a trade-off between these two errors: if we lower the probability of 
accepting an effect as genuine (i.e., make α smaller) then we increase the probability that 
we’ll reject an effect that does genuinely exist (because we’ve been so strict about the level 
at which we’ll accept that an effect is genuine). The exact relationship between the Type I 
and Type II error is not straightforward because they are based on different assumptions: 
to make a Type I error there has to be no effect in the population, whereas to make a Type 
II error the opposite is true (there has to be an effect that we’ve missed). So, although we 
know that as the probability of making a Type I error decreases, the probability of mak-
ing a Type II error increases, the exact nature of the relationship is usually left for the 
researcher to make an educated guess (Howell, 2006, gives a great explanation of the 
trade-off between errors).

2.6.4.    Effect sizes 2

The framework for testing whether effects are genuine that I’ve just presented has a few 
problems, most of which have been briefly explained in Jane Superbrain Box 2.6. The 
first problem we encountered was knowing how important an effect is: just because a test 
statistic is significant doesn’t mean that the effect it measures is meaningful or important. 
The solution to this criticism is to measure the size of the effect that we’re testing in a stan-
dardized way. When we measure the size of an effect (be that an experimental manipula-
tion or the strength of a relationship between variables) it is known as an effect size. An 
effect size is simply an objective and (usually) standardized measure of the magnitude of 
observed effect. The fact that the measure is standardized just means that we can compare 
effect sizes across different studies that have measured different variables, or have used 
different scales of measurement (so an effect size based on speed in milliseconds could be 
compared to an effect size based on heart rates). Such is the utility of effect size estimates 
that the American Psychological Association is now recommending that all psy-
chologists report these effect sizes in the results of any published work. So, it’s a 
habit well worth getting into.

Many measures of effect size have been proposed, the most common of which 
are Cohen’s d, Pearson’s correlation coefficient r (Chapter 6) and the odds ratio 
(Chapter 18). Many of you will be familiar with the correlation coefficient as 
a measure of the strength of relationship between two variables (see Chapter 6 
if you’re not); however, it is also a very versatile measure of the strength of an 
experimental effect. It’s a bit difficult to reconcile how the humble correlation 
coefficient can also be used in this way; however, this is only because students are 
typically taught about it within the context of non-experimental research. I don’t 
want to get into it now, but as you read through Chapters 6, 9 and 10 it will (I 
hope!) become clear what I mean. Personally, I prefer Pearson’s correlation coef-
ficient, r, as an effect size measure because it is constrained to lie between 0 (no 

Can we measure how
important an effect is?
Can we measure how
important an effect is?
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effect) and 1 (a perfect effect).12 However, there are situations in which d may be favoured; 
for example, when group sizes are very discrepant r can be quite biased compared to d 
(McGrath & Meyer, 2006).

Effect sizes are useful because they provide an objective measure of the importance of an 
effect. So, it doesn’t matter what effect you’re looking for, what variables have been measured, 
or how those variables have been measured – we know that a correlation coefficient of 0 means 
there is no effect, and a value of 1 means that there is a perfect effect. Cohen (1988, 1992) has 
also made some widely used suggestions about what constitutes a large or small effect:

MM r = .10 (small effect): In this case the effect explains 1% of the total variance.

MM r = .30 (medium effect): The effect accounts for 9% of the total variance.

MM r = .50 (large effect): The effect accounts for 25% of the variance.

It’s worth bearing in mind that r is not measured on a linear scale, so an effect with r = .6 
isn’t twice as big as one with r = .3. Although these guidelines can be a useful rule of thumb 
to assess the importance of an effect (regardless of the significance of the test statistic), it is 
worth remembering that these ‘canned’ effect sizes are no substitute for evaluating an effect size 
within the context of the research domain where it is being used (Baguley, 2004; Lenth, 2001).

A final thing to mention is that when we calculate effect sizes we calculate them for a 
given sample. When we looked at means in a sample we saw that we used them to draw 
inferences about the mean of the entire population (which is the value in which we’re actu-
ally interested). The same is true of effect sizes: the size of the effect in the population is the 
value in which we’re interested, but because we don’t have access to this value, we use the 
effect size in the sample to estimate the likely size of the effect in the population. We can also 
combine effect sizes from different studies researching the same question to get better esti-
mates of the population effect sizes. This is called meta-analysis – see Field (2001, 2005b).

2.6.5.    Statistical power 2

Effect sizes are an invaluable way to express the importance of a research finding. The effect 
size in a population is intrinsically linked to three other statistical properties: (1) the sample 
size on which the sample effect size is based; (2) the probability level at which we will accept 
an effect as being statistically significant (the α-level); and (3) the ability of a test to detect an 
effect of that size (known as the statistical power, not to be confused with statistical powder, 
which is an illegal substance that makes you understand statistics better). As such, once we 
know three of these properties, then we can always calculate the remaining one. It will also 
depend on whether the test is a one- or two-tailed test (see section 2.6.2). Typically, in psychol-
ogy we use an α-level of .05 (see earlier) so we know this value already. The power of a test is 
the probability that a given test will find an effect assuming that one exists in the population. 
If you think back you might recall that we’ve already come across the probability of failing to 
detect an effect when one genuinely exists (β, the probability of a Type II error). It follows that 
the probability of detecting an effect if one exists must be the opposite of the probability of not 
detecting that effect (i.e., 1 −β). I’ve also mentioned that Cohen (1988, 1992) suggests that 
we would hope to have a .2 probability of failing to detect a genuine effect, and so the cor-
responding level of power that he recommended was 1 − .2, or .8. We should aim to achieve 
a power of .8, or an 80% chance of detecting an effect if one genuinely exists. The effect size 
in the population can be estimated from the effect size in the sample, and the sample size is 

12 The correlation coefficient can also be negative (but not below –1), which is useful when we’re measuring a rela-
tionship between two variables because the sign of r tells us about the direction of the relationship, but in experi-
mental research the sign of r merely reflects the way in which the experimenter coded their groups (see Chapter 6).
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determined by the experimenter anyway so that value is easy to calculate. Now, there are two 
useful things we can do knowing that these four variables are related:

1	 Calculate the power of a test: Given that we’ve conducted our experiment, we will 
have already selected a value of α, we can estimate the effect size based on our 
sample, and we will know how many participants we used. Therefore, we can use 
these values to calculate β, the power of our test. If this value turns out to be .8 or 
more we can be confident that we achieved sufficient power to detect any effects that 
might have existed, but if the resulting value is less, then we might want to replicate 
the experiment using more participants to increase the power.

2	 Calculate the sample size necessary to achieve a given level of power: Given that we 
know the value of α and β, we can use past research to estimate the size of effect that we 
would hope to detect in an experiment. Even if no one had previously done the exact 
experiment that we intend to do, we can still estimate the likely effect size based on simi-
lar experiments. We can use this estimated effect size to calculate how many participants 
we would need to detect that effect (based on the values of α and β that we’ve chosen). 

The latter use is the more common: to determine how many participants should be used 
to achieve the desired level of power. The actual computations are very cumbersome, but 
fortunately there are now computer programs available that will do them for you (one 
example is G*Power, which is free and can be downloaded from a link on the companion 
website; another is nQuery Adviser, but this has to be bought!). Also, Cohen (1988) pro-
vides extensive tables for calculating the number of participants for a given level of power 
(and vice versa). Based on Cohen (1992), we can use the following guidelines: if we take 
the standard α-level of .05 and require the recommended power of .8, then we need 783 
participants to detect a small effect size (r = .1), 85 participants to detect a medium effect 
size (r = .3) and 28 participants to detect a large effect size (r = .5).

What have I discovered about statistics? 1

OK, that has been your crash course in statistical theory! Hopefully your brain is still 
relatively intact. The key point I want you to understand is that when you carry out 
research you’re trying to see whether some effect genuinely exists in your population 
(the effect you’re interested in will depend on your research interests and your specific 
predictions). You won’t be able to collect data from the entire population (unless you 
want to spend your entire life, and probably several after-lives, collecting data) so you 
use a sample instead. Using the data from this sample, you fit a statistical model to test 
your predictions, or, put another way, detect the effect you’re looking for. Statistics boil 
down to one simple idea: observed data can be predicted from some kind of model and 
an error associated with that model. You use that model (and usually the error associated 
with it) to calculate a test statistic. If that model can explain a lot of the variation in the 
data collected (the probability of obtaining that test statistic is less than .05) then you 
infer that the effect you’re looking for genuinely exists in the population. If the prob-
ability of obtaining that test statistic is more than .05, then you conclude that the effect 
was too small to be detected. Rather than rely on significance, you can also quantify the 
effect in your sample in a standard way as an effect size and this can be helpful in gaug-
ing the importance of that effect. We also discovered that I managed to get myself into 
trouble at nursery school. It was soon time to move on to primary school and to new 
and scary challenges. It was a bit like using R for the first time!
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Smart Alex’s tasks

MM Task 1: Why do we use samples? 1

MM Task 2: What is the mean and how do we tell if it’s representative of our data? 1

MM Task 3: What’s the difference between the standard deviation and the standard error? 1

MM Task 4: In Chapter 1 we used an example of the time taken for 21 heavy smokers to 
fall off a treadmill at the fastest setting (18, 16, 18, 24, 23, 22, 22, 23, 26, 29, 32, 34, 
34, 36, 36, 43, 42, 49, 46, 46, 57). Calculate the sums of squares, variance, standard 
deviation, standard error and 95% confidence interval of these data. 1

MM Task 5: What do the sum of squares, variance and standard deviation represent? How 
do they differ? 1

MM Task 6: What is a test statistic and what does it tell us? 1

MM Task 7: What are Type I and Type II errors? 1

MM Task 8: What is an effect size and how is it measured? 2

MM Task 9: What is statistical power? 2

Answers can be found on the companion website.

Further reading
Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304–1312.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003. (A couple 

of beautiful articles by the best modern writer of statistics that we’ve had.)

Key terms that I’ve discovered
α-level
β-level
Central limit theorem
Confidence interval
Degrees of freedom
Deviance
Effect size
Fit
Linear model
Meta-analysis
One-tailed test
Population
Power

Sample
Sampling distribution
Sampling variation
Standard deviation
Standard error
Standard error of the mean (SE)
Sum of squared errors (SS)
Test statistic
Two-tailed test
Type I error
Type II error
Variance
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Field, A. P., & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather 
biased, but I think this is a good overview of basic statistical theory.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book has 
very clear introductions to sampling, confidence intervals and other important statistical ideas.)

Interesting real research
Domjan, M., Blesbois, E., & Williams, J. (1998). The adaptive significance of sexual conditioning: 

Pavlovian control of sperm release. Psychological Science, 9(5), 411–415.
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3
The R environment

FIGURE 3.1
All I want for 
Christmas is … 
some tasteful 
wallpaper

3.1.  What will this chapter tell me? 1

At about 5 years old I moved from nursery (note that I moved, I was not ‘kicked out’ for 
showing my …) to primary school. Even though my older brother was already there, I 
remember being really scared about going. None of my nursery school friends were going 
to the same school and I was terrified about meeting lots of new children. I arrived in my 
classroom, and as I’d feared, it was full of scary children. In a fairly transparent ploy to 
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make me think that I’d be spending the next 6 years building sand castles, the teacher told 
me to play in the sand pit. While I was nervously trying to discover whether I could build a 
pile of sand high enough to bury my head in, a boy came and joined me. He was Jonathan 
Land, and he was really nice. Within an hour he was my new best friend (5-year-olds are 
fickle …) and I loved school. Sometimes new environments seem scarier than they really 
are. This chapter introduces you to a scary new environment: R. The R environment is a 
generally more unpleasant environment in which to spend time than your normal environ-
ment; nevertheless, we have to spend time there if we are to analyse our data. The purpose 
of this chapter is, therefore, to put you in a sand pit with a 5-year-old called Jonathan. I will 
orient you in your new home and reassure you that everything will be fine. We will explore 
how R works and the key windows in R (the console, editor and graphics/quartz windows). 
We will also look at how to create variables, data sets, and import and manipulate data.

3.2.  Before you start 1

R is a free software environment for statistical computing and graphics. It is what’s known 
as ‘open source’, which means that unlike commercial software companies that protec-
tively hide away the code on which their software is based, the people who developed R 
allow everyone to access their code. This open source philosophy allows anyone, anywhere 
to contribute to the software. Consequently, the capabilities of R dynamically expand as 
people from all over the world add to it. R very much embodies all that is good about the 
World Wide Web.

3.2.1.    The R-chitecture 1

In essence, R exists as a base package with a reasonable amount of functionality. Once you 
have downloaded R and installed it on your own computer, you can start doing some data 
analysis and graphs. However, the beauty of R is that it can be expanded by download-
ing packages that add specific functionality to the program. Anyone with a big enough 
brain and a bit of time and dedication can write a package for other people to use. These 
packages, as well as the software itself, are stored in a central location known as the CRAN 
(Comprehensive R Archive Network). Once a package is stored in the CRAN, anyone with 
an Internet connection can download it from the CRAN and install it to use within their 
own copy of R. R is basically a big global family of fluffy altruistic people contributing to 
the goal of producing a versatile data analysis tool that is free for everyone to use. It’s a 
statistical embodiment of The Beatles’ utopian vision of peace, love and humanity: a sort 
of ‘give ps a chance’.

The CRAN is central to using R: it is the place from where you download the software 
and any packages that you want to install. It would be a shame, therefore, if the CRAN 
were one day to explode or be eaten by cyber-lizards. The statistical world might col-
lapse. Even assuming the cyber-lizards don’t rise up and overthrow the Internet, it is still 
a busy place. Therefore, rather than have a single CRAN location that everyone accesses, 
the CRAN is ‘mirrored’ at different places across the globe. ‘Mirrored’ simply means that 
there are identical versions of the CRAN scattered across the world. As a resident of the 
UK, I might access a CRAN location in the UK, whereas if you are in a different country 
you would likely access the copy of the CRAN in your own country (or one nearby). Bigger 
countries, such as the US, have multiple CRANs to serve them: the basic philosophy is to 
choose a CRAN that is geographically close to you.
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Figure 3.2 shows schematically what we have just learnt. At the centre of the diagram is 
the CRAN: a repository of the base R software and hundreds of packages. People with big 
brains from all over the world write new packages and upload them into the CRAN for 
others to use. The CRAN itself is mirrored at different places across the globe (which just 
means there are multiple copies of it). As a user of R you download the software, and install 
any packages that you want to use via your nearest CRAN.

The idea of needing to install ‘packages’ into a piece of software to get it to do something 
for you might seem odd. However, whether you realize it or not many programs work in 
this way (just less obviously so). For example, the statistical package SPSS has a base ver-
sion, but also has many modules (for example, the bootstrapping module, advanced sta-
tistics, exact tests and so on). If you have not paid for these modules then certain options 
will be unavailable to you. Many students do not realize that SPSS has this modular format 
because they use it at a university and the university has paid for all of the modules that 
they need. Similarly, in Microsoft Excel you need to load the data analysis add-in before 
you can use certain facilities. R is not unusual in having a modular system, and in being 
modular it has enormous flexibility: as new statistical techniques are developed, contribu-
tors can react quickly to produce a package for R; a commercial organization would likely 
take much longer to include this new technique. 

3.2.2.    Pros and cons of R 1

The main advantages of using R are that it is free, and it is a versatile and dynamic envi-
ronment. Its open source format and the ability of statisticians to contribute packages to 
the CRAN mean that there are many things that you can do that cannot be done in com-
mercially available packages. In addition, it is a rapidly expanding tool and can respond 
quickly to new developments in data analysis. These advantages make R an extremely 
powerful tool.

The downside to R is mainly ease of use. The ethos of R is to work with a command line 
rather than a graphical user interface (GUI). In layman’s terms this means typing instructions 

FIGURE 3.2
Users download 
R and install 
packages 
(uploaded by 
statisticians 
around the 
world) to their 
own computer 
via their nearest 
CRAN
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rather than pointing, clicking, and dragging things with a mouse. This might seem weird at 
first and a rather ‘retro’ way of working but I believe that once you have mastered a few fairly 
simple things, R’s written commands are a much more efficient way to work. 

3.2.3.    Downloading and installing R 1

To install R onto your computer you need to visit the project website (http://www.R-
project.org/). Figure 3.3 shows the process of obtaining the installation files. On the main 
project page, on the left-hand side, click on the link labelled ‘CRAN’. Remember from 
the previous section that there are various copies (mirrors) of the CRAN across the globe; 
therefore, the link to the CRAN will navigate you to a page of links to the various ‘mir-
ror’ sites. Scroll down this list to find a mirror near to you (for example, in the diagram 

FIGURE 3.3
Downloading R
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I have highlighted the mirror closest to me, http://www.stats.bris.ac.uk/R/) and click the 
link. Once you have been redirected to the CRAN mirror that you selected, you will see 
a web page that asks you which platform you use (Linux, MacOS or Windows). Click the 
link that applies to you. We’re assuming that most readers use either Windows or MacOS.

If you click on the ‘Windows’ link, then you’ll be taken to another page with some more 
links; click on ‘base’, which will redirect you to the webpage with the link to the setup file, 
once there click on the link that says ‘Download R 2.12.2 for Windows’,1 which will initi-
ate the download of the R setup file. Once this file has been downloaded, double-click on 
it and you will enter a (hopefully) familiar install procedure.

If you click on the ‘MacOS’ link you will be taken directly to a page from where 
you can download the install package by clicking on the link labelled ‘R-2.12.2.pkg’ 
(please read the footnote about version numbers). Clicking this link will download 
the install file; once downloaded, double-click on it and you will enter the normal 
MacOS install procedure.

3.2.4.    Versions of R 1

At the time of writing, the current version of R is 2.12.2; however, the software 
updates fairly regularly so we are confident that by the time anyone is actually read-

ing this, there will be a newer release (possibly several). Notice that the 
format of the version number is major.minor.patch, which means that we 
are currently on major version 2, minor version 12 and patch 2. Changes 
in the patch number happen fairly frequently and usually reflect fixes 
of minor bugs (so, for example, version 2.12.3 will come along pretty 
quickly but won’t really be a substantial change to the software, just 
some housekeeping). Minor versions come less regularly (about every 6 
months) and still reflect a collection of bug fixes and minor housekeep-
ing that keeps the software running optimally. Major releases are quite 
rare (the switch from version 1 to version 2 happened in 2006). As such, 
apart from minor fixes, don’t worry if you are using a more recent ver-
sion of R than the one we’re using: it won’t make any difference, or 
shouldn’t do. The best advice is to update every so often but other than 
that don’t worry too much about which version you’re using; there are 
more important things in life to worry about.

3.3.  Getting started 1

Once you have installed R you can activate it in the usual way. In windows go to the 
start menu (the big windows icon in the bottom left of the screen) select ‘All Programs’, 
then scroll down to the folder labelled ‘R’, click on it, and then click on the R icon 
(Figure 3.4). In MacOS, go to your ‘Applications’ folder, scroll down to the R icon and 
click on it (Figure 3.4).

1 At the time of writing the current version of R is 2.12.2, but by the time you read this book there will have been 
an update (or possibly several), so don’t be surprised if the ‘2.12.2’ in the link has changed to a different number. 
This difference is not cause for panic, the link will simply reflect the version number of R.

Which version of
R do I need to
use this book?

Which version of
R do I need to
use this book?
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3.3.1.    The main windows in R 1

There are three windows that you will use in R. The main window is called the console 
(Figure 3.4) and it is where you can both type commands and see the results of executing 
these commands (in other words, see the output of your analysis). Rather than writing 
commands directly into the console you can also write them in a separate window (known 
as the editor window). Working with this window has the advantage that you can save col-
lections of commands as a file that you can reuse at another point in time (perhaps to rerun 
the analysis, or to run a similar analysis on a different set of data). I generally tend to work 
in this way rather than typing commands into the console because it makes sense to me 
to save my work in case I need to replicate it, and as you do more analyses you begin to 
have a repository of R commands that you can quickly adapt when running a new analysis. 
Ultimately you have to do what works for you. Finally, if you produce any graphics or 
graphs they will appear in the graphics window (this window is labelled quartz in MacOS).

FIGURE 3.4
Getting R started

3.3.2.    Menus in R 1

Once R is up and running you’ll notice a menu bar similar to the ones you might have seen 
in other programs. Figure 3.4 shows the console window and the menu bar associated with 
this window. There are some subtle differences between Windows and MacOS versions of 
R and we will look at each version in the following two sections. At this stage, simply note 
that there are several menus at the top of the screen (e.g., ) that can be activated 
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by using the computer mouse to move the on-screen arrow onto the desired menu and 
then pressing the left mouse button once (I’ll call pressing this button clicking). When 
you have clicked on a menu, a menu box will appear that displays a list of options that 
can be activated by moving the on-screen arrow so that it is pointing at the desired 
option and then clicking with the mouse. Often, selecting an option from a menu 
makes a window appear; these windows are referred to as dialog boxes. When referring 
to selecting options in a menu I will use arrows to notate the menu paths; for example, 
if I were to say that you should select the Save As … option in the File menu, you will 
see File⇒Save As …

Before we look at Windows and MacOS versions of R, it’s worth saying that there are no 
substantive differences: all of the commands in the book work equally as well on Windows 
or MacOS. Other than pointing out a few differences in the next two sections, we won’t 
talk about Windows and MacOS again because it won’t make a difference to how you fol-
low the book. If you happen to use Windows and see a screenshot from MacOS (or vice 
versa), this is not cause for a nervous breakdown – I promise.

3.3.2.1.  R in Windows 1

In R for Windows, the menus available depend upon which window is active; Table 3.1 
provides an overview of the main menus and their contents. The specific content of a 
particular menu also changes according to the window that’s active. For example, when 
you are in the graphics and editor windows the File menu pretty much only gives you the 
option to save, copy or print the graphic or text displayed in the window, but in the console 
window you have many more options. Most options in the menus can also be accessed with 
keyboard shortcuts (see R’s Souls’ Tip 3.1).

         R ’s  Souls ’  T ip  3 .1   Keyboard shortcuts 1

Within the menus of software packages on Windows some letters are underlined: these underlined letters rep-
resent the keyboard shortcut for accessing that function. It is possible to select many functions without using 
the mouse, and the experienced keyboard user may find these shortcuts faster than manoeuvring the mouse 
arrow to the appropriate place on the screen. The letters underlined in the menus indicate that the option can be 
obtained by simultaneously pressing Alt on the keyboard and the underlined letter. So, to access the Save As… 
option, using only the keyboard, you should press Alt and F on the keyboard simultaneously (which activates the 
File menu), then, keeping your finger on the Alt key, press A (which is the underlined letter). If these underlined 
letters are not visible, they can be displayed by pressing the Alt key.

As well as the menus there is also a set of icons at the top of the data editor window (see 
Figure 3.4) that are shortcuts to specific facilities. All of these facilities can be accessed via 
the menu system but using the icons will save you time. Table 3.2 gives a brief overview of 
these icons and their functions.
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Table 3.1  Overview of the menus in R for Windows

Menu Console Editor Graphics

File: This menu allows you to do general things such as 
saving the workspace (i.e., analysis output – see section 
3.4), scripts or graphs. Likewise, you can open previously 
saved files and print graphs, data or output. In essence, it 
contains all of the options that are customarily found in File 
menus.

  

Edit: This menu contains edit functions such as cut and 
paste. From here you can also clear the console (i.e., 
remove all of the text from it), activate a rudimentary data 
editor, and change how the GUI looks (for example, by 
default the console shows black text on white background, 
you can change the colour of both the background and 
text).

 

View: This menu lets you select whether or not to see the 
toolbar (the buttons at the top of the window) and whether 
to show a status bar at the bottom of the window (which 
isn’t particularly interesting).



Misc: This menu contains options to stop ongoing 
computations (although the ESC key does a quicker job), 
to list any objects in your working environment (these 
would be objects that you have created in the current 
session – see section 3.4), and also to select whether R 
autocompletes words and filenames for you (by default it 
does).



Packages: This menu is very important because it is where 
you load, install and update packages. You can also set 
your default CRAN mirror so that you always head to that 
location.

 

Window: If you have multiple windows, this menu allows 
you to change how the windows in R are arranged.

  

Help: This is an invaluable menu because it offers you 
online help (links to frequently asked questions, the R 
webpage etc.), offline help (pdf manuals, and system help 
files).

 

Resize: This menu is for resizing the image in the graphics 
window so that it is a fixed size, it is scaled to fit the window 
but retains its aspect ratio (fit to window), or it expands to fit 
the window but does not maintain its aspect ratio (R mode). 



3.3.2.2.  R in MacOS 1

As with any software package for MacOS, the R menus appear at the top of the screen. 
Table 3.3 provides an overview of the main menus and their contents. We will refer back 
to these menus at various points so by all means feel free to explore them, but don’t worry 
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Table 3.2  Overview of the icons in R for Windows

Icon Description Console Editor Graphics

This icon gives you the option to open a 
previously saved file.  

Clicking this button opens a dialog box that 
enables you to load a workspace file (see 
section 3.4).



This icon enables you to save files. It will save 
the file you are currently working on (be it the 
console screen or a script file). If the file hasn’t 
already been saved the Save Data As dialog box 
will appear.

 

Clicking this button copies anything selected in 
the console window to the clipboard. 

Clicking this button pastes the contents of the 
Windows clipboard to the console window. 

Clicking this button copies anything selected 
in the console window to the clipboard and 
automatically pastes it into the command line 
(useful for rerunning earlier commands).



Clicking this button stops the R processor from 
whatever it is doing (if you have started R on a 
task, gone and made the dinner and returned 
to find it still chugging away trying to finish, then 
you might need to click this button and have a 
rethink).



This icon activates a dialog box for printing 
whatever you are currently working on (what is 
printed depends on which window is active).

  

In the editor window clicking this button will run 
a line of code or a block of selected code. It’s 
quicker to use the keyboard though (see section 
3.4).



Clicking this button returns the focus to the 
console widow.  

Clicking this button copies the contents of the 
graphics window to the clipboard as a Windows 
metafile.



too much at this stage about what specific menu options do. As well as the menus there is 
a set of icons at the top of both the editor and console windows, which provide shortcuts 
to specific facilities. All of these facilities can be accessed via the menu system or by typing 
commands, but using the icons can save you time. Table 3.4 overviews of these icons and 
their functions.
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Table 3.3  Overview of the menus in R for MacOS

Menu

File: This menu allows you to do general things such as saving scripts or graphs. Likewise, you 
can open previously saved files and print graphs, data or output. In essence, it contains all of the 
options that are customarily found in File menus.

Edit: This menu contains edit functions such as cut and paste. From here you can also clear the 
console (i.e., remove all of the text from it), execute commands, find a particular bit of text and so 
on.

Format: This menu lets you change the text styles used (colour, font, etc.).

Workspace: This menu enables you to save the workspace (i.e., analysis output – see section 
3.4), load an old workspace or browse your recent workspace files.

Packages & Data: This menu is very important because it is where you load, install and update 
packages. 

Misc: This menu enables you to set or change the working directory. The working directory is the 
default location where R will search for and save files (see section 3.4.4).

Window: If you have multiple windows, this menu allows you to change how the windows in R 
are arranged.

Help: This is an invaluable menu because it offers you a searchable repository of help and 
frequently asked questions.

3.4.  Using R 1

3.4.1.    Commands, objects and functions 1

I have already said that R uses ‘commands’ that are typed into the console window. As 
such, unlike other data analysis packages with which you might be familiar (e.g., SPSS, 
SAS), there are no friendly dialog boxes that you can activate to run analyses. Instead, 
everything you want to do has to be typed into the console (or executed from a script file). 
This might sound like about as much fun as having one of the living dead slowly chewing 
on your brain, but there are advantages to working in this way: although there is a steep 
initial learning curve, after time it becomes very quick to run analyses.

Commands in R are generally made up of two parts: objects and functions. These are 
separated by ‘<-’, which you can think of as meaning ‘is created from’. As such, the general 
form of a command is:

Object<-function

Which means ‘object is created from function’. An object is anything created in R. It could 
be a variable, a collection of variables, a statistical model, etc. Objects can be single values 
(such as the mean of a set of scores) or collections of information; for example, when you 
run an analysis, you create an object that contains the output of that analysis, which means 
that this object contains many different values and variables. Functions are the things that 
you do in R to create your objects. In the console, to execute a command you simply type 
it into the console and press the return key. (You can put more than one command on a 
single line if you prefer – see R’s Souls’ Tip 3.2)
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Table 3.4  Overview of the icons in R for MacOS

Icon Description Console Editor

Clicking this button stops the R processor from whatever it is 
doing. 

Clicking this button opens a dialog box that enables you to 
select a previously saved script or data file. 

Clicking this button opens a new graphics (quartz) window.


Clicking this button opens the X11 window; X11 is a device 
that some R packages use. 

Clicking this button opens a dialog box into which you can 
enter your system password. This will enable R to run system 
commands. Frankly, I have never touched this button and I 
suspect it is to be used only by people who actually know 
what they’re doing.



Clicking this button activates a sidebar on the console 
window that lists all of your recently executed commands. 

Clicking this button opens the Preferences dialog box, from 
which you can change the console colours (amongst other 
things).



Clicking this button opens a dialog box from which you can 
select and open a previously saved script file. This file will 
open in the editor window.



Clicking this button opens a new editor window in which you 
can create a new script file. 

This icon activates a dialog box for printing whatever you 
are currently working on (what is printed depends on which 
window is active).

 

Clicking this button saves the script file that you’re working 
on. If you have not already saved the file, clicking this button 
activates a Save As … dialog box.



Clicking this button quits R.


Figure 3.5 shows a very simple example in which we have created an object called ‘metal-
lica’, which is made up of the four band members’ (pre 2001) names. The function used 
is the concatenate function or c(), which groups things together. As such, we have written 
each band member’s name (in speech marks and separated by commas), and by enclosing 
them in c() we bind them into a single entity or object, which we have called ‘metallica’. If 
we type this command into the console then when we hit the return key on the keyboard 
the object that we have called ‘metallica’ is created. This object is stored in memory so 
we can refer back to it in future commands. Throughout this book, we denote commands 
entered into the command line in this way:
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FIGURE 3.5
Using the 
command line 
in R

         R ’s  Souls ’  T ip  3 .2   Running multiple commands at once 1

The command line format of R tends to make you think that you have to run commands one at a time. Even if you 
use the R editor it is tempting to put different commands on a new line. There’s nothing wrong with doing this, 
and it can make it easier to decipher your commands if you go back to a long script months after you wrote it. 
However, it can be useful to run several commands in a single line. Separating them with a semicolon does this. 
For example, the two commands:

metallica<-metallica[metallica != "Jason"]

metallica<-c(metallica, "Rob") 

can be run in a single line by using a semicolon to separate them:

metallica<-metallica[metallica != "Jason"]; metallica<-c(metallica, "Rob") 
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metallica<-c("Lars","James","Jason","Kirk")

Now we have created an object called ‘metallica’ we can do things with it. First, we can 
have a look at its contents by typing ‘metallica’ (or ‘print(metallica)’ works too) into the 
command line and hitting the return key:

metallica

The contents of the object ‘metallica’ will be displayed in the console window. Throughout 
the book we display output as follows:

[1] "Lars" "James" "Jason" "Kirk"

Note that R has printed into the console the contents of the object ‘metallica’, and the 
contents are simply the four band members’ names. You need to be very careful when 
you type commands and create objects in R, because it is case sensitive (see R’s Souls’ 
Tip 3.3).

         R ’s  Souls ’  T ip  3 .3   R is case sensitive 1

R is case sensitive, which means that if the same things are written in upper or lower case, R thinks that they 
are completely different things. For example, we created a variable called metallica; if we asked to see the con-
tents of Metallica (note the capital M), R would tell us that this object didn’t exist. If we wanted to completely 
confuse ourselves we could actually create a variable called Metallica (with a capital M) and put different data 
into it than in the variable metallica (with a small m), and R would have no problem with us doing so. As far 
as R is concerned, metallica and Metallica are as different to each other as variables called earwax and 
doseOfBellendium.

This case sensitivity can create problems if you don’t pay attention. Functions are generally lower case so you 
just need to avoid accidentally using capitals, but every so often you find a function that has a capital letter (such 
as as.Date() used in this chapter) and you need to make sure you have typed it correctly. For example, if you want 
to use the function data.frame() but type data.Frame() or Data.Frame() you will get an error. If you get an error, 
check that you have typed any functions or variable names exactly as they should be. 

We can do other things with our newly created object too. The Metallica fans amongst 
you will probably be furious at me for listing the pre 2001 line up of the band. In 2001 
bassist Jason Newstead left the band and was replaced by Rob Trujillo. Even as I type, there 
are hoards of Metallica fans with precognition about the contents of this book queuing 
outside my house and they have dubbed me unforgiven. Personally I’m a big fan of Rob 
Trujillo, he’s given the band a solid kick up the backside, and so let’s put him in his rightful 
place in the band. We currently have a ‘metallica’ object that contains Jason. First we can 
change our object to eject Jason (harsh, I know). To get rid of Jason in R we can use this 
command:

metallica<-metallica[metallica != "Jason"]

This just means that we’re re-creating the object ‘metallica’, the ‘<-’ means that ‘we’re 
creating it from’ and our function is metallica[metallica != “Jason”] which means ‘use the 
object metallica, but get rid of (!=) Jason’. A simple line of text and Jason is gone, which 
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was probably a lot less hassle than his actual ousting from the band. If only Lars and James 
had come to me for advice. If we have a look at our ‘metallica’ object now we’ll see that 
it contains only three names. We can do this by simply typing ‘metallica’ and hitting the 
return key. Below shows the command and the output:

metallica

[1] "Lars" "James" "Kirk"

Now let’s add Rob Trujillo to the band. To do this we can again create an object called 
‘metallica’ (which will overwrite our previous object), and we can use the concatenate com-
mand to take the old ‘metallica’ object and add “Rob” to it. The command looks like this:

metallica<-c(metallica, "Rob")

If we execute this command (by pressing return) and again look at the contents of ‘metal-
lica’ we will see that Rob has been added to the band:

metallica

[1] "Lars" "James" "Kirk" "Rob"

SELF-TEST

ü	 Create an object that represents your favourite band 
(unless it’s Metallica, in which case use your second 
favourite band) and that contains the names of each 
band member. If you don’t have a favourite band, 
then create an object called friends that contains the 
names of your five best friends.

3.4.2.    Using scripts 1

Although you can execute commands from the console, I think it is better to write com-
mands in the R editor and execute them from there. A document of commands written in 
the R editor is known as a script. There are several advantages to this way of working. First, 
at the end of your session you can save the script file, which can be reloaded in the future 
if you need to re-create your analysis. Rerunning analyses, therefore, becomes a matter of 
loading a file and hitting a few buttons – it will take less than 10 seconds. Often in life you 
need to run analyses that are quite similar to ones that you have run before; if you have a 
repository of scripts then it becomes fairly quick to create new ones by editing an existing 
one or cutting and pasting commands from existing scripts and then editing the variable 
names. Personally I find that using old scripts to create new ones speeds things up a lot, but 
this could be because I’m pretty hopeless at remembering how to do things in R. Finally, 
I often mess things up and run commands that throw error messages back in my face; if 
these commands are written directly into the console then you have to rewrite the whole 
command (or cut and paste the wrong command and edit it), whereas if you ran the com-
mand from the editor window then you can edit the command directly without having to 
cut and paste it (or rewrite it), and execute it. Again, it’s a small saving in time, but these 
savings add up until eventually the savings outweigh the actual time you’re spending doing 
the task and then time starts to run backwards. I was 56 when I started writing this book, 
but thanks to using the editor window in R I am now 37.
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Figure 3.6 shows how to execute commands from the editor window. Assuming you 
have written some commands, all you need to do is to place the cursor in the line contain-
ing the command that you want to execute, or if you want to execute many commands in 
one go then highlight a block of commands by dragging over them while holding down the 
left mouse button. Once your commands are highlighted, you can execute them in one of 
several ways.

In Windows, you have a plethora of choices: you can (1) click on ; (2) click the right 
mouse button while in the editor window to activate a menu, then click with the left mouse 
button on the top option which is to run the command (see Figure 3.6); (3) go through 
the main menus by selecting Edit⇒Run line or selection; or (4) press and hold down the
Ctrl key, and while holding it down press and release the letter R on the keyboard (this 
is by far the quickest option). In the book we notate pressing a key while another is held 
down as ‘hold + press’, for example Ctrl + R means press the R key while holding down 
the Ctrl key.

In MacOS you can run the highlighted commands, or the current line, through the 
menus by selecting Edit⇒Execute, but as with Windows the keyboard shortcut is much 
quicker: press and hold down the cmd key (), and while holding it down press and release 
the return key (↵). In case you skipped the previous paragraph, we will notate pressing a 
key while another is held down as ‘hold + press’, for example  + ↵ means press the ↵ 
key while holding down the .

You’ll notice that the commands appear in the console window as they are executed, 
along with any consequences of those commands (for example, if one of your commands 
asks to view an object the contents will be printed in the console just the same as if you had 
typed the command directly into the console).

3.4.3.    The R workspace 1

As you work on a given data set or analysis, you will create many objects, all of which are 
stored in memory. The collection of objects and things you have created in a session is 
known as your workspace. When you quit R it will ask you if you want to save your current 
workspace. If you choose to save the workspace then you are saving the contents of the 

FIGURE 3.6
Executing 
commands from 
the R editor 
window
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console window and any objects that have been created. The file is known as an R image 
and is saved in a file with .RData at the end. You can save the workspace at any time using 
the File⇒Save Workspace … menu in Windows or in MacOS make sure you are in the 
console window and select File⇒Save As ….

3.4.4.    Setting a working directory 2

By default, when you try to do anything (e.g., open a file) from R it will go to the directory 
in which the program is stored on your computer. This is fine if you happen to store all of 
your data and output in that folder, but it is highly unlikely that you do. If you don’t then 
every time you want to load or save a file you will find yourself wasting time using the 
menus to navigate around your computer to try to find files, and you will probably lose 
track of things you save because they have been dumped in R’s home folder. You will also 
end up having to specify the exact file path for every file you save/access. For example, 
assuming that you’re using Windows, your user name is ‘Andy F’ (because you’ve stolen my 
identity), you have a folder in your main documents folder called ‘Data’ and within that 
you have another folder called ‘R Book Examples’, then if you want to access this folder 
(to save or load a file) you’d have to use this file path:

C:/Users/Andy F/Documents/Data/R Book Examples

So, to load a file called data.dat from this location you would need to execute the follow-
ing command:

myData = read.delim("C:/Users/Andy F/Documents/Data/R Book Examples/data.
dat")

Don’t worry about what this command means (we’ll get to that in due course), I just 
want you to notice that it is going to get pretty tedious to keep typing ‘C:/Users/Andy F/
Documents/Data/R Book Examples’ every time you want to load or save something.

If you use R as much as I do then all this time typing locations has two consequences: (1) 
all those seconds have added up and I have probably spent weeks typing file paths when I 
could have been doing something useful like playing my drum kit; (2) I have increased my 
chances of getting RSI in my wrists, and if I’m going to get RSI in my wrists I can think 
of more enjoyable ways to achieve it than typing file paths (drumming again, obviously).

The best piece of advice I can give you is to establish a working directory at the beginning 
of your R session. This is a directory in which you want to store your data files, any scripts 
associated with the analysis or your workspace. Basically, anything to do with a session. 
To begin with, create this folder (in the usual way in Windows or MacOS) and place the 
data files you’ll be using in that folder. Then, when you start your session in R change the 
working directory to be the folder that you have just created. Let’s assume again that you’re 
me (Andy F), that you have a folder in ‘My Documents’ called ‘Data’ and within that you 
have created a folder called ‘R Book Examples’ in which you have placed some data files 
that you want to analyse. To set the working directory to be this folder, we use the setwd() 
command to specify this newly created folder as the working directory:

setwd("C:/Users/Andy F/Documents/Data/R Book Examples")

By executing this command, we can now access files in that folder directly without having 
to reference the full file path. For example, if we wanted to load our data.dat file again, we 
can now execute this command:

myData = read.delim("data.dat")
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Compare this command with the one we wrote earlier; it is much shorter because we can 
now specify only the file name safe in the knowledge that R will automatically try to find 
the file in ‘C:/Users/Andy F/Documents/Data/R Book Examples’. If you want to check what 
the working directory is then execute this command:

getwd()

Executing this command will display the current working directory in the console 
window.2

In MacOS you can do much the same thing except that you won’t have a C drive. 
Assuming you are likely to work in your main user directory, the easiest thing to do is to 
use the ‘ ~ ’ symbol, which is a shorthand for your user directory. So, if we use the same 
file path as we did for Windows, we can specify this as:

setwd("~/Documents/Data/R Book Examples")

The ~ specifies the MacOS equivalent of ‘C:/Users/Andy F’. Alternatively, you can navigate 
to the directory that you want to use using the Misc⇒Change Working Directory menu 
path (or  + D).

Throughout the book I am going to assume that for each chapter you have stored the 
data files somewhere that makes sense to you and that you have set this folder to be your 
working directory. If you do not do this then you’ll find that commands that load and save 
files will not work.

3.4.5.    Installing packages 1

Earlier on I mentioned that R comes with some base functions ready for you to use. 
However, to get the most out of it we need to install packages that enable us to do particu-
lar things. For example, in the next chapter we look at graphs, and to create the graphs 
in that chapter we use a package called ggplot2. This package does not come pre-installed 
in R so to work through the next chapter we would have to install ggplot2 so that R can 
access its functions.

You can install packages in two ways: through the menus or using a command. If you 
know the package that you want to install then the simplest way is to execute this command:

install.packages("package.name")

in which ‘package.name’ is replaced by the name of the package that you’d like installed. 
For example, we have (hopefully) written a package containing some functions that are 
used in the book. This package is called DSUR, therefore, to install it we would execute:

install.packages("DSUR")

Note that the name of the package must be enclosed in speech marks.
Once a package is installed you need to reference it for R to know that you’re using it. 

You need to install the package only once3 but you need to reference it each time you start a 
new session of R. To reference a package, we simply execute this general command:

library(package.name)

2 In Windows, the filepaths can also be specified using ‘\\’ to indicate directories, so that “C:/Users/Andy F/Docu-
ments/Data/R Book Examples” is exactly the same as “C: \\Users\\Andy F\\Documents\\Data\\R Book Examples”. 
R tends to return filepaths in the ‘\\’ form, but will accept it if you specify them using ‘/’.  Try not to be confused 
by these two different formats. MacOS users don’t have these tribulations.

3 This isn’t strictly true: if you upgrade to a new version of R you will have to reinstall all of your packages again.
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in which ‘package.name’ is replaced by the name of the package that you’d like to use. 
Again, if we want to use the DSUR package we would execute:

library(DSUR)

Note that in this command the name of the package is not enclosed in speech marks.
Alternatively you can manage packages through the menu system. Figure 3.7 overviews 

the menus for managing packages. In Windows if you select Packages⇒Install package(s)… 
a window will open that first asks you to select a CRAN. Having selected the CRAN near-
est to you from the list and clicked on , a new dialog box will open that lists all 
of the available packages. Click on the one or ones that you want (you can select several 
by holding down the Ctrl key as you click) and then click on . This will have the 
same effect as using the install.packages() command. You can load packages by selecting 
Packages⇒Load package…, which opens a dialog box with all of the available packages 
that you could load. Select the one(s) you want to load and then click on . This has 
the same effect as the library() command.

In MacOS if you select Packages & Data⇒Package Installer a window will open. Click 
on  and a list of all the available packages appears. Click on the one or ones that 
you want (you can select several by holding down the  key as you click) and then click on 

FIGURE 3.7
Installing and 
loading packages 
through the 
menus in R
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         R ’s  Souls ’  T ip  3 .4  Disambiguating functions 1

Occasionally you might stumble across two functions in two different packages that have the same name. For 
example, there is a recode() function in both the Hmisc and car packages. If you have both packages loaded and 
you try to use recode(), R won’t know which one to use or will have a guess (perhaps incorrectly). This situation 
is easy to rectify: you can specify the package when you use the function as follows:

package::function()

For example, if we want to use the recode() function in the car package we would write:

car::recode()

but to use the one in Hmisc we would write:

Hmisc::recode()

Here is an example where we recode a variable using recode() from the car package:

variableName <-car::recode(variableName, "2=0;0=2") 

. This will have the same effect as using the install.packages() command. You 
can load packages by selecting Packages & Data⇒Package Manager, which opens a dialog box 
with all of the available packages that you could load. Click on the tick boxes next to the one(s) 
you want to load. This has the same effect as the library() command.

One entertaining (by which I mean annoying) consequence of any Tom, Dick or Harriet 
being able to contribute packages to R is that you sometimes encounter useful functions 
that have the same name as different functions in different packages. For example, there is 
a recode() function that exists in both the Hmisc and car packages. Therefore, if you have 
both of these packages loaded you will need to tell R which particular recode function you 
want to use (see R’s Souls’ Tip 3.4).

3.4.6.    Getting help 1

There is an enormous amount of information on the Internet about using R, and I gener-
ally find that if I get stuck I can find help with a quick Google (or whatever search engine 
you use) search. However, there is help built into R as well. If you are using a particular 
function and you want to know more about it then you can get help by executing the help() 
command:

help(function)

or by executing:

?function

In both cases function is the name of the function about which you need help. For example, 
we used the concatenate function earlier on, c(), if we wanted help with this function we 
could execute either:

help(c)

or

?c
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These commands open a new window with the help documentation for that function. Be 
aware that the help files are active only if you have loaded the package to which the func-
tion belongs. Therefore, if you try to use help but the help files are not found, check that 
you have loaded the relevant package with the library() command.

3.5.  Getting data into R 1

3.5.1.    Creating variables 1

You can enter data directly into R. As we saw earlier on, you can use the c() function to cre-
ate objects that contain data. The example we used was a collection of names, but you can 
do much the same with numbers. Earlier we created an object containing the names of the 
four members of metallica. Let’s do this again, but this time call the object metallicaNames. 
We can create this object by executing the following command:

metallicaNames<-c("Lars","James","Kirk","Rob")

We now have an object called metallicaNames containing the band members’ names. When 
we create objects it is important to name them in a meaningful way and you should put 
some thought into the names that you choose (see R’s Souls’ Tip 3.7).

Let’s say we wanted another object containing the ages of each band member. At the time 
of writing, their ages are 47, 47, 48 and 46, respectively. We can create a new object called 
metallicaAges in the same way as before, by executing:

metallicaAges<-c(47, 47, 48, 46)

Notice that when we specified names we placed the names in quotes, but when we 
entered their ages we did not. The quotes tell R that the data are not numeric. Variables 
that consist of data that are text are known as string variables. Variables that contain 
data that are numbers are known as numeric variables. R and its associated packages 
tend to be able to treat data fairly intelligently. In other words, we don’t need to tell 
R that a variable is numeric or not, it sort of works it out for itself – most of the time 
at least. However, string values should always be placed in quotes, and numeric val-
ues are never placed in quotes (unless you want them to be treated as text rather than 
numbers).

3.5.2.    Creating dataframes 1

We currently have two separate objects: metallicaNames and metallicaAges. Wouldn’t it be 
nice to combine them into a single object? We can do this by creating a dataframe. You can 
think of a dataframe as a spreadsheet (so, like the contents of the data editor in SPSS, or a 
worksheet in Excel). It is an object containing variables. There are other ways to combine 
variables in R but dataframes are the way we will most commonly use because of their ver-
satility (R’s Souls’ Tip 3.5). If we want to combine metallicaNames and metallicaAges into 
a dataframe we can use the data.frame() function: 

metallica<-data.frame(Name = metallicaNames, Age = metallicaAges)

In this command we create a new object (called metallica) and we create it from the func-
tion data.frame(). The text within the data.frame() command tells R how to build the 
dataframe. First it tells R to create an object called ‘Name’, which is equal to the existing 
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object metallicaNames. Then it tells R to create an object called ‘Age’, which is equal to the 
existing object metallicaAges. We can look at the contents of the dataframe by executing:

metallica

You will see the following displayed in the console:

Name Age

1 Lars   47
2 James  47
3 Kirk   48
4 Rob    46

As such, our dataframe consists of two variables (Name and Age), the first is the band 
member’s name, and the second is their age. Now that the dataframe has been created we 
can refer to these variables at any point using the general form:

dataframe$variableName

For example, if we wanted to use the ages of metallica, we could refer to this variable as:

metallica$Age

similarly, if we want the Name variable we could use:

metallica$Name

Let’s add a new variable that contains the age of each member’s eldest child; we will call 
this variable childAge. According to an Internet search, James’s (Cali) and Lars’s (Myles) 
eldest children were both born in 1998, Kirk’s (Angel) was born in 2006 and Rob’s (Tye-
Orion) in 2004. At the time of writing, this makes them 12, 12, 4 and 6, respectively. We 
can add this variable using the c() function as follows:

metallica$childAge<-c(12, 12, 4, 6)

This command is fairly straightforward: metallica$childAge simply creates the variable 
childAge in the pre-existing dataframe metallica. As always the ‘<-’ means ‘create from’, 
then the c() function allows us to collect together the numbers representing each member’s 
eldest child’s age (in the appropriate order).

We can look at the contents of the dataframe by executing:

metallica

You will see the following displayed in the console:

   Name Age childAge

1 Lars   47       12
2 James  47       12
3 Kirk   48        4
4 Rob    46        6

Notice that the new variable has been added.
Sometimes, especially with large dataframes, it can be useful to list the variables in the 

dataframe. This can be done using the names() function. You simply specify the name 
of the dataframe within the brackets; so, if we want to list the variables in the metallica 
dataframe, we would execute:

names(metallica)

The output will be a list of the variable names in the dataframe:

[1] "Name"     "Age"      "childAge"

In this case, R lists the names of the three variables in the dataframe.
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3.5.3.    Calculating new variables from exisiting ones 1

Although we’re not going to get into it too much here (but see Chapter 5), we can also 
use arithmetic and logical operators to create new variables from existing ones. Table 3.5 
overviews some of the basic operators that are used in R. As you can see, there are many 
operations with which you will be familiar (but see R’s Souls’ Tip 3.6) that you can use on 
variables: you can add them (using +), subtract them (using −), divide them (using /), and 
multiply them (using *). We will encounter these and the others in the table as we progress 
through the book. For now, though, we will look at a simple example to give you a sense 
that dataframes are versatile frameworks for storing and manipulating data.

         R ’s  Souls ’  T ip  3 .5   The list() and cbind() functions 1

Dataframes are not the only way to combine variables in R: throughout the book you will find us using the list() 
and cbind() functions to combine variables. The list() function creates a list of separate objects; you can imagine 
it as though it is your handbag (or manbag) but nicely organized. Your handbag contains lots of different objects: 
lipstick, phone, iPod, pen, etc. Those objects can be different, but that doesn’t stop them being collected into the 
same bag. The list() function creates a sort of bag into which you can place objects that you have created in R. 
However, it’s a well-organized bag and so objects that you place in it are given a number to indicate whether they 
are the first, second etc. object in the bag. For example, if we executed these commands:

metallica<-list(metallicaNames, metallicaAges)

instead of the data.frame() function from the chapter, we would create a R-like handbag called metallica that looks 
like this:

[[1]]
[1] "Lars"  "James" "Kirk"  "Rob"  
[[2]]
[1] 47 47 48 46

Object [1] in the bag is the list of names, and object [2] in the bag is the list of ages.
The function cbind() is used simply for pasting columns of data together (you can also use rbind() to combine 

rows of data together). For example, if we execute:

metallica<-cbind(metallicaNames, metallicaAges)

instead of the data.frame() function from the chapter, we would create a matrix called metallica that looks like this:

    metallicaNames metallicaAges

[1,] "Lars"         "47"         
[2,] "James"        "47"         
[3,] "Kirk"         "48"         
[4,] "Rob"          "46"

Notice that the end result is that the two variables have been pasted together as different columns in the same 
object. However, notice that the numbers are in quotes; this is because the variable containing names is text, so it 
causes the ages to be text as well. For this reason, cbind() is most useful for combining variables of the same type.

In general, dataframes are a versatile way to store variables: unlike cbind(), data.frame() stores variables of 
different types together (trivia note: cbind() works by using the data.frame() function so they’re basically the same). 
Therefore, we tend to work with dataframes; however, we will use list() sometimes because some functions like to 
work with lists of variables, and we will sometimes use cbind() as a quick method for combining numeric variables.  
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If we wanted to find out how old (roughly) each band member was when he had their 
first child, then we can subtract his eldest child’s age from his current age. We can store 
this information in a new variable (fatherhoodAge). We would create this new variable as 
follows:

metallica$fatherhoodAge<- metallica$Age − metallica$childAge

This command is again straightforward: metallica$fatherhoodAge simply creates the vari-
able called fatherhoodAge in the existing dataframe (metallica). The ‘<-’ means ‘create 
from’, then follows the instructions about how to create it; we ask that the new variable 
is the child’s age (which is the variable childAge in the metallica data set, referred to as 
metallica$childAge) subtracted from (−) the member’s age (metallica$Age). Again, if we 
look at the dataframe by executing

Table 3.5  Some of main operators that can be used in R

Operator What it does

+ Adds things together

− Subtracts things

* Multiplies things

/ Divides things

^ or ** Exponentiation (i.e., to the power of, so, x^2 or x**2 is x2, x^3 is x3 and so on)

< Less than 

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equals to (this might confuse you because you’ll be used to using ‘=’ as 
the symbol for ‘equals’, but in R you usually use ‘==’)

!= Not equal to

!x Not x

x | y x OR y (e.g., name == “Lars”|“James” means ‘the variable name is equal to either 
Lars or James’)

x & y x AND y (e.g., age == 47 & name == “James” means ‘the variable age is equal to 
47 and the variable name is equal to James’)

isTRUE(x) Test if x is TRUE 

         R ’s  Souls ’  T ip  3 .6  Equals signs 1

A common cause of errors in R is that you will have spent your whole life using the symbol ‘=’ when you want 
to say ‘equals’. For example, you’ll all be familiar with the idea that age = 37 is interpreted as ‘age equals 37’. 
However, in a transparent attempt to wilfully confuse us, R uses the symbol ‘==’ instead. At first, you might 
find that if you get error messages it is because you have used ‘=’ when you should have used ‘==’. It’s worth 
checking your command to see whether you have inadvertently let everything you have ever learnt about equals 
signs get the better of you. 
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metallica

we see that a new variable has been created containing the age of each band member when 
they had their first child. We can see from this that James and Lars were both 35 years old, 
Kirk was 44 and Rob was 40.

   Name Age childAge fatherhoodAge

1 Lars   47       12            35
2 James  47       12            35
3 Kirk   48        4            44
4 Rob    46        6            40

         R ’s  Souls ’  T ip  3 .7   Naming variables 1

There are conventions about naming variables and objects in R. Unfortunately these conventions sometimes 
contradict each other. For example, the Google style guide for R recommends that ‘Variable names should have 
all lower case letters and words separated with dots (.)’. So, for example, if you had a variable representing chil-
dren’s anxiety levels you might name it child.anxiety but should not name it child_anxiety and definitely not 
Child_Anxiety. However, Hadley (see the second URL at the end of this tip) recommends ‘Variable names … 
should be lowercase. Use _ to separate words within a name. … Strive for concise but meaningful names’. In 
which case, child_anxiety would be fine.

I tend to use an old programming convention of capitalizing all but the first word. So, I would name the variable 
childAnxiety, which waves its buttocks at the aforementioned conventions. I also sometimes use underscores 
… that’s just the kind of rebellious guy I am.

The one thing that we can all agree on is that variable names should be meaningful and concise. This skill 
can take some time and effort to perfect, and I can imagine that you might think that it is a waste of your time. 
However, as you go through your course accumulating script files, you will be grateful that you did. Imagine you 
had a variable called ‘number of times I wanted to shoot myself during Andy Field’s statistics lecture’; then you 
might have called the variable ‘shoot’. All of your analysis and output will simply refer to ‘shoot’. That’s all well and 
good, but what happens in three weeks’ time when you look at your analysis again? The chances are that you’ll 
probably think ‘What did shoot stand for? Number of shots at goal? Number of shots I drank?’ Imagine the chaos 
you could get into if you had used an acronym for the variable ‘workers attending news kiosk’. Get into a good 
habit and spend a bit of time naming objects in R in a meaningful way. The aforementioned style guides might 
also help you to become more consistent than I am in your approach to naming:

·	 http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
·	 https://github.com/hadley/devtools/wiki/Style

3.5.4.    Organizing your data 1

When inputting a new set of data, you must do so in a logical way. The most logical way 
(and consistent with other packages like SPSS and SAS) that we usually use is known as the 
wide format. In the wide format each row represents data from one entity while each col-
umn represents a variable. There is no discrimination between independent and dependent 
variables: both types should be placed in a separate column. The key point is that each 
row represents one entity’s data (be that entity a human, mouse, tulip, business, or water 
sample). Therefore, any information about that case should be entered across the data 
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editor. For example, imagine you were interested in sex differences in perceptions of pain 
created by hot and cold stimuli. You could place some people’s hands in a bucket of very 
cold water for a minute and ask them to rate how painful they thought the experience was 
on a scale of 1 to 10. You could then ask them to hold a hot potato and again measure their 
perception of pain. Imagine I was a participant. You would have a single row representing 
my data, so there would be a different column for my name, my gender, my pain percep-
tion for cold water and my pain perception for a hot potato: Andy, male, 7, 10.

The column with the information about my gender is a grouping variable (also known as 
a factor): I can belong to either the group of males or the group of females, but not both. 
As such, this variable is a between-group variable (different entities belong to different 
groups). Rather than representing groups with words, R uses numbers and words. This 
involves assigning each group a number, and a label that descibes the group. Therefore, 
between-group variables are represented by a single column in which the group to which 
the person belonged is defined using a number and label (see section 3.5.4.3). For example, 
we might decide that if a person is male then we give them the number 0, and if they’re 
female we give them the number 1. We then have to tell R that every time it sees a 1 in a 
particular column the person is a female, and every time it sees a 0 the person is a male. 
Variables that specify to which of several groups a person belongs can be used to split up 
data files (so in the pain example you could run an analysis on the male and female partici-
pants separately – see section 5.5.3).

Finally, the two measures of pain are a repeated measure (all participants were subjected 
to hot and cold stimuli). Therefore, levels of this variable (see R’s Souls’ Tip 3.8) can be 
entered in separate columns (one for pain perception for a hot stimulus and one for pain 
perception for a cold stimulus).

         R ’s  Souls ’  T ip  3 .8   Entering data 1  

There is a simple rule for how variables are typically arranged in an R dataframe: data from different things go in 
different rows of the dataframe, whereas data from the same things go in different columns of the dataframe. As 
such, each person (or mollusc, goat, organization, or whatever you have measured) is represented in a different 
row. Data within each person (or mollusc, etc.) go in different columns. So, if you’ve prodded your mollusc, or 
human, several times with a pencil and measured how much it twitches as an outcome, then each prod will be 
represented by a column. 

In experimental research this means that any variable measured with the same participants (a repeated mea-
sure) should be represented by several columns (each column representing one level of the repeated-measures 
variable). However, any variable that defines different groups of things (such as when a between-group design 
is used and different participants are assigned to different levels of the independent variable) is defined using 
a single column. This idea will become clearer as you learn about how to carry out specific procedures. (This 
golden rule is not as golden as it seems at first glance – often data need to be arranged in a different format − but 
it’s a good place to start and it’s reasonable easy to rearrange a dataframe – see section 3.9.)

Imagine we were interested in looking at the differences between lecturers and students. 
We took a random sample of five psychology lecturers from the University of Sussex and 
five psychology students and then measured how many friends they had, their weekly 
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alcohol consumption (in units), their yearly income and how neurotic they were (higher 
score is more neurotic). These data are in Table 3.6.

3.5.4.1.    Creating a string variable 1

The first variable in our data set is the name of the lecturer/student. This variable consists 
of names; therefore, it is a string variable. We have seen how to create string variables 
already: we use the c() function and list all values in quotations so that R knows that it is 
string data. As such, we can create a variable called name as follows:

name<-c("Ben", "Martin", "Andy", "Paul", "Graham", "Carina", "Karina", 
"Doug", "Mark", "Zoe")

We do not need to specify the level at which this variable was measured (see section 
1.5.1.2) because R will automatically treat it as nominal because it is a string variable, and 
therefore represents only names of cases and provides no information about the order of 
cases, or the magnitude of one case compared to another. 

3.5.4.2.    Creating a date variable 1

Notice that the second column in our table contains dates (birth dates, to be exact). To 
enter date variables into R we use much the same procedure as with a string variable, except 
that we need to use a particular format, and we need to tell R that the data are dates if we 
want to do any date-related computations. We can convert dates written as text into date 
objects using the as.Date() function. This function takes strings of text, and converts them 
into dates; this is important if you want to do things like subtract dates from one another. 
For example, if you want to work out how old someone was when you tested him or her, 
you could take the date on which they were tested and subtract from it the date they were 
born. If you have not converted these objects from strings to date objects this subtraction 
won’t work (see R’s Souls’ Tip 3.9).

Table 3.6  Some data with which to play

Name Birth Date Job
No. of 

Friends
Alcohol 
(units) Income (p.a.) Neuroticism

Ben 03-Jul-1977 Lecturer   5 10 20,000 10

Martin 24-May-1969 Lecturer   2 15 40,000 17

Andy 21-Jun-1973 Lecturer   0 20 35,000 14

Paul 16-Jul-1970 Lecturer   4   5 22,000 13

Graham 10-Oct-1949 Lecturer   1 30 50,000 21

Carina 05-Nov-1983 Student 10 25   5,000   7

Karina 08-Oct-1987 Student 12 20      100 13

Doug 16-Sep-1989 Student 15 16   3,000   9

Mark 20-May-1973 Student 12 17 10,000 14

Zoë 12-Nov-1984 Student 17 18        10 13
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         R ’s  Souls ’  T ip  3 .9   Dates 1

If you want to do calculations involving dates then you need to tell R to treat a variable as a date object. Let’s look 
at what happens if we don’t. Imagine two variables (husband and wife) that contain the birthdates of four men 
and their respective wives. We might create these variables and enter these birthdates as follows:

husband<-c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24")

wife<-c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23")

If we want to now calculate the age gap between these partners, then we could create a new variable, agegap, 
which is the difference between the two variables (husband − wife):

agegap <- husband-wife

We’d find this rather disappointing message in the console:

Error in husband - wife : non-numeric argument to binary operator

This message is R’s way of saying ‘What the hell are trying to get me to do? These are words; I can’t subtract 
letters from each other.’

However, if we use the as.Date() function when we create the variables then R knows that the strings of text 
are dates:

husband<-as.Date(c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24"))

wife<-as.Date(c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23"))

If we try again to calculate the difference between the two variables:

agegap <- husband-wife

agegap

we get a more sensible output:

Time differences in days

[1] -4162 -1113   331 -5173

This output tells us that in the first couple the wife is 4162 days younger than her husband (about 11 years), for 
the third couple the wife is 331 days older (just under a year).

The as.Date() function is placed around the function that we would normally use to enter 
a series of strings. Normally if we enter strings we use the form:

variable<-c("string 1", "string 2", "string 3", etc.)

For dates, these strings need to be in the form yyyy-mm-dd. In other words, if we want to 
enter the date 21 June 1973, then we would enter it as “1973-06-21”. As such, we could 
create a variable called birth_date containing the dates of birth by executing the following 
command: 

birth_date<-as.Date(c("1977-07-03", "1969-05-24", "1973-06-21", "1970-07-16", 
"1949-10-10", "1983-11-05", "1987-10-08", "1989-09-16", "1973-05-20", 
"1984-11-12"))

Note that we have entered each date as a text string (in quotations) in the appropriate 
format (yyyy-mm-dd). By enclosing these data in the as.Date() function, these strings are 
converted to date objects.
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3.5.4.3.    Creating coding variables/factors 1

A coding variable (also known as a grouping variable or factor) is a variable that uses num-
bers to represent different groups of data. As such, it is a numeric variable, but these num-
bers represent names (i.e., it is a nominal variable). These groups of data could be levels 
of a treatment variable in an experiment, different groups of people (men or women, an 
experimental group or a control group, ethnic groups, etc.), different geographic locations, 
different organizations, etc.

In experiments, coding variables represent independent variables that have been mea-
sured between groups (i.e., different participants were assigned to different groups). If you 
were to run an experiment with one group of participants in an experimental condition 
and a different group of participants in a control group, you might assign the experimental 
group a code of 1 and the control group a code of 0. When you come to put the data into 
R you would create a variable (which you might call group) and type in the value 1 for 
any participants in the experimental group, and 0 for any participant in the control group. 
These codes tell R that all of the cases that have been assigned the value 1 should be treated 
as belonging to the same group, and likewise for the cases assigned the value 0. In situations 
other than experiments, you might simply use codes to distinguish naturally occurring 
groups of people (e.g., you might give students a code of 1 and lecturers a code of 0). These 
codes are completely arbitrary; for the sake of convention people typically use 0, 1, 2, 3, 
etc., but in practice you could have a code of 495 if you were feeling particularly arbitrary.

We have a coding variable in our data: the one describing whether a person was a lec-
turer or student. To create this coding variable, we follow the steps for creating a normal 
variable, but we also have to tell R that the variable is a coding variable/factor and which 
numeric codes have been assigned to which groups.

First, we can enter the data and then worry about turning these data into a coding vari-
able. In our data we have five lecturers (who we will code with 1) and five students (who 
we will code with 2). As such, we need to enter a series of 1s and 2s into our new variable, 
which we’ll call job. The way the data are laid out in Table 3.6 we have the five lecturers 
followed by the five students, so we can enter the data as:

job<-c(1,1,1,1,1,2,2,2,2,2)

In situations like this, in which all cases in the same group are grouped together in the 
data file, we could do the same thing more quickly using the rep() function. This function 
takes the general form of rep(number to repeat, how many repetitions). As such, rep(1, 
5) will repeat the number 1 five times. Therefore, we could generate our job variable as 
follows:

job<-c(rep(1, 5),rep(2, 5))

Whichever method you use the end results is the same:

job

[1] 1 1 1 1 1 2 2 2 2 2

To turn this variable into a factor, we use the factor() function. This function takes the 
general form:

factor(variable, levels = c(x,y, … z), labels = c("label1", "label2", … 
"label3"))

This looks a bit scary, but it’s not too bad really. Let’s break it down: factor(variableName) 
is all you really need to create the factor – in our case factor(job) would do the trick. 
However, we need to tell R which values we have used to denote different groups and 
we do this with levels = c(1,2,3,4, …); as usual we use the c() function to list the values 
we have used. If we have used a regular series such as 1, 2, 3, 4 we can abbreviate this 

03-Field_R-4368-Ch-03.indd   89 28/02/2012   3:24:38 PM



90 D ISCOVER ING STAT IST ICS  US ING R

as c(1:4), where the colon simply means ‘all the values between’; so, c(1:4) is the same 
as c(1,2,3,4) and c(0:6) is the same as c(0,1,2,3,4,5,6). In our case, we used 1 and 2 to 
denote the two groups, so we could specify this as c(1:2) or c(1,2). The final step is to 
assign labels to these levels using labels = c(“label”, …). Again, we use c() to list the labels 
that we wish to assign. You must list these labels in the same order as your numeric levels, 
and you need to make sure you have provided a label for each level. In our case, 1 cor-
responds to lecturers and 2 to students, so we would want to specify labels of “Lecturer” 
and “Student”. As such, we could write levels = c(“Lecturers”, “Students”). If we put all 
of this together we get this command, which we can execute to transform job into a cod-
ing variable:

job<-factor(job, levels = c(1:2), labels = c("Lecturer", "Student"))

Having converted job to a factor, R will treat it as a nominal variable. A final way to gener-
ate factors is to use the gl() function – the ‘gl’ stands for general (factor) levels. This func-
tion takes the general form:

newFactor<-gl(number of levels, cases in each level, total cases, labels = 
c("label1", "label2"…))

which creates a factor variable called newFactor; you specify the number of levels or groups 
of the factor, how many cases are in each level/group, optionally the total number of cases 
(the default is to multiply the number of groups by the number of cases per group), and 
you can also use the labels option to list names for each level/group. We could generate the 
variable job as follows:

job<-gl(2, 5, labels = c("Lecturer", "Student"))

The end result is a fully-fledged coding variable (or factor):

[1] Lecturer Lecturer Lecturer Lecturer Lecturer Student Student Student  
Student Student

With any factor variable you can see the factor levels and their order by using the levels() 
function, in which you enter the name of the factor. So, to see the levels of our variable job 
we could execute:

levels(job)

which will produce this output:

[1] “Lecturer” “Student”

In other words, we know that the variable job has two levels and they are (in this order) 
Lecturer and Student. We can also use this function to set the levels of a variable. For example, 
imagine we wanted these levels to be called Medical Lecturer and Medical Student, we 
could execute:

levels(job)<-c("Medical Lecturer", "Medical Student")

This command will rename the levels associated with the variable job (note, the new names 
are entered as text with speech marks, and are wrapped up in the c() function). You can also 
use this function to reorder the levels of a factor – see R’s Souls’ Tip 3.13.

This example should clarify why in experimental research grouping variables are used 
for variables that have been measured between participants: because by using a coding 
variable it is impossible for a participant to belong to more than one group. This situation 
should occur in a between-group design (i.e., a participant should not be tested in both 
the experimental and the control group). However, in repeated-measures designs (within 
subjects) each participant is tested in every condition and so we would not use this sort of 
coding variable (because each participant does take part in every experimental condition)
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3.5.4.4.    Creating a numeric variable  1

Numeric variables are the easiest ones to create and we have already created several of 
these already in this chapter. Our next four variables are friends, alcohol, income and neu-
rotic. These are all numeric variables and you can use what you have learnt so far to create 
them (I hope!).

SELF-TEST

ü	 Use what you have learnt about creating variables in 
R to create variables called friends, alcohol, income 
and neurotic containing the data in Table 3.6. 

Hopefully you have tried out the exercise, and if so you should have executed the fol-
lowing commands:

friends<-c(5,2,0,4,1,10,12,15,12,17)

alcohol<-c(10,15,20,5,30,25,20,16,17,18)

income<-c(20000,40000,35000,22000,50000,5000,100,3000,10000,10)

neurotic<-c(10,17,14,13,21,7,13,9,14,13)

SELF-TEST

ü	 Having created the variables in Table 3.6, construct a 
dataframe containing them all called lecturerData.

Having created the individual variables we can bind these together in a dataframe. We 
do this by executing this command:

lecturerData<-data.frame(name,birth_date,job,friends,alcohol,income, 
neurotic)

If we look at the contents of this dataframe you should hopefully see the same as Table 3.6:

> lecturerData

     name birth_date      job friends alcohol income    neurotic
1  Ben    1977-07-03 Lecturer       5      10  20000          10
2  Martin 1969-05-24 Lecturer       2      15  40000          17
3  Andy   1973-06-21 Lecturer       0      20  35000          14
4  Paul   1970-07-16 Lecturer       4       5  22000          13
5  Graham 1949-10-10 Lecturer       1      30  50000          21
6  Carina 1983-11-05  Student      10      25   5000           7
7  Karina 1987-10-08  Student      12      20    100          13
8  Doug   1989-09-16  Student      15      16   3000           9
9  Mark   1973-05-20  Student      12      17  10000          14
10 Zoe    1984-11-12  Student      17      18     10          13
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3.5.5.    Missing values 1

Although as researchers we strive to collect complete sets of data, it is often the case that we 
have missing data. Missing data can occur for a variety of reasons: in long questionnaires 
participants accidentally (or, depending on how paranoid you’re feeling, deliberately just to 
annoy you) miss out questions; in experimental procedures mechanical faults can lead to a 
datum not being recorded; and in research on delicate topics (e.g., sexual behaviour) partici-
pants may exert their right not to answer a question. However, just because we have missed 
out on some data for a participant doesn’t mean that we have to ignore the data we do have 
(although it sometimes creates statistical difficulties). Nevertheless, we do need to tell R that 
a value is missing for a particular case. The principle behind missing values is quite similar to 
that of coding variables in that we use a code to represent the missing data point. In R, the 
code we use is NA (in capital letters), which stands for ‘not available’. As such, imagine that 
participants 3 and 10 had not completed their neuroticism questionnaire, then we could 
have recorded their missing data as follows when we created the variable:

neurotic<-c(10,17,NA,13,21,7,13,9,14,NA)

Note that if you have missing values then you sometimes need to tell functions in R to 
ignore them (see R’s Souls’ Tip 3.10).

         R ’s  Souls ’  T ip  3 .10  Missing values and functions 1  

Many functions include a command that tells R how to deal with missing values. For example, many functions 
include the command na.rm = TRUE, which means remove the NA values before doing the computation. For 
example, the function mean() returns the mean of a variable, so that

mean(metallica$childAge)

will give us the mean age of Metallica’s eldest children. However, if we have missing data we can include the 
command na.rm = TRUE to tell R to ignore missing values before computing the mean:

mean(metallica$childAge, na.rm = TRUE)

This function is covered in more detail in Chapter 5. For now, just appreciate that individual functions often have 
commands for dealing with missing values and that we will try to flag these as we go along.

3.6. Entering data with R Commander  1

It is also possible to do some basic data editing (and analysis) using a package called Rcmdr 
(short for R Commander). This package loads a windows style interface for basic data 
manipulation and analysis. This tool is very useful for novices or people who are freaked 
out by typing commands. It is particularly useful for making minor changes to dataframes. 
To install and load Rcmdr, use the menus (see section 3.4.5) or execute these commands:

install.packages("Rcmdr", dependencies = TRUE)

library(Rcmdr)

03-Field_R-4368-Ch-03.indd   92 28/02/2012   3:24:41 PM



93CHAPTER 3   THE R  ENV IRONMENT

It is important that you remember the capital ‘R’ in ‘Rcmdr’ (R’s Souls’ Tip 3.3). Note that 
when we install it we specify dependencies = TRUE. When a package uses other pack-
ages, these are known as dependencies (because the package depends upon them to work). 
Rcmdr is a windows interface for using lots of different functions, therefore, it relies on 
a lot of other packages. If we don’t install all of these packages as well, then much of the 
functionality of Rcmdr will be lost. By setting dependencies = TRUE we install not just 
Rcmdr but also all of the other packages upon which it relies (because it uses a lot, installing 
it can take a few minutes).4

FIGURE 3.8
The main 
window of R 
Commander

When you have executed library(Rcmdr) you will notice that a new window appears 
(Figure 3.8). This window has a lot of new menus that you can access to do various things 
(such as edit data or run basic analyses). These menus offer a windows-based interface for 
running functions within different packages. We think that as you gain experience with R 
you will prefer to use commands, but for some commonly used analyses we will show you 
how to use R Commander to get you started. The menu structure is basically identical on 
Windows and MacOS.

4 If you have installed other packages then it’s possible that Rcmdr has been installed by one of them; nevertheless, 
it is worth installing it yourself and including the setting dependencies = TRUE to ensure that all of the packages 
upon which Rcmdr depends are installed also.

03-Field_R-4368-Ch-03.indd   93 28/02/2012   3:24:41 PM



94 D ISCOVER ING STAT IST ICS  US ING R

3.6.1.  �  Creating variables and entering data with R 
Commander 1

One particularly useful feature of R Commander is that it offers a basic spreadsheet style 
interface for entering data (i.e., like Excel). As such, we can enter data in a way that is prob-
ably already familiar to us. To create a new dataframe select Data⇒New data set…, which 
opens a dialog box that enables you to name the dataframe (Figure 3.9). For the lecturer 
data let’s stick with the name lecturerData; enter this name into the box labelled Enter 
name for data set and then click on . A spreadsheet style window will open. You can 
create variables by clicking at the top of a column, which opens a dialog box into which 
you can enter the name of the variable, and whether the variable is numeric or text/string 
(labelled character in the dialog box). Each row represents a different entity and, having 
named the variables, you can enter the relevant information for each entry – as shown for 
the current data in Figure 3.9. To save the data simply close this window. (You cannot cre-
ate a new data set in this way in MacOS; however, you can edit an existing dataframe by 
selecting Data⇒Load data set….)

FIGURE 3.9
Entering 
data using R 
Commander
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3.6.2.    Creating coding variables with R Commander 1

The variable job represents different groups of people so we need to convert this variable 
to a factor or coding variable. We saw how to do this in section 3.5.4.3 using the factor() 
function. We can do the same in R Commander by selecting the Data⇒Manage variables 
in active data set⇒Convert numeric variables to factors… menu. This activates a dialog 
box with a list of the variables in your data set on the left (Figure 3.10). Select the variable 
that you want to convert (in this case job). If you want to create the coding variable as a 
new variable in your dataframe then type a name for this new variable in the space labelled 
New variable name or prefix for multiple variables: otherwise leave this space blank (as 
I have in the figure) and it will overwrite the existing variable. If you want to type some 
labels for the levels of your coding variable (generally I would recommend that you do) 
then select  and click on . A new dialog box will open with spaces in 
which you can type the labels associated with each level of your coding variables. As you 
can see, in Figure 3.10 I have typed in ‘Lecturer’ and ‘Student’ next to the numbers that 
represent them in the variable job. When you have added these levels click on  and 
job will be converted to a factor.

FIGURE 3.10
Creating a coding 
variable using R 
Commander

3.7.  Using other software to enter and edit data 1

Although you can enter data directly into R, if you have a large complicated data set then 
the chances are that you’ll want to use a different piece of software that has a spreadsheet 
style window into which you can enter data. We will assume in this section that you are 
going to use Microsoft Excel, because it is widely available and, therefore, it’s more likely 
that you have it on your computer than specialist packages such as SPSS and SAS. If you 

03-Field_R-4368-Ch-03.indd   95 28/02/2012   3:24:46 PM



96 D ISCOVER ING STAT IST ICS  US ING R

FIGURE 3.11
Laying out wide 
format data 
in Excel and 
exporting to an 
R-friendly format

want to know how to enter data into SPSS and SAS then please consult my other books 
(Field, 2009; Field & Miles, 2010). If you do not have Excel then OpenOffice is an excel-
lent free alternative for both MacOS and Windows (http://www.openoffice.org/).

‘Secret Party for Statistics Slaves?’ froths Oliver as he drowns 
in a puddle of his own saliva. No, Oliver, it’s a statistics package. 
‘Bleagehammm’ splutters Oliver as his excitement grows into a rabid 
frenzy. If you would like to know how to set up data files in SPSS then 
there is an excerpt from my other book on the companion website.

OLIVER TWISTED

Please, Sir, can I 
have some more … SPSS?

To enter data you will typically use the wide format so you should apply the same rule as 
we have already mentioned in this chapter: each row represents data from one entity while 
each column represents a variable or levels of a variable. In Figure 3.11 I have entered the 
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lecturer data in Excel in this format. Notice that each person is represented by a row in the 
spreadsheet, whereas each variable is represented as a column. Notice also that I have entered 
the values for job as numbers rather than text. In Excel we could have entered ‘Lecturer’ 
and ‘Student’ rather than the values of 1 and 2. R will have imported this variable as a string 
variable in this case, rather than as a numeric variable. Often R will treat these sorts of string 
variables intelligently (i.e., in this case it would realize that this variable is a factor or coding 
variable and treat it accordingly), but it can be useful not to assume that R will do what you 
think it will and explicitly define variables as factors once the data have been imported.

3.7.1.    Importing data 1

Once your data are entered into Excel, OpenOffice, SPSS or whatever, we need a way to 
get the data file into a dataframe in R. The usual way to do this is to export the file from 
Excel/SPSS etc. in a format that R can import; however, the foreign package can be used to 
import directly data files from SPSS (.sav), STATA (.dta), Systat (.sys, .syd), Minitab (.mtp), 
and SAS (XPORT files). It is probably the safest (in terms of knowing that what you’re actu-
ally importing is what you think you’re importing), to export from your software of choice 
into an R-friendly format.

The two most commonly used R-friendly formats are tab-delimited text (.txt in Excel and 
.dat in SPSS) and comma-separated values (.csv). Both are essentially plain text files (see R’s 
Souls’ Tip 3.11). It is very easy to export these types of files from Excel and other software 
packages. Figure 3.11 shows the process. Once the data are entered in the desired format, 
simply use the  menus to open the Save As... dialog box. Select the location in 
which you’d like the file to be saved (a sensible choice is the working directory that you have 
set in R). By default, Excel will try to save the file as an Excel file (.xlsx or .xls); however, we 
can change the format by clicking on the drop-down list labelled Save as type (Format on 
MacOS). The drop-down list contains a variety of file types, but the two that are best for R 
are Text (Tab delimited) and CSV (Comma delimited). Select one of these file types, type a 
name for your file and click on . The end result will be either a .txt file or a .csv file. 
The process for exporting data from SPSS (and other packages) is much the same.

If we have saved the data as a CSV file, then we can import these data to a dataframe 
using the read.csv function. The general form of this function is:

dataframe.name<-read.csv("filename.extension", header = TRUE)

Let’s imagine we had stored our lecturer data in a CSV file called Lecturer Data.csv (you 
can find this file on the companion website). To load these data into a dataframe we could 
execute the following command:

lecturerData = read.csv("C:/Users/Andy F/Documents/Data/R Book Examples/Lecturer 
Data.csv", header = TRUE)

This command will create a dataframe called lecturerData based on the file called ‘Lecturer 
Data.csv’ which is stored in the location ‘C:/Users/Andy F/Documents/Data/R Book 
Examples/’.5 I urged you in section 3.4.4 to set up a working directory that relates to the 
location of your files for the current session. If we executed this command:6

5 For MacOS users the equivalent command would be 

lecturerData = read.csv("~/Documents/Data/R Book Examples/Lecturer Data.csv", 
header = TRUE)
6 On a Mac the equivalent command would be

setwd("~/Documents/Data/R Book Examples")
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Setwd("C:/Users/Andy F/Documents/Data/R Book Examples")

then we could access the file by executing this less cumbersome command:

lecturerData<-read.csv("Lecturer Data.csv", header = TRUE)

The header = TRUE in the command tells R that the data file has variable names in the 
first row of the file (if you have saved the file without variable names then you should use 
header = FALSE). If you’re really struggling with the concept of file paths, which would be 
perfectly understandable, then see R’s Souls’ Tip 3.12.

Let’s look at the data:

> lecturerData

     name birth_date    job friends alcohol income   neurotic
1  Ben     03-Jul-77     1       5      10  20000       10
2  Martin  24-May-69     1       2      15  40000       17
3  Andy    21-Jun-73     1       0      20  35000       14
4  Paul    16-Jul-70     1       4       5  22000       13
5  Graham  10-Oct-49     1       1      30  50000       21
6  Carina  05-Nov-83     2      10      25   5000        7
7  Karina  08-Oct-87     2      12      20    100       13
8  Doug    23-Jan-89     2      15      16   3000        9
9  Mark    20-May-73     2      12      17  10000       14
10 Zoe     12-Nov-84     2      17      18     10       13

Note that the dates have been imported as strings, and the job variable contains num-
bers. So that R knows that this variable is a factor we would have to convert it using the 
factor() function.

         R ’s  Souls ’  T ip  3 .11  CSV and tab-delimited file formats 1

Comma-separated values (CSV) and tab-delimited file formats are really common ways to save data. Most soft-
ware that deals with numbers will recognize these formats, and when exporting and importing data it is wise to 
chose one of them. The beauty of these formats is that they store the data as plain text, without any additional 
nonsense that might confuse a particular piece of software. The formats differ only in which character is used to 
separate different values (CSV uses a comma, tab-delimited uses a tab space). If we think back to our Metallica 
data, this would be stored in a tab-delimited file as:

Name Age childAge fatherhoodAge
Lars  47  12  35
James 47  12  35
Kirk  48  4  44
Rob   46  6  40

Notice that each piece of data is separated by a tab space. In a CSV file, the data would look like this:

Name,Age,childAge,fatherhoodAge
Lars,47,12,35
James,47,12,35
Kirk,48,4,44
Rob,46,6,40

The information is exactly the same as the tab-delimited file, except that a comma instead of a tab separates 
each value. When a piece of software (R, Excel, SPSS, etc.) reads the file like this into a spreadsheet, it knows 
(although sometimes you have to tell it) that when it ‘sees’ a comma or a tab it simply places the next value in a 
different column than the previous one.
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SELF-TEST

ü	 Using what you have learnt about how to use the 
factor() function, see if you can work out how to 
convert the job variable to a factor.

Similarly, if you had saved the file as a tab-delimited text file from Excel (Lecturer Data.
txt) or SPSS (Lecturer Data.dat), you could use the read.delim() function to import these 
files. This function takes the same form as the read.csv() function, except that you spec-
ify a tab-delimited file. Assuming you had set your working directory correctly, we would 
execute:

lecturerData<-read.delim("Lecturer Data.dat", header = TRUE)
lecturerData<-read.delim("Lecturer Data.txt", header = TRUE)

Typically we provide data files for chapters as .dat files, so you will use the read.delim() 
function a lot.

         R ’s  Souls ’  T ip  3 .12  The file.choose() function 1  

Some people really struggle with the idea of specifying file locations in R. This confusion isn’t a reason to be 
ashamed; most of us have spent our lives selecting files through dialog boxes rather than typing horribly long 
strings of text. Although if you set your working directory and manage your files I think the process of locating files 
becomes manageable, if you really can’t get to grips with that way of working the alternative is to use the choose.
file() function. Executing this function opens a standard dialog box allowing you to navigate to the file you want.

You can incorporate this function into read.csv() and read.delim() as follows:

lecturerData<-read.csv(file.choose(), header = TRUE)
lecturerData<-read.delim(file.choose(), header = TRUE)

The effect that this has is that when you execute the command, a dialog box will appear and you can select the 
file that you want to import. 

3.7.2.    Importing SPSS data files directly 1

You can also import directly from SPSS data files (and other popular packages). To give you 
some practice, we have provided the data as a .sav file (Lecturer Data.sav). First we need 
to install and load the package called foreign either using the menus (see section 3.4.5) or 
by executing these commands:

install.packages("foreign")
library(foreign)

The command to read in SPSS data files is read.spss() and it works in a similar way to the 
other import functions that we have already seen; however, there are a couple of extra 
things that we need to think about. First, let’s just execute the command to import our 
SPSS data file:
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lecturerData<-read.spss("Lecturer Data.sav",use.value.labels=TRUE, to.data.
frame=TRUE)

The basic format is the same as before: we have created a dataframe called lecturerData, 
and we have done this from the file named Lecturer Data.sav. There are two additional 
instructions that we have used, the first is use.value.labels = TRUE. This command tells R 
that if a variable is set up as a factor or coding variable in SPSS then it should be imported 
as a factor. If you set this value to FALSE, then it is imported as a numeric variable (in 
this case you would get a variable containing 1s and 2s). The second command is to.data.
frame=TRUE, which self-evidently tells R to import the file as a dataframe. Without this 
command (or if it is set to FALSE), you get lots of horrible junk imported and nobody likes 
junk. Let’s have a look at the dataframe:

> lecturerData

    name     birth_date    job    friends alcohol income neurotic
1  Ben      12456115200 Lecturer       5      10  20000       10
2  Martin   12200198400 Lecturer       2      15  40000       17
3  Andy     12328848000 Lecturer       0      20  35000       14
4  Paul     12236313600 Lecturer       4       5  22000       13
5  Graham   11581056000 Lecturer       1      30  50000       21
6  Carina   12656217600  Student      10      25   5000        7
7  Karina   12780028800  Student      12      20    100       13
8  Doug     12820896000  Student      15      16   3000        9
9  Mark     12326083200  Student      12      17  10000       14
10 Zoe      12688444800  Student      17      18     10       13

Two things to note: first, unlike when we imported the CSV file, job has been imported 
as a factor rather than a numeric variable (this is because we used the use.value.labels = 
TRUE command). Importing this variable as a factor saves us having to convert it in a sepa-
rate command as we did for the CSV command. Second, the dates look weird. In fact, they 
look very weird. They barely even resemble dates. Unfortunately, the explanation for this 
is a little complicated and involves the way in which R stores dates (dates are stored as days 
relative to 1 January 1970 – don’t ask me why). What has happened is that R has actually 
been clever in noticing that birth_date was set up in SPSS as a date variable. Therefore, it 
has converted it into its own time format. To convert it back to a form that we can actually 
understand we need to execute this command:

lecturerData$birth_date<-as.Date(as.POSIXct(lecturerData$birth_date, 
origin="1582-10-14"))

This takes the variable birth_date from the lecturerData dataframe (lecturerData$birth_
date) and re-creates it as a date variable. Hours poking around the Internet to work out 
the underlying workings of this command have led me to the conclusion that I should just 
accept that it works and not question the magic. Anyway, if we execute this command and 
have another look at the dataframe we find that the dates now appear as sensible dates:

> lecturerData

    name    birth_date    job     friends alcohol income neurotic
1  Ben      1977-07-03 Lecturer       5      10  20000       10
2  Martin   1969-05-24 Lecturer       2      15  40000       17
3  Andy     1973-06-21 Lecturer       0      20  35000       14
4  Paul     1970-07-16 Lecturer       4       5  22000       13
5  Graham   1949-10-10 Lecturer       1      30  50000       21
6  Carina   1983-11-05  Student      10      25   5000        7
7  Karina   1987-10-08  Student      12      20    100       13
8  Doug     1989-01-23  Student      15      16   3000        9
9  Mark     1973-05-20  Student      12      17  10000       14
10 Zoe      1984-11-12  Student      17      18     10       13
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3.7.3.    Importing data with R Commander 1

You can access the read.delim(), read.csv() and read.spss() commands through the R 
Commander interface too. Select Data⇒Import data to activate a submenu that enables 
you open a text file, SPSS, Minitab, STATA or Excel file (Figure 3.12). If you select a text 
file then a dialog box is opened into which you can place a name for the dataframe (in the 
box labelled Enter name for data set:), select whether variable names are included in the 
file, and what characters you have used to indicate missing values. By default, it assumes 
you want to open a file on your computer, and that a white space separates data values. For 
CSV and tab-delimited files you need to change this default to Commas or Tabs respec-
tively (you can also specify a non-standard text character). Finally, by default it is assumed 
that a full stop denotes a decimal point, but in some locations a comma is used: if you live 
in one of these locations you should again choose the default. Having set these options, 
click on  to open a standard ‘open file’ dialog box, choose the file you want to open 
and then click on .

Opening an SPSS file is much the same except that there are fewer options (Figure 3.12). 
The dialog box for importing an SPSS file again asks for a name for the dataframe, but then 
asks only whether variables that you have set up as coding variables should be converted 
to factors (see section 3.5.4.3). The default is to say yes (which is the same as specifying 
use.value.labels = TRUE, see section 3.7.2). Again, once you have set these options, click 

FIGURE 3.12
Importing 
data with R 
Commander
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           R’s Souls’ Tip 3.13  Changing the order of groups in a factor variable 1  

Imagine we imported a variable, job, that contained information about which of three jobs a person had in a 
hospital: “Porter”, “Nurse”, “Surgeon”. R will order the levels alphabetically, so the resulting factor levels will be:

1.	 Nurse
2.	 Porter
3.	 Surgeon

However, you might want them to be ordered differently. For example, perhaps you consider a porter to be a 
baseline against which you want to compare nurses and surgeons. It might be useful to have porter as the first 
level rather than the second. 

We can reorder the factor levels by executing:

variableName<-factor(variableName, levels = levels(variableName)[c(2, 1, 3)])

in which variableName is the name of the variable. For our job variable, this command would, therefore, be:

job<-factor(job, levels = levels(job)[c(2, 1, 3)])

This command uses the factor() function to reorder the levels of the job variable. It re-creates the job variable 
based on itself, but then uses the levels() function to reorder the groups. We put the order of the levels that we’d like in 
the c() function, so in this case we have asked for the levels to be ordered 2, 1, 3, which means that the current sec-
ond group (porter) will become the first group, the current first group (nurse) will become the second group and the 
current third group (surgeon) stays as the third group. Having executed this command, our groups will be ordered:

1.	 Porter
2.	 Nurse
3.	 Surgeon 

on  to open a standard dialog box that enables you to navigate to the file you want to 
open, select it, and then click on .

3.7.4.    Things that can go wrong 1

You can come across problems when importing data into R. One common problem is if you 
have used spaces in your variable names. Programs like SPSS don’t allow you to do this, but 
in Excel there are no such restrictions. One way to save yourself a lot of potential misery 
is just never to use variable names with spaces. Notice, for example, that for the variable 
birth_date I used an underscore (or ‘hard space’) to denote the space between the words; 
other people prefer to use a period (i.e., birth.date). Whatever you choose, avoiding spaces 
can prevent many import problems.

Another common problem is if you forget to replace missing values with ‘NA’ in the data 
file (see section 3.5.5). If you get an error when trying to import, double-check that you 
have put ‘NA’ and not left missing values as blank. 

Finally, R imports variables with text in them intelligently: if different rows have the 
same text strings in them, R assumes that the variable is a factor and creates a factor 
variable with levels corresponding to the text strings. It orders these levels alphabetically. 
However, you might want the factor levels in a different order, in which case you need to 
reorder them – see R’s Souls’ Tip 3.13.
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3.8.  Saving data 1

Having spent hours typing in data, you might want to save it. As with importing data, 
you can export data from R in a variety of formats. Again, for the sake of flexibility we 
recommend exporting to tab-delimited text or CSV (see R’s Souls’ Tip 3.11) because these 
formats can be imported easily into a variety of different software packages (Excel, SPSS, 
SAS, STATA, etc.). To save data as a tab-delimited file, we use the write.table() command 
and for a CSV we can use write.csv().

The write.table() command takes the general form:

write.table(dataframe, "Filename.txt", sep="\t", row.names = FALSE)

We replace dataframe with the name of the dataframe that we would like to save and 
“Filename.txt” with the name of the file.7 The command sep=“” sets the character to be 
used to separate data values: whatever you place between the “” will be used to separate 
data values. As such, if we want to create a CSV file we could write sep = “,” (which tells 
R to separate values with a comma), but to create a tab-delimited text file we would write 
sep = “\t” (where we have written \t between quotes, which represents the tab key), and 
we could also create a space-delimited text file by using sep = “ ” (note that there is a space 
between the quotes). Finally, row.names = FALSE just prevents R from exporting a column 
of row numbers (the reason for preventing this is because R does not name this column so 
it throws the variable names out of sync). Earlier on we created a dataframe called metal-
lica. To export this dataframe to a tab-delimited text file called Metallica Data.txt, we 
would execute this command:

write.table(metallica, "Metallica Data.txt", sep="\t", row.names = FALSE)

The write.csv() command takes the general form:

write.csv(dataframe, "Filename.csv")

As you can see, it is much the same as the write.table() function. In fact, it is the write.
table() function but with sep = “,” as the default.8 So, to save the metallica dataframe as a 
CSV file we can execute:

write.csv(metallica, "Metallica Data.csv")

3.9.  Manipulating data 3

3.9.1.    Selecting parts of a dataframe  2

Sometimes (especially with large dataframes) you might want to select only a small portion 
of your data. This could mean choosing particular variables, or selecting particular cases. 
One way to achieve this goal is to create a new dataframe that contains only the variables 
or cases that you want. To select cases, we can execute the general command:

newDataframe <- oldDataframe[rows, columns]

7 Remember that if you have not set a working directory during your session then this filename will need to in-
clude the full location information. For example, “C:/Users/Andy F/Documents/Data/R Book Examples/Filename.
txt” or “~/Documents/Data/R Book Examples/Filename.txt” in MacOS. Hopefully, it is becoming ever clearer 
why setting the working directory is a good thing to do.

8 If you live in certain parts of western Europe, you might want to use write.csv2() instead which outputs the file 
in the format conventional for that part of the world: it uses ‘;’ to separate values, and ‘,’ instead of ‘.’ to represent 
the decimal point.
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This command creates a new dataframe (called newDataframe) that contains the specified 
rows and columns from the old dataframe (called oldDataframe). Let’s return to our lec-
turer data (in the dataframe that we created earlier called lecturerData); imagine that we 
wanted to look only at the variables that reflect some aspect of their personality (for exam-
ple, alcohol intake, number of friends, and neuroticism). We can create a new dataframe 
(lecturerPersonality) that contains only these three variables by executing this command:

lecturerPersonality <- lecturerData[, c("friends", "alcohol", "neurotic")]

Note first that we have not specified rows (there is nothing before the comma); this means 
that all rows will be selected. Note also that we have specified columns as a list of variables 
with each variable placed in quotes (be careful to spell them exactly as they are in the 
original dataframe); because we want several variables, we put them in a list using the c() 
function. If you look at the contents of the new dataframe you’ll see that it now contains 
only the three variables that we specified:

> lecturerPersonality

     friends alcohol    neurotic
1        5      10          10
2        2      15          17
3        0      20          14
4        4       5          13
5        1      30          21
6       10      25           7
7       12      20          13
8       15      16           9
9       12      17          14
10      17      18          13

Similarly, we can select specific cases of data by specifying an instruction for rows in 
the general function. This is done using a logical argument based on one of the operators 
listed in Table 3.5. For example, let’s imagine that we wanted to keep all of the variables, 
but look only at the lecturers’ data. We could do this by creating a new dataframe (lecturer 
Only) by executing this command:

lecturerOnly <- lecturerData[job=="Lecturer",]

Note that we have not specified columns (there is nothing after the comma); this means 
that all variables will be selected. However, we have specified rows using the condition job 
== “Lecturer”. Remember that the ‘==’ means ‘equal to’, so we have basically asked R 
to select any rows for which the variable job is exactly equal to the word ‘Lecturer’ (spelt 
exactly as we have). The new dataframe contains only the lecturers’ data:

> lecturerOnly

    Name        DoB      job   friends alcohol income   neurotic
1 Ben    1977-07-03 Lecturer       5      10  20000          10
2 Martin 1969-05-24 Lecturer       2      15  40000          17
3 Andy   1973-06-21 Lecturer       0      20  35000          14
4 Paul   1970-07-16 Lecturer       4       5  22000          13
5 Graham 1949-10-10 Lecturer       1      30  50000          21

We can be really cunning and specify both rows and columns. Imagine that we wanted 
to select the personality variables but only for people who drink more than 10 units of 
alcohol. We could do this by executing:

alcoholPersonality <- lecturerData[alcohol > 10, c("friends", "alcohol", 
"neurotic")]
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Note that we have specified rows using the condition alcohol > 10, which means ‘select 
any cases for which the value of the variable alcohol is greater than 10. Also, we have speci-
fied columns as in our original example, c(“friends”, “alcohol”, “neurotic”), which means 
we will select only the three listed variables. You’ll see that the new dataframe contains the 
same data as the lecturerPersonality dataframe except that cases 1 and 4 have been dropped 
because their scores on alcohol were not greater than 10:

> alcoholPersonality

      friends alcohol   neurotic
2        2      15          17
3        0      20          14
5        1      30          21
6       10      25           7
7       12      20          13
8       15      16           9
9       12      17          14
10      17      18          13

3.9.2.    Selecting data with the subset() function  2

Another way to select parts of your dataframe is to use the subset() function. This function 
takes the general form:

newDataframe<-subset(oldDataframe, cases to retain, select = c(list of 
variables))

Therefore, you create a new dataframe (newDataframe) from an exisiting dataframe (old-
Dataframe). As in the previous section, you have to specify a condition that determines 
which cases are retained. This is usually some kind of logical argument based on one or 
more of the operators listed in Table 3.5; for example in our lecturerData if we wanted to 
retain cases who drank a lot we could set a condition of alcohol > 10, if we wanted neu-
rotic alcoholics we could set a condition of alcohol > 10 & neurotic > 15. The select com-
mand is optional, but can be used to select specific variables from the original dataframe.

Let’s re-create a couple of the examples from the previous section but using the subset() 
command. By comparing these commands to the ones in the previous section you can get 
an idea of the similarity between the methods. First, if we want to select only the lecturers’ 
data we could do this by executing:

lecturerOnly <- subset(lecturerData, job=="Lecturer")

Second, if we want to select the personality variables but only for people who drink more 
than 10 units of alcohol we could execute this command:

alcoholPersonality <- subset(lecturerData, alcohol > 10, select = c("friends", 
"alcohol", "neurotic"))

Note that we have specified rows using the condition alcohol > 10, which means ‘select 
any cases for which the value of the variable alcohol is greater than 10’. Also, we have 
specified that we want only the variables friends, alcohol, and neurotic by listing them as 
part of the select command. The resulting lecturerPersonality dataframe will be the same as 
the one in the previous section.

As a final point, it is worth noting that some functions have a subset() command within 
them that allows you to select particular cases of data in much the same way as we have 
done here (i.e., using logical arguments).
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SELF-TEST

ü	 Using the lecturerData dataframe, create new 
dataframes containing (1) the name, income and job 
of anyone earning 10,000 or more; (2) the name, job, 
income and number of friends of anyone drinking 
12 units per week or less; and (3) all of the variables 
for those who drink 20 units or more or have a 
neuroticism score greater than 14.

3.9.3.    Dataframes and matrices  2

So far in this chapter we have looked at storing data within dataframes. Dataframes are a 
useful way to store data because they can contain data of different types (i.e., both numeric 
and string variables). Sometimes, however, functions in R do not work on dataframes – 
they are designed instead to work on a matrix. Frankly, this is a nuisance. Luckily for us we 
can convert a dataframe to a matrix using the as.matrix() function. This function takes the 
general form:

newMatrix <- as.matrix(dataframe)

in which newMatrix is the matrix that you create, and dataframe is the dataframe from 
which you create it.

Despite what Hollywood would have you believe, a matrix does not enable you to 
jump acrobatically through the air, Ninja style, as time seemingly slows so that you can 
gracefully contort to avoid high-velocity objects. I have worked with matrices many 
times, and I have never (to my knowledge) stopped time, and would certainly end up in 
a pool of my own innards if I ever tried to dodge a bullet. The sad reality is that a matrix 
is just a grid of numbers. In fact, it’s a lot like a dataframe. The main difference between 
a dataframe and a matrix is that a matrix can contain only numeric variables (it cannot 
contain string variables or dates). As such, we can convert only the numeric bits of a 
dataframe to a matrix. If you try to convert any string variables or dates, your ears will 
become turnips. Probably.

If we want to create a matrix we have to first select only numeric variables. We did this 
in the previous section when we created the alcoholPersonality dataframe. Sticking with 
this dataframe then, we could convert it to a matrix (which I’ve called alcoholPersonality-
Matrix) by executing this command:

alcoholPersonalityMatrix <- as.matrix(alcoholPersonality)

This command creates a matrix called alcoholPersonalityMatrix from the alcoholPersonal-
ity dataframe. Remember from the previous section that alcoholPersonality was originally 
made up of parts of the lecturerData dataframe; it would be equally valid to create the 
matrix directly from this dataframe but selecting the bits that we want in the matrix just as 
we did when creating alcoholPersonality:

alcoholPersonalityMatrix <- as.matrix(lecturerData[alcohol > 10, 
c("friends", "alcohol", "neurotic")])

Notice that the commands in the brackets are identical to those we used to create alcohol-
Personality in the previous section.
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3.9.4.    Reshaping data 3

Once you have typed your data into R, Sod’s law says you’ll discover that it’s in the wrong 
format. Throughout this chapter we have taught you to use the wide format of data entry; 
however, there is another format known as the long or molten format. Figure 3.13 shows 
the difference between wide and long/molten format data. As we have seen, in wide format 
each person’s data is contained in a single row of the data. Scores on different variables are 
placed in different columns. In Figure 3.13, the first participant has a score of 32 on the first 
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FIGURE 3.13
‘Wide’ format 
data places 
each person’s 
scores on 
several variables 
in different 
columns, 
whereas ‘long 
format’ or 
‘molten’ data 
places scores for 
all variables in a 
single column
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FIGURE 3.14
The life 
satisfaction data 
in ‘wide’ format’

variable, a score of 12 in the second variable and a score of 25 on the third. In long/molten 
format, scores on different variables are placed in a single column. It’s as though the columns 
representing the different variables have been ‘stacked’ on top of each other to make a single 
column. Notice in the figure that the same scores are present but they are now in a single 
column. So that we know to what variable a score belongs a new variable has been added 
(called an index variable) that indicates whether the score was from the first, second or third 
variable. If we look at our first participant again, we can see that his three scores of 32, 12 
and 25 are still present, but they are in the same column now; the index variable tells us to 
which variable the score relates. These formats are quite different, but fortunately there are 
functions that convert between the two. This final section looks at these functions.

Let’s look at an example of people who had their life satisfaction measured at four points 
in time (if you want to know more about this example, see section 19.7.2). The data are in 
the file Honeymoon Period.dat. Let’s first create a dataframe called satisfactionData based 
on this file by executing the following command:

satisfactionData = read.delim("Honeymoon Period.dat", header = TRUE)

Figure 3.14 shows the contents of this dataframe. The data have been inputted in wide 
format: each row represents a person. Notice also that four different columns represent 
the repeated-measures variable of time. However, there might be a situation (such as in 
Chapter 19), where we need the variable Time to be represented by a single column (i.e., 
in long format). This format is shown in Figure 3.15. To put the hypothetical example in 
Figure 3.13 into a real context, let’s again compare the two data structures.

In the wide format (Figure 3.14), each person is represented by a single row of data. 
Their life satisfaction is represented at four points in time by four columns. In contrast, 
the long format (Figure 3.15) replaces the four columns representing different time points 
with two new variables:
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MM An outcome variable: This variable contains the scores for each person at each time 
point. In this case it contains all of the values for life satisfaction that were previously 
contained in four columns. It is the column labelled ‘value’ in Figure 3.15.

MM An index variable: A variable that tells you from which column the data originate. It 
is the column labelled ‘variable’ in Figure 3.15. Note that it takes on four values that 
represent baseline, 6 months, 12 months and 18 months. As such, this variable con-
tains information about the time point to which each life satisfaction score belongs. 

Each person’s data, therefore, is now represented by four rows (one for each time point) 
instead of one. Variables such as Gender that are invariant over the time points have the 
same value within each person at each time point; however, our outcome variable (life sat-
isfaction) does vary over the four time points (the four rows for each person).9

9 If you look at your own data then you will probably see something a bit different because your data will be 
ordered by variable. I wanted to show how each person had 4 rows of data so I created a new dataframe (restruc-
turedData.sorted) that sorted the data by Person rather than Time; I did this using: restructuredData.sorted<-re
structuredData[order(Person),].

FIGURE 3.15
The life 
satisfaction data 
in the ‘long’ or 
‘molten’ form9
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FIGURE 3.16
The satisfaction 
data after 
running 
the stack() 
command.

To change between wide and long data formats we can use the melt() and cast() com-
mands from the reshape package, or for simple data sets we can use stack() and unstack(). 
Let’s look at stack() and unstack() first. These functions pretty much do what they say on 
the tin: one of them stacks columns and the other unstacks them. We can use the stack 
function in the following general form:

newDataFrame<-stack(oldDataFrame, select = c(variable list))

In short, we create a new dataframe based on an existing one. The select = c() is optional, 
but is a way to select a subset of variables that you want to stack. So, for the current data, 
we want to stack only the life satisfaction scores (we do not want to stack Gender as well). 
Therefore, we could execute:

satisfactionStacked<-stack(satisfactionData, select = c("Satisfaction_
Base", "Satisfaction_6_Months", "Satisfaction_12_Months", "Satisfaction_ 
18_Months"))

This command will create a dataframe called satisfactionStacked, which is the variables 
Satisfaction_Base, Satisfaction_6_Months, Satisfaction_12_Months, and Satisfaction_18_
Months from the dataframe satisfactionData stacked up on top of each other. You can see 
the result in Figure 3.16 or by executing:

satisfactionStacked

Notice in Figure 3.16 that the scores for life satisfaction are now stored in a single column 
(called values), and an index variable (called ind) has been created that tells us from which 
column the data originate. If we want to undo our handywork, we can use the unstack() 
function in much the same way:

satisfactionUnstacked<-unstack(satisfactionStacked)

Executing this command creates a new dataframe called satisfactionUnstacked that is based 
on unstacking the satisfactionStacked dataframe. In this case, R could make an intelligent 
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guess at how to unstack the data because we’d just used the stack() function to create it; 
however, sometimes you will need to tell R how to do the unstacking. In this case, the com-
mand takes the following general form:

newDataFrame<-unstack(oldDataFrame, scores ~ columns)

in which scores is the name of the variable containing your scores (for 
our current dataframe this is values) and columns is the name of the 
variable that indicates the variable to which the score belongs (ind in 
the current dataframe). Therefore, to make sure it’s going to unstack in 
the way we want it to, we could fully specify the function as:

satisfactionUnstacked<-unstack(satisfactionStacked, values 
~ ind) 

Note that values~ind tells R that within the satisfactionStacked 
dataframe, values contains the scores to be unstacked, and ind indicates 
the columns into which these scores are unstacked.

The stack() and unstack() functions are fine for simple operations, but to gain more con-
trol over the data restructuring we should use the reshape package. To install this package 
execute:

install.packages("reshape") 
library(reshape)

This package contains two functions: melt() for ‘melting’ wide data into the long format, 
and cast() for ‘casting’ so-called molten data (i.e., long format) into a new form (in our cur-
rent context we’ll cast it into a wide format, but you can do other things too).

To restructure the satisfactionData dataframe we create a new dataframe (which I have 
unimaginatively called restructuredData). This dataframe is based on the existing data (sat-
isfactionData), but we use melt() to turn it into ‘molten’ data. This function takes the 
general form:

newDataFrame<-melt(oldDataFrame, id = c(constant variables), measured = 
c(variables that change across columns))

We will have a look at each option in turn:

MM id: This option specifies any variables in the dataframe that do not vary over time. 
For these data we have two variables that don’t vary over time, the first is the person’s 
identifier (Person), and the second is their gender (Gender). We can specify these 
variables as id = c(“Person”, “Gender”).

MM measured: This option specifies the variables that do vary over time or are 
repeated measures (i.e., scores within the same entity). In other words, it speci-
fies the names of variables currently in different columns that you would like to 
be restructured so that they are in different rows. We have four columns that we 
want to restructure (Satisfaction_Base, Satisfaction_6_Months, Satisfaction_12_
Months, Satisfaction_18_Months). These can be specified as: measured= c
(“Satisfaction_Base”, “Satisfaction_6_Months”, “Satisfaction_12_Months”, “Satisfaction_ 
18_Months”).

If we piece all of these options together, we get the following command:

restructuredData<-melt(satisfactionData, id = c("Person", "Gender"), mea-
sured = c("Satisfaction_Base", "Satisfaction_6_Months", "Satisfaction_12_
Months", "Satisfaction_18_Months"))

R has
restructured
my brain …
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If you execute this command, you should find that your data has been restructured to look 
like Figure 3.15.

To get data from a molten state into the wide format we use the cast() function, which 
takes the general form:

newData<-cast(moltenData, variables coded within a single column ~ 
variables coded across many columns, value = "outcome variable")

This can be quite confusing. Essentially you write a formula that specifies on the left any 
variables that do not vary within an entity. These are the variables that we specified in the id 
option when we made the data molten. In other words, they are things that do not change 
(such as name, gender) and that you would enter as a coding variable in the wide format. On 
the right-hand side of the formula you specify any variable that represents something that 
changes within the entities in your data set. These are the variables that we specified in the 
measured option when we made the data molten. So these could be measures of the same vari-
able taken at different time points (such as in a repeated-measures or longitudinal design). In 
other words, this is the variable that you would like to be split across multiple columns in the 
wide format. The final option, value, enables you to specify a variable in the molten data that 
contains the actual scores. In our current example we have only one outcome variable so we 
don’t need to include this option (R will work out which column contains the scores), but it 
is useful to know about if you have more complicated data sets that you want to restructure.

If we look at the data that we have just melted (restructuredData), we have four variables 
(Figure 3.15): 

MM Person: This variable tells us to which person the data belong. Therefore, this variable 
does not change within an entity (it identifies them).

MM Gender: This variable tells us the gender of a person. This variable does not change 
within an entity (for a given person its value does not change).

MM variable: This variable identifies different time points at which life satisfaction was 
measured. As such it does vary within each person (note that each person has four 
different time points within the column labelled ‘variable’).

MM value: This variable contains the life satisfaction scores.

Given that we put variables that don’t vary on the left of the formula and those that do on the 
right, we need to put Gender and Person on the left, and variable on the right; our formula 
will, therefore, be ‘Person + Gender ~ variable’. The variable called value contains the scores 
that we want to restructure, so we can specify this by including the option value = “value” 
(although note that because we have only one outcome variable we actually don’t need this 
option, I’m including it just so you understand what it does). Our final command will be:

wideData<-cast(restructuredData, Person + Gender ~ variable, value = "value")

Executing this command creates a new dataframe (wideData) that should, hopefully, look 
a bit like Figure 3.14.

‘Why don’t you teach us about reshape()?’ taunts Oliver. ‘Is 
it because your brain is the size of a grape?’ No, Oliver, it’s 
because I think cast() and melt() are simpler. ‘Grape brain, grape 
brain, grape brain…’ sings Oliver as I reach for my earplugs. 
It is true that there is a reshape() function that can be used to 
restructure data; there is a tutorial on the companion website.

OLIVER TWISTED

Please, Sir, can I 
have some more … data 
restructuring?
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R packages used in this chapter

foreign Rcmdr

R functions used in this chapter 
as.Date()
as.matrix()
c()
cast()
choose.file()
data.frame()
factor()
getwd()
gl()
help()
install.packages()
levels()
library()
mean()
melt()

names()
print()
read.csv()
read.delim()
read.spss()
recode()
rep()
reshape()
setwd()
stack()
subset()
unstack()
write.csv()
write.table()

What have I discovered about statistics? 1

This chapter has provided a basic introduction to the R environment. We’ve seen that R is 
free software that you can download from the Internet. People with big brains contribute 
packages that enable you to carry out different tasks in R. They upload these packages to 
a mystical entity known as the CRAN, and you download them from there into your com-
puter. Once you have installed and loaded a package you can use the functions within it.

We also saw that R operates through written commands. When conducting tasks in 
R, you write commands and then execute them (either in the console window, or using 
a script file). It was noteworthy that we learned that we cannot simply write “R, can 
you analyse my data for me please” but actually have to use specific functions and com-
mands. Along the way, we discovered that R will do its best to place obstacles in our 
way: it will pedantically fail to recognize functions and variables if they are not written 
exactly as they should be, it will spew out vitriolic error messages if we miss punctuation 
marks, and it will act aloof and uninterested if we specify incorrectly even the smallest 
detail. It believes this behaviour to be character building.

You also created your first data set by specifying some variables and inputting some data. 
In doing so you discovered that we can code groups of people using numbers (coding vari-
ables) and discovered that rows in the data represent different entities (or cases of data) and 
columns represent different variables. Unless of course you use the long format, in which 
case a completely different set of rules apply. That’s OK, though, because we learnt how to 
transform data from wide to long format. The joy that brought to us can barely be estimated.

We also discovered that I was scared of my new school. However, with the help of 
Jonathan Land my confidence grew. With this new confidence I began to feel comfort-
able not just at school but in the world at large. It was time to explore.
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Key terms that I’ve discovered

Console window
CRAN
Dataframe
Date variable
Editor window
Factor
Function
Graphics window
Long format data
Matrix

Numeric variable
Package
Object
Quartz window
script
String variable
Wide format data
Working directory
Workspace

Smart Alex’s tasks

MM Task 1: Smart Alex’s first task for this chapter is to save the data that you’ve entered 
in this chapter. Save it somewhere on the hard drive of your computer (or a USB 
stick if you’re not working on your own computer). Give it a sensible title and save 
it somewhere easy to find (perhaps create a folder called ‘My Data Files’ where you 
can save all of your files when working through this book).

MM Task 2: Your second task is to enter the data below. These data show the score (out 
of 20) for 20 different students, some of whom are male and some female, and some 
of whom were taught using positive reinforcement (being nice) and others who were 
taught using punishment (electric shock). Just to make it hard, the data should not be 
entered in the same way that they are laid out below:

Male Female

Electric Shock Being Nice Electric Shock Being Nice

15 10 6 12

14 9 7 10

20 8 5   7

13 8 4   8

13 7 8 13

MM Task 3: Research has looked at emotional reactions to infidelity and found that men 
get homicidal and suicidal and women feel undesirable and insecure (Shackelford, 
LeBlanc, & Drass, 2000). Let’s imagine we did some similar research: we took some 
men and women and got their partners to tell them they had slept with someone else. 
We then took each person to two shooting galleries and each time gave them a gun 
and 100 bullets. In one gallery was a human-shaped target with a picture of their own 
face on it, and in the other was a target with their partner’s face on it. They were left 
alone with each target for 5 minutes and the number of bullets used was measured. 
The data are below; enter them into R and save them as Infidelity.csv (clue: they are 
not entered in the format in the table!).
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Male Female

Partner’s Face Own Face Partner’s Face Own Face

69 33 70 97

76 26 74 80

70 10 64 88

76 51 43 100

72 34 51 100

65 28 93 58

82 27 48 95

71 9 51 83

71 33 74 97

75 11 73 89

52 14 41 69

34 46 84 82

Answers can be found on the companion website.

Further reading
There are many good introductory R books on the market that go through similar material to this 
chapter. Here a few:

Crawley, M. (2007). The R book. Chichester: Wiley. (A really good and thorough book. You could 
also try his Statistics: An Introduction Using R, published by Wiley in 2005.)

Venables, W. N., & Smith, D. M., and the R Development Core Team (2002). An introduction to R. 
Bristol: Network Theory.

Zuur, A. F., Ieno, E. N., & Meesters, E. H. W. G. (2009) A beginner’s guide to R. Dordrecht: 
Springer-Verlag.

There are also many good web resources:

•	 The main project website: http://www.r-project.org/ 
•	 Quick-R, a particular favourite of mine, is an excellent introductory website: http://www.stat 

methods.net/index.htm
•	 John Fox’s R Commander website: http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
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4
Exploring data with graphs

FIGURE 4.1
Explorer Field 
borrows a bike 
and gets ready to 
ride it recklessly 
around a caravan 
site

4.1.  What will this chapter tell me? 1

As I got a bit older I used to love exploring. At school they would teach you about maps 
and how important it was to know where you were going and what you were doing. I 
used to have a more relaxed view of exploration and there is a little bit of a theme of me 
wandering off to whatever looked most exciting at the time. I got lost at a holiday camp 
once when I was about 3 or 4. I remember nothing about this but apparently my parents 
were frantically running around trying to find me while I was happily entertaining myself 
(probably by throwing myself head first out of a tree or something). My older brother, who 
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was supposed to be watching me, got a bit of flak for that but he was probably working out 
equations to bend time and space at the time. He did that a lot when he was 7. The careless 
explorer in me hasn’t really gone away: in new cities I tend to just wander off and hope for 
the best, and usually get lost and fortunately usually don’t die (although I tested my luck 
once by wandering through part of New Orleans where apparently tourists get mugged a 
lot – it seemed fine to me). When exploring data you can’t afford not to have a map; to 
explore data in the way that the 6-year-old me used to explore the world is to spin around 
8000 times while drunk and then run along the edge of a cliff. Wright (2003) quotes 
Rosenthal who said that researchers should ‘make friends with their data’. This wasn’t 
meant to imply that people who use statistics may as well befriend their data because the 
data are the only friend they’ll have; instead Rosenthal meant that researchers often rush 
their analysis. Wright makes the analogy of a fine wine: you should savour the bouquet and 
delicate flavours to truly enjoy the experience. That’s perhaps overstating the joys of data 
analysis, but rushing your analysis is, I suppose, a bit like gulping down a bottle of wine: 
the outcome is messy and incoherent! To negotiate your way around your data you need a 
map. Maps of data are called graphs, and it is into this tranquil and tropical ocean that we 
now dive (with a compass and ample supply of oxygen, obviously).

4.2.  The art of presenting data 1

4.2.1.    Why do we need graphs 1

Graphs are a really useful way to look at your data before you get to 
the nitty-gritty of actually analysing them. You might wonder why you 
should bother drawing graphs – after all, you are probably drooling 
like a rabid dog to get into the statistics and to discover the answer 
to your really interesting research question. Graphs are just a waste 
of your precious time, right? Data analysis is a bit like Internet dating 
(actually it’s not, but bear with me): you can scan through the vital 
statistics and find a perfect match (good IQ, tall, physically fit, likes 
arty French films, etc.) and you’ll think you have found the perfect 
answer to your question. However, if you haven’t looked at a picture, 
then you don’t really know how to interpret this information – your 
perfect match might turn out to be Rimibald the Poisonous, King of the 
Colorado River Toads, who has genetically combined himself with a 
human to further his plan to start up a lucrative rodent farm (they like 
to eat small rodents).1 Data analysis is much the same: inspect your data with a picture, see 
how it looks and only then think about interpreting the more vital statistics.

4.2.2.    What makes a good graph? 1

Before we get down to the nitty-gritty of how to draw graphs in R, I want to begin by 
talking about some general issues when presenting data. R (and other packages) make 
it very easy to produce very snazzy-looking graphs, and you may find yourself losing 

1 On the plus side, he would have a long sticky tongue and if you smoke his venom (which, incidentally, can kill 
a dog) you’ll hallucinate (if you’re lucky, you’d hallucinate that he wasn’t a Colorado river toad–human hybrid).

Why should I
bother with graphs?
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consciousness at the excitement of colouring your graph bright pink (really, it’s amaz-
ing how excited my undergraduate psychology students get at the prospect of bright pink 
graphs – personally I’m not a fan of pink). Much as pink graphs might send a twinge of 
delight down your spine, I want to urge you to remember why you’re doing the graph – 
it’s not to make yourself (or others) purr with delight at the pinkness of your graph, it’s to 
present information (dull, perhaps, but true).

Tufte (2001) wrote an excellent book about how data should be presented. He points out 
that graphs should, among other things:

MM Show the data.
MM Induce the reader to think about the data being presented (rather than some other 

aspect of the graph, like how pink it is).
MM Avoid distorting the data.
MM Present many numbers with minimum ink.
MM Make large data sets (assuming you have one) coherent.
MM Encourage the reader to compare different pieces of data.
MM Reveal data.

However, graphs often don’t do these things (see Wainer, 1984, for some examples). 
Let’s look at an example of a bad graph. When searching around for the worst example 

of a graph that I have ever seen, it turned out that I didn’t need to look any further than 
myself – it’s in the first edition of the SPSS version of this book (Field, 2000). Overexcited 
by SPSS’s ability to put all sorts of useless crap on graphs (like 3-D effects, fill effects and 
so on – Tufte calls these chartjunk), I literally went into some weird orgasmic state and 
produced an absolute abomination (I’m surprised Tufte didn’t kill himself just so he could 
turn in his grave at the sight of it). The only consolation was that because the book was 
published in black and white, it’s not pink! The graph is reproduced in Figure 4.2 (you 

FIGURE 4.2
A cringingly bad 
example of a 
graph from the 
first edition of the 
SPSS version of 
this book
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should compare this to the more sober version in this edition, Figure 16.4). What’s wrong 
with this graph?

	The bars have a 3-D effect: Never use 3-D plots for a graph plotting two variables: it 
obscures the data.2 In particular it makes it hard to see the values of the bars because 
of the 3-D effect. This graph is a great example because the 3-D effect makes the 
error bars almost impossible to read.

	Patterns: The bars also have patterns, which, although very pretty, merely distract the 
eye from what matters (namely the data). These are completely unnecessary.

	Cylindrical bars: What’s that all about, eh? Again, they muddy the data and distract 
the eye from what is important.

	Badly labelled y-axis: ‘number’ of what? Delusions? Fish? Cabbage-eating sea lizards 
from the eighth dimension? Idiots who don’t know how to draw graphs?

Now take a look at the alternative version of this graph (Figure 4.3). Can you see what 
improvements have been made?

ü	A 2-D plot: The completely unnecessary third dimension is gone, making it much 
easier to compare the values across therapies and thoughts/behaviours.

ü	The y-axis has a more informative label: We now know that it was the number of 
obsessive thoughts or actions per day that was being measured.

ü	Distractions: There are fewer distractions like patterns, cylindrical bars and the like!

ü	Minimum ink: I’ve got rid of superfluous ink by getting rid of the axis lines and by 
using lines on the bars rather than grid lines to indicate values on the y-axis. Tufte 
would be pleased.3

2 If you do 3-D plots when you’re plotting only two variables then a bearded statistician will come to your house, 
lock you in a room and make you write Ι µυστ νοτ δο 3−∆ γραπησ 75,172 times on the blackboard. Really, they will.

3 Although he probably over-prescribes this advice: grid lines are more often than not very useful for interpreting 
the data.
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properly
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Figure 4.4 shows two graphs that, believe it or not, display exactly the same data: the 
number of nightmares had after eating cheese. The left-hand panel shows how the graph 
should probably be scaled. The y-axis reflects the maximum of the scale, and this cre-
ates the correct impression: that people have more nightmares about colleagues hanging 
from meat-hooks if they eat cheese before bed. However, as minister for cheese, you want 
people to think the opposite; all you have to do is rescale the graph (by extending the 
y-axis way beyond the average number of nightmares) and there suddenly seems to be little 
difference. Tempting as it is, don’t do this (unless, of course, you plan to be a politician at 
some point in your life).
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Two graphs 
about cheese

             CRAMMING SAM’S TIPS    Graphs 1

	 The vertical axis of a graph is known as the y-axis of the graph.
	 The horizontal axis of a graph is known as the x-axis of the graph.

If you want to draw a good graph follow the cult of Tufte:

	 Don’t create false impressions of what the data actually show (likewise, don’t hide effects!) by scaling the y-axis in some 
weird way.

	 Abolish chartjunk: Don’t use patterns, 3-D effects, shadows, pictures of spleens, photos of your Uncle Fred or anything else.
	 Avoid excess ink: don’t include features unless they are necessary to interpret or understand the data.

4.2.3.    Lies, damned lies, and … erm … graphs 1

Governments lie with statistics, but scientists shouldn’t. How you present your data makes 
a huge difference to the message conveyed to the audience. As a big fan of cheese, I’m often 
curious about whether the urban myth that it gives you nightmares is true. Shee (1964) 
reported the case of a man who had nightmares about his workmates: ‘He dreamt of one, 
terribly mutilated, hanging from a meat-hook.4 Another he dreamt of falling into a bottom-
less abyss. When cheese was withdrawn from his diet the nightmares ceased.’ This would 
not be good news if you were the minister for cheese in your country.

4 I have similar dreams, but that has more to do with some of my workmates than cheese!
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4.3.  Packages used in this chapter 1

The basic version of R comes with a plot() function, which can create a wide variety of 
graphs (type ?plot in the command line for details) and the lattice() package is also helpful. 
However, throughout this chapter I use Hadley Wickham’s ggplot2 package (Wickham, 
2009). I have chosen to focus on this package because I like it. I wouldn’t take it out for 
a romantic meal, but I do get genuinely quite excited by some of the stuff it can do. Just 
to be very clear about this, it’s a very different kind of excitement than that evoked by a 
romantic meal with my wife.

The ggplot2 package excites me because it is a wonderfully versatile tool. It takes a bit of 
time to master it (I still haven’t really got to grips with the finer points of it), but once you 
have, it gives you an extremely flexible framework for displaying and annotating data. The 
second great thing about ggplot2 is it is based on Tufte’s recommendations about displaying 
data and Wilkinson’s grammar of graphics (Wilkinson, 2005). Therefore, with basically no 
editing we can create Tufte-pleasing graphs. You can install ggplot2 by executing the fol-
lowing command:

install.packages("ggplot2")

You then need to activate it by executing the command:

library(ggplot2)

4.4.  Introducing ggplot2 1

There are two ways to plot graphs with ggplot2: (1) do a quick plot using the qplot() func-
tion; and (2) build a plot layer by layer using the ggplot() function. Undoubtedly the qplot() 
function will get you started quicker; however, the ggplot() function offers greater versatil-
ity so that is the function that I will use throughout the chapter. I like a challenge.

There are several concepts to grasp that help you to understand how ggplot2 builds 
graphs. Personally, I find some of the terminology a bit confusing so I apologize if occasion-
ally I use different terms than those you might find in the ggplot2 documentation.

4.4.1.    The anatomy of a plot 1

A graph is made up of a series of layers. You can think of a layer as a plastic transparency 
with something printed on it. That ‘something’ could be text, data points, lines, bars, pic-
tures of chickens, or pretty much whatever you like. To make a final image, these transpar-
encies are placed on top of each other. Figure 4.5 illustrates this process: imagine you begin 
with a transparent sheet that has the axes of the graph drawn on it. On a second transpar-
ent sheet you have bars representing different mean scores. On a third transparency you 
have drawn error bars associated with each of the means. To make the final graph, you put 
these three layers together: you start with the axes, lay the bars on top of that, and finally 
lay the error bars on top of that. The end result is an error bar graph. You can extend the 
idea of layers beyond the figure: you could imagine having a layer that contains labels for 
the axes, or a title, and again, you simply lay these on top of the existing image to add more 
features to the graph. 

As can be seen in Figure 4.5, each layer contains visual objects such as bars, data points, 
text and so on. Visual elements are known as geoms (short for ‘geometric objects’) in 
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ggplot2. Therefore, when we define a layer, we have to tell R what geom we want displayed 
on that layer (do we want a bar, line dot, etc.?). These geoms also have aesthetic properties 
that determine what they look like and where they are plotted (do we want red bars or 
green ones? do we want our data point to be a triangle or a square? etc.). These aesthetics 
(aes() for short) control the appearance of graph elements (for example, their colour, size, 
style and location). Aesthetics can be defined in general for the whole plot, or individually 
for a specific layer. We’ll come back to this point in due course.

Plot

La
ye

rs

FIGURE 4.5
In ggplot2 a plot 
is made up of 
layers

To recap, the finished plot is made up of layers, each layer contains some geometric 
element (such as bars, points, lines, text) known as a geom, and the appearance and loca-
tion of these geoms (e.g., size, colour, shape used) is controlled by the aesthetic properties 
(aes()). These aesthetics can be set for all layers of the plot (i.e., defined in the plot as a 
whole) or can be set individually for each geom in a plot (Figure 4.6). We will learn more 
about geoms and aesthetics in the following sections.
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4.3.2.    Geometric objects (geoms) 1

There are a variety of geom functions that determine what kind of geometric object is 
printed on a layer. Here is a list of a few of the more common ones that you might use (for 
a full list see the ggplot2 website http://had.co.nz/ggplot2/):

MM geom_bar(): creates a layer with bars representing different statistical properties.

MM geom_point(): creates a layer showing the data points (as you would see on a 
scatterplot).

MM geom_line(): creates a layer that connects data points with a straight line.

MM geom_smooth(): creates a layer that contains a ‘smoother’ (i.e., a line that summarizes 
the data as a whole rather than connecting individual data points).

MM geom_histogram(): creates a layer with a histogram on it. 

MM geom_boxplot(): creates a layer with a box–whisker diagram.

MM geom_text(): creates a layer with text on it.

MM geom_density(): creates a layer with a density plot on it.

MM geom_errorbar(): creates a layer with error bars displayed on it.

MM geom_hline() and geom_vline(): create a layer with a user-defined horizontal or verti-
cal line, respectively.

Notice that each geom is followed by ‘()’, which means that it can accept aesthetics that 
specify how the layer looks. Some of these aesthetics are required and others are optional. 
For example, if you want to use the text geom then you have to specify the text that you 
want to print and the position at which you want to print it (using x and y coordinates), 
but you do not have to specify its colour.

In terms of required aesthetics, the bare minimum is that each geom needs you to specify 
the variable or variables that the geom represents. It should be self-evident that ggplot2 
can’t create the geom without knowing what it is you want to plot! Optional aesthetics 
take on default values but you can override these defaults by specifying a value. These are 
attributes of the geom such as the colour of the geom, the colour to fill the geom, the type 

Geoms
(Bars, lines, text, points)

Plot
(The finished product)

Layers
Aesthetics

(Colour, shape, size,
location)

FIGURE 4.6
The anatomy of a 
graph

04-Field_R-4368-Ch-04.indd   123 28/02/2012   8:06:11 PM



124 D ISCOVER ING STAT IST ICS  US ING R

Table 4.1  Aesthetic properties associated with some commonly used geoms

Required Optional
geom_bar() x: the variable to plot on the x-axis colour

size
fill
linetype
weight
alpha

geom_point() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

shape
colour
size
fill
alpha

geom_line() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

colour
size
linetype
alpha

geom_smooth() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

colour
size
fill
linetype
weight
alpha

geom_histogram() x: the variable to plot on the x-axis colour
size
fill
linetype
weight
alpha

geom_boxplot() x: the variable to plot
ymin: lower limit of ‘whisker’
ymax: upper limit of ‘whisker’
lower: lower limit of the ‘box’
upper: upper limit of the ‘box’
middle: the median

colour
size
fill
weight
alpha

geom_text() x: the horizontal coordinate of where the text 
should be placed
y: the vertical coordinate of where the text should 
be placed
label: the text to be printed
all of these can be single values or variables 
containing coordinates and labels for multiple 
items

colour
size
angle
hjust (horizontal 
adjustment)
vjust (vertical 
adjustment)
alpha

geom_density() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

colour
size
fill
linetype
weight
alpha
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Table 4.1  (Continued)

Required Optional

geom_errorbar() x: the variable to plot
ymin, ymax: lower and upper value of error bar

colour
size
linetype
width
alpha

geom_hline(), 
geom_vline()

yintercept = value
xintercept = value
(where value is the position on the x- or y-axis 
where you want the vertical/horizontal line)

colour
size
linetype
alpha

of line to use (solid, dashed, etc.), the shape of the data point (triangle, square, etc.), the 
size of the geom, and the transparency of the geom (known as alpha). Table 4.1 lists some 
common geoms and their required and optional aesthetic properties. Note that many of 
these aesthetics are common across geoms: for example, alpha, colour, linetype and fill can 
be specified for most of geoms listed in the table.

4.4.3.    Aesthetics 1

We have already seen that aesthetics control the appearance of elements within a geom or 
layer. As already mentioned, you can specify aesthetics for the plot as a whole (such as the 
variables to be plotted, the colour, shape, etc.) and these instructions will filter down to 
any geoms in the plot. However, you can also specify aesthetics for individual geoms/layers 
and these instructions will override those of the plot as a whole. It is efficient, therefore, to 
specify things like the data to be plotted when you create the plot (because most of the time 
you won’t want to plot different data for different geoms) but to specify idiosyncratic fea-
tures of the geom’s appearance within the geom itself. Hopefully, this process will become 
clear in the next section.

For now, we will simply look at how to specify aesthetics in a general sense. Figure 4.7 
shows the ways in which aesthetics are specified. First, aesthetics can be set to a specific value 
(e.g., a colour such as red) or can be set to vary as a function of a variable (e.g., displaying 
data for different experimental groups in different colours). If you want to set an aesthetic to 
a specific value then you don’t specify it within the aes() function, but if you want an aesthetic 

Aesthetic

Data
Colour
Size

Shape
etc.

Specific

e.g.,
“Red”

2

Variable

e.g.,
gender,

experimental
group

Don’t use aes()

e.g.,
colour = “Red”

linetype = 2

Use aes()

e.g.,
aes(colour = gender),
aes(shape = group)

Layer/Geom

Plot

FIGURE 4.7
Specifying 
aesthetics in 
ggplot2
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Table 4.2  Specifying optional aesthetics

Aesthetic Option Outcome

Linetype linetype = 1 Solid line (default)

linetype = 2 Hashed

linetype = 3 Dotted

linetype = 4 Dot and hash

linetype = 5 Long hash

linetype = 6 Dot and long hash

Size size = value Replace ‘value’ with a value in mm (default size = 0.5). 
Larger values than 0.5 give you fatter lines/larger text/bigger 
points than the default whereas smaller values will produce 
thinner lines/smaller text and points than the default.

e.g., size = 0.25 Produces lines/points/text of 0.25mm

Shape shape = integer, 
shape = “x”

The integer is a value between 0 and 25, each of which 
specifies a particular shape. Some common examples are 
below. Alternatively, specify a single character in quotes to 
use that character (shape = “A” will plot each point as the 
letter A).

shape = 0 Hollow square (15 is a filled square)

shape = 1 Hollow circle (16 is a filled circle)

shape = 2 Hollow triangle (17 is a filled triangle)

shape = 3 ‘+’

shape = 5 Hollow rhombus (18 for filled)

shape = 6 Hollow inverted triangle

Colour colour = “Name” Simply type the name of a standard colour. For example, 
colour = “Red” will make the geom red.

colour = 
“#RRGGBB”

Specify exact colours using the RRGGBB system. For 
example, colour = “#3366FF” produces a shade of blue, 
whereas colour = “#336633” produces a dark green.

Alpha alpha(colour, value) Colours can be made transparent by specifying alpha, which 
can range from 0 (fully transparent) to 1 (fully opaque). For 
example, alpha(“Red”, 0.5) will produce a half transparent 
red.

to vary then you need to place the instruction within aes(). Finally, you can set both specific 
and variable aesthetics at the layer or geom level of the plot, but you cannot set specific values 
at the plot level. In other words, if we want to set a specific value of an aesthetic we must do 
it within the geom() that we’re using to create the particular layer of the plot.

Table 4.2 lists the main aesthetics and how to specify each one. There are, of course, 
others, and I can’t cover the entire array of different aesthetics, but I hope to give you an 
idea of how to change some of the more common attributes that people typically want to 
change. For a comprehensive guide read Hadley Wickham’s book (Wickham, 2009). It 
should be clear from Table 4.2 that most aesthetics are specified simply by writing the name 
of the aesthetic, followed by an equals sign, and then something that sets the value: this can 
be a variable (e.g., colour = gender, which would produce different coloured aesthetics for 
males and females) or a specific value (e.g., colour = “Red”).
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4.4.4.    The anatomy of the ggplot() function 1

The command structure in ggplot2 follows the anatomy of the plot described above in a 
very literal way. You begin by creating an object that specifies the plot. You can, at this stage 
set any aesthetic properties that you want to apply to all layers (and geoms) within the plot. 
Therefore, it is customary to define the variables that you want to plot at this top level. A 
general version of the command might look like this:

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis))

In this example, we have created a new graph object called myGraph, we have told ggplot 
to use the dataframe called myData, and we put the names of the variables to be plotted on 
the x (horizontal) and y (vertical) axis within the aes() function. Not to labour the point, 
but we could also set other aesthetic values at this top level. As a simple example, if we 
wanted our layers/geoms to display data from males and females in different colours then 
we could specify (assuming the variable gender defines whether a datum came from a man 
or a woman):

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis, 
colour = gender))

In doing so any subsequent geom that we define will take on the aesthetic of producing 
different colours for males and females, assuming that this is a valid aesthetic for the par-
ticular geom (if not, the colour specification is ignored) and that we don’t override it by 
defining a different colour aesthetic within the geom itself.

At this level you can also define options using the opts() function. The most common 
option to set at this level is a title:

+ opts(title = "Title")

Whatever text you put in the quotations will appear as your title exactly as you have typed 
it, so punctuate and capitalize appropriately. 

So far we have created only the graph object: there are no graphical elements, and if you 
try to display myGraph you’ll get an error. We need to add layers to the graph containing 
geoms or other elements such as labels. To add a layer we literally use the ‘add’ symbol (+). 
So, let’s assume we want to add bars to the plot, we can execute this command:

myGraph + geom_bar()

This command takes the object myGraph that we have already created, and adds a layer 
containing bars to it. Now that there are graphical elements, ggplot2 will print the graph to 
a window on your screen. If we want to also add points representing the data to this graph 
then we add ‘+ geom_point()’ to the command and rerun it: 

myGraph + geom_bar() + geom_point()

As you can see, every time you use a ‘+’ you add a layer to the graph, so the above example 
now has two layers: bars and points. You can add any or all of the geoms that we have 
already described to build up your graph layer by layer. Whenever we specify a geom we 
can define an aesthetic for it that overrides any aesthetic setting for the plot as a whole. So, 
let’s say we have defined a new graph as:

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis, 
colour = gender))

but we want to add points that are blue (and do not vary by gender), then we can do 
this as:

myGraph + geom_point(colour = "Blue")
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Note that because we’ve set a specific value we have not used the aes() function to set the 
colour. If we wanted our points to be blue triangles then we could simply add the shape 
command into the geom specification too:

myGraph + geom_point(shape = 17, colour =" "Blue")

We can also add a layer containing things other than geoms. For example, axis labels can 
be added by using the labels() function:

myGraph + geom_bar() + geom_point() + labels(x = "Text", y = "Text")

in which you replace the word “Text” (again keep the quotations) with the label that you 
want. You can also apply themes, faceting and options in a similar manner (see sections 
4.4.6 and 4.10).

4.4.5.    Stats and geoms  3

We have already encountered various geoms that map onto common plots used in research: 
geom_histogram, geom_boxplot, geom_smooth, geom_bar etc. (see Table 4.1). At face value 
it seems as though these geoms require you to generate the data necessary to plot them. For 
example, the boxplot geom requires that you tell it the minimum and maximum values of 
the box and the whiskers as well as the median. Similarly, the errorbar geom requires you 
to feed in the minimum and maximum values of the bars. Entering the values that the geom 
needs is certainly an option, but more often than not you’ll want to just create plots directly 
from the raw data without having to faff about computing summary statistics. Luckily, 
ggplot2 has some built-in functions called ‘stats’ that can be either used by a geom to get 
the necessary values to plot, or used directly to create visual elements on a layer of a plot.

Table 4.3 shows a selection of stats that geoms use to generate plots. I have focused only 
on the stats that will actually be used in this book, but there are others (for a full list see 
http://had.co.nz/ggplot2/). Mostly, these stats work behind the scenes: a geom uses them 
without you knowing about it. However, it’s worth knowing about them because they 
enable you to adjust the properties of a plot. For example, imagine we want to plot a his-
togram, we can set up our plot object (myHistogram) as:

myHistogram <- ggplot(myData, aes(variable))

which has been defined as plotting the variable called variable from the dataframe myData. 
As we saw in the previous section, if we want a histogram, then we simply add a layer to 
the plot using the histogram geom:

myHistogram + geom_histogram()

That’s it: a histogram will magically appear. However, behind the scenes the histogram 
geom is using the bin stat to generate the necessary data (i.e., to bin the data). We could get 
exactly the same histogram by writing:

myHistogram + geom_histogram(aes(y = ..count..))

The aes(y = ..count..) is simply telling geom_histogram to set the y-axis to be the count 
output variable from the bin stat, which geom_histogram will do by default. As we can see 
from Table 4.3, there are other variables we could use though. Let’s say we wanted our 
histogram to show the density rather than the count. Then we can’t rely on the defaults 
and we would have to specify that geom_histogram plots the density output variable from 
the bin stat on the y-axis:

myHistogram + geom_histogram(aes(y = ..density..))
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Table 4.3  Some of the built-in ‘stats’ in ggplot2

Stat Function Output Variables Useful Parameters
Associated 
Geom

bin Bins data count: number of 
points in bin
density: density of 
points in bin, scaled to 
integrate to 1
ncount: count, scaled 
to maximum of 1
ndensity: density, 
scaled to maximum of 1

binwidth: bin width
breaks: override bin width 
with specific breaks to use
width: width of bars

histogram

boxplot Computes 
the data 
necessary to 
plot a boxplot

width: width of boxplot
ymin: lower whisker
lower: lower hinge, 
25% quantile
middle: median
upper: upper hinge, 
75% quantile
ymax: upper whisker

boxplot

density Density 
estimation

density: density 
estimate
count: density × 
number of points 
scaled: density 
estimate, scaled to 
maximum of 1

density

qq Compute 
data for Q-Q 
plots

sample: sample 
quantiles
theoretical: theoretical 
quantiles

quantiles point

smooth Create a 
smoother 
plot

y: predicted value
ymin: lower pointwise 
CI around the mean
ymax: upper pointwise 
CI around the mean
se: standard error

method: e.g., lm, glm, 
gam, loess
formula: formula for 
smoothing
se: display CI (true by 
default)
level: level of CI to use 
(0.95 by default)

smooth

summary Summarize 
data

fun.y: determines the 
function to plot on the 
y-axis (e.g., fun.y = mean)

bar, errorbar, 
pointrange, 
linerange

Similarly, by default, geom_histogram uses a bin width of the range of scores divided by 30. 
We can use the parameters of the bin stat to override this default:

myHistogram + geom_histogram(aes(y = ..count..), binwidth = 0.4)

As such, it is helpful to have in mind the relationship between geoms and stats when plot-
ting graphs. As we go through the chapter you will see how stats can be used to control what 
is produced by a geom, but also how stats can be used directly to make a layer of a plot.
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4.4.6.    Avoiding overplotting 2

Plots can become cluttered or unclear because (1) there is too much data to present in a 
single plot, and (2) data on a plot overlap. There are several positioning tools in ggplot2 
that help us to overcome these problems. The first is a position adjustment, defined very 
simply as:

position = "x"

in which x is one of five words:

MM dodge: positions objects so that there is no overlap at the side.

MM stack and fill: positions objects so that they are stacked. The stack instruction stacks 
objects in front of each other such that the largest object is at the back and smallest 
at the front. The fill instruction stacks objects on top of one other (to make up stacks 
of equal height that are partitioned by the stacking variable). 

MM identity: no position adjustment.

MM jitter: adds a random offset to objects so that they don’t overlap.

Another useful tool for avoiding overplotting is faceting, which basically means splitting 
a plot into subgroups. There are two ways to do this. The first is to produce a grid that splits 
the data displayed by the plot by combinations of other variables. This is achieved using 
facet_grid(). The second way is to split the data displayed by the plot by a single variable 
either as a long ribbon of individual graphs, or to wrap the ribbon onto the next line after 
a certain number of plots such that a grid is formed. This is achieved using facet_wrap().

Figure 4.8 shows the differences between facet_grid() and facet_wrap() using a con-
crete example. Social networking sites such as Facebook offer an unusual opportunity to 
carefully manage your self-presentation to others (i.e., do you want to appear to be cool 
when in fact you write statistics books, appear attractive when you have huge pustules all 
over your face, fashionable when you wear 1980s heavy metal band t-shirts and so on). 

Male

Male
Introverts

Introvert

Male
Extroverts

Female
Introverts

Cool Glam Attractive Fashion

Cool Glam

Attractive

facet_wrap()facet_grid()

Fashion

Female
Extroverts

Extrovert

Female

FIGURE 4.8
The difference 
between 
facet_grid() and 
facet_wrap()
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A study was done that examined the relationship between narcissism and other people’s 
ratings of your profile picture on Facebook (Ong et al., 2011). The pictures were rated 
on each of four dimensions: coolness, glamour, fashionableness and attractiveness. In 
addition, each person was measuresd on introversion/extroversion and also their gen-
der recorded. Let’s say we wanted to plot the relationship between narcissism and the 
profile picture ratings. We would have a lot of data because we have different types of 
rating, males and females and introverts and extroverts. We could use facet_grid() to 
produce plots of narcissism vs. photo rating for each combination of gender and extro-
version. We’d end up with a grid of four plots (Figure 4.8). Alternatively, we could use 
facet_wrap() to split the plots by the type of rating (cool, glamorous, fashionable, attrac-
tive). Depending on how we set up the command, this would give us a ribbon of four 
plots (one for each type of rating) or we could wrap the plots to create a grid formation 
(Figure 4.8).

To use faceting in a plot, we add one of the following commands:

+ facet_wrap( ~ y, nrow = integer, ncol = integer)

+ facet_grid(x ~ y)

In these commands, x and y are the variables by which you want to facet, and for facet_
wrap nrow and ncol are optional instructions to control how the graphs are wrapped: they 
enable you to specify (as an integer) the number of rows or columns that you would like. 
For example, if we wanted to facet by the variables gender and extroversion, we would add 
this command:

facet_grid(gender ~ extroversion)

If we wanted to draw different graphs for the four kinds of rating (Rating_Type), we could 
add:

+ facet_wrap( ~ Rating_Type)

This would give us an arrangement of graphs of one row and four columns (Figure 4.8); 
if we wanted to arrange these in a 2 by 2 grid (Figure 4.8) then we simply specify that we 
want two columns:

+ facet_wrap( ~ Rating_Type, ncol = 2)

or, indeed, two rows:

+ facet_wrap( ~ Rating_Type, nrow = 2)

4.4.7.    Saving graphs 1

Having created the graph of your dreams, you’ll probably want to save it somewhere. 
There are lots of options here. The simplest (but least useful in my view) is to use the File 
menu to save the plot as a pdf file. Figure 4.9 shows the stages in creating and saving a 
graph. Like anything in R, you first write a set of instructions to generate the graph. You 
select and execute these instructions. Having done this your graph appears in a new win-
dow. Click inside this window to make it active, then go to the File⇒Save As menu to open 
a standard dialog box to save the file in a location of your choice.

Personally, I prefer to use the ggsave() function, which is a versatile exporting function 
that can export as PostScript (.eps/.ps), tex (pictex), pdf, jpeg, tiff, png, bmp, svg and wmf 
(in Windows only). In its basic form, the structure of the function is very simple:

ggsave(filename)
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Here filename should be a text string that defines where you want to save the plot and the 
filename you want to use. The function automatically determines the format to which you 
want to export from the file extension that you put in the filename, so:

ggsave("Outlier Amazon.png")

will export as a png file, whereas

ggsave("Outlier Amazon.tiff")

will export as a tiff file. In the above examples I have specified only a filename, and these 
files will, therefore be saved in the current working directory (see section 3.4.4). You can, 
however, use a text string that defines an exact location, or create an object containing the 
file location that is then passed into the ggsave() function (see R’s Souls’ Tip 4.1). There are 
several other options you can specify, but mostly the defaults are fine. However, sometimes 
you might want to export to a specific size, and this can be done by defining the width and 
height of the image in inches: thus

ggsave("Outlier Amazon.tiff", width = 2, height = 2)

should save a tiff file that is 2 inches wide by 2 inches high.

4.4.8.  Putting it all together: a quick tutorial 2

We have covered an enormous amount of ground in a short time, and have still only 
scratched the surface of what can be done with ggplot2. Also, we haven’t actually plotted 
anything yet! In this section we will do a quick tutorial in which we put into practice vari-
ous things that we have discussed in this chapter to give you some concrete experience of 
using ggplot2 and to illustrate how some of the basic functionality the package works. 

FIGURE 4.9
Saving a graph 
manually
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         R ’s  Souls ’  T ip  4 .1   Saving graphs 3

By default ggsave() saves plots in your working directory (which hopefully you have set as something sensible). I 
find it useful sometimes to set up a specific location for saving images and to feed this into the ggsave() function. 
For example, executing:

imageDirectory<-file.path(Sys.getenv("HOME"), "Documents", "Academic", "Books", 
"Discovering Statistics", "DSUR I Images")

uses the file.path() and Sys.getenv() functions to create an object imageDirectory which is a text string defining 
a folder called ‘DSUR I Images’, which is in a folder called ‘Discovering Statistics’ in a folder called ‘Books’ in a 
folder called ‘Academic’ which is in my main ‘Documents’ folder. On my computer (an iMac) this command sets 
imageDirectory to be:

"/Users/andyfield/Documents/Academic/Books/Discovering Statistics/DSUR I Images"

Sys.getenv(“HOME”) is a quick way to get the filepath of your home directory (in my case /Users/andy-
field/), and we use the file.path() function to paste the specified folder names together in an intelligent 
way based on the operating system that you use. Because I use a Mac it has connected the folders using 
an ‘/’, but if I used Windows it would have used ‘\\’ instead (because this is the symbol Windows uses to 
denote folders).

Having defined this location, we can use it to create a file path for a new image:

imageFile <- file.path(imageDirectory,"Graph.png")
ggsave(imageFile) 

This produces a text string called imageFile, which is the filepath we have just defined (imageDirectory) with the 
filename that we want (Graph.png) added to it. We can reuse this code for a new graph by just changing the 
filename specified in imageFile:

imageFile <- file.path(imageDirectory,"Outlier Amazon.png")
ggsave(imageFile) 

Earlier in the chapter we mentioned a study that looked at ratings of Facebook profile 
pictures (rated on coolness, fashion, attractiveness and glamour) and predicting them from 
how highly the person posting the picture scores on narcissism (Ong et al., 2011). The data 
are in the file FacebookNarcissism.dat.

First set your working directory to be the location of the data file (see section 3.4.4). 
Then create a dataframe called facebookData by executing the following command:

facebookData <- read.delim("FacebookNarcissism.dat", header = TRUE)

Figure 4.10 shows the contents of the dataframe. There are four variables:

1	 id: a number indicating from which participant the profile photo came.

2	 NPQC_R_Total: the total score on the narcissism questionnaire.

3	 Rating_Type: whether the rating was for coolness, glamour, fashion or attractiveness 
(stored as strings of text).

4	 Rating: the rating given (on a scale from 1 to 5).
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First we need to create the plot object, which I have called, for want of a more original 
idea, graph. Remember that we initiate this object using the ggplot() function, which takes 
the following form:

graph <- ggplot(myData, aes(variable for x axis, variable for y axis))

To begin with, let’s plot the relationship between narcissism (NPQC_R_Total) and the 
profile ratings generally (Rating). As such, we want NPQC_R_Total plotted on the x-axis 
and Rating on the y-axis. The dataframe containing these variables is called facebookData 
so we type and execute this command:

graph <- ggplot(facebookData, aes(NPQC_R_Total, Rating))

This command simply creates an object based on the facebookData dataframe and speci-
fies the aesthetic mapping of variables to the x- and y-axes. Note that these mappings are 
contained within the aes() function. When you execute this command nothing will happen: 
we have created the object, but there is nothing to print.

If we want to see something then we need to take our object (graph) and add some visual 
elements. Let’s start with something simple and add dots for each data point. This is done 
using the geom_point() function. If you execute the following command you’ll see the 
graph in the top left panel of Figure 4.11 appear in a window on your screen:

graph + geom_point()

If we don’t like the circles then we can change the shape of the points by specifying this for 
the geom. For example, executing:

graph + geom_point(shape = 17)

will change the dots to triangles (top right panel of Figure 4.11). By changing the number 
assigned to shape to other values you will see different shaped points (see section 4.4.3). 
If we want to change the size of the dots rather than the shape, this is easily done too by 
specifying a value (in mm) that you want to use for the ‘size’ aesthetic. Executing:

graph + geom_point(size = 6)

FIGURE 4.10
The 
facebookData 
dataframe

04-Field_R-4368-Ch-04.indd   134 28/02/2012   8:06:14 PM



135CHAPTER 4   EXPLOR ING DATA WITH GRAPHS

creates the graph in the middle left panel of Figure 4.11. Note that the default shape has 
been used (because we haven’t specified otherwise), but the size is larger than by default. At 
this stage we don’t know whether a rating represented coolness, attractiveness or whatever. 
It would be nice if we could differentiate different ratings, perhaps by plotting them in 
different colours. We can do this by setting the colour aesthetic to be the variable Rating_
Type. Executing this command:

graph + geom_point(aes(colour = Rating_Type))

creates the graph in the middle right panel of Figure 4.11, in which, onscreen, different 
types of ratings are now presented in different colours.5

5 Note that here we set the colour aesthetic by enclosing it in aes() whereas in the previous examples we did not. 
This is because we’re setting the value of colour based on a variable, rather than a single value.

	

	

	

	

FIGURE 4.11
Different 
aesthetics for the 
point geom 
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We potentially have a problem of overplotting because there were a limited number of 
responses that people could give (notice that the data points fall along horizontal lines that 
represent each of the five possible ratings). To avoid this overplotting we could use the 
position option to add jitter:

graph + geom_point(aes(colour = Rating_Type), position = "jitter")

Notice that the command is the same as before; we have just added position = “jitter”. 
The results are shown in the bottom left panel of Figure 4.11; the dots are no longer in 
horizontal lines because a random value has been added to them to spread them around 
the actual value. It should be clear that many of the data points were sitting on top of each 
other in the previous plot.

Finally, if we wanted to differentiate rating types by their shape rather than using a 
colour, we could change the colour aesthetic to be the shape aesthetic:

graph + geom_point(aes(shape = Rating_Type), position = "jitter")

Note how we have literally just changed colour = Rating_Type to shape = Rating_Type. 
The resulting graph in the bottom right panel of Figure 4.11 is the same as before except 
that the different types of ratings are now displayed using different shapes rather than dif-
ferent colours.

This very rapid tutorial has hopefully demonstrated how geoms and aesthetics work 
together to create graphs. As we now turn to look at specific kinds of graphs, you should 
hopefully have everything you need to make sense of how these graphs are created.

4.5.  Graphing relationships: the scatterplot 1

Sometimes we need to look at the relationships between variables. A scat-
terplot is a graph that plots each person’s score on one variable against their 
score on another. A scatterplot tells us several things about the data, such 
as whether there seems to be a relationship between the variables, what 
kind of relationship it is and whether any cases are markedly different from 
the others. We saw earlier that a case that differs substantially from the 
general trend of the data is known as an outlier and such cases can severely 
bias statistical procedures (see Jane Superbrain Box 4.1 and section 7.7.1.1 
for more detail). We can use a scatterplot to show us if any cases look like 
outliers.

4.5.1.    Simple scatterplot  1

This type of scatterplot is for looking at just two variables. For example, a psychologist 
was interested in the effects of exam stress on exam performance. So, she devised and 
validated a questionnaire to assess state anxiety relating to exams (called the Exam Anxiety 
Questionnaire, or EAQ). This scale produced a measure of anxiety scored out of 100. 
Anxiety was measured before an exam, and the percentage mark of each student on the 
exam was used to assess the exam performance. The first thing that the psychologist should 
do is draw a scatterplot of the two variables. Her data are in the file ExamAnxiety.dat and 
you should load this file into a dataframe called examData by executing:

examData <- read.delim("Exam Anxiety.dat", header = TRUE)

How do I draw a graph
of the relationship between

two variables?

How do I draw a graph
of the relationship between

two variables?
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Figure 4.12 shows the contents of the dataframe. There are five variables:

1	 Code: a number indicating from which participant the scores came.

2	 Revise: the total hours spent revising.

3	 Exam: mark on the exam as a percentage.

4	 Anxiety: the score on the EAQ.

5	 Gender: whether the participant was male or female (stored as strings of text).

FIGURE 4.12
The examData 
dataframe

First we need to create the plot object, which I have called scatter. Remember that we 
initiate this object using the ggplot() function. The contents of this function specify the 
dataframe to be used (examData) and any aesthetics that apply to the whole plot. I’ve said 
before that one aesthetic that is usually defined at this level is the variables that we want to 
plot. To begin with, let’s plot the relationship between exam anxiety (Anxiety) and exam 
performance (Exam). We want Anxiety plotted on the x-axis and Exam on the y-axis. 
Therefore, to specify these variables as an aesthetic we type aes(Anxiety, Exam). Therefore, 
the final command that we execute is:

scatter <- ggplot(examData, aes(Anxiety, Exam))

This command creates an object based on the examData dataframe and specifies the aes-
thetic mapping of variables to the x- and y-axes. When you execute this command nothing 
will happen: we have created the object, but there is nothing to print. 

If we want to see something then we need to take our object (scatter) and add a layer 
containing visual elements. For a scatterplot we essentially want to add dots, which is done 
using the geom_point() function.

scatter + geom_point()

If we want to add some nice labels to our axes then we can also add a layer with these 
on using labs():

scatter + geom_point() + labs(x = "Exam Anxiety", y = "Exam 
Performance %")
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If you execute this command you’ll see the graph in Figure 4.13. The scatterplot tells us 
that the majority of students suffered from high levels of anxiety (there are very few cases 
that had anxiety levels below 60). Also, there are no obvious outliers in that most points 
seem to fall within the vicinity of other points. There also seems to be some general trend 
in the data, such that low levels of anxiety are almost always associated with high examina-
tion marks (and high anxiety is associated with a lot of variability in exam marks). Another 
noticeable trend in these data is that there were no cases having low anxiety and low exam 
performance – in fact, most of the data are clustered in the upper region of the anxiety scale.

4.5.2.    Adding a funky line 1

You often see scatterplots that have a line superimposed over the top that summarizes the 
relationship between variables (this is called a regression line and we will discover more 
about it in Chapter 7). The scatterplot you have just produced won’t have a funky line on 
it yet, but don’t get too depressed because I’m going to show you how to add this line now. 

In ggplot2 terminology a regression line is known as a ‘smoother’ because it 
smooths out the lumps and bumps of the raw data into a line that summarizes 
the relationship. The geom_smooth() function provides the functionality to 
add lines (curved or straight) to summarize the pattern within your data.

To add a smoother to our existing scatterplot, we would simply add the 
geom_smooth() function and execute it:

scatter + geom_point() + geom_smooth() + labs(x = "Exam Anxiety", 
y = "Exam Performance %")

Note that the command is exactly the same as before except that we have 
added a smoother in a new layer by typing + geom_smooth(). The resulting 
graph is shown in Figure 4.14. Note that the scatterplot now has a curved 
line (a ‘smoother’) summarizing the relationship between exam anxiety and 

exam performance. The shaded area around the line is the 95% confidence interval around 
the line. We’ll see in due course how to remove this shaded error or to recolour it. 

The smoothed line in Figure 4.14 is very pretty, but often we want to fit a straight line 
(or linear model) instead of a curved one. To do this, we need to change the ‘method’ 
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FIGURE 4.13
Scatterplot of 
exam anxiety 
and exam 
performance

How do I fit a
regression line to

a scatterplot?

How do I fit a
regression line to

a scatterplot?
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associated with the smooth geom. In Table 4.3 we saw several methods that could be used 
for the smooth geom: lm fits a linear model (i.e., a straight line) and you could use rlm for 
a robust linear model (i.e., less affected by outliers).6 So, to add a straight line (rather than 
curved) we change geom_smooth() to include this instruction:

+ geom_smooth(method = "lm")

We can also change the appearance of the line: by default it is blue, but if we wanted a red 
line then we can simply define this aesthetic within the geom:

+ geom_smooth(method = "lm", colour = "Red")

Putting this together with the code for the simple scatterplot, we would execute:

scatter <- ggplot(examData, aes(Anxiety, Exam))
scatter + geom_point() + geom_smooth(method = "lm", colour = "Red")+ labs(x 
= "Exam Anxiety", y = "Exam Performance %")

The resulting scatterplot is shown in Figure 4.15. Note that it looks the same as Figure 
4.13 and Figure 4.14 except that a red (because we specified the colour as red) regression 
line has been added.7 As with our curved line, the regression line is surrounded by the 95% 
confidence interval (the grey area). We can switch this off by simply adding se = F (which 
is short for ‘standard error = False’) to the geom_smooth() function:

+ geom_smooth(method = "lm", se = F)

We can also change the colour and transparency of the confidence interval using the fill and 
alpha aesthetics, respectively. For example, if we want the confidence interval to be blue 
like the line itself, and we want it fairly transparent we could specify:

geom_smooth(method = "lm", alpha = 0.1, fill = "Blue")

6 You must have the MASS package loaded to use this method.

7 You’ll notice that the figure doesn’t have a red line but what you see on your screen does, that’s because this 
book isn’t printed in colour which makes it tricky for us to show you the colourful delights of R. In general, use 
the figures in the book as a guide only and  read the text with reference to what you actually see on your screen.
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Note that transparency can take a value from 0 (fully transparent) to 1 (fully opaque) 
and so we have set a fairly transparent colour by using 0.1 (after all we want to see the data 
points underneath). The impact of these changes can be seen in Figure 4.16.

4.5.3.    Grouped scatterplot 1

What if we want to see whether male and female students had different reactions to exam 
anxiety? To do this, we need to set Gender as an aesthetic. This is fairly straightforward. 
First, we define gender as a colour aesthetic when we initiate the plot object:

scatter <- ggplot(examData, aes(Anxiety, Exam, colour = Gender))
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Note that this command is exactly the same as the previous example, except that we have 
added ‘colour = Gender’ so that any geoms we define will be coloured differently for men 
and women. Therefore, if we then execute:

scatter + geom_point + geom_smooth(method = "lm")

we would have a scatterplot with different coloured dots and regression lines for men and 
women. It’s as simple as that. However, our lines would have confidence intervals and both 
intervals would be shaded grey, so we could be a little more sophisticated and add some 
instructions into geom_smooth() that tells it to also colour the confidence intervals accord-
ing to the Gender variable:

scatter + geom_point() + geom_smooth(method = "lm", aes(fill = Gender), alpha 
= 0.1)

Note that we have used fill to specify that the confidence intervals are coloured according 
to Gender (note that because we are specifying a variable rather than a single colour we 
have to place this option within aes()). As before, we have also manually set the transpar-
ency of the confidence intervals to be 0.1. 

As ever, let’s add some labels to the graph:

+ labs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender") 

Note that by specifying a label for ‘colour’ I am setting the label that will be used on the 
legend of the graph. The finished command to be executed will be:

scatter + geom_point() + geom_smooth(method = "lm", aes(fill = Gender), alpha 
= 0.1) + labs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender") 

Figure 4.17 shows the resulting scatterplot. The regression lines tell us that the relation-
ship between exam anxiety and exam performance was slightly stronger in males (the line 
is steeper) indicating that men’s exam performance was more adversely affected by anxiety 
than women’s exam anxiety. (Whether this difference is significant is another issue – see 
section 6.7.1.)
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SELF-TEST

ü	 Go back to the Facebook narcissism data from the 
earlier tutorial. Plot a graph that shows the pattern in 
the data using only a line.

ü	 Plot different coloured lines for the different types of 
rating (cool, fashionable, attractive, glamorous).

ü	 Add a layer displaying the raw data as points.
ü	 Add labels to the axes.

4.6.  Histograms: a good way to spot obvious 
problems 1

In this section we’ll look at how we can use frequency distributions to screen our data.8 
We’ll use an example to illustrate what to do. A biologist was worried about the poten-
tial health effects of music festivals. So, one year she went to the Download Music 
Festival9 (for those of you outside the UK, you can pretend it is Roskilde Festival, Ozzfest, 
Lollopalooza, Wacken or something) and measured the hygiene of 810 concert-goers over 
the three days of the festival. In theory each person was measured on each day but because 
it was difficult to track people down, there were some missing data on days 2 and 3. 
Hygiene was measured using a standardized technique (don’t worry, it wasn’t licking the 
person’s armpit) that results in a score ranging between 0 (you smell like a corpse that’s 
been left to rot up a skunk’s arse) and 4 (you smell of sweet roses on a fresh spring day). 
Now I know from bitter experience that sanitation is not always great at these places (the 
Reading Festival seems particularly bad) and so this researcher predicted that personal 
hygiene would go down dramatically over the three days of the festival. The data file, 
DownloadFestival.dat, can be found on the companion website. We encountered histo-
grams (frequency distributions) in Chapter 1; we will now learn how to create one in R 
using these data.

SELF-TEST

ü	 What does a histogram show?

Load the data into a dataframe (which I’ve called festivalData); if you need to refresh 
your memory on data files and dataframes see section 3.5. Assuming you have set the 
working directory to be where the data file is stored, you can create the dataframe by 
executing this command:

festivalData <- read.delim("DownloadFestival.dat", header = TRUE)

Now we need to create the plot object and define any aesthetics that apply to the plot as 
a whole. I have called the object festivalHistogram, and have created it using the ggplot() 

8 An alternative way to graph the distribution is a density plot, which we’ll discuss later.

9 http://www.downloadfestival.co.uk
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function. The contents of this function specify the dataframe to be used (festivalData) and 
any aesthetics that apply to the whole plot. I’ve said before that one aesthetic that is usu-
ally defined at this level is the variables that we want to plot. To begin with let’s plot the 
hygiene scores for day 1, which are in the variable day1. Therefore, to specify this variable 
as an aesthetic we type aes(day1). I have also decided to turn the legend off so I have added 
opts(legend.position = “none”) to do this (see R’s Souls’ Tip 4.2):

festivalHistogram <- ggplot(festivalData, aes(day1)) + opts(legend.position 
= "none")

Remember that having executed the above command we have an object but no graphi-
cal layers, so we will see nothing. To add the graphical layer we need to add the histogram 
geom to our existing plot:

festivalHistogram + geom_histogram()

Executing this command will create a graph in a new window. If you are happy using the 
default options then this is all there is to it; sit back and admire your efforts. However, we 
can tidy the graph up a bit. First, we could change the bin width. I would normally play 
around with different bin widths to get a feel for the distribution. To save time, let’s just 
change it to 0.4. We can do this by inserting a command within the histogram geom:

+ geom_histogram(binwidth = 0.4)

We should also provide more informative labels for our axes using the labs() function:

+ labs(x = "Hygiene (Day 1 of Festival)", y = "Frequency")

As you can see, I have simply typed in the labels I want (within quotation marks) for the 
horizontal (x) and vertical (y) axes. Making these two changes leaves us with this com-
mand, which we must execute to see the graph:

festivalHistogram + geom_histogram(binwidth = 0.4) + labs(x = "Hygiene (Day 
1 of Festival)", y = "Frequency")

The resulting histogram is shown in Figure 4.18. The first thing that should leap out at 
you is that there appears to be one case that is very different than the others. All of the 

0 5

0

50

100

150

10

Hygiene (Day 1 of Fesitval)

F
re

q
u

en
cy

15 20

FIGURE 4.18
Histogram of the 
day 1 Download 
Festival hygiene 
scores

04-Field_R-4368-Ch-04.indd   143 28/02/2012   8:06:21 PM



144 D ISCOVER ING STAT IST ICS  US ING R

scores appear to be squashed up at one end of the distribution because they are all less 
than 5 (yielding a very pointy distribution) except for one, which has a value of 20. This is 
an outlier: a score very different than the rest (Jane Superbrain Box 4.1). Outliers bias the 
mean and inflate the standard deviation (you should have discovered this from the self-test 
tasks in Chapters 1 and 2) and screening data is an important way to detect them. You can 
look for outliers in two ways: (1) graph the data with a histogram (as we have done here) 
or a boxplot (as we will do in the next section); or (2) look at z-scores (this is quite com-
plicated, but if you want to know see Jane Superbrain Box 4.2).

The outlier shown on the histogram is particularly odd because it has a score of 20, 
which is above the top of our scale (remember our hygiene scale ranged only from 0 to 
4) and so it must be a mistake (or the person had obsessive compulsive disorder and had 
washed themselves into a state of extreme cleanliness).

         R ’s  Souls ’  T ip  4 .2    Removing legends 3  

By default ggplot2 produces a legend on the right-hand side of the plot. Mostly this legend is a useful thing to 
have. However, there are occasions when you might like it to go away. This is achieved using the opts() function 
either when you set up the plot object, or when you add layers to the plot. To remove the legend just add:

+ opts(legend.position="none")

For example, either

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis)) + opts(legend.
position="none")

or

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis)) 
myGraph + geom_point() + opts(legend.position="none")

will produce a graph without a figure legend.

4.7.  Boxplots (box–whisker diagrams) 1

Boxplots or box–whisker diagrams are really useful ways to display your data. 
At the centre of the plot is the median, which is surrounded by a box the top 
and bottom of which are the limits within which the middle 50% of observa-
tions fall (the interquartile range). Sticking out of the top and bottom of the box 
are two whiskers that extend to one and a half times the interquartile range. 
First, we will plot some using ggplot2 and then we’ll look at what they tell us in 
more detail. In the data file of hygiene scores we also have information about 
the gender of the concert-goer. Let’s plot this information as well. To make 
our boxplot of the day 1 hygiene scores for males and females, we will need 
to set the variable Gender as an aesthetic. The simplest way to do this is just 
to specify Gender as the variable to be plotted on the x-axis, and the hygiene 
scores (day1) to be the variable plotted on the y-axis. As such, when we initiate 

Did someone say a
box of whiskas?
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person (sorry, I mean score) that deviates from the rest of 
humanity (I mean, data set). The dashed horizontal line 
represents the mean of the scores when the outlier is not 
included (4.83). This line is higher than the original mean, 
indicating that by ignoring this score the mean increases 
(it increases by 0.4). This example shows how a single 
score, from some mean-spirited badger turd, can bias 
the mean; in this case the first rating (of 2) drags the aver-
age down. In practical terms this had a bigger implication 
because Amazon rounded off to half numbers, so that 
single score made a difference between the average rat-
ing reported by Amazon as a generally glowing 5 stars 
and the less impressive 4.5 stars. (Nowadays Amazon 
sensibly produces histograms of the ratings and has a 
better rounding system.) Although I am consumed with 
bitterness about this whole affair, it has at least given me 
a great example of an outlier! (Data for this example were 
taken from http://www.amazon.co.uk/ in about 2002.)

An outlier is a score very different from the rest of the 
data. When we analyse data we have to be aware of such 
values because they bias the model we fit to the data. A 
good example of this bias can be seen by looking at the 
mean. When I published my first book (the first edition of 
the SPSS version of this book), I was quite young, I was 
very excited and I wanted everyone in the world to love 
my new creation and me. Consequently, I obsessively 
checked the book’s ratings on Amazon.co.uk. These 
ratings can range from 1 to 5 stars. Back in 2002, my 
first book had seven ratings (in the order given) of 2, 5, 
4, 5, 5, 5, and 5. All but one of these ratings are fairly 
similar (mainly 5 and 4) but the first rating was quite dif-
ferent from the rest – it was a rating of 2 (a mean and 
horrible rating). The graph plots seven reviewers on the 
horizontal axis and their ratings on the vertical axis and 
there is also a horizontal line that represents the mean 
rating (4.43 as it happens). It should be clear that all of 
the scores except one lie close to this line. The score of 2 
is very different and lies some way below the mean. This 
score is an example of an outlier – a weird and unusual 

JANE SUPERBRAIN 4.1
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our plot object rather than set a single variable as an aesthetic as we did for the histogram 
(aes(day1)), we set Gender and day1 as variables (aes(Gender, day1)). Having initiated the 
plot object (I’ve called it festivalBoxplot), we can simply add the boxplot geom as a layer 
(+ geom_boxplot()) and add some axis labels with the labs() function as we did when we 
created a histogram. To see the graph we therefore simply execute these two lines of code:

festivalBoxplot <- ggplot(festivalData, aes(gender, day1))

festivalBoxplot + geom_boxplot() + labs(x = "Gender", y = "Hygiene (Day 1 of 
Festival)")

The resulting boxplot is shown in Figure 4.19. It shows a separate boxplot for the men 
and women in the data. Note that the outlier that we detected in the histogram is shown 
up as a point on the boxplot (we can also tell that this case was a female). An outlier is an 
extreme score, so the easiest way to find it is to sort the data:

festivalData<-festivalData[order(festivalData$day1),]
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SELF-TEST

ü	 Remove the outlier and replot the histogram.

need to load the package associated with this book (see 
section 3.4.5), you then simply insert the name of the vari-
able that you would like summarized into the function and 
execute it. For example, to count the number of z-scores 
with absolute values above our three cut-off values in the 
day2 variable, we can execute:

outlierSummary(festivalData$day2) 

Absolute z-score greater than 1.96 =  6.82 % 
Absolute z-score greater than 2.58 =  2.27 % 
Absolute z-score greater than 3.29 =  0.76 % 

The output produced by this function is shown 
above. We would expect to see 5% (or less) with an 
absolute value greater than 1.96, 1% (or less) with an 
absolute value greater than 2.58, and we’d expect no 
cases above 3.29 (these cases are significant outliers). 
For hygiene scores on day 2 of the festival, 6.82% of 
z-scores had absolute values greater than 1.96. This is 
slightly more than the 5% we would expect in a normal 
distribution. Looking at values above 2.58, we would 
expect to find only 1%, but again here we have a higher 
value of 2.27%. Finally, we find that 0.76% of cases 
were above 3.29 (so 0.76% are significant outliers). This 
suggests that there may be slightly too many outliers in 
this variable and we might want to do something about 
them.

To check for outliers we can look at z-scores. We saw in 
section 1.7.4 that z-scores are simply a way of standard-
izing a data set by expressing the scores in terms of a 
distribution with a mean of 0 and a standard deviation of 
1. In doing so we can use benchmarks that we can apply 
to any data set (regardless of what its original mean and 
standard deviation were). To look for outliers we could 
convert our variable to z-scores and then count how many 
fall within certain important limits. If we take the absolute 
value (i.e., we ignore whether the z-score is positive or 
negative) then in a normal distribution we’d expect about 
5% to have absolute values greater than 1.96 (we often 
use 2 for convenience), and 1% to have absolute values 
greater than 2.58, and none to be greater than about 3.29.

I have written a function that gets R to count them 
for you called outlierSummary(). To use the function you 

JANE SUPERBRAIN 4.2

Using z-scores to find outliers 3

‘Graphs are for laughs, and functions are full of fun’ thinks Oliver 
as he pops a huge key up his nose and starts to wind the clock-
work mechanism of his brain. We don’t look at functions for another 
couple of chapters, which is why I’ve skipped over the details of how 
the outlierSummary() function works. If, like Oliver, you like to wind up 
your brain, the additional material for this chapter, on the companion 

website, explains how I wrote the function. If that doesn’t quench your thirst for knowledge then you’re a grain of salt.

OLIVER TWISTED

Please, Sir, can I 
have some more … 
complicated stuff?

04-Field_R-4368-Ch-04.indd   146 28/02/2012   8:06:25 PM



147CHAPTER 4   EXPLOR ING DATA WITH GRAPHS

This command takes festivalData and sorts it by the variable day1. All we have to do 
now is to look at the last case (i.e., the largest value of day1) and change it. The offending 
case turns out to be a score of 20.02, which is probably a mistyping of 2.02. We’d have to 
go back to the raw data and check. We’ll assume we’ve checked the raw data and it should 
be 2.02, and that we’ve used R Commander’s data editor (see section 3.6 or the online 
materials for this chapter) to replace the value 20.02 with the value 2.02 before we con-
tinue this example.

SELF-TEST

ü	 Now we have removed the outlier in the data, try 
replotting the boxplot. The resulting graph should look 
like Figure 4.20.

Figure 4.20 shows the boxplots for the hygiene scores on day 1 after the outlier has been 
corrected. Let’s look now in more detail about what the boxplot represents. First, it shows 
us the lowest score (the lowest point of the bottom whisker, or a dot below it) and the 
highest (the highest point of the top whisker of each plot, or a dot above it). Comparing 
the males and females we can see they both had similar low scores (0, or very smelly) but 
the women had a slightly higher top score (i.e., the most fragrant female was more hygienic 
than the cleanest male). 

The lowest edge of the white box is the lower quartile (see section 1.7.3); therefore, the 
distance between the bottom of the vertical line and the lowest edge of the white box is the 
range between which the lowest 25% of scores fall. This range is slightly larger for women 
than for men, which means that if we take the most unhygienic 25% females then there is 
more variability in their hygiene scores than the lowest 25% of males. The box (the white 
area) shows the interquartile range (see section 1.7.3): that is, 50% of the scores are bigger 
than the lowest part of the white area but smaller than the top part of the white area. These 
boxes are of similar size in the males and females.

The top edge of the white box shows the value of the upper quartile (see section 1.7.3); 
therefore, the distance between the top edge of the white box and the top of the vertical 
line shows the range between which the top 25% of scores fall. In the middle of the white 
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box is a line that represents the value of the median (see section 1.7.2). The median for 
females is higher than for males, which tells us that the middle female scored higher, or was 
more hygienic, than the middle male.

Boxplots show us the range of scores, the range between which the middle 50% of scores 
fall, and the median, the upper quartile and lower quartile score. Like histograms, they 
also tell us whether the distribution is symmetrical or skewed. If the whiskers are the same 
length then the distribution is symmetrical (the range of the top and bottom 25% of scores 
is the same); however, if the top or bottom whisker is much longer than the opposite whis-
ker then the distribution is asymmetrical (the range of the top and bottom 25% of scores 
is different). Finally, you’ll notice some dots above the male boxplot. These are cases that 
are deemed to be outliers. In Chapter 5 we’ll see what can be done about these outliers.
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FIGURE 4.20
Boxplot of 
hygiene scores 
on day 1 of 
the Download 
Festival split by 
gender, after the 
outlier has been 
corrected

SELF-TEST

ü	 Produce boxplots for the day 2 and day 3 hygiene 
scores and interpret them.

4.8.  Density plots  1

Density plots are rather similar to histograms except that they smooth the distribution into 
a line (rather than bars). We can produce a density plot in exactly the same way as a his-
togram, except using the density geom: geom_density(). Assuming you have removed the 
outlier for the festival data set,10 initiate the plot (which I have called density) in the same 
way as for the histogram:

density <- ggplot(festivalData, aes(day1))

10 If you haven’t there is a data file with it removed and you can load this into a dataframe called festivalData by 
executing:

festivalData <- read.delim("DownloadFestival(No Outlier).dat", header = TRUE)
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Then, to get the plot simply add the density_geom() function:

density + geom_density()

We can also add some labels by including:

+ labs(x = "Hygiene (Day 1 of Festival)", y = "Density Estimate")

in the command. The resulting plot is shown in Figure 4.21.

FIGURE 4.21
A density plot of 
the Download 
Festival data
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4.9.  Graphing means  3

4.9.1.    Bar charts and error bars 2

Bar charts are a common way for people to display means. The ggplot2 package does not 
differentiate between research designs, so you plot bar charts in the same way regardless of 
whether you have an independent, repeated-measures or mixed design. Imagine that a film 
company director was interested in whether there was really such a thing as a ‘chick flick’ 
(a film that typically appeals to women more than men). He took 20 men and 20 women 
and showed half of each sample a film that was supposed to be a ‘chick flick’ (Bridget 
Jones’s Diary), and the other half of each sample a film that didn’t fall into the category 
of ‘chick flick’ (Memento, a brilliant film by the way). In all cases he measured their physi-
ological arousal as an indicator of how much they enjoyed the film. The data are in a file 
called ChickFlick.dat on the companion website. Load this file into a dataframe called 
chickFlick by executing this command (I’m assuming you have set the working directory to 
be where the data file is stored):

chickFlick <- read.delim("ChickFlick.dat",  header = TRUE)
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Figure 4.22 shows the data. Note there are three variables:

MM gender: specifies the gender of the participant as text.

MM film: specifies the film watched as text.

MM arousal: is their arousal score.

Each row in the data file represents a different person.

FIGURE 4.22
The ChickFlick.
dat data

4.9.1.1  Bar charts for one independent variable 2

To begin with, let’s just plot the mean arousal score (y-axis) for each film (x-axis). We can 
set this up by first creating the plot object and defining any aesthetics that apply to the plot 
as a whole. I have called the object bar, and have created it using the ggplot() function. The 
function specifies the dataframe to be used (chickFlick) and has set film to be plotted on 
the x-axis, and arousal to be plotted on the y-axis: 

bar <- ggplot(chickFlick, aes(film, arousal))

This is where things get a little bit tricky; because we want to plot a summary of the data 
(the mean) rather than the raw scores themselves, we have to use a stat (section 4.4.5) to 
do this for us. Actually, we already used a stat when we plotted the boxplot in an earlier 
section, but we didn’t notice because the boxplot geom sneaks off when we’re not looking 
and uses the bin stat without us having to really do anything. However, if we want means 
then we have no choice but to dive head first into the pit of razors that is a stat. Specifically 
we are going to use stat_summary().

The stat_summary() function takes the following general form:

stat_summary(function = x, geom = y)

Functions can be specified either for individual points (fun.y) or for the data as a whole 
(fun.data) and are set to be common statistical functions such as ‘mean’, ‘median’ and so 
on. As you might expect, the geom option is a way of telling the stat which geom to use to 
represent the function, and this can take on values such as ‘errorbar’, ‘bar’ and ‘pointrange’ 
(see Table 4.3). The stat_summary() function takes advantage of several built-in functions 
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from the Hmisc package, which should automatically be installed. Table 4.4 summarizes 
these functions and how they are specified within the stat_summary() function.

If we want to add the mean, displayed as bars, we can simply add this as a layer to ‘bar’ 
using the  stat_summary() function: 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour 
= "Black"

As shown in Table 4.4, fun.y = mean computes the mean for us, geom = “bar” 
displays these values as bars, fill = “White” makes the bars white (the default is 
dark grey and you can replace with a different colour if you like), and colour = 
“Black” makes the outline of the bars black.

If we want to add error bars to create an error bar chart, we can again add these 
as a layer using stat_summary():

+ stat_summary(fun.data = mean_cl_normal, geom = "pointrange")

This command adds a standard 95% confidence interval in the form of the pointrange 
geom. Again, if you like you could change the colour of the pointrange geom by setting its 
colour as described in Table 4.2.

Finally, let’s add some nice labels to the graph using lab():

+ labs(x = "Film", y = "Mean Arousal")

To sum up, if we put all of these commands together we can create the graph by execut-
ing the following command:

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = 
"Black") + stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + 
labs(x = "Film", y = "Mean Arousal")

Figure 4.23 shows the resulting bar chart. This graph displays the means (and the 95% con-
fidence interval of those means) and shows us that on average, people were more aroused 
by Memento than they were by Bridget Jones’s Diary. However, we originally wanted to 
look for gender effects, so we need to add this variable into the mix. 

SELF-TEST

ü	 Change the geom for the error bar to ‘errorbar’ and 
change its colour to red. Replot the graph.

ü	 Plot the graph again but with bootstrapped confidence 
intervals.

How do I plot an
error bar graph?

Table 4.4    Using stat_summary() to create graphs

Option Plots Common geom

fun.y = mean The mean geom = “bar”

fun.y = median The median geom = “bar”

fun.data = 
mean_cl_normal()

95% confidence intervals assuming 
normality

geom = “errorbar” 
geom = “pointrange”

fun.data = mean_cl_boot() 95% confidence intervals based on a 
bootstrap (i.e., not assuming normality)

geom = “errorbar” 
geom = “pointrange”

mean_sdl() Sample mean and standard deviation geom = “errorbar” 
geom = “pointrange”

fun.data = median_hilow() Median and upper and lower quantiles geom = “pointrange”
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4.9.1.2.  Bar charts for several independent variables 2

If we want to factor in gender we could do this in several ways. First we could set an aes-
thetic (such as colour) to represent the different genders, but we could also use faceting to 
create separate plots for men and women. We could also do both. Let’s first look at sepa-
rating men and women on the same graph. This takes a bit of work, but if we build up the 
code bit by bit the process should become clear.

First, as always we set up our plot object (again I’ve called it bar). This command is the 
same as before, except that we have set the fill aesthetic to be the variable gender. This 
means that any geom specified subsequently will be filled with different colours for men 
and women.

bar <- ggplot(chickFlick, aes(film, arousal, fill = gender))

If we want to add the mean, displayed as bars, we can simply add this as a layer to bar 
using the stat_summary() function as we did before, but with one important difference: we 
have to specify position = “dodge” (see section 4.4.6) so that the male and female bars are 
forced to stand side-by-side, rather than behind each other.

bar + stat_summary(fun.y = mean, geom = "bar", position="dodge")

As before, fun.y = mean computes the mean for us, geom = “bar” displays these values as 
bars. 

If we want to add error bars we can again add these as a layer using stat_summary():

+ stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = posi-
tion_dodge(width=0.90), width = 0.2)

This command is a bit more complicated than before. Note we have changed the geom to 
errorbar; by default these bars will be as wide as the bars displaying the mean, which looks 
a bit nasty, so I have reduced their width with width = 0.2, which should make them 20% 
of the width of the bar (which looks nice in my opinion). The other part of the command 
is that we have again had to use the dodge position to make sure that the error bars stand 
side-by-side). In this case position = position_dodge(width=0.90) does the trick, but you 
might have to play around with the values of width to get what you want. 
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Finally, let’s add some nice labels to the graph using lab():

+ labs(x = "Film", y = "Mean Arousal", fill = "Gender")

Notice that as well as specifying titles for each axis, I have specified a title for fill. This will 
give a title to the legend on the graph (if we omit this option the legend will be given the 
variable name as a title, which might be OK for you if you are less anally retentive than I am).

To sum up, if we put all of these commands together we can create the graph by execut-
ing the following command:

bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + stat_
summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_
dodge(width = 0.90), width = 0.2) + labs(x = "Film", y = "Mean Arousal", fill 
= "Gender")

M
ea

n
 A

ro
u

sa
l

Bridget Jones’s
Diary

Memento

Female

Male

35

30

25

20

15

10

5

0

Film

Gender

FIGURE 4.24
Bar chart of the 
mean arousal for 
each of the two 
films

Figure 4.24 shows the resulting bar chart. It looks pretty good, I think. It is possible to 
customise the colours that are used to fill the bars also (see R’s Souls’ Tip 4.3). Like the 
simple bar chart, this graph tells us that arousal was overall higher for Memento than for 
Bridget Jones’s Diary, but it also splits this information by gender. The mean arousal for 
Bridget Jones’s Diary shows that males were actually more aroused during this film than 
females. This indicates they enjoyed the film more than the women did. Contrast this with 
Memento, for which arousal levels are comparable in males and females. On the face of it, 
this contradicts the idea of a ‘chick flick’: it actually seems that men enjoy chick flicks more 
than the so-called ‘chicks’ do (probably because it’s the only help we get to understand the 
complex workings of the female mind).

The second way to express gender would be to use this variable as a facet so that we 
display different plots for males and females: 

bar <- ggplot(chickFlick, aes(film, arousal, fill = film))

Executing the above command sets up the graph in the same way as before. Note, however, 
that we do not need to use ‘fill = gender’ because we do not want to vary the colour by 
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gender. (You can omit the fill command altogether, but I have set it so that the bars repre-
senting the different films are filled with different colours.) We set up the bar in the same 
way as before, except that we do not need to set the position to dodge because we are no 
longer plotting different bars for men and women on the same graph:

bar + stat_summary(fun.y = mean, geom = "bar") 

We set up the error bar in the same way as before, except again we don’t need to include 
a dodge:

+ stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2)

To get different plots for men and women we use the facet option and specify gender as the 
variable by which to facet:

+ facet_wrap( ~ gender)

We add labels as we did before:

+ labs(x = "Film", y = "Mean Arousal")

I’ve added an option to get rid of the graph legend as well (see R’s Souls’ Tip 4.2). I’ve 
included this option because we specified different colours for the different films so ggplot 
will create a legend; however, the labels on the x-axis will tell us to which film each bar 
relates so we don’t need a colour legend as well):

+ opts(legend.position = "none")

The resulting graph is shown in Figure 4.25; compare this with Figure 4.24 and note how 
by using gender as a facet rather than an aesthetic results in different panels for men and 
women. The graphs show the same pattern of results though: men and women differ little 
in responses to Memento, but men showed more arousal to Bridget Jones’s Diary.
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4.9.2.    Line graphs 2  

4.9.2.1. Line graphs of a single independent variable 2

Hiccups can be a serious problem: Charles Osborne apparently got a case of 
hiccups while slaughtering a hog (well, who wouldn’t?) that lasted 67 years. 
People have many methods for stopping hiccups (a surprise, holding your 
breath), but actually medical science has put its collective mind to the task too. 
The official treatment methods include tongue-pulling manoeuvres, massage 
of the carotid artery, and, believe it or not, digital rectal massage (Fesmire, 
1988). I don’t know the details of what the digital rectal massage involved, 
but I can probably imagine. Let’s say we wanted to put digital rectal massage 
to the test (as a cure for hiccups, I mean). We took 15 hiccup sufferers, and 
during a bout of hiccups administered each of the three procedures (in ran-
dom order and at intervals of 5 minutes) after taking a baseline of how many 
hiccups they had per minute. We counted the number of hiccups in the minute after 
each procedure. Load the file Hiccups.dat from the companion website into a dataframe 
called hiccupsData by executing (again assuming you have set your working directory to 
be where the file is located):

hiccupsData <- read.delim("Hiccups.dat",  header = TRUE)

Figure 4.26 shows the data. Note there are four variables:

MM Baseline: specifies the number of hiccups at baseline.

MM Tongue: specifies the number of hiccups after tongue pulling.

MM Carotid: specifies the number of hiccups after carotid artery massage.

MM Rectum: specifies the number of hiccups after digital rectal massage.

         R ’s  Souls ’  T ip  4 .3   Custom colours 2

If you want to override the default fill colours, you can do this using the scale_fill_manual() function. For our chick 
flick data, for example, if we wanted blue bars for females and green for males then we can add the following 
command:

+ scale_fill_manual("Gender", c("Female" = "Blue", "Male" = "Green"))

Alternatively, you can use very specific colours by specifying colours using the RRGGBB system. For example, 
the following produces very specifically coloured blue and green bars:

+ scale_fill_manual("Gender", c("Female" = "#3366FF", "Male" = "#336633"))

Try adding these commands to the end of the command we used to generate Figure 4.24 and see the effect it 
has on the bar colours. Then experiment with other colours.

How do I plot
a line graph?
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Each row in the data file represents a different person, so these data are laid out as a 
repeated-measures design, with each column representing a different treatment condition 
and every person undergoing each treatment.

These data are in the wrong format for ggplot2 to use. We need all of the scores stacked 
up in a single column and then another variable that specifies the type of intervention.

SELF-TEST

ü	 Thinking back to Chapter 3, use the stack() function to 
restructure the data into long format. 

We can rearrange the data as follows (see section 3.9.4): 

hiccups<-stack(hiccupsData)
names(hiccups)<-c("Hiccups","Intervention")

Executing these commands creates a new dataframe called hiccups, which has the number 
of hiccups in one column alongside a new variable containing the original variable name 
associated with each score (i.e., the column headings) in the other column (Figure 4.27). 
The names() function just assigns names to these new variables in the order that they 
appear in the dataframe. To plot a categorical variable in ggplot() it needs to be recog-
nized as a factor, so we also need to create new variable in the hiccups dataframe called 
Intervention_Factor, which is just the Intervention variable converted into a factor: 

hiccups$Intervention_Factor <- factor(hiccups$Intervention, levels = 
hiccups$Intervention)

We are now ready to plot the graph. As always we first create the plot object and define 
the variables that we want to plot as aesthetics:

line <- ggplot(hiccups, aes(Intervention_Factor, Hiccups))

I have called the object line, and have created it using the ggplot() function. The function 
specifies the dataframe to be used (hiccups) and has set Intervention_Factor to be plotted 
on the x-axis, and Hiccups to be plotted on the y-axis.

FIGURE 4.26
The Hiccups.dat 
data
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FIGURE 4.27
The hiccups data 
in long format

Just as we did for our bar charts, we are going to use stat_summary() to create the mean 
values within each treatment condition. Therefore, as with the bar chart, we create a layer 
using stat_summary() and add this to the plot:

line + stat_summary(fun.y = mean, geom = "point")

Note that this command is exactly the same as for a bar chart, except that we have 
chosen the point geom rather than a bar. At the moment we have a plot with a symbol 
representing each group mean. If we want to connect these symbols with a line then we use 
stat_summary() again, we again specify fun.y to be the mean, but this time choose the line 
geom. To make the line display we also need to set an aesthetic of group = 1; this is because 
we are joining summary points (i.e., points that summarize a group) rather than individual 
data points. Therefore, we specify the line as:

+ stat_summary(fun.y = mean, geom = "line", aes(group = 1))

The above command will add a solid black line connecting the group means. Let’s imagine 
we want this line to be blue, rather than black, and dashed rather than solid, we can simply 
add these aesthetics into the above command as follows:

+ stat_summary(fun.y = mean, geom = "line", aes(group = 1), colour = "Blue", 
linetype = “dashed”)

Now let’s add an error bar to each group mean. We can do this by adding another layer 
using stat_summary(). When we plotted an error bar on the bar chart we used a normal 
error bar, so this time let’s add an error bar based on bootstrapping. We set the function 
for the data to be mean_cl_boot (fun.data = mean_cl_boot) – see Table 4.4 – and set the 
geom to be errorbar (you could use pointrange as we did for the bar chart if you prefer):

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar")
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The default error bars are quite wide, so I recommend setting the width parameter to 0.2 
to make them look nicer:

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2)

You can, of course, also change the colour and other properties of the error bar in the usual 
way (e.g., by adding colour = “Red” to make them red). Finally, we will add some labels to 
the x- and y-axes using the labs() function:

+ labs(x = "Intervention", y = "Mean Number of Hiccups")

If we put all of these commands together, we can create the graph by executing the fol-
lowing command:

line <- ggplot(hiccups, aes(Intervention_Factor, Hiccups))

line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = 
mean, geom = "line", aes(group = 1),colour = "Blue", linetype = "dashed") 
+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) + 
labs(x = "Intervention", y = "Mean Number of Hiccups")
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FIGURE 4.28
Line chart with 
error bars of the 
mean number 
of hiccups at 
baseline and 
after various 
interventions

The resulting graph in Figure 4.28 displays the mean number of hiccups at baseline and 
after the three interventions (and the confidence intervals of those means based on boot-
strapping). As we will see in Chapter 9, the error bars on graphs of repeated-measures 
designs aren’t corrected for the fact that the data points are dependent; I don’t want to get 
into the reasons why here because I want to keep things simple, but if you’re doing a graph 
of your own data then I would read section 9.2 before you do.

We can conclude that the amount of hiccups after tongue pulling was about the same as 
at baseline; however, carotid artery massage reduced hiccups, but not by as much as a good 
old fashioned digital rectal massage. The moral here is: if you have hiccups, find something 
digital and go amuse yourself for a few minutes.
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4.9.2 2.    Line graphs for several independent variables 2

We all like to text-message (especially students in my lectures who feel the need to text-
message the person next to them to say ‘Bloody hell, this guy is so boring I need to poke 
out my own eyes’). What will happen to the children, though? Not only will they develop 
super-sized thumbs, they might not learn correct written English. Imagine we conducted 
an experiment in which a group of 25 children was encouraged to send text messages on 
their mobile phones over a six-month period. A second group of 25 children was forbidden 
from sending text messages for the same period. To ensure that kids in this latter group 
didn’t use their phones, this group was given armbands that administered painful shocks in 
the presence of radio waves (like those emitted from phones).11 The outcome was a score 
on a grammatical test (as a percentage) that was measured both before and after the inter-
vention. The first independent variable was, therefore, text message use (text messagers 
versus controls) and the second independent variable was the time at which grammatical 
ability was assessed (baseline or after 6 months). The data are in the file Text Messages.dat. 

Load this file into a dataframe called textData by executing this command (I’m assuming 
you have set the working directory to be where the data file is stored):

textData <- read.delim("TextMessages.dat", header = TRUE)

Figure 4.29 shows the data. Note there are three variables:

MM Group: specifies whether they were in the text message group or the control group.

MM Baseline: grammar scores at baseline.

MM Six_months: grammar scores after 6 months.

Each row in the data file represents a different person. These data are again in the wrong 
format for ggplot2. Instead of the current wide format, we need the data in long (i.e., mol-
ten) format (see section 3.9.4). This format will have the following variables:

MM Group: specifies whether they were in the text message group or the control group.

MM Time: specifies whether the score relates to baseline or 6 months.

MM Grammar_Score: the grammar scores.

SELF-TEST

ü	 Restructure the data to a new dataframe called 
textMessages that is in long format. Use the factor() 
function (see section 3.5.4.3) to convert the ‘Time’ 
variable to a factor with levels called ‘Baseline’ and ‘6 
Months’.

Assuming that you have done the self-test, you should now have a dataframe called 
textMessages that is formatted correctly for ggplot2. As ever, we set up our plot object 
(I’ve called it line). This command is the same as before, except that we have set the ‘fill’ 
aesthetic to be the variable Group. This means that any geom specified subsequently will 

11 Although this punished them for any attempts to use a mobile phone, because other people’s phones also emit 
microwaves, an unfortunate side effect was that these children acquired a pathological fear of anyone talking on 
a mobile phone.
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be filled with different colours for text messagers and the control group. Note that we 
have specified the data to be the textMessages dataframe, and for Time to be plotted on the 
x-axis and Grammar_Score on the y-axis.

line <- ggplot(textMessages, aes(Time, Grammar_Score, colour = Group))

If we want to add the means, displayed as symbols, we can add this as a layer to line using 
the stat_summary() function just as we did in the previous section:

line + stat_summary(fun.y = mean, geom = "point") 

To add lines connecting the means we can add these as a layer using stat_summary() in 
exactly the same way as we did in the previous section. The main difference is that because 
in this example we have more than one group, rather than setting aes(group = 1) as we did 
before, we now set this aesthetic to be the variable (Group) that differentiates the different 
sets of means (aes(group = Group)):

+ stat_summary(fun.y = mean, geom = "line", aes(group = Group))

We can also add a layer containing error bars and a layer containing labels using the same 
commands as the previous example:

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) + 
labs(x = "Time", y = "Mean Grammar Score", colour = "Group")

If we put all of these commands together we can create the graph by executing the fol-
lowing command:

line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = 
mean, geom = "line", aes(group = Group)) + stat_summary(fun.data = mean_cl_
boot, geom = "errorbar", width = 0.2) + labs(x = "Time", y = "Mean Grammar 
Score", colour = "Group")

FIGURE 4.29
The text message 
data before being 
reshaped
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SELF-TEST

ü	 Use what you have learnt to repeat the text message 
data plot but to also have different symbols for text 
messagers and controls and different types of lines.

Figure 4.30 shows the resulting chart. It shows that at baseline (before the intervention) 
the grammar scores were comparable in our two groups; however, after the intervention, 
the grammar scores were lower in the text messagers than in the controls. Also, if you look 
at the dark blue line you can see that text messagers’ grammar scores have fallen over the 
6 months; compare this to the controls (the red line on your screen, or black in the figure) 
whose grammar scores are fairly similar over time. We could, therefore, conclude that text 
messaging has a detrimental effect on children’s understanding of English grammar and 
civilization will crumble, with Abaddon rising cackling from his bottomless pit to claim our 
wretched souls. Maybe.
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4.10.  Themes and options 1

I mentioned earlier that ggplot2 produces Tufte-friendly graphs. In fact, it has two built-in 
themes. The default is called theme_grey(), which follows Tufte’s advice in that it uses grid 
lines to ease interpretation but makes them have low visual impact so that they do not dis-
tract the eye from the data. The second theme is a more traditional black and white theme 
called theme_bw(). The two themes are shown in Figure 4.31.

As well as these global themes, the opts() function allows you to control the look of 
specific parts of the plot. For example, you can define a title, set the properties of that title 
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(size, font, colour, etc.). You can also change the look of axes, grid lines, background panels 
and text. You apply theme and formatting instructions by adding a layer to the plot:

myGraph + geom_point() + opts()

Table 4.5 shows these themes, their aesthetic properties and the elements of the plot 
associated with them. The table makes clear that there are four types of theme that 
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FIGURE 4.31
Default graph 
styles in ggplot2: 
the left panel 
shows theme_
grey(), the right 
panel shows 
theme_bw()

Table 4.5  Summary of theme elements and their properties

Theme Properties Elements Element Description

theme_text() family
face
colour
size
hjust
vjust
angle
lineheight

axis.text.x x-axis label

axis.text.y y-axis label

axis.title.x Horizontal tick labels

axis.title.y Vertical tick labels

legend.text Legend labels

legend.title Legend name

plot.title Plot title

strip.text.x Horizontal facet label text

strip.text.y Vertical facet label text

theme_line() colour
size
linetype

panel.grid.major Major grid lines

panel.grid.minor Minor grid lines

theme_segment() colour
size
linetype

axis.line Line along an axis

axis.ticks Axis tick marks

theme_rect() colour
size
linetype
fill

legend.background Background of legend

legend.key Background under legend key

panel.background Background of panel

panel.background Border of panel

plot.background Background of the entire plot

strip.background Background of facet labels
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determine the appearance of text (theme_text), lines (theme_line), axes (theme_segment) 
and rectangles (theme_rect). Each of these themes has properties that can be adjusted; so 
for all of them you can adjust size and colour, for text you can also adjust things like the 
font family and angle, for rectangles you can change the fill colour and so on. Different 
elements of a plot can be changed by adjusting the particular theme attached to that ele-
ment. So, for example, if we wanted to change the colour of the major grid lines to blue, we 
would have to do this by setting the colour aesthetic of the panel.grid.major element using 
theme_line(). Aesthetic properties are set in the same way as described in section 4.4.3. 
Therefore, we would do this as follows:

+ opts(panel.grid.major = theme_line(colour = "Blue"))

Similarly, we could make the axes have blue lines with:

+ opts(axis.line = theme_segment(colour = "Blue"))

or dashed lines by using:

+ opts(axis.line = theme_segment(linetype = 2))

The possibilities are endless, and I can’t explain them all without killing several more 
rainforests, but I hope that you get the general idea.

What have I discovered about statistics? 1

This chapter has looked at how to inspect your data using graphs. We’ve covered a lot 
of different graphs. We began by covering some general advice on how to draw graphs 
and we can sum that up as minimal is best: no pink, no 3-D effects, no pictures of Errol 
your pet ferret superimposed on the graph – oh, and did I mention no pink? We have 
looked at graphs that tell you about the distribution of your data (histograms, boxplots 
and density plots), that show summary statistics about your data (bar charts, error bar 
charts, line charts, drop-line charts) and that show relationships between variables (scat-
terplots). Throughout the chapter we looked at how we can edit graphs to make them 
look minimal (and of course to colour them pink, but we know better than to do that, 
don’t we?).

We also discovered that I liked to explore as a child. I was constantly dragging my dad 
(or was it the other way around?) over piles of rocks along any beach we happened to 
be on. However, at this time I also started to explore great literature, although unlike 
my cleverer older brother who was reading Albert Einstein’s papers (well, Isaac Asimov) 
as an embryo, my literary preferences were more in keeping with my intellect, as we 
will see.

R packages used in this chapter

ggplot2
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R functions used in this chapter

file.path()
geom_boxplot()
geom_density()
geom_histogram()
geom_line()
geom_point()
geom_smooth()

ggplot()
ggsave()
labs()
opts()
qplot()
stat_summary()
Sys.getenv() 

Key terms that I’ve discovered

Bar chart
Boxplot (box–whisker plot)
Chartjunk
Density plot
Error bar chart

Line chart
Outlier
Regression line
Scatterplot

Smart Alex’s tasks

MM Task 1: Using the data from Chapter 3 (which you should have saved, but if you 
didn’t, re-enter it from Table 3.6), plot and interpret the following graphs: 1

	An error bar chart showing the mean number of friends for students and lecturers.
	An error bar chart showing the mean alcohol consumption for students and 

lecturers.
	An error line chart showing the mean income for students and lecturers.
	An error line chart showing the mean neuroticism for students and lecturers.
	A scatterplot with regression lines of alcohol consumption and neuroticism 

grouped by lecturer/student.

MM Task 2: Using the Infidelity data from Chapter 3 (see Smart Alex’s Task 3), plot a 
clustered error bar chart of the mean number of bullets used against self and partner 
for males and females. 1

Answers can be found on the companion website.

Further reading
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics 

Press.
Wainer, H. (1984). How to display data badly. American Statistician, 38(2), 137–147.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.
Wilkinson, L. (2005). The grammar of graphics. New York: Springer-Verlag.
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Wright, D. B., & Williams, S. (2003). Producing bad results sections. The Psychologist, 16, 646–648. 
(This is a very accessible article on how to present data. Dan usually has this article on his website 
so Google Dan Wright to find where his web pages are located.)

Web resources:

http://junkcharts.typepad.com/ is an amusing look at bad graphs.
http://had.co.nz/ggplot2/ is the official ggplot2 website (and very useful it is, too).

Interesting real research
Fesmire, F. M. (1988). Termination of intractable hiccups with digital rectal massage. Annals of 

Emergency Medicine, 17(8), 872.
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5
Exploring assumptions

FIGURE 5.1
I came first in 
the competition 
for who has the 
smallest brain

5.1.  What will this chapter tell me? 1

When we were learning to read at primary school, we used to read versions of stories by 
the famous storyteller Hans Christian Andersen. One of my favourites was the story of 
the ugly duckling. This duckling was a big ugly grey bird, so ugly that even a dog would 
not bite him. The poor duckling was ridiculed, ostracized and pecked by the other ducks. 
Eventually, it became too much for him and he flew to the swans, the royal birds, hoping 
that they would end his misery by killing him because he was so ugly. As he stared into the 
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What are the
assumptions of parametric

data?

water, though, he saw not an ugly grey bird but a beautiful swan. Data are much the same. 
Sometimes they’re just big, grey and ugly and don’t do any of the things that they’re sup-
posed to do. When we get data like these, we swear at them, curse them, peck them and 
hope that they’ll fly away and be killed by the swans. Alternatively, we can try to force our 
data into becoming beautiful swans. That’s what this chapter is all about: assessing how 
much of an ugly duckling of a data set you have, and discovering how to turn it into a swan. 
Remember, though, a swan can break your arm.1

5.2.  What are assumptions? 1

Some academics tend to regard assumptions as rather tedious things about which 
no one really need worry. When I mention statistical assumptions to my fellow 
psychologists they tend to give me that raised eyebrow, ‘good grief, get a life’ 
look and then ignore me. However, there are good reasons for taking assump-
tions seriously. Imagine that I go over to a friend’s house, the lights are on and 
it’s obvious that someone is at home. I ring the doorbell and no one answers. 
From that experience, I conclude that my friend hates me and that I am a ter-
rible, unlovable person. How tenable is this conclusion? Well, there is a reality 
that I am trying to tap (i.e., whether my friend likes or hates me), and I have 
collected data about that reality (I’ve gone to his house, seen that he’s at home, 
rung the doorbell and got no response). Imagine that in reality my friend likes me (he’s a 
lousy judge of character); in this scenario, my conclusion is false. Why have my data led me 
to the wrong conclusion? The answer is simple: I had assumed that my friend’s doorbell 
was working and under this assumption the conclusion that I made from my data was accu-
rate (my friend heard the bell but chose to ignore it because he hates me). However, this 
assumption was not true – his doorbell was not working, which is why he didn’t answer 
the door – and as a consequence the conclusion I drew about reality was completely false. 
It pays to check assumptions and your doorbell batteries.

Enough about doorbells, friends and my social life: the point to remember is that when 
assumptions are broken we stop being able to draw accurate conclusions about reality. 
Different statistical models assume different things, and if these models are going to reflect 
reality accurately then these assumptions need to be true. This chapter is going to deal with 
some particularly ubiquitous assumptions so that you know how to slay these particular 
beasts as we battle our way through the rest of the book. However, be warned: some tests 
have their own unique two-headed, fire-breathing, green-scaled assumptions and these will 
jump out from behind a mound of blood-soaked moss and try to eat us alive when we least 
expect them to. Onward into battle …

5.3.  Assumptions of parametric data 1

Many of the statistical procedures described in this book are paramet-
ric tests based on the normal distribution (which is described in section 
1.7.4). A parametric test is one that requires data from one of the large 
catalogue of distributions that statisticians have described, and for data to 
be parametric certain assumptions must be true. If you use a parametric 
test when your data are not parametric then the results are likely to be 
inaccurate. Therefore, it is very important that you check the assump-
tions before deciding which statistical test is appropriate. Throughout 

1 Although it is theoretically possible, apparently you’d have to be weak boned, and swans are nice and wouldn’t 
do that sort of thing.

Why bother with
assumptions?
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this book you will become aware of my obsession with assumptions and checking them. 
Most parametric tests based on the normal distribution have four basic assumptions that 
must be met for the test to be accurate. Many students find checking assumptions a pretty 
tedious affair, and often get confused about how to tell whether or not an assumption has 
been met. Therefore, this chapter is designed to take you on a step-by-step tour of the 
world of parametric assumptions. Now, you may think that assumptions are not very excit-
ing, but they can have great benefits: for one thing, you can impress your supervisor/
lecturer by spotting all of the test assumptions that they have violated throughout their 
careers. You can then rubbish, on statistical grounds, the theories they have spent their 
lifetime developing – and they can’t argue with you,2 but they can poke your eyes out. The 
assumptions of parametric tests are:

1	 Normally distributed data: This is a tricky and misunderstood assumption because it 
means different things in different contexts. For this reason I will spend most of the 
chapter discussing this assumption. In short, the rationale behind hypothesis test-
ing relies on having something that is normally distributed (in some cases it’s the 
sampling distribution, in others the errors in the model), and so if this assumption 
is not met then the logic behind hypothesis testing is flawed (we came across these 
principles in Chapters 1 and 2). 

2	 Homogeneity of variance: This assumption means that the variances should be the 
same throughout the data. In designs in which you test several groups of participants 
this assumption means that each of these samples comes from populations with the 
same variance. In correlational designs, this assumption means that the variance of 
one variable should be stable at all levels of the other variable (see section 5.7).

3	 Interval data: Data should be measured at least at the interval level. This assumption 
is tested by common sense and so won’t be discussed further (but do read section 
1.5.1.2 again to remind yourself of what we mean by interval data).

4	 Independence: This assumption, like that of normality, is different depending on the 
test you’re using. In some cases it means that data from different participants are inde-
pendent, which means that the behaviour of one participant does not influence the 
behaviour of another. In repeated-measures designs (in which participants are mea-
sured in more than one experimental condition), we expect scores in the experimental 
conditions to be non-independent for a given participant, but behaviour between dif-
ferent participants should be independent. As an example, imagine two people, Paul 
and Julie, were participants in an experiment where they had to indicate whether they 
remembered having seen particular photos earlier on in the experiment. If Paul and 
Julie were to confer about whether they’d seen certain pictures then their answers 
would not be independent: Julie’s response to a given question would depend on Paul’s 
answer, and this would violate the assumption of independence. If Paul and Julie were 
unable to confer (if they were locked in different rooms) then their responses should be 
independent (unless they’re telepathic): Julie’s should not influence Paul’s responses. 
In regression, however, this assumption also relates to the errors in the regression 
model being uncorrelated, but we’ll discuss that more in Chapter 7.

We will, therefore, focus in this chapter on the assumptions of normality and homogeneity 
of variance.

2 When I was doing my Ph.D., we were set a task by our statistics lecturer in which we had to find some published 
papers and criticize the statistical methods in them. I chose one of my supervisor’s papers and proceeded to slag 
off every aspect of the data analysis (and I was being very pedantic about it all). Imagine my horror when my 
supervisor came bounding down the corridor with a big grin on his face and declared that, unbeknownst to me, 
he was the second marker of my essay. Luckily, he had a sense of humour and I got a good mark. 
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5.4.  Packages used in this chapter 1

Some useful packages for exploring data are car, ggplot2 (for graphs), pastecs (for descrip-
tive statistics) and psych. Of course, if you plan to use R Commander then you need the 
Rcmdr package installed too (see section 3.6). If you do not have these packages installed, 
you can install them by executing the following commands:

install.packages("car"); install.packages("ggplot2");

install.packages("pastecs"); install.packages("psych") 

You then need to load these packages by executing the commands:

library(car); library(ggplot2); library(pastecs); library(psych); 
library(Rcmdr)

5.5.  The assumption of normality 1

We encountered the normal distribution back in Chapter 1, we know what it looks like 
and we (hopefully) understand it. You’d think then that this assumption would be easy to 
understand – it just means that our data are normally distributed, right? Actually, no. In 
many statistical tests (e.g., the t-test) we assume that the sampling distribution is normally 
distributed. This is a problem because we don’t have access to this distribution – we can’t 
simply look at its shape and see whether it is normally distributed. However, we know 
from the central limit theorem (section 2.5.1) that if the sample data are approximately 
normal then the sampling distribution will be also. Therefore, people tend to look at their 
sample data to see if they are normally distributed. If so, then they have a little party to 
celebrate and assume that the sampling distribution (which is what actually matters) is also. 
We also know from the central limit theorem that in big samples the sampling distribu-
tion tends to be normal anyway – regardless of the shape of the data we actually collected 
(and remember that the sampling distribution will tend to be normal regardless of the 
population distribution in samples of 30 or more). As our sample gets bigger, then, we 
can be more confident that the sampling distribution is normally distributed (but see Jane 
Superbrain Box 5.1).

The assumption of normality is also important in research using regression (or general 
linear models). General linear models, as we will see in Chapter 7, assume that errors in the 
model (basically, the deviations we encountered in section 2.4.2) are normally distributed.

In both cases it might be useful to test for normality, and that’s what this section is 
dedicated to explaining. Essentially, we can look for normality visually, look at values that 
quantify aspects of a distribution (i.e., skew and kurtosis) and compare the distribution we 
have to a normal distribution to see if it is different.

5.5.1.  �  Oh no, it’s that pesky frequency distribution again: 
checking normality visually 1

We discovered in section 1.7.1 that frequency distributions are a useful way to look at 
the shape of a distribution. In addition, we discovered how to plot these graphs in sec-
tion 4.4.8. Therefore, we are already equipped to look for normality in our sample using 
a graph. Let’s return to the Download Festival data from Chapter 4. Remember that a 
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biologist had visited the Download Festival (a rock and heavy metal festival in the UK) and 
assessed people’s hygiene over the three days of the festival using a standardized technique 
that results in a score ranging between 0 (you smell like a rotting corpse that’s hiding up a 
skunk’s anus) and 4 (you smell of sweet roses on a fresh spring day). The data file can be 
downloaded from the companion website (DownloadFestival.dat) – remember to use the 
version of the data for which the outlier has been corrected (if you haven’t a clue what I 
mean, then read section 4.4.8 or your graphs will look very different from mine!). 

SELF-TEST

ü	 Using what you learnt in Chapter 4, plot histograms 
for the hygiene scores for the three days of the 
Download Festival. (For reasons that will become 
apparent, use geom_histogram(aes(y = ..density..) 
rather than geom_histogram().)

When you drew the histograms, this gave you the distributions. It might be nice to also 
have a plot of what a normal distribution looks like, for comparison purposes. Even better 
would be if that we could put a normal distribution onto the same plot. Well, we can using 
the power of ggplot2. First, load in the data:

dlf <- read.delim("DownloadFestival.dat", header=TRUE)

To draw the histogram, you should have used code something like:

hist.day1 <- ggplot(dlf, aes(day1)) + opts(legend.position = "none") +  
geom_histogram(aes(y = ..density..), colour = "black", fill = "white") + 
labs(x = "Hygiene score on day 1", y = "Density")

hist.day1

To see what this function is doing we can break down the command:

MM ggplot(dlf, aes(day1)): This tells R to plot the day1 variable from the dlf dataframe.

MM opts(legend.position = “none”): This command gets rid of the legend of the graph.

MM geom_histogram(aes(y=..density..), colour = “black”, fill=”white”): This command 
plots the histogram, sets the line colour to be black and the fill colour to be white. 
Notice that we have asked for a density plot rather than frequency because we want 
to plot the normal curve.

MM labs(x = “Hygiene score on day 1”, y = “Density”): this command sets the labels for 
the x- and y-axes.

We can add another layer to the chart, which is a normal curve. We need to tell ggplot2 
what mean and standard deviation we’d like on that curve though.  And what we’d like is 
the same mean and standard deviation that we have in our data. To add the normal curve, 
we take the existing histogram object (hist.day1) and add a new layer that uses stat_func-
tion() to produce a normal curve and lay it on top of the histogram:

hist.day1 + stat_function(fun = dnorm, args = list(mean = mean(dlf$day1,  
na.rm = TRUE), sd = sd(dlf$day1, na.rm = TRUE)), colour = "black", size = 1)

The stat_function() command draws the normal curve using the function dnorm(). This 
function basically returns the probability (i.e., the density) for a given value from a normal 
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distribution of known mean and standard deviation. The rest of the command specifies the 
mean as being the mean of the day1 variable after removing any missing values (mean = 
mean (dlf$day1, na.rm = TRUE)), and the standard deviation as being that of day1 (), sd = 
sd(dlf$day1, na.rm = TRUE)). We also set the line colour as black and the line width as 1.3

SELF-TEST

ü	 Add normal curves to the histograms that you drew 
for day2 and day3.

There is another useful graph that we can inspect to see if a distribution is normal called a 
Q-Q plot (quantile–quantile plot; a quantile is the proportion of cases we find below a certain 
value). This graph plots the cumulative values we have in our data against the cumulative 
probability of a particular distribution (in this case we would specify a normal distribu-
tion). What this means is that the data are ranked and sorted. Each value is compared to 
the expected value that the score should have in a normal distribution and they are plotted 
against one another. If the data are normally distributed then the actual scores will have the 
same distribution as the score we expect from a normal distribution, and you’ll get a lovely 
straight diagonal line. If values fall on the diagonal of the plot then the variable is normally 
distributed, but deviations from the diagonal show deviations from normality.

To draw a Q-Q plot using the ggplot2 package, we can use the qplot() function in con-
junction with the qq statistic. Execute the following code:

qqplot.day1 <- qplot(sample = dlf$day1, stat="qq")

qqplot.day1

(Note that by default ggplot2 assumes you want to compare your distribution with a nor-
mal distribution – you can change that if you want to, but it’s so rare that we’re not going 
to worry about it here.)

SELF-TEST

ü	 Create Q-Q plots for the variables day2 and day3.

Figure 5.2 shows the histograms (from the self-test task) and the corresponding Q-Q 
plots. The first thing to note is that the data from day 1 look a lot more healthy since we’ve 
removed the data point that was mistyped back in section 4.7. In fact the distribution is 
amazingly normal looking: it is nicely symmetrical and doesn’t seem too pointy or flat – 
these are good things! This is echoed by the Q-Q plot: note that the data points all fall very 
close to the ‘ideal’ diagonal line.

3 I have built up the histogram and normal plot in two stages because I think it makes it easier to understand what 
you’re doing, but you could build the plot in a single command:

hist.day1 <- ggplot(dlf, aes(day1)) + opts(legend.position = "none") + geom_
histogram(aes(y = ..density..), colour = "black", fill = "white") + labs(x = 
"Hygiene score on day 1", y = "Density") + stat_function(fun = dnorm, args = 
list(mean = mean(dlf$day1, na.rm = TRUE), sd = sd(dlf$day1, na.rm = TRUE)), colour 
= "black", size = 1)

hist.day1
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However, the distributions for days 2 and 3 are not nearly as symmetrical. In fact, they 
both look positively skewed. Again, this can be seen in the Q-Q plots by the data val-
ues deviating away from the diagonal. In general, what this seems to suggest is that by 
days 2 and 3, hygiene scores were much more clustered around the low end of the scale. 
Remember that the lower the score, the less hygienic the person is, so this suggests that 
generally people became smellier as the festival progressed. The skew occurs because a 
substantial minority insisted on upholding their levels of hygiene (against all odds!) over 

FIGURE 5.2
Histograms (left) 
and Q-Q plots 
(right) of the 
hygiene scores 
over the three 
days of the 
Download Festival
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the course of the festival (I find baby wet-wipes are indispensable). However, these skewed 
distributions might cause us a problem if we want to use parametric tests. In the next sec-
tion we’ll look at ways to try to quantify the skew and kurtosis of these distributions.

5.5.2.    Quantifying normality with numbers 1

It is all very well to look at histograms, but they are subjective and open to abuse (I can 
imagine researchers sitting looking at a completely distorted distribution and saying ‘yep, 
well Bob, that looks normal to me’, and Bob replying ‘yep, sure does’). Therefore, having 
inspected the distribution of hygiene scores visually, we can move on to look at ways to quan-
tify the shape of the distributions and to look for outliers. To further explore the distribution 
of the variables, we can use the describe() function, in the psych package.

describe(dlf$day1)

We can also use the stat.desc() function of the pastecs package,4 which takes the general 
form:

stat.desc(variable name, basic = TRUE, norm = FALSE)

In this function, we simply name our variable and by default (i.e., if we simply name a vari-
able and don’t include the other commands) we’ll get a whole host of statistics including 
some basic ones such as the number of cases (because basic = TRUE by default) but not 
including statistics relating to the normal distribution (because norm = FALSE by default). 
To my mind the basic statistics are not very useful so I usually specify basic = FALSE (to 
get rid of these), but in the current context it is useful to override the default and specify 
norm = TRUE so that we get statistics relating to the distribution of scores. Therefore, we 
could execute:

stat.desc(dlf$day1, basic = FALSE, norm = TRUE)

Note that we have specified the variable day1 in the dlf dataframe, asked not to see the 
basic statistics (basic = FALSE) but asked to see the normality statistics (norm = TRUE).

We can also use describe() and stat.desc() with more than one variable at the same time, 
using the cbind() function to combine two or more variables (see R’s Souls’ Tip 3.5).

describe(cbind(dlf$day1, dlf$day2, dlf$day3))

stat.desc(cbind(dlf$day1, dlf$day2, dlf$day3), basic = FALSE, norm = TRUE)

Note that in each case we have simply replaced a single variable with cbind(dlf$day1, 
dlf$day2, dlf$day3) which combines the three variables day1, day2, and day3 into a single 
object.

A second way to describe more than one variable is to select the variable names directly 
from the data set (see section 3.9.1):

describe(dlf[,c("day1", "day2", "day3")])

stat.desc(dlf[, c("day1", "day2", "day3")], basic = FALSE, norm = TRUE)

4 There’s always a second way to do something with R. And often a third, fourth and fifth way.  While writing this 
book Jeremy and I would often look at each other’s bits (and sometimes what we’d written too) and then send an 
email saying ‘oh, I didn’t know you could do that, I always use a different function in a different package’. People 
can become quite attached to their ‘favourite’ way of doing things in R, but obviously we’re way too cool to have 
favourite ways of doing stats, which is why I didn’t at all insist on adding reams of stuff on stat.desc() because I 
prefer it to Jeremy’s crappy old describe() function.
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Remember that we can select rows and columns using [rows, columns], therefore, dlf[, 
c(“day1”, “day2”, “day3”)] means from the dlf dataframe select all of the rows (because 
nothing is specified before the comma) and select the columns labelled day1, day2, and 
day3 (because we have specified c(“day1”, “day2”, “day3”)).

          R ’s  Souls ’  T ip  5 .1   Funny numbers 1

You might notice that R sometimes reports numbers with the letter ‘e’ placed in the mix just to confuse you. For 
example, you might see a value such as 9.612 e−02 and many students find this notation confusing. Well, this 
notation means 9.612 × 10−2 (which might be a more familiar notation, or could be even more confusing). OK, 
some of you are still confused. Well think of e−02 as meaning ‘move the decimal place 2 places to the left’, so 
9.612 e−02 becomes 0.09612. If the notation read 9.612 e−01, then that would be 0.9612, and if it read 9.612 
e−03, that would be 0.009612. Likewise, think of e+02 (notice the minus sign has changed) as meaning ‘move 
the decimal place 2 places to the right’. So 9.612 e+02 becomes 961.2.

The results of these commands are shown in Output 5.1 (describe) and Output 5.2 
(stat.desc). These outputs basically contain the same values5 although they are presented 
in a different notation in Output 5.2 (see R’s Souls’ Tip 5.1). We can see that, on average, 
hygiene scores were 1.77 (out of 4) on day 1 of the festival, but went down to 0.96 and 
0.98 on days 2 and 3, respectively. The other important measures for our purposes are the 
skew and the kurtosis (see section 1.7.1). The values of skew and kurtosis should be zero 
in a normal distribution. Positive values of skew indicate a pile-up of scores on the left of 
the distribution, whereas negative values indicate a pile-up on the right. Positive values of 
kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate 
a flat and light-tailed distribution. The further the value is from zero, the more likely it is 
that the data are not normally distributed. For day 1 the skew value is very close to zero 
(which is good) and kurtosis is a little negative. For days 2 and 3, though, there is a skew 
of around 1 (positive skew).

Although the values of skew and kurtosis are informative, we can convert these values 
to z-scores. We saw in section 1.7.4 that a z-score is simply a score from a distribution 
that has a mean of 0 and a standard deviation of 1. We also saw that this distribution has 
known properties that we can use. Converting scores to a z-score can be useful (if treated 
with suitable caution) because (1) we can compare skew and kurtosis values in different 
samples that used different measures, and (2) we can see how likely our values of skew and 
kurtosis are to occur. To transform any score to a z-score you simply subtract the mean of 
the distribution (in this case zero) and then divide by the standard deviation of the distribu-
tion (in this case we use the standard error). Skew and kurtosis are converted to z-scores 
in exactly this way.

zskewness
skewness

=
−S

SE
0

	 z
K

SEkurtosis
kurtosis

=
− 0

5 The observant will notice that the values of kurtosis differ, this is because describe() produces an unbiased esti-
mate (DeCarlo, 1997) whereas stat.desc() produces a biased one.
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In the above equations, the values of S (skew) and K (kurtosis) and their respective stan-
dard errors are produced by R. These z-scores can be compared against values that you 
would expect to get by chance alone (i.e., known values for the normal distribution shown 
in the Appendix). So, an absolute value greater than 1.96 is significant at p < .05, above 
2.58 is significant at p < .01, and above 3.29 is significant at p < .001. Large samples 
will give rise to small standard errors and so when sample sizes are big, significant values 
arise from even small deviations from normality. In smallish samples it’s OK to look for 
values above 1.96; however, in large samples this criterion should be increased to the 2.58 
one and in very large samples, because of the problem of small standard errors that I’ve 
described, no criterion should be applied. If you have a large sample (200 or more) it is 
more important to look at the shape of the distribution visually and to look at the value of 
the skew and kurtosis statistics rather than calculate their significance.

var n  mean  sd median trimmed mad  min  max range skew kurtosis se
 1 809 1.77 0.69  1.79  1.77  0.70 0.02 3.69 3.67  0.00 -0.41  0.02
 2 264 0.96 0.72  0.79  0.87  0.61 0.00 3.44 3.44  1.08  0.82  0.04
 3 123 0.98 0.71  0.76  0.90  0.61 0.02 3.41 3.39  1.01  0.73  0.06

Output 5.1

                     day1         day2         day3
median        1.790000000 7.900000e-01 7.600000e-01
mean          1.770828183 9.609091e-01 9.765041e-01
SE.mean       0.024396670 4.436095e-02 6.404352e-02
CI.mean.0.95  0.047888328 8.734781e-02 1.267805e-01
var           0.481514784 5.195239e-01 5.044934e-01
std.dev       0.693912663 7.207801e-01 7.102770e-01
coef.var      0.391857702 7.501022e-01 7.273672e-01
skewness     -0.003155393 1.082811e+00 1.007813e+00
skew.2SE     -0.018353763 3.611574e+00 2.309035e+00
kurtosis     -0.423991408 7.554615e-01 5.945454e-01
kurt.2SE     -1.234611514 1.264508e+00 6.862946e-01
normtest.W    0.995907247 9.083185e-01 9.077513e-01
normtest.p    0.031846386 1.281495e-11 3.804334e-07

Output 5.2

The stat.desc() function produces skew.2SE and kurt.2SE, which are the skew and kur-
tosis value divided by 2 standard errors. Remember that z is significant if it is greater than 
2 (well, 1.96), therefore this statistic is simply the equations above in a slightly different 
format. We have said that if the skew divided by its standard error is greater than 2 then it 
is significant (at p < .05), which is the same as saying that if the skew divided by 2 times 
the standard error is greater than 1 then it is significant (at p < .05). In other words, if 
skew.2SE or kurt.2SE are greater than 1 (ignoring the plus or minus sign) then you have 
significant skew/kurtosis (at p < .05); values greater than 1.29 indicate significance at p 
< .01, and above 1.65 indicate significance at p < .001. However, as I have just said, you 
would only use this criterion in fairly small samples so you need to interpret these values 
of skew.2SE or kurt.2SE cautiously. 

For the hygiene scores, the values of skew.2SE are -0.018, 3.612, and 2.309 for days 1, 
2 and 3 respectively, indicating significant skew on days 2 and 3; the values of kurt.2SE 
are -1.235, 1.265, and 0.686, indicating significant kurtosis on days 1 and 2, but not day 
3. However, bear in mind what I just said about large samples because our sample size is 
pretty big so the histograms are better indicators of the shape of the distribution.

The output of stat.desc() also gives us the Shapiro–Wilk test of normality, which we look 
at in some detail in section 5.6. For the time being, just note that the test and its probability 
value can be found in Output 5.2 labelled as normtest.W and normtest.p.
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          R ’s  Souls ’  T ip  5 .2  
 �Changing how many decimal places are 
displayed in your output 1

Output 5.2 looks pretty horrible because of all of the decimal places and the scientific notation (i.e., 7.900000e–
01). Most of this precision is unnecessary for everyday purposes. However, we can easily convert our output 
using the round() function. This function takes the general form:

round(object that we want to round, digits = x)

Therefore, we can stick an object into this function and then set digits to be the number of decimal places that we 
want. For example, if we wanted Output 5.2 to be displayed to 3 decimal places we could execute:

round(stat.desc(dlf[, c("day1", "day2", "day3")], basic = FALSE, norm = TRUE), digits 
= 3)

Note that we have simply placed the original command (stat.desc(dlf[, c(“day1”, “day2”, “day3”)], basic = FALSE, 
norm = TRUE)) within the round() function, and then set digits to be 3. The result is a more palatable output:

               day1  day2  day3
median        1.790 0.790 0.760
mean          1.771 0.961 0.977
SE.mean       0.024 0.044 0.064
CI.mean.0.95  0.048 0.087 0.127
var           0.482 0.520 0.504
std.dev       0.694 0.721 0.710
coef.var      0.392 0.750 0.727
skewness     -0.003 1.083 1.008
skew.2SE     -0.018 3.612 2.309
kurtosis     -0.424 0.755 0.595
kurt.2SE     -1.235 1.265 0.686
normtest.W    0.996 0.908 0.908
normtest.p    0.032 0.000 0.000 

             CRAMMING SAM’S TIPS    Skew and kurtosis

·	� To check that the distribution of scores is approximately normal, we need to look at the values of skew and kurtosis in the 
output.

·	 Positive values of skew indicate too many low scores in the distribution, whereas negative values indicate a build-up of high 
scores.

·	 Positive values of kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate a flat and light-
tailed distribution.

·	 The further the value is from zero, the more likely it is that the data are not normally distributed.
·	 You can test the significance of these values of skew and kurtosis, but these tests should not be used in large samples 

(because they are likely to be significant even when skew and kurtosis are not too different from normal).
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Can I analyse
groups of data? 

5.5.3.    Exploring groups of data 1

Sometimes we have data in which there are different groups of entities (cats 
and dogs, different universities, people with depression and people without, 
for example). There are several ways to produce basic descriptive statistics for 
separate groups of people (and we will come across some of these methods in 
section 5.6.1). However, I intend to use this opportunity to introduce you to 
the by() function and reintroduce the subset() function from Chapter 3. These 
functions allow you to specify a grouping variable which splits the data, or to 
select a subset of cases. 

You’re probably getting sick of the hygiene data from the Download Festival 
so let’s use the data in the file RExam.dat. This file contains data regarding stu-
dents’ performance on an R exam. Four variables were measured: exam (first-
year R exam scores as a percentage), computer (measure of computer literacy 
as a percentage), lecture (percentage of R lectures attended) and numeracy (a 
measure of numerical ability out of 15). There is a variable called uni indicating whether 
the student attended Sussex University (where I work) or Duncetown University. Let’s 
begin by looking at the data as a whole.

5.5.3.1.  Running the analysis for all data 1

To begin with, open the file RExam.dat by executing:

rexam <- read.delim("rexam.dat", header=TRUE)

The variable uni will have loaded in as numbers rather than as text, because that was 
how it was specified in the data file; therefore, we need to set the variable uni to be a factor 
by executing (see section 3.5.4.3):

rexam$uni<-factor(rexam$uni, levels = c(0:1), labels = c("Duncetown 
University", "Sussex University"))

Remember that this command takes the variable uni from the rexam dataframe (rexam$uni), 
specifies the numbers used to code the two universities, 0 and 1 (levels = c(0:1)), and then 
assigns labels to them so that 0 represents Duncetown University, and 1 represents Sussex 
University (labels = c(“Duncetown University”, “Sussex University”)).

SELF-TEST

ü	 Using what you have learnt so far, obtain descriptive 
statistics and draw histograms of first-year exam 
scores, computer literacy, numeracy and lectures 
attended.

Assuming you completed the self-test, you should see something similar to what’s in 
Output 5.3 (I used stat.desc()) and Figure 5.3. From Output 5.3, we can see that, on
average, students attended nearly 60% of lectures, obtained 58% in their R exam, 
scored only 51% on the computer literacy test, and only 4.85 out of 15 on the numer-
acy test. In addition, the standard deviation for computer literacy was relatively small 
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compared to that of the percentage of lectures attended and exam scores. The other 
important measures are the skew and the kurtosis, and their associated tests of sig-
nificance. We came across these measures earlier on and found that we can interpret 
absolute values of kurt.2SE and skew.2SE greater than 1, 1.29, and 1.65 as significant 
p < .05, p < .01, and p < .001, respectively. We can see that for skew, numeracy scores 
are significantly positively skewed (p < .001) indicating a pile-up of scores on the left 
of the distribution (so most students got low scores). For kurtosis, prior exam scores 
are significant (p < .05).

The histograms show us several things. The exam scores are very interesting because this 
distribution is quite clearly not normal; in fact, it looks suspiciously bimodal (there are two 
peaks, indicative of two modes). This observation corresponds with the earlier informa-
tion from the table of descriptive statistics. It looks as though computer literacy is fairly 
normally distributed (a few people are very good with computers and a few are very bad, 
but the majority of people have a similar degree of knowledge), as is the lecture attendance. 
Finally, the numeracy test has produced very positively skewed data (i.e., the majority of 
people did very badly on this test and only a few did well). This corresponds to what the 
skew statistic indicated.

FIGURE 5.3
Histograms 
of the R exam 
data
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                exam computer lectures numeracy
median        60.000   51.500   62.000    4.000
mean          58.100   50.710   59.765    4.850
SE.mean        2.132    0.826    2.168    0.271
CI.mean.0.95   4.229    1.639    4.303    0.537
var          454.354   68.228  470.230    7.321
std.dev       21.316    8.260   21.685    2.706
coef.var       0.367    0.163    0.363    0.558
skewness      -0.104   -0.169   -0.410    0.933
skew.2SE      -0.215   -0.350   -0.849    1.932
kurtosis      -1.148    0.221   -0.285    0.763
kurt.2SE      -1.200    0.231   -0.298    0.798
normtest.W     0.961    0.987    0.977    0.924
normtest.p     0.005    0.441    0.077    0.000

Output 5.3

Descriptive statistics and histograms are a good way of getting an instant picture of the 
distribution of your data. This snapshot can be very useful: for example, the bimodal distri-
bution of R exam scores instantly indicates a trend that students are typically either very good 
at statistics or struggle with it (there are relatively few who fall in between these extremes). 
Intuitively, this finding fits with the nature of the subject: statistics is very easy once every-
thing falls into place, but before that enlightenment occurs it all seems hopelessly difficult.

5.5.3.2.  Running the analysis for different groups 1

If we want to obtain separate descriptive statistics for each of the universities, we can use 
the by() function.6 The by() function takes the general form:

by(data = dataFrame, INDICES = grouping variable, FUN = a function that you 
want to apply to the data)

In other words, we simply enter the name of our dataframe or variables that we’d like to anal-
yse, we specify a variable by which we want to split the output (in this case, it’s uni, because we 
want separate statistics for each university), and we tell it which function we want to apply to 
the data (in this case we could use describe or stat.desc). Therefore, to get descriptive statistics 
for the variable exam for each university separately using describe, we could execute:

by(data = rexam$exam, INDICES = rexam$uni, FUN = describe)

To do the same, but using stat.desc() instead of describe() we could execute:

by(data = rexam$exam, INDICES = rexam$uni, FUN = stat.desc)

In both cases, we can get away with not explicitly using data, INDICES and FUN as long 
as we order the variables in the order in the functions above; so, these commands have the 
same effect as those above:

by(rexam$exam, rexam$uni, describe)
by(rexam$exam, rexam$uni, stat.desc)

Finally, you can include any options for the function you’re using by adding them in at the 
end; for example, if you’re using stat.desc() you can specify not to have basic statistics and 
to have normality statistics by including those options:

by(rexam$exam, rexam$uni, stat.desc, basic = FALSE, norm = TRUE)

6 by() is what is known as a ‘wrapper’ function – that is, it takes a more complicated function and simplifies it 
for people like me. by() is a wrapper for a very powerful and clever function, called tapply(), which can do all 
sorts of things, but is harder to use, so we use by() instead, which just takes our commands and turns them into 
commands for tapply(). 
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If we want descriptive statistics for multiple variables, then we can use cbind() (see R’s 
Souls’ Tip 3.5) to include them within the by() function. For example, to look at the 
descriptive statistics of both the previous R exam and the numeracy test, we could execute:

by(cbind(data=rexam$exam,data=rexam$numeracy), rexam$uni, describe)

or

by(rexam[, c("exam", "numeracy")], rexam$uni, stat.desc, basic = FALSE, 
norm = TRUE)

Note that the resulting Output 5.4 (which was created using describe rather than 
stat.desc) is split into two sections: first the results for students at Duncetown 
University, then the results for those attending Sussex University. From these tables it 
is clear that Sussex students scored higher on both their R exam (called V1 here) and 
the numeracy test than their Duncetown counterparts. In fact, looking at the means 
reveals that, on average, Sussex students scored an amazing 36% more on the R exam 
than Duncetown students, and had higher numeracy scores too (what can I say, my 
students are the best).

INDICES: Duncetown University
   var  n  mean    sd median trimmed   mad min max range skew kurtosis   se
V1   1 50 40.18 12.59     38   39.85 12.60  15  66    51 0.29    -0.57 1.78
V2   2 50  4.12  2.07      4    4.00  2.22   1   9     8 0.48    -0.48 0.29
--------------------------------------------------------------------- 
INDICES: Sussex University
   var  n  mean    sd median trimmed  mad min max range skew kurtosis   se
V1   1 50 76.02 10.21     75   75.70 8.90  56  99    43 0.26    -0.26 1.44
V2   2 50  5.58  3.07      5    5.28 2.97   1  14    13 0.75     0.26 0.43

Output 5.4

Next, we’ll look at the histograms. It might be possible to use by() with ggplot2() to draw 
histograms, but if it is the command will be so complicated that no one will understand it. 
A simple way, therefore, to create plots for different groups is to use the subset() function, 
which we came across in Chapter 3 (section 3.9.2) to create an object containing only the 
data in which we’re interested. For example, if we wanted to create separate histograms for 
the Duncetown and Sussex Universities then we could create new dataframes that contain 
data from only one of the two universities. For example, execute:

dunceData<-subset(rexam, rexam$uni=="Duncetown University")
sussexData<-subset(rexam, rexam$uni=="Sussex University")

These commands each create a new dataframe that is based on a subset of the rexam 
dataframe; the subset is determined by the condition in the function. The first command 
contains the condition rexam$uni==“Duncetown University”, which means that if the 
value of the variable uni is exactly equal to the phrase “Duncetown University” then 
the case is selected. In other words, it will retain all cases for which uni is Duncetown 
University. Therefore, I’ve called the resulting dataframe dunceData. The second com-
mand does the same thing but this time specifies that uni must be exactly equal to the 
phrase ‘Sussex University’. The resulting dataframe, sussexData, contains only the Sussex 
University scores. This is a quick and easy way to split groups; however, you need to be 
careful that the term you specify to select cases (e.g., ‘Duncetown University’) exactly 
matches (including capital letters and spaces) the labelling in the data set otherwise you’ll 
end up with an empty data set.

Having created our separate dataframes, we can generate histograms using the same 
commands as before, but specifying the dataframe for the subset of data. For example, to 
create a histogram of the numeracy scores for Duncetown University, we could execute:
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hist.numeracy.duncetown <- ggplot(dunceData, aes(numeracy)) + opts(legend.
position = "none") + geom_histogram(aes(y = ..density..), fill = "white", 
colour = "black", binwidth = 1) + labs(x = "Numeracy Score", y = "Density") 
+ stat_function(fun=dnorm, args=list(mean = mean(dunceData$numeracy,  
na.rm = TRUE), sd = sd(dunceData$numeracy, na.rm = TRUE)), colour = "blue", 
size=1)
hist.numeracy.duncetown

Compare this code with that in section 5.5.1; note that it is exactly the same, but we have 
used the dunceData dataframe instead of using the whole data set.7 We could create the 
same plot for the Sussex University students by simply using sussexData in place of dunce-
Data in the command.

We could repeat these commands for the exam scores by replacing ‘numeracy’ with 
‘exam’ throughout the commands above (this will have the effect of plotting exam scores 
rather than numeracy scores). Figure 5.4 shows the histograms of exam scores and numer-
acy split according to the university attended. The first interesting thing to note is that for 
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7 Note that I have included ‘binwidth = 1’ (see Chapter 4) for the numeracy scores because it makes the result-
ing plot look better; for the other variables this option can be excluded because the default bin width produces 
nice-looking plots.

FIGURE 5.4
Distributions 
of exam and 
numeracy scores 
for Duncetown 
University and 
Sussex University 
students
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exam marks the distributions are both fairly normal. This seems odd because the overall 
distribution was bimodal. However, it starts to make sense when you consider that for 
Duncetown the distribution is centred on a mark of about 40%, but for Sussex the distri-
bution is centred on a mark of about 76%. This illustrates how important it is to look at 
distributions within groups. If we were interested in comparing Duncetown to Sussex it 
wouldn’t matter that overall the distribution of scores was bimodal; all that’s important is 
that each group comes from a normal distribution, and in this case it appears to be true. 
When the two samples are combined, these two normal distributions create a bimodal 
one (one of the modes being around the centre of the Duncetown distribution, and the 
other being around the centre of the Sussex data). For numeracy scores, the distribution is 
slightly positively skewed (there is a larger concentration at the lower end of scores) in both 
the Duncetown and Sussex groups. Therefore, the overall positive skew observed before is 
due to the mixture of universities. 

SELF-TEST

ü	 Repeat these analyses for the computer literacy and 
percentage of lectures attended and interpret the 
results.

5.6.  Testing whether a distribution is normal 1

Another way of looking at the problem is to see whether the distribution as 
a whole deviates from a comparable normal distribution. The Shapiro–Wilk 
test does just this: it compares the scores in the sample to a normally dis-
tributed set of scores with the same mean and standard deviation. If the test 
is non-significant (p > .05) it tells us that the distribution of the sample is 
not significantly different from a normal distribution. If, however, the test is 
significant (p < .05) then the distribution in question is significantly differ-
ent from a normal distribution (i.e., it is non-normal). This test seems great: 
in one easy procedure it tells us whether our scores are normally distributed 
(nice!). However, it has limitations because with large sample sizes it is very 
easy to get significant results from small deviations from normality, and so a 

significant test doesn’t necessarily tell us whether the deviation from normality is enough 
to bias any statistical procedures that we apply to the data. I guess the take-home message 
is: by all means use these tests, but plot your data as well and try to make an informed 
decision about the extent of non-normality.

5.6.1.    Doing the Shapiro–Wilk test in R 1

We have already encountered the Shapiro–Wilk test as part of the output from the stat.
desc() function (see Output 5.2 and, for these data, Output 5.3). However, we can also use 
the shapiro.test() function. This function takes the general form:

shapiro.test(variable)

Is it possible to test
whether I am normal?
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in which variable is the name of the variable that you’d like to test for normality. Therefore, 
to test the exam and numeracy variables for normality we would execute:

shapiro.test(rexam$exam)
shapiro.test(rexam$numeracy)

The output is shown in Output 5.5. Note that the value of W corresponds to the value 
of normtest.W, and the p-value corresponds to normtest.p from the stat.desc() function 
(Output 5.3). For each test we see the test statistic, labelled W, and the p-value. Remember 
that a significant value (p-value less than .05) indicates a deviation from normality. For 
both numeracy (p = .005) and R exam scores (p < .001), the Shapiro–Wilk test is highly 
significant, indicating that both distributions are not normal. This result is likely to reflect 
the bimodal distribution found for exam scores, and the positively skewed distribution 
observed in the numeracy scores. However, these tests confirm that these deviations were 
significant (but bear in mind that the sample is fairly big).

	 Shapiro-Wilk normality test

data:  rexam$exam 
W = 0.9613, p-value = 0.004991

	 Shapiro-Wilk normality test

data:  rexam$numeracy 
W = 0.9244, p-value = 2.424e-05

Output 5.5

As a final point, bear in mind that when we looked at the exam scores for separate 
groups, the distributions seemed quite normal; now if we’d asked for separate Shapiro–
Wilk tests for the two universities we might have found non-significant results. In fact, let’s 
try this out, using the by() function we came across earlier. We use shapiro.test as the FUN 
instead of describe or stat.desc, which we have used before (although stat.desc would also 
give you the Shapiro–Wilk test as part of the output so you could use this function also):

by(rexam$exam, rexam$uni, shapiro.test)
by(rexam$numeracy, rexam$uni, shapiro.test)

You should get Output 5.6 for the exam scores, which shows that the percentages on the 
R exam are indeed normal within the two groups (the p-values are greater than .05). This 
is important because if our analysis involves comparing groups, then what’s important is 
not the overall distribution but the distribution in each group. 

rexam$uni: Duncetown University

	 Shapiro-Wilk normality test

data:  dd[x, ] 
W = 0.9722, p-value = 0.2829

------------------------------------------------------------------- 
rexam$uni: Sussex University

	 Shapiro-Wilk normality test

data:  dd[x, ] 
W = 0.9837, p-value = 0.7151

Output 5.6
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For numeracy scores (Output 5.7) the tests are still significant indicating non-normal 
distributions both for Duncetown University (p = .015), and Sussex University (p = .007).

rexam$uni: Duncetown University

	 Shapiro-Wilk normality test

data:  dd[x, ] 
W = 0.9408, p-value = 0.01451

------------------------------------------------------------------- 

rexam$uni: Sussex University

	 Shapiro-Wilk normality test

data:  dd[x, ] 
W = 0.9323, p-value = 0.006787

Output 5.7

We can also draw Q-Q plots for the variables, to help us to interpret the results of the 
Shapiro–Wilk test (see Figure 5.5). 

qplot(sample = rexam$exam, stat="qq")
qplot(sample = rexam$numeracy, stat="qq")

The normal Q-Q chart plots the values you would expect to get if the distribution were 
normal (theoretical values) against the values actually seen in the data set (sample values). 
If the data are normally distributed, then the observed values (the dots on the chart) should 
fall exactly along a straight line (meaning that the observed values are the same as you 
would expect to get from a normally distributed data set). Any deviation of the dots from 
the line represents a deviation from normality. So, if the Q-Q plot looks like a wiggly snake 
then you have some deviation from normality. Specifically, when the line sags consistently 
below the diagonal, or consistently rises above it, then this shows that the kurtosis differs 
from a normal distribution, and when the curve is S-shaped, the problem is skewness.

In both of the variables analysed we already know that the data are not normal, and these 
plots (see Figure 5.5) confirm this observation because the dots deviate substantially from 
the line. It is noteworthy that the deviation is greater for the numeracy scores, and this is 
consistent with the higher significance value of this variable on the Shapiro–Wilk test. 
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5.6.2.    Reporting the Shapiro–Wilk test 1

The test statistic for the Shapiro–Wilk test is denoted by W; we can report the results in 
Output 5.5 in the following way:

 �The percentage on the R exam, W = 0.96, p = .005, and the numeracy scores, W = 
0.92, p < .001, were both significantly non-normal. 

             CRAMMING SAM’S TIPS    Normality tests

·	� The Shapiro–Wilk test can be used to see if a distribution of scores significantly differs from a normal distribution.
·	 If the Shapiro–Wilk test is significant (p-value less than .05) then the scores are significantly different from a normal 

distribution.
·	 Otherwise, scores are approximately normally distributed. 
·	 Warning: In large samples this test can be significant even when the scores are only slightly different from a normal dis-

tribution. Therefore, they should always be interpreted in conjunction with histograms, or Q-Q plots, and the values of skew 
and kurtosis.

5.7.  Testing for homogeneity of variance 1

So far I’ve concentrated on the assumption of normally distributed data; however, at the 
beginning of this chapter I mentioned another assumption: homogeneity of variance. This 
assumption means that as you go through levels of one variable, the variance of the other 
should not change. If you’ve collected groups of data then this means that the variance of 
your outcome variable or variables should be the same in each of these groups. If you’ve 
collected continuous data (such as in correlational designs), this assumption means that the 
variance of one variable should be stable at all levels of the other variable. Let’s illustrate 
this with an example. An audiologist was interested in the effects of loud concerts on peo-
ple’s hearing. So, she decided to send 10 people on tour with the loudest band she could 
find, Motörhead. These people went to concerts in Brixton (London), Brighton, Bristol, 
Edinburgh, Newcastle, Cardiff and Dublin and after each concert the audiologist measured 
the number of hours after the concert that these people had ringing in their ears.

Figure 5.6 shows the number of hours that each person had ringing in his or her ears 
after each concert (each person is represented by a circle). The horizontal lines represent 
the average number of hours that there was ringing in the ears after each concert and these 
means are connected by a line so that we can see the general trend of the data. Remember 
that for each concert, the circles are the scores from which the mean is calculated. Now, we 
can see in both graphs that the means increase as the people go to more concerts. So, after 
the first concert their ears ring for about 12 hours, but after the second they ring for about 
15–20 hours, and by the final night of the tour, they ring for about 45–50 hours (2 days). 
So, there is a cumulative effect of the concerts on ringing in the ears. This pattern is found 
in both graphs; the difference between the graphs is not in terms of the means (which are 
roughly the same), but in terms of the spread of scores around the mean. If you look at the 
left-hand graph, the spread of scores around the mean stays the same after each concert 
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(the scores are fairly tightly packed around the mean). Put it another way, if you measured 
the vertical distance between the lowest score and the highest score after the Brixton con-
cert, and then did the same after the other concerts, all of these distances would be fairly 
similar. Although the means increase, the spread of scores for hearing loss is the same at 
each level of the concert variable (the spread of scores is the same after Brixton, Brighton, 
Bristol, Edinburgh, Newcastle, Cardiff and Dublin). This is what we mean by homogeneity 
of variance. The right-hand graph shows a different picture: if you look at the spread of 
scores after the Brixton concert, they are quite tightly packed around the mean (the vertical 
distance from the lowest score to the highest score is small), but after the Dublin show (for 
example) the scores are very spread out around the mean (the vertical distance from the 
lowest score to the highest score is large). This is an example of heterogeneity of variance: 
that is, at some levels of the concert variable the variance of scores is different than other 
levels (graphically, the vertical distance from the lowest to highest score is different after 
different concerts).
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Graphs illustrating 
data with 
homogeneous 
(left) and 
heterogeneous 
(right) variances

5.7.1.    Levene’s test 1

Hopefully you’ve got a grip of what homogeneity of variance actually means. Now, how 
do we test for it? Well, we could just look at the values of the variances and see whether 
they are similar. However, this approach would be very subjective and probably prone to 
academics thinking ‘Ooh look, the variance in one group is only 3000 times larger than the 
variance in the other: that’s roughly equal’. Instead, in correlational analysis such as regres-
sion we tend to use graphs (see section 7.9.5) and for groups of data we tend to use a test 
called Levene’s test (Levene, 1960). Levene’s test tests the null hypothesis that the variances 
in different groups are equal (i.e., the difference between the variances is zero). It’s a very 
simple and elegant test that works by doing a one-way ANOVA (see Chapter 10) conducted 
on the deviation scores; that is, the absolute difference between each score and the mean of 
the group from which it came (see Glass, 1966, for a very readable explanation).8 For now, 
all we need to know is that if Levene’s test is significant at p ≤ .05 then we can conclude that 
the null hypothesis is incorrect and that the variances are significantly different – therefore, 
the assumption of homogeneity of variances has been violated. If, however, Levene’s test 

8 We haven’t covered ANOVA yet, so this explanation won’t make much sense to you now, but in Chapter 10 we 
will look in more detail at how Levene’s test works.
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is non-significant (i.e., p > .05) then the variances are roughly equal and the assumption
is tenable.

5.7.1.1.  Levene’s test with R Commander 1

First we’ll load the data into R Commander.  Choose Data ⇒ Import data ⇒ from text file, 
clipboard, or URL… and then select the file RExam.dat (see section 3.7.3). Before we can 
conduct Levene’s test we need to convert uni to a factor because at the moment it is simply 
0s and 1s so R doesn’t know that it’s a factor – see section 3.6.2 to remind yourself how to do 
that. Once you have done this you should be able to select Statistics⇒Variances⇒Levene’s 
test (you won’t be able to select it unless R can ‘see’ a factor in the dataframe). Choosing 
this option in the menu opens the dialog box shown in Figure 5.7.  You need to select a 
grouping variable. R Commander has realized that you only have one variable that could 
be the grouping variable – because it is the only factor – and that’s uni. Therefore, it has 
already selected this variable. 

Choose the variable on the right that you want to test for equality of variances across 
the groups defined by uni. You can choose median or mean for the centring – the median 
tends to be more accurate and is the default; I use this default throughout the book. Run 
the analysis for both exam and numeracy. Output 5.8 shows the results.

FIGURE 5.7
Levene’s test in 
R Commander

5.7.1.2.  Levene’s test with R 1

To use Levene’s test, we use the leveneTest() function from the car package. This function 
takes the general form:

leveneTest(outcome variable, group, center = median/mean)
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Therefore, we enter two variables into the function: first the outcome variable of which we 
want to test the variances; and second, the grouping variable, which must be a factor. We 
can just enter these variables and Levene’s test will centre the variables using the median 
(which is slightly preferable), but if we want to override this default and centre using the 
mean then we can add the option center = “mean”. Therefore, for the exam scores we 
could execute:

leveneTest(rexam$exam, rexam$uni)
leveneTest(rexam$exam, rexam$uni, center = mean)

For the numeracy scores we would execute (note that all we have changed is the outcome 
variable):

leveneTest(rexam$numeracy, rexam$uni)

5.7.1.3.  Levene’s test output 1

Output 5.8 shows the output for Levene’s test for exam scores (using the median), exam 
scores (centring using the mean) and numeracy scores. The result is non-significant for the 
R exam scores (the value in the Pr (>F) column is more than .05) regardless of whether 
we centre with the median or mean. This indicates that the variances are not significantly 
different (i.e., they are similar and the homogeneity of variance assumption is tenable). 
However, for the numeracy scores, Levene’s test is significant (the value in the Pr (>F) 
column is less than .05) indicating that the variances are significantly different (i.e., they 
are not the same and the homogeneity of variance assumption has been violated). 

> leveneTest(rexam$exam, rexam$uni)

Levene’s Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  2.0886 0.1516
      98               

> leveneTest(rexam$exam, rexam$uni, center = mean)

Levene’s Test for Homogeneity of Variance (center = mean)
      Df F value Pr(>F)
group  1  2.5841 0.1112
      98               

> leveneTest(rexam$numeracy, rexam$uni)

Levene’s Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  1   5.366 0.02262 *
      98         

Output 5.8

5.7.2.    Reporting Levene’s test 1

Levene’s test can be denoted with the letter F and there are two different degrees of free-
dom. As such you can report it, in general form, as F(df1, df2) = value, Pr (>F). So, for the 
results in Output 5.8 we could say:

05-Field_R-4368-Ch-05.indd   188 29/02/2012   5:54:08 PM



189CHAPTER 5   EXPLOR ING ASSUMPT IONS

 �For the percentage on the R exam, the variances were similar for Duncetown and 
Sussex University students, F(1, 98) = 2.09, ns, but for numeracy scores the variances 
were significantly different in the two groups, F(1, 98) = 5.37, p = .023.

5.7.3.    Hartley’s F
max

: the variance ratio 1

As with the Shapiro–Wilk test (and other tests of normality), when the sample size is 
large, small differences in group variances can produce a Levene’s test that is significant 
(because, as we saw in Chapter 1, the power of the test is improved). A useful double 
check, therefore, is to look at Hartley’s Fmax – also known as the variance ratio (Pearson 
& Hartley, 1954). This is the ratio of the variances between the group with the biggest 
variance and the group with the smallest variance. This ratio was compared to critical 
values in a table published by Hartley. Some of the critical values (for a .05 level of sig-
nificance) are shown in Figure 5.8 (see Oliver Twisted); as you can see, the critical values 
depend on the number of cases per group (well, n − 1 actually), and the number of vari-
ances being compared. From this graph you can see that with sample sizes (n) of 10 per 
group, an Fmax of less than 10 is more or less always going to be non-significant, with 
15–20 per group the ratio needs to be less than about 5, and with samples of 30–60 the 
ratio should be below about 2 or 3.
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FIGURE 5.8
Selected critical 
values for 
Hartley’s Fmax test

Oliver thinks that my graph of critical values is stupid. ‘Look at that graph,’ 
he laughed, ‘it’s the most stupid thing I’ve ever seen since I was at Sussex 
Uni and I saw my statistics lecturer, Andy Fie…’. Well, go choke on your 
gruel you Dickensian bubo, because the full table of critical values is 
in the additional material for this chapter on the companion website.

OLIVER TWISTED

Please Sir, can I have  
some more … Hartley’s 
Fmax?
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5.8.  Correcting problems in the data 2

The previous section showed us various ways to explore our data; we saw how to look for 
problems with our distribution of scores and how to detect heterogeneity of variance. In 
Chapter 4 we also discovered how to spot outliers in the data. The next question is what 
to do about these problems.

5.8.1.    Dealing with outliers 2

If you detect outliers in the data there are several options for reducing the impact of these 
values. However, before you do any of these things, it’s worth checking that the data have 
been entered correctly for the problem cases. If the data are correct then the three main 
options you have are:

1	 Remove the case: This entails deleting the data from the person who contributed the 
outlier. However, this should be done only if you have good reason to believe that 
this case is not from the population that you intended to sample. For example, if 
you were investigating factors that affected how much cats purr and one cat didn’t 
purr at all, this would likely be an outlier (all cats purr). Upon inspection, if you dis-
covered that this cat was actually a dog wearing a cat costume (hence why it didn’t 
purr), then you’d have grounds to exclude this case because it comes from a different 
population (dogs who like to dress as cats) than your target population (cats).

2	 Transform the data: Outliers tend to skew the distribution and, as we will see in the 
next section, this skew (and, therefore, the impact of the outliers) can sometimes be 
reduced by applying transformations to the data.

3	 Change the score: If transformation fails, then you can consider replacing the score. 
This on the face of it may seem like cheating (you’re changing the data from what 
was actually corrected); however, if the score you’re changing is very unrepresenta-
tive and biases your statistical model anyway then changing the score is the lesser of 
two evils! There are several options for how to change the score:

             CRAMMING SAM’S TIPS    Homogeneity of variance

·	� Homogeneity of variance is the assumption that the spread of scores is roughly equal in different groups of cases, or more 
generally that the spread of scores is roughly equal at different points on the predictor variable. 

·	 When comparing groups, this assumption can be tested with Levene’s test.
·	 If Levene’s test is significant (Pr (>F) in the R output is less than .05) then the variances are significantly different in different 

groups.
·	 Otherwise, homogeneity of variance can be assumed. 
·	 The variance ratio is the largest group variance divided by the smallest. This value needs to be smaller than the critical values 

in Figure 5.8.
·	 Warning: In large samples Levene’s test can be significant even when group variances are not very different. Therefore, it 

should be interpreted in conjunction with the variance ratio.
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a	 The next highest score plus one: Change the score to be one unit above the next 
highest score in the data set.

b	 Convert back from a z-score: A z-score of 3.29 constitutes an outlier (see Jane 
Superbrain Box 4.1), so we can calculate what score would give rise to a z-score 
of 3.29 (or perhaps 3) by rearranging the z-score equation in section 1.7.4, which 
gives us X = (z × s) + X–. All this means is that we calculate the mean (X–) and stand-
ard deviation (s) of the data; we know that z is 3 (or 3.29 if you want to be exact) 
so we just add three times the standard deviation to the mean, and replace our 
outliers with that score.

c	 The mean plus two standard deviations: A variation on the above method is to use 
the mean plus two times the standard deviation (rather than three times the stand-
ard deviation). 

5.8.2.    Dealing with non-normality and unequal variances 2

5.8.2.1.  Transforming data 2

This section is quite hair raising so don’t worry if it doesn’t make much sense – many 
undergraduate courses won’t cover transforming data so feel free to ignore this section if 
you want to.

We saw in the previous section that you can deal with outliers by transforming the data 
and that these transformations are also useful for correcting problems with normality and 
the assumption of homogeneity of variance. The idea behind transformations 
is that you do something to every score to correct for distributional problems, 
outliers or unequal variances. Although some students often (understandably) 
think that transforming data sounds dodgy (the phrase ‘fudging your results’ 
springs to some people’s minds!), in fact it isn’t because you do the same thing 
to all of your scores.9 As such, transforming the data won’t change the relation-
ships between variables (the relative differences between people for a given 
variable stay the same), but it does change the differences between different 
variables (because it changes the units of measurement). Therefore, if you are 
looking at relationships between variables (e.g., regression) it is alright just to 
transform the problematic variable, but if you are looking at differences within 
variables (e.g., change in a variable over time) then you need to transform all 
levels of those variables.

Let’s return to our Download Festival data (DownloadFestival.dat) from earlier in the 
chapter. These data were not normal on days 2 and 3 of the festival (section 5.4). Now, we 
might want to look at how hygiene levels changed across the three days (i.e., compare the 
mean on day 1 to the means on days 2 and 3 to see if people got smellier). The data for 
days 2 and 3 were skewed and need to be transformed, but because we might later compare 
the data to scores on day 1, we would also have to transform the day 1 data (even though 
scores were not skewed). If we don’t change the day 1 data as well, then any differences in 
hygiene scores we find from day 1 to day 2 or 3 will be due to us transforming one variable 
and not the others.

9 Although there aren’t statistical consequences of transforming data, there may be empirical or scientific implica-
tions that outweigh the statistical benefits (see Jane Superbrain Box 5.1).

What do I do if
my data are
not normal?
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There are various transformations that you can do to the data that are helpful in correct-
ing various problems.10  However, whether these transformations are necessary or useful is 
quite a complex issue (see Jane Superbrain Box 5.1). Nevertheless, because they are used by 
researchers Table 5.1 shows some common transformations and their uses.

5.8.2.2.  Choosing a transformation 2

Given that there are many transformations that you can do, how can you decide which one 
is best? The simple answer is trial and error: try one out and see if it helps and if it doesn’t 

10  You’ll notice in this section that I keep writing Xi. We saw in Chapter 1 that this refers to the observed score for 
the ith person (so, the i could be replaced with the name of a particular person, thus for Graham, Xi = XGraham = 
Graham’s score, and for Carol, Xi = XCarol = Carol’s score).

Table 5.1  Data transformations and their uses

Data Transformation Can Correct For

Log transformation (log(Xi)): Taking the logarithm of a set of numbers 
squashes the right tail of the distribution. As such it’s a good way to reduce 
positive skew. However, you can’t take the log of zero or negative numbers, 
so if your data tend to zero or produce negative numbers you need to add a 
constant to all of the data before you do the transformation. For example, if you 
have zeros in the data then do log(Xi + 1), or if you have negative numbers add 
whatever value makes the smallest number in the data set positive.

Positive skew, 
unequal variances

Square root transformation (√Xi): Taking the square root of large 
values has more of an effect than taking the square root of small values. 
Consequently, taking the square root of each of your scores will bring any 
large scores closer to the centre – rather like the log transformation. As 
such, this can be a useful way to reduce positive skew; however, you still 
have the same problem with negative numbers (negative numbers don’t 
have a square root).

Positive skew, 
unequal variances

Reciprocal transformation (1/Xi): Dividing 1 by each score also reduces 
the impact of large scores. The transformed variable will have a lower 
limit of 0 (very large numbers will become close to 0). One thing to bear 
in mind with this transformation is that it reverses the scores: scores that 
were originally large in the data set become small (close to zero) after 
the transformation, but scores that were originally small become big after 
the transformation. For example, imagine two scores of 1 and 10; after 
the transformation they become 1/1 = 1 and 1/10 = 0.1: the small score 
becomes bigger than the large score after the transformation. However, you 
can avoid this by reversing the scores before the transformation, by finding 
the highest score and changing each score to the highest score minus the 
score you’re looking at. So, you do a transformation 1/(XHighest−Xi).

Positive skew, 
unequal variances

Reverse score transformations: Any one of the above transformations 
can be used to correct negatively skewed data, but first you have to reverse 
the scores. To do this, subtract each score from the highest score obtained, 
or the highest score + 1 (depending on whether you want your lowest 
score to be 0 or 1). If you do this, don’t forget to reverse the scores back 
afterwards, or to remember that the interpretation of the variable is reversed: 
big scores have become small and small scores have become big!

Negative skew
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then try a different one. If you are looking at differences between variables you must apply 
the same transformation to all variables (you cannot, for example, apply a log transforma-
tion to one variable and a square root transformation to another). This can be quite time 
consuming. 

that their conclusion was incorrect, which Levine and 
Dunlap (1983) contested in a response to the response. 
Finally, in a response to the response to the response, 
Games (1984) pointed out several important questions 
to consider:

1.	 The central limit theorem (section 2.5.1) tells us 
that in big samples the sampling distribution will 
be normal regardless, and this is what’s actually 
important, so the debate is academic in anything 
other than small samples. Lots of early research 
did indeed show that with samples of 40 the nor-
mality of the sampling distribution was, as pre-
dicted, normal. However, this research focused 
on distributions with light tails and subsequent 
work has shown that with heavy-tailed distributions 
larger samples would be necessary to invoke the 
central limit theorem (Wilcox, 2005). This research 
suggests that transformations might be useful for 
such distributions.

2.	 By transforming the data you change the hypoth-
esis being tested (when using a log transformation 
and comparing means you change from comparing 
arithmetic means to comparing geometric means). 
Transformation also means that you’re now address-
ing a different construct than the one originally 
measured, and this has obvious implications for 
interpreting that data (Gelman & Hill, 2007; Grayson, 
2004).

3.	 In small samples it is tricky to determine normality one 
way or another (tests such as Shapiro–Wilk will have 
low power to detect deviations from normality and 
graphs will be hard to interpret with so few data points).

4.	 The consequences for the statistical model of apply-
ing the ‘wrong’ transformation could be worse than the 
consequences of analysing the untransformed scores.

As we will see later in the book, there is an exten-
sive library of robust tests that can be used and which 
have considerable benefits over transforming data. The 
definitive guide to these is Wilcox’s (2005) outstanding 
book.

Not everyone agrees that transforming data is a good 
idea; for example, Glass, Peckham and Sanders (1972),  
in a very extensive review, commented that ‘the payoff of 
normalizing transformations in terms of more valid prob-
ability statements is low, and they are seldom considered 
to be worth the effort’ (p. 241). In which case, should we 
bother?

The issue is quite complicated (especially for this 
early in the book), but essentially we need to know 
whether the statistical models we apply perform better 
on transformed data than they do when applied to data 
that violate the assumption that the transformation cor-
rects. If a statistical model is still accurate even when 
its assumptions are broken it is said to be a robust test 
(section 5.8.4). I’m not going to discuss whether particu-
lar tests are robust here, but I will discuss the issue for 
particular tests in their respective chapters. The question 
of whether to transform is linked to this issue of robust-
ness (which in turn is linked to what test you are perform-
ing on your data).

A good case in point is the F-test in ANOVA (see 
Chapter 10), which is often claimed to be robust (Glass 
et al., 1972). Early findings suggested that F performed 
as it should in skewed distributions and that transform-
ing the data helped as often as it hindered the accuracy 
of F (Games & Lucas, 1966). However, in a lively but 
informative exchange, Levine and Dunlap (1982) showed 
that transformations of skew did improve the perform-
ance of F; however, in a response, Games (1983) argued 

JANE SUPERBRAIN 5.1

To transform or not to transform, that is the 
question 3
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5.8.3.    Transforming the data using R 2

5.8.3.1.  Computing new variables 2

Transformations are very easy using R. We use one of two general commands:

newVariable <- function(oldVariable)

in which function is the function we will use to transform the variable. Or possibly:

newVariable <- arithmetic with oldVariable(s)

Let’s first look at some of the simple arithmetic functions:

+ Addition: We can add two variables together, or add a constant to our variables. For 
example, with our hygiene data, ‘day1 + day2’ creates a column in which each row 
contains the hygiene score from the column labelled day1 added to the score from the 
column labelled day2 (e.g., for participant 1: 2.65 + 1.35 = 4). In R we would execute:

dlf$day1PlusDay2 <- dlf$day1 + dlf$day2

which creates a new variable day1PlusDay2 in the dlt dataframe based on adding the 
variables day1 and day2.

- Subtraction: We can subtract one variable from another. For example, we could 
subtract the day 1 hygiene score from the day 2 hygiene score. This creates a new 
variable in our dataframe in which each row contains the score from the column 
labelled day1 subtracted from the score from the column labelled day2 (e.g., for 
participant 1: 1.35 − 2.65 = −1.30). Therefore, this person’s hygiene went down by 
1.30 (on our 5-point scale) from day 1 to day 2 of the festival. In R we would execute:

dlf$day2MinusDay1 <- dlf$day2 - dlf$day1

which creates a new variable day2MinusDay1 in the dlf dataframe based on subtracting 
the variable day1 from day2.

* Multiply: We can multiply two variables together, or we can multiply a variable by any 
number. In R, we would execute:

dlf$day2Times5 <- dlf$day1 * 5

which creates a new variable day2Times5 in the dlf dataframe based on multiplying 
day1 by 5.

**
OR^

Exponentiation: Exponentiation is used to raise the preceding term by the power 
of the succeeding term. So ‘day1**2’ or ‘day1^2’ (it doesn’t matter which you use) 
creates a column that contains the scores in the day1 column raised to the power of 
2 (i.e., the square of each number in the day1 column: for participant 1, 2.652 =7.02). 
Likewise, ‘day1**3’ creates a column with values of day1 cubed. In R, we would 
execute either:

dlf$day2Squared <- dlf$day2 ** 2

or

dlf$day2Squared <- dlf$day2 ^ 2

both of which create a new variable day2Squared in the dlf dataframe based on 
squaring values of day2.
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< Less than: This is a logical operator – that means it gives the answer TRUE (or 1) 
or FALSE (or 0). If you typed ‘day1 < 1’, R would give the answer TRUE to those 
participants whose hygiene score on day 1 of the festival was less than 1 (i.e., if day1 was 
0.9999 or less). So, we might use this if we wanted to look only at the people who were 
already smelly on the first day of the festival. In R we would execute:

dlf$day1LessThanOne <- dlf$day1 < 1

to create a new variable day1LessThanOne in the dlf dataframe for which the values 
are TRUE (or 1) if the value of day1 is less than 1, but FALSE (or 0) if the value of day1 is 
greater than 1.

<= Less than or equal to: This is the same as above but returns a response of TRUE (or 1) if the 
value of the original variable is equal to or less than the value specified. In R we would execute:

dlf$day1LessThanOrEqualOne <- dlf$day1 <= 1

to create a new variable day1LessThanOrEqualOne in the dlf dataframe for which the 
values are TRUE (or 1) if the value of day1 is less than or equal to 1, but FALSE (or 0) if 
the value of day1 is greater than 1.

> Greater than: This is the opposite of the less than operator above. It returns a response 
of TRUE (or 1) if the value of the original variable is greater than the value specified. In R 
we would execute:

dlf$day1GreaterThanOne <- dlf$day1 > 1

to create a new variable day1GreaterThanOne in the dlf dataframe for which the values 
are TRUE (or 1) if the value of day1 is greater than 1, but FALSE (or 0) if the value of 
day1 is less than 1.

>= Greater than or equal to: This is the same as above but returns a response of TRUE (or 
1) if the value of the original variable is equal to or greater than the value specified. In R 
we would execute:

dlf$day1GreaterThanOrEqualOne <- dlf$day1 >= 1

to create a new variable day1GreaterThanOrEqualOne in the dlf dataframe for which 
the values are TRUE (or 1) if the value of day1 is greater than or equal to 1, but FALSE 
(or 0) if the value of day1 is less than 1.

== Double equals means ‘is equal to?’ It’s a question, rather than an assignment, like a single 
equals (=). Therefore, if we write something like dlf$gender == “Male” we are asking ‘is the 
value of the variable gender in the dlf dataframe equal to the word ‘Male’? In R, if we executed:

dlf$male <- dlf$gender == "Male"

we would create a variable male in the dlf dataframe that contains the value TRUE if the 
variable gender was the word ‘Male’ (spelt as it is specified, including capital letters) and 
FALSE in all other cases.

!= Not equal to. The opposite of ==. In R, if we executed:

dlf$notMale <- dlf$gender != "Male"

we would create a variable notMale in the dlf dataframe that contains the value TRUE 
if the variable gender was not the word ‘Male’ (spelt as it is specified including capital 
letters) and FALSE otherwise.

Some of the most useful functions are listed in Table 5.2, which shows the standard form 
of the function, the name of the function, an example of how the function can be used 
and what R would output if that example were used. There are several basic functions for 
calculating means, standard deviations and sums of columns. There are also functions such 
as the square root and logarithm that are useful for transforming data that are skewed, and 
we will use these functions now. 
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Table 5.2  Some useful functions

Function Name Input example Output

rowMeans() Mean for a 
row

rowMeans(cbind 
(dlf$day1, dlf$day2, 
dlf$day3), na.rm =  
TRUE)

For each row, R calculates the mean 
hygiene score across the three days of the 
festival. na.rm tells R whether to exclude 
missing values from the calculation (see R’s 
Souls’ Tip 5.3).

rowSums() Sums for 
a row

rowSums(cbind 
(dlf$day1, dlf$day2, 
dlf$day3), na.rm =  
TRUE)

For each row, R calculates the sum of the 
hygiene scores across the three days of the 
festival. na.rm tells R whether to exclude 
missing values from the calculation (see R’s 
Souls’ Tip 5.4).

sqrt() Square 
root

sqrt(dlf$day2) Produces a column containing the square 
root of each value in the column labelled day2

abs() Absolute 
value

abs(dlf$day1) Produces a variable that contains the 
absolute value of the values in the column 
labelled day1 (absolute values are ones 
where the signs are ignored: so −5 
becomes +5 and +5 stays as +5)

log10() Base 10 
logarithm

log10(dlf$day1) Produces a variable that contains the logarithm 
(to base 10) values of the variable day1. 

log() Natural 
logarithm

log10(dlf$day1) Produces a variable that contains the natural 
logarithm values of the variable day1. 

is.na() Is 
missing?

is.na(dlf$day1) This is used to determine if a variable is 
missing or not. If the variable is missing, 
the case will be assigned TRUE (or 1); if 
the case is not missing, the case will be 
assigned FALSE (or 0). 

          R ’s  Souls ’  T ip  5 .3   The is.na() function and missing data 3

If we want to count missing data, we can use is.na(). For example, if we want to know whether a person is missing 
for their day 2 hygiene score, we use:

dlf$missingDay2 <- is.na(dlf$day2)

But we can then use that variable in some clever ways. How many people were missing on day 2?  Well, we know 
that the variable we just created is TRUE (or 1) if they are missing, so we can just add them up:

sum(dlf$missingDay2)

If we want to be lazy, we can embed those functions in each other, and not bother to create a variable:  

(sum(is.na(dlf$day2))

which tells us that 546 scores are missing. What proportion of scores is that? Well, we have a 1 if they are missing, 
and a zero if not. So the mean of that variable will be the proportion which are missing:

mean(is.na(dlf$day2))

This tells us that the mean is 0.674, so 67.4% of people are missing a hygiene score on day 2. 
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5.8.3.2.  The log transformation in R 2

Now we’ve found out some basic information about the how to compute variables, let’s 
use it to transform our data. To transform the variable day1, and create a new variable 
logday1, we execute this command:

dlf$logday1 <- log(dlf$day1)

This command creates a variable called logday1 in the dlf dataframe, which contains values 
that are the natural log of the values in the variable day1.

For the day 2 hygiene scores there is a value of 0 in the original data, and there is no 
logarithm of the value 0. To overcome this we should add a constant to our original 
scores before we take the log of those scores. Any constant will do, provided that it 
makes all of the scores greater than 0. In this case our lowest score is 0 in the data set so 
we can simply add 1 to all of the scores and that will ensure that all scores are greater 
than zero.

The advantage of adding 1 is that the logarithm of 1 is equal to 0, so people who scored 
a zero before the transformation score a zero after the transformation. To do this transfor-
mation we would execute:

dlf$logday1 <- log(dlf$day1 + 1)

This command creates a variable called logday1 in the dlf dataframe, which contains values 
that are the natural log of the values in the variable day1 after 1 has been added to them.

SELF-TEST

ü	 Have a go at creating similar variables logday2 
and logday3 for the day2 and day3 variables. Plot 
histograms of the transformed scores for all three 
days.

5.8.3.3.  The square root transformation in R 2

To do a square root transformation, we run through the same process, by using a name 
such as sqrtday1. Therefore, to create a variable called sqrtday1 that contains the square 
root of the values in the variable day1, we would execute: 

dlf$sqrtday1 <- sqrt(day1)

SELF-TEST

ü	 Repeat this process for day2 and day3 to create 
variables called sqrtday2 and sqrtday3. Plot 
histograms of the transformed scores for all three 
days. 

5.8.3.4.  The reciprocal transformation in R 2

To do a reciprocal transformation on the data from day 1, we don’t use a function, we use 
an arithmetic expression: 1/variable. However, the day 2 data contain a zero value and if 
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we try to divide 1 by 0 then we’ll get an error message (you can’t divide by 0). As such 
we need to add a constant to our variable just as we did for the log transformation. Any 
constant will do, but 1 is a convenient number for these data. We could use a name such as 
recday1, and to create this variable we would execute:

dlf$recday1 <- 1/(dlf$day1 + 1)

SELF-TEST

ü	 Repeat this process for day2 and day3. Plot 
histograms of the transformed scores for all three 
days. 

5.8.3.5.  The ifelse() function in R 2

The ifelse() function is used to create a new variable, or change an old variable, depending 
on some other values. This function takes the general form:

ifelse(a conditional argument, what happens if the argument is TRUE, what 
happens if the argument if FALSE)

This function needs three arguments: a conditional argument to test, what to do if the test 
is true, and what to do if the test is false. Let’s use the original data where there was an 
outlier in the day1 hygiene score. We can detect this outlier because we know that the high-
est score possible on the scale was 4. Therefore, we could set our conditional argument to 
be dlf$day1 > 4, which means we’re saying ‘if the value of day1 is greater than 4 then …’. 
The rest of the function tells it what to do, for example, we might want to set it to missing 
(NA) if the score is over 4, but keep it as the old score if the score is not over 4. In which 
case we could execute this command:

dlf$day1NoOutlier <- ifelse(dlf$day1 > 4, NA, dlf$day1)

This command creates a new variable called day1NoOutlier which takes the value NA if 
day1 is greater than 4, but is the value of day1 if day1 is less than 4:

If yes, then the
new variable is set

to NA (Missing)

If no, then the new
variable is set to be

the value of the
old variable

Test is day1
greater than 5?

dlf$day1NoOutlier <–ifelse(dlf$day1 > 5, NA, dlf$day1)
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5.8.3.6.  The effect of transformations 2

Figure 5.9 shows the distributions for days 1 and 2 of the festival after the three different 
transformations. Compare these to the untransformed distributions in Figure 5.2. Now, 
you can see that all three transformations have cleaned up the hygiene scores for day 2: 

          R ’s  Souls ’  T ip  5 .4  Careful with missing data 3

 
If you have any missing data in your variables, you need to be careful when using functions such as rowMeans(), 
to get the answer that you want. The problem is what you do when you have some missing values. Here’s a prob-
lem: I have 2 oranges and 3 apples. How many fruits do I have? Obviously, I have a total of 5 fruits.

You have 2 oranges, and we don’t know how many apples – this value is missing. How many fruits do you 
have? We could say that you have 2. Or we could say that we don’t know: the answer is missing. If you add apples 
and oranges in R, most functions will tell you that the answer is NA (unknown).

apples <- 2
oranges <- NA
apples + oranges

[1] NA

The rowSums and rowMeans functions will allow you to choose what to do with missing data, by using the na.rm 
option, which asks ‘should missing values (na) be removed (rm)?’ 

To obtain the mean hygiene score across three days, removing anyone with any missing values, we would use:

dlf$meanHygiene <- rowMeans(cbind(dlf$day1, dlf$day2, dlf$day3))

But a lot of people would be missing. If we wanted to use everyone who had at least one score for the three days, 
we would add na.rm=TRUE: 

dlf$meanHygiene <- rowMeans(cbind(dlf$day1, dlf$day2, dlf$day3), na.rm = TRUE)

But what would we do if we had 100 days of hygiene scores? And if we didn’t mind if people were missing one or 
two scores, but we didn’t want to calculate a mean for people who only had one score? Well, we’d use the is.na() 
function first, to count the number of missing variables.

dlf$daysMissing <- rowSums (cbind (is.na(dlf$day1), 
                                   is.na(dlf$day2),
                                   is.na(dlf$day3)))

(It’s OK to break a command across rows like that, and sometimes it makes it easier to see that you didn’t make 
a mistake.) Then we can use the ifelse() function to calculate values only for those people who have a score on 
at least two days:

dlf$meanHygiene <- ifelse(dlf$daysMissing < 2, NA, 
                          rowMeans(cbind( dlf$day1,  
                                          dlf$day2, 
                                          dlf$day3), 
                                   na.rm=TRUE)) 

Notice how I’ve used spacing so it’s clear which arguments go with which function?  That makes it (slightly) easier 
to avoid making mistakes.11

11 It still took me three tries to get this right.
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the positive skew is reduced (the square root transformation in particular has been useful). 
However, because our hygiene scores on day 1 were more or less symmetrical to begin 
with, they have now become slightly negatively skewed for the log and square root trans-
formation, and positively skewed for the reciprocal transformation!12 If we’re using scores 
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FIGURE 5.9
Distributions of 
the hygiene data 
on day 1 and day 
2 after various 
transformations

12 The reversal of the skew for the reciprocal transformation is because, as I mentioned earlier, the reciprocal has 
the effect of reversing the scores.
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from day 2 alone then we could use the transformed scores; however, if we wanted to look 
at the change in scores then we’d have to weigh up whether the benefits of the transforma-
tion for the day 2 scores outweigh the problems it creates in the day 1 scores – data analysis 
can be frustrating sometimes!

5.8.4.    When it all goes horribly wrong 3

It’s very easy to think that transformations are the answers to all of your broken assump-
tion prayers. However, as we have seen, there are reasons to think that transformations 
are not necessarily a good idea (see Jane Superbrain Box 5.1), and even if you think that 
they are they do not always solve the problem, and even when they do solve 
the problem they often create different problems in the process. This happens 
more frequently than you might imagine (messy data are the norm).

If you find yourself in the unenviable position of having irksome data then 
there are some other options available to you (other than sticking a big samu-
rai sword through your head). The first is to use a test that does not rely on the 
assumption of normally distributed data, and as you go through the various 
chapters of this book I’ll point out these tests – there is also a whole chapter 
dedicated to them later on.13 One thing that you will quickly discover about 
non-parametric tests is that they have been developed for only a fairly limited 
range of situations. So, happy days if you want to compare two means, but sad 
and lonely days listening to Joy Division if you have a complex experimental 
design.

A much more promising approach is to use robust methods (which I mentioned in Jane 
Superbrain Box 5.1). These tests have developed as computers have got more sophisticated 
(doing these tests without computers would be only marginally less painful than ripping 
off your skin and diving into a bath of salt). How these tests work is beyond the scope of 
this book (and my brain), but two simple concepts will give you the general idea. Some 
of these procedures use a trimmed mean. A trimmed mean is simply a mean based on the 
distribution of scores after some percentage of scores has been removed from each extreme 
of the distribution. So, a 10% trimmed mean will remove 10% of scores from the top and 
bottom before the mean is calculated. With trimmed means you have to specify the amount 
of trimming that you want; for example, you must decide to trim 5%, 10% or perhaps even 
20% of scores. A similar robust measure of location is an M-estimator, which differs from a 
trimmed mean in that the amount of trimming is determined empirically. In other words, 
rather than the researcher deciding before the analysis how much of the data to trim, an 
M-estimator determines the optimal amount of trimming necessary to give a robust esti-
mate of, say, the mean. This has the obvious advantage that you never over- or under-trim 
your data; however, the disadvantage is that it is not always possible to reach a solution. In 
other words, robust tests based on M-estimators don’t always give you an answer.

We saw in Chapter 2 that the accuracy of the mean depends on a symmetrical distribu-
tion, but a trimmed mean (or M-estimator) produces accurate results even when the dis-
tribution is not symmetrical, because by trimming the ends of the distribution we remove 
outliers and skew that bias the mean. Some robust methods work by taking advantage of 
the properties of the trimmed mean and M-estimator.

What do I do if my
transformation
doesn’t work?

13 For convenience a lot of textbooks refer to these tests as non-parametric tests or assumption-free tests and 
stick them in a separate chapter. Actually neither of these terms are particularly accurate (none of these tests is 
assumption-free) but in keeping with tradition I’ve put them in a chapter on their own (Chapter 15), ostracized 
from their ‘parametric’ counterparts and feeling lonely.
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The second general procedure is the bootstrap (Efron & Tibshirani, 1993). The idea of 
the bootstrap is really very simple and elegant. The problem that we have is that we don’t 
know the shape of the sampling distribution, but normality in our data allows us to infer 
that the sampling distribution is normal (and hence we can know the probability of a par-
ticular test statistic occurring). Lack of normality prevents us from knowing the shape of 
the sampling distribution unless we have big samples (but see Jane Superbrain Box 5.1). 
Bootstrapping gets around this problem by estimating the properties of the sampling dis-
tribution from the sample data. In effect, the sample data are treated as a population from 
which smaller samples (called bootstrap samples) are taken (putting the data back before 
a new case is drawn). The statistic of interest (e.g., the mean) is calculated in each 
sample, and by taking many samples the sampling distribution can be estimated (rather 
like in Figure 2.7). The standard error of the statistic is estimated from the standard devia-
tion of this sampling distribution created from the bootstrap samples. From this standard 
error, confidence intervals and significance tests can be computed. This is a very neat way 
of getting around the problem of not knowing the shape of the sampling distribution. The 
bootstrap can be used in conjunction with trimmed means and M-estimators. For a fairly 
gentle introduction to the concept of bootstrapping see Wright, London, and Field (2011).

There are numerous robust tests based on trimmed means, bootstrapping and 
M-estimators described by Rand Wilcox (Figure 5.10) in his definitive text (Wilcox, 2005). 
He has also written functions in R to do these tests (which, when you consider the number 
of tests in his book, is a feat worthy of anyone’s respect and admiration). We cover quite a 
few of these tests in this book.

There are two ways to access these functions: from a package, and direct from Wilcox’s 
website. The package version of the tests is called WRS (although it is what’s known as a 
beta version, which means it is not complete).14 To access this package in R we need to 
execute:

install.packages("WRS", repos="http://R-Forge.R-project.org")
library(WRS)

This is a standard install procedure, but note that we have to include repos=http://R-
Forge.R-project.org because it is not a full package and this instruction tells R where to 
find the package. This package is not always implemented in the most recent versions of R 
(because it is only a beta) and it is not kept as up to date as Wilcox’s webpage, so although 
we tend to refer to the package, to be consistent with the general ethos of downloading 
packages, you should also consider sourcing the functions from Wilcox’s website. One 
advantage of the website is that he keeps the functions very up to date. To source the func-
tions from his website, execute:

source("http://www-rcf.usc.edu/~rwilcox/Rallfun-v14")

This command uses the source() function to access the webpage where Wilcox stores 
the functions (as a text file). Rallfun-v14 is the name of the file (short for ‘R all functions – 
version 14’). Without wishing to state the obvious, you need to be connected to the Internet 
for this command to work. Depending on this book’s shelf-life, it is possible that the name 
of the file might change (most likely to Rallfun-v15 or Rallfun-v16), so if you get an error 
try replacing the v14 at the end with v15 and so on. It’s also possible that Rand might move 
his webpage (http://www-rcf.usc.edu/~rwilcox/) in which case Google him, locate the lat-
est Rallfun file and replace the URL in the source function above with the new one. Having 
either loaded the package or sources the file from the web, you now have access to all of 
the functions in Wilcox’s book.

14 Actually, all of the functions are there, but there is very little documentation about what they do, which is why 
it is only at the ‘beta’ stage rather than being a full release.
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FIGURE 5.10
The absolute 
legend that is Rand 
Wilcox, who is the 
man you almost 
certainly ought to 
thank if you want 
to do a robust test 
in R

What have I discovered about statistics? 1

‘You promised us swans,’ I hear you cry, ‘and all we got was normality this, homosome-
thingorother that, transform this, it’s all a waste of time that. Where were the bloody 
swans?!’ Well, the Queen owns them all so I wasn’t allowed to have them. Nevertheless, 
this chapter did negotiate Dante’s eighth circle of hell (Malebolge), where data of deliber-
ate and knowing evil dwell. That is, data that don’t conform to all of those pesky assump-
tions that make statistical tests work properly. We began by seeing what assumptions 
need to be met for parametric tests to work, but we mainly focused on the assumptions 
of normality and homogeneity of variance. To look for normality we rediscovered the 
joys of frequency distributions, but also encountered some other graphs that tell us about 
deviations from normality (Q-Q plots). We saw how we can use skew and kurtosis values 
to assess normality and that there are statistical tests that we can use (the Shapiro–Wilk 
test). While negotiating these evildoers, we discovered what homogeneity of variance is, 
and how to test it with Levene’s test and Hartley’s Fmax. Finally, we discovered redemp-
tion for our data. We saw we can cure their sins, make them good, with transformations 
(and on the way we discovered some of the uses of the by() function and the transforma-
tion functions). Sadly, we also saw that some data are destined always to be evil. 

We also discovered that I had started to read. However, reading was not my true pas-
sion; it was music. One of my earliest memories is of listening to my dad’s rock and soul 
records (back in the days of vinyl) while waiting for my older brother to come home 
from school, so I must have been about 3 at the time. The first record I asked my parents 
to buy me was ‘Take on the World’ by Judas Priest, which I’d heard on Top of the Pops (a 
now defunct UK TV show) and liked. This record came out in 1978 when I was 5. Some 
people think that this sort of music corrupts young minds. Let’s see if it did …
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R packages used in this chapter
car
ggplot2
pastecs

psych
Rcmdr

R functions used in this chapter
abs()
by()
cbind()
describe()
dnorm()
ifelse()
is.na()
leveneTest()
log()
log10()

qplot()
rowMeans()
rowSums()
round()
shapiro.test()
source()
sqrt()
stat.desc()
stat_function()
tapply()

Key terms that I’ve discovered
Bootstrap
Hartley’s Fmax

Heterogeneity of variance
Homogeneity of variance
Independence
Interval data
Levene’s test
Log
M-estimator

Normally distributed data
Parametric test 
Q-Q plot
Quantile
Robust test
Shapiro–Wilk test
Transformation
Trimmed mean
Variance ratio

Smart Alex’s tasks

MM Task 1: Using the ChickFlick.dat data from Chapter 4, check the assumptions of 
normality and homogeneity of variance for the two films (ignore gender): are the 
assumptions met? 1

MM Task 2: Remember that the numeracy scores were positively skewed in the RExam.
dat data (see Figure 5.5)? Transform these data using one of the transformations 
described in this chapter: do the data become normal? 2

Answers can be found on the companion website.

Further reading
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn & 

Bacon. (Chapter 4 is the definitive guide to screening data!)
Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington, 

MA: Elsevier. (Quite technical, but this is the definitive book on robust methods.)
Wright, D. B., London, K., & Field, A. P. (2011). Using bootstrap estimation and the plug-in principle 

for clinical psychology data. Journal of Experimental Psychopathology, 2(2), 252–270. (A fairly 
gentle introduction to bootstrapping in R.)
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6
Correlation

FIGURE 6.1
I don’t have 
a photo from 
Christmas 1981, 
but this was taken 
about that time at 
my grandparents’ 
house. I’m trying 
to play an ‘E’ by 
the looks of it, no 
doubt because 
it’s in ‘Take on the 
World’.

6.1.  What will this chapter tell me? 1

When I was 8 years old, my parents bought me a guitar for Christmas. Even then, I’d des-
perately wanted to play the guitar for years. I could not contain my excitement at getting 
this gift (had it been an electric guitar I think I would have actually exploded with excite-
ment). The guitar came with a ‘learn to play’ book and, after a little while of trying to play 
what was on page 1 of this book, I readied myself to unleash a riff of universe-crushing 
power onto the world (well, ‘Skip to my Lou’ actually). But, I couldn’t do it. I burst into 
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tears and ran upstairs to hide.1 My dad sat with me and said ‘Don’t worry, Andy, everything 
is hard to begin with, but the more you practise the easier it gets.’ In his comforting words, 
my dad was inadvertently teaching me about the relationship, or correlation, between two 
variables. These two variables could be related in three ways: (1) positively related, mean-
ing that the more I practised my guitar, the better a guitar player I would become (i.e., my 
dad was telling me the truth); (2) not related at all, meaning that as I practised the guitar my 
playing ability would remain completely constant (i.e., my dad has fathered a cretin); or (3) 
negatively related, which would mean that the more I practised my guitar the worse a gui-
tar player I would become (i.e., my dad has fathered an indescribably strange child). This 
chapter looks first at how we can express the relationships between variables statistically by 
looking at two measures: covariance and the correlation coefficient. We then discover how 
to carry out and interpret correlations in R. The chapter ends by looking at more complex 
measures of relationships; in doing so it acts as a precursor to multiple regression, which 
we discuss in Chapter 7.

6.2.  Looking at relationships 1

In Chapter 4 I stressed the importance of looking at your data graphically before 
running any other analysis on them. I just want to begin by reminding you that our 
first starting point with a correlation analysis should be to look at some scatter-
plots of the variables we have measured. I am not going to repeat how to get R to 
produce these graphs, but I am going to urge you (if you haven’t done so already) 
to read section 4.5 before embarking on the rest of this chapter.

6.3.  How do we measure relationships? 1

6.3.1.    A detour into the murky world of covariance 1

The simplest way to look at whether two variables are associated is to look at whether they 
covary. To understand what covariance is, we first need to think back to the concept of 
variance that we met in Chapter 2. Remember that the variance of a single variable repre-
sents the average amount that the data vary from the mean. Numerically, it is described by:

Variance( )
( ) ( )( )

s
x x

N

x x x x

N
i i i2

2

1 1
=

−
−

=
− −

−
∑ ∑ 	 (6.1)

The mean of the sample is represented by x , xi is the data point in question and N is the 
number of observations (see section 2.4.1). If we are interested in whether two variables 
are related, then we are interested in whether changes in one variable are met with similar 
changes in the other variable. Therefore, when one variable deviates from its mean we 
would expect the other variable to deviate from its mean in a similar way. To illustrate what 
I mean, imagine we took five people and subjected them to a certain number of advertise-
ments promoting toffee sweets, and then measured how many packets of those sweets each 

1 This is not a dissimilar reaction to the one I have when publishers ask me for new editions of statistics textbooks.

What is a
correlation?
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person bought during the next week. The data are in Table 6.1 as well as the mean and 
standard deviation (s) of each variable.

If there were a relationship between these two variables, then as one variable deviates 
from its mean, the other variable should deviate from its mean in the same or the directly 
opposite way. Figure 6.2 shows the data for each participant (light blue circles represent the 
number of packets bought and dark blue circles represent the number of adverts watched); 
the grey line is the average number of packets bought and the blue line is the average num-
ber of adverts watched. The vertical lines represent the differences (remember that these 
differences are called deviations) between the observed values and the mean of the relevant 
variable. The first thing to notice about Figure 6.2 is that there is a very similar pattern of 
deviations for both variables. For the first three participants the observed values are below 
the mean for both variables, for the last two people the observed values are above the mean 
for both variables. This pattern is indicative of a potential relationship between the two 
variables (because it seems that if a person’s score is below the mean for one variable then 
their score for the other will also be below the mean).

So, how do we calculate the exact similarity between the patterns of differences of the 
two variables displayed in Figure 6.2? One possibility is to calculate the total amount of 
deviation but we would have the same problem as in the single variable case: the positive 
and negative deviations would cancel out (see section 2.4.1). Also, by simply adding the 
deviations, we would gain little insight into the relationship between the variables. Now, in 
the single variable case, we squared the deviations to eliminate the problem of positive and 
negative deviations cancelling out each other. When there are two variables, rather than 
squaring each deviation, we can multiply the deviation for one variable by the correspond-
ing deviation for the second variable. If both deviations are positive or negative then this 
will give us a positive value (indicative of the deviations being in the same direction), but 

Table 6.1  Adverts watched and toffee purchases

Participant: 1 2 3 4 5 Mean s

Adverts watched 5 4   4   6   8   5.4 1.67

Packets bought 8 9 10 13 15 11.0 2.92
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Graphical display 
of the differences 
between the 
observed data and 
the means of two 
variables
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if one deviation is positive and one negative then the resulting product will be negative 
(indicative of the deviations being opposite in direction). When we multiply the deviations 
of one variable by the corresponding deviations of a second variable, we get what is known 
as the cross-product deviations. As with the variance, if we want an average value of the 
combined deviations for the two variables, we must divide by the number of observations 
(we actually divide by N − 1 for reasons explained in Jane Superbrain Box 2.2). This aver-
aged sum of combined deviations is known as the covariance. We can write the covariance 
in equation form as in equation (6.2) – you will notice that the equation is the same as the 
equation for variance, except that instead of squaring the differences, we multiply them by 
the corresponding difference of the second variable:

cov( , )
( )( )
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− −
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For the data in Table 6.1 and Figure 6.2 we reach the following value:
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Calculating the covariance is a good way to assess whether two variables are related to 
each other. A positive covariance indicates that as one variable deviates from the mean, 
the other variable deviates in the same direction. On the other hand, a negative covariance 
indicates that as one variable deviates from the mean (e.g., increases), the other deviates 
from the mean in the opposite direction (e.g., decreases).

There is, however, one problem with covariance as a measure of the relationship between 
variables and that is that it depends upon the scales of measurement used. So, covariance is 
not a standardized measure. For example, if we use the data above and assume that they rep-
resented two variables measured in miles then the covariance is 4.25 (as calculated above). If 
we then convert these data into kilometres (by multiplying all values by 1.609) and calculate 
the covariance again then we should find that it increases to 11. This dependence on the 
scale of measurement is a problem because it means that we cannot compare covariances 
in an objective way – so, we cannot say whether a covariance is particularly large or small 
relative to another data set unless both data sets were measured in the same units.

6.3.2.    Standardization and the correlation coefficient 1

To overcome the problem of dependence on the measurement scale, we need to convert 
the covariance into a standard set of units. This process is known as standardization. A very 
basic form of standardization would be to insist that all experiments use the same units 
of measurement, say metres – that way, all results could be easily compared. However, 
what happens if you want to measure attitudes – you’d be hard pushed to measure them 
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in metres. Therefore, we need a unit of measurement into which any scale of measurement 
can be converted. The unit of measurement we use is the standard deviation. We came 
across this measure in section 2.4.1 and saw that, like the variance, it is a measure of the 
average deviation from the mean. If we divide any distance from the mean by the standard 
deviation, it gives us that distance in standard deviation units. For example, for the data in 
Table 6.1, the standard deviation for the number of packets bought is approximately 3.0 
(the exact value is 2.92). In Figure 6.2 we can see that the observed value for participant 
1 was 3 packets less than the mean (so there was an error of −3 packets of sweets). If we 
divide this deviation, −3, by the standard deviation, which is approximately 3, then we get 
a value of −1. This tells us that the difference between participant 1’s score and the mean 
was −1 standard deviation. So, we can express the deviation from the mean for a partici-
pant in standard units by dividing the observed deviation by the standard deviation.

It follows from this logic that if we want to express the covariance in a standard unit of 
measurement we can simply divide by the standard deviation. However, there are two vari-
ables and, hence, two standard deviations. Now, when we calculate the covariance we actu-
ally calculate two deviations (one for each variable) and then multiply them. Therefore, 
we do the same for the standard deviations: we multiply them and divide by the product 
of this multiplication. The standardized covariance is known as a correlation coefficient and 
is defined by equation (6.3), in which sx is the standard deviation of the first variable and 
sy is the standard deviation of the second variable (all other letters are the same as in the 
equation defining covariance):
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x x y y
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x y

i i

x y
= =

− −
−

∑cov ( )( )

( )1
	 (6.3)

The coefficient in equation (6.3) is known as the Pearson product-moment correlation coeffi-
cient or Pearson correlation coefficient (for a really nice explanation of why it was originally 
called the ‘product-moment’ correlation, see Miles & Banyard, 2007) and was invented by 
Karl Pearson (see Jane Superbrain Box 6.1).2 If we look back at Table 6.1 we see that the 
standard deviation for the number of adverts watched (sx) was 1.67, and for the number 
of packets of crisps bought (sy) was 2.92. If we multiply these together we get 1.67 × 2.92 
= 4.88. Now, all we need to do is take the covariance, which we calculated a few pages 
ago as being 4.25, and divide by these multiplied standard deviations. This gives us r = 
4.25/4.88 = .87.

By standardizing the covariance we end up with a value that has to lie between −1 
and +1 (if you find a correlation coefficient less than −1 or more than +1 you can be 
sure that something has gone hideously wrong!). A coefficient of +1 indicates that the 
two variables are perfectly positively correlated, so as one variable increases, the other 
increases by a proportionate amount. Conversely, a coefficient of −1 indicates a perfect 
negative relationship: if one variable increases, the other decreases by a proportionate 
amount. A coefficient of zero indicates no linear relationship at all and so if one variable 
changes, the other stays the same. We also saw in section 2.6.4 that because the correla-
tion coefficient is a standardized measure of an observed effect, it is a commonly used 
measure of the size of an effect and that values of ±.1 represent a small effect, ±.3 is a 
medium effect and ±.5 is a large effect (although I re-emphasize my caveat that these 
canned effect sizes are no substitute for interpreting the effect size within the context of 
the research literature). 

2 You will find Pearson’s product-moment correlation coefficient denoted by both r and R. Typically, the upper-
case form is used in the context of regression because it represents the multiple correlation coefficient; however, 
for some reason, when we square r (as in section 6.5.4.3) an upper case R is used. Don’t ask me why  –  it’s just 
to confuse me, I suspect.
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6.3.3.    The significance of the correlation coefficient 3

Although we can directly interpret the size of a correlation coefficient, we have seen in 
Chapter 2 that scientists like to test hypotheses using probabilities. In the case of a correla-
tion coefficient we can test the hypothesis that the correlation is different from zero (i.e., 
different from ‘no relationship’). If we find that our observed coefficient was very unlikely 
to happen if there was no effect in the population, then we can gain confidence that the 
relationship that we have observed is statistically meaningful.

There are two ways that we can go about testing this hypothesis. The first is to use our 
trusty z-scores that keep cropping up in this book. As we have seen, z-scores are useful 
because we know the probability of a given value of z occurring, if the distribution from 
which it comes is normal. There is one problem with Pearson’s r, which is that it is known 
to have a sampling distribution that is not normally distributed. This is a bit of a nuisance, 
but luckily, thanks to our friend Fisher, we can adjust r so that its sampling distribution is 
normal as follows (Fisher, 1921):

zr e
r
r

=
+
−







1
2

1
1

log 	 (6.4)

The resulting zr has a standard error of:

SE
Nrz =

−
1

3
	 (6.5)

Another prominent statistician, Jerzy Neyman, criti-
cized some of Fisher’s most important work in a paper 
delivered to the Royal Statistical Society on 28 March 
1935 at which Fisher was present. Fisher’s discussion 
of the paper at that meeting directly attacked Neyman. 
Fisher more or less said that Neyman didn’t know 
what he was talking about and didn’t understand the 
background material on which his work was based. 
Relations soured so much that while they both worked 
at University College London, Neyman openly attacked 
many of Fisher’s ideas in lectures to his students. The 
two feuding groups even took afternoon tea (a com-
mon practice in the British academic community of the 
time) in the same room but at different times! The truth 
behind who fuelled these feuds is, perhaps, lost in the 
mists of time, but Zabell (1992) makes a sterling effort 
to unearth it.

Basically, then, the founders of modern statisti-
cal methods were a bunch of squabbling children. 
Nevertheless, these three men were astonishingly gifted 
individuals. Fisher, in particular, was a world leader in 
genetics, biology and medicine as well as possibly the 
most original mathematical thinker ever (Barnard, 1963; 
Field, 2005c; Savage, 1976).

Students often think that statistics is dull, but back in the 
early 1900s it was anything but dull, with various promi-
nent figures entering into feuds on a soap opera scale. 
One of the most famous was between Karl Pearson and 
Ronald Fisher (whom we met in Chapter 2). It began 
when Pearson published a paper of Fisher’s in his journal 
but made comments in his editorial that, to the casual 
reader, belittled Fisher’s work. Two years later Pearson’s 
group published work following on from Fisher’s paper 
without consulting him. The antagonism persisted with 
Fisher turning down a job to work in Pearson’s group and 
publishing ‘improvements’ on Pearson’s ideas. Pearson 
for his part wrote in his own journal about apparent errors 
made by Fisher.

JANE SUPERBRAIN 6.1

Who said statistics was dull? 1
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For our advert example, our r = .87 becomes 1.33 with a standard error of .71.
We can then transform this adjusted r into a z-score just as we have done for raw scores, 

and for skewness and kurtosis values in previous chapters. If we want a z-score that rep-
resents the size of the correlation relative to a particular value, then we simply compute 
a z-score using the value that we want to test against and the standard error. Normally 
we want to see whether the correlation is different from 0, in which case we can subtract 
0 from the observed value of r and divide by the standard error (in other words, we just 
divide zr by its standard error):

z
z

z
= r

SE
r

	 (6.6)

For our advert data this gives us 1.33/.71 = 1.87. We can look up this value of z (1.87) 
in the table for the normal distribution in the Appendix and get the one-tailed probability 
from the column labelled ‘Smaller Portion’. In this case the value is .0307. To get the two-
tailed probability we simply multiply the one-tailed probability value by 2, which gives us 
.0614. As such the correlation is significant, p < .05, one-tailed, but not two-tailed.

In fact, the hypothesis that the correlation coefficient is different from 0 is usually (R, 
for example, does this) tested not using a z-score, but using a t-statistic with N − 2 degrees 
of freedom, which can be directly obtained from r:

t
r N

r
r =

−

−

2

1 2
	 (6.7)

You might wonder then why I told you about z-scores, then. Partly it was to keep the dis-
cussion framed in concepts with which you are already familiar (we don’t encounter the 
t-test properly for a few chapters), but also it is useful background information for the next 
section.

6.3.4.    Confidence intervals for r 3

Confidence intervals tell us something about the likely value (in this case of the correlation) 
in the population. To understand how confidence intervals are computed for r, we need to 
take advantage of what we learnt in the previous section about converting r to zr (to make 
the sampling distribution normal), and using the associated standard errors. We can then 
construct a confidence interval in the usual way. For a 95% confidence interval we have 
(see section 2.5.2.1):

lower boundary of confidence interval = X SE− ×( . )1 96

upper boundary of confidence interval = X SE+ ×( . )1 96

In the case of our transformed correlation coefficients these equations become:

lower boundary of confidence interval = z zr SE
r

− ×( . )1 96

upper boundary of confidence interval = z zr SE
r

+ ×( . )1 96
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For our advert data this gives us 1.33 − (1.96 × .71) = −0.062, and 1.33 + (1.96 × .71) 
= 2.72. Remember that these values are in the zr metric and so we have to convert back to 
correlation coefficients using:

r
e

e

r

r

= −
+

( )

( )

2

2

1

1

z

z
	 (6.8)

This gives us an upper bound of r = .991 and a lower bound of −0.062 (because this value 
is so close to zero the transformation to z has no impact).

             CRAMMING SAM’S TIPS    Correlation

·	 A crude measure of the relationship between variables is the covariance.
·	 If we standardize this value we get Pearson’s correlation coefficient, r.
·	 The correlation coefficient has to lie between −1 and +1.
·	 A coefficient of +1 indicates a perfect positive relationship, a coefficient of −1 indicates a perfect negative relationship, and 

a coefficient of 0 indicates no linear relationship at all.
·	 The correlation coefficient is a commonly used measure of the size of an effect: values of ±.1 represent a small effect, ±.3 

is a medium effect and ±.5 is a large effect. However, if you can, try to interpret the size of correlation within the context of 
the research you’ve done rather than blindly following these benchmarks.

6.3.5.    A word of warning about interpretation: causality 1

Considerable caution must be taken when interpreting correlation coefficients because 
they give no indication of the direction of causality. So, in our example, although we can 
conclude that as the number of adverts watched increases, the number of packets of toffees 
bought increases also, we cannot say that watching adverts causes you to buy packets of 
toffees. This caution is for two reasons: 

MM The third-variable problem: We came across this problem in section 1.6.2. To recap, 
in any correlation, causality between two variables cannot be assumed because there 
may be other measured or unmeasured variables affecting the results. This is known as 
the third-variable problem or the tertium quid (see section 1.6.2 and Jane Superbrain 
Box 1.1).

MM Direction of causality: Correlation coefficients say nothing about which variable 
causes the other to change. Even if we could ignore the third-variable problem 
described above, and we could assume that the two correlated variables were the only 
important ones, the correlation coefficient doesn’t indicate in which direction causal-
ity operates. So, although it is intuitively appealing to conclude that watching adverts 
causes us to buy packets of toffees, there is no statistical reason why buying packets 
of toffees cannot cause us to watch more adverts. Although the latter conclusion 
makes less intuitive sense, the correlation coefficient does not tell us that it isn’t true. 
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6.4.  Data entry for correlation analysis 1

Data entry for correlation, regression and multiple regression is straightforward because 
each variable is entered in a separate column. If you are preparing your data in software 
other than R then this means that, for each variable you have measured, you create a vari-
able in the spreadsheet with an appropriate name, and enter a participant’s scores across 
one row of the spreadsheet. There may be occasions on which you have one or more cat-
egorical variables (such as gender) and these variables can also be entered in a column – see 
section 3.7 for more detail.

As an example, if we wanted to calculate the correlation between the two variables in 
Table 6.1 we would enter these data as in Figure 6.3. You can see that each variable is 
entered in a separate column, and each row represents a single individual’s data (so the first 
consumer saw 5 adverts and bought 8 packets).

If you have a small data set you might want to enter the variables directly into R and 
then create a dataframe from them. For the advert data this can be done by executing the 
following commands (see section 3.5):

adverts<-c(5,4,4,6,8)
packets<-c(8,9,10,13,15)
advertData<-data.frame(adverts, packets)

FIGURE 6.3
Data entry for 
correlation using 
Excel

SELF-TEST

ü	 Enter the advert data and use ggplot2 to produce a 
scatterplot (number of packets bought on the y-axis, 
and adverts watched on the x-axis) of the data.

6.5.  Bivariate correlation 1

There are two types of correlation: bivariate and partial. A bivariate correlation is a cor-
relation between two variables (as described at the beginning of this chapter) whereas a 
partial correlation (see section 6.6) looks at the relationship between two variables while 
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‘controlling’ the effect of one or more additional variables. Pearson’s product-moment cor-
relation coefficient (described earlier), Spearman’s rho (see section 6.5.5) and Kendall’s tau 
(see section 6.5.6) are examples of bivariate correlation coefficients.

Let’s return to the example from Chapter 4 about exam scores. Remember that a psy-
chologist was interested in the effects of exam stress and revision on exam performance. 
She had devised and validated a questionnaire to assess state anxiety relating to exams 
(called the Exam Anxiety Questionnaire, or EAQ). This scale produced a measure of anxi-
ety scored out of 100. Anxiety was measured before an exam, and the percentage mark 
of each student on the exam was used to assess the exam performance. She also measured 
the number of hours spent revising. These data are in Exam Anxiety.dat on the companion 
website. We already created scatterplots for these data (section 4.5) so we don’t need to 
do that again.

6.5.1.    Packages for correlation analysis in R 1

There are several packages that we will use in this chapter. Some of them can be accessed 
through R Commander (see the next section) but others can’t. For the examples in this 
chapter you will need the packages Hmisc, polycor, boot, ggplot2 and ggm. If you do not 
have these packages installed (some should be installed from previous chapters), you can 
install them by executing the following commands (boot is part of the base package and 
doesn’t need to be installed):

install.packages("Hmisc"); install.packages("ggm");
install.packages("ggplot2"); install.packages("polycor") 

You then need to load these packages by executing the commands:

library(boot); library(ggm); library(ggplot2); library(Hmisc);
library(polycor)

6.5.2.  �  General procedure for correlations using R 
Commander 1

To conduct a bivariate correlation using R Commander, first initiate the package by execut-
ing (and install it if you haven’t – see section 3.6):

library(Rcmdr)

You then need to load the data file into R Commander by using the Data⇒Import 
data⇒from text file, clipboard, or URL… menu (see section 3.7.3). Once the data are 
loaded in a dataframe (I have called the dataframe examData), you can use either the Statis
tics⇒Summaries⇒Correlation matrix… or the Statistics⇒Summaries⇒Correlation test… 
menu to get the correlation coefficients. These menus and their dialog boxes are shown in 
Figure 6.4.

The correlation matrix menu should be selected if you want to get correlation 
coefficients for more than two variables (in other words, produce a grid of correlation 
coefficients); the correlation test menu should be used when you want only a single corre-
lation coefficient. Both menus enable you to compute Pearson’s product-moment correla-
tion and Spearman’s correlation, and both can be used to produce p-values associated with 
these correlations. However, there are some important differences too: the correlation test 
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menu enables you to compute Kendall’s correlation, produces a confidence interval and 
allows you to select both two-tailed and one-tailed tests, but can be used to compute only 
one correlation coefficient at a time; in contrast, the correlation matrix cannot produce 
Kendall’s correlation but can compute partial correlations, and can also compute multiple 
correlations from a single command.  

Let’s look at the Correlation Matrix dialog box first. Having accessed the main dialog box, 
you should find that the variables in the dataframe are listed on the left-hand side of the 
dialog box (Figure 6.4). You can select the variables that you want from the list by clicking 
with the mouse while holding down the Ctrl key. R will create a grid of correlation coef-
ficients for all of the combinations of variables that you have selected. This table is called a 
correlation matrix. For our current example, select the variables Exam, Anxiety and Revise. 
Having selected the variables of interest you can choose between three correlation coef-
ficients: Pearson’s product-moment correlation coefficient ( ), Spearman’s 
rho ( ) and a partial correlation ( ). Any of these can be selected by 
clicking on the appropriate tick-box with a mouse. Finally, if you would like p-values for the 

correlation coefficients then select3 .
For the correlation test dialog box you will again find that the variables in the dataframe 

are listed on the left-hand side of the dialog box (Figure 6.4). You can select only two by 
clicking with the mouse while holding down the Ctrl key. Having selected the two variables 
of interest, choose between three correlation coefficients: Pearson’s product-moment cor-
relation coefficient ( ), Spearman’s rho ( ) and Kendall’s 
tau ( ). In addition, it is possible to specify whether or not the test is one- or two-
tailed (see section 2.6.2). To recap, a two-tailed test (the default) should be used when you 
cannot predict the nature of the relationship (i.e., ‘I’m not sure whether exam anxiety will 
improve or reduce exam marks’). If you have a non-directional hypothesis like this, click 

FIGURE 6.4
Conducting 
a bivariate 
correlation using 
R Commander

3 Selecting this option changes the function that R Commander uses to generate the output. If this option is not 
selected then the function cor() is used, but if it is selected rcorr() is used (which is part of the Hmisc package). 
The main implication is that rcorr() reports the results to only 2 decimal places (see the next section for a full 
description of these functions).
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on . A one-tailed test should be selected when you have a directional hypothesis. 
With correlations, the direction of the relationship can be positive (e.g., ‘the more anxious 
someone is about an exam, the better their mark will be’) or negative (e.g., ‘the more 
anxious someone is about an exam, the worse their mark will be’). A positive relationship 
means that the correlation coefficient will be greater than 0; therefore, if you predict a 
positive correlation coefficient then select . However, if you predict a negative 
relationship then the correlation coefficient will be less than 0, so select . For 
both the correlation matrix and correlation test dialog boxes click on  to generate the 
output.

6.5.3.    General procedure for correlations using R 1

To compute basic correlation coefficients there are three main functions that can be used: 
cor(), cor.test() and rcorr(). Table 6.2 shows the main differences between the three func-
tions. The functions cor() and cor.test() are part of the base system in R, but rcorr() is part 
of the Hmisc package, so make sure you have it loaded.

Table 6.2 should help you to decide which function is best in a particular situation: if you 
want a confidence interval then you will have to use cor.test(), and if you want correlation 
coefficients for multiple pairs of variables then you cannot use cor.test(); similarly, if you 
want p-values then cor() won’t help you. You get the gist.

Table 6.2  Attributes of different functions for obtaining correlations

 
Function

 
Pearson

 
Spearman

 
Kendall

 
p-values

 
CI

Multiple 
Correlations?

 
Comments

cor()    

cor.test()     

rcorr()     2 d.p. only

We will look at each function in turn and see what parameters it uses. Let’s start with 
cor(), which takes the general form:

cor(x,y, use = "string", method = "correlation type")

in which:

MM x is a numeric variable or dataframe.

MM y is another numeric variable (does not need to be specified if x above is a dataframe).

MM use is set equal to a character string that specifies how missing values are handled. 
The strings can be: (1) “everything”, which will mean that R will output an NA 
instead of a correlation coefficient for any correlations involving variables containing 
missing values; (2) “all.obs”, which will use all observations and, therefore, returns 
an error message if there are any missing values in the data; (3) “complete.obs”, in 
which correlations are computed from only cases that are complete for all variables – 
sometimes known as excluding cases listwise (see R’s Souls’ Tip 6.1); or (4) “pairwise.
complete.obs”, in which correlations between pairs of variables are computed for 
cases that are complete for those two variables – sometimes known as excluding cases 
pairwise (see R’s Souls’ Tip 6.1).
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MM method enables you to specify whether you want “pearson”, “spearman” or “kend-
all” correlations (note that all are written in lower case). If you want more than one 
type you can specify a list using the c() function; for example, c(“pearson”, “spear-
man”) would produce both types of correlation coefficients.

If we stick with our exam anxiety data, then we could get Pearson correlations between all 
variables by specifying the dataframe (examData):

cor(examData, use = "complete.obs", method = "pearson")

If we want a single correlation between a pair of variables (e.g., Exam and Anxiety) then 
we’d specify both variables instead of the dataframe:

cor(examData$Exam, examData$Anxiety, use = "complete.obs", method = "pearson")

We can get a different type of correlation (e.g., Kendall’s tau) by changing the method 
command:

cor(examData$Exam, examData$Anxiety, use = "complete.obs", method = "kendall")

We can also change how we deal with missing values, for example, by asking for pairwise 
exclusion:

cor(examData$Exam, examData$Anxiety, use = "pairwise.complete.obs",  
method = "kendall")

          R ’s  Souls ’  T ip  6 .1   Exclude cases pairwise or listwise? 1

As we discover various functions in this book, many of them have options that determine how missing data are 
handled. Sometimes we can decide to exclude cases ‘pairwise’ or ‘listwise’. Listwise means that if a case has 
a missing value for any variable, then they are excluded from the whole analysis. So, for example, in our exam 
anxiety data if one of our students had reported their anxiety and we knew their exam performance but we didn’t 
have data about their revision time, then their data would not be used to calculate any of the correlations: they 
would be completely excluded from the analysis. Another option is to exclude cases on a pairwise basis, which 
means that if a participant has a score missing for a particular variable or analysis, then their data are excluded 
only from calculations involving the variable for which they have no score. For our student about whom we don’t 
have any revision data, this means that their data would be excluded when calculating the correlation between 
exam scores and revision time, and when calculating the correlation between exam anxiety and revision time; 
however, the student’s scores would be included when calculating the correlation between exam anxiety and 
exam performance because for this pair of variables we have both of their scores. 

The function rcorr() is fairly similar to cor(). It takes the general form:

rcorr(x,y, type = "correlation type")

in which:

MM x is a numeric variable or matrix.

MM y is another numeric variable (does not need to be specified if x above is a matrix).

MM type enables you to specify whether you want “pearson” or “spearman” correlations. 
If you want both you can specify a list as c(“pearson”, “spearman”).
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A couple of things to note: first, this function does not work on dataframes, so you have to 
convert your dataframe to a matrix first (see section 3.9.2); second, this function excludes 
cases pairwise (see R’s Souls’ Tip 6.1) and there is no way to change this setting. Therefore, if 
you have two numeric variables (that are not part of a dataframe) called Exam and Anxiety 
then you could compute the Pearson correlation coefficient and its p-value by executing:

rcorr(Exam, Anxiety, type = "pearson")

Similarly, you could compute Pearson correlations (and their p-values) between all vari-
ables in a matrix called examData by executing:

rcorr(examData, type = "pearson")

The function cor.test() can be used only on pairs of variables (not a whole dataframe) and 
takes the general form:

cor.test(x, y, alternative = "string", method = "correlation type", conf.
level = 0.95)

in which:

MM x is a numeric variable.
MM y is another numeric variable.
MM alternative specifies whether you want to do a two-tailed test (alternative = “two.

sided”), which is the default, or whether you predict that the correlation will be less 
than zero (i.e., negative) or more than zero (i.e., positive), in which case you can use 
alternative = “less” and alternative = “greater”, respectively.

MM method is the same as for cor() described above.
MM conf.level allows you to specify the width of the confidence interval computed for 

the correlation. The default is 0.95 (conf.level = 0.95) and if this is what you want 
then you don’t need to use this command, but if you wanted a 90% or 99% con-
fidence interval you could use conf.level = 0.9 and conf.level = 0.99, respectively. 
Confidence intervals are produced only for Pearson’s correlation coefficient.

Using our exam anxiety data, if we want a single correlation coefficient, its two-tailed 
p-value and 95% confidence interval between a pair of variables (for example, Exam and 
Anxiety) then we’d specify it much like we did for cor():

cor.test(examData$Exam, examData$Anxiety, method = "pearson")

If we predicted a negative correlation then we could add in the alternative command:

cor.test(examData$Exam, examData$Anxiety, alternative = "less"), method = 
"pearson")

We could also specify a different confidence interval than 95%:

cor.test(examData$Exam, examData$Anxiety, alternative = "less"), method = 
"pearson", conf.level = 0.99)

Hopefully you get the general idea. We will now move on to look at some examples of 
specific types of correlation coefficients.

Oliver is so excited to get onto analysing his data that he doesn’t want 
me to spend pages waffling on about variance and covariance. ‘Stop 
writing, you waffling fool,’ he says. ‘I want to analyse my data.’ Well, he’s 
got a point. If you want to find out more about two functions for calculat-
ing variances and covariances that are part of the cor() family, then the 
additional material for this chapter on the companion website will tell you. 

OLIVER TWISTED

Please Sir, can I have  
some more … variance  
and covariance?
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6.5.4.    Pearson’s correlation coefficient  1

6.5.4.1.  Assumptions of Pearson’s r 1

Pearson’s (Figure 6.5) correlation coefficient was described in full at the beginning of this 
chapter. Pearson’s correlation requires only that data are interval (see section 1.5.1.2) for it 
to be an accurate measure of the linear relationship between two variables. However, if you 
want to establish whether the correlation coefficient is significant, then more assumptions 
are required: for the test statistic to be valid the sampling distribution has to be normally 
distributed and as we saw in Chapter 5 we assume that it is if our sample data are normally 
distributed (or if we have a large sample). Although typically, to assume that the sampling 
distribution is normal, we would want both variables to be normally distributed, there is 
one exception to this rule: one of the variables can be a categorical variable provided there 
are only two categories (in fact, if you look at section 6.5.7 you’ll see that this is the same 
as doing a t-test, but I’m jumping the gun a bit). In any case, if your data are non-normal 
(see Chapter 5) or are not measured at the interval level then you should use a different 
kind of correlation coefficient or use bootstrapping.

6.5.4.2.  Computing Pearson’s r using R 1

That’s a confusing title. We have already gone through the nuts and bolts of using R 
Commander and the command line to calculate Pearson’s r. We’re going to use the exam 
anxiety data to get some hands-on practice.

SELF-TEST

ü	 Load the Exam Anxiety.dat file into a dataframe 
called examData.

FIGURE 6.5
Karl Pearson
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Let’s look at a sample of this dataframe:

    Code Revise Exam Anxiety Gender
1      1      4   40  86.298   Male
2      2     11   65  88.716 Female
3      3     27   80  70.178   Male
4      4     53   80  61.312   Male
5      5      4   40  89.522   Male
6      6     22   70  60.506 Female
7      7     16   20  81.462 Female
8      8     21   55  75.820 Female
9      9     25   50  69.372 Female
10    10     18   40  82.268 Female

The first issue we have is that some of the variables are not numeric (Gender) and others 
are not meaningful numerically (code). We have two choices here. The first is to make a 
new dataframe by selecting only the variables of interest) – we discovered how to do this 
in section 3.9.1. The second is to specify this subset within the cor() command itself. If we 
choose the first method then we should execute:

examData2 <- examData[, c("Exam", "Anxiety", "Revise")]
cor(examData2)

The first line creates a dataframe (examData2) that contains all of the cases, but only the 
variables Exam, Anxiety and Revise. The second command creates a table of Pearson cor-
relations between these three variables (note that Pearson is the default so we don’t need to 
specify it and because there are no missing cases we do not need the use command).

Alternatively, we could specify the subset of variables in the examData dataframe as part 
of the cor() function:

cor(examData[, c("Exam", "Anxiety", "Revise")])

The end result is the same, so it’s purely down to preference. With the first method it is a 
little easier to see what’s going on, but as you gain confidence and experience you might 
find that you prefer to save time and use the second method.

              Exam    Anxiety     Revise
Exam     1.0000000 -0.4409934  0.3967207
Anxiety -0.4409934  1.0000000 -0.7092493
Revise   0.3967207 -0.7092493  1.0000000

Output 6.1: Output for a Pearson’s correlation

Output 6.1 provides a matrix of the correlation coefficients for the three variables. 
Each variable is perfectly correlated with itself (obviously) and so r = 1 along the diago-
nal of the table. Exam performance is negatively related to exam anxiety with a Pearson 
correlation coefficient of r = −.441. This is a reasonably big effect. Exam performance 
is positively related to the amount of time spent revising, with a coefficient of r = .397, 
which is also a reasonably big effect. Finally, exam anxiety appears to be negatively related 
to the time spent revising, r = −.709, which is a substantial effect size. In psychologi-
cal terms, this all means that as anxiety about an exam increases, the percentage mark 
obtained in that exam decreases. Conversely, as the amount of time revising increases, the 
percentage obtained in the exam increases. Finally, as revision time increases, the student’s 
anxiety about the exam decreases. So there is a complex interrelationship between the 
three variables.

Correlation coefficients are effect sizes, so we can interpret these values without really 
needing to worry about p-values (and as I have tried to drum into you, because p-values 
are related to sample size, there is a lot to be said for not obsessing about them). However, 
if you are the type of person who obsesses about p-values, then you can use the rcorr() 
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function instead and p yourself with excitement at the output it produces. First, make sure 
you have loaded the Hmisc package by executing:

library(Hmisc)

Next, we need to convert our dataframe into a matrix using the as.matrix() command. 
We can include only numeric variables so, just as we did above, we need to select only the 
numeric variables within the examData dataframe. To do this, execute:

examMatrix<-as.matrix(examData[, c("Exam", "Anxiety", "Revise")])

Which creates a matrix called examMatrix that contains only the variables Exam, Anxiety, 
and Revise from the examData dataframe. To get the correlation matrix we simply input 
this matrix into the rcorr() function:4

rcorr(examMatrix)

As before, I think that the method above makes it clear what we’re doing, but more expe-
rienced users could combine the previous two commands into a single one:

rcorr(as.matrix(examData[, c("Exam", "Anxiety", "Revise")]))

Output 6.2 shows the same correlation matrix as Output 6.1, except rounded to 2 decimal 
places. In addition, we are given the sample size on which these correlations are based, and 
also a matrix of p-values that corresponds to the matrix of correlation coefficients above. 
Exam performance is negatively related to exam anxiety with a Pearson correlation coefficient 
of r = −.44 and the significance value is less than .001 (it is approximately zero). This signifi-
cance value tells us that the probability of getting a correlation coefficient this big in a sample 
of 103 people if the null hypothesis were true (there was no relationship between these vari-
ables) is very low (close to zero in fact). Hence, we can gain confidence that there is a genuine 
relationship between exam performance and anxiety. Our criterion for significance is usually 
.05 (see section 2.6.1) so we can say that all of the correlation coefficients are significant.

         Exam Anxiety Revise
Exam     1.00   -0.44   0.40
Anxiety -0.44    1.00  -0.71
Revise   0.40   -0.71   1.00

n= 103 

P
        Exam Anxiety Revise
Exam          0       0    
Anxiety  0            0    
Revise   0    0  

Output 6.2

It can also be very useful to look at confidence intervals for correlation coefficients. Sadly, 
we have to do this one at a time (we can’t do it for a whole dataframe or matrix). Let’s look 
at the correlation between exam performance (Exam) and exam anxiety (Anxiety). We can 
compute the confidence interval using cor.test() by executing:

cor.test(examData$Anxiety, examData$Exam)

4 The ggm package also has a function called rcorr(), so if you have this package installed, R might use that func-
tion instead, which will produce something very unpleasant on your screen. If so, you need to put Hmisc:: in front 
of the commands to make sure R uses rcorr() from the Hmisc package (R’s Souls’ Tip 3.4):

Hmisc::rcorr(examMatrix)
Hmisc::rcorr(as.matrix(examData[, c("Exam", "Anxiety", "Revise")]))
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Note that we have specified only the variables because by default this function produces 
Pearson’s r and a 95% confidence interval. Output 6.3 shows the resulting output; it reiter-
ates that the Pearson correlation between exam performance and anxiety was –.441, but 
tells us that this was highly significantly different from zero, t(101) = –4.94, p < .001. 
Most important, the 95% confidence ranged from –.585 to – .271, which does not cross 
zero. This tells us that in all likelihood, the population or actual value of the correlation 
is negative, so we can be pretty content that exam anxiety and exam performance are, in 
reality, negatively related.

	 Pearson’s product-moment correlation

data:  examData$Anxiety and examData$Exam 
t = -4.938, df = 101, p-value = 3.128e-06
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
 -0.5846244 -0.2705591 
sample estimates:
       cor 
-0.4409934

Output 6.3

SELF-TEST

ü	 Compute the confidence intervals for the 
relationships between the time spent revising 
(Revise) and both exam performance (Exam) and 
exam anxiety (Anxiety).

6.5.4.3.  Using R2 for interpretation 1

Although we cannot make direct conclusions about causality from a correlation, we can 
take the correlation coefficient a step further by squaring it. The correlation coefficient 
squared (known as the coefficient of determination, R2) is a measure of the amount of vari-
ability in one variable that is shared by the other. For example, we may look at the relation-
ship between exam anxiety and exam performance. Exam performances vary from person 
to person because of any number of factors (different ability, different levels of preparation 
and so on). If we add up all of this variability (rather like when we calculated the sum of 
squares in section 2.4.1) then we would have an estimate of how much variability exists 
in exam performances. We can then use R2 to tell us how much of this variability is shared 
by exam anxiety. These two variables had a correlation of −0.4410 and so the value of R2 
will be (−0.4410)2 = 0.194. This value tells us how much of the variability in exam per-
formance is shared by exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam anxi-
ety shares 19.4% of the variability in exam performance. So, although exam anxiety was 
highly correlated with exam performance, it can account for only 19.4% of variation in 
exam scores. To put this value into perspective, this leaves 80.6% of the variability still to 
be accounted for by other variables.

You’ll often see people write things about R2 that imply causality: they might write ‘the 
variance in y accounted for by x’, or ‘the variation in one variable explained by the other’. 
However, although R2 is an extremely useful measure of the substantive importance of an 
effect, it cannot be used to infer causal relationships. Exam anxiety might well share 19.4% 
of the variation in exam scores, but it does not necessarily cause this variation.
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We can get R to compute the coefficient of determination by remembering that “^2” 
means ‘squared’ in R-speak. Therefore, for our examData2 dataframe (see earlier) if we 
execute:

cor(examData2)^2

instead of:

cor(examData2)

then you will see be a matrix containing r2 instead of r (Output 6.4).

             Exam   Anxiety    Revise
Exam    1.0000000 0.1944752 0.1573873
Anxiety 0.1944752 1.0000000 0.5030345
Revise  0.1573873 0.5030345 1.0000000

Output 6.4

Note that for exam performance and anxiety the value is 0.194, which is what we calcu-
lated above. If you want these values expressed as a percentage then simply multiply by 
100, so the command would become:

cor(examData2)^2 * 100

6.5.5.    Spearman’s correlation coefficient  1

Spearman’s correlation coefficient (Spearman, 1910), rs, is a non-parametric statis-
tic and so can be used when the data have violated parametric assumptions such 
as non-normally distributed data (see Chapter 5). You’ll sometimes hear the test 
referred to as Spearman’s rho (pronounced ‘row’, as in ‘row your boat gently 
down the stream’). Spearman’s test works by first ranking the data (see section 
15.4.1), and then applying Pearson’s equation (equation (6.3)) to those ranks.

I was born in England, which has some bizarre traditions. One such oddity is 
the World’s Biggest Liar competition held annually at the Santon Bridge Inn in 
Wasdale (in the Lake District). The contest honours a local publican, ‘Auld Will 
Ritson’, who in the nineteenth century was famous in the area for his far-fetched 
stories (one such tale being that Wasdale turnips were big enough to be hollowed out and 
used as garden sheds). Each year locals are encouraged to attempt to tell the biggest lie in the 
world (lawyers and politicians are apparently banned from the competition). Over the years 
there have been tales of mermaid farms, giant moles, and farting sheep blowing holes in the 
ozone layer. (I am thinking of entering next year and reading out some sections of this book.)

Imagine I wanted to test a theory that more creative people will be able to create taller 
tales. I gathered together 68 past contestants from this competition and asked them where 
they were placed in the competition (first, second, third, etc.) and also gave them a creativity 
questionnaire (maximum score 60). The position in the competition is an ordinal variable 
(see section 1.5.1.2) because the places are categories but have a meaningful order (first place 
is better than second place and so on). Therefore, Spearman’s correlation coefficient should 
be used (Pearson’s r requires interval or ratio data). The data for this study are in the file 
The Biggest Liar.dat. The data are in two columns: one labelled Creativity and one labelled 
Position (there’s actually a third variable in there but we will ignore it for the time being). For 
the Position variable, each of the categories described above has been coded with a numerical 
value. First place has been coded with the value 1, with positions being labelled 2, 3 and so on.

The procedure for doing a Spearman correlation is the same as for a Pearson correlation 
except that we need to specify that we want a Spearman correlation instead of Pearson, 

What if my data are
not parametric?
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which is done using method = “spearman” for cor() and cor.test(), and type = “spearman” 
for rcorr(). Let’s load the data into a dataframe and then create a dataframe by executing:

liarData = read.delim("The Biggest Liar.dat",  header = TRUE)

or if you haven’t set your working directory, execute this command and use the dialog box 
to select the file:

liarData = read.delim(file.choose(),  header = TRUE)

SELF-TEST

ü	 See whether you can use what you have learned so 
far to compute a Spearman’s correlation between 
Position and Creativity.

To obtain the correlation coefficient for a pair of variables we can execute:

cor(liarData$Position, liarData$Creativity, method = "spearman")

Note that we have simply specified the two variables of interest, and then set the method 
to be a Spearman correlation. The output of this command will be:

[1] -0.3732184

If we want a significance value for this correlation we could either use rcorr() by executing 
(remembering that we have to first convert the dataframe to a matrix):

liarMatrix<-as.matrix(liarData[, c("Position", "Creativity")])
rcorr(liarMatrix)

or simply use cor.test(), which has the advantage that we can set a directional hypothesis. 
I predicted that more creative people would tell better lies. Doing well in the competition 
(i.e., telling better lies) actually equates to a lower number for the variable Position (first 
place = 1, second place = 2 etc.), so we’re predicting a negative relationship. High scores 
on Creativity should equate to a lower value of Position (because a low value means you 
did well!). Therefore, we predict that the correlation will be less than zero, and we can 
reflect this prediction by using alternative = “less” in the command:

cor.test(liarData$Position, liarData$Creativity, alternative = "less", 
method = "spearman")

FIGURE 6.6
Charles 
Spearman, 
ranking furiously 
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		  Spearman’s rank correlation rho
data:  liarData$Position and liarData$Creativity 
S = 71948.4, p-value = 0.0008602
alternative hypothesis: true rho is less than 0 
sample estimates:
       rho 
-0.3732184

Output 6.5

Output 6.5 shows the output for a Spearman correlation on the variables Creativity and 
Position. The output is very similar to that of the Pearson correlation (except that confidence 
intervals are not produced – if you want one see the section on bootstrapping): the correla-
tion coefficient between the two variables is fairly large (−.373), and the significance value of 
this coefficient is very small (p < .001). The significance value for this correlation coefficient 
is less than .05; therefore, it can be concluded that there is a significant relationship between 
creativity scores and how well someone did in the World’s Biggest Liar competition. Note 
that the relationship is negative: as creativity increased, position decreased. Remember that a 
low number means that you did well in the competition (a low number such as 1 means you 
came first, and a high number like 4 means you came fourth). Therefore, our hypothesis is 
supported: as creativity increased, so did success in the competition. 

SELF-TEST

ü	 Did creativity cause success in the World’s Biggest 
Liar competition?

6.5.6.    Kendall’s tau (non-parametric)  1

Kendall’s tau, τ, is another non-parametric correlation and it should be used rather than 
Spearman’s coefficient when you have a small data set with a large number of tied ranks. 
This means that if you rank all of the scores and many scores have the same rank, then 
Kendall’s tau should be used. Although Spearman’s statistic is the more popular of the 
two coefficients, there is much to suggest that Kendall’s statistic is actually a better esti-
mate of the correlation in the population (see Howell, 1997: 293). As such, we can draw 
more accurate generalizations from Kendall’s statistic than from Spearman’s. To carry out 
Kendall’s correlation on the World’s Biggest Liar data simply follow the same steps as for 
Pearson and Spearman correlations but use method = “kendall”:

cor(liarData$Position, liarData$Creativity, method = "kendall")

cor.test(liarData$Position, liarData$Creativity, alternative = "less", 
method = "kendall")

The output is much the same as for Spearman’s correlation.

	 Kendall’s rank correlation tau

data:  liarData$Position and liarData$Creativity 
z = -3.2252, p-value = 0.0006294
alternative hypothesis: true tau is less than 0 
sample estimates:
       tau 
-0.3002413

Output 6.6
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You’ll notice from Output 6.6 that the actual value of the correlation coefficient is closer 
to zero than the Spearman correlation (it has increased from −.373 to −.300). Despite the 
difference in the correlation coefficients we can still interpret this result as being a highly 
significant relationship (because the significance value of .001 is less than .05). However, 
Kendall’s value is a more accurate gauge of what the correlation in the population would 
be. As with the Pearson correlation, we cannot assume that creativity caused success in the 
World’s Best Liar competition.

SELF-TEST

ü	 Conduct a Pearson correlation analysis of the advert 
data from the beginning of the chapter.

6.5.7.    Bootstrapping correlations 3

Another way to deal with data that do not meet the assumptions of Pearson’s r is to use 
bootstrapping. The boot() function takes the general form:

object<-boot(data, function, replications)

in which data specifies the dataframe to be used, function is a function that you write to 
tell boot() what you want to bootstrap, and replications is a number specifying how many 
bootstrap samples you want to take (I usually set this value to 2000). Executing this com-
mand creates an object that has various properties. We can view an estimate of bias, and 
an empirically derived standard error by viewing object, and we can display confidence 
intervals based on the bootstrap by executing boot.ci(object).

When using the boot() function with correlations (and anything else for that matter) the 
tricky bit is writing the function (R’s Souls’ Tip 6.2). If we stick with our biggest liar data 
and want to bootstrap Kendall tau, then our function will be:

bootTau<-function(liarData,i) cor(liarData$Position[i], liarData$Creativity[i], 
use = "complete.obs", method = "kendall")

Executing this command creates an object called bootTau. The first bit of the function tells 
R what input to expect in the function: in this case we need to feed a dataframe (liarData) 
into the function and a variable that has been called i (which refers to a particular bootstrap 
sample). The second part of the function specifies the cor() function, which is the thing we 
want to bootstrap. Notice that cor() is specified in exactly the same way as when we did the 
original Kendall correlation except that for each variable we have added [i], which again 
just refers to a particular bootstrap sample. If you want to bootstrap a Pearson or Spearman 
correlation you do it in exactly the same way except that you specify method = “pearson” 
or method = “spearman” when you define the function.

To create the bootstrap object, we execute:

library(boot)
boot_kendall<-boot(liarData, bootTau, 2000)
boot_kendall

The first command loads the boot package (in case you haven’t already initiated it). The 
second command creates an object (boot_kendall) based on bootstrapping the liarData 
dataframe using the bootTau function that we previously defined and executed. The second 
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line displays a summary of the boot_kendall object. To get the 95% confidence interval for 
the boot_kendall object we execute:5

boot.ci(boot_kendall)

Output 6.7 shows the contents of both boot_kendall and also the output of the boot.ci() 
function. First, we get the original value of Kendall’s tau (−.300), which we computed in 
the previous section. We also get an estimate of the bias in that value (which in this case 
is very small) and the standard error (0.098) based on the bootstrap samples. The out-
put from boot.ci() gives us four different confidence intervals (the basic bootstrapped CI, 
percentile and BCa). The good news is that none of these confidence intervals cross zero, 
which gives us good reason to think that the population value of this relationship between 
creativity and success at being a liar is in the same direction as the sample value. In other 
words, our original conclusions stand.

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = liarData, statistic = bootTau, R = 2000)

Bootstrap Statistics :
      original      bias    std. error
t1* -0.3002413 0.001058191    0.097663

> boot.ci(boot_kendall)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : 
boot.ci(boot.out = boot_kendall)

Intervals : 
Level      Normal              Basic         
95%   (-0.4927, -0.1099 )   (-0.4956, -0.1126 )  

Level     Percentile            BCa          
95%   (-0.4879, -0.1049 )   (-0.4777, -0.0941 )  
Calculations and Intervals on Original Scale
Warning message:
In boot.ci(boot_kendall) :
  bootstrap variances needed for studentized intervals

Output 6.7

SELF-TEST

ü	 Conduct bootstrap analysis of the Pearson and 
Spearman correlations for the examData2 dataframe.

5 If we want something other than a 95% confidence interval we can add conf = x, in which x is the value of the 
confidence interval as a proportion. For example, we can get a 99% confidence interval by executing:

boot.ci(boot_kendall, conf = 0.99)
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          R ’s  Souls ’  T ip  6 .2   Writing functions 3

 

What happens if there is not a function available in R to do what you want to do? Simple, write your own function. 
The ability to write your own functions is a very powerful feature of R. With a sufficient grasp of the R environment 
(and the maths behind whatever you’re trying to do) you can write a function to do virtually anything for you (apart 
from making coffee). To write a function you need to execute a string of commands that define the function. They 
take this general format:

nameofFunction<-function(inputObject1, inputObject2, etc.)
{
	 a set of commands that do things to the input object(s)
	 a set of commands that specify the output of the function
}

Basically, you name the function (any name you like, but obviously one that tells you what the function does is 
helpful). The function() tells R that you’re writing a function, and you need to place within the brackets anything 
you want as input to the function: this can be any object in R (a model, a dataframe, a numeric value, text, etc.). A 
function might just accept one object, or there might be many. The names you list in the brackets can be whatever 
you like, but again it makes sense to label them based on what they are (e.g., if you need to input a dataframe 
then it makes sense to give the input a label of dataframe so that you remember what it is that the function needs). 
You then use {} to contain a set of instructions that tell R what to do with the objects that have been input into the 
function. These are usually some kind of calculations followed by some kind of instruction about what to return 
from the function (the output).

Imagine that R doesn’t have a function for computing the mean and we wanted to write one (this will keep 
things familiar). We could write this as:

meanOfVariable<-function(variable)
{
	 mean<-sum(variable)/length(variable)
       cat("Mean = ", mean)
}

Executing this command creates a function called meanOfVariable that expects a variable to be entered into it. 
The bits in {} tell R what to do with the variable that is entered into the function. The first line computes the mean 
using the function sum() to add the values in the variable that was entered into the function, and the function 
length() counts how many scores are in the variable. Therefore, mean<-sum(variable)/length(variable) translates 
as mean = sum of scores/number of scores (which, of course, is the definition of the mean). The final line uses 
the cat() function to print the text “Mean =” and the value of mean that we have just computed.

Remember the data about the number of friends that statistics lecturers had that we used to explore the mean 
in Chapter 2 (section 2.4.1). We could enter these data by executing:

lecturerFriends = c(1,2,3,3,4)

Having executed our function, we can use it to find the mean. We simply execute:

meanOfVariable(lecturerFriends)

This tells R that we want to use the function meanOfVariable(), which we have just created, and that the variable 
we want to apply this function to is lecturerFriends. Executing this command gives us:

Mean =  2.6

In other words, R has printed the text ‘Mean =’ and the value of the mean computed by the function (just as we 
asked it to). This value is the same as the one we calculated in section 2.4.1, so the function has worked. The 
beauty of functions is that having executed the commands that define it, we can use this function over and over 
again within our session (which saves time).
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6.5.8.    Biserial and point-biserial correlations 3

The biserial and point-biserial correlation coefficients are distinguished by only a concep-
tual difference, yet their statistical calculation is quite different. These correlation coef-
ficients are used when one of the two variables is dichotomous (i.e., it is categorical with 
only two categories). An example of a dichotomous variable is being pregnant, because a 
woman can be either pregnant or not (she cannot be ‘a bit pregnant’). Often it is necessary 
to investigate relationships between two variables when one of the variables is dichoto-
mous. The difference between the use of biserial and point-biserial correlations depends 
on whether the dichotomous variable is discrete or continuous. This difference is very 
subtle. A discrete, or true, dichotomy is one for which there is no underlying continuum 
between the categories. An example of this is whether someone is dead or alive: a person 
can be only dead or alive, they can’t be ‘a bit dead’. Although you might describe a person 
as being ‘half-dead’ –  especially after a heavy drinking session – they are clearly still alive 
if they are still breathing! Therefore, there is no continuum between the two categories. 
However, it is possible to have a dichotomy for which a continuum does exist. An example 
is passing or failing a statistics test: some people will only just fail while others will fail by 
a large margin; likewise some people will scrape a pass while others will excel. So although 
participants fall into only two categories there is an underlying continuum along which 
people lie. Hopefully, it is clear that in this case there is some kind of continuum underlying 
the dichotomy, because some people passed or failed more dramatically than others. The 
point-biserial correlation coefficient (rpb) is used when one variable is a discrete dichotomy 
(e.g., pregnancy), whereas the biserial correlation coefficient (rb) is used when one variable 
is a continuous dichotomy (e.g., passing or failing an exam). 

Imagine that I was interested in the relationship between the gender of a cat and how 
much time it spent away from home (what can I say? I love cats so these things interest me). 
I had heard that male cats disappeared for substantial amounts of time on long-distance 
roams around the neighbourhood (something about hormones driving them to find mates) 
whereas female cats tended to be more homebound. So, I used this as a purr-fect (sorry!) 
excuse to go and visit lots of my friends and their cats. I took a note of the gender of the 
cat and then asked the owners to note down the number of hours that their cat was absent 
from home over a week. Clearly the time spent away from home is measured at an interval 
level – and let’s assume it meets the other assumptions of parametric data – while the gen-
der of the cat is discrete dichotomy. A point-biserial correlation has to be calculated and 

As a final point, just to be clear, when we define our function we can name things anything we like. For 
example, although I named the input to the function ‘variable’ to remind myself what the function needs, I could 
have named it ‘HarryTheHungryHippo’ if I had wanted to. Provided that I carry this name through to the  
commands within the function, it will work:

meanOfVariable<-function(HarryTheHungryHippo)
{
    mean<-sum(HarryTheHungryHippo)/length(HarryTheHungryHippo)
    cat("Mean = ", mean)
}

Note that within the function I now apply the sum() and length() functions to HarryTheHungryHippo because this 
is the name that I gave to the input of the function. It will work, but people will be probably confused about what 
HarryTheHungryHippo is when they read your code.
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this is simply a Pearson correlation when the dichotomous variable is coded with 0 for one 
category and 1 for the other. 

Let’s load the data in the file pbcorr.csv and have a look at it. These data are in the CSV 
format, so we can load them as (assuming you have set the working directory correctly):

catData = read.csv("pbcorr.csv",  header = TRUE)

Note that we have used the read.csv() function because the file is a .csv file. To look at the 
data execute:

catData

A sample of the data is as follows:

   time gender recode
1    41      1      0
2    40      0      1
3    40      1      0
4    38      1      0
5    34      1      0
6    46      0      1
7    42      1      0
8    42      1      0
9    47      1      0
10   42      0      1
11   45      1      0
12   46      1      0
13   44      1      0
14   54      0      1

There are three variables:

MM time, which is the number of hours that the cat spent away from home (in a week).

MM gender, is the gender of the cat, coded as 1 for male and 0 for female.

MM recode, is the gender of the cat but coded the opposite way around (i.e., 0 for male 
and 1 for female). We will come to this variable later, but for now ignore it.

SELF-TEST

ü	 Carry out a Pearson correlation on time and gender.

Congratulations: if you did the self-test task then you have just conducted your first 
point-biserial correlation. See, despite the horrible name, it’s really quite easy to do. If you 
didn’t do the self-test then execute:

cor.test(catData$time, catData$gender)

You should find that you can see Output 6.8. The point-biserial correlation coefficient is 
rpb = .378, which has a significance value of .003. The significance test for this correlation 
is actually the same as performing an independent-samples t-test on the data (see Chapter 
9). The sign of the correlation (i.e., whether the relationship was positive or negative) will 
depend entirely on which way round the coding of the dichotomous variable was made. To 
prove that this is the case, the data file pbcorr.dat has an extra variable called recode which 
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is the same as the variable gender except that the coding is reversed (1 = female, 0 = male). 
If you repeat the Pearson correlation using recode instead of gender you will find that the 
correlation coefficient becomes −.378. The sign of the coefficient is completely dependent 
on which category you assign to which code and so we must ignore all information about 
the direction of the relationship. However, we can still interpret R2 as before. So in this 
example, R2 = .3782 = .143. Hence, we can conclude that gender accounts for 14.3% of 
the variability in time spent away from home.

SELF-TEST

ü	 Carry out a Pearson correlation on time and recode.

	 Pearson’s product-moment correlation

data:  catData$time and catData$gender 
t = 3.1138, df = 58, p-value = 0.002868
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
 0.137769 0.576936 
sample estimates:
      cor 
0.3784542

Output 6.8

Imagine now that we wanted to convert the point-biserial correlation into the biserial 
correlation coefficient (rb) (because some of the male cats were neutered and so there might 
be a continuum of maleness that underlies the gender variable). We must use equation (6.9) 
in which p is the proportion of cases that fell into the largest category and q is the propor-
tion of cases that fell into the smallest category. Therefore, p and q are simply the number 
of male and female cats. In this equation y is the ordinate of the normal distribution at 
the point where there is p% of the area on one side and q% on the other (this will become 
clearer as we do an example):

r
r pq

yb
pb= 	 (6.9)

To calculate p and q, we first need to use the table() function to compute the frequencies 
of males and female cats. We will store these frequencies in a new object called catFrequen-
cies. We then use this object to compute the proportion of male and female cats using the 
prop.table() function. We execute these two commands as follows:

catFrequencies<-table(catData$gender)
prop.table(catFrequencies)

The resulting output tells us that the proportion of male cats (1) was .467 (this is q because 
it is the smallest portion) and the proportion of females (0) was .533 (this is p because it is 
the largest portion):

        0         1 
0.5333333 0.4666667

To calculate y, we use these values and the values of the normal distribution displayed in the 
Appendix. Figure 6.7 shows how to find the ordinate (the value in the column labelled y) 
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when the normal curve is split with .467 as the smaller portion and .533 as the larger portion. 
The figure shows which columns represent p and q and we look for our values in these columns 
(the exact values of 0.533 and 0.467 are not in the table so instead we use the nearest values 
that we can find, which are .5319 and .4681, respectively). The ordinate value is in the column 
y and is .3977. 

Smaller
Portion

z

Larger
Portion

Test Stalistic

F
re

qu
en

cy

FIGURE 6.7
Getting the 
‘ordinate’ of 
the normal 
distribution

If we replace these values in equation (6.9) we get .475 (see below), which is quite a lot 
higher than the value of the point-biserial correlation (0.378). This finding just shows you 
that whether you assume an underlying continuum or not can make a big difference to the 
size of effect that you get:

r
r pq

yb
pb= =

×
=

. . .
.

.
378 533 467

3977
475

If this process freaks you out, then luckily you can get R to do it for you by installing the 
polycor package and using the polyserial() function. You can simply specify the two vari-
ables of interest within this function just as you have been doing for every other correlation 
in this chapter. Execute this command:

polyserial(catData$time, catData$gender)

and the resulting output:

[1] 0.4749256

confirms out earlier calculation.
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You might wonder, given that you can get R to calculate the biserial correlation in one 
line of code, why I got you to calculate it by hand. It’s entirely plausible that I’m just a nasty 
person who enjoys other people’s pain. An alternative explanation is that the values of p 
and q are about to come in handy so it was helpful to show you how to calculate them. I’ll 
leave you to decide which explanation is most likely.

To get the significance of the biserial correlation we need to first work out its standard 
error. If we assume the null hypothesis (that the biserial correlation in the population is 
zero) then the standard error is given by (Terrell, 1982):

SE
pq

y N
rb

= 	 (6.10)

This equation is fairly straightforward because it uses the values of p, q and y that we 
already used to calculate the biserial r. The only additional value is the sample size (N), 
which in this example was 60. So our standard error is:

SErb
=

×
×

=
. .

.
.

533 467

3977 60
162

The standard error helps us because we can create a z-score (see section 1.7.4). To get a 
z-score we take the biserial correlation, subtract the mean in the population and divide by 
the standard error. We have assumed that the mean in the population is 0 (the null hypoth-
esis), so we can simply divide the biserial correlation by its standard error:

zr
b b

r

b

r

b

r
b

b b b

r r
SE

r
SE

r
SE

=
−

=
−

= = =
0 475

162
2 93

.

.
.

We can look up this value of z (2.93) in the table for the normal distribution in the Appendix 
and get the one-tailed probability from the column labelled ‘Smaller Portion’. In this case 
the value is .00169. To get the two-tailed probability we simply multiply the one-tailed 
probability value by 2, which gives us .00338. As such the correlation is significant, p < .01.

             CRAMMING SAM’S TIPS    Correlaion coefficients

·	 We can measure the relationship between two variables using correlation coefficients.
·	 These coefficients lie between −1 and +1.
·	 Pearson’s correlation coefficient, r, is a parametric statistic and requires interval data for both variables. To test its signifi-

cance we assume normality too.
·	 Spearman’s correlation coefficient, rs, is a non-parametric statistic and requires only ordinal data for both variables.
·	 Kendall’s correlation coefficient, τ, is like Spearman’s rs but probably better for small samples.
·	 The point-biserial correlation coefficient, rpb, quantifies the relationship between a continuous variable and a variable that is 

a discrete dichotomy (e.g., there is no continuum underlying the two categories, such as dead or alive).
·	 The biserial correlation coefficient, rb, quantifies the relationship between a continuous variable and a variable that is a con-

tinuous dichotomy (e.g., there is a continuum underlying the two categories, such as passing or failing an exam).
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6.6.  Partial correlation 2

6.6.1.    The theory behind part and partial correlation 2

I mentioned earlier that there is a type of correlation that can be done that allows you 
to look at the relationship between two variables when the effects of a third variable are 
held constant. For example, analyses of the exam anxiety data (in the file Exam Anxiety.
dat) showed that exam performance was negatively related to exam anxiety, but positively 
related to revision time, and revision time itself was negatively related to exam anxiety. 
This scenario is complex, but given that we know that revision time is related to both 
exam anxiety and exam performance, then if we want a pure measure of the relationship 
between exam anxiety and exam performance we need to take account of the influence of 
revision time. Using the values of R2 for these relationships (refer back to Output 6.4), we 
know that exam anxiety accounts for 19.4% of the variance in exam performance, that 
revision time accounts for 15.7% of the variance in exam performance, and that revision 
time accounts for 50.2% of the variance in exam anxiety. If revision time accounts for half 
of the variance in exam anxiety, then it seems feasible that at least some of the 19.4% of 
variance in exam performance that is accounted for by anxiety is the same variance that 
is accounted for by revision time. As such, some of the variance in exam performance 
explained by exam anxiety is not unique and can be accounted for by revision time. A cor-
relation between two variables in which the effects of other variables are held constant is 
known as a partial correlation.

Let’s return to our example of exam scores, revision time and exam anxiety to illus-
trate the principle behind partial correlation (Figure 6.8). In part 1 of the diagram there 
is a box for exam performance that represents the total variation in exam scores (this 
value would be the variance of exam performance). There is also a box that represents 
the variation in exam anxiety (again, this is the variance of that variable). We know 
already that exam anxiety and exam performance share 19.4% of their variation (this 
value is the correlation coefficient squared). Therefore, the variations of these two vari-
ables overlap (because they share variance) creating a third box (the blue cross hatched 
box). The overlap of the boxes representing exam performance and exam anxiety is the 
common variance. Likewise, in part 2 of the diagram the shared variation between exam 
performance and revision time is illustrated. Revision time shares 15.7% of the variation 
in exam scores. This shared variation is represented by the area of overlap (the dotted-
blue lines box). We know that revision time and exam anxiety also share 50% of their 
variation; therefore, it is very probable that some of the variation in exam performance 
shared by exam anxiety is the same as the variance shared by revision time.

Part 3 of the diagram shows the complete picture. The first thing to note is that the boxes 
representing exam anxiety and revision time have a large overlap (this is because they share 
50% of their variation). More important, when we look at how revision time and anxiety 
contribute to exam performance we see that there is a portion of exam performance that 
is shared by both anxiety and revision time (the white area). However, there are still small 
chunks of the variance in exam performance that are unique to the other two variables. 
So, although in part 1 exam anxiety shared a large chunk of variation in exam perform-
ance, some of this overlap is also shared by revision time. If we remove the portion of 
variation that is also shared by revision time, we get a measure of the unique relationship 
between exam performance and exam anxiety. We use partial correlations to find out the 
size of the unique portion of variance. Therefore, we could conduct a partial correlation 
between exam anxiety and exam performance while ‘controlling’ for the effect of revision 
time. Likewise, we could carry out a partial correlation between revision time and exam 
performance while ‘controlling’ for the effects of exam anxiety.
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6.6.2.    Partial correlation using R 2

We will use the examData2 dataframe again, so if you haven’t got this loaded then execute 
these commands:

examData = read.delim("Exam Anxiety.dat",  header = TRUE)
examData2 <- examData[, c("Exam", "Anxiety", "Revise")]

This will import the Exam Anxiety.dat file and create a dataframe containing only the 
three variables of interest. We will conduct a partial correlation between exam anxiety and 
exam performance while ‘controlling’ for the effect of revision time. To compute a partial 

Exam 
Performance

Exam AnxietyVariance Accounted for by 
Exam Anxiety (19.4%)

Exam 
Performance

Revision Time

Variance Accounted for by 
Revision Time (15.7%)

Exam 
Performance

Exam AnxietyUnique Variance Accounted
for by Exam Anxiety

Revision Time

Unique Variance Accounted
for by Revision Time

Variance Accounted for by 
both Exam Anxiety and

Revision Time

1

2

3

FIGURE 6.8
Diagram showing 
the principle of 
partial correlation
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correlation and its significance we will use the pcor() and pcor.test() functions respectively. 
These are part of the ggm package, so first load this:

library(ggm)

The general form of pcor() is:

pcor(c("var1", "var2", "control1", "control2" etc.), var(dataframe))

Basically, you enter a list of variables as strings (note the variable names have to be in quotes) 
using the c() function. The first two variables should be those for which you want the partial 
correlation; any others listed should be variables for which you’d like to ‘control’. You can 
‘control’ for the effects of a single variable, in which case the resulting coefficient is known 
as a first-order partial correlation; it is also possible to control for the effects of two (a 
second-order partial correlation), three (a third-order partial correlation), or more variables 
at the same time. The second part of the function simply asks for the name of the dataframe 
(in this case examData2). For the current example, we want the correlation between exam 
anxiety and exam performance (so we list these variables first) controlling for exam revision 
(so we list this variable afterwards). As such, we can execute the following command:

pcor(c("Exam", "Anxiety", "Revise"), var(examData2))

Executing this command will print the partial correlation to the console. However, I find it 
useful to create an object containing the partial correlation value so that we can use it in other 
commands. As such, I suggest that you execute this command to create an object called pc:

pc<-pcor(c("Exam", "Anxiety", "Revise"), var(examData2))

We can then see the partial correlation and the value of R2 in the console by executing:

pc
pc^2

The general form of pcor.test() is:

pcor(pcor object, number of control variables, sample size)

Basically, you enter an object that you have created with pcor() (or you can put the pcor() com-
mand directly into the function). We created a partial correlation object called pc, had only 
one control variable (Revise) and there was a sample size of 103; therefore we can execute:

pcor.test(pc, 1, 103)

to see the significance of the partial correlation.

> pc

[1] -0.2466658

> pc^2

[1] 0.06084403

> pcor.test(pc, 1, 103)
$tval

[1] -2.545307

$df

[1] 100

$pvalue

[1] 0.01244581

Output 6.9
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Output 6.9 shows the output for the partial correlation of exam anxiety and exam per-
formance controlling for revision time; it also shows the squared value that we calculated 
(pc^2), and the significance value obtained from pcor.test(). The output of pcor() is the par-
tial correlation for the variables Anxiety and Exam but controlling for the effect of Revision. 
First, notice that the partial correlation between exam performance and exam anxiety is 
−.247, which is considerably less than the correlation when the effect of revision time is not 
controlled for (r = −.441). In fact, the correlation coefficient is nearly half what it was before. 
Although this correlation is still statistically significant (its p-value is .012, which is still below 
.05), the relationship is diminished. In terms of variance, the value of R2 for the partial cor-
relation is .06, which means that exam anxiety can now account for only 6% of the vari-
ance in exam performance. When the effects of revision time were not controlled for, exam 
anxiety shared 19.4% of the variation in exam scores and so the inclusion of revision time 
has severely diminished the amount of variation in exam scores shared by anxiety. As such, a 
truer measure of the role of exam anxiety has been obtained. Running this analysis has shown 
us that exam anxiety alone does explain some of the variation in exam scores, but there is a 
complex relationship between anxiety, revision and exam performance that might otherwise 
have been ignored. Although causality is still not certain, because relevant variables are being 
included, the third variable problem is, at least, being addressed in some form.

These partial correlations can be done when variables are dichotomous (including the 
‘third’ variable). So, for example, we could look at the relationship between bladder relax-
ation (did the person wet themselves or not?) and the number of large tarantulas crawling 
up your leg, controlling for fear of spiders (the first variable is dichotomous, but the second 
variable and ‘controlled for’ variables are continuous). Also, to use an earlier example, we 
could examine the relationship between creativity and success in the World’s Biggest Liar 
competition, controlling for whether someone had previous experience in the competition 
(and therefore had some idea of the type of tale that would win) or not. In this latter case 
the ‘controlled for’ variable is dichotomous.6

6.6.3.    Semi-partial (or part) correlations 2

In the next chapter, we will come across another form of correlation known as a semi-
partial correlation (also referred to as a part correlation). While I’m babbling on about partial 
correlations it is worth my explaining the difference between this type of correlation and 
semi-partial correlation. When we do a partial correlation between two variables, we con-
trol for the effects of a third variable. Specifically, the effect that the third variable has on 
both variables in the correlation is controlled. In a semi-partial correlation we control for 
the effect that the third variable has on only one of the variables in the correlation. Figure 
6.9 illustrates this principle for the exam performance data. The partial correlation that we 

Partial Correlation Semi-Partial Correlation

Revision

Exam Anxiety

Revision

Exam Anxiety

FIGURE 6.9
The difference 
between a partial 
and a semi-partial 
correlation

6 Both these examples are, in fact, simple cases of hierarchical regression (see the next chapter) and the first
example is also an example of analysis of covariance. This may be confusing now, but as we progress through the 
book I hope it’ll become clearer that virtually all of the statistics that you use are actually the same things dressed 
up in different names.
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calculated took account not only of the effect of revision on exam performance, but also 
of the effect of revision on anxiety. If we were to calculate the semi-partial correlation for 
the same data, then this would control for only the effect of revision on exam performance 
(the effect of revision on exam anxiety is ignored). Partial correlations are most useful for 
looking at the unique relationship between two variables when other variables are ruled 
out. Semi-partial correlations are, therefore, useful when trying to explain the variance in 
one particular variable (an outcome) from a set of predictor variables. (Bear this in mind 
when you read Chapter 7.)

             CRAMMING SAM’S TIPS    Partial and semi-partial correlation

·	 A partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable on 
both variables in the original correlation.

·	 A semi-partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable 
on only one of the variables in the original correlation. 

6.7.  Comparing correlations 3

6.7.1.    Comparing independent rs 3

Sometimes we want to know whether one correlation coefficient is bigger than another. 
For example, when we looked at the effect of exam anxiety on exam performance, we 
might have been interested to know whether this correlation was different in men and 
women. We could compute the correlation in these two samples, but then how would we 
assess whether the difference was meaningful?

SELF-TEST

ü	 Use the subset() function to compute the correlation 
coefficient between exam anxiety and exam 
performance in men and women.

If we did this, we would find that the correlations were rMale = –.506 and rFemale = –.381. 
These two samples are independent; that is, they contain different entities. To compare 
these correlations we can again use what we discovered in section 6.3.3 to convert these 
coefficients to zr (just to remind you, we do this because it makes the sampling distribution 
normal and, therefore, we know the standard error). If we do the conversion, then we get 
zr (males) = –.557 and zr (females) = –.401. We can calculate a z-score of the differences 
between these correlations as:

z
z z

Difference =
−

−
+

−

r r

N N

1 2

1
3

1
31 2

	 (6.11)
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We had 52 men and 51 women so we would get:

zDifference =
− − −

+
=

−
= −

. ( . ) .
.

.
557 401

1
49

1
48

156
0 203

0 768

We can look up this value of z (0.768; we can ignore the minus sign) in the table for the 
normal distribution in the Appendix and get the one-tailed probability from the column 
labelled ‘Smaller Portion’. In this case the value is .221. To get the two-tailed probability 
we simply multiply the one-tailed probability value by 2, which gives us .442. As such the 
correlation between exam anxiety and exam performance is not significantly different in 
men and women (see Oliver Twisted for how to do this using R).

‘These equations are rubbish,’ says Oliver, ‘they’re too confusing and I 
hate them. Can’t we get R to do it for us while we check Facebook?’ 
Well, no, you can’t. Except you sort of can by writing your own function. 
‘Write my own function!!’ screams Oliver whilst trying to ram his computer 
keyboard into his mouth. ‘You’ve got to be joking, you steaming dog 
colon, I can barely write my own name.’ Luckily for you Oliver, I’ve done 
it for you. To find out more, read the additional material for this chap-
ter on the companion website. Or check Facebook, the choice is yours.

OLIVER TWISTED

Please Sir, can I  
have some more … 
functions?

6.7.2.    Comparing dependent r s 3

If you want to compare correlation coefficients that come from the same entities then 
things are a little more complicated. You can use a t-statistic to test whether a difference 
between two dependent correlations from the same sample is significant. For example, 
in our exam anxiety data we might want to see whether the relationship between exam 
anxiety (x) and exam performance (y) is stronger than the relationship between revision 
(z) and exam performance. To calculate this, all we need are the three rs that quantify the 
relationships between these variables: rxy, the relationship between exam anxiety and exam 
performance (–.441); rzy, the relationship between revision and exam performance (.397); 
and rxz, the relationship between exam anxiety and revision (–.709). The t-statistic is com-
puted as (Chen & Popovich, 2002):

t r r
n r

r r r r r
xy zy

xz

xy xz zy xy x
Difference = −

− +
− − − +

( )
( )( )

(

3 1

2 1 22 2 2
zz zyr

	 (6.12)

Admittedly that equation looks hideous, but really it’s not too bad: it just uses the three 
correlation coefficients and the sample size N. 

Put in the numbers from the exam anxiety example (N was 103) and you should end up 
with:

tDifference = −
− − − +

= −( . )
.

( . . . . )
.838

29 1
2 1 194 503 158 0 248

5 09
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This value can be checked against the appropriate critical value in the Appendix with N−3 
degrees of freedom (in this case 100). The critical values in the table are 1.98 (p < .05) and 
2.63 (p < .01), two-tailed. As such we can say that the correlation between exam anxiety 
and exam performance was significantly higher than the correlation between revision time 
and exam performance (this isn’t a massive surprise, given that these relationships went in 
the opposite directions to each other).

‘Are you having a bloody laugh with that equation?’ yelps Oliver. 
‘I’d rather smother myself with cheese sauce and lock myself 
in a room of hungry mice.’ Yes, yes, Oliver, enough of your sex-
ual habits. To spare the poor mice I have written another R func-
tion to run the comparison mentioned in this section. For a guide 
on how to use them read the additional material for this chap-
ter on the companion website. Go on, be kind to the mice! 

OLIVER TWISTED

Please Sir, can I have  
some more … comparing  
of correlations?

6.8.  Calculating the effect size 1

Calculating effect sizes for correlation coefficients couldn’t be easier because, as we saw 
earlier in the book, correlation coefficients are effect sizes! So, no calculations (other than 
those you have already done) necessary! However, I do want to point out one caveat when 
using non-parametric correlation coefficients as effect sizes. Although the Spearman and 
Kendall correlations are comparable in many respects (their power, for example, is similar 
under parametric conditions), there are two important differences (Strahan, 1982).

First, we saw for Pearson’s r that we can square this value to get the proportion of shared 
variance, R2. For Spearman’s rs we can do this too because it uses the same equation as 

Pearson’s r. However, the resulting Rs
2  needs to be interpreted slightly dif-

ferently: it is the proportion of variance in the ranks that two variables share. 
Having said this, Rs

2  is usually a good approximation for R2 (especially in con-
ditions of near-normal distributions). Kendall’s τ, however, is not numerically 
similar to either r or rs and so τ2 does not tell us about the proportion of vari-
ance shared by two variables (or the ranks of those two variables).

Second, Kendall’s τ is 66–75% smaller than both Spearman’s rs and Pearson’s 
r, but r and rs are generally similar sizes (Strahan, 1982). As such, if τ is used 
as an effect size it should be borne in mind that it is not comparable to r and rs 
and should not be squared. A related issue is that the point-biserial and biserial 
correlations differ in size too (as we saw in this chapter, the biserial correlation 

was bigger than the point-biserial). In this instance you should be careful to decide whether 
your dichotomous variable has an underlying continuum, or whether it is a truly discrete 
variable. More generally, when using correlations as effect sizes you should remember 
(both when reporting your own analysis and when interpreting others) that the choice of 
correlation coefficient can make a substantial difference to the apparent size of the effect. 

6.9.  How to report correlation coefficents 1

Reporting correlation coefficients is pretty easy: you just have to say how big they are and 
what their significance value was (although the significance value isn’t that important because 

Can I use r2 for
non-parametric
correlations?
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the correlation coefficient is an effect size in its own right!). Five things to note are that: (1) 
if you follow the conventions of the American Psychological Association, there should be no 
zero before the decimal point for the correlation coefficient or the probability value (because 
neither can exceed 1); (2) coefficients are reported to 2 decimal places; (3) if you are quoting 
a one-tailed probability, you should say so; (4) each correlation coefficient is represented by 
a different letter (and some of them are Greek); and (5) there are standard criteria of prob-
abilities that we use (.05, .01 and .001). Let’s take a few examples from this chapter:

�	There was a significant relationship between the number of adverts watched and the 
number of packets of sweets purchased, r = .87, p (one-tailed) < .05.

�	 Exam performance was significantly correlated with exam anxiety, r = −.44, and time 
spent revising, r = .40; the time spent revising was also correlated with exam anxiety, 
r = −.71 (all ps < .001).

�	Creativity was significantly related to how well people did in the World’s Biggest Liar 
competition, rs = −.37, p < .001. 

�	Creativity was significantly related to how well people did in the World’s Biggest Liar 
competition, τ = −.30, p < .001. (Note that I’ve quoted Kendall’s τ here.)

�	The gender of the cat was significantly related to the time the cat spent away from 
home, rpb = .38, p < .01.

�	The gender of the cat was significantly related to the time the cat spent away from 
home, rb = .48, p < .01.

Scientists, rightly or wrongly, tend to use several standard levels of statistical significance. 
Primarily, the most important criterion is that the significance value is less than .05; however, 
if the exact significance value is much lower then we can be much more confident about the 
strength of the effect. In these circumstances we like to make a big song and dance about the 
fact that our result isn’t just significant at .05, but is significant at a much lower level as well 
(hooray!). The values we use are .05, .01, .001 and .0001. You are rarely going to be in the 
fortunate position of being able to report an effect that is significant at a level less than .0001!

When we have lots of correlations we sometimes put them into a table. For example, our 
exam anxiety correlations could be reported as in Table 6.3. Note that above the diagonal 
I have reported the correlation coefficients and used symbols to represent different levels 
of significance. Under the table there is a legend to tell readers what symbols represent. 
(Actually, none of the correlations were non-significant or had p bigger than .001, so most 
of these are here simply to give you a reference point – you would normally include sym-
bols that you had actually used in the table in your legend.) Finally, in the lower part of the 
table I have reported the sample sizes. These are all the same (103), but sometimes when 
you have missing data it is useful to report the sample sizes in this way because different 
values of the correlation will be based on different sample sizes. For some more ideas on 
how to report correlations have a look at Labcoat Leni’s Real Research 6.1. 

Table 6.3  An example of reporting a table of correlations

Exam 
Performance Exam Anxiety Revision Time

Exam Performance 1 −.44*** .40***

Exam Anxiety 103 1 −.71***

Revision Time 103 103 1

ns = not significant (p > .05), * p < .05, ** p < .01, *** p < .001
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  Labcoat  Len i ’s  Real  Research 6 .1   �Why do you l ike your 
lecturers? 1

Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965–976.

As students you probably have to rate your lecturers at the end of the course. There will be some lecturers you like 
and others that you hate. As a lecturer I find this process horribly depressing (although this has a lot to do with 
the fact that I tend focus on negative feedback and ignore the good stuff). There is some evidence that students 
tend to pick courses of lecturers whom they perceive to be enthusastic and good communicators. In a fascinat-
ing study, Tomas Chamorro-Premuzic and his colleagues (Chamorro-Premuzic, Furnham, Christopher, Garwood, 
& Martin, 2008) tested a slightly different hypothesis, which was that students tend to like lecturers who are like 
themselves. (This hypothesis will have the students on my course who like my lectures screaming in horror.)

First of all, the authors measured students’ own personalities using a very well-established measure (the 
NEO-FFI) which gives rise to scores on five fundamental personality traits: Neuroticism, Extroversion, Openness 
to experience, Agreeableness and Conscientiousness. They also gave students a questionnaire that asked them 
to rate how much they wanted their lecturer to have each of a list of characteristics. For example, they would 
be given the description ‘warm: friendly, warm, sociable, cheerful, affectionate, outgoing’ and asked to rate 
how much they wanted to see this in a lecturer from −5 (they don’t want this characteristic at all) through 0 (the 
characteristic is not important) to +5 (I really want this characteristic in my lecturer). The characteristics on the 
questionnaire all related to personality characteristics measured by the NEO-FFI. As such, the authors had a 
measure of how much a student had each of the five core personality characteristics, but also a measure of how 
much they wanted to see those same characteristics in their lecturer. 

In doing so, Tomas and his colleagues could test whether, for instance, extroverted students want extrovert 
lecturers. The data from this study (well, for the variables that I’ve mentioned) are in the file Chamorro-Premuzic.
dat. Run some Pearson correlations on these variables to see if students with certain personality characteristics 
want to see those characteristics in their lecturers. What conclusions can you draw?

Answers are in the additional material on the companion website (or look at Table 3 in the original article, which 
will also show you how to report a large number of correlations).

What have I discovered about statistics? 1

This chapter has looked at ways to study relationships between variables. We began 
by looking at how we might measure relationships statistically by developing what 
we already know about variance (from Chapter 1) to look at variance shared between 
variables. This shared variance is known as covariance. We then discovered that when 
data are parametric we can measure the strength of a relationship using Pearson’s cor-
relation coefficient, r. When data violate the assumptions of parametric tests we can 
use Spearman’s rs, or for small data sets Kendall’s τ may be more accurate. We also saw 
that correlations can be calculated between two variables when one of those variables is 
a dichotomy (i.e., composed of two categories); when the categories have no underly-
ing continuum then we use the point-biserial correlation, rpb, but when the categories 
do have an underlying continuum we use the biserial correlation, rb. Finally, we looked 
at the difference between partial correlations, in which the relationship between two 
variables is measured controlling for the effect that one or more variables has on both 
of those variables, and semi-partial correlations, in which the relationship between two 
variables is measured controlling for the effect that one or more variables has on only 
one of those variables. We also discovered that I had a guitar and, like my favourite 
record of the time, I was ready to ‘Take on the World’. Well, Wales at any rate …
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R packages used in this chapter
boot
ggm
ggplot2
Hmisc

Polycor
Rcmdr

R functions used in this chapter
boot()
boot.ci()
cor()
cor.test()
pcor()
pcor.test()

polyserial()
prop.table()
rcorr()
read.csv()
read.delim()
table()

Key terms that I’ve discovered
Biserial correlation
Bivariate correlation
Coefficient of determination
Correlation coefficient
Covariance
Cross-product deviations
Dichotomous

Kendall’s tau 
Partial correlation
Pearson correlation coefficient
Point-biserial correlation
Semi-partial correlation
Spearman’s correlation coefficient
Standardization

Smart Alex’s tasks 1

MM Task 1: A student was interested in whether there was a positive relationship between 
the time spent doing an essay and the mark received. He got 45 of his friends and 
timed how long they spent writing an essay (hours) and the percentage they got 
in the essay (essay). He also translated these grades into their degree classifications 
(grade): in the UK, a student can get a first-class mark (the best), an upper-second-
class mark, a lower second, a third, a pass or a fail (the worst). Using the data in the 
file EssayMarks.dat find out what the relationship was between the time spent doing 
an essay and the eventual mark in terms of percentage and degree class (draw a scat-
terplot too!). 1

MM Task 2: Using the ChickFlick.dat data from Chapter 3, is there a relationship between 
gender and arousal? Using the same data, is there a relationship between the film 
watched and arousal? 1

MM Task 3: As a statistics lecturer I am always interested in the factors that determine 
whether a student will do well on a statistics course. One potentially important factor 
is their previous expertise with mathematics. Imagine I took 25 students and looked 
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at their degree grades for my statistics course at the end of their first year at univer-
sity: first, upper second, lower second or third class. I also asked these students what 
grade they got in their GCSE maths exams. In the UK, GCSEs are school exams taken 
at age 16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower 
grades). The data for this study are in the file grades.csv. Carry out the appropriate 
analysis to see if GCSE maths grades correlate with first-year statistics grades. 1

Answers can be found on the companion website.

Further reading
Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures. 

Thousand Oaks, CA: Sage. 
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007. 
Both are excellent texts that are a bit more technical than this book, so they are a useful next step.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: A practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B.,& London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a 
very gentle introduction to statistical theory.)

Interesting real research
Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds 

of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965–976.
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7
 
Regression

FIGURE 7.1
Me playing 
with my ding-
a-ling in the 
Holimarine Talent 
Show. Note the 
groupies queuing 
up at the front

7.1.  What will this chapter tell me? 1

Although none of us can know the future, predicting it is so important that organisms 
are hard-wired to learn about predictable events in their environment. We saw in the 
previous chapter that I received a guitar for Christmas when I was 8. My first foray into 
public performance was a weekly talent show at a holiday camp called ‘Holimarine’ 
in Wales (it doesn’t exist any more because I am old and this was 1981). I sang a 
Chuck Berry song called ‘My Ding-a-ling’1 and to my absolute amazement I won the 

1 It appears that even then I had a passion for lowering the tone of things that should be taken seriously.
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competition.2 Suddenly other 8-year-olds across the land (well, a ballroom in Wales) wor-
shipped me (I made lots of friends after the competition). I had tasted success, it tasted 
like praline chocolate, and so I wanted to enter the competition in the second week of 
our holiday. To ensure success, I needed to know why I had won in the first week. One 
way to do this would have been to collect data and to use these data to predict people’s 
evaluations of children’s performances in the contest from certain variables: the age of 
the performer, what type of performance they gave (singing, telling a joke, magic tricks), 
and maybe how cute they looked. A regression analysis on these data would enable us 
to predict future evaluations (success in next week’s competition) based on values of 
the predictor variables. If, for example, singing was an important factor in getting a 
good audience evaluation, then I could sing again the following week; however, if jokers 
tended to do better then I could switch to a comedy routine. When I was 8 I wasn’t the 
sad geek that I am today, so I didn’t know about regression analysis (nor did I wish to 
know); however, my dad thought that success was due to the winning combination of a 
cherub-looking 8-year-old singing songs that can be interpreted in a filthy way. He wrote 
me a song to sing in the competition about the keyboard player in the Holimarine Band 
‘messing about with his organ’, and first place was mine again. There’s no accounting 
for taste.

7.2.  An introduction to regression 1

In the previous chapter we looked at how to measure relationships between 
two variables. These correlations can be very useful, but we can take this pro-
cess a step further and predict one variable from another. A simple example 
might be to try to predict levels of stress from the amount of time until you 
have to give a talk. You’d expect this to be a negative relationship (the smaller 
the amount of time until the talk, the larger the anxiety). We could then extend 
this basic relationship to answer a question such as ‘if there’s 10 minutes to go 
until someone has to give a talk, how anxious will they be?’ This is the essence 
of regression analysis: we fit a model to our data and use it to predict values 
of the dependent variable (DV) from one or more independent variables (IVs). 

Regression analysis is a way of predicting an outcome variable from one predictor variable 
(simple regression) or several predictor variables (multiple regression). This tool is incred-
ibly useful because it allows us to go a step beyond the data that we collected.

In section 2.4.3 I introduced you to the idea that we can predict any data using the fol-
lowing general equation:

outcomei = (model) + errori	 (7.1)

This just means that the outcome we’re trying to predict for a particular person can be 
predicted by whatever model we fit to the data plus some kind of error. In regression, the 
model we fit is linear, which means that we summarize a data set with a straight line (think 
back to Jane Superbrain Box 2.1). As such, the word ‘model’ in the equation above simply 
gets replaced by ‘things’ that define the line that we fit to the data (see the next section).

With any data set there are several lines that could be used to summarize the general 
trend, and so we need a way to decide which of many possible lines to choose. For the sake 

2 I have a very grainy video of this performance recorded by my dad’s friend on a video camera the size of a 
medium-sized dog that had to be accompanied at all times by a battery pack the size and weight of a tank. Maybe 
I’ll put it up on the companion website …

How do I fit a straight
line to my data?
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of making accurate predictions we want to fit a model that best describes the data. The 
simplest way to do this would be to use your eye to gauge a line that looks as though it 
summarizes the data well. You don’t need to be a genius to realize that the ‘eyeball’ method 
is very subjective and so offers no assurance that the model is the best one that could have 
been chosen. Instead, we use a mathematical technique called the method of least squares 
to establish the line that best describes the data collected.

7.2.1.    Some important information about straight lines 1

I mentioned above that in our general equation the word ‘model’ gets replaced by ‘things 
that define the line that we fit to the data’. In fact, any straight line can be defined by two 
things: (1) the slope (or gradient) of the line (usually denoted by b1); and (2) the point at 
which the line crosses the vertical axis of the graph (known as the intercept of the line, b0). 
In fact, our general model becomes equation (7.2) below in which Yi is the outcome that 
we want to predict and Xi is the ith participant’s score on the predictor variable.3 Here b1 is 
the gradient of the straight line fitted to the data and b0 is the intercept of that line. These 
parameters b1 and b0 are known as the regression coefficients and will crop up time and 
time again in this book, where you may see them referred to generally as b (without any 
subscript) or bi (meaning the b associated with variable i). There is a residual term, εi, which 
represents the difference between the score predicted by the line for participant i and the 
score that participant i actually obtained. The equation is often conceptualized without this 
residual term (so ignore it if it’s upsetting you); however, it is worth knowing that this term 
represents the fact that our model will not fit the data collected perfectly:

Y b b Xi i i= + +( )0 1 ε 	 (7.2)

A particular line has a specific intercept and gradient. Figure 7.2 shows a set of lines that 
have the same intercept but different gradients, and a set of lines that have the same gradi-
ent but different intercepts. Figure 7.2 also illustrates another useful point: the gradient of 
the line tells us something about the nature of the relationship being described. In Chapter 
6 we saw how relationships can be either positive or negative (and I don’t mean the dif-
ference between getting on well with your girlfriend and arguing all the time!). A line that 
has a gradient with a positive value describes a positive relationship, whereas a line with a 
negative gradient describes a negative relationship. So, if you look at the graph in Figure 
7.2 in which the gradients differ but the intercepts are the same, then the red line describes 
a positive relationship whereas the green line describes a negative relationship. Basically 
then, the gradient (b1) tells us what the model looks like (its shape) and the intercept (b0) 
tells us where the model is (its location in geometric space).

If it is possible to describe a line knowing only the gradient and the intercept of that 
line, then we can use these values to describe our model (because in linear regression the 
model we use is a straight line). So, the model that we fit to our data in linear regression 
can be conceptualized as a straight line that can be described mathematically by equation 
(7.2). With regression we strive to find the line that best describes the data collected, then 
estimate the gradient and intercept of that line. Having defined these values, we can insert 

3 You’ll sometimes see this equation written as:

Yi = (β0 + β1 Xi) + εi

The only difference is that this equation has got βs in it instead of bs and in fact both versions are the same thing, 
they just use different letters to represent the coefficients. 
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different values of our predictor variable into the model to estimate the value of the out-
come variable.

7.2.2.    The method of least squares 1

I have already mentioned that the method of least squares is a way of finding the line that 
best fits the data (i.e., finding a line that goes through, or as close to, as many of the data 
points as possible). This ‘line of best fit’ is found by ascertaining which line, of all of the 
possible lines that could be drawn, results in the least amount of difference between the 
observed data points and the line. Figure 7.3 shows that when any line is fitted to a set of 
data, there will be small differences between the values predicted by the line and the data 
that were actually observed. 

Back in Chapter 2 we saw that we could assess the fit of a model (the example we used 
was the mean) by looking at the deviations between the model and the actual data col-
lected. These deviations were the vertical distances between what the model predicted and 
each data point that was actually observed. We can do exactly the same to assess the fit of 
a regression line (which, like the mean, is a statistical model). So, again we are interested in 
the vertical differences between the line and the actual data because the line is our model: 
we use it to predict values of Y from values of the X variable. In regression these differences 
are usually called residuals rather than deviations, but they are the same thing. As with 
the mean, data points fall both above (the model underestimates their value) and below 
(the model overestimates their value) the line, yielding both positive and negative differ-
ences. In the discussion of variance in section 2.4.2 I explained that if we sum positive and 
negative differences then they tend to cancel each other out and that to circumvent this 
problem we square the differences before adding them up. We do the same thing here. The 
resulting squared differences provide a gauge of how well a particular line fits the data: if 
the squared differences are large, the line is not representative of the data; if the squared 
differences are small, the line is representative.

You could, if you were particularly bored, calculate the sum of squared differences (or 
SS for short) for every possible line that is fitted to your data and then compare these 
‘goodness-of-fit’ measures. The one with the lowest SS is the line of best fit. Fortunately 
we don’t have to do this because the method of least squares does it for us: it selects the 

FIGURE 7.2
Lines with the 
same gradients 
but different 
intercepts, 
and lines that 
share the same 
intercept but 
have different 
gradients
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line that has the lowest sum of squared differences (i.e., the line that best represents the 
observed data). How exactly it does this is by using a mathematical technique for finding 
maxima and minima and this technique is used to find the line that minimizes the sum of 
squared differences. I don’t really know much more about it than that to be honest, so I 
tend to think of the process as a little bearded wizard called Nephwick the Line Finder who 
just magically finds lines of best fit. Yes, he lives inside your computer. The end result is 
that Nephwick estimates the value of the slope and intercept of the ‘line of best fit’ for you. 
We tend to call this line of best fit a regression line (or more generally a regression model).

7.2.3.   � Assessing the goodness of fit: sums of squares,
R and R2 1

Once Nephwick the Line Finder has found the line of best fit it is important that we assess 
how well this line fits the actual data (we assess the goodness of fit of the model). We do this 
because even though this line is the best one available, it can still be a lousy fit to the data. 
In section 2.4.2 we saw that one measure of the adequacy of a model is the sum of squared 
differences (or more generally we assess models using equation (7.3) below). If we want to 
assess the line of best fit, we need to compare it against something, and the thing we choose 
is the most basic model we can find. So we use equation (7.3) to calculate the fit of the most 
basic model, and then the fit of the best model (the line of best fit), and basically if the best 
model is any good then it should fit the data significantly better than our basic model: 

deviation = ∑(observed - model)2	 (7.3)

This is all quite abstract so let’s look at an example. Imagine that I was interested in 
predicting physical and downloaded album sales (Y) from the amount of money spent 
advertising that album (X). One day my boss came in to my office and said ‘Andy, I know 
you wanted to be a rock star and you’ve ended up working as my stats-monkey, but how 
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many albums will we sell if we spend £100,000 on advertising?’ If I didn’t 
have an accurate model of the relationship between album sales and advertis-
ing, what would my best guess be? Well, probably the best answer I could give 
would be the mean number of album sales (say, 200,000) because on average 
that’s how many albums we expect to sell. This response might well satisfy a 
brainless record company executive (who didn’t offer my band a recording 
contract). However, what if he had asked ‘How many albums will we sell if we 
spend £1 on advertising?’ Again, in the absence of any accurate information, 
my best guess would be to give the average number of sales (200,000). There 

is a problem: whatever amount of money is spent on advertising I always predict the same 
levels of sales. As such, the mean is a model of ‘no relationship’ at all between the variables. 
It should be pretty clear then that the mean is fairly useless as a model of a relationship 
between two variables – but it is the simplest model available. 

So, as a basic strategy for predicting the outcome, we might choose to use the mean, because 
on average it will be a fairly good guess of an outcome. Using the mean as a model, we can cal-
culate the difference between the observed values, and the values predicted by the mean (equa-
tion (7.3)). We saw in section 2.4.1 that we square all of these differences to give us the sum 
of squared differences. This sum of squared differences is known as the total sum of squares 
(denoted SST) because it is the total amount of differences present when the most basic model 
is applied to the data. This value represents how good the mean is as a model of the observed 
data. Now, if we fit the more sophisticated model to the data, such as a line of best fit, we can 
again work out the differences between this new model and the observed data (again using 
equation (7.3)). In the previous section we saw that the method of least squares finds the best 
possible line to describe a set of data by minimizing the difference between the model fitted 
to the data and the data themselves. However, even with this optimal model there is still some 
inaccuracy, which is represented by the differences between each observed data point and the 
value predicted by the regression line. As before, these differences are squared before they are 
added up so that the directions of the differences do not cancel out. The result is known as the 
sum of squared residuals or residual sum of squares (SSR). This value represents the degree of 
inaccuracy when the best model is fitted to the data. We can use these two values to calculate 
how much better the regression line (the line of best fit) is than just using the mean as a model 
(i.e., how much better is the best possible model than the worst model?). The improvement 
in prediction resulting from using the regression model rather than the mean is obtained by 
calculating the difference between SST and SSR. This difference shows us the reduction in the 
inaccuracy of the model resulting from fitting the regression model to the data. This improve-
ment is the model sum of squares (SSM). Figure 7.4 shows each sum of squares graphically.

If the value of SSM is large then the regression model is very different from using the 
mean to predict the outcome variable. This implies that the regression model has made a big 
improvement to how well the outcome variable can be predicted. However, if SSM is small 
then using the regression model is little better than using the mean (i.e., the regression model 
is no better than taking our ‘best guess’). A useful measure arising from these sums of squares 
is the proportion of improvement due to the model. This is easily calculated by dividing the 
sum of squares for the model by the total sum of squares. The resulting value is called R2 and 
to express this value as a percentage you should multiply it by 100. R2 represents the amount 
of variance in the outcome explained by the model (SSM) relative to how much variation 
there was to explain in the first place (SST). Therefore, as a percentage, it represents the per-
centage of the variation in the outcome that can be explained by the model:

     SSMR2 = 
     SST

	 (7.4)

This R2 is the same as the one we met in Chapter 6 (section 6.5.4.3) and you might have 
noticed that it is interpreted in the same way. Therefore, in simple regression we can take 

How do I tell if my
model is good?
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the square root of this value to obtain Pearson’s correlation coefficient. As such, the cor-
relation coefficient provides us with a good estimate of the overall fit of the regression 
model, and R2 provides us with a good gauge of the substantive size of the relationship.

A second use of the sums of squares in assessing the model is through the F-test. I 
mentioned way back in Chapter 2 that test statistics (like F) are usually the amount of 
systematic variance divided by the amount of unsystematic variance, or, put another way, 
the model compared against the error in the model. This is true here: F is based upon the 
ratio of the improvement due to the model (SSM) and the difference between the model 
and the observed data (SSR). Actually, because the sums of squares depend on the number 
of differences that we have added up, we use the average sums of squares (referred to as 

FIGURE 7.4
Diagram showing 
from where the 
regression sums 
of squares derive
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the mean squares or MS). To work out the mean sums of squares we divide by the degrees 
of freedom (this is comparable to calculating the variance from the sums of squares – see 
section 2.4.2). For SSM the degrees of freedom are simply the number of variables in the 
model, and for SSR they are the number of observations minus the number of parameters 
being estimated (i.e., the number of beta coefficients including the constant). The result is 
the mean squares for the model (MSM) and the residual mean squares (MSR). At this stage 
it isn’t essential that you understand how the mean squares are derived (it is explained in 
Chapter 10). However, it is important that you understand that the F-ratio (equation (7.5)) 
is a measure of how much the model has improved the prediction of the outcome com-
pared to the level of inaccuracy of the model.

     MSMF = 
     MSR

	 (7.5)

If a model is good, then we expect the improvement in prediction due to the model to be 
large (so MSM will be large) and the difference between the model and the observed data to 
be small (so MSR will be small). In short, a good model should have a large F-ratio (greater 
than 1 at least) because the top of equation (7.5) will be bigger than the bottom. The exact 
magnitude of this F-ratio can be assessed using critical values for the corresponding degrees 
of freedom (as in the Appendix).

7.2.4.    Assessing individual predictors 1

We’ve seen that the predictor in a regression model has a coefficient (b1), which in simple 
regression represents the gradient of the regression line. The value of b represents the 
change in the outcome resulting from a unit change in the predictor. If the model was 
useless at predicting the outcome, then if the value of the predictor changes, what might 
we expect the change in the outcome to be? Well, if the model is very bad then we would 
expect the change in the outcome to be zero. Think back to Figure 7.4 (see the panel 
representing SST) in which we saw that using the mean was a very bad way of predict-
ing the outcome. In fact, the line representing the mean is flat, which means that as the 
predictor variable changes, the value of the outcome does not change (because for each 
level of the predictor variable, we predict that the outcome will equal the mean value). 
The important point here is that a bad model (such as the mean) will have regression 
coefficients of 0 for the predictors. A regression coefficient of 0 means: (1) a unit change 
in the predictor variable results in no change in the predicted value of the outcome (the 
predicted value of the outcome does not change at all); and (2) the gradient of the regres-
sion line is 0, meaning that the regression line is flat. Hopefully, you’ll see that it logically 
follows that if a variable significantly predicts an outcome, then it should have a b-value 
significantly different from zero. This hypothesis is tested using a t-test (see Chapter 9). 
The t-statistic tests the null hypothesis that the value of b is 0: therefore, if it is significant 
we gain confidence in the hypothesis that the b-value is significantly different from 0 and 
that the predictor variable contributes significantly to our ability to estimate values of 
the outcome.

Like F, the t-statistic is also based on the ratio of explained variance against unex-
plained variance or error. Well, actually, what we’re interested in here is not so much 
variance but whether the b we have is big compared to the amount of error in that 
estimate. To estimate how much error we could expect to find in b we use the standard 
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error. The standard error tells us something about how different b-values would be 
across different samples. We could take lots and lots of samples of data regarding 
album sales and advertising budgets and calculate the b-values for each sample. We 
could plot a frequency distribution of these samples to discover whether the b-values 
from all samples would be relatively similar, or whether they would be very different 
(think back to section 2.5.1). We can use the standard deviation of this distribution 
(known as the standard error) as a measure of the similarity of b-values across samples. 
If the standard error is very small, then it means that most samples are likely to have 
a b-value similar to the one in our sample (because there is little variation across sam-
ples). The t-test tells us whether the b-value is different from 0 relative to the variation 
in b-values across samples. When the standard error is small even a small deviation 
from zero can reflect a meaningful difference because b is representative of the major-
ity of possible samples.

Equation (7.6) shows how the t-test is calculated and you’ll find a general version of 
this equation in Chapter 9 (equation (9.1)). The bexpected term is simply the value of b that 
we would expect to obtain if the null hypothesis were true. I mentioned earlier that the 
null hypothesis is that b is 0 and so this value can be replaced by 0. The equation sim-
plifies to become the observed value of b divided by the standard error with which it is 
associated:

     bobserved - bexpectedt = ———————
             SEb

        bobserved	 (7.6)
   = ————
          SEb

The values of t have a special distribution that differs according to the degrees of freedom 
for the test. In regression, the degrees of freedom are N − p − 1, where N is the total 
sample size and p is the number of predictors. In simple regression when we have only 
one predictor, so this gives N − 2. Having established which t-distribution needs to be 
used, the observed value of t can then be compared to the values that we would expect to 
find if there was no effect (i.e., b = 0): if t is very large then it is unlikely to have occurred 
when there is no effect (these values can be found in the Appendix). R provides the exact 
probability that the observed value (or a larger one) of t would occur if the value of b was, 
in fact, 0. As a general rule, if this observed significance is less than .05, then scientists 
assume that b is significantly different from 0; put another way, the predictor makes a 
significant contribution to predicting the outcome. 

7.3.  Packages used in this chapter 1

There are several packages we will use in this chapter. Some, but not all, can be accessed 
through R Commander. You will need the packages boot (for bootstrapping), car (for 
regression diagnostics) and QuantPsyc (to get standardized regression coefficients). If you 
don’t have these packages installed you’ll need to install them (boot comes pre-installed) 
by executing: 

install.packages("car"); install.packages("QuantPsyc")
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Then you need to load the packages by executing these commands (although boot is 
installed with the base stats package, you still need to load it):

library(boot); library(car); library(QuantPsyc)

7.4.  General procedure for regression in R 1

7.4.1.    Doing simple regression using R Commander 1

So far, we have seen a little of the theory behind regression, albeit restricted to the situation 
in which there is only one predictor. To help clarify what we have learnt so far, we will go 
through an example of a simple regression using R. Earlier on I asked you to imagine that 
I worked for a record company and that my boss was interested in predicting album sales 
from advertising. There are some data for this example in the file Album Sales 1.dat. 

To conduct a regression analysis using R Commander, first initiate the package by exe-
cuting the command:

library(Rcmdr)

Once you have initiated the package, you need to load the data file into R. You can read 
Album Sales 1.dat into R Commander by using Data ⇒ Import data ⇒ from text file, 
clipboard, or URL… (see section 3.7.3). We can click on  to look at the data and 
check they were read into R properly. Figure 7.5 shows the data: there are 200 rows, 

FIGURE 7.5
Extract from the 
album sales data
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each one representing a different album. There are also two columns, one representing 
the sales of each album (in thousands) in the week after release and the other represent-
ing the amount (in thousands of pounds) spent promoting the album before release. 
This is the format for entering regression data: the outcome variable and any predictors 
should be entered in different columns, and each row should represent independent val-
ues of those variables.

The pattern of the data is shown in Figure 7.6, and it should be clear that a positive 
relationship exists: so, the more money spent advertising the album, the more it is likely 
to sell. Of course there are some albums that sell well regardless of advertising (top left 
of scatterplot), but there are none that sell badly when advertising levels are high (bottom 
right of scatterplot). The scatterplot also shows the line of best fit for these data: bearing in 
mind that the mean would be represented by a flat line at around the 200,000 sales mark, 
the regression line is noticeably different.

FIGURE 7.6
Scatterplot 
showing the 
relationship 
between album 
sales and the 
amount spent 
promoting the 
album

350

300

250

200

150

100

50

Amount Spent on Adverts (thousands of pounds)

R
ec

o
rd

 S
al

es
 (

T
h

o
u

sa
n

d
s)

500 1000 1500 2000

To find out the parameters that describe the regression line, and to see whether this 
line is a useful model, we need to run a regression analysis. In R Commander, choose 
Statistics⇒Fit models⇒Linear regression to activate the linear regression dialog box 
(Figure 7.7). On the left we choose a response variable − this is the outcome, or depend-
ent variable. On the right we choose an explanatory (predictor, or independent) variable. 
In this case our outcome is sales so we have highlighted this variable in the list labelled 
Response variable (pick one), and the predictor variable is adverts, so we have selected 
this variable in the list labelled Explanatory variables (pick one or more). At the top of the 
dialog box, there is a box labelled Enter name for model: by default R Commander has 
named the model albumSales.1. By replacing the text in this box we can change that name 
of the model, for example, to albumSalesModel or whatever makes sense to you. When you 
have selected your variables and named the model, click on . The resulting output is 
described in section 7.5.
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7.4.2.    Regression in R 1

First load the data file by setting your working directory to the location of the file (see sec-
tion 3.4.4) and executing:

album1<-read.delim(“Album Sales 1.dat”, header = TRUE)

We run a regression analysis using the lm() function – lm stands for ‘linear model’. This 
function takes the general form:

newModel<-lm(outcome ~ predictor(s), data = dataFrame, na.action = an action))

in which:

MM newModel is an object created that contains information about the model. We can get 
summary statistics for this model by executing summary(newModel) and summary.
lm(newModel) for specific parameters of the model.

MM outcome is the variable that you’re trying to predict, also known as the dependent 
variable. In this example it will be the variable sales.

MM predictor(s) lists the variable or variables from which you’re trying to predict the 
outcome variable. In this example it will be the variable adverts. In more complex 
designs we can specify several predictors but we’ll come to that in due course.

MM dataFrame is the name of the dataframe from which your outcome and predictor 
variables come.

MM na.action is an optional command. If you have complete data (as we have here) you 
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can 
be useful – see R’s Souls’ Tip 19.2).

The important part to note (especially important because many analyses in the rest of the 
book uses some variant of lm()) is that within the function we write a formula that specifies 
the model that we want to estimate. This model takes the form:

outcome variable ~ predictor variable

FIGURE 7.7
Linear regression 
in R Commander
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in which ~ (tilde) means ‘predicted from’. (We can’t write ‘=’ because that would confuse 
R, plus we’re not saying the outcome is equal to the predictor, just that the outcome has 
something to do with the predictor.) 

As with functions we have come across before, we can reference variables in two ways: 
we can either put the whole variable name, including the dataframe:

albumSales.1 <- lm(album1$sales ~ album1$adverts)

or we can tell R what dataframe to use (using data = nameOfDataFrame), and then specify 
the variables without the dataFrameName$ before them:

albumSales.1 <- lm(sales ~ adverts, data = album1)

I prefer this second method, but both of these commands create an object called album-
Sales1 that contains information about the model. (Note that the command we have just 
written is the same as the command that R Commander generates for us using the menus.)

          R ’s  Souls ’  T ip  7 .1   Missing data 1

Often data sets have missing data, which might be denoted with a placeholder such as ‘NA’, ‘Missing’, or a 
number that denotes missing such as 9999. As we have seen before, when missing data are imported into R you 
typically get an NA in your dataframe to denote the missing value.

If you try to estimate a model with dataframes that have missing values you will get an error because lm() does 
not know what to do with the NAs that it finds in the data. Therefore, you can add na.action = action to the function 
to let it know what to do. There are two main options:

1.	 na.action = na.fail: This is the default and it simply means that if there are any missing values the model will 
fail to compute.

2.	 na.action = na.omit or na.exclude: This estimates the model but excludes any case that has any missing 
data on any variable in the model (this is sometimes known as casewise deletion). There are subtle differ-
ences between the two but they are so subtle I haven’t worked out what they are.

Therefore, if we had missing values in the data we should specify our album sales model as:

albumSales.1 <- lm(sales ~ adverts, data = album1, na.action = na.exclude)

7.5.  Interpreting a simple regression 1

We have created an object called albumSales.1 that contains the results of our analysis. We can 
show the object by executing:

summary(albumSales.1)

which displays the information in Output 7.1. 

Call:
lm(formula = sales ~ adverts, data = album1)

Residuals:
     Min       1Q   Median       3Q      Max 
-152.949  -43.796   -0.393   37.040  211.866 
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Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.341e+02  7.537e+00  17.799   <2e-16 ***
adverts     9.612e-02  9.632e-03   9.979   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346,	 Adjusted R-squared: 0.3313 
F-statistic: 99.59 on 1 and 198 DF,  p-value: < 2.2e-16

Output 7.1

7.5.1.    Overall fit of the object model 1

Let’s start at the bottom of Output 7.1:

Multiple R-squared: 0.3346,	 Adjusted R-squared: 0.3313 

This part of the output provides the value of R2 and adjusted R2 for the model that has 
been derived. For these data, R2 has a value of .335. Because there is only one predictor, 
this value represents the square of the simple correlation between advertising and album 
sales – we can find the square root of R2 by running:

sqrt(0.3346)

Which R tells us is:

[1] 0.5784462 

The Pearson correlation coefficient is, therefore, 0.58. (You can confirm this by running 
a correlation using what you were taught in Chapter 6.) The value of R2 of .335 also tells 
us that advertising expenditure can account for 33.5% of the variation in album sales. 
In other words, if we are trying to explain why some albums sell more than others, we 
can look at the variation in sales of different albums. There might be many factors that 
can explain this variation, but our model, which includes only advertising expenditure, can 
explain approximately 33% of it. This means that 67% of the variation in album sales can-
not be explained by advertising alone. Therefore, there must be other variables that have 
an influence also.

The next part of Output 7.1 reports the results of an analysis of variance (ANOVA – see 
Chapter 10):

F-statistic: 99.59 on 1 and 198 DF,  p-value: < 2.2e-16

It doesn’t give us all of the sums of squares, it just gives the important part: the F-ratio, 
which is calculated using equation (7.5), and the associated significance value of that 
F-ratio. For these data, F is 99.59, which is significant at p < .0014 (because the value 

4 Remember that when R wants to show small or large numbers it uses exponential notation.  So 2.2e–16 
means “2.2 with the decimal place moved 16 places to the left, and add zeros as necessary”, which means: 
0.00000000000000022.  That’s a very small number indeed.
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labelled p-value is less than .001). This result tells us that there is less than a 0.1% chance 
that an F-ratio this large would happen if the null hypothesis were true. Therefore, we 
can conclude that our regression model results in significantly better prediction of album 
sales than if we used the mean value of album sales. In short, the regression model overall 
predicts album sales significantly well.

7.5.2.    Model parameters 1

The ANOVA tells us whether the model, overall, results in a significantly good degree of 
prediction of the outcome variable. However, the ANOVA doesn’t tell us about the indi-
vidual contribution of variables in the model (although in this simple case there is only one 
variable in the model and so we can infer that this variable is a good predictor). 

The final part of Output 7.1 that we will look at (for now) is the part 
labelled Coefficients. This part contains the model parameters (the beta val-
ues) and the significance of these values. We saw in equation (7.2) that b0 
was the Y intercept and this value is the value in the Estimate column for the 
(intercept). (Notice that R puts intercept in brackets, because it’s in a list of 
variables, but it’s not a real variable). So, from the table shown in Output 
7.1, we can say that b0 is 134.1, and this can be interpreted as meaning that 
when no money is spent on advertising (when X = 0), the model predicts 
that 134,100 albums will be sold (remember that our unit of measurement 
was thousands of albums). We can also read off the value of b1 from the 
row labelled adverts and this value represents the gradient of the regression line. It is 
0.096. Although this value is the slope of the regression line, it is more useful to think of 
this value as representing the change in the outcome associated with a unit change in the 
predictor. Therefore, if our predictor variable is increased by one unit (if the advertising 
budget is increased by 1), then our model predicts that 0.096 units of extra albums will be 
sold. Our units of measurement were thousands of pounds and thousands of albums sold, 
so we can say that for an increase in advertising of £1000 the model predicts 96 (0.096 × 
1000 = 96) extra album sales. As you might imagine, this investment is pretty bad for the 
record company: it invests £1000 and gets only 96 extra sales. 

We saw earlier that, in general, values of the regression coefficient b represent the change 
in the outcome resulting from a unit change in the predictor and that if a predictor is having a 
significant impact on our ability to predict the outcome then this b should be different from 0 
(and big relative to its standard error). We also saw that the t-test tells us whether the b-value 
is different from 0. R provides the exact probability that the observed value of t would occur 
if the value of b in the population were 0. If this observed significance is less than .05, then 
scientists agree that the result reflects a genuine effect (see Chapter 2). For these two values, 
the probabilities are <2e–16 (which means 15 zeros, followed by a 2) and so we can say 
that the probability of these t-values (or larger) occurring if the values of b in the population 
were 0 is less than .001. Therefore, the bs are different from 0 and we can conclude that the 
advertising budget makes a significant contribution (p < .001) to predicting album sales.

SELF-TEST

ü	 How is the t in Output 7.1 calculated? Use the 
values in the output to see if you can get the same 
value as R.

How do I interpret
b-values?
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7.5.3.    Using the model 1

So far, we have discovered that we have a useful model, one that significantly improves our 
ability to predict album sales. However, the next stage is often to use that model to make 
some predictions. The first stage is to define the model by replacing the b-values in equa-
tion (7.2) with the values from the output. In addition, we can replace the X and Y with the 
variable names so that the model becomes:

album salesi =
 b0+ b1 advertising budgeti

                     =134.14 + (0.096 × advertising budgeti)	 (7.7)

It is now possible to make a prediction about album sales, by replacing the advertising bud-
get with a value of interest. For example, imagine a recording company executive wanted 
to spend £100,000 on advertising a new album. Remembering that our units are already 
in thousands of pounds, we can simply replace the advertising budget with 100. He would 
discover that album sales should be around 144,000 for the first week of sales:

album salesi = 134.14 + (0.096 × advertising budgeti)
                     = 134.14 + (0.096 × 100)
                     = 143.74	 (7.8)

SELF-TEST

ü	  How many units would be sold if we spent £666,000 
on advertising the latest album by black metal band 
Abgott?

             CRAMMING SAM’S TIPS    Simple regression

	

·	 Simple regression is a way of predicting values of one variable from another.
·	 We do this by fitting a statistical model to the data in the form of a straight line.
·	 This line is the line that best summarizes the pattern of the data.
·	 We have to assess how well the line fits the data using:

	 R2, which tells us how much variance is explained by the model compared to how much variance there is to explain in the 
first place. It is the proportion of variance in the outcome variable that is shared by the predictor variable.

	 F, which tells us how much variability the model can explain relative to how much it can’t explain (i.e., it’s the ratio of how 
good the model is compared to how bad it is).

·	 The b-value tells us the gradient of the regression line and the strength of the relationship between a predictor and the out-
come variable. If it is significant (Pr(>|t|) < .05 in the R output) then the predictor variable significantly predicts the outcome 
variable.
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What is the difference
between simple and
multiple regression?

7.6.  Multiple regression: the basics 2

To summarize what we have learnt so far, in simple linear regression the out-
come variable Y is predicted using the equation of a straight line (equation (7.2)). 
Given that we have collected several values of Y and X, the unknown parameters 
in the equation can be calculated. They are calculated by fitting a model to the 
data (in this case a straight line) for which the sum of the squared differences 
between the line and the actual data points is minimized. This method is called 
the method of least squares. Multiple regression is a logical extension of these 
principles to situations in which there are several predictors. Again, we still use 
our basic equation:

outcomei = (model) + errori

but this time the model is slightly more complex. It is basically the same as for simple 
regression except that for every extra predictor you include, you have to add a coefficient; 
so, each predictor variable has its own coefficient, and the outcome variable is predicted 
from a combination of all the variables multiplied by their respective coefficients plus a 
residual term (see equation (7.9) – the brackets aren’t necessary, they’re just to make the 
connection to the general equation above):

Y b b X b X b Xi i i n ni i= + + + + +( )0 1 1 2 2 … ε 	 (7.9)

Y is the outcome variable, b1 is the coefficient of the first predictor (X1), b2 is the coefficient 
of the second predictor (X2), bn is the coefficient of the nth predictor (Xni), and εi is the dif-
ference between the predicted and the observed value of Y for the ith participant. In this 
case, the model fitted is more complicated, but the basic principle is the same as simple 
regression. That is, we seek to find the linear combination of predictors that correlate 
maximally with the outcome variable. Therefore, when we refer to the regression model in 
multiple regression, we are talking about a model in the form of equation (7.9).

7.6.1.    An example of a multiple regression model 2

Imagine that our recording company executive was interested in extending his model of 
album sales to incorporate another variable. We know already that advertising accounts for 
33% of variation in album sales, but a much larger 67% remains unexplained. The record 
executive could measure a new predictor in an attempt to explain some of the unexplained 
variation in album sales. He decides to measure the number of times the album is played 
on Radio 1 (the UK’s biggest national radio station) during the week prior to release. The 
existing model that we derived using R (see equation (7.7)) can now be extended to include 
this new variable (airplay):

Album Salesi = (b0 + b1 advertising budgeti + b2 airplayi) + ei	 (7.10)

The new model is based on equation (7.9) and includes a b-value for both predictors (and, 
of course, the constant). If we calculate the b-values, we could make predictions about 
album sales based not only on the amount spent on advertising but also in terms of radio 
play. There are only two predictors in this model and so we could display this model 
graphically in three dimensions (Figure 7.8).
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Equation (7.9) describes the tinted trapezium in the diagram (this is known as the regres-
sion plane) and the dots represent the observed data points. Like simple regression, the 
plane fitted to the data aims to best predict the observed data. However, there are invari-
ably some differences between the model and the real-life data (this fact is evident because 
some of the dots do not lie exactly on the tinted area of the graph). The b-value for adver-
tising describes the slope of the left and right sides of the regression plane, whereas the 
b-value for airplay describes the slope of the top and bottom of the regression plane. Just 
like simple regression, knowledge of these two slopes tells us about the shape of the model 
(what it looks like) and the intercept locates the regression plane in space.

It is fairly easy to visualize a regression model with two predictors, because it is possible 
to plot the regression plane using a 3-D scatterplot. However, multiple regression can be 
used with three, four or even ten or more predictors. Although you can’t immediately 
visualize what such complex models look like, or visualize what the b-values represent, you 
should be able to apply the principles of these basic models to more complex scenarios.

7.6.2.    Sums of squares, R and R2 2

When we have several predictors, the partitioning of sums of squares is the same as in the 
single variable case except that the model we refer to takes the form of equation (7.9) rather 
than simply being a 2-D straight line. Therefore, SST can be calculated that represents the 
difference between the observed values and the mean value of the outcome variable. SSR still 
represents the difference between the values of Y predicted by the model and the observed 
values. Finally, SSM can still be calculated and represents the difference between the values 
of Y predicted by the model and the mean value. Although the computation of these values 
is much more complex than in simple regression, conceptually these values are the same.

When there are several predictors we can’t look at the simple R2, and instead R produces 
a multiple R2. Multiple R2 is the square of the correlation between the observed values of 
Y and the values of Y predicted by the multiple regression model. Therefore, large values 

FIGURE 7.8
Scatterplot of 
the relationship 
between album 
sales, advertising 
budget and radio 
play
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of multiple R2 represent a large correlation between the predicted and observed values 
of the outcome. A multiple R2 of 1 represents a situation in which the model perfectly 
predicts the observed data. As such, multiple R2 is a gauge of how well the model predicts 
the observed data. It follows that the resulting R2 can be interpreted in the same way as in 
simple regression: it is the amount of variation in the outcome variable that is accounted 
for by the model.

7.6.3.    Parsimony-adjusted measures of fit 2

The big problem with R2 is that when you add more variables to the model, it will always 
go up. If you are deciding which of two models fits the data better, the model with more 
predictor variables in will always fit better. The Akaike information criterion (AIC)5 is a mea-
sure of fit which penalizes the model for having more variables – a little like adjusted R2. 
The AIC is defined as:

AIC n
n

k= 





+ln
SSE

2

in which n is the number of cases in the model, ln is the natural log, SSE is the sum of 
square errors for the model, and k is the number of predictor variables. We are not going 
to worry too much about this equation, other than to notice that the final part – the 2k – is 
the part that does all the work. 

Imagine we add a variable to the model; usually this would increase R2, and hence SSE 
would be reduced. But imagine that this variable does not change the fit of the model 
at all. What will happen to the AIC? Well, the first part will be the same: n and SSE are 
unchanged. What will change is k: it will be higher, by one (because we have added a vari-
able). Hence, when we add this variable to the model, the AIC will be higher by 2. A larger 
value of the AIC indicates worse fit, corrected for the number of variables.  

There are a couple of strange things about the AIC. One of them is there are no guide-
lines for how much larger is ‘a lot’ and how much larger is ‘not very much’: If the AIC is 
bigger, the fit is worse; if the AIC is smaller, fit is better.

The second thing about the AIC is that it makes sense to compare the AIC only between 
models of the same data. The AIC doesn’t mean anything on its own: you cannot say that 
a value of the AIC of 10 is small, or that a value for the AIC of 1000 is large. The only 
thing you do with the AIC is compare it to other models with the same outcome variable.   

R also provides the option of a second measure of parsimony adjusted model fit, called 
the Bayesian information criterion (BIC), but that is rather beyond the level of this book.

7.6.4.    Methods of regression 2

If we are interested in constructing a complex model with several predictors, how do we 
decide which predictors to use? A great deal of care should be taken in selecting predictors 
for a model because the values of the regression coefficients depend upon the variables in 

5 Hirotsugu Akaike (pronounced A-Ka-Ee-Kay) was a Japanese statistician who gave his name to the AIC, which is 
used in a huge range of different places. You get some idea of this range when you find out that the paper in which 
the AIC was proposed was published in a journal called IEEE Transactions on Automatic Control.

07-Field_R-4368-Ch-07.indd   263 29/02/2012   5:55:22 PM



264 D ISCOVER ING STAT IST ICS  US ING R

the model. Therefore, the predictors included and the way in which they are entered into 
the model can have a great impact. In an ideal world, predictors should be selected based 
on past research.6 If new predictors are being added to existing models then select these 
new variables based on the substantive theoretical importance of these variables. One thing 
not to do is select hundreds of random predictors, bung them all into a regression analysis 
and hope for the best. In addition to the problem of selecting predictors, there are several 
ways in which variables can be entered into a model. When predictors are all completely 
uncorrelated, the order of variable entry has very little effect on the parameters calculated; 
however, we rarely have uncorrelated predictors and so the method of predictor selection 
is crucial.

7.6.4.1.  Hierarchical 2

In hierarchical regression predictors are selected based on past work and the experimenter 
decides in which order to enter the predictors into the model. As a general rule, known 
predictors (from other research) should be entered into the model first in order of their 
importance in predicting the outcome. After known predictors have been entered, the 
experimenter can add any new predictors into the model. New predictors can be entered 
either all in one go, in a stepwise manner, or hierarchically (such that the new predictor 
suspected to be the most important is entered first).

7.6.4.2.  Forced entry 2

Forced entry is a method in which all predictors are forced into the model simultane-
ously. Like hierarchical, this method relies on good theoretical reasons for including the 
chosen predictors, but unlike hierarchical the experimenter makes no decision about the 
order in which variables are entered. Some researchers believe that this method is the only 
appropriate method for theory testing (Studenmund & Cassidy, 1987) because stepwise 
techniques are influenced by random variation in the data and so seldom give replicable 
results if the model is retested.

7.6.4.3.  Stepwise methods 2

Stepwise regressions are generally frowned upon by statisticians, and R is not as good at 
running automated stepwise regressions as some other statistics programs we could men-
tion. However, I’m still going to tell you how to do them, but be aware that if you can’t do 
a stepwise regression in the same way in R that you can in another program, that’s because 
the other program was written 40 years ago when people didn’t know better. In stepwise 
regression decisions about the order in which predictors are entered into the model are 
based on a purely mathematical criterion. 

When you carry out a stepwise regression in R, you need to specify a direction. In 
the forward direction, an initial model is defined that contains only the constant (b0). The 
computer then searches for the predictor (out of the ones available) that best predicts the 
outcome variable – it does this by selecting the predictor that has the highest simple cor-
relation with the outcome. If this predictor improves the ability of the model to predict 
the outcome, then this predictor is retained in the model and the computer searches for 

6 I might cynically qualify this suggestion by proposing that predictors be chosen based on past research that has 
utilized good methodology. If basing such decisions on regression analyses, select predictors based only on past 
research that has used regression appropriately and yielded reliable, generalizable models.
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a second predictor. The criterion used for selecting this second predictor is that it is the 
variable that has the largest semi-partial correlation with the outcome. Let me explain this 
in plain English. Imagine that the first predictor can explain 40% of the variation in the 
outcome variable; then there is still 60% left unexplained. The computer searches for the 
predictor that can explain the biggest part of the remaining 60% (so it is not interested in 
the 40% that is already explained). As such, this semi-partial correlation gives a measure 
of how much ‘new variance’ in the outcome can be explained by each remaining predictor 
(see section 6.6). The predictor that accounts for the most new variance is added to the 
model and, if it makes a contribution to the predictive power of the model, it is retained 
and another predictor is considered.

R has to decide when to stop adding predictors to the model, and it does this based on 
the Akaike information criterion which was described above: a lower AIC indicates a better 
model. A variable is kept in the model only if it improves (i.e., lowers) the AIC, and if no 
variable can lower the AIC further, the model is stopped. 

The backward method is the opposite of the forward method in that the computer begins 
by placing all predictors in the model and then by looking to see if the AIC goes down 
when each variable is removed.  If a variable is removed, the contribution of the remaining 
predictors is then reassessed and the process continues until removing any variable causes 
AIC to increase.

The final direction is called ‘both’ by R (and stepwise by some other programs). This 
method, as the name implies, goes in both directions. It starts the in same way as the for-
ward method, except that each time a predictor is added to the equation, a removal test 
is made of the least useful predictor. As such the regression equation is constantly being 
reassessed to see whether any redundant predictors can be removed. 

If you do decide to use a stepwise method then the backward direction is preferable to 
the forward method. This is because of suppressor effects, which occur when a predictor 
has an effect but only when another variable is held constant. Forward selection is more 
likely than backward elimination to exclude predictors involved in suppressor effects. As 
such, the forward method runs a higher risk of making a Type II error (i.e., missing a pre-
dictor that does in fact predict the outcome).

7.6.4.4.  All-subsets methods 2

The problem with stepwise methods is that they assess the fit of a variable based on the 
other variables that were in the model. Some people use the analogy of getting dressed to 
describe this problem. If a stepwise regression method was selecting your clothes, it would 
decide what clothes you should wear, based on the clothes it has already selected. If, for 
example, it is a cold day, a stepwise selection method might choose a pair of trousers to put 
on first. But if you are wearing trousers already, it is difficult to get your underwear on: 
stepwise methods will decide that underwear does not fit, and you will therefore go with-
out. A better method is all-subsets regression. As the name implies, all-subsets regression 
tries every combination of variables, to see which one gives the best fit (fit is determined by 
a statistic called Mallows’ Cp, which we are not going to worry about). The problem with 
all-subsets regression is that as the number of predictor variables increases, the number of 
possible subsets increases exponentially. If you have two predictor variables, A and B, then 
you have 4 possible subsets: none of them, A alone, B alone, or A and B. If you have three 
variables (A, B, C), the possible subsets are none, A, B, C, AB, AC, BC, ABC, making 8 sub-
sets. If you have 10 variables, there are 1024 possible subsets. In the days when computers 
were slower and running a regression analysis might take a couple of minutes, running 
1024 regressions might take a day or so. Thankfully, computers aren’t slow any more, and 
so this method is feasible – it’s just that other programs have not yet caught up with R, so 
you tend to come across this method less.
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7.6.4.5.  Choosing a method 2

R allows you to opt for any one of these methods and it is important to select 
an appropriate one. The three directions of stepwise selection (forward, back-
ward and both) and all-subsets regression all come under the general heading of 
stepwise methods because they all rely on the computer selecting variables based 
upon mathematical criteria. Many writers argue that this takes many important 
methodological decisions out of the hands of the researcher. What’s more, the 
models derived by computer often take advantage of random sampling varia-
tion and so decisions about which variables should be included will be based 
upon slight differences in their semi-partial correlation. However, these slight 
statistical differences may contrast dramatically with the theoretical importance 

of a predictor to the model. There is also the danger of over-fitting (having too many variables 
in the model that essentially make little contribution to predicting the outcome) and under-
fitting (leaving out important predictors) the model. For this reason stepwise methods are best 
avoided except for exploratory model building. If you must do a stepwise regression then it is 
advisable to cross-validate your model by splitting the data (see section 7.7.2.2). 

When there is a sound theoretical literature available, then base your model upon what 
past research tells you. Include any meaningful variables in the model in their order of 
importance. After this initial analysis, repeat the regression but exclude any variables that 
were statistically redundant the first time around. There are important considerations in 
deciding which predictors should be included. First, it is important not to include too many 
predictors. As a general rule, the fewer predictors the better, and certainly include only 
predictors for which you have a good theoretical grounding (it is meaningless to measure 
hundreds of variables and then put them all into a regression model). So, be selective and 
remember you should have a decent sample size – see section 7.7.2.3.

7.7.  How accurate is my regression model? 2

When we have produced a model based on a sample of data there are two 
important questions to ask. First, does the model fit the observed data well, 
or is it influenced by a small number of cases? Second, can my model gen-
eralize to other samples? These questions are vital to ask because they affect 
how we use the model that has been constructed. These questions are also, in 
some sense, hierarchical because we wouldn’t want to generalize a bad model. 
However, it is a mistake to think that because a model fits the observed data 
well we can draw conclusions beyond our sample. Generalization is a critical 
additional step, and if we find that our model is not generalizable, then we 
must restrict any conclusions based on the model to the sample used. First, 
we will look at how we establish whether a model is an accurate representa-

tion of the actual data, and in section 7.7.2 we move on to look at how we assess whether 
a model can be used to make inferences beyond the sample of data that has been collected.

7.7.1.    Assessing the regression model I: diagnostics 2

To answer the question of whether the model fits the observed data well, or if it is influ-
enced by a small number of cases, we can look for outliers and influential cases (the differ-
ence is explained in Jane Superbrain Box 7.1). We will look at these in turn.

Which method of
regression should I use?

How do I tell if my
model is accurate?
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7.7.1.1.  Outliers and residuals 2

An outlier is a case that differs substantially from the main trend of the data (see Jane 
Superbrain Box 4.1). Figure 7.9 shows an example of such a case in regression. Outliers 

this line is still a significant fit to the data – do 
the regression analysis and see for yourself).

What’s interesting about these data is 
when we look at the residuals and influence 
statistics. The residual for case 8 is the second smallest: 
this outlier produces a very small residual (most of the 
non-outliers have larger residuals) because it sits very 
close to the line that has been fitted to the data. How can 
this be? Look at the influence statistics below and you’ll 
see that they’re massive for case 8: it exerts a huge influ-
ence over the model.

In this section I describe two ways to look for cases that 
might bias the model: residual and influence statistics. 
To illustrate how these measures differ, imagine that 
the Mayor of London at the turn of the last century was 
interested in how drinking affected mortality. London is 
divided up into different regions called boroughs, and so 
he might measure the number of pubs and the number 
of deaths over a period of time in eight of his boroughs. 
The data are in a file called pubs.dat. 

The scatterplot of these data reveals that without the 
last case there is a perfect linear relationship (the dashed 
straight line). However, the presence of the last case 
(case 8) changes the line of best fit dramatically (although 

JANE SUPERBRAIN 7.1

The difference between residuals and  
influence statistics 3

	 Residual	 Cook’s Distance	 Leverage (Hat Value)	 DFBeta (Intercept)	 DFBeta (Pubs)

1	 −2495.34	 0.21	 0.17	 −509.62	 1.39
2	 −1638.73	 0.09	 0.16	 −321.10	 0.80
3	 −782.12	 0.02	 0.15	 −147.08	 0.33
4	 74.49	 0.00	 0.14	 13.47	 −0.03
5	 931.10	 0.02	 0.14	 161.47	 −0.27
6	 1787.71	 0.08	 0.13	 297.70	 −0.41
7	 2644.32	 0.17	 0.13	 422.68	 −0.44
8	 −521.42	 227.14	 0.99	 3351.53	 −85.65

As always when you see a statistical oddity, you 
should ask what was happening in the real world. The 
last data point represents the City of London, a tiny 
area of only 1 square mile in the centre of London 
where very few people lived but where thousands of 
commuters (even then) came to work and had lunch 
in the pubs. Hence the pubs didn’t rely on the resident 

population for their business and the residents didn’t 
consume all of their beer! Therefore, there was a mas-
sive number of pubs.

This illustrates that a case exerting a massive influ-
ence can produce a small residual – so look at both. (I’m 
very grateful to David Hitchin for this example, and he in 
turn got it from Dr Richard Roberts.) 
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can cause your model to be biased because they affect the values of the estimated regression 
coefficients. For example, Figure 7.9 uses the same data as Figure 7.3 except that the 
score of one participant has been changed to be an outlier (in this case a person who was 
very calm in the presence of a very big spider). The change in this one point has had a 
dramatic effect on the regression model chosen to fit the data. With the outlier present, 
the regression model changes: its gradient is reduced (the line becomes flatter) and the 
intercept increases (the new line will cross the Y-axis at a higher point). It should be clear 
from this diagram that it is important to try to detect outliers to see whether the model is 
biased in this way.

FIGURE 7.9
Graph 
demonstrating the 
effect of an outlier. 
The dashed line 
represents the 
original regression 
line for these data 
(see Figure 7.3), 
whereas the solid 
line represents 
the regression line 
when an outlier is 
present
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How do you think that you might detect an outlier? Well, we know that an outlier, by its 
nature, is very different from all of the other scores. This being true, do you think that the 
model will predict that person’s score very accurately? The answer is no: looking at Figure 
7.9, it is evident that even though the outlier has biased the model, the model still predicts 
that one value very badly (the regression line is long way from the outlier). Therefore, if 
we were to work out the differences between the data values that were collected, and the 
values predicted by the model, we could detect an outlier by looking for large differences. 
This process is the same as looking for cases that the model predicts inaccurately. The dif-
ferences between the values of the outcome predicted by the model and the values of the 
outcome observed in the sample are known as residuals. These residuals represent the error 
present in the model. If a model fits the sample data well then all residuals will be small 
(if the model was a perfect fit to the sample data – all data points fall on the regression 
line – then all residuals would be zero). If a model is a poor fit to the sample data then 
the residuals will be large. Also, if any cases stand out as having a large residual, then they 
could be outliers.

The normal or unstandardized residuals described above are measured in the same units as 
the outcome variable and so are difficult to interpret across different models. What we can do 
is to look for residuals that stand out as being particularly large. However, we cannot define 
a universal cut-off point for what constitutes a large residual. To overcome this problem, we 
use standardized residuals, which are the residuals divided by an estimate of their standard 
deviation. We came across standardization in section 6.3.2 as a means of converting variables 
into a standard unit of measurement (the standard deviation); we also came across z-scores 
(see section 1.7.4) in which variables are converted into standard deviation units (i.e., they’re 
converted into scores that are distributed around a mean of 0 with a standard deviation of 1). 
By converting residuals into z-scores (standardized residuals) we can compare residuals from 
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different models and use what we know about the properties of z-scores to devise universal 
guidelines for what constitutes an acceptable (or unacceptable) value. For example, we know 
from Chapter 1 that in a normally distributed sample, 95% of z-scores should lie between 
−1.96 and +1.96, 99% should lie between −2.58 and +2.58, and 99.9% (i.e., nearly all of 
them) should lie between −3.29 and +3.29. Some general rules for standardized residuals are 
derived from these facts: (1) standardized residuals with an absolute value greater than 3.29 
(we can use 3 as an approximation) are cause for concern because in an average sample a 
value this high is unlikely to happen by chance; (2) if more than 1% of our sample cases have 
standardized residuals with an absolute value greater than 2.58 (we usually just say 2.5) there 
is evidence that the level of error within our model is unacceptable (the model is a fairly poor 
fit of the sample data); and (3) if more than 5% of cases have standardized residuals with an 
absolute value greater than 1.96 (we can use 2 for convenience) then there is also evidence 
that the model is a poor representation of the actual data.

7.7.1.2.  Influential cases 3

As well as testing for outliers by looking at the error in the model, it is also possible to look 
at whether certain cases exert undue influence over the parameters of the model. So, if we 
were to delete a certain case, would we obtain different regression coefficients? This type 
of analysis can help to determine whether the regression model is stable across the sample, 
or whether it is biased by a few influential cases. Again, this process will unveil outliers.

There are several residual statistics that can be used to assess the influence of a particular 
case. One statistic is the adjusted predicted value for a case when that case is excluded from the 
analysis. In effect, the computer calculates a new model without a particular case and then uses 
this new model to predict the value of the outcome variable for the case that was excluded. 
If a case does not exert a large influence over the model then we would expect the adjusted 
predicted value to be very similar to the predicted value when the case is included. Put sim-
ply, if the model is stable then the predicted value of a case should be the same regardless of 
whether or not that case was used to calculate the model. The difference between the adjusted 
predicted value and the original predicted value is known as DFFit (see below). We can also 
look at the residual based on the adjusted predicted value: that is, the difference between the 
adjusted predicted value and the original observed value. When this residual is divided by the 
standard error it gives a standardized value known as the studentized residual. This residual 
can be compared across different regression analyses because it is measured in standard units, 
and is called a studentized residual because it follows a Student’s t-distribution.

The studentized residuals are very useful to assess the influence of a case on the ability 
of the model to predict that case. However, they do not provide any information about 
how a case influences the model as a whole (i.e., the impact that a case has on the model’s 
ability to predict all cases). One statistic that does consider the effect of a single case on the 
model as a whole is Cook’s distance. Cook’s distance is a measure of the overall influence 
of a case on the model, and Cook and Weisberg (1982) have suggested that values greater 
than 1 may be cause for concern.

A second measure of influence is hat values (sometimes called leverage), which gauge 
the influence of the observed value of the outcome variable over the predicted values. The 
average leverage value is defined as (k+1)/n, in which k is the number of predictors in the 
model and n is the number of participants.7 Leverage values can lie between 0 (indicating 
that the case has no influence whatsoever) and 1 (indicating that the case has complete 

7 You may come across the average leverage denoted as p/n, in which p is the number of parameters being 
estimated. In multiple regression, we estimate parameters for each predictor and also for a constant and so p is 
equivalent to the number of predictors plus one (k + 1).
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influence over prediction). If no cases exert undue influence over the model then we would 
expect all of the leverage values to be close to the average value ((k + 1)/n). Hoaglin and 
Welsch (1978) recommend investigating cases with values greater than twice the average 
(2(k + 1)/n) and Stevens (2002) recommends using three times the average (3(k + 1)/n) as 
a cut-off point for identifying cases having undue influence. We will see how to use these 
cut-off points later. However, cases with large leverage values will not necessarily have a 
large influence on the regression coefficients because they are measured on the outcome 
variables rather than the predictors.

It is possible to run the regression analysis with a case included and then rerun the ana
lysis with that same case excluded. If we did this, undoubtedly there would be some differ-
ence between the b coefficients in the two regression equations. This difference would tell 
us how much influence a particular case has on the parameters of the regression model. To 
take a hypothetical example, imagine two variables that had a perfect negative relationship 
except for a single case (case 30). If a regression analysis was done on the 29 cases that were 
perfectly linearly related then we would get a model in which the predictor variable X per-
fectly predicts the outcome variable Y, and there are no errors. If we then ran the analysis 
but this time include the case that didn’t conform (case 30), then the resulting model would 
have different parameters. Some data are stored in the file dfbeta.dat that illustrate such 
a situation. Try running a simple regression first with all the cases included and then with 
case 30 deleted. The results are summarized in Table 7.1, which shows: (1) the parameters 
for the regression model when the extreme case is included or excluded; (2) the resulting 
regression equations; and (3) the value of Y predicted from participant 30’s score on the X 
variable (which is obtained by replacing the X in the regression equation with participant 
30’s score for X, which was 1).

Table 7.1  The difference in the parameters of the regression model when one case is excluded

Parameter (b) Case 30 Included Case 30 Excluded Difference

Constant (intercept) 29.00 31.00 -2.00

Predictor (gradient) -0.90 -1.00 0.10

Model (regression line): Y = (-0.9)X + 29 Y = (-1)X + 31

Predicted Y 28.10 30.00 -1.90

When case 30 is excluded, these data have a perfect negative relationship; hence the 
coefficient for the predictor (b1) is −1 (remember that in simple regression this term is the 
same as Pearson’s correlation coefficient), and the coefficient for the constant (the inter-
cept, b0) is 31. However, when case 30 is included, both parameters are reduced8 and the 
difference between the parameters is also displayed. The difference between a parameter 
estimated using all cases and estimated when one case is excluded is known as the DFBeta 
in R. DFBeta is calculated for every case and for each of the parameters in the model. So, 
in our hypothetical example, the DFBeta for the constant is −2, and the DFBeta for the 
predictor variable is 0.1. By looking at the values of DFBeta, it is possible to identify cases 
that have a large influence on the parameters of the regression model.

A related statistic is the DFFit, which is the difference between the predicted value for 
a case when the model is calculated including that case and when the model is calculated 
excluding that case: in this example the value is −1.90 (see Table 7.1). If a case is not 

8 The value of b1 is reduced in absolute size because the data no longer have a perfect linear relationship and so 
there is now variance that the model cannot explain. 
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influential then its DFFit should be zero – hence, we expect non-influential cases to have 
small DFFit values. 

7.7.1.3.  A final comment on diagnostic statistics 2

There are a lot of diagnostic statistics that should be examined after a regression analysis, 
and it is difficult to summarize this wealth of material into a concise conclusion. However, 
one thing I would like to stress is a point made by Belsey, Kuh, and Welsch (1980) who 
noted the dangers inherent in these procedures. The point is that diagnostics are tools that 
enable you to see how good or bad your model is in terms of fitting the sampled data. They 
are a way of assessing your model. They are not, however, a way of justifying the removal 
of data points to effect some desirable change in the regression parameters (e.g., deleting a 
case that changes a non-significant b-value into a significant one). Stevens (2002, p. 135), 
as ever, offers excellent advice:

If a point is a significant outlier on Y, but its Cook’s distance is < 1, there is no real 
need to delete that point since it does not have a large effect on the regression analysis. 
However, one should still be interested in studying such points further to understand 
why they did not fit the model.

7.7.2.    Assessing the regression model II: generalization 2

When a regression analysis is done, an equation can be produced that is correct for the 
sample of observed values. However, in the social sciences we are usually interested in gen-
eralizing our findings outside the sample. So, although it can be useful to draw conclusions 
about a particular sample of people, it is usually more interesting if we can then assume 
that our conclusions are true for a wider population. For a regression model to generalize 
we must be sure that underlying assumptions have been met, and to test whether the model 
does generalize we can look at cross-validating it.

7.7.2.1.  Checking assumptions 2

To draw conclusions about a population based on a regression analysis done on a sample, 
several assumptions must be true (see Berry, 1993):

MM Variable types: All predictor variables must be quantitative or categorical (with 
two categories), and the outcome variable must be quantitative, continuous and 
unbounded. By ‘quantitative’ I mean that they should be measured at the interval 
level and by ‘unbounded’ I mean that there should be no constraints on the variability 
of the outcome. If the outcome is a measure ranging from 1 to 10 yet the data col-
lected vary between 3 and 7, then these data are constrained.

MM Non-zero variance: The predictors should have some variation in value (i.e., they do 
not have variances of 0).

MM No perfect multicollinearity: There should be no perfect linear relationship between 
two or more of the predictors. So, the predictor variables should not correlate too 
highly (see section 7.7.2.4).

MM Predictors are uncorrelated with ‘external variables’: External variables are variables 
that haven’t been included in the regression model which influence the outcome 
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variable.9 These variables can be thought of as similar to the ‘third variable’ that was 
discussed with reference to correlation. This assumption means that there should be 
no external variables that correlate with any of the variables included in the regres-
sion model. Obviously, if external variables do correlate with the predictors, then the 
conclusions we draw from the model become unreliable (because other variables exist 
that can predict the outcome just as well).

MM Homoscedasticity: At each level of the predictor variable(s), the variance of the resid-
ual terms should be constant. This just means that the residuals at each level of the 
predictor(s) should have the same variance (homoscedasticity); when the variances 
are very unequal there is said to be heteroscedasticity (see section 5.7 as well).

MM Independent errors: For any two observations the residual terms should be uncorre-
lated (or independent). This eventuality is sometimes described as a lack of autocor-
relation. This assumption can be tested with the Durbin–Watson test, which tests for 
serial correlations between errors. Specifically, it tests whether adjacent residuals are 
correlated. The test statistic can vary between 0 and 4, with a value of 2 meaning that 
the residuals are uncorrelated. A value greater than 2 indicates a negative correlation 
between adjacent residuals, whereas a value less than 2 indicates a positive correla-
tion. The size of the Durbin–Watson statistic depends upon the number of predictors 
in the model and the number of observations. As a very conservative rule of thumb, 
values less than 1 or greater than 3 are definitely cause for concern; however, values 
closer to 2 may still be problematic depending on your sample and model. R also 
provides a p-value of the autocorrelation.  Be very careful with the Durbin–Watson 
test, though, as it depends on the order of the data: if you reorder your data, you’ll 
get a different value.

MM Normally distributed errors: It is assumed that the residuals in the model are random, 
normally distributed variables with a mean of 0. This assumption simply means that 
the differences between the model and the observed data are most frequently zero or 
very close to zero, and that differences much greater than zero happen only occasion-
ally. Some people confuse this assumption with the idea that predictors have to be 
normally distributed. Predictors do not need to be normally distributed (see section 
7.12).

MM Independence: It is assumed that all of the values of the outcome variable are inde-
pendent (in other words, each value of the outcome variable comes from a separate 
entity).

MM Linearity: The mean values of the outcome variable for each increment of the 
predictor(s) lie along a straight line. In plain English this means that it is assumed that 
the relationship we are modelling is a linear one. If we model a non-linear relation-
ship using a linear model then this obviously limits the generalizability of the findings.

This list of assumptions probably seems pretty daunting but, as we saw in Chapter 5, 
assumptions are important. When the assumptions of regression are met, the model that 
we get for a sample can be accurately applied to the population of interest (the coefficients 
and parameters of the regression equation are said to be unbiased). Some people assume 
that this means that when the assumptions are met the regression model from a sample is 
always identical to the model that would have been obtained had we been able to test the 

9 Some authors choose to refer to these external variables as part of an error term that includes any random factor 
in the way in which the outcome varies. However, to avoid confusion with the residual terms in the regression 
equations I have chosen the label ‘external variables’. Although this term implicitly washes over any random 
factors, I acknowledge their presence here.
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entire population. Unfortunately, this belief isn’t true. What an unbiased model does tell 
us is that on average the regression model from the sample is the same as the population 
model. However, you should be clear that even when the assumptions are met, it is possible 
that a model obtained from a sample may not be the same as the population model – but 
the likelihood of them being the same is increased.

7.7.2.2.  Cross-validation of the model 3

Even if we can’t be confident that the model derived from our sample accurately repre-
sents the entire population, there are ways in which we can assess how well our model can 
predict the outcome in a different sample. Assessing the accuracy of a model across dif-
ferent samples is known as cross-validation. If a model can be generalized, then it must be 
capable of accurately predicting the same outcome variable from the same set of predictors 
in a different group of people. If the model is applied to a different sample and there is a 
severe drop in its predictive power, then the model clearly does not generalize. As a first 
rule of thumb, we should aim to collect enough data to obtain a reliable regression model 
(see the next section). Once we have a regression model there are two main methods of 
cross-validation:

MM Adjusted R2: In R, not only is the value of R2 calculated, but also an adjusted R2. This 
adjusted value indicates the loss of predictive power or shrinkage. Whereas R2 tells 
us how much of the variance in Y is accounted for by the regression model from our 
sample, the adjusted value tells us how much variance in Y would be accounted for if 
the model had been derived from the population from which the sample was taken. 
R derives the adjusted R2 using Wherry’s equation. However, this equation has been 
criticized because it tells us nothing about how well the regression model would 
predict an entirely different set of data (how well can the model predict scores of a 
different sample of data from the same population?). One version of R2 that does tell 
us how well the model cross-validates uses Stein’s formula (see Stevens, 2002):
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In Stein’s equation, R2 is the unadjusted value, n is the number of participants and k is 
the number of predictors in the model. For the more mathematically minded of you, 
it is worth using this equation to cross-validate a regression model.

MM Data splitting: This approach involves randomly splitting your data set, computing 
a regression equation on both halves of the data and then comparing the resulting 
models. When using stepwise methods, cross-validation is a good idea; you should 
run the stepwise regression on a random selection of about 80% of your cases. Then 
force this model on the remaining 20% of the data. By comparing values of the R2 
and b-values in the two samples you can tell how well the original model generalizes 
(see Tabachnick & Fidell, 2007, for more detail).

7.7.2.3.  Sample size in regression 3

In the previous section I said that it’s important to collect enough data to obtain a reliable 
regression model. Well, how much is enough? You’ll find a lot of rules of thumb float-
ing about, the two most common being that you should have 10 cases of data for each 
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predictor in the model, or 15 cases of data per predictor. So, with five predic-
tors, you’d need 50 or 75 cases respectively (depending on the rule you use). 
These rules are very pervasive (even I used the 15 cases per predictor rule in 
the first edition of this book) but they oversimplify the issue considerably. In 
fact, the sample size required will depend on the size of effect that we’re trying 
to detect (i.e., how strong the relationship is that we’re trying to measure) and 
how much power we want to detect these effects. The simplest rule of thumb 
is that the bigger the sample size, the better! The reason is that the estimate of 
R that we get from regression is dependent on the number of predictors, k, and 

the sample size, N. In fact the expected R for random data is k/(N−1), and so with small 
sample sizes random data can appear to show a strong effect: for example, with six pre-
dictors and 21 cases of data, R = 6/(21−1) = .3 (a medium effect size by Cohen’s criteria 
described in section 6.3.2). Obviously for random data we’d want the expected R to be 0 
(no effect) and for this to be true we need large samples (to take the previous example, if 
we had 100 cases, not 21, then the expected R would be a more acceptable .06).

It’s all very well knowing that larger is better, but researchers usually need some more 
concrete guidelines (much as we’d all love to collect 1000 cases of data, it isn’t always prac-
tical). Green (1991) makes two rules of thumb for the minimum acceptable sample size, the 
first based on whether you want to test the overall fit of your regression model (i.e., test 
the R2), and the second based on whether you want to test the individual predictors within 
the model (i.e., test the b-values of the model). If you want to test the model overall, then 
he recommends a minimum sample size of 50 + 8k, where k is the number of predictors. 
So, with five predictors, you’d need a sample size of 50 + 40 = 90. If you want to test the 
individual predictors then he suggests a minimum sample size of 104 + k, so again taking 
the example of five predictors you’d need a sample size of 104 + 5 = 109. Of course, in 
most cases we’re interested both in the overall fit and in the contribution of individual pre-
dictors, and in this situation Green recommends you calculate both of the minimum sample 
sizes I’ve just described, and use the one that has the largest value (so in the five-predictor 
example, we’d use 109 because it is bigger than 90).

Now, these guidelines are all right as a rough and ready guide, but they still oversimplify 
the problem. As I’ve mentioned, the sample size required actually depends on the size of 
the effect (i.e., how well our predictors predict the outcome) and how much statistical 
power we want to detect these effects. Miles and Shevlin (2001) produce some extremely 
useful graphs that illustrate the sample sizes needed to achieve different levels of power, for 
different effect sizes, as the number of predictors vary. For precise estimates of the sample 
size you should be using, I recommend using these graphs. I’ve summarized some of the 
general findings in Figure 7.10. This diagram shows the sample size required to achieve a 
high level of power (I’ve taken Cohen’s, 1988, benchmark of .8) depending on the number 
of predictors and the size of expected effect. To summarize the graph very broadly: (1) if 
you expect to find a large effect then a sample size of 80 will always suffice (with up to 20 
predictors) and if there are fewer predictors then you can afford to have a smaller sample; 
(2) if you’re expecting a medium effect, then a sample size of 200 will always suffice (up 
to 20 predictors), you should always have a sample size above 60, and with six or fewer 
predictors you’ll be fine with a sample of 100; and (3) if you’re expecting a small effect size 
then just don’t bother unless you have the time and resources to collect at least 600 cases 
of data (and many more if you have six or more predictors).

7.7.2.4.  Multicollinearity 2

Multicollinearity exists when there is a strong correlation between two or more predic-
tors in a regression model. Multicollinearity poses a problem only for multiple regres-
sion because (without wishing to state the obvious) simple regression requires only one 

How much data
should I collect?
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predictor. Perfect collinearity exists when at least one predictor is a perfect linear combina-
tion of the others (the simplest example being two predictors that are perfectly correlated – 
they have a correlation coefficient of 1). If there is perfect collinearity between predictors it 
becomes impossible to obtain unique estimates of the regression coefficients because there 
are an infinite number of combinations of coefficients that would work equally well. Put 
simply, if we have two predictors that are perfectly correlated, then the values of b for each 
variable are interchangeable. The good news is that perfect collinearity is rare in real-life 
data. The bad news is that less than perfect collinearity is virtually unavoidable. Low levels 
of collinearity pose little threat to the models generated by R, but as collinearity increases 
there are three problems that arise:

MM Untrustworthy bs: As collinearity increases so do the standard errors of the b coef-
ficients. If you think back to what the standard error represents, then big stan-
dard errors for b coefficients means that these bs are more variable across samples. 
Therefore, it means that the b coefficient in our sample is less likely to represent 
the population. Crudely put, multicollinearity means that the b-values are less trust-
worthy. Don’t lend them money and don’t let them go for dinner with your boy- or 
girlfriend. Of course if the bs are variable from sample to sample then the resulting 
predictor equations will be unstable across samples too.

MM It limits the size of R: Remember that R is a measure of the multiple correlation 
between the predictors and the outcome and that R2 indicates the variance in the 
outcome for which the predictors account. Imagine a situation in which a single 
variable predicts the outcome variable fairly successfully (e.g., R = .80) and a second 
predictor variable is then added to the model. This second variable might account 
for a lot of the variance in the outcome (which is why it is included in the model), 
but the variance it accounts for is the same variance accounted for by the first vari-
able. In other words, once the variance accounted for by the first predictor has been 
removed, the second predictor accounts for very little of the remaining variance (the 
second variable accounts for very little unique variance). Hence, the overall variance 
in the outcome accounted for by the two predictors is little more than when only one 
predictor is used (so R might increase from .80 to .82). This idea is connected to the 
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notion of partial correlation that was explained in Chapter 6. If, however, the two 
predictors are completely uncorrelated, then the second predictor is likely to account 
for different variance in the outcome to that accounted for by the first predictor. So, 
although in itself the second predictor might account for only a little of the variance 
in the outcome, the variance it does account for is different than that of the other 
predictor (and so when both predictors are included, R is substantially larger, say 
.95). Therefore, having uncorrelated predictors is beneficial.

MM Importance of predictors: Multicollinearity between predictors makes it difficult to 
assess the individual importance of a predictor. If the predictors are highly correlated, 
and each accounts for similar variance in the outcome, then how can we know which 
of the two variables is important? Quite simply, we can’t tell which variable is impor-
tant – the model could include either one, interchangeably.

One way of identifying multicollinearity is to scan a correlation matrix of all of the 
predictor variables and see if any correlate very highly (by ‘very highly’ I mean correla-
tions of above .80 or .90). This is a good ‘ball park’ method but misses more subtle forms 
of multicollinearity. Luckily, R can produce various collinearity diagnostics, one of which 
is the variance inflation factor (VIF). The VIF indicates whether a predictor has a strong 
linear relationship with the other predictor(s). Although there are no hard and fast rules 
about what value of the VIF should cause concern, Myers (1990) suggests that a value of 10 
is a good value at which to worry. What’s more, if the average VIF is greater than 1, then 
multicollinearity may be biasing the regression model (Bowerman & O’Connell, 1990). 
Related to the VIF is the tolerance statistic, which is its reciprocal (1/VIF). As such, values 
below 0.1 indicate serious problems, although Menard (1995) suggests that values below 
0.2 are worthy of concern.

If none of this has made any sense then have a look at Hutcheson and Sofroniou (1999, 
pp. 78–85) who give a really clear explanation of multicollinearity.

7.8.  How to do multiple regression using R 
Commander and R 2

7.8.1.    Some things to think about before the analysis 2

A good strategy to adopt with regression is to measure predictor variables for which there 
are sound theoretical reasons for expecting them to predict the outcome. Run a regression 
analysis in which all predictors are entered into the model and examine the output to see 
which predictors contribute substantially to the model’s ability to predict the outcome. 
Once you have established which variables are important, rerun the analysis including only 
the important predictors and use the resulting parameter estimates to define your regres-
sion model. If the initial analysis reveals that there are two or more significant predictors, 
then you could consider running a forward stepwise analysis (rather than forced entry) to 
find out the individual contribution of each predictor.

I have spent a lot of time explaining the theory behind regression and some of the 
diagnostic tools necessary to gauge the accuracy of a regression model. It is important 
to remember that R may appear to be very clever, but in fact it is not. Admittedly, it can 
do lots of complex calculations in a matter of seconds, but what it can’t do is control the 
quality of the model that is generated – to do this requires a human brain (and preferably a 
trained one). R will happily generate output based on any garbage you decide to feed into 
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it and will not judge the results or give any indication of whether the model can be general-
ized or if it is valid. However, R provides the statistics necessary to judge these things, and 
at this point our brains must take over the job – which is slightly worrying (especially if 
your brain is as small as mine).

7.8.2.    Multiple regression: running the basic model 2

7.8.2.1.  Multiple regression using R Commander:  
the basic model 2

Imagine that the record company executive was now interested in extending the model of 
album sales to incorporate other variables. He decides to measure two new variables: (1) 
the number of times songs from the album are played on Radio 1 during the week prior 
to release (airplay); and (2) the attractiveness of the band (attract). Before an album is 
released, the executive notes the amount spent on advertising, the number of times songs 
from the album are played on radio the week before release, and the attractiveness of the 
band. He does this for 200 different albums (each made by a different band). Attractiveness 
was measured by asking a random sample of the target audience to rate the attractiveness 
of each band on a scale from 0 (hideous potato-heads) to 10 (gorgeous sex objects). The 
mode attractiveness given by the sample was used in the regression (because he was inter-
ested in what the majority of people thought, rather than the average of people’s opinions). 
The data are in a file called Album Sales 2.dat.

FIGURE 7.11
The Album Sales 
2.dat data
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To conduct a multiple regression using R Commander, first initiate the package by exe-
cuting (and install it if you haven’t – see section 3.6):

library(Rcmdr)

You can read the data file Album Sales 2.dat into R using the Data ⇒ Import data ⇒  
from text file, clipboard, or URL… menu (see section 3.7.3). Then you can look at the 
data, by clicking on . You should note that each variable has its own column (the 
same layout as for correlation) and each row represents a different album. So, the first 
album had £10,256 spent advertising it, sold 330,000 copies, received 43 plays on Radio 
1 the week before release, and was made by a band that the majority of people rated as 
gorgeous sex objects (Figure 7.11).

The executive has past research indicating that advertising budget is a significant pre-
dictor of album sales, and so he should include this variable in the model first. His new 
variables (airplay and attract) should, therefore, be entered into the model after advertis-
ing budget. This method is hierarchical (the researcher decides in which order to enter 
variables into the model based on past research). The record executive needs to run two 
models. In his first model, the predictor will be adverts. In the second model, the predic-
tors will be adverts, airplay and attract.

FIGURE 7.12
Dialog boxes 
for conducting 
multiple 
regression using 
R Commander

We can use R Commander to run the model by selecting Statistics ⇒ Fit models ⇒ 
Linear regression… (Figure 7.12). For the first model (left dialog box in Figure 7.12) we 
select sales as the response variable, and adverts as the explanatory variable. We have 
named this model albumSales.2. When you have selected your variables and named the 
model, click on . The resulting output is described in section 7.8.3.1.

For the second model we choose three explanatory variables, adverts, attract and sales. 
To select multiple variables you can either ‘swipe’ over all the variables you are interested 
in with the mouse (if they are next to each other), or hold down the Ctrl key (cmd on a 
Mac) while you click on each one (if they are not next to each other). When you have 
selected your variables and named the model, click on . The resulting output is also 
described in section 7.8.3.1.
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7.8.2.2.  Multiple regression using R: the basic model 2

First load the data file by setting your working directory to the location of the file (see sec-
tion 3.4.4) and executing:

album2<-read.delim("Album Sales 2.dat", header = TRUE)

We can again run the regression analysis using the lm() function. We need to create two 
models: the first, albumSales.2, will have adverts as a predictor. The second, albumSales.3, 
will have adverts, airplay and attract as predictors. 

The first model is the same as the one we created in section 7.4.2 and we can create it by 
executing the following command:

albumSales.2 <- lm(sales ~ adverts, data = album2)

To remind you, this creates a model called albumSales.2, in which the variable sales is 
predicted from the variable adverts (sales ~ adverts). The data = simply tells R which 
dataframe contains the variables we’re using in the model.

To create the second model, we need to specify additional predictors, and we can do 
this in the same way that we added predictors to the regression equation itself: we simply 
use ‘+’ to add them into the model. Therefore, if we want to predict sales from the vari-
ables adverts, airplay and attract, then our model is specified as sales ~ adverts + airplay + 
attract. It basically looks the same as the regression equation but without the bs. Therefore, 
to create this model we would execute:

albumSales.3 <- lm(sales ~ adverts + airplay + attract, data = album2)

This command creates a model albumSales.3, in which the variable sales is predicted from 
the variables adverts, airplay and attract. We could also have used the update() function 
to do this because this model is simply adding new predictors to the previous model (R’s 
Souls’ Tip 19.3). 

          R ’s  Souls ’  T ip  7 .2   The update() function 2

Writing out the models in full can be helpful to understand how the lm() function works: I think it’s useful to see 
how the code relates to the equation that describes the model. However, the update() function is a quicker way 
to add new things to old models. In our example our model albumSales.3 is the same as the previous model, 
albumSales.2, except that we added two variables (attract and airplay). Look at the two model specifications:

albumSales.2 <- lm(sales ~ adverts, data = album2)
albumSales.3 <- lm(sales ~ adverts + airplay + attract, data = album2)

Note that they are identical except that the second model has two new variables added as predictors. Using the 
update() function we can create the second model in less text:

albumSales.3<-update(albumSales.2, .~. + airplay + attract)

This function, like the longhand one, creates a new model called albumSales.3, and it does this by updating an 
existing model. The first part of the parenthesis tells R which model to update (in this case we want to update the 
model called albumSales.2). The .~. means ‘keep the outcome and predictors the same as the baseline model’: 
the dots mean ‘keep the same’ so the fact that we put dots on both sides of the ~ means that we want to keep 
both the outcome and predictors the same as in the baseline model. The + airplay + attract means ‘add airplay 
and attract as predictors’. Therefore, ‘.~. + airplay + attract’ can be interpreted as ‘keep the same outcomes and 
predictors as the baseline model but add airplay and attract as predictors.
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7.8.3.    Interpreting the basic multiple regression 2

7.8.3.1.  The model summary 2

To see the output of these models we need to use the summary() function (in which we 
simply place the name of the model). To see the output of our models, execute:

summary(albumSales.2)
summary(albumSales.3)

The summary of the albumSales.2 model is shown in Output 7.2, whereas the summary of 
albumSales.3 is in Output 7.3.

Call: lm(formula = sales ~ adverts, data = album2)

Residuals:
     Min       1Q   Median       3Q      Max 
-152.949  -43.796   -0.393   37.040  211.866 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.341e+02  7.537e+00  17.799   <2e-16 ***
adverts     9.612e-02  9.632e-03   9.979   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‚ ‚ 1 

Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346,	 Adjusted R-squared: 0.3313 
F-statistic: 99.59 on 1 and 198 DF,  p-value: < 2.2e-16

Output 7.2

Call: lm(formula = sales ~ adverts + airplay + attract, data = album2)

Residuals:
     Min       1Q   Median       3Q      Max 
-121.324  -28.336   -0.451   28.967  144.132 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -26.612958  17.350001  -1.534    0.127    
adverts       0.084885   0.006923  12.261  < 2e-16 ***
airplay       3.367425   0.277771  12.123  < 2e-16 ***
attract      11.086335   2.437849   4.548 9.49e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

Residual standard error: 47.09 on 196 degrees of freedom
Multiple R-squared: 0.6647,	 Adjusted R-squared: 0.6595 
F-statistic: 129.5 on 3 and 196 DF,  p-value: < 2.2e-16 

Output 7.3

Let’s look first at the R2 statistics at the bottom of each summary. This value describes the over-
all model (so it tells us whether the model is successful in predicting album sales). Remember that 
we ran two models: albumSales.2 refers to the first stage in the hierarchy when only advertising 
budget is used as a predictor, albumSales.3 refers to when all three predictors are used. At the 
beginning of each output, R reminds us of the command that we ran to get each model. 
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When only advertising budget is used as a predictor, the R2 statistic is the square of 
simple correlation between advertising and album sales (0.5782). In fact all of the statistics 
for albumSales.2 are the same as the simple regression model earlier (see albumSales.1 in 
section 7.5). The value of R2, we already know, is a measure of how much of the variability 
in the outcome is accounted for by the predictors. For the first model its value is .335, 
which means that advertising budget accounts for 33.5% of the variation in album sales. 
However, when the other two predictors are included as well (albumSales.3 in Output 
7.3), this value increases to .665, or 66.5% of the variance in album sales. Therefore, if 
advertising accounts for 33.5%, we can tell that attractiveness and radio play account for 
an additional 33.0%.10 So the inclusion of the two new predictors has explained quite a 
large amount of the variation in album sales.

The adjusted R2 gives us some idea of how well our model generalizes, and ideally we would 
like its value to be the same, or very close to, the value of R2. In this example the difference for 
the final model (Output 7.3) is small (in fact the difference between the values is .665 −.660 = 
.005 (about 0.5%)). This shrinkage means that if the model were derived from the population 
rather than a sample it would account for approximately 0.5% less variance in the outcome. 
Advanced students might like to apply Stein’s formula to the R2 to get some idea of its likely 
value in different samples. Stein’s formula was given in equation (7.11) and can be applied by 
replacing n with the sample size (200) and k with the number of predictors (3):

adjusted R2 1
200 1

200 3 1
200 2

200 3 2
200 1

200
1 0 6= −

−
− −

×
−

− −
×

+





− . 665

1 1 015 1 015 1 005 0 335
1 0 347
0 653

( )
= − × × ×
= −
=

( . . . ) .
.

.

This value is very similar to the observed value of R2 (.665), indicating that the cross-
validity of this model is very good.

10 That is, 33% = 66.5% − 33.5% (this value is known as the R2 change).

             CRAMMING SAM’S TIPS    Model fit

	 The fit of the regression model can be assessed with the model fit. Look for the R2 to tell you the proportion of 
variance explained by the model. Multiply this value by 100 to give the percentage of variance explained by the model.

7.8.3.2.  Model parameters 2

So far we have looked at the overall fit of the model. The next part of the output to consider 
is the parameters of the model. Now, the first step in our hierarchy was to include advertis-
ing budget (as we did for the simple regression earlier in this chapter) and so the parameters 
for the first model are identical to the parameters obtained in Output 7.1. Therefore, we 

07-Field_R-4368-Ch-07.indd   281 29/02/2012   5:55:28 PM



282 D ISCOVER ING STAT IST ICS  US ING R

will be concerned only with the parameters for the final model (in which all predictors were 
included). Output 7.3 shows the estimate, standard error, t-value and p-value.

Remember that in multiple regression the model takes the form of equation (7.9) and in 
that equation there are several unknown quantities (the b-values). The first column gives 
us estimates for these b-values, and these values indicate the individual contribution of 
each predictor to the model (notice that in the first model, R is using the slightly annoying 
1.341e+02 notation, which means ‘move the decimal point two places to the right’, so this 
value is equal to 134.1). If we replace the b-values in equation (7.9) we find that we can 
define the model as follows:

salesi = b0 + b1advertisingi + b2airplayi + b3attractivenessi
         = -26.61 + (0.08 advertisingi) + (3.37 airplayi) + (11.09 attractivenessi)

The b-values tell us about the relationship between album sales and each predictor. If the 
value is positive we can tell that there is a positive relationship between the predictor and 
the outcome, whereas a negative coefficient represents a negative relationship. For these 
data all three predictors have positive b-values indicating positive relationships. So, as 
advertising budget increases, album sales increase; as plays on the radio increase, so do 
album sales; and finally more attractive bands will sell more albums. The b-values tell us 
more than this, though. They tell us to what degree each predictor affects the outcome if 
the effects of all other predictors are held constant:

MM Advertising budget (b = 0.085): This value indicates that as advertising budget 
increases by one unit, album sales increase by 0.085 units. Both variables were mea-
sured in thousands; therefore, for every £1000 more spent on advertising, an extra 
0.085 thousand albums (85 albums) are sold. This interpretation is true only if the 
effects of attractiveness of the band and airplay are held constant.

MM Airplay (b = 3.367): This value indicates that as the number of plays on radio in the 
week before release increases by one, album sales increase by 3.367 units. Therefore, 
every additional play of a song on radio (in the week before release) is associated with 
an extra 3.367 thousand albums (3367 albums) being sold. This interpretation is true 
only if the effects of attractiveness of the band and advertising are held constant.

MM Attractiveness (b = 11.086): This value indicates that a band rated one unit higher on 
the attractiveness scale can expect additional album sales of 11.086 units. Therefore, 
every unit increase in the attractiveness of the band is associated with an extra 11.086 
thousand albums (11,086 albums) being sold. This interpretation is true only if the 
effects of radio airplay and advertising are held constant.

Each of these beta values has an associated standard error indicating to what extent 
these values would vary across different samples, and these standard errors are used to 
determine whether or not the b-value differs significantly from zero. As we saw in section 
7.5.2, a t-statistic can be derived that tests whether a b-value is significantly different from 
0. In simple regression, a significant value of t indicates that the slope of the regression 
line is significantly different from horizontal, but in multiple regression, it is not so easy to 
visualize what the value tells us. Well, it is easiest to conceptualize the t-tests as measures of 
whether the predictor is making a significant contribution to the model. Therefore, if the 
t-test associated with a b-value is significant (if the value in the column labelled Pr(>|t|) 
is less than .05) then the predictor is making a significant contribution to the model. The 
smaller the value of Pr(>|t|) (and the larger the value of t), the greater the contribution of 
that predictor. For this model, the advertising budget, t(196) = 12.26, p < .001, the amount 
of radio play prior to release, t(196) = 12.12, p < .001, and attractiveness of the band, 
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t(196) = 4.55, p < .001, are all significant predictors of album sales.11 From the magnitude 
of the t-statistics we can see that the advertising budget and radio play had a similar impact, 
whereas the attractiveness of the band had less impact.

The b-values and their significance are important statistics to look at; however, the 
standardized versions of the b-values are in many ways easier to interpret (because they are 
not dependent on the units of measurement of the variables). To obtain the standardized 
beta estimates (usually denoted by βi) we need to use a function called lm.beta(). This is 
found in the QuantPsyc package, and so you need to install and load this package (see sec-
tion 7.3). All we need to do is to specify our model within this function and then execute 
it. Therefore, to get standardized betas for the albumSales.3 model, we execute:

lm.beta(albumSales.3)

The resulting output is:

  adverts   airplay   attract 
0.5108462 0.5119881 0.1916834

These estimates tell us the number of standard deviations by which the outcome will 
change as a result of one standard deviation change in the predictor. The standardized 
beta values are all measured in standard deviation units and so are directly comparable: 
therefore, they provide a better insight into the ‘importance’ of a predictor in the model. 
The standardized beta values for airplay and advertising budget are virtually identical 
(0.512 and 0.511, respectively) indicating that both variables have a comparable degree of 
importance in the model (this concurs with what the magnitude of the t-statistics told us). 

MM Advertising budget (standardized β = .511): This value indicates that as advertising 
budget increases by one standard deviation (£485,655), album sales increase by 0.511 
standard deviations. The standard deviation for album sales is 80,699 and so this con-
stitutes a change of 41,240 sales (0.511 × 80,699). Therefore, for every £485,655 
more spent on advertising, an extra 41,240 albums are sold. This interpretation is 
true only if the effects of attractiveness of the band and airplay are held constant.

MM Airplay (standardized β = .512): This value indicates that as the number of plays on 
radio in the week before release increases by 1 standard deviation (12.27), album 
sales increase by 0.512 standard deviations. The standard deviation for album sales is 
80,699 and so this constitutes a change of 41,320 sales (0.512 × 80,699). Therefore, 
if Radio 1 plays the song an extra 12.27 times in the week before release, 41,320 
extra album sales can be expected. This interpretation is true only if the effects of 
attractiveness of the band and advertising are held constant.

MM Attractiveness (standardized β = .192): This value indicates that a band rated one 
standard deviation (1.40 units) higher on the attractiveness scale can expect addi-
tional album sales of 0.192 standard deviations units. This constitutes a change of 
15,490 sales (0.192 × 80,699). Therefore, a band with an attractiveness rating 1.40 
higher than another band can expect 15,490 additional sales. This interpretation is 
true only if the effects of radio airplay and advertising are held constant.

Next we need to think about the confidence intervals. We know the estimate, the stand-
ard error of the estimate, and the degrees of freedom, and so it would be relatively straight-
forward to calculate the confidence intervals for each estimate. It would be even more 

11 For all of these predictors I wrote t(196). The number in parentheses is the degrees of freedom. We saw in sec-
tion 7.2.4 that in regression the degrees of freedom are N – p – 1, where N is the total sample size (in this case 
200) and p is the number of predictors (in this case 3). For these data we get 200 – 3 – 1 = 196.  
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straightforward to make R do that, using the confint() function. Again, we simply put the 
name of the regression model into the function and execute it; therefore, to get confidence 
intervals for the parameters in the model albumSales.3, we execute:

confint(albumSales.3)

The results are shown in Output 7.4. Imagine that we collected 100 samples of data mea-
suring the same variables as our current model. For each sample we could create a regres-
sion model to represent the data. If the model is reliable then we hope to find very similar 
parameters in all samples. Therefore, each sample should produce approximately the same 
b-values. The confidence intervals of the unstandardized beta values are boundaries con-
structed such that in 95% of these samples these boundaries will contain the true value of b 
(see section 2.5.2). Therefore, if we’d collected 100 samples, and calculated the confidence 
intervals for b, we are saying that 95% of these confidence intervals would contain the 
true value of b. Therefore, we can be fairly confident that the confidence interval we have 
constructed for this sample will contain the true value of b in the population. This being 
so, a good model will have a small confidence interval, indicating that the value of b in 
this sample is close to the true value of b in the population. The sign (positive or negative) 
of the b-values tells us about the direction of the relationship between the predictor and 
the outcome. Therefore, we would expect a very bad model to have confidence intervals 
that cross zero, indicating that in some samples the predictor has a negative relationship 
to the outcome whereas in others it has a positive relationship. In this model, the two best 
predictors (advertising and airplay) have very tight confidence intervals, indicating that 
the estimates for the current model are likely to be representative of the true population 
values. The interval for attractiveness is wider (but still does not cross zero), indicating that 
the parameter for this variable is less representative, but nevertheless significant.

                   2.5 %      97.5 %
(Intercept) -60.82960967  7.60369295
adverts       0.07123166  0.09853799
airplay       2.81962186  3.91522848
attract       6.27855218 15.89411823 

Output 7.4

             CRAMMING SAM’S TIPS    Model parameters

	 The individual contribution of variables to the regression model can be found in the Coefficients part of the 
output from the summary() of the model. If you have done a hierarchical regression then look at the values for the final model. For 
each predictor variable, you can see if it has made a significant contribution to predicting the outcome by looking at the column 
labelled Pr(>|t|): values less than .05 are significant. You should also look at the standardized beta values because these tell 
you the importance of each predictor (bigger absolute value = more important).

7.8.4.    Comparing models 2

We did a hierarchical regression, which means we need to compare the fit of the two 
models, and see if the R2 is significantly higher in the second model than in the first. The 
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significance of R2 can be tested using an F-ratio, and this F is calculated from the following 
equation (in which N is the number of cases or participants, and k is the number of predic-
tors in the model):

F
N k R

k R
=

− −
−

( )
( )

1
1

2

2

The first model (albumSales.2) causes R2 to change from 0 to .335, and this change 
in the amount of variance explained gives rise to an F-ratio of 99.59, which is signifi-
cant with a probability less than .001. Bearing in mind for this first model that we have 
only one predictor (so k = 1) and 200 cases (N = 200), this F comes from the equation 
above:

FModel1
200 1 1 0 334648

1 1 0 334648
99 587=

− −
−

=
( ) .

( . )
.

The addition of the new predictors (albumSales.3) causes R2 to increase by a further 
.330 (see above). We can calculate the F-ratio for this change using the same equation, 
but because we’re looking at the change in models we use the change in R2, R2

Change, 
and the R2 in the new model (model 2 in this case, so I’ve called it R2

2) and we also 
use the change in the number of predictors, kChange (model 1 had one predictor and 
model 2 had three predictors, so the change in the number of predictors is 3 − 1 = 2), 
and the number of predictors in the new model, k2 (in this case because we’re looking 
at model 2):

F
N k R

k RChange =
− −

−

=
− − ×
−
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(

2
2

2
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1

1

200 3 1 0 330
2 1

Change

Change

00 664668
96 44

. )
.=

The degrees of freedom for this change are kChange (in this case 2) and N – k2 – 1 (in this case 
196). As such, the change in the amount of variance that can be explained is significant, 
F(2, 196) = 96.44, p < .001. The change statistics therefore tell us about the difference 
made by adding new predictors to the model.

7.8.4.1.  Comparing models with R Commander 2

To compare two hierarchical models using R Commander we choose Models ⇒ 
Hypothesis tests ⇒ Compare two models… (Figure 7.13). Note that there are two 
lists of models that we have previously created in the current session of R Commander. 
Both lists contain the same models, which are the albumSales.1, albumSales.2, and 
albumSales.3 models. We want to compare albumSales.2 with albumSales.3 so we need 
to click on albumSales.2 in the list labelled First model (pick one) and then click on 
albumSales.3 in the list labelled Second model (pick one). Once the two models are 
selected, click on  to make the comparison. The resulting output is described in 
the following section.
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7.8.4.2.  Comparing models using R 2

To compare models using R we use the anova() function, which takes the general form:

anova(model.1, model.2, … , model.n)

which simply means that we list the models that we want to compare in the order in which we 
want to compare them. It’s worth noting that we can only compare hierarchical models; that 
is to say, the second model must contain everything that was in the first model plus something 
new, and the third model must contain everything in the second model plus something new, 
and so on. Using this principle, we can compare albumSales.2 with albumSales.3 by executing:

anova(albumSales.2, albumSales.3)

Output 7.5 shows the results of this comparison. Note that the value of F is 96.44, which is 
the same as the value that we calculated by hand at the beginning of this section. The value 
in column labelled Pr(>F) is 2.2e−16 (i.e., 2.2 with the decimal place moved 16 places to 
the left, or a very small value indeed); we can say that albumSales.3 significantly improved 
the fit of the model to the data compared to albumSales.2, F(2, 196) = 96.44, p < .001.

Analysis of Variance Table

Model 1: album2$sales ~ album2$adverts
Model 2: album2$sales ~ album2$adverts + album2$airplay + album2$attract
  Res.Df    RSS Df  Sum of Sq   F    Pr(>F)    
1    198 862264                                  
2    196 434575  2    427690 96.447 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Output 7.5

FIGURE 7.13
Comparing 
regression 
models using R 
commander

             CRAMMING SAM’S TIPS    �Assessing model improvement in 
hierarchical regression

If you have done a hierarchical regression then you can assess the improvement of the model at each stage of the analysis by 
looking at the change in R2 and testing whether this change is significant using the anova() function.
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7.9.  Testing the accuracy of your regression
model 2

7.9.1.    Diagnostic tests using R Commander 2

R Commander will allow you to run a range of diagnostic tests and other modifications to 
your model – these are found in the Models menu, shown in Figure 7.14. The menus are 
listed below with a brief description of what functions they enable you to access. We will 
not look at any particular function in detail because, in general, we think it is quicker to 
use commands, and we outline a general strategy for testing the accuracy of your regression 
model in the next two sections.

FIGURE 7.14
Regression 
diagnostics using 
R Commander

MM Select active model…: This menu allows you to choose a regression model that you 
would like to get more information on. 

MM Summarize model: This command produces a summary of the model, by running the 
summary() function.

MM Add observation statistics to data…: If you run this command, it will create the out-
lier detection statistics for each case, and then it will merge these into your original 
dataframe, creating new variables in the dataframe called hatvalue, covratio, etc.

MM Confidence intervals…: Produces the confidence intervals for the model.

MM Akaike Information Criterion (AIC): This command will display the AIC for the 
model, which is used to select between models (see section 7.6.3).

MM Bayesian Information Criterion (BIC): We have not discussed the BIC in detail, but 
it is a similar measure to the AIC.

MM Stepwise model selection…: Used for stepwise model selection to add and remove 
variables from the model to try to obtain the best fit possible, with the fewest vari-
ables. Usually not advised.

MM Subset model selection…: Slightly (but only slightly) better than stepwise model 
selection, this tries combinations of variables to try to obtain the best fit, with various 
penalties for having too many variables.

MM Hypothesis tests: This menu has three options. The first (ANOVA table…) produces 
sums of squares and F-statistics for each predictor variable in the model. You usually 
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want type III sums of squares (see Jane Superbrain Box 11.1).12 The second option 
(Compare two models…) allows you to do hierarchical regression by comparing the 
fit of two models. Finally the third option (Linear hypothesis…) is involved in ana
lyses that go beyond the material in this chapter.

MM Numerical diagnostics: This gives a number of other diagnostic tests, of which we 
have covered the Variance inflation factors (VIF) and Durbin–Watson test.

MM Graphs: Several diagnostic graphs are available. It might surprise you, given its length 
and how long it has taken you to read, that there is anything not covered in this chapter, 
but we do not cover these graphs.

7.9.2.    Outliers and influential cases 2

The diagnostics that we have examined so far all relate to either the overall model, 
or to a specific variable. The other type of diagnostic we can look at relates to cases: 
each case (making up a row in the data set) has a value, hence these are called casewise 
diagnostics. These diagnostics were described in section 7.7.1. There are various func-
tions that we can use to obtain different casewise diagnostics and in general they take 
the form of:

function(regressionModel)

In other words, all we need to do is place the name of our regression model (in this case 
albumSales.3) into the function and execute it. As we did earlier, we can distinguish these 
measures by whether they help us to identify outliers or influential cases:

MM Outliers: Residuals can be obtained with the resid() function, standardized residuals 
with the rstandard() function and studentized residuals with the rstudent() function. 

MM Influential cases: Cook’s distances can be obtained with the cooks.distance() func-
tion, DFBeta with the dfbeta() function, DFFit with the dffits() function, hat values 
(leverage) with the hatvalues() function, and the covariance ratio with the covratio() 
function.

If we merely execute these functions, R will print a long list of values to the console for 
us, which isn’t very useful. Instead, we can store the values in the dataframe, which will 
enable us to look at them more easily. We can store them in the dataframe by simply creat-
ing a new variable within the dataframe and setting the value of this variable to be one of 
the functions we’ve just discussed. Remember from section 3.5.2, that to add a variable to 
a dataframe we execute a command with this general format:

dataFrameName$newVariableName<-newVariableData

In other words, we create the variable by specifying a name for it and appending this to 
the name of the dataframe to which we want to add it, then on the right-hand side of the 
command we specify what the variable contains (with some arithmetic or a function, etc.). 
Therefore, to create a variable in our album2 dataframe that contains the residuals for each 
case, we would execute:

album2$residuals<-resid(albumSales.3)

12 Statisticians can get quite hot under the collar about the different types of sums of squares. However, if you 
ask for type III sums of squares, you’ll get the same p-values that you get in the model summary. That’s why we 
like them here.
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This creates a variable called residuals in the dataframe called album2 (album2$residuals) 
that contains the residuals from the albumSales.3 model (resid(albumSales.3)). Similarly, 
we can add all of the other residuals and casewise statistics by executing:

album2$standardized.residuals<- rstandard(albumSales.3)
album2$studentized.residuals<-rstudent(albumSales.3)
album2$cooks.distance<-cooks.distance(albumSales.3)
album2$dfbeta<-dfbeta(albumSales.3)
album2$dffit<-dffits(albumSales.3)
album2$leverage<-hatvalues(albumSales.3)
album2$covariance.ratios<-covratio(albumSales.3)

If you look at the data, you’ll see that as well as the original variables, the dataframe now 
contains variables containing the casewise statistics. For example, if you execute:

album2

You will see the contents of the dataframe (I’ve edited the column names, suppressed some 
of the columns, and included only the first six rows of data):13

adverts sales airplay attract resid  stz.r   stu.r cooks dfbeta 
10.256   330    43      10   100.080  2.177  2.199 0.059 -5.422         
985.685  120    28       7  -108.949 -2.323 -2.350 0.011  0.216         
1445.563 360    35       7    68.442  1.469  1.473 0.011 -0.659          
1188.193 270    33       7     7.024  0.150  0.150 0.000 -0.045          
574.513  220    44       5    -5.753 -0.124 -0.123 0.000 -0.149          
568.954  170    19       5    28.905  0.618  0.617 0.001  1.143          
…        …      …        …     …       …       …    …        …

Having created these new variables it might be a good idea to save the data (see section 
3.8), which we can do by executing:

write.table(album2, "Album Sales With Diagnostics.dat", sep = "\t", row.names 
= FALSE)

First, let’s look at the standardized residuals. I mentioned in section 7.7.1.1 that in an 
ordinary sample we would expect 95% of cases to have standardized residuals within about 
±2. We have a sample of 200, therefore it is reasonable to expect about 10 cases (5%) to 
have standardized residuals outside these limits. One of the nice things about R is that it 
automatically considers those standardized residuals to be data, so we can examine them 
just like we examine data. For example, if you execute the command:

album2$standardized.residuals > 2 | album2$standardized.residuals < -2

then R will tell you for every case if the residual is less than −2 or greater than 2 (remember 
that the ‘|’ symbol in the command means ‘or’, so the command asks ‘is the standardized 
residual greater than 2 or smaller than −2?’). The command produces the following output:

TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE 
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE 
FALSE FALSE FALSE  TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE  
TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE 
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE etc.

13 To save space, I wanted the values rounded to 3 decimal places so I executed:

round(album2, digits = 3) 
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For each case, it tells us whether it is TRUE that they have a residual more than 2 or  
less than −2 (i.e., a large residual), or FALSE, that they do not (i.e., the residual falls 
between ± 2). As before, we can store this information as a new variable in our dataframe 
by executing: 

album2$large.residual <- album2$standardized.residuals > 2 | album2$standardized.
residuals < -2

Now we have a variable that we can use. To use it, it is useful to remember that R stores 
‘TRUE’ as 1, and ‘FALSE’ as 0. Because of that, we can use the sum() function to get the 
sum of the variable large.residual, and this will be the number of cases with a large residual. 
To use the sum() function we simply enter into it the variable that we want to sum; there-
fore, to find out how many large residuals there are we can execute:

sum(album2$large.residual) 

[1] 12

In other words, R will tell you that only 12 cases had a large residual (which we 
defined as one bigger than 2 or smaller than −2). It might be better to know not just 
how many cases there are, but also which cases they are. We can do this by selecting 
only those cases for which the variable large.residual is TRUE. Remember from sec-
tion 3.9.1 that we can select parts of the data set by using dataFrame[rows, columns] 
in which we can specify conditions for rows and columns that tell R what we want to 
see. If we set rows to be album2$large.residual, then we will see only those rows for 
which large.residual is TRUE. If we don’t want to see all of the columns, we could 
also list the columns that we do want to see by providing a list of variable names. For 
example, if we execute:

album2[album2$large.residual,c("sales", "airplay", "attract", "adverts", 
"standardized.residuals")]

we will see the variables (or columns) labelled sales, airplay, attract, adverts and standard-
ized.residuals but only for cases for which large.residual is TRUE. Output 7.6 shows these 
values. From this output we can see that we have 12 cases (6%) that are outside of the lim-
its: therefore, our sample is within 1% of what we would expect. In addition, 99% of cases 
should lie within ±2.5 and so we would expect only 1% of cases to lie outside of these 
limits. From the cases listed here, it is clear that two cases (1%) lie outside of the limits 
(cases 164 and 169). Therefore, our sample appears to conform to what we would expect 
for a fairly accurate model. These diagnostics give us no real cause for concern except that 
case 169 has a standardized residual greater than 3, which is probably large enough for us 
to investigate this case further.

We have saved a range of other casewise diagnostics from our model. One useful strat-
egy is to use the casewise diagnostics to identify cases that you want to investigate further.   
Let’s continue to look at the diagnostics for the cases of interest. Let’s look now at the 
leverage (hat value), Cook’s distance and covariance ratio for these 12 cases that have large 
residuals. We can do this by using the same command as before, but listing different vari-
ables (columns) in the data set:

album2[album2$large.residual , c("cooks.distance", "leverage", "covariance.
ratios")]

Executing this command prints the variables (or columns) labelled cooks.distance, 
leverage, and covariance.ratios but only for cases for which large.residual is TRUE. 
Output 7.7 shows these values; none of them has a Cook’s distance greater than 1 (even 
case 169 is well below this criterion), so none of the cases is having an undue influence 
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on the model. The average leverage can be calculated as 0.02 (k + 1/n = 4/200) and 
so we are looking for values either twice as large as this (0.04) or three times as large 
(0.06) depending on which statistician you trust most (see section 7.7.1.2). All cases 
are within the boundary of three times the average and only case 1 is close to two times 
the average.

    sales airplay attract  adverts standardized.residuals
1     330      43      10   10.256               2.177404
2     120      28       7  985.685              -2.323083
10    300      40       7  174.093               2.130289
47     40      25       8  102.568              -2.460996
52    190      12       4  405.913               2.099446
55    190      33       8 1542.329              -2.455913
61    300      30       7  579.321               2.104079
68     70      37       7   56.895              -2.363549
100   250       5       7 1000.000               2.095399
164   120      53       8    9.104              -2.628814
169   360      42       8  145.585               3.093333
200   110      20       9  785.694              -2.088044

Output 7.6

     cooks.distance  leverage       covariance.ratios
1      0.058703882 0.047190526         0.9712750
2      0.010889432 0.008006536         0.9201832
10     0.017756472 0.015409738         0.9439200
47     0.024115188 0.015677123         0.9145800
52     0.033159177 0.029213132         0.9599533
55     0.040415897 0.026103520         0.9248580
61     0.005948358 0.005345708         0.9365377
68     0.022288983 0.015708852         0.9236983
100    0.031364021 0.027779409         0.9588774
164    0.070765882 0.039348661         0.9203731
169    0.050867000 0.020821154         0.8532470
200    0.025134553 0.022539842         0.9543502

Output 7.7

There is also a column for the covariance ratio. We saw in section 7.7.1.2 that we need 
to use the following criteria:

MM CVRi > 1 + [3(k + 1)/n] = 1 + [3(3 + 1)/200] = 1.06;

MM CVRi < 1 − [3(k + 1)/n] = 1 − [3(3 + 1)/200] = 0.94. 

Therefore, we are looking for any cases that deviate substantially from these boundaries. 
Most of our 12 potential outliers have CVR values within or just outside these boundar-
ies. The only case that causes concern is case 169 (again) whose CVR is some way below 
the bottom limit. However, given the Cook’s distance for this case, there is probably little 
cause for alarm.

You could have requested other diagnostic statistics and from what you know from 
the earlier discussion of them you would be well advised to glance over them in case 
of any unusual cases in the data. However, from this minimal set of diagnostics we 
appear to have a fairly reliable model that has not been unduly influenced by any subset  
of cases.
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7.9.3.    Assessing the assumption of independence 2

In section 7.7.2.1 we discovered that we can test the assumption of independent errors 
using the Durbin–Watson test. We can obtain this statistic along with a measure of autocor-
relation and a p-value in R using the durbinWatsonTest() (careful, that’s a lower case d at 
the start, and upper case W and T) or, equivalently, dwt() function. All you need to do is to 
name your regression model within the function and execute it. So, for example, to see the 
Durbin–Watson test for our albumSales.3 model, we would execute:

durbinWatsonTest(albumSales.3)

or

dwt(albumSales.3)

both of which do the same thing. As a conservative rule I suggested that values less than 1 
or greater than 3 should definitely raise alarm bells. The closer to 2 that the value is, the 
better, and for these data (Output 7.8) the value is 1.950, which is so close to 2 that the 
assumption has almost certainly been met. The p-value of .7 confirms this conclusion (it is 
very much bigger than .05 and, therefore, not remotely significant). (The p-value is a little 
strange, because it is bootstrapped, and so, for complex reasons that we don’t want to go 
into here, it is not always the same every time you run the command.)

lag Autocorrelation D-W Statistic p-value
   1       0.0026951      1.949819     0.7
 Alternative hypothesis: rho != 0

Output 7.8

7.9.4.    Assessing the assumption of no multicollinearity 2

The VIF and tolerance statistics (with tolerance being 1 divided by the VIF) are useful sta-
tistics to assess collinearity. We can obtain the VIF using the vif() function. All we need to do 
is to specify the model name within the function; so, for example, to get the VIF statistics 
for the albumSales.3 model, we execute:

vif(albumSales.3)

             CRAMMING SAM’S TIPS    Influential cases

	 You need to look for cases that might be influencing the regression model:

•	 Look at standardized residuals and check that no more than 5% of cases have absolute values above 2, and that no more 
than about 1% have absolute values above 2.5. Any case with a value above about 3 could be an outlier.

•	 Look at the values of Cook’s distance: any value above 1 indicates a case that might be influencing the model.
•	 Calculate the average leverage (the number of predictors plus 1, divided by the sample size) and then look for values 

greater than twice or three times this average value.
•	 Calculate the upper and lower limit of acceptable values for the covariance ratio, CVR. The upper limit is 1 plus three times 

the average leverage, whereas the lower limit is 1 minus three times the average leverage. Cases that have a CVR falling 
outside these limits may be problematic.
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The tolerance doesn’t have its own function, but we can calculate it very easily, if we 
remember that tolerance = 1/VIF. Therefore, we can get the values by executing:

1/vif(albumSales.3)

It can be useful to look at the average VIF too. To calculate the average VIF we can add the 
VIF values for each predictor and divide by the number of predictors (k):

VIF
VIF

=1= =
+ +

=∑ i

k

k
1 015 1 043 1 038

3
1 032

. . .
.

Alternatively, we can ask R to do it for us by placing the vif command above into the 
mean() function and executing:

mean(vif(albumSales.3))

vif(albumSales.3)

 adverts  airplay  attract 
1.014593 1.042504 1.038455
 
1/vif(albumSales.3)

  adverts   airplay   attract 
0.9856172 0.9592287 0.9629695 

mean(vif(albumSales.3))

[1] 1.03185

Output 7.9

These statistics are shown in Output 7.9 (the VIF first, then the tolerance, then the mean 
VIF). There are a few guidelines from section 7.7.2.4 that can be applied here:

MM If the largest VIF is greater than 10 then there is cause for concern (Bowerman & 
O’Connell, 1990; Myers, 1990).

MM If the average VIF is substantially greater than 1 then the regression may be biased 
(Bowerman & O’Connell, 1990).

MM Tolerance below 0.1 indicates a serious problem.
MM Tolerance below 0.2 indicates a potential problem (Menard, 1995).

For our current model the VIF values are all well below 10 and the tolerance statistics all 
well above 0.2. Also, the average VIF is very close to 1. Based on these measures we can 
safely conclude that there is no collinearity within our data. 

             CRAMMING SAM’S TIPS    Checking for multicollinearity

To check for multicollinearity, use the VIF values. If these values are less than 10 then that indicates there probably isn’t cause 
for concern. If you take the average of VIF values, and this average is not substantially greater than 1, then that also indicates 
that there’s no cause for concern.
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7.9.5.    Checking assumptions about the residuals 2

As a final stage in the analysis, you should visually check the assumptions that relate to 
the residuals (or errors). For a basic analysis it is worth plotting the standardized residual 
(y-axis) against the predicted value (x-axis), because this plot is useful to determine whether 
the assumptions of random errors and homoscedasticity have been met. If we wanted to 
produce high-quality graphs for publication we would use ggplot2() – see R’s Souls’ Tip 
7.3. However, if we’re just looking at these graphs to check our assumptions, we’ll use the 
simpler (but not as nice) plot() and hist() functions. 

The first useful graph is a plot of fitted values against residuals. This should look like 
a random array of dots evenly dispersed around zero. If this graph funnels out, then the 
chances are that there is heteroscedasticity in the data. If there is any sort of curve in this 
graph then the chances are that the data have violated the assumption of linearity. Figure 
7.15 shows several examples of plots of standardized predicted values against standard-
ized residuals. The top left panel shows a situation in which the assumptions of linearity 
and homoscedasticity have been met. The top right panel shows a similar plot for a data 
set that violates the assumption of homoscedasticity. Note that the points form the shape 
of a funnel so they become more spread out across the graph. This funnel shape is typical 
of heteroscedasticity and indicates increasing variance across the residuals. The bottom 
left panel shows a plot of some data in which there is a non-linear relationship between 
the outcome and the predictor. This pattern is shown up by the residuals. There is a clear 
curvilinear trend in the residuals. Finally, the bottom right panel illustrates a situation in 
which the data not only represent a non-linear relationship, but also show heteroscedas-
ticity. Note first the curved trend in the data, and then also note that at one end of the 
plot the points are very close together whereas at the other end they are widely dispersed. 
When these assumptions have been violated you will not see these exact patterns, but 
hopefully these plots will help you to understand the types of anomalies you should look 
out for.

It is easy to get this plot in R: we can simply enter the name of the regression model into 
the plot() function. One of the clever things about R is that when you ask it to perform an 
action on something, it looks at what that something is before it decides what to do. For 
example, when we ask R to summarize something, using summary(x), if x is a continuous 
variable it will give the mean, but if x is a factor (categorical) variable, it will give counts. 
And if x is a regression model, it gives the parameters, R2, and a couple of other things. The 
same happens when we use plot(). When you specify a regression model in the plot() func-
tion, R decides that you probably want to see four plots  – the first of which is the residuals 
plotted against the fitted values.

This plot is shown in Figure 7.16; compare this plot to the examples shown in Figure 
7.15. Hopefully, it’s clear to you that the graph for the residuals in our album sales model 
shows a fairly random pattern, which is indicative of a situation in which the assumptions 
of linearity, randomness and homoscedasticity have been met.

The second plot that is produced by the plot() function is a Q-Q plot, which shows 
up deviations from normality (see Chapter 5). The straight line in this plot represents 
a normal distribution, and the points represent the observed residuals. Therefore, in 
a perfectly normally distributed data set, all points will lie on the line. This is pretty 
much what we see for the record sales data (Figure 7.17, left-hand side). However, 
next to the normal probability plot of the record sales data is an example of a plot for 
residuals that deviate from normality. In this plot, the dots are very distant from the 
line (at the extremes), which indicates a deviation from normality (in this particular 
case skew). 
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          R ’s  Souls ’  T ip  7 .3   Publication-quality plots 2

The model that is produced by lm() is a type of data set, which has variables in it. One of those variables is the 
predicted (or fitted) values for each case. It’s called fitted.values, and we can refer to it just like we refer to any 
other variable, by using a $ sign: so, albumSales.3$fitted.values gives us the predicted values of the model 
albumSales.3. We can save these values in our original dataframe just as we did for the other casewise diagnostic 
variables by executing:

album2$fitted <- albumSales.3$fitted.values

We now have a new variable, fitted, in our original dataframe that contains the predicted values. We also have 
the studentized residuals stored in the variable studentized.residuals. Using what we learnt in Chapters 4 and 
5, we can therefore create publication-standard plots by using these two variables. For example, we could plot a 
histogram of the studentized residuals by executing (see Chapter 5 for an explanation of this code):

histogram<-ggplot(album2, aes(studentized.residuals)) + opts(legend.position = 
"none") + geom_histogram(aes(y = ..density..), colour = "black", fill = "white") + 
labs(x = "Studentized Residual", y = "Density")
histogram + stat_function(fun = dnorm, args = list(mean = mean(album2$studentized.
residuals, na.rm = TRUE), sd = sd(album2$studentized.residuals, na.rm = TRUE)), colour 
= "red", size = 1)

We could create a Q-Q plot of these values by executing:

qqplot.resid <- qplot(sample = album2$studentized.residuals, stat="qq") + labs(x = 
"Theoretical Values", y = "Observed Values")  

Finally, we could plot a scatterplot of studentized residuals against predicted values by executing:

scatter <- ggplot(album2, aes(fitted, studentized.residuals))
scatter + geom_point() + geom_smooth(method = "lm", colour = "Blue")+ labs(x = "Fitted 
Values", y = "Studentized Residual")

The resulting graphs look like this:
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Another useful way to check whether the residuals deviate from a normal distribution 
is to inspect the histogram of the residuals (or the standardized or studentized residuals). 
We can obtain this plot easily using the hist() function. We simply place a variable name 
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into this function and it will plot us a histogram. We saved the studentized residuals in our 
dataframe earlier so we could enter this variable into the function and execute it:

hist(album2$studentized.residuals)

If you haven’t saved the studentized residuals into your dataframe you can generate the 
same plot by entering the rstudent() function that we used earlier directly into hist():

hist(rstudent(albumSales.3))   

Figure 7.17 shows the histogram of the data for the current example (left-hand side). The 
histogram should look like a normal distribution (a bell-shaped curve). For the record com-
pany data, the distribution is roughly normal. Compare this histogram to the non-normal 
histogram next to it and it should be clear that the non-normal distribution is skewed 
(asymmetrical). So, you should look for a distribution that has the same shape as the one 
for the album sales data: any deviation from this shape is a sign of non-normality – the 
greater the deviation, the more non-normally distributed the residuals. For both the histo-
gram and normal Q-Q plots, the non-normal examples are extreme cases and you should 
be aware that the deviations from normality are likely to be subtler.

We could summarize by saying that the model appears, in most senses, to be both accu-
rate for the sample and generalizable to the population. Therefore, we could conclude 
that in our sample advertising budget and airplay are fairly equally important in predicting 
album sales. Attractiveness of the band is a significant predictor of album sales but is less 
important than the other two predictors (and probably needs verification because of pos-
sible heteroscedasticity). The assumptions seem to have been met and so we can probably 
assume that this model would generalize to any album being released.

FIGURE 7.17
Histograms 
and Q-Q plots 
of normally 
distributed 
residuals (left-
hand side) and 
non-normally 
distributed 
residuals (right-
hand side)
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7.9.6.    What if I violate an assumption? 2

It’s worth remembering that you can have a perfectly good model for your data (no out-
liers, influential cases, etc.) and you can use that model to draw conclusions about your 
sample, even if your assumptions are violated. However, it’s much more interesting to 
generalize your regression model and this is where assumptions become important. If they 
have been violated then you cannot generalize your findings beyond your sample. The 
options for correcting for violated assumptions are a bit limited. If residuals show problems 
with heteroscedasticity or non-normality you could try transforming the raw data – but this 
won’t necessarily affect the residuals. If you have a violation of the linearity assumption 
then you could see whether you can do logistic regression instead (described in the next 
chapter). Finally, you could do a robust regression, and this topic is next on our agenda. 

7.10.  Robust regression: bootstrapping 3

We saw in Section 6.5.7 that we could bootstrap our estimate of a correlation to obtain 
the statistical significance and confidence intervals, and that this meant we could relax the 
distributional assumptions. We can do the same thing with regression estimates. When I 
showed you how to bootstrap correlations, we used the boot package, and we’re going to 
use the same procedure again.14 

We first encountered bootstrapping and the boot() function in Chapter 6, but it won’t 
hurt to recap. When we use the boot() function, it takes the general form of:

object<-boot(data, function, replications)

14 There is a package called simpleboot, which has a function called lm.boot(). However, at the time of writing, 
although simpleboot is very easy to use to bootstrap, obtaining things like the confidence intervals after you have 
bootstrapped is much harder.   

             CRAMMING SAM’S TIPS    �Generalizing your model beyond 
your sample

You need to check some of the assumptions of regression to make sure your model generalizes beyond your sample: 

•	 Look at the graph of the standardized residuals plotted against the fitted (predicted) values. If it looks like a random array of 
dots then this is good. If the dots seem to get more or less spread out over the graph (look like a funnel) then this is probably 
a violation of the assumption of homogeneity of variance. If the dots have a pattern to them (i.e., a curved shape) then this 
is probably a violation of the assumption of linearity. If the dots seem to have a pattern and are more spread out at some 
points on the plot than others then this probably reflects violations of both homogeneity of variance and linearity. Any of these 
scenarios puts the validity of your model into question. Repeat the above for all partial plots too.

•	 Look at a histogram of the residuals too. If the histogram looks like a normal distribution (and the Q-Q plot looks like a diago-
nal line), then all is well. If the histogram looks non-normal, then things are less good. Be warned, though: distributions can 
look very non-normal in small samples even when they are normal! 
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in which data specifies the dataframe you want to use, function is the function you want to 
bootstrap, and replications is the number of bootstrap samples you want to use. (More is 
always better, but takes longer – I find 2000 to be a nice compromise.)

As we did for correlations, we need to write a function (R’s Souls’ Tip 6.2) we want to boot-
strap. We’ll write one called bootReg() – this function is a little more complex than the function 
we wrote for the correlation, because we are interested in more than one statistic (we have an 
intercept and three slope parameters to bootstrap). The function we need to execute is:

bootReg <- function (formula, data, indices)
{
d <- data [i,]
fit <- lm(formula, data = d)
return(coef(fit))
}

Executing this command creates an object called bootReg. The first bit of the function 
tells R what input to expect in the function: in this case we need to feed into the function 
a regression formula (just like what we’d put into the lm() function, so something like y 
~ a + b), a dataframe, and a variable that has been called i (which refers to a particular 
bootstrap sample, just as it did in the correlation example). Let’s look at what the bits of 
the function do:

MM d <- data [i,]: This creates a dataframe called d, which is a subset of the dataframe 
entered into the function. The i again refers to a particular bootstrap sample.

MM fit <- lm(formula, data = d): This creates a regression model called fit using the lm() 
function (notice that the formula that we enter into the bootReg function is used 
within lm() to generate the model). 

MM return(coef(fit)): The return() function, as the name suggests, just determines what 
our function bootReg returns to us. The function coef() is one that extracts the 
coefficients from a regression object; therefore, return(coef(fit)) means that the 
output of bootReg will be the intercept and any slope coefficients for predictors 
in the model.

Having created this function (remember to execute the code), we can use the function to 
obtain the bootstrap samples:

bootResults<-boot(statistic = bootReg, formula = sales ~ adverts + airplay + 
attract, data = album2, R = 2000)

Executing this command creates an object called bootResults that contains the bootstrap 
samples. We use the boot() function to get these. Within this function we tell it to use the 
function bootReg() that we just created (statistic = bootReg); because that function requires 
a formula and dataframe, we specify the model as we did for the original model (formula 
= sales ~ adverts + airplay + attract), and name the dataframe (data = album2). As such, 
everything in the boot() function is something that we specified as being necessary input for 
the bootReg() function when we defined it. The only new thing is R, which sets the num-
ber of bootstrap samples (in this case we have set it to 2000, which means we will throw 
these instructions into the bootReg() function 2000 different times and save the results in 
bootResults each time.

Instead of one statistic, we need to obtain bootstrap confidence intervals for the inter-
cept, and the three slopes for advert, airplay and attract. We can do this with the boot.ci() 
function that we encountered in Chapter 6. However, R doesn’t know the names of the 
statistics in bootResults, so we instead have to use their location in the bootResults object 
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(because R does know this information). The intercept is the first thing in bootResults, so 
to obtain the bootstrapped confidence interval for the intercept  we use index = 1:

boot.ci(bootResults, type = "bca", index = 1)

Note that we enter the object from which the confidence intervals will come (bootResults), 
and index to tell R where in bootResults to look (index = 1), and specify the type of confi-
dence interval that we want (in this case bias corrected and accelerated, type = “bca”). The 
locations of the coefficients for adverts, airplay and attract are given by index values of 2, 
3 and 4, respectively, so we can get the bootstrap confidence intervals for those predictors 
by executing:

boot.ci(bootResults, type = "bca", index = 2)
boot.ci(bootResults, type = "bca", index = 3)
boot.ci(bootResults, type = "bca", index = 4)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : 
boot.ci(boot.out = bootResults, type = "bca", index = 1)

Intervals : 
Level       BCa          
95%   (-58.49,   5.17 )  
Calculations and Intervals on Original Scale

> boot.ci(bootResults , type="bca", index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : 
boot.ci(boot.out = bootResults, type = "bca", index = 2)

Intervals : 
Level       BCa          
95%   ( 0.0715,  0.0992 )  
Calculations and Intervals on Original Scale

> boot.ci(bootResults , type="bca", index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : 
boot.ci(boot.out = bootResults, type = "bca", index = 3)

Intervals : 
Level       BCa          
95%   ( 2.736,  3.980 )  
Calculations and Intervals on Original Scale

> boot.ci(bootResults , type="bca", index=4)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL : 
boot.ci(boot.out = bootResults, type = "bca", index = 4)

07-Field_R-4368-Ch-07.indd   300 29/02/2012   5:55:34 PM



301CHAPTER 7   REGRESS ION

Intervals : 
Level       BCa          
95%   ( 6.52, 15.32 )  
Calculations and Intervals on Original Scale

Output 7.10

This gives us Output 7.10, which shows the confidence interval for the intercept is from 
−58.49 to 5.17 (remember that because of how bootstrapping works, you won’t get exactly 
the same result as me, but it should be very close). Compare that with the confidence inter-
val  we found using the plug-in approach, shown in Output 7.4, which was from −60.83 to 
7.60; the bootstrap results are pretty close.

The first predictor (but second variable) was adverts. The plug-in approach gave us a 
confidence interval from 0.071 to 0.099; the bootstrap confidence interval is from 0.072 
to 0.099.  Next came airplay, which had a plug-in confidence interval from 2.82 to 3.92 
and a bootstrap confidence interval from 2.74 to 3.98. Finally, attract had a plug-in confi-
dence interval from 6.28 to 15.89 and a bootstrap confidence interval from 6.52 to 15.32.  
All of the bootstrap confidence intervals are very close to the plug-in confidence intervals, 
suggesting that we did not have a problem of non-normal distribution in the model.

7.11.  How to report multiple regression 2

If you follow the American Psychological Association guidelines for reporting multiple 
regression then the implication seems to be that tabulated results are the way forward. The 
APA also seem in favour of reporting, as a bare minimum, the standardized betas, their sig-
nificance value and some general statistics about the model (such as the R2). If you do decide 
to do a table then the beta values and their standard errors are also very useful. Personally 
I’d like to see the constant as well because then readers of your work can construct the full 
regression model if they need to. Also, if you’ve done a hierarchical regression you should 
report these values at each stage of the hierarchy. So, basically, you want to reproduce the 
table labelled Estimates from the output and omit some of the non-essential information. 
For the example in this chapter we might produce a table like that in Table 7.2.

Look back through the output in this chapter and see if you can work out from where 
the values came. Things to note are: (1) I’ve rounded off to 2 decimal places throughout; 
(2) in line with APA convention, I’ve omitted 0 from the probability values, as these cannot 
exceed 1. All other values can, so the 0 is included.

Table 7.2  How to report multiple regression

∆R2 B SE B β P

Step 1 0.34 <.001

Constant 134.14   7.54 <.001

Advertising budget     0.10   0.01 0.58* <.001

Step 2 0.33 <.001

Constant -26.61 17.35    .127

Advertising budget     0.09   0.01 0.51* <.001

Plays on BBC Radio 1     3.37   0.28 0.51* <.001

Attractiveness   11.09   2.44 0.19* <.001
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7.12.  Categorical predictors and multiple 
regression 3

Often in regression analysis you’ll collect data about groups of people (e.g., ethnic group, 
gender, socio-economic status, diagnostic category). You might want to include these 
groups as predictors in the regression model; however, we saw from our assumptions that 
variables need to be continuous or categorical with only two categories. We saw in sec-
tion 6.5.7 that a point-biserial correlation is Pearson’s r between two variables when one 
is continuous and the other has two categories coded as 0 and 1. We’ve also learnt that 
simple regression is based on Pearson’s r, so it shouldn’t take a great deal of imagination 
to see that, like the point-biserial correlation, we could construct a regression model with 
a predictor that has two categories (e.g., gender). Likewise, it shouldn’t be too inconceiv-
able that we could then extend this model to incorporate several predictors that had two 
categories. All that is important is that we code the two categories with the values of 0 
and 1. Why is it important that there are only two categories and that they’re coded 0 and 
1? Actually, I don’t want to get into this here because this chapter is already too long, the 
publishers are going to break my legs if it gets any longer, and I explain it anyway later in 
the book (sections 9.4.2 and 10.2.3), so, for the time being, just trust me!

7.12.1.    Dummy coding 3

The obvious problem with wanting to use categorical variables as predictors is that often 
you’ll have more than two categories. For example, if you’d measured religious affiliation 
you might have categories of Muslim, Jewish, Hindu, Catholic, Buddhist, Protestant, Jedi 
(for those of you not in the UK, we had a census here in 2001 in which a significant portion 
of people put down Jedi as their religion). Clearly these groups cannot be distinguished 

          Labcoat  Len i ’s  Real  Research 7 .1   
�Why do you like your 
lecturers? 1

Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965–976.

In the previous chapter we encountered a study by Chamorro-Premuzic et al. in which they measured students’ 
personality characteristics and asked them to rate how much they wanted these same characteristics in their 
lecturers (see Labcoat Leni’s Real Research 6.1 for a full description). In that chapter we correlated these scores; 
however, we could go a step further and see whether students’ personality characteristics predict the character-
istics that they would like to see in their lecturers. 

The data from this study are in the file Chamorro-Premuzic.dat. Labcoat Leni wants you to carry out five 
multiple regression analyses: the outcome variable in each of the five analyses is how much students want to see 

neuroticism, extroversion, openness to experience, agreeableness and conscientiousness. For each 
of these outcomes, force Age and Gender into the analysis in the first step of the hierarchy, then in the 
second block force in the five student personality traits (Neuroticism, Extroversion, Openness to experi-
ence, Agreeableness and Conscientiousness). For each analysis create a table of the results.

Answers are in the additional material on the companion website (or look at Table 4 in the original article).
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using a single variable coded with zeros and ones. In these cases we can use what we call 
dummy variables. Dummy coding is a way of representing groups of people using only zeros 
and ones. To do it, we have to create several variables; in fact, the number of variables we 
need is one less than the number of groups we’re recoding. There are eight basic steps:

1	 Count the number of groups you want to recode and subtract 1.

2	 Create as many new variables as the value you calculated in step 1. These are your 
dummy variables.

3	 Choose one of your groups as a baseline (i.e., a group against which all other groups 
should be compared). This should usually be a control group, or, if you don’t have 
a specific hypothesis, it should be the group that represents the majority of people 
(because it might be interesting to compare other groups against the majority).

4	 Having chosen a baseline group, assign that group values of 0 for all of your dummy 
variables.

5	 For your first dummy variable, assign the value 1 to the first group that you want to 
compare against the baseline group. Assign all other groups 0 for this variable.

6	 For the second dummy variable assign the value 1 to the second group that you want 
to compare against the baseline group. Assign all other groups 0 for this variable.

7	 Repeat this until you run out of dummy variables.

8	 Place all of your dummy variables into the regression analysis!

Let’s try this out using an example. In Chapter 4 we came across an example in which 
a biologist was worried about the potential health effects of music festivals. She collected 
some data at the Download Festival, which is a music festival specializing in heavy metal. 
The biologist was worried that the findings that she had were a function of the fact that she 
had tested only one type of person: metal fans. Perhaps it’s not the festival that makes peo-
ple smelly, maybe it’s only metal fans at festivals that get smellier (as a metal fan, I would at 
this point sacrifice the biologist to Satan for being so prejudiced). Anyway, to answer this 
question she went to another festival that had a more eclectic clientele. The Glastonbury 
Music Festival attracts all sorts of people because many styles of music are performed there. 
Again, she measured the hygiene of concert-goers over the three days of the festival using 
a technique that results in a score ranging between 0 (you smell like you’ve bathed in sew-
age) and 4 (you smell of freshly baked bread). Now, in Chapters 4 and 5, we just looked at 
the distribution of scores for the three days of the festival, but now the biologist wanted to 
look at whether the type of music you like (your cultural group) predicts whether hygiene 
decreases over the festival. The data are in the file called GlastonburyFestivalRegression.
dat. This file contains the hygiene scores for each of three days of the festival, but it also 
contains a variable called change, which is the change in hygiene over the three days of the 
festival (so it’s the change from day 1 to day 3).15 Finally, the biologist categorized people 
according to their musical affiliation: if they mainly liked alternative music she called them 
‘indie kid’, if they mainly liked heavy metal she called them a ‘metaller’, and if they mainly 
liked hippy/folky/ambient type music then she labelled them a ‘crusty’. Anyone not falling 
into these categories was labelled ‘no musical affiliation’. 

The first thing we should do is calculate the number of dummy variables. We have four 
groups, so there will be three dummy variables (one less than the number of groups). Next 
we need to choose a baseline group. We’re interested in comparing those who have differ-
ent musical affiliations against those who don’t, so our baseline category will be ‘no musi-
cal affiliation’. We give this group a code of 0 for all of our dummy variables. For our first 

15 Not everyone could be measured on day 3, so there is a change score only for a subset of the original sample.
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dummy variable, we could look at the ‘crusty’ group, and to do this we give anyone that 
was a crusty a code of 1, and everyone else a code of 0. For our second dummy variable, 
we could look at the ‘metaller’ group, and to do this we give anyone that was a metaller 
a code of 1, and everyone else a code of 0. We have one dummy variable left and this will 
have to look at our final category: ‘indie kid’; we give anyone who was an indie kid a code 
of 1, and everyone else a code of 0. The resulting coding scheme is shown in Table 7.3. The 
thing to note is that each group has a code of 1 on only one of the dummy variables (except 
the base category that is always coded as 0).

Table 7.3  Dummy coding for the Glastonbury Festival data

Dummy Variable 1 Dummy Variable 2 Dummy Variable 3

Crusty 1 0 0

Indie Kid 0 1 0

Metaller 0 0 1

No Affiliation 0 0 0

This being R, there are several ways to code dummy variables. We’re going to have a 
look at the contrasts() function, because we will use it time and time again later in the book. 
First let’s load the data by executing:

gfr<-read.delim(file="GlastonburyFestivalRegression.dat", header = TRUE)

This creates a dataframe called gfr (because we didn’t want to have to keep typing 
glastonburyFestivalRegression). These data look like this (the first 10 cases only):

   ticknumb                  music day1 day2 day3 change
1      2111               Metaller 2.65 1.35 1.61  -1.04
2      2229                 Crusty 0.97 1.41 0.29  -0.68
3      2338 No Musical Affiliation 0.84   NA   NA     NA
4      2384                 Crusty 3.03   NA   NA     NA
5      2401 No Musical Affiliation 0.88 0.08   NA     NA
6      2405                 Crusty 0.85   NA   NA     NA
7      2467              Indie Kid 1.56   NA   NA     NA
8      2478              Indie Kid 3.02   NA   NA     NA
9      2490                 Crusty 2.29   NA   NA     NA
10     2504 No Musical Affiliation 1.11 0.44 0.55  -0.56

Note that the variable music contains text; therefore, R has intelligently decided to cre-
ate this variable as a factor, and treat the levels in alphabetical order (level 1 = crusty, level 2 
= indie kid, 3 = metaller, and 4 = no musical affiliation). We can use the contrast() function 
on this variable to set contrasts because it is a factor. There are several built-in contrasts 
that we can set (these are described in Chapter 10, Table 10.6, when we get into this topic 
in more detail). For now, all I’ll say is that in a situation in which we want to compare all 
groups to a baseline we can execute this command:

contrasts(gfr$music)<-contr.treatment(4, base = 4)

The contrasts(gfr$music) simply sets the contrast for the variable music in the gfr dataframe. 
The contr.treatment() function sets a contrast based on comparing all groups to a baseline 
(a.k.a. treatment) condition. This function takes the general form:

contr.treatment(number of groups, base = number representing the baseline 
group)
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Therefore, in our command we have told R that there are four groups, and to use the last 
group as the baseline condition. We can see what this command has done by looking at the 
music variable by executing:

gfr$music

Note that it now has a contrasts attribute:

attr(,"contrasts")
                       1 2 3
Crusty                 1 0 0
Indie Kid              0 1 0
Metaller               0 0 1
No Musical Affiliation 0 0 0
Levels: Crusty Indie Kid Metaller No Musical Affiliation

You can see three contrasts that related to those that we discussed in Table 7.3. This method 
is the quickest way, but personally I prefer to set the contrasts manually. This preference is 
not masochism, but because you can then give your contrasts informative names (there is 
nothing worse than seeing an output with ‘contrast1’ in it and having no idea what contrast 
1 is). To do this, we create variables that reflect each of the dummy variables in Table 7.3:

crusty_v_NMA<-c(1, 0, 0, 0)
indie_v_NMA<-c(0, 1, 0, 0)
metal_v_NMA<-c(0, 0, 1, 0)

We have created three variables, the first (crusty_v_NMA) contains the codes for the first dummy 
variable. Note that we have listed the codes in the order of the factor levels for music (so, the 
first group, crusty, gets a code of 1, the others a code of 0) and given it a name that reflects what 
it compares (crusty vs. no musical affiliation); therefore, when we see it in the output we will 
know what it represents. Similarly, the second variable (indie_v_NMA) contains the codes for 
the second dummy variable. Again we list the codes in the order of the factor levels for music 
(so, the second group, indie kid, gets a code of 1, the others a code of 0). You get the idea.

Having created the dummy variables, we can bind them together using cbind() – see R’s 
Souls’ Tip 3.5 –  and set them as the contrasts in a similar way to before, by executing:

contrasts(gfr$music)<-cbind(crusty_v_NMA, indie_v_NMA, metal_v_NMA)

When we inspect the music variable now, it again has the same contrasts, but they have 
more helpful names than before:

attr(,"contrasts")
                       crusty_v_NMA indie_v_NMA metal_v_NMA
Crusty                            1           0           0
Indie Kid                         0           1           0
Metaller                          0           0           1
No Musical Affiliation            0           0           0
Levels: Crusty Indie Kid Metaller No Musical Affiliation

7.12.2.  Regression with dummy variables 3

Now you’ve created the dummy variables, you can run the regression in the same way as 
for any other kind of regression, by executing:

glastonburyModel<-lm(change ~ music, data = gfr) 

summary(glastonburyModel)
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The fact that we have set contrasts for the variable music means that the three dummy 
variables will be entered into the model in a single step. This is one reason why setting 
contrasts is a useful way to handle categorical predictors (but see R’s Souls’ Tip 7.4).

          R ’s  Souls ’  T ip  7 .4  A small confession 2

Before we move on, I have a small confession to make. R will actually dummy-code your data for you. When you 
put a variable as a predictor into a regression, R looks to see what kind of variable it is. Most variables in R are 
considered ‘numeric’. But some variables are considered to be ‘factors’ – a factor is a variable that R knows to 
be categorical. I mentioned that when we loaded the data R would intelligently create the variable music as a 
factor. If you enter a string variable or a factor into a regression equation, R knows that it is categorical, and so will 
dummy-code it for you. So, you can skip all the dummy coding nonsense and simply execute:

lm(change ~ music, data = gfr)

So why didn’t I tell you that to start with?  There are three reasons. First, to interpret the results you need to 
understand what R is doing. Second, we often want to decide what category is going to be the reference cat-
egory when we create the dummy variables, based on the meaning of the data. R doesn’t know what the data 
mean (it’s not that clever), so it chooses the first group to be the reference (in this case it would have chosen 
crusty, which was not what we want). Finally, and I know I keep going on about this, if we set our contrasts manu-
ally we can give them helpful names.

Call:
lm(formula = change ~ music, data = gfr)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.82569 -0.50489  0.05593  0.42430  1.59431 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -0.55431    0.09036  -6.134 1.15e-08 ***
musiccrusty_v_NMA -0.41152    0.16703  -2.464   0.0152 *  
musicindie_v_NMA  -0.40998    0.20492  -2.001   0.0477 *  
musicmetal_v_NMA   0.02838    0.16033   0.177   0.8598    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6882 on 119 degrees of freedom
  (687 observations deleted due to missingness)
Multiple R-squared: 0.07617,	 Adjusted R-squared: 0.05288 
F-statistic:  3.27 on 3 and 119 DF,  p-value: 0.02369

Output 7.11

Output 7.11 shows the summary of the regression model (it also shows the command 
that you run to get the model). This shows that by entering the three dummy variables we 
can explain 7.6% of the variance in the change in hygiene scores (R2 expressed as a percent-
age). In other words, 7.6% of the variance in the change in hygiene can be explained by 
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the musical affiliation of the person. The F-statistic (which shows the same thing as the R2 
change statistic because there is only one step in this regression) tells us that the model is 
significantly better at predicting the change in hygiene scores than having no model (or, put 
another way, the 7.6% of variance that can be explained is a significant amount). Most of 
this should be clear from what you’ve read in this chapter already; what’s more interesting 
is how we interpret the individual dummy variables.

Let’s look at the coefficients for the dummy variables. The first thing to notice is that 
each dummy variable appears in the table with its name (because we named them, oth-
erwise they’d be called something unhelpful like contrast1). The first dummy variable 
(crusty_v_NMA) shows the difference between the change in hygiene scores for the no-
affiliation group and the crusty group. Remember that the beta value tells us the change in 
the outcome due to a unit change in the predictor. In this case, a unit change in the predic-
tor is the change from 0 to 1. As such it shows the shift in the change in hygiene scores that 
results from the dummy variable changing from 0 to 1. By including all three dummy vari-
ables at the same time, our baseline category is always zero, so this actually represents the 
difference in the change in hygiene scores if a person has no musical affiliation, compared 
to someone who is a crusty. This difference is the difference between the two group means.

To illustrate this fact, I’ve produced a table (Output 7.12) of the group means for each 
of the four groups by executing this command:

round(tapply(gfr$change, gfr$music, mean, na.rm=TRUE), 3)

These means represent the average change in hygiene scores for the three groups (i.e., 
the mean of each group on our outcome variable). If we calculate the difference in these 
means for the no-affiliation group and the crusty group, we get crusty − no affiliation = 
(−0.966) − (−0.554) = −0.412. In other words, the change in hygiene scores is greater 
for the crusty group than it is for the no-affiliation group (crusties’ hygiene decreases 
more over the festival than those with no musical affiliation). This value is the same as the 
regression estimate value in Output 7.11. So, the beta values tell us the relative difference 
between each group and the group that we chose as a baseline category. This beta value is 
converted to a t-statistic and the significance of this t reported. This t-statistic is testing, 
as we’ve seen before, whether the beta value is 0, and when we have two categories coded 
with 0 and 1, that means it’s testing whether the difference between group means is 0. If 
it is significant then it means that the group coded with 1 is significantly different from 
the baseline category – so, it’s testing the difference between two means, which is the 
context in which students are most familiar with the t-statistic (see Chapter 9). For our 
first dummy variable, the t-test is significant, and the beta value has a negative value so we 
could say that the change in hygiene scores goes down as a person changes from having no 
affiliation to being a crusty. Bear in mind that a decrease in hygiene scores represents more 
change (you’re becoming smellier) so what this actually means is that hygiene decreased 
significantly more in crusties compared to those with no musical affiliation.

Crusty      Indie Kid     Metaller   No Musical Affiliation 
-0.966        -0.964       -0.526           -0.554

Output 7.12

For the second dummy variable (indie_v_NMA), we’re comparing indie kids to those 
that have no musical affiliation. The beta value again represents the shift in the change in 
hygiene scores if a person has no musical affiliation, compared to someone who is an indie 
kid. If we calculate the difference in the group means for the no-affiliation group and the 
indie kid group, we get indie kid − no affiliation = (−0.964) − (−0.554) = −0.410. It 
should be no surprise to you by now that this is the unstandardized beta value in Output 
7.11. The t-test is significant, and the beta value has a negative value so, as with the first 
dummy variable, we could say that the change in hygiene scores goes down as a person 
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changes from having no affiliation to being an indie kid. Bear in mind that a decrease in 
hygiene scores represents more change (you’re becoming smellier) so what this actually 
means is that hygiene decreased significantly more in indie kids compared to those with no 
musical affiliation.

Moving on to our final dummy variable (metal_v_NMA), this compares metallers to 
those that have no musical affiliation. The beta value again represents the shift in the 
change in hygiene scores if a person has no musical affiliation, compared to someone who 
is a metaller. If we calculate the difference in the group means for the no affiliation group 
and the metaller group, we get metaller − no affiliation = (−0.526) − (−0.554) = 0.028. 
This value is again the same as the unstandardized beta value in Output 7.11. For this last 
dummy variable, the t-test is not significant, so we could say that the change in hygiene 
scores is the same if a person changes from having no affiliation to being a metaller. In 
other words, the change in hygiene scores is not predicted by whether someone is a met-
aller compared to if they have no musical affiliation. 

So, overall this analysis has shown that, compared to having no musical affiliation, crust-
ies and indie kids get significantly smellier across the three days of the festival, but met-
allers don’t.

This section has introduced some really complex ideas that I expand upon in Chapters 9 
and 10. It might all be a bit much to take in, and so if you’re confused or want to know more 
about why dummy coding works in this way, I suggest reading sections 9.4.2 and 10.2.3 
and then coming back here. Alternatively, read Hardy’s (1993) excellent monograph!

What have I discovered about statistics? 1

This chapter is possibly the longest book chapter ever written, and if you feel like you 
aged several years while reading it then, well, you probably have (look around, there are 
cobwebs in the room, you have a long beard, and when you go outside you’ll discover 
a second ice age has been and gone, leaving only you and a few woolly mammoths to 
populate the planet). However, on the plus side, you now know more or less everything 
you ever need to know about statistics. Really, it’s true; you’ll discover in the coming 
chapters that everything else we discuss is basically a variation on the theme of regres-
sion. So, although you may be near death having spent your life reading this chapter 
(and I’m certainly near death having written it) you are a stats genius – it’s official!

We started the chapter by discovering that at 8 years old I could have really done 
with regression analysis to tell me which variables are important in predicting talent 
competition success. Unfortunately I didn’t have regression, but fortunately I had my 
dad instead (and he’s better than regression). We then looked at how we could use sta-
tistical models to make similar predictions by looking at the case of when you have one 
predictor and one outcome. This allowed us to look at some basic principles such as the 
equation of a straight line, the method of least squares, and how to assess how well our 
model fits the data using some important quantities that you’ll come across in future 
chapters: the model sum of squares, SSM, the residual sum of squares, SSR, and the total 
sum of squares, SST. We used these values to calculate several important statistics such 
as R2 and the F-ratio. We also learnt how to do a regression using R, and how we can 
plug the resulting beta values into the equation of a straight line to make predictions 
about our outcome.

Next, we saw that the question of a straight line can be extended to include several 
predictors and looked at different methods of placing these predictors in the model 
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(hierarchical, forced entry, stepwise). Then we looked at factors that can affect the accu-
racy of a model (outliers and influential cases) and ways to identify these factors. We 
then moved on to look at the assumptions necessary to generalize our model beyond the 
sample of data we’ve collected before discovering how to do the analysis using R, and 
how to interpret the output, create our multiple regression model and test its reliability 
and generalizability. I finished the chapter by looking at how we can use categorical 
predictors in regression. In general, multiple regression is a long process and should be 
done with care and attention to detail. There are a lot of important things to consider 
and you should approach the analysis in a systematic fashion. I hope this chapter helps 
you to do that! 

So, I was starting to get a taste for the rock-idol lifestyle: I had friends, a fortune (well, 
two gold-plated winner’s medals), fast cars (a bike) and dodgy-looking 8-year-olds were 
giving me suitcases full of lemon sherbet to lick off mirrors. However, my parents and 
teachers were about to impress reality upon my young mind … 

R packages used in this chapter

boot
car

QuantPsyc

R functions used in this chapter

anova()
confint()
contrasts()
contr.treatment()
cooks.distance()
covratio()
coef()
dfbeta()
dffits()
durbinWatsonTest()
dwt()
hatvalues()
hist()

lm()
lm.beta()
mean()
plot()
resid()
return()
rstandard()
rstudent()
sqrt()
sum()
summary()
update()
vif()

Key terms that I’ve discovered

Adjusted predicted value
Adjusted R2

Akaike information criterion (AIC)
Autocorrelation

bi

βi

Cook’s distance
Covariance ratio
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Cross-validation
Deleted residual
DFBeta
DFFit
Dummy variables
Durbin–Watson test
F-ratio
Generalization
Goodness of fit
Hat values
Heteroscedasticity
Hierarchical regression
Homoscedasticity
Independent errors
Leverage
Mean squares
Model sum of squares
Multicollinearity
Multiple R2

Multiple regression

Perfect collinearity
Regression coefficient
Regression model
Residual
Residual sum of squares
Shrinkage
Simple regression
Standardized DFBeta
Standardized DFFit
Standardized residuals
Stepwise regression
Studentized deleted residuals
Studentized residuals
Suppressor effects
t-statistic
Tolerance
Total sum of squares
Unstandardized residuals
Variance inflation factor

Smart Alex’s tasks

MM Task 1: Run a simple regression for the pubs.dat data in Jane Superbrain Box 7.1, 
predicting mortality from number of pubs. Try repeating the analysis but bootstrap-
ping the regression parameters. 2

MM Task 2: A fashion student was interested in factors that predicted the salaries of cat-
walk models. She collected data from 231 models. For each model she asked them 
their salary per day on days when they were working (salary), their age (age), how 
many years they had worked as a model (years), and then got a panel of experts 
from modelling agencies to rate the attractiveness of each model as a percentage, 
with 100% being perfectly attractive (beauty). The data are in the file Supermodel.
dat. Unfortunately, this fashion student bought some substandard statistics text and 
so doesn’t know how to analyse her data. Can you help her out by conducting a 
multiple regression to see which variables predict a model’s salary? How valid is the 
regression model? 2

MM Task 3: Using the Glastonbury data from this chapter, which you should’ve already 
analysed, comment on whether you think the model is reliable and generalizable. 3

MM Task 4: A study was carried out to explore the relationship between Aggression and 
several potential predicting factors in 666 children who had an older sibling. Variables 
measured were Parenting_Style (high score = bad parenting practices), Computer_
Games (high score = more time spent playing computer games), Television (high score 
= more time spent watching television), Diet (high score = the child has a good diet 
low in additives), and Sibling_Aggression (high score = more aggression seen in their 
older sibling). Past research indicated that parenting style and sibling aggression were 
good predictors of the level of aggression in the younger child. All other variables 
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were treated in an exploratory fashion. The data are in the file ChildAggression.dat. 
Analyse them with multiple regression. 2

Answers can be found on the companion website. 

Further reading
Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd 

ed.). Belmont, CA: Duxbury. (This text is only for the mathematically minded or postgraduate 
students but provides an extremely thorough exposition of regression analysis.)

Hardy, M. A. (1993). Regression with dummy variables. Sage University Paper Series on Quantitative 
Applications in the Social Sciences, 07-093. Newbury Park, CA: Sage.

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007. 
Both are excellent introductions to the mathematics behind regression analysis.)

Miles, J. N. V. & Shevlin, M. (2001). Applying regression and correlation: A guide for students and 
researchers. London: Sage. (This is an extremely readable text that covers regression in loads of 
detail but with minimum pain – highly recommended.)

Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Hillsdale, NJ: 
Erlbaum. Chapter 3.

Interesting real research
Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds 

of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965–976.
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8
Logistic regression

FIGURE 8.1
Practising for my 
career as a rock 
star by slaying 
the baying throng 
of Grove Primary 
School at the age 
of 10. (Note the 
girl with her hands 
covering her ears.)

8.1.  What will this chapter tell me? 1

We saw in the previous chapter that I had successfully conquered the holiday camps of 
Wales with my singing and guitar playing (and the Welsh know a thing or two about good 
singing). I had jumped on a snowboard called oblivion and thrown myself down the black 
run known as world domination. About 10 metres after starting this slippery descent I 
hit the lumpy patch of ice called ‘adults’. I was 9, life was fun, and yet every adult that I 
seemed to encounter was obsessed with my future. ‘What do you want to be when you 
grow up?’ they would ask. I was 9 and ‘grown-up’ was a lifetime away; all I knew was that I 
was going to marry Clair Sparks (more about her in the next chapter) and that I was a rock 
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legend who didn’t need to worry about such adult matters as having a job. It was a difficult 
question, but adults require answers and I wasn’t going to let them know that I didn’t care 
about ‘grown-up’ matters. We saw in the previous chapter that we can use regression to 
predict future outcomes based on past data, when the outcome is a continuous variable, but 
this question had a categorical outcome (e.g., would I be a fireman, a doctor, an evil dicta-
tor?). Luckily, though, we can use an extension of regression called logistic regression to 
deal with these situations. What a result; bring on the rabid wolves of categorical data. To 
make a prediction about a categorical outcome, then, as with regression, I needed to draw 
on past data: I hadn’t tried conducting brain surgery, neither had I experience of senten
cing psychopaths to prison sentences for eating their husbands, nor had I taught anyone. I 
had, however, had a go at singing and playing guitar; ‘I’m going to be a rock star’ was my 
prediction. A prediction can be accurate (which would mean that I am a rock star) or it can 
be inaccurate (which would mean that I’m writing a statistics textbook). This chapter looks 
at the theory and application of logistic regression, an extension of regression that allows 
us to predict categorical outcomes based on predictor variables. 

8.2.  Background to logistic regression 1

In a nutshell, logistic regression is multiple regression but with an outcome variable that is a 
categorical variable and predictor variables that are continuous or categorical. In its simplest 
form, this means that we can predict which of two categories a person is likely to belong 
to given certain other information. A trivial example is to look at which variables predict 
whether a person is male or female. We might measure laziness, pig-headedness, alcohol 
consumption and number of burps that a person does in a day. Using logistic regression, we 
might find that all of these variables predict the gender of the person, but the technique will 
also allow us to predict whether a person, not in our original data set, is likely to be male 
or female. So, if we picked a random person and discovered they scored highly on laziness, 
pig-headedness, alcohol consumption and the number of burps, then the regression model 
might tell us that, based on this information, this person is likely to be male. Admittedly, it 
is unlikely that a researcher would ever be interested in the relationship between flatulence 
and gender (it is probably too well established by experience to warrant research), but logis-
tic regression can have life-saving applications. In medical research logistic regression is used 
to generate models from which predictions can be made about the likelihood that a tumour 
is cancerous or benign (for example). A database of patients can be used to establish which 
variables are influential in predicting the malignancy of a tumour. These variables can then 
be measured for a new patient and their values placed in a logistic regression model, from 
which a probability of malignancy could be estimated. If the probability value of the tumour 
being malignant is suitably low then the doctor may decide not to carry out expensive and 
painful surgery that in all likelihood is unnecessary. We might not face such life-threatening 
decisions but logistic regression can nevertheless be a very useful tool. When we are trying 
to predict membership of only two categorical outcomes the analysis is known as binary 
logistic regression, but when we want to predict membership of more than two categories 
we use multinomial (or polychotomous) logistic regression. 

8.3.  What are the principles behind logistic 
regression? 3

I don’t wish to dwell on the underlying principles of logistic regression because they aren’t 
necessary to understand the test (I am living proof of this fact). However, I do wish to draw 
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a few parallels to normal regression so that you can get the gist of what’s going on using 
a framework that will be familiar to you already (what do you mean you haven’t read the 
regression chapter yet!). To keep things simple I’m going to explain binary logistic regres-
sion, but most of the principles extend easily to when there are more than two outcome 
categories. Now would be a good time for those with equation-phobia to look away. In 
simple linear regression, we saw that the outcome variable Y is predicted from the equation 
of a straight line:

Y b b Xi i= + +0 1 1i ε 	 (8.1)

in which b0 is the Y intercept, b1 is the gradient of the straight line, X1 is the value of the 
predictor variable and ε is a residual term. Given the values of Y and X1, the unknown 
parameters in the equation can be estimated by finding a solution for which the squared 
distance between the observed and predicted values of the dependent variable is minimized 
(the method of least squares).

This stuff should all be pretty familiar by now. In multiple regression, in which there are 
several predictors, a similar equation is derived in which each predictor has its own coef-
ficient. As such, Y is predicted from a combination of each predictor variable multiplied by 
its respective regression coefficient:

Y b b X b X b Xi n i= + + + + +0 1 1 2 2i i ni… ε 	 (8.2)

in which bn is the regression coefficient of the corresponding variable Xn. In logistic regres-
sion, instead of predicting the value of a variable Y from a predictor variable X1 or several 
predictor variables (Xs), we predict the probability of Y occurring given known values of X1 
(or Xs). The logistic regression equation bears many similarities to the regression equations 
just described. In its simplest form, when there is only one predictor variable X1, the logistic 
regression equation from which the probability of Y is predicted is given by:

P Y
e b b X

( ) =
+ − +( )

1

1 0 1 1i
	 (8.3)

in which P(Y) is the probability of Y occurring, e is the base of natural logarithms, and the 
other coefficients form a linear combination much the same as in simple regression. In 
fact, you might notice that the bracketed portion of the equation is identical to the linear 
regression equation in that there is a constant (b0), a predictor variable (X1) and a coeffi-
cient (or weight) attached to that predictor (b1). Just like linear regression, it is possible to 
extend this equation so as to include several predictors. When there are several predictors 
the equation becomes:

P Y
e b b X b X b Xn ni

( ) =
+ − + + +( )

1

1 0 1 21i 2i … 	 (8.4)

Equation (8.4) is the same as the equation used when there is only one predictor except 
that the linear combination has been extended to include any number of predictors. So, 
whereas the one-predictor version of the logistic regression equation contained the simple 
linear regression equation within it, the multiple-predictor version contains the multiple 
regression equation.

Despite the similarities between linear regression and logistic regression, there is a good 
reason why we cannot apply linear regression directly to a situation in which the outcome 
variable is categorical. The reason is that one of the assumptions of linear regression is 
that the relationship between variables is linear. We saw in section 7.7.2.1 how important 
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it is that the assumptions of a model are met for it to be accurate. Therefore, 
for linear regression to be a valid model, the observed data should contain a 
linear relationship. When the outcome variable is categorical, this assumption 
is violated (Berry, 1993). One way around this problem is to transform the data 
using the logarithmic transformation (see Berry & Feldman, 1985, and Chapter 
5). This transformation is a way of expressing a non-linear relationship in a lin-
ear way. The logistic regression equation described above is based on this prin-
ciple: it expresses the multiple linear regression equation in logarithmic terms 
(called the logit) and thus overcomes the problem of violating the assumption 
of linearity.

The exact form of the equation can be arranged in several ways but the ver-
sion I have chosen expresses the equation in terms of the probability of Y occurring (i.e., 
the probability that a case belongs in a certain category). The resulting value from the equa-
tion, therefore, varies between 0 and 1. A value close to 0 means that Y is very unlikely to 
have occurred, and a value close to 1 means that Y is very likely to have occurred. Also, just 
like linear regression, each predictor variable in the logistic regression equation has its own 
coefficient. When we run the analysis we need to estimate the value of these coefficients so 
that we can solve the equation. These parameters are estimated by fitting models, based on 
the available predictors, to the observed data. The chosen model will be the one that, when 
values of the predictor variables are placed in it, results in values of Y closest to the observed 
values. Specifically, the values of the parameters are estimated using maximum-likelihood esti-
mation, which selects coefficients that make the observed values most likely to have occurred. 
So, as with multiple regression, we try to fit a model to our data that allows us to estimate 
values of the outcome variable from known values of the predictor variable or variables. 

8.3.1.    Assessing the model: the log-likelihood statistic 3

We’ve seen that the logistic regression model predicts the probability of an event occurring 
for a given person (we would denote this as P(Yi), the probability that Y occurs for the ith 
person), based on observations of whether or not the event did occur for that person (we 
could denote this as Yi, the actual outcome for the ith person). So, for a given person, Y 
will be either 0 (the outcome didn’t occur) or 1 (the outcome did occur), and the predicted 
value, P(Y), will be a value between 0 (there is no chance that the outcome will occur) and 
1 (the outcome will certainly occur). We saw in multiple regression that if we want to assess 
whether a model fits the data we can compare the observed and predicted values of the 
outcome (if you remember, we use R2, which is the Pearson correlation between observed 
values of the outcome and the values predicted by the regression model). Likewise, in logis-
tic regression, we can use the observed and predicted values to assess the fit of the model. 
The measure we use is the log-likelihood:

log ( ) ( ) ( )-likelihood = ( ) + − −( ) 
=
∑ Y n P Y Y n P Yi i i i
i

N

l l1 1
1

	 (8.5)

The log-likelihood is based on summing the probabilities associated with the predicted 
and actual outcomes (Tabachnick & Fidell, 2007). The log-likelihood statistic is analogous 
to the residual sum of squares in multiple regression in the sense that it is an indicator of 
how much unexplained information there is after the model has been fitted. It, therefore, 
follows that large values of the log-likelihood statistic indicate poorly fitting statistical 
models, because the larger the value of the log-likelihood, the more unexplained observa-
tions there are.

Why can’t I use
linear regression?
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8.3.2.    Assessing the model: the deviance statistic 3

The deviance is very closely related to the log-likelihood: it’s given by

deviance -likelihood= − ×2 log

The deviance is often referred to as −2LL because of the way it is calculated. It’s actu-
ally rather convenient to (almost) always use the deviance rather than the log-likelihood 
because it has a chi-square distribution (see Chapter 18 and the Appendix), which makes it 
easy to calculate the significance of the value.

Now, it’s possible to calculate a log-likelihood or deviance for different models and to 
compare these models by looking at the difference between their deviances. One use of this 
is to compare the state of a logistic regression model against some kind of baseline state. 
The baseline state that’s usually used is the model when only the constant is included. In 
multiple regression, the baseline model we use is the mean of all scores (this is our best 
guess of the outcome when we have no other information). In logistic regression, if we 
want to predict the outcome, what would our best guess be? Well, we can’t use the mean 
score because our outcome is made of zeros and ones and so the mean is meaningless. 
However, if we know the frequency of zeros and ones, then the best guess will be the cat-
egory with the largest number of cases. So, if the outcome occurs 107 times, and doesn’t 
occur only 72 times, then our best guess of the outcome will be that it occurs (because it 
occurs more often than it doesn’t). As such, like multiple regression, our baseline model is 
the model that gives us the best prediction when we know nothing other than the values 
of the outcome: in logistic regression this will be to predict the outcome that occurs most 
often – that is, the logistic regression model when only the constant is included. If we then 
add one or more predictors to the model, we can compute the improvement of the model 
as follows:

χ
2 2 2

2 2

= − ( )( ) − − ( )( )
= ( ) − ( )
=

LL LL

LL LL

df

baseline new

new baseline

k nnew baseline−k
	 (8.6)

So, we merely take the new model deviance and subtract from it the deviance for the baseline 
model (the model when only the constant is included). This difference is known as a likeli-
hood ratio,1 and has a chi-square distribution with degrees of freedom equal to the number of 
parameters, k, in the new model minus the number of parameters in the baseline model. The 
number of parameters in the baseline model will always be 1 (the constant is the only parameter 
to be estimated); any subsequent model will have degrees of freedom equal to the number of 
predictors plus 1 (i.e., the number of predictors plus one parameter representing the constant).

8.3.3.    Assessing the model: R and R2 3

When we talked about linear regression, we saw that the multiple correlation coefficient R 
and the corresponding R2 were useful measures of how well the model fits the data. We’ve 

1 You might wonder why it is called a ‘ratio’ when a ‘ratio’ usually means something is divided by something else, 
and we’re not dividing anything here: we’re subtracting. The reason is that if you subtract logs of numbers, it’s 
the same as dividing the numbers. For example, 10/5 = 2 and (try it on your calculator) log(10) – log(5) = log(2) 
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also just seen that the likelihood ratio is similar in that it is based on the level of 
correspondence between predicted and actual values of the outcome. However, 
you can calculate a more literal version of the multiple correlation in logistic 
regression known as the R-statistic. This R-statistic is the partial correlation 
between the outcome variable and each of the predictor variables, and it can 
vary between −1 and 1. A positive value indicates that as the predictor vari-
able increases, so does the likelihood of the event occurring. A negative value 
implies that as the predictor variable increases, the likelihood of the outcome 
occurring decreases. If a variable has a small value of R then it contributes only 
a small amount to the model.

The equation for R is:

R
df

LL
=

−
− ( )

z2 2
2 baseline

	 (8.7)

The −2LL term is the deviance for the baseline model, z2 is the Wald statistic calculated 
as described in section 8.3.5, and the degrees of freedom can be read from the summary 
table for the variables in the equation. However, because this value of R is dependent upon 
the Wald statistic it is by no means an accurate measure (we’ll see in section 8.3.5 that the 
Wald statistic can be inaccurate under certain circumstances). For this reason the value of 
R should be treated with some caution, and it is invalid to square this value and interpret 
it as you would in linear regression.

There is some controversy over what would make a good analogue to the R2 in linear 
regression, but one measure described by Hosmer and Lemeshow (1989) can be easily cal-
culated. Hosmer and Lemeshow’s ( RL

2 ) measure is calculated as:

R
LL

LLL
model

baseline
2 2

2
=

− ( )
− ( ) 	 (8.8)

As such, RL
2

 is calculated by dividing the model chi-square, which represents the change 
from the baseline (based on the log-likelihood) by the baseline −2LL (the deviance of the 
model before any predictors were entered). Given what the model chi-square represents, 
another way to express this is:

R
LL LL

LLL
2 2 2

2
=

− ( )( ) − − ( )( )
− ( )

baseline new

baseline

RL
2  is the proportional reduction in the absolute value of the log-likelihood measure and 

as such it is a measure of how much the badness of fit improves as a result of the inclusion 
of the predictor variables. It can vary between 0 (indicating that the predictors are useless 
at predicting the outcome variable) and 1 (indicating that the model predicts the outcome 
variable perfectly). 

Cox and Snell’s R2
CS (1989) is based on the deviance of the model (−2LL(new)) and the 

deviance of the baseline model (−2LL(baseline)), and the sample size, n:

R
LL LL

nCS
2 1

2 2
= −

− ( ) − − ((( )











exp
new baseline

	 (8.9)

Is there a logistic
regression equivalent

of R2?
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However, this statistic never reaches its theoretical maximum of 1. Therefore, Nagelkerke 
(1991) suggested the following amendment (Nagelkerke’s R2

N):

R
R

LL
n

CS
N baseline
2

2

1
2

=
− −

− ( )





exp
	 (8.10)

Although all of these measures differ in their computation (and the answers you get), 
conceptually they are somewhat similar. So, in terms of interpretation they can be seen as 
similar to the R2 in linear regression in that they provide a gauge of the substantive signifi-
cance of the model.

8.3.4.    Assessing the model: information criteria 3

As we saw with linear regression, in section 7.6.3, we can use the Akaike information 
criterion (AIC) and the Bayes information criterion (BIC) to judge model fit. These two 
criteria exist to solve a problem with R2: that every time we add a variable to the model, R2 
increases. We want a measure of fit that we can use to compare two models which penalizes 
a model that contains more predictor variables. You can think of this as the price you pay 
for something: you get a better value of R2, but you pay a higher price, and was that higher 
price worth it? These information criteria help you to decide. 

The AIC is the simpler of the two; it is given by:

AIC LL= − +2 2k

in which −2LL is the deviance (described above) and k is the number of predictors in the  
model. The BIC is the same as the AIC but adjusts the penalty included in the AIC (i.e., 2k) 
by the number of cases:

BIC LL= − + ×2 2k nlog( )

in which n is the number of cases in the model.

8.3.5.    Assessing the contribution of predictors: the z-statistic 2

As in linear regression, we want to know not only how well the model overall fits the 
data, but also the individual contribution of predictors. In linear regression, we used the 
estimated regression coefficients (b) and their standard errors to compute a t-statistic. In 
logistic regression there is an analogous statistic – the z-statistic – which follows the normal 
distribution. Like the t-test in linear regression, the z-statistic tells us whether the b coeffi-
cient for that predictor is significantly different from zero. If the coefficient is significantly 
different from zero then we can assume that the predictor is making a significant contribu-
tion to the prediction of the outcome (Y):

z =
b

SEb

	 (8.11)
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Equation (8.11) shows how the z-statistic is calculated and you can see it’s basically iden-
tical to the t-statistic in linear regression (see equation (7.6)): it is the value of the regres-
sion coefficient divided by its associated standard error. The z-statistic is usually used to 
ascertain whether a variable is a significant predictor of the outcome; however, it is prob-
ably more accurate to examine the likelihood ratio statistics. The reason why the z-statistic 
should be used a little cautiously is because, when the regression coefficient (b) is large, the 
standard error tends to become inflated, resulting in the z-statistic being underestimated 
(see Menard, 1995). The inflation of the standard error increases the probability of reject-
ing a predictor as being significant when in reality it is making a significant contribution to 
the model (i.e., you are more likely to make a Type II error). The z-statistic was developed 
by Abraham Wald (Figure 8.2), and is thus sometimes known as the Wald statistic. 

8.3.6.    The odds ratio 3

More crucial to the interpretation of logistic regression is the value of the odds ratio, which 
is the exponential of B (i.e., eB or exp(B)) and is an indicator of the change in odds result-
ing from a unit change in the predictor. As such, it is similar to the b coefficient in logistic 
regression but easier to understand (because it doesn’t require a logarithmic transforma-
tion). When the predictor variable is categorical the odds ratio is easier to explain, so ima
gine we had a simple example in which we were trying to predict whether or not someone 
got pregnant from whether or not they used a condom last time they made love. The odds 
of an event occurring are defined as the probability of an event occurring divided by the 
probability of that event not occurring (see equation (8.12)) and should not be confused 
with the more colloquial usage of the word to refer to probability. So, for example, the 
odds of becoming pregnant are the probability of becoming pregnant divided by the prob-
ability of not becoming pregnant:

FIGURE 8.2
Abraham Wald 
writing ‘I must 
not devise 
test statistics 
prone to having 
inflated standard 
errors’ on the 
blackboard 100 
times
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odds =
event

no event)

event       )=

P
P

P
e

P

b b X i

( )
(

(

(

( )
Y

1

1 0 1 1+ − +

nno event ) event Y Y= −1 P( )
	 (8.12)

To calculate the change in odds that results from a unit change in the predictor, we must 
first calculate the odds of becoming pregnant given that a condom wasn’t used. We then 
calculate the odds of becoming pregnant given that a condom was used. Finally, we calcu-
late the proportionate change in these two odds.

To calculate the first set of odds, we need to use equation (8.3) to calculate the probabil-
ity of becoming pregnant given that a condom wasn’t used. If we had more than one pre-
dictor we would use equation (8.4). There are three unknown quantities in this equation: 
the coefficient of the constant (b0), the coefficient for the predictor (b1) and the value of the 
predictor itself (X). We’ll know the value of X from how we coded the condom use variable 
(chances are we would’ve used 0 = condom wasn’t used and 1 = condom was used). The 
values of b1 and b0 will be estimated for us. We can calculate the odds as in equation (8.12).

Next, we calculate the same thing after the predictor variable has changed by one unit. 
In this case, because the predictor variable is dichotomous, we need to calculate the odds of 
getting pregnant, given that a condom was used. So, the value of X is now 1 (rather than 0).

We now know the odds before and after a unit change in the predictor variable. It is a 
simple matter to calculate the proportionate change in odds by dividing the odds after a 
unit change in the predictor by the odds before that change:

∆odds
odds after a unit change in the predictor

original od
=

dds 	 (8.13)

This proportionate change in odds is the odds ratio, and we can interpret it in terms of the 
change in odds: if the value is greater than 1 then it indicates that as the predictor increases, 
the odds of the outcome occurring increase. Conversely, a value less than 1 indicates that 
as the predictor increases, the odds of the outcome occurring decrease. We’ll see how this 
works with a real example shortly.

8.3.7.    Methods of logistic regression 2

As with multiple regression (section 7.6.4), there are several different methods that can be 
used in logistic regression.

8.3.7.1.  The forced entry method 2

The default method of conducting the regression is simply to place predictors into the 
regression model in one block, and estimate parameters for each predictor.

8.3.7.2.  Stepwise methods 2

If you are undeterred by the criticisms of stepwise methods in the previous chapter, then 
you can select either a forward or a backward stepwise method, or a combination of them. 
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When the forward method is employed the computer begins with a model that includes 
only a constant and then adds single predictors to the model based on the criterion that 
adding the variable must improve the AIC or BIC (whichever you chose). The computer 
proceeds until none of the remaining predictors have decreased the criterion.

The opposite of the forward method is the backward method. This method uses the 
same criteria, but instead of starting the model with only a constant, it begins the model 
with all predictors included. The computer then tests whether any of these predictors can 
be removed from the model without increasing the information criterion. If it can, it is 
removed from the model, and the variables are all tested again. 

Better than these two simple methods are the backward/forward and the forward/back-
ward methods. These are hybrids of the two methods – the forward/backward approach 
starts off doing a forward method, but each time a variable is added, it tests whether it’s 
worth removing any variables. 

8.3.7.3.  How do I select a method? 2

As with ordinary regression (previous chapter), the method of regression chosen 
will depend on several things. The main consideration is whether you are testing 
a theory or merely carrying out exploratory work. As noted earlier, some people 
believe that stepwise methods have no value for theory testing. However, stepwise 
methods are defensible when used in situations where causality is not of interest and 
you merely wish to find a model to fit your data (Agresti & Finlay, 1986; Menard, 
1995). Also, as I mentioned for ordinary regression, if you do decide to use a step-
wise method then the backward method is preferable to the forward method. This is 
because of suppressor effects, which occur when a predictor has a significant effect 
but only when another variable is held constant. Forward selection is more likely 
than backward elimination to exclude predictors involved in suppressor effects. As 
such, the forward method runs a higher risk of making a Type II error. 

8.4.  Assumptions and things that can 
go wrong 4

8.4.1.    Assumptions 2

Logistic regression shares some of the assumptions of normal regression:

1	 Linearity: In ordinary regression we assumed that the outcome had linear relation-
ships with the predictors. In logistic regression the outcome is categorical and so 
this assumption is violated. As I explained before, this is why we use the log (or 
logit) of the data. The linearity assumption in logistic regression, therefore, is that 
there is a linear relationship between any continuous predictors and the logit of the 
outcome variable. This assumption can be tested by looking at whether the interac-
tion term between the predictor and its log transformation is significant (Hosmer & 
Lemeshow, 1989). We will go through an example in section 8.8.1.

2	 Independence of errors: This assumption is the same as for ordinary regression 
(see section 7.7.2.1). Basically it means that cases of data should not be related; for 
example, you cannot measure the same people at different points in time (well, you 
can actually, but then you have to use a multilevel model – see Chapter 19). 

Which method
should I use?
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          R ’s  Souls ’  T ip  8 .1  Error messages about ‘failure to converge’ 3

 
Many statistical procedures use an iterative process, which means that R attempts to estimate the parameters 
of the model by finding successive approximations of those parameters. Essentially, it starts by estimating the 
parameters with a ‘best guess’. It then attempts to approximate them more accurately (known as an iteration). It 
then tries again, and then again, and so on through many iterations. It stops either when the approximations of 
parameters converge (i.e., at each new attempt the ‘approximations’ of parameters are the same or very similar 
to the previous attempt), or it reaches the maximum number of attempts (iterations). 

Sometimes you will get an error message in the output that says something like 

Warning messages:
1: glm.fit: algorithm did not converge 

What this means is that R has attempted to estimate the parameters the maximum number of times (as specified in 
the options) but they are not converging (i.e., at each iteration R is getting quite different estimates). This certainly 
means that you should ignore any output that R has produced, and it might mean that your data are beyond help.

3	 Multicollinearity: Although not really an assumption as such, multicollinearity is a 
problem as it was for ordinary regression (see section 7.7.2.1). In essence, predictors 
should not be too highly correlated. As with ordinary regression, this assumption can 
be checked with tolerance and VIF statistics, the eigenvalues of the scaled, uncentred 
cross-products matrix, the condition indices and the variance proportions. We go 
through an example in section 8.8.1.

Logistic regression also has some unique problems of its own (not assumptions, but 
things that can go wrong). R solves logistic regression problems by an iterative procedure 
(R’s Souls’ Tip 8.1). Sometimes, instead of pouncing on the correct solution quickly, you’ll 
notice nothing happening: R begins to move infinitely slowly, or appears to have got fed 
up with you asking it to do stuff and gone on strike. If it can’t find a correct solution, then 
sometimes it actually does give up, quietly offering you (without any apology) a result that 
is completely incorrect. Usually this is revealed by implausibly large standard errors. Two 
situations can provoke this situation, both of which are related to the ratio of cases to vari-
ables: incomplete information and complete separation.

8.4.2.    Incomplete information from the predictors 4

Imagine you’re trying to predict lung cancer from smoking and whether or not you eat 
tomatoes (which are believed to reduce the risk of cancer). You collect data from people 
who do and don’t smoke, and from people who do and don’t eat tomatoes; however, this 
isn’t sufficient unless you collect data from all combinations of smoking and tomato eating. 
Imagine you ended up with the following data:

Do you smoke? Do you eat tomatoes? Do you have cancer?

Yes No Yes

Yes Yes Yes

No No Yes

No Yes ??????
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Observing only the first three possibilities does not prepare you for the outcome of the 
fourth. You have no way of knowing whether this last person will have cancer or not based 
on the other data you’ve collected. Therefore, R will have problems unless you’ve collected 
data from all combinations of your variables. This should be checked before you run the 
analysis using a crosstabulation table, and I describe how to do this in Chapter 18. While 
you’re checking these tables, you should also look at the expected frequencies in each cell 
of the table to make sure that they are greater than 1 and no more than 20% are less than 
5 (see section 18.5). This is because the goodness-of-fit tests in logistic regression make this 
assumption.

This point applies not only to categorical variables, but also to continuous ones. Suppose 
that you wanted to investigate factors related to human happiness. These might include 
age, gender, sexual orientation, religious beliefs, levels of anxiety and even whether a per-
son is right-handed. You interview 1000 people, record their characteristics, and whether 
they are happy (‘yes’ or ‘no’). Although a sample of 1000 seems quite large, is it likely to 
include an 80-year-old, highly anxious, Buddhist, left-handed lesbian? If you found one 
such person and she was happy, should you conclude that everyone else in the same cat-
egory is happy? It would, obviously, be better to have several more people in this category 
to confirm that this combination of characteristics predicts happiness. One solution is to 
collect more data.

As a general point, whenever samples are broken down into categories and one or more 
combinations are empty it creates problems. These will probably be signalled by coef-
ficients that have unreasonably large standard errors. Conscientious researchers produce 
and check multiway crosstabulations of all categorical independent variables. Lazy but 
cautious ones don’t bother with crosstabulations, but look carefully at the standard errors. 
Those who don’t bother with either should expect trouble.

8.4.3.    Complete separation 4

A second situation in which logistic regression collapses might surprise you: it’s when the 
outcome variable can be perfectly predicted by one variable or a combination of variables! 
This is known as complete separation.

Figure 8.3
An example of 
the relationship 
between weight 
(x-axis) and a 
dichotomous 
outcome variable 
(y-axis, 1 = 
Burglar, 0 = 
Teenager) – note 
that the weights 
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overlap

1.0

0.8

0.6

0.4

0.2

0.0

20 30 40 50

Weight (KG)

P
ro

b
ab

ili
ty

 o
f 

O
u

tc
o

m
e

60 70 80 90

08-Field_R-4368-Ch-08.indd   323 29/02/2012   6:18:00 PM



324 D ISCOVER ING STAT IST ICS  US ING R

FIGURE 8.4
An example 
of complete 
separation – note 
that the weights 
(x-axis) of the 
two categories in 
the dichotomous 
outcome variable 
(y-axis, 1 = 
Burglar, 0 = Cat) 
do not overlap
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Let’s look at an example: imagine you placed a pressure pad under your doormat and 
connected it to your security system so that you could detect burglars when they creep in 
at night. However, because your teenage children (which you would have if you’re old 
enough and rich enough to have security systems and pressure pads) and their friends 
are often coming home in the middle of the night, when they tread on the pad you want 
it to work out the probability that the person is a burglar and not one of your teenagers. 
Therefore, you could measure the weight of some burglars and some teenagers and use 
logistic regression to predict the outcome (teenager or burglar) from the weight. The graph 
(Figure 8.3) would show a line of triangles at zero (the data points for all of the teenagers 
you weighed) and a line of triangles at 1 (the data points for burglars you weighed). Note 
that these lines of triangles overlap (some teenagers are as heavy as burglars). We’ve seen 
that in logistic regression, R tries to predict the probability of the outcome given a value 
of the predictor. In this case, at low weights the fitted probability follows the bottom line 
of the plot, and at high weights it follows the top line. At intermediate values it tries to 
follow the probability as it changes.

Imagine that we had the same pressure pad, but our teenage children had left home to 
go to university. We’re now interested in distinguishing burglars from our pet cat based 
on weight. Again, we can weigh some cats and weigh some burglars. This time the graph 
(Figure 8.4) still has a row of triangles at zero (the cats we weighed) and a row at 1 (the 
burglars) but this time the rows of triangles do not overlap: there is no burglar who weighs 
the same as a cat – obviously there were no cat burglars in the sample (groan now at that 
sorry excuse for a joke). This is known as perfect separation: the outcome (cats and bur-
glars) can be perfectly predicted from weight (anything less than 15 kg is a cat, anything 
more than 40 kg is a burglar). If we try to calculate the probabilities of the outcome given 
a certain weight then we run into trouble. When the weight is low, the probability is 0, 
and when the weight is high, the probability is 1, but what happens in between? We have 
no data between 15 and 40 kg on which to base these probabilities. The figure shows two 
possible probability curves that we could fit to these data: one much steeper than the other. 
Either one of these curves is valid, based on the data we have available. The lack of data 
means that R will be uncertain about how steep it should make the intermediate slope and 
it will try to bring the centre as close to vertical as possible, but its estimates veer unsteadily 
towards infinity (hence large standard errors). 
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This problem often arises when too many variables are fitted to too few cases. Often the 
only satisfactory solution is to collect more data, but sometimes a neat answer is found by 
using a simpler model.

             CRAMMING SAM’S TIPS    Issues in logistic regression

·	 �In logistic regression, like ordinary regression, we assume linearity, no multicollinearity and independence of errors.
·	 �The linearity assumption is that each predictor has a linear relationship with the log of the outcome variable.
·	 �If we created a table that combined all possible values of all variables then we should ideally have some data in every cell of 

this table. If we don’t then we should watch out for big standard errors.
·	 �If the outcome variable can be predicted perfectly from one predictor variable (or a combination of predictor variables) then 

we have complete separation. This problem creates large standard errors too.

8.5.  Packages used in this chapter 1

There are several packages we will use in this chapter. Some, but not all, can be accessed 
through R Commander. You will need the packages car (to recode variables and test multi-
collinearity) and mlogit (for multinomial logistic regression). If you don’t have these pack-
ages installed you’ll need to install them and load them. 

install.packages("car"); install.packages("mlogit")

Then you need to load the packages by executing these commands:

library(car); library(mlogit)

8.6.  Binary logistic regression: an example that 
will make you feel eel 2

It’s amazing what you find in academic journals sometimes. It’s a bit of a hobby of mine trying 
to unearth bizarre academic papers (really, if you find any, email them to me). I believe that sci-
ence should be fun, and so I like finding research that makes me laugh. A research paper by Lo 
and colleagues is the one that (so far) has made me laugh the most (Lo, Wong, Leung, Law, & 
Yip, 2004). Lo et al. report the case of a 50-year-old man who presented himself at the Accident 
and Emergency Department (ED for the Americans) with abdominal pain. A physical examina-
tion revealed peritonitis so they took an X-ray of the man’s abdomen. Although it somehow 
slipped the patient’s mind to mention this to the receptionist upon arrival at the hospital, the 
X-ray revealed the shadow of an eel. The authors don’t directly quote the man’s response to 
this news, but I like to imagine it was something to the effect of ‘Oh, that! Erm, yes, well I didn’t 
think it was terribly relevant to my abdominal pain so I didn’t mention it, but I did insert an eel 
into my anus this morning. Do you think that’s the problem?’ Whatever he did say, the authors 
report that he admitted to inserting an eel into his anus to ‘relieve constipation’.

I can have a lively imagination at times, and when I read this article I couldn’t help think-
ing about the poor eel. There it was, minding its own business swimming about in a river 
(or fish tank possibly), thinking to itself ‘Well, today seems like a nice day, there are no 
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eel-eating sharks about, the sun is out, the water is nice, what could possibly go 
wrong?’ The next thing it knows, it’s being shoved up the anus of a man from 
Hong Kong. ‘Well, I didn’t see that coming’, thinks the eel. Putting myself in 
the mindset of an eel for a moment, he has found himself in a tight dark tunnel, 
there’s no light, there’s a distinct lack of water compared to his usual habitat, and 
he probably fears for his life. His day has gone very wrong. How can he escape 
this horrible fate? Well, doing what any self-respecting eel would do, he notices 
that his prison cell is fairly soft and decides ‘bugger this,2 I’ll eat my way out of 
here’. Unfortunately he didn’t make it, but he went out with a fight (there’s a 
fairly unpleasant photograph in the article of the eel biting the splenic flexure). 

The authors conclude that ‘Insertion of a live animal into the rectum causing rectal perfora-
tion has never been reported. This may be related to a bizarre healthcare belief, inadvertent 
sexual behavior , or criminal assault. However, the true reason may never be known.’ Quite.

OK, so this is a really grim tale.3 It’s not really very funny for the man or the eel, but it did 
make me laugh. Of course my instant reaction was that sticking an eel up your anus to ‘relieve 
constipation’ is the poorest excuse for bizarre sexual behaviour I have ever heard. But upon 
reflection I wondered if I was being harsh on the man – maybe an eel up the anus really can 
cure constipation. If we wanted to test this, we could collect some data. Our outcome might be 
‘constipated’ vs. ‘not constipated’, which is a dichotomous variable that we’re trying to predict. 
One predictor variable would be intervention (eel up the anus) vs. waiting list (no treatment). 
We might also want to factor how many days the patient had been constipated before treat-
ment. This scenario is perfect for logistic regression (but not for eels). The data are in Eel.dat.

I’m quite aware that many statistics lecturers do not share my unbridled joy at discussing 
eel-created rectal perforations with students, so I have named the variables in the file more 
generally:

MM outcome (dependent variable): Cured (cured or not cured);

MM predictor (independent variable): Intervention (intervention or no treatment);

MM predictor (independent variable): Duration (the number of days before treatment 
that the patient had the problem).

In doing so, your tutor can adapt the example to something more palatable if they wish to, 
but you will secretly know that the example is all about putting eels up your bum.

8.6.1.    Preparing the data 1

To carry out logistic regression, the data must be entered as for normal regression: they 
are arranged in whatever data editor you use in three columns (one representing each vari-
able). First load the data file by setting your working directory to the location of the file 
(see section 3.4.4) and executing:

eelData<-read.delim("eel.dat", header = TRUE)

2 Literally.

3 As it happens, it isn’t an isolated grim tale. Through this article I found myself hurtling down a road of morbid 
curiosity that was best left untravelled. Although the eel was my favourite example, I could have chosen from 
a very large stone (Sachdev, 1967), a test tube (Hughes, Marice, & Gathright, 1976), a baseball (McDonald & 
Rosenthal, 1977), an aerosol deodorant can, hose pipe, iron bar, broomstick, penknife, marijuana, bank notes, 
blue plastic tumbler, vibrator and primus stove (Clarke, Buccimazza, Anderson, & Thomson, 2005), or (a close 
second place to the eel) a toy pirate ship, with or without pirates I’m not sure (Bemelman & Hammacher, 2005). 
So, although I encourage you to send me bizarre research, if it involves objects in the rectum then probably don’t, 
unless someone has managed to put Buckingham Palace up there.

Can an eel cure
constipation?
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This creates a dataframe called eelData. We can look at the data using the head() func-
tion, which shows the first six rows of the dataframe entered into the function:

head(eelData)

Cured  Intervention    Duration
1 Not Cured No Treatment        7
2 Not Cured No Treatment        7
3 Not Cured No Treatment        6
4     Cured No Treatment        8
5     Cured Intervention        7
6     Cured No Treatment        6 

Note that we have three variables in different columns. The categorical data have been 
entered as text. For example, the variable Cured is made up of the phrases Cured and Not 
Cured. When we read in data that are text strings like this, R helpfully converts them to 
factors. It doesn’t tell us that it has done this, it just does it.

When we do logistic regression, we want to do it with numbers, not words. In creating 
the factors R also helpfully assigned some numbers to the variables. There is no end to how 
helpful R will try to be. The trouble is that the numbers that R has assigned might not be 
the numbers that we want. In fact, R creates levels of the factor by taking the text strings 
in alphabetical order and assigning them ascending numerical values. In other words, for 
Cured we have two categories and R will have ordered these categories alphabetically 
(i.e., ‘Cured’ and ‘Not Cured’). So, Cured will be the baseline category because it is first. 
Likewise, for Intervention the categories were Intervention and No Treatment, so given the 
alphabetic order Intervention will be the baseline category. 

However, it makes more sense to code both of these variables the opposite way around. 
For Cured it would be good if Not Cured was the baseline, or first category, because then we 
would know that the model coefficients reflect the probability of being cured (which is what 
we want to know) rather than the probability of not being cured. Similarly, for Intervention 
it would be useful if No Treatment were the first category (i.e., the baseline). Fortunately, the 
function relevel() lets us specify the baseline category for a factor. It takes the general form:

newFactor<-relevel(oldFactor, "baseline category")

In other words, we can create a factor by specifying an existing factor, and simply writing 
the name of the baseline category in quotes. For Cured and Intervention, it makes most 
sense not to create new factors, but just to overwrite the existing ones, therefore, we spe
cify these variables as both the new and old factors; this will simply respecify the baseline 
category of the existing variables. Execute these commands:

eelData$Cured<-relevel(eelData$Cured, "Not Cured")
eelData$Intervention<-relevel(eelData$Intervention, "No Treatment")

The variable Cured now has Not Cured as the first level (i.e., the baseline category), and 
Intervention now has No Treatment as the baseline category. Having set our baseline cat-
egories, we can get on with the analysis.

8.6.2.    The main logistic regression analysis 2

8.6.2.1.  Basic logistic regression analysis using R Commander 2

First, import the data, using the Data⇒Import data⇒from text file, clipboard, or URL… 
menu to set the import options and choose the file eel.dat (see section 3.7.3). As discussed 
in the previous section, R will import the variables Cured and Intervention as factors 
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FIGURE 8.5
Reordering 
a factor in R 
Commander

(because they contain text) but we might not like the baseline category that it sets by default. 
Therefore, the first thing that we need to do is to set the baseline category to one that we 
want. We can do this by selecting Data⇒Manage variables in active data set⇒Reorder fac-
tor levels… as shown in Figure 8.5. In the first dialog box there is a list of factors (labelled 
Factor (pick one)); select the factor that you want to reorder (I have selected Cured). By 
default the function will simply overwrite the existing factor, which is why the Name for 
factor box contains <same as original>; however, if you want to create a new variable then 
replace the text in this box with a new name. Having selected a factor and named it, click 
on . The next dialog box displays the categories contained within the selected factor 
and their order. Note that we have two categories – Cured and Not Cured – and the 1 and 
2 reflects their order (Cured is first, and Not Cured second). We want to reverse this order, 
so we need to change the numbers so that Cured is 2 and Not Cured is 1 (which will make 
it the baseline category). Once you have edited the numbers to reflect the order you want 
click on  to make the change. You can repeat the process for the Intervention variable.

We will carry out a hierarchical regression: in model 1, we’ll include only Intervention 
as a predictor, and then in model 2 we’ll add Duration. Let’s create the first model. To run 
binary logistic regression, choose Statistics⇒Fit models⇒Generalized linear model… to 
access the dialog box in Figure 8.6. In the box labelled Enter name for model: we enter a 

FIGURE 8.6
Dialog box for 
generalized linear 
models in R 
Commander
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name for the model we are going to estimate; I’ve called it eelModel.1. Next, we need to 
create the formula that described the model. The formula consists of an outcome variable, 
which should be a dichotomous factor variable for logistic regression. In our case, the vari-
able is Cured. (Notice that R Commander has labelled the variable as a factor in the list of 
variables.) First double-click on Cured, which will move it to box under the label Model 
Formula: (which is where the cursor would be). Having specified the outcome variable, the 
cursor will hop into the box to the right, which is where we want to put any predictors. 
There are several buttons above this box that make it easy for us to add useful things like 
‘+’ (to add predictors), or ‘*’ (for interaction terms) or even brackets. We can build the 
predictors up by double-clicking on them in the list of variables and adding appropriate 
symbols. In model 1 we want only Intervention as a predictor, so double-click on this vari-
able in the list (the completed box should look like the left-hand box in Figure 8.6).

When we use a generalized linear model we need to specify a family and link function. The 
family relates to the type of distribution that we assume; for example, if we choose Gaussian, 
that means we are assuming a normal distribution. We would choose this for linear regres-
sion. For logistic regression we choose binomial. We also need to choose a link function – for 
logistic regression, we choose the logit. R Commander helpfully selects these by default.

We generate the second model in much the same way. In the box labelled Enter name for 
model: enter a name for the model; I’ve called it eelModel.2. Next, double-click on Cured, 
to move it to the left-hand box under the label Model Formula: (which is where the cursor 
would be). Then to specify the predictors, double-click on Intervention to move it to the 
right-hand box under the label Model Formula:, then type ‘+’ or click on , then double-
click on Duration in the list to move it to the formula box. The finished dialog box should 
look like the right-hand dialog box in box in Figure 8.6.

8.6.3.    Basic logistic regression analysis using R 2

To do logistic regression, we use the glm() function. The glm() function is very similar to 
the lm() function that we saw in Chapter 7. While lm stands for ‘linear model’, glm stands 
for ‘generalized linear model’ – that is, the basic linear model that has been generalized to 
other sorts of situations. The general form of this function is:

newModel<-glm(outcome ~ predictor(s), data = dataFrame, family = name of a 
distribution, na.action = an action)

in which:

MM newModel is an object created that contains information about the model. We can get 
summary statistics for this model by executing summary(newModel).

MM outcome is the variable that you’re trying to predict, also known as the dependent 
variable. In this example it will be the variable Cured.

MM predictor(s) lists the variable or variables from which you’re trying to predict the out-
come variable. In this example it will be the variables Cured and Duration.

MM dataFrame is the name of the dataframe from which your outcome and predictor 
variables come.

MM family is the name of a distribution (e.g., Gaussian, binomial, poisson, gamma).

MM na.action is an optional command. If you have complete data (as we have here) you 
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can 
be useful – see R’s Souls’ Tip 7.1).
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The format, as you can see, is extremely similar to lm() in that we specify a formula that 
describes our model, we specify the dataframe that contains the variables in the formula, 
and we can use na.action to determine how to deal with missing cases. The only difference 
is a new option called family. This enables us to tell R the detail of the kind of regression 
that we want to do: by specifying the distribution on which our model is based. If we were 
doing an ordinary regression (as in Chapter 7) we could set this option to Gaussian (which 
is another name for a normal distribution) because ordinary regression is based on a nor-
mal distribution. Logistic regression is based on a binomial distribution, so we need to set 
this option to family = binomial().4

We will carry out a hierarchical regression: in model 1, we’ll include only Intervention 
as a predictor, and then in model 2 we’ll add Duration. To create the first model we can 
execute:

eelModel.1 <- glm(Cured ~ Intervention, data = eelData, family = binomial())

This command creates a model called eelModel.1 in which Cured is predicted from only 
Intervention (Cured ~ Intervention) based on a logit function. Similarly, we can create the 
second model by executing:

eelModel.2 <- glm(Cured ~ Intervention + Duration, data = eelData, family = 
binomial())

This command creates a model called eelModel.2 in which Cured is predicted from both 
Intervention and Duration (Cured ~ Intervention + Duration). 

8.6.4.    Interpreting a basic logistic regression 2

To see the models that we have just generated we need to execute the summary() function 
(remembering to put the model name into the function):

summary(eelModel.1)
summary(eelModel.2)

The results are shown in Outputs 8.1 and 8.3 and are discussed in the next two sections.

8.6.5.    Model 1: Intervention only 2

Output 8.1 shows the model summary for model 1, which used Intervention to predict 
Cured. First, we should look at the summary statistics about the model. The overall fit 
of the model is assessed using the deviance statistic (to recap: this is −2 times the log-
likelihood). Remember that larger values of the deviance statistic indicate poorer-fitting 
statistical models. R provides two deviance statistics: the null deviance and the residual 
deviance. The null deviance is the deviance of the model that contains no predictors other 

4 R has a number of useful defaults. If you don’t specify a family, R assumes that you want to use a Gaussian family 
of distributions, which is the same as using lm(). In addition, you can specify a link function for the binomial 
family. The logit and probit are two commonly used link functions, which are specified as Binomial(link = “logit”) 
and Binomial(link = “probit”). If you don’t specify a link function, R chooses the logit link function for you, 
which is what is needed for logistic regression so we don’t need to explicitly use a link function in our model.
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than the constant – in other words, –2LL(baseline).5 The residual deviance is the deviance 
for the model – in other words, –2LL(new).

Call:
glm(formula = Cured ~ Intervention, family = binomial(), data = eelData)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.5940  -1.0579   0.8118   0.8118   1.3018  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)   
(Intercept)               -0.2877     0.2700  -1.065  0.28671   
InterventionIntervention   1.2287     0.3998   3.074  0.00212 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 154.08  on 112  degrees of freedom
Residual deviance: 144.16  on 111  degrees of freedom
AIC: 148.16

Number of Fisher Scoring iterations: 4

Output 8.1

At this stage of the analysis the value of the deviance for the model should be less than 
the value for the null model (when only the constant was included in the model) because 
lower values of −2LL indicate that the model is predicting the outcome variable more 
accurately. For the null model, −2LL = 154.08, but when Intervention has been included 
this value has been reduced to 144.16. This reduction tells us that the model is better at 
predicting whether someone was cured than it was before Intervention was added.

The question of how much better the model predicts the outcome variable can be 
assessed using the model chi-square statistic, which measures the difference between the 
model as it currently stands and the model when only the constant was included. We saw 
in section 8.3.1 that we could assess the significance of the change in a model by taking the 
log-likelihood of the new model and subtracting the log-likelihood of the baseline model 
from it. The value of the model chi-square statistic works on this principle and is, there-
fore, equal to −2LL with Intervention included minus the value of −2LL when only the 
constant was in the model (154.08 − 144.16 = 9.92). This value has a chi-square distri-
bution and so its statistical significance can be calculated easily. In this example, the value 
is significant at a .05 level and so we can say that overall the model is predicting whether 
a patient is cured or not significantly better than it was with only the constant included. 
The model chi-square is an analogue of the F-test for the linear regression (see Chapter 7). 
In an ideal world we would like to see a non-significant overall −2LL (indicating that the 
amount of unexplained data is minimal) and a highly significant model chi-square statistic 
(indicating that the model including the predictors is significantly better than without those 
predictors). However, in reality it is possible for both statistics to be highly significant.

We can use R to automatically calculate the model chi-square and its significance. We 
can do this by treating the output model as data. The object eelModel.1 has a number of 

5 You can try this by running a model with only an intercept. Use: 

eelModel.0 <- glm(Cured ~ 1, data = eelData, family = binomial())
summary(eelModel.0)
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variables associated with it. Two of these are the deviance and null.deviance. By subtracting 
the deviance from the null deviance we can find the improvement, which gives us a chi-
square statistic. We can reference these variables the same as any other: by appending the 
variable name to the model using dollar sign. To calculate this value execute:

modelChi <- eelModel.1$null.deviance - eelModel.1$deviance

This creates a value called modelChi that is the deviance for the model eelModel.1 sub-
tracted from the null deviance from the same model. We can see the value by executing:

modelChi

[1] 9.926201

As you can see, this value corresponds to the one we calculated by hand (allowing for 
differences in rounding). Similarly, the degrees of freedom for the model are stored in the 
variable df.residual and for the null model are stored as df.null. These are the values of 111 
and 112 in Output 8.1. We can compute the degrees of freedom associated with the chi-
square statistic that we just computed by subtracting the degrees of freedom exactly as we 
did for the deviance values. Execute:

chidf <- eelModel.1$df.null - eelModel.1$df.residual

This creates a value called chidf that is the degrees of freedom for the model eelModel.1 sub-
tracted from the degrees of freedom for the null model. We can see the value by executing:

chidf

[1] 1

As you can see, the change in degrees of freedom is 1, which reflects the fact that we have 
only one variable in the model.

To calculate the probability associated with this chi-square statistic we can use the pchisq() 
function. This function needs two things: the value of chi-square (which we have just computed 
as modelChi) and the degrees of freedom (which we have just computed as chidf). The prob-
ability we want is 1 minus the value of the pchisq() function, which we can obtain by executing:

chisq.prob <- 1 - pchisq(modelChi, chidf)

This command creates an object called chisq.prob, which is 1 minus the result of the pchisq() 
function (note that we have placed the variables containing of the chi-square statistic and 
its degrees of freedom directly into this function). To see the value we execute:

chisq.prob

[1] 0.001629425

In other words, the p-value is .002 (rounded to three decimal places); because this prob-
ability is less than .05, we can reject the null hypothesis that the model is not better than 
chance at predicting the outcome. This value is the likelihood ratio p-value of the model 
because we only had one predictor in the model. We can report that including Intervention 
produced a significant improvement in the fit of the model, χ2(1) = 9.93, p = .002.

Next, we consider the coefficients. This part is crucial because it tells us the estimates for the 
coefficients for the predictors included in the model. This section of the output gives us the 
coefficients and statistics for the variables that have been included in the model at this point 
(namely Intervention and the constant). The b-value is the same as the b-value in linear regres-
sion: they are the values that we need to replace in equation (8.4) to establish the probability 
that a case falls into a certain category. We saw in linear regression that the value of b repre-
sents the change in the outcome resulting from a unit change in the predictor variable. The 
interpretation of this coefficient in logistic regression is very similar in that it represents the 
change in the logit of the outcome variable associated with a one-unit change in the predictor 
variable. The logit of the outcome is simply the natural logarithm of the odds of Y occurring.
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The crucial statistic is the z-statistic which has a normal distribution and tells us whether 
the b coefficient for that predictor is significantly different from zero.6 If the coefficient is 
significantly different from zero then we can assume that the predictor is making a signifi-
cant contribution to the prediction of the outcome (Y). We came across the z-statistic in 
section 8.3.4 and saw that it should be used cautiously because when the regression coef-
ficient (b) is large, the standard error tends to become inflated, resulting in the z-statistic 
being underestimated (see Menard, 1995). However, for these data it seems to indicate that 
having the intervention (or not) is a significant predictor of whether the patient is cured 
(note that the significance of the z-statistic is less than .05). We could say that Intervention 
was a significant predictor of being cured, b = 1.23, z = 3.07, p < .002.

In section 8.3.3 we saw that we could calculate an analogue of R using equation (8.7). 
For these data, the z-statistic and its df can be read from the R output (3.074 and 1, respec-
tively), and the null model deviance was 154.08. Therefore, R can be calculated as:

R =
− ×

=
3 074 2 1

154 08
0 22

2.
.

. 	 (8.14)

In the same section we saw that Hosmer and Lemeshow’s measure ( RL
2

) is calculated by 
dividing the model chi-square by the original −2LL. In this example the model chi-square 
after Intervention has been entered into the model is 9.93 (calculated as modelChi above), 
and the original −2LL (before any variables were entered) was 154.08 (the deviance.null). 
So, RL

2  = 9.93/154.08 = .06, which is different from the value we would get by squaring 
the value of R given above (R2 = .222 = 0.05).

We can get R to do this calculation for us by executing:

R2.hl<-modelChi/eelModel.1$null.deviance
R2.hl

[1] 0.06442071

The first command simply takes the value of the model chi-square (which we have already 
calculated as modelChi, and divides it by the −2LL for the original model (eelModel.1$null.
deviance)). This is a direct analogue of the equation given earlier in the chapter. The second 
command displays the value, which is .064. 

We also saw two other measures of R2 that were described in section 8.3.3, Cox and 
Snell’s and Nagelkerke’s. There are functions available in R to calculate these, but they’re a 
bit of a pain to find and use. It’s easy enough, however, to write commands in R to calculate 
them. We can write the equation for the Cox and Snell statistic as:

R.cs <- 1 - exp ((eelModel.1$deviance - eelModel.1$null.deviance) /113)
R.cs

[1] 0.08409487

The first command uses the −2LL for the model (eelModel.1$deviance) and the null model 
(eelModel.1$null.deviance) and divides the difference by the sample size (in this case 113, 
but you will need to change this value for other data sets). The second command will dis-
play the result: a value of .084. We can use this value to calculate Nagelkerke’s estimate 
also. Again, we just write out the equation in R-speak:

R.n <- R.cs /(1-(exp(-(eelModel.1$null.deviance/113))))
R.n

[1] 0.112992

The first command uses the value we just calculated, R.cs, and adjusts it using the −2LL for 
the null model (eelModel.1$null.deviance) and the sample size (which, again you’ll need to 

6 You might also come across a Wald statistic – this is the square of the z-statistic and is distributed as chi-square. 
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change for other data sets, but is 113 in the current one). The second command will display 
the result: a value of .113. 

Alternatively you could write a function to calculate all three R2-values from a model, which 
has the advantage that you can reuse the function for other models (R’s Souls’ Tip 8.2). As you 
can see, all of the values of R2 differ, but they can be used as effect size measures for the model.

          R ’s  Souls ’  T ip  8 .2   Writing a function to compute R2 3

 
We saw in (R’s Souls’ Tip 6.2) that it’s possible to write functions to do things for us in R. If we were running 
several logistic regression models it would get fairly tedious to keep typing out the commands to calculate the 
various values of R2. Therefore, we could wrap them up in a function. We’ll call this function logisticPseudoR2s so 
that we know what it does, and we’ll enter a logistic regression model (we’ve named this LogModel) into it as the 
input. To create the function execute:

logisticPseudoR2s <- function(LogModel) {
	 dev <- LogModel$deviance 
	 nullDev <- LogModel$null.deviance 
	 modelN <- length(LogModel$fitted.values)
	 R.l <-  1 -  dev / nullDev
	 R.cs <- 1- exp ( -(nullDev - dev) / modelN)
	 R.n <- R.cs / ( 1 - ( exp (-(nullDev / modelN))))
	 cat("Pseudo R^2 for logistic regression\n")
	 cat("Hosmer and Lemeshow R^2  ", round(R.l, 3), "\n")
	 cat("Cox and Snell R^2        ", round(R.cs, 3), "\n")
	 cat("Nagelkerke R^2           ", round(R.n, 3),    "\n")
      }

Taking each line in turn:

•	 dev<-LogModel$deviance extracts the model deviance (−2LL(new)) of the model entered into the function 
and calls it dev.

•	 nullDev<-LogModel$null.deviance extracts the baseline deviance (−2LL(baseline)) of the model entered into 
the function and calls is nullDev.

•	 modelN<-length(LogModel$fitted.values) uses the length() function on the fitted value to compute the sample 
size, which it calls modelN.

•	 R.l <- 1 -  dev/nullDev computes Hosmer and Lemeshow’s measure (R2
L) using the values extracted from the 

model and calls it R.l.
•	 R.cs<- 1- exp ( -(nullDev - dev)/modelN): computes Cox and Snell’s measure (R2

CS) using the values extracted 
from the model and calls it R.cs.

•	 R.n <- R.cs / ( 1 - ( exp (-(nullDev / modelN)))) computes Nagelkerke’s measure (R2
N) using the values extracted 

from the model and calls it R.n.
•	 cat(): The last four lines use the cat() function to print the text in quotes, plus the various versions of R2 rounded 

to three decimal places.

To use the function on our model, we simply place the name of the logistic regression model (in this case 
eelModel.1) into the function and execute:

logisticPseudoR2s(eelModel.1)

The output will be: 

Pseudo R^2 for logistic regression
Hosmer and Lemeshow R^2   0.064 
Cox and Snell R^2         0.084 
Nagelkerke R^2            0.113 
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The final thing we need to think about is the odds ratios, which were described in section 
8.3.6. To calculate the change in odds that results from a unit change in the predictor for 
this example, we must first calculate the odds of a patient being cured given that they didn’t 
have the intervention. We then calculate the odds of a patient being cured given that they 
did have the intervention. Finally, we calculate the proportionate change in these two odds.

To calculate the first set of odds, we need to use equation (8.12) to calculate the prob-
ability of a patient being cured given that they didn’t have the intervention. The parameter 
coding at the beginning of the output told us that patients who did not have the interven-
tion were coded with a 0, so we can use this value in place of X. The value of b1 has been 
estimated for us as 1.229 (see Coefficients: in Output 8.1), and the coefficient for the 
constant can be taken from the same table and is −0.288. We can calculate the odds as:

P
e e

P

b b X
( ) .

( ) [ . ( . )]
Cured

Not C

=
+

=
+

=− + − − + ×
1

1

1

1
428

0 1 1 0 288 1 229 0

uured Cured

odds

( ) = − ( ) = − =

= =

1 1 428 527

428
572

0 748

P . .

.

.
.

	 (8.15)

Now we calculate the same thing after the predictor variable has changed by one unit. In 
this case, because the predictor variable is dichotomous, we need to calculate the odds 
of a patient being cured, given that they have had the intervention. So, the value of the 
intervention variable, X, is now 1 (rather than 0). The resulting calculations are as follows:

P
e e

P

b b X
( ) .

( ) [ . ( . )]
Cured

Not C

=
+

=
+

=− + − − + ×
1

1

1

1
719

0 1 1 0 288 1 229 1

uured Cured

odds

( ) = − ( ) = − =

= =

1 1 719 281

719
281

2 559

P . .

.

.
.

	 (8.16)

We now know the odds before and after a unit change in the predictor variable. It is now 
a simple matter to calculate the proportionate change in odds by dividing the odds after a 
unit change in the predictor by the odds before that change:

∆odds
odds after a unit change in the predictor

original od
=

dds

=

=

2 56
0 75
3 41

.

.
.

	 (8.17)

We can also calculate the odds ratio as the exponential of the b coefficient for the predictor 
variables. These coefficients are stored in a variable called coefficients, which is part of the 
model we created. Therefore, we can access this variable as:

eelModel.1$coefficients

This just means ‘the variable called coefficients within the model called eelModel.1’. It’s a 
simple matter to apply the exp() function to this variable to find out the odds ratio:

exp(eelModel.1$coefficients)

Executing this command will display the odds ratio for the predictors in the model:

            (Intercept) InterventionIntervention 
            0.750000                 3.416667
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The odds ratio for Intervention (3.417) is the same as we calculated above (allowing for 
differences in rounding). We can interpret the odds ratio in terms of the change in odds. If 
the value is greater than 1 then it indicates that as the predictor increases, the odds of the 
outcome occurring increase. Conversely, a value less than 1 indicates that as the predictor 
increases, the odds of the outcome occurring decrease. In this example, we can say that the 
odds of a patient who is treated being cured are 3.42 times higher than those of a patient 
who is not treated.

We can also calculate confidence intervals for the odds ratios. To obtain confidence 
intervals of the parameters, we use the confint() function – just as we did for ordinary 
regression. We can also exponentiate these with the exp() function. To get the confidence 
intervals execute:

exp(confint(eelModel.1))

This function computes the confidence intervals for the coefficients in the model 
(confint(eelModel.1)) and then uses exp() to exponentiate them. The resulting output is 
in Output 8.2. The way to interpret this confidence interval is the same as any other con-
fidence interval (section 2.5.2): if we calculated confidence intervals for the value of the 
odds ratio in 100 different samples, then these intervals would encompass the actual value 
of the odds ratio in the population (rather than the sample) in 95 of those samples. In this 
case, we can be fairly confident that the population value of the odds ratio lies between 
1.58 and 7.63.7 However, our sample could be one of the 5% that produces a confidence 
interval that ‘misses’ the population value.

                            2.5 %   97.5 %
(Intercept)              0.4374531 1.268674
InterventionIntervention 1.5820127 7.625545

Output 8.2

The important thing about this confidence interval is that it doesn’t cross 1 (the values at 
each end of the interval are greater than 1). This is important because values greater than 
1 mean that as the predictor variable increases, so do the odds of (in this case) being cured. 
Values less than 1 mean the opposite: as the predictor variable increases, the odds of being 
cured decrease. The fact that both the lower and upper limits of our confidence interval are 
above 1 gives us confidence that the direction of the relationship that we have observed is 
true in the population (i.e., it’s likely that having an intervention compared to not increases 
the odds of being cured). If the lower limit had been below 1 then it would tell us that there 
is a chance that in the population the direction of the relationship is the opposite to what 
we have observed. This would mean that we could not trust that our intervention increases 
the odds of being cured.

8.6.6.    Model 2: Intervention and Duration as predictors 2

Now let’s return to model 2 (eelModel.2), which we ran a long time ago. Recall that in 
model 2 we added the variable Duration to our model. Output 8.3 shows the output for 
the summary of this model. You can see that the b estimate for Duration is −0.008, a pretty 
small number. In addition, the probability value associated with that variable is not signifi-
cant: the value of 0.964 is larger than .05. 

7 If you ever run analysis with R and another package and compare the results, you might find different confidence 
intervals. That’s because some packages use Wald test based confidence intervals, whereas R uses likelihood ratio 
based confidence intervals and thus avoids the problems of the Wald test that we identified earlier.
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Comparing model 1 with model 2, we can see that the deviance for the two models is the 
same (144.16), suggesting that model 2 is not an improvement over model 1. In addition, 
we can see that the AIC is higher in model 2 (150.16) than model 1 (148.16), indicating 
that model 1 is the better model.

Call:
glm(formula = Cured ~ Intervention + Duration, family = binomial(), 
    data = eelData)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6025  -1.0572   0.8107   0.8161   1.3095  

Coefficients:
                          Estimate Std. Error z value Pr(>|z|)   
(Intercept)              -0.234660   1.220563  -0.192  0.84754   
InterventionIntervention  1.233532   0.414565   2.975  0.00293 **
Duration                 -0.007835   0.175913  -0.045  0.96447   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 154.08  on 112  degrees of freedom
Residual deviance: 144.16  on 110  degrees of freedom
AIC: 150.16

Number of Fisher Scoring iterations: 4

Output 8.3

We can again compare the models by finding the difference in the deviance statistics.  
This difference is chi-square distributed. We can find this difference in two ways. First, we 
can subtract one deviance from the other as we did before. An easier method though, is to 
use the anova() function (see section 7.8.4). The anova() function has the advantage that 
it also calculates the degrees of freedom for us; but the disadvantage is that it doesn’t cal-
culate the significance. If we do the calculations manually we can use the same commands 
as before, except that rather than using the null.deviance and df.null variables, we use the 
deviance and df.residual variables for the two models we’re comparing: in each case we 
subtract model 2 from model 1:

modelChi <- eelModel.1$deviance - eelModel.2$deviance
chidf <- eelModel.1$df.residual - eelModel.2$df.residual
chisq.prob <- 1 - pchisq(modelChi, chidf)
modelChi; chidf; chisq.prob

[1] 0.001983528
[1] 1
[1] 0.9644765

You should find that the difference between the models (modelChi) is 0.00198, with one 
degree of freedom (chidf), and a p-value (chisq.prob) of 0.964. As this value is greater than 
.05, we can conclude that model 2 (with Intervention and Duration as predictors) is not a 
significant improvement over model 1 (which included only Intervention as a predictor).

With the anova() function, remember that we simply list the models in the order in which 
we want to compare them. Therefore, to compare our two models we would execute:

anova(eelModel.1, eelModel.2)
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This produces Output 8.4, which confirms (but was easier to do) that the difference 
between the models is 0.00198. 

Analysis of Deviance Table

Model 1: Cured ~ Intervention
Model 2: Cured ~ Intervention + Duration
  Resid. Df Resid. Dev Df  Deviance
1       111     144.16             
2       110     144.16  1 0.0019835

Output 8.4

             CRAMMING SAM’S TIPS    Deviance

•	 �The overall fit of the final model is shown by the deviance statistic and its associated chi-square statistic. If the significance 
of the chi-square statistic is less than .05, then the model is a significant fit to the data.

•	 Check the table labelled Coefficients: to see which variables significantly predict the outcome.
•	 For each variable in the model, look at the z-statistic and its significance (which again should be below .05).
•	 More important, though, use the odds ratio for interpretation. You can obtain this using exp(model$coefficients), where model 

is the name of your model. If the value is greater than 1 then as the predictor increases, the odds of the outcome occur-
ring increase. Conversely, a value less than 1 indicates that as the predictor increases, the odds of the outcome occurring 
decrease. For the aforementioned interpretation to be reliable the confidence interval of the odds ratio should not cross 1.

8.6.7.    Casewise diagnostics in logistic regression 2

8.6.7.1.  Obtaining residuals 2

As with linear regression, it is possible to calculate residuals (see section 7.7.1.1). These 
residual variables can then be examined to see how well the model fits the observed data. 
The commands to obtain residuals are the same as those we encountered for linear regres-
sion in section 7.9. To obtain residuals, we can use the resid() function and include the 
model name within it.

Fitted values for logistic regression are a little different from linear regression. The fitted 
values are the predicted probabilities of Y occurring given the values of each predictor for 
a given participant. As such, they are derived from equation (8.4) for a given case. We can 
also calculate a predicted group membership, based on the most likely outcome for each 
person based on the model. The group memberships are based on the predicted probabili-
ties, and I will explain these values in more detail when we consider how to interpret the 
residuals. Predicted probabilities are obtained with the fitted() function (again, we simply 
supply the model name to the function).

As with ordinary regression, then, we can add these casewise diagnostic variables to our 
dataframe by creating new variables to contain them and then using the various functions 
we encountered in section 7.9 to populate these variables with the appropriate values. For 
example, as a basic set of diagnostic statistics we might execute:8

8 You might want to save the file after creating these variables by executing:
write.table(eelData, "Eel With Diagnostics.dat", sep = "\t", row.names = FALSE)
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eelData$predicted.probabilities<-fitted(eelModel.1)
eelData$standardized.residuals<-rstandard(eelModel.1)
eelData$studentized.residuals<-rstudent(eelModel.1)
eelData$dfbeta<-dfbeta(eelModel.1)
eelData$dffit<-dffits(eelModel.1)
eelData $leverage<-hatvalues(eelModel.1)

To reiterate a point from the previous chapter, running a regression without checking 
how well the model fits the data is like buying a new pair of trousers without trying them 
on – they might look fine on the hanger but get them home and you find you’re Johnny-
tight-pants. The trousers do their job (they cover your legs and keep you warm) but they 
have no real-life value (because they cut off the blood circulation to your legs, which then 
have to be amputated). Likewise, regression does its job regardless of the data – it will cre-
ate a model – but the real-life value of the model may be limited (see section 7.7).

8.6.7.2.  Predicted probabilities 2

Let’s take a look at the predicted probabilities. We can use the head() function again just to 
look at the first few cases. Execute:

head(eelData[, c("Cured", "Intervention", "Duration", "predicted.
probabilities")])

This command uses head() to display the first six cases, and we have selected a subset of 
variables from the eelData dataframe (see section 3.9.1).

      Cured Intervention Duration predicted.probabilities
1 Not Cured No Treatment        7               0.4285714
2 Not Cured No Treatment        7               0.4285714
3 Not Cured No Treatment        6               0.4285714
4     Cured No Treatment        8               0.4285714
5     Cured Intervention        7               0.7192982
6     Cured No Treatment        6               0.4285714

Output 8.5

Output 8.5 shows the values of the predicted probabilities as well as the initial data. We 
found from the model that the only significant predictor of being cured was having the 
intervention. This could have a value of either 1 (have the intervention) or 0 (no interven-
tion). If these two values are placed into equation (8.4) with the respective regression coef-
ficients, then the two probability values are derived. In fact, we calculated these values as 
part of equations (8.15) and (8.16), and you should note that the calculated probabilities – 
P(Cured) in these equations – correspond to the values of the predicted probabilities. These 
values tells us that when a patient is not treated (Intervention = 0, No Treatment), there 
is a probability of .429 that they will be cured – basically, about 43% of people get better 
without any treatment. However, if the patient does have the intervention (Intervention 
= 1, yes), there is a probability of .719 that they will get better – about 72% of people 
treated get better. When you consider that a probability of 0 indicates no chance of getting 
better, and a probability of 1 indicates that the patient will definitely get better, the values 
obtained provide strong evidence that having the intervention increases your chances of 
getting better (although the probability of recovery without the intervention is still not 
bad).

Assuming we are content that the model is accurate and that the intervention has some 
substantive significance, then we could conclude that our intervention (which, to remind 
you, was putting an eel up the anus) is the single best predictor of getting better (not being 
constipated). Furthermore, the duration of the constipation pre-intervention and its inter-
action with the intervention did not significantly predict whether a person got better.
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8.6.7.3.  Interpreting residuals 2

Our conclusions so far are fine in themselves, but to be sure that the model is a good one, 
it is important to examine the residuals.

We saw in the previous chapter that the main purpose of examining residuals in any 
regression is to (1) isolate points for which the model fits poorly, and (2) isolate points 
that exert an undue influence on the model. To assess the former we examine the residuals, 
especially the studentized residuals, standardized residuals and deviance statistics. To assess 
the latter we use influence statistics such as Cook’s distance, DFBeta and leverage statistics. 
These statistics were explained in detail in section 7.7 and their interpretation in logistic 
regression is the same; for more detail consult the previous chapter. To remind you of the 
main ones, Table 8.1 summarizes them.

If you have saved your residuals in the dataframe then you could look at them by execut-
ing something like:

eelData[, c("leverage", "studentized.residuals", "dfbeta")]

This command will print the leverage, studentized residuals and dfbeta values for model.

‘What about the trees?’ protests eco-warrior Oliver. ‘These out-
puts take up so much room, why don’t you put them on the 
website instead?’ It’s a valid point so I have produced a table of 
the diagnostic statistics for this example, but it’s in the addi-
tional material for this chapter on the companion website. 

OLIVER TWISTED

Please Sir, can I have  
some more … diagnostics?

The basic residual statistics for this example (leverage, studentized residuals and DFBeta 
values) are pretty good: note that all cases have DFBetas less than 1, and leverage statistics 
are very close to the calculated expected value of 0.018. All in all, this means that there are 
no influential cases having an effect on the model. The studentized residuals all have values 
of less than ±2 and so there seems to be very little here to concern us. 

You should note that these residuals are slightly unusual because they are based on a 
single predictor that is categorical. This is why there isn’t a lot of variability in the values of 

Table 8.1  Summary of residual statistics

Name Comment

Leverage Lies between 0 (no influence) and 1 (complete influence). 
The expected leverage is (k +1)/N, where k is the number of 
predictors and N is the sample size. In this case it would be 
2/113 = .018

Studentized residual
Standardized residual

Only 5% should lie outside ±1.96, and about 1% should lie 
outside ±2.58. Cases above 3 are cause for concern and cases 
close to 3 warrant inspection

DFBeta for the constant
DFBeta for the first predictor 
(Intervention)

Should be less than 1
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the residuals. Also, if substantial outliers or influential cases had been isolated, you are not 
justified in eliminating these cases to make the model fit better. Instead these cases should 
be inspected closely to try to isolate a good reason why they were unusual. It might simply 
be an error in inputting data, or it could be that the case was one which had a special reason 
for being unusual: for example, there were other medical complications that might contrib-
ute to the constipation that were noted during the patient’s assessment. In such a case, you 
may have good reason to exclude the case and duly note the reasons why.

             CRAMMING SAM’S TIPS    Diagnostic statistics

	 You need to look for cases that might be influencing the logistic regression model:

•	 Look at standardized residuals and check that no more than 5% of cases have absolute values above 2, and that no more 
than about 1% have absolute values above 2.5. Any case with a value above about 3 could be an outlier.

•	 Calculate the average leverage (the number of predictors plus 1, divided by the sample size) and then look for values greater 
than twice or three times this average value.

•	 Look for absolute values of DFBeta greater than 1.

8.6.8.    Calculating the effect size 2

We’ve already seen that we can use the odds ratio (see section 8.3.6) as an effect size 
measure.

8.7.  How to report logistic regression 2

My personal view is that you should report logistic regression much the same as linear 
regression (see section 7.11). I’d be inclined to tabulate the results, unless it’s a very 
simple model. As a bare minimum, report the beta values and their standard errors 
and significance value and some general statistics about the model (such as the R2 and 
goodness-of-fit statistics). I’d also highly recommend reporting the odds ratio and its 
confidence interval. If you include the constant, readers of your work can construct the 
full regression model if they need to. You might also consider reporting the variables 
that were not significant predictors because this can be as valuable as knowing about 
which predictors were significant.

For the example in this chapter we might produce a table like that in Table 8.2. Hopefully 
you can work out from where the values came by looking back through the chapter so 
far. As with multiple regression, I’ve rounded off to 2 decimal places throughout; for the 
R2 and p-values, in line with APA convention, there is no zero before the decimal point 
(because these values cannot exceed 1) but for all other values less than 1 the zero is pres-
ent; the significance of the variable is denoted by an asterisk with a footnote to indicate the 
significance level being used.
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8.8.  Testing assumptions: another example 2

This example was originally inspired by events in the soccer World Cup of 1998 (a long 
time ago now, but such crushing disappointments are not easily forgotten). Unfortunately 
for me (being an Englishman), I was subjected to watching England get knocked out of the 
competition by losing a penalty shootout. Reassuringly, six years later I watched England 
get knocked out of the European Championship in another penalty shootout. Even 
more reassuring, a few years after that I saw them fail to even qualify for the European 
Championship (not a penalty shootout this time, just playing like cretins). 

Now, if I were the England coach, I’d probably shoot the spoilt overpaid 
prima donnas, or I might be interested in finding out what factors predict 
whether or not a player will score a penalty. Those of you who hate soccer can 
read this example as being factors that predict success in a free throw in bas-
ketball or netball, a penalty in hockey or a penalty kick in rugby or field goal in 
American football. Now, this research question is perfect for logistic regression 
because our outcome variable is a dichotomy: a penalty can be either scored 
or missed. Imagine that past research (Eriksson, Beckham, & Vassell, 2004; 
Hoddle, Batty, & Ince, 1998) had shown that there are two factors that reli-
ably predict whether a penalty kick will be missed or scored. The first factor 
is whether the player taking the kick is a worrier (this factor can be measured 
using a measure such as the Penn State Worry Questionnaire, PSWQ). The sec-

ond factor is the player’s past success rate at scoring (so whether the player has a good track 
record of scoring penalty kicks). It is fairly well accepted that anxiety has detrimental effects 
on the performance of a variety of tasks and so it was also predicted that state anxiety might 
be able to account for some of the unexplained variance in penalty success.

This example is a classic case of building on a well-established model, because two predic-
tors are already known and we want to test the effect of a new one. So, 75 soccer players 
were selected at random and before taking a penalty kick in a competition they were given a 
state anxiety questionnaire to complete (to assess anxiety before the kick was taken). These 
players were also asked to complete the PSWQ to give a measure of how much they worried 
about things generally, and their past success rate was obtained from a database. Finally, a 
note was made of whether the penalty was scored or missed. The data can be found in the 
file penalty.dat, which contains four variables – each in a separate column:

MM Scored: This variable is our outcome and it is coded such that 0 = penalty missed and 
1 = penalty scored.

MM PSWQ: This variable is the first predictor variable and it gives us a measure of the 
degree to which a player worries.

Table 8.2  How to report logistic regression

B (SE) 95% CI for odds ratio

Lower Odds ratio Upper

Included

Constant −0.29 
   (0.27)

Intervention      1.23*
   (0.40)

1.56 3.42 7.48

Note. R2= .06 (Hosmer–Lemeshow), .08 (Cox–Snell), .11 (Nagelkerke). Model χ2(1) = 9.93,
p < .01. * p < .01.

Why do the England
football team always

miss penalties?
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MM Previous: This variable is the percentage of penalties scored by a particular player in 
their career. As such, it represents previous success at scoring penalties.

MM Anxious: This variable is our third predictor and it is a variable that has not previ-
ously been used to predict penalty success. It is a measure of state anxiety before 
taking the penalty.

SELF-TEST

ü	 We learnt how to do hierarchical regression in the 
previous chapter with linear regression and in this 
chapter with logistic regression. Try to conduct a 
hierarchical logistic regression analysis on these 
data. Enter Previous and PSWQ in the first block 
and Anxious in the second. There is a full guide on 
how to do the analysis and its interpretation in the 
additional material on the companion website.

8.8.1.    Testing for multicollinearity 3

First, if you haven’t already, read the data into a new dataframe, which we’ll call penalty-
Data, by setting your working directory to the location of the file (see section 3.4.4) and 
executing:

penaltyData<-read.delim("penalty.dat", header = TRUE)

In section 7.7.2.4 we saw how multicollinearity can affect the standard error parameters 
of a regression model. Logistic regression is just as prone to the biasing effect of collinearity 
and it is essential to test for collinearity following a logistic regression analysis. We look for 
collinearity in logistic regression in exactly the same way we look for it in linear regression. 
First, let’s re-create the model with all three predictors from the self-help task (in case you 
haven’t done it). We can create the model by executing:

penaltyModel.2 <- glm(Scored ~ Previous + PSWQ + Anxious, data = penaltyData, 
family = binomial())

This command creates a model (penaltyModel.2) in which the variable Scored is predicted 
from PSWQ, Anxious, and Previous (Scored ~ Previous + PSWQ + Anxious). Having cre-
ated this model, we can get the VIF and tolerance as we did in Chapter 7 by entering the 
model name into the vif() function from the car package. Execute:

vif(penaltyModel.2)
1/vif(penaltyModel.2)

The first line gives you the VIF values and the second the tolerance (which is simply the 
reciprocal of the VIF).

Previous      PSWQ   Anxious 
35.227113  1.089767 35.581976

  Previous       PSWQ    Anxious 
0.02838723 0.91762767 0.02810412

Output 8.6
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The results are shown in Output 8.6. These values indicate that there is a problem of 
collinearity: a VIF over 10 is usually considered problematic (see section 7.7.2.4 for more 
details). The result of this analysis is pretty clear-cut: there is collinearity between state 
anxiety and previous experience of taking penalties, and this dependency results in the 
model becoming biased.

SELF-TEST

ü	 Using what you learned in Chapter 6, carry out a 
Pearson correlation between all of the variables 
in this analysis. Can you work out why we have a 
problem with collinearity?

If you have identified collinearity then, unfortunately, there’s not much that you can 
do about it. One obvious solution is to omit one of the variables (so for example, we 
might stick with the model from block 1 that ignored state anxiety). The problem with 
this should be obvious: there is no way of knowing which variable to omit. The result-
ing theoretical conclusions are meaningless because, statistically speaking, any of the 
collinear variables could be omitted. There are no statistical grounds for omitting one 
variable over another. Even if a predictor is removed, Bowerman and O’Connell (1990) 
recommend that another equally important predictor that does not have such strong 
multicollinearity replace it. They also suggest collecting more data to see whether the 
multicollinearity can be lessened. Another possibility when there are several predictors 
involved in the multicollinearity is to run a factor analysis on these predictors and to 
use the resulting factor scores as a predictor (see Chapter 17). The safest (although 
unsatisfactory) remedy is to acknowledge the unreliability of the model. So, if we were 
to report the analysis of which factors predict penalty success, we might acknowledge 
that previous experience significantly predicted penalty success in the first model, but 
propose that this experience might affect penalty taking by increasing state anxiety. 
This statement would be highly speculative because the correlation between Anxious 
and Previous tells us nothing of the direction of causality, but it would acknowledge the 
inexplicable link between the two predictors. I’m sure that many of you may find the 
lack of remedy for collinearity grossly unsatisfying – unfortunately statistics is frustrat-
ing sometimes!

8.8.2.    Testing for linearity of the logit 3

In this example we have three continuous variables, therefore we have to check that each 
one is linearly related to the log of the outcome variable (Scored). I mentioned earlier in 
this chapter that to test this assumption we need to run the logistic regression but include 
predictors that are the interaction between each predictor and the log of itself (Hosmer 
& Lemeshow, 1989). We need to create the interaction terms of each of the variables 
with its log, using the log() function (section 5.8.3.2). First, let’s do the PSWQ variable; 
well call the interaction of PSWQ with its log logPSWQInt, and we create this variable by 
executing:

penaltyData$logPSWQInt <- log(penaltyData$PSWQ)*penaltyData$PSWQ
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This command creates a new variable called logPSWQInt in the penaltyData dataframe 
that is the variable PSWQ (penaltyData$PSWQ) multiplied by the log of that variable 
(log(penaltyData$PSWQ)).

SELF-TEST

ü	 Try creating two new variables that are the natural 
logs of Anxious and Previous.  (Remember that 
0 has no log, so if any of the variables have a zero, 
you’ll need to add a constant – see section 5.8.3.2.) 

The dataframe will now look like this:

PSWQ Anxious Previous    Scored    logPSWQInt logAnxInt logPrevInt
18      21       56 Scored Penalty   52.02669  63.93497  226.41087
17      32       35 Scored Penalty   48.16463 110.90355  125.42316
16      34       35 Scored Penalty   44.36142 119.89626  125.42316
14      40       15 Scored Penalty   36.94680 147.55518   41.58883
 5      24       47 Scored Penalty    8.04719  76.27329  181.94645
 1      15       67 Scored Penalty    0.00000  40.62075  282.70702
etc.

Note that there are three new variables that reflect the interaction between each predictor 
and the log of that predictor.

To test the assumption we need to redo the analysis exactly the same as before, except 
that we should put all variables in a single block (i.e., we don’t need to do it hierarchically), 
and we also need to put in the three new interaction terms of each predictor and its log. 
We create the model by executing:

penaltyTest.1 <- glm(Scored ~ PSWQ + Anxious + Previous + logPSWQInt + 
logAnxInt + logPrevInt, data=penaltyData, family=binomial())
summary(penaltyTest.1)

This command creates a model (penaltyTest.1) in which the variable Scored is predicted 
from PSWQ, Anxious, Previous and the variables we created to be the interaction of these 
variables with their logs (logPSWQInt, logAnxInt, and logPrevInt). We then use the sum-
mary() function to display the model.

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.57212   15.00782  -0.238    0.812
PSWQ        -0.42218    1.10255  -0.383    0.702
Anxious     -2.64804    2.79283  -0.948    0.343
Previous     1.66905    1.48005   1.128    0.259
logPSWQInt   0.04388    0.29672   0.148    0.882
logAnxInt    0.68151    0.65177   1.046    0.296
logPrevInt  -0.31918    0.31687  -1.007    0.314

Output 8.7

Output 8.7 shows the part of the output that tests the assumption. We’re interested 
only in whether the interaction terms are significant. Any interaction that is significant 
indicates that the main effect has violated the assumption of linearity of the logit. All three 
interactions have significance values (the values in the column Pr(>|z|)) greater than .05, 
indicating that the assumption of linearity of the logit has been met for PSWQ, Anxious 
and Previous.
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8.9.  Predicting several categories: multinomial 
logistic regression 3

I mentioned earlier that it is possible to use logistic regression to predict 
membership of more than two categories and that this is called multinomial 
logistic regression. Essentially, this form of logistic regression works in the 
same way as binary logistic regression, so there’s no need for any additional 
equations to explain what is going on (hooray!). The analysis breaks the out-
come variable down into a series of comparisons between two categories (which 
helps explain why no extra equations are really necessary). For example, 
if you have three outcome categories (A, B and C), then the analysis will con-
sist of two comparisons. The form that these comparisons take depends on 
how you specify the analysis: you can compare everything against your first 
category (e.g., A vs. B and A vs. C), or your last category (e.g., A vs. C and B 

vs. C), or a custom category, for example category B (e.g., B vs. A and B vs. C). In practice, 
this means that you have to select a baseline category. The important parts of the analysis 
and output are much the same as we have just seen for binary logistic regression.

          Labcoat  Len i ’s  Real  Research 8 .1   Mandatory suicide? 2

 
Lacourse, E., et al. (2001). Journal of Youth and Adolescence, 30, 321–332.

Although I have fairly eclectic tastes in music, my favourite kind of music is heavy metal. One thing that is mildly 
irritating about liking heavy metal is that everyone assumes that you’re a miserable or aggressive bastard. When 
not listening (and often while listening) to heavy metal, I spend most of my time researching clinical psychology: 
I research how anxiety develops in children. Therefore, I was literally beside myself with excitement when a few 
years back I stumbled on a paper that combined these two interests: Lacourse, Claes, and Villeneuve (2001) car-
ried out a study to see whether a love of heavy metal could predict suicide risk. Fabulous stuff!

Eric Lacourse and his colleagues used questionnaires to measure several variables: suicide risk (yes or no), 
marital status of parents (together or divorced/separated), the extent to which the person’s mother and father 
were neglectful, self-estrangement/powerlessness (adolescents who have negative self-perceptions, are bored 
with life, etc.), social isolation (feelings of a lack of support), normlessness (beliefs that socially disapproved 
behaviours can be used to achieve certain goals), meaninglessness (doubting that school is relevant to gaining 
employment) and drug use. In addition, the authors measured liking of heavy metal; they included the sub-gen-
res of classic (Black Sabbath, Iron Maiden), thrash metal (Slayer, Metallica), death/black metal (Obituary, Burzum) 
and gothic (Marilyn Manson). As well as liking, they measured behavioural manifestations of worshipping these 
bands (e.g., hanging posters, hanging out with other metal fans) and vicarious music listening (whether music 
was used when angry or to bring out aggressive moods). They used logistic regression to predict suicide risk 
from these predictors for males and females separately.

The data for the female sample are in the file Lacourse et al. (2001) Females.dat. Labcoat Leni wants you 
to carry out a logistic regression predicting Suicide_Risk from all of the predictors (forced entry). (To make 
your results easier to compare to the published results, enter the predictors in the same order as in Table 3 in 

the paper: Age, Marital_Status, Mother_Negligence, Father_Negligence, Self_Estrangement, 
Isolation, Normlessness, Meaninglessness, Drug_Use, Metal, Worshipping, Vicarious). Create 
a table of the results. Does listening to heavy metal predict girls’ suicide? If not, what does?

Answers are in the additional material on the companion website (or look at Table 3 in the original 
article).

What do I do when
I have more than two
outcome categories?
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Let’s look at an example. There has been some work looking at how men and women 
evaluate chat-up lines (Bale, Morrison, & Caryl, 2006; Cooper, O’Donnell, Caryl, 
Morrison, & Bale, 2007). This research has looked at how the content (e.g., whether the 
chat-up line is funny, has sexual content, or reveals desirable personality characteristics) 
affects how favourably the chat-up line is viewed. To sum up this research, it has found 
that men and women like different things in chat-up lines: men prefer chat-up lines with a 
high sexual content, and women prefer chat-up lines that are funny and show 
good moral fibre. 

Imagine that we wanted to assess how successful these chat-up lines were. 
We did a study in which we recorded the chat-up lines used by 348 men 
and 672 women in a nightclub. Our outcome was whether the chat-up line 
resulted in one of the following three events: the person got no response or 
the recipient walked away, the person obtained the recipient’s phone number, 
or the person left the nightclub with the recipient. Afterwards, the chat-up 
lines used in each case were rated by a panel of judges for how funny they 
were (0 = not funny at all, 10 = the funniest thing that I have ever heard), 
sexuality (0 = no sexual content at all, 10 = very sexually direct) and whether 
the chat-up line reflected good moral values (0 = the chat-up line does not 
reflect good characteristics, 10 = the chat-up line is very indicative of good 
characteristics). For example, ‘I may not be Fred Flintstone, but I bet I could 
make your bed rock’ would score high on sexual content, low on good characteristics and 
medium on humour; ‘I’ve been looking all over for you, the woman of my dreams’ would 
score high on good characteristics, low on sexual content and low on humour (as well as 
high on cheese, had it been measured). We predict based on past research that the success 
of different types of chat-up line will interact with gender.

This situation is perfect for multinomial regression. The data are in the file Chat-Up 
Lines.dat. There is one outcome variable (Success) with three categories (no response, 
phone number, go home with recipient) and four predictors: funniness of the chat-up 
line (Funny), sexual content of the chat-up line (Sex), degree to which the chat-up line 
reflects good characteristics (Good_Mate) and the gender of the person being chatted 
up (Female – scored as 1 = female, 0 = male). Read this data file into a dataframe called 
chatData by setting your working directory to the location of the file (see section 3.4.4) 
and executing:

chatData<-read.delim("Chat-Up Lines.dat", header = TRUE)

8.9.1.    Running multinomial logistic regression in R 3

It’s possible to use R Commander to do multinomial logistic regression, but it uses a com-
mand that I think is a little less friendly than the one I prefer. Hence, in this section, you 
will need to use commands. It’s not so bad though. Honest. We are going to use a function 
called mlogit() from the package of the same name (so make sure it is installed and loaded).

             Success Funny Sex Good_Mate Gender
1    Get Phone Number     3   7         6   Male
2 Go Home with Person     5   7         2   Male
3    Get Phone Number     4   6         6   Male
4 Go Home with Person     3   7         5   Male
5    Get Phone Number     5   1         6   Male
6    Get Phone Number     4   7         5   Male
etc.

Output 8.8

The best cat-up line
ever is ‘Hello, would you

like some fish?’
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The data currently look like Output 8.8: data for each person are stored as a row (i.e., 
the data are wide format – see section 3.9). The outcome (Success) and Gender are stored 
as text, therfore R should have imported these variables as factors. We can check this by 
entering each variable into the is.factor() function:

is.factor(chatData$Success)
is.factor(chatData$Gender)

You should find that you get the response TRUE for both, which means that R has imported 
these variables as factors, which is what we want. (If these variables were not factors I could 
convert them, by placing them into the as.factor() function and executing.) 

One consideration at this point is that Gender will have been imported as a factor with 
‘female’ as the baseline category (because female is before male alphabetically – see the first 
example in the chapter). All of our predictions are based on females behaving differently than 
males, so it would be better (in terms of framing out interpretation) to have ‘male’ as the 
baseline category. We saw earlier in the chapter that we can achieve this change by executing:

chatData$Gender<-relevel(chatData$Gender, ref = 2)

This command resets the levels of the variable Gender such that the reference or baseline 
category is the category currently set as 2 (i.e., males become the reference category).9

Before we can run a multinomial logistic regression, we need to get the data into a particu-
lar format. Instead of having one row per person, we need to have one row per person per 
category of the outcome variable. Each row will contain TRUE if the person was assigned to 
that category, and FALSE if they weren’t. If that doesn’t make sense, you shouldn’t worry: 
first, because it will make sense in a minute; and second, because we can use the mlogit.data() 
function to convert our data into the correct format. This function takes the general form:

newDataframe<-mlogit.data(oldDataFrame, choice = "outcome variable", shape 
= "wide"/"long")

It actually has a quite a few more options than this, but we really need to use only the basic 
options. This function creates a new dataframe from an old dataframe (specified in the func-
tion). We need to tell the function the name of the categorical outcome variable, because this 
is the variable it uses to restructure the data. In this example the outcome variable is Success. 
Finally, we tell the function the shape of our original dataframe (wide or long) – in this case 
our data are wide format. Therefore, to restructure the current data we could execute:

mlChat <- mlogit.data(chatData, choice = "Success", shape = "wide")

This command will create a new dataframe called mlChat (which takes a lot less typing 
than ‘multinomial logit chat-up lines’) from the existing dataframe (chatData). We tell the 
function that the outcome variable is Success (choice = “Success”) and the format of the 
original dataframe is wide (shape = “wide”). The new dataframe looks like Output 8.9.

                      Success Funny Sex Good_Mate Gender chid              
1.Get Phone Number        TRUE     3   7         6   Male    1     
1.Go Home with Person    FALSE     3   7         6   Male    1 
1.No response/Walk Off   FALSE     3   7         6   Male    1
2.Get Phone Number       FALSE     5   7         2   Male    2
2.Go Home with Person     TRUE     5   7         2   Male    2
2.No response/Walk Off   FALSE     5   7         2   Male    2
etc.

Output 8.9

9 Making this change will affect the parameter estimates for the main effects, but not for the interaction terms, 
which are the effects in which we’re actually interested.
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Now let’s compare Output 8.9 with the first six rows of the original dataframe 
(chatData) in Output 8.8. The first person in the chatData dataframe was assigned to 
the category of ‘get phone number’. In the new dataframe, that person has been split 
into three rows, each labelled 1 on the far left (to indicate that this is person 1). Next 
to each 1 is one of the three possible outcomes: get phone number, go home, and no 
response/walk off. The third column tells us which of those events occurred. The first 
person, remember, was assigned to the ‘get phone number’ category, so in the new 
dataframe they have been given a response of TRUE next to ‘get phone number’ but 
in the next two rows (which represent the same person’s responses but to the other 
two possible outcomes) they have been assigned FALSE (because these outcomes didn’t 
happen). The next variable in mlChat is Funny. The first row in the original data 
set (Output 8.8) has a score a 3 on this variable; because this person’s data are now 
spread over three rows, the first three rows (which represent one person) score a 3 on 
this variable in mlChat (Output 8.9). Hopefully you can see how the data have been 
restructured.

Now we are ready to run the multinomial logistic regression, using the mlogit() function. 
The mlogit() function looks very similar to the glm() function that we met earlier in the 
chapter for logistic regression. It takes the general form:

newModel<-mlogit(outcome ~ predictor(s), data = dataFrame, na.action = an 
action, reflevel = a number representing the baseline category for the 
outcome)

in which:

MM newModel is an object created that contains information about the model. We can get 
summary statistics for this model by executing summary(newModel).

MM outcome is the variable that you’re trying to predict. In this example it will be the 
variable Success.

MM predictor(s) lists the variable or variables from which you’re trying to predict the 
outcome variable.

MM dataFrame is the name of the dataframe from which your outcome and predictor 
variables come.

MM na.action is an optional command. If you have complete data (as here) you can ignore 
it, but if you have missing values (i.e., NAs in the dataframe) then it can be useful – 
see R’s Souls’ Tip 7.1).

MM relevel is a number representing the outcome category that you want to use as a 
baseline.

As you can see, the basic idea is the same as the lm() and glm() commands with which 
you should be familiar. However, one important difference is that we need to specify the 
reference or baseline category. 

SELF-TEST

ü	 Think about the three categories that we have as 
an outcome variable. Which of these categories do 
you think makes most sense to use as a baseline 
category?

08-Field_R-4368-Ch-08.indd   349 29/02/2012   6:18:15 PM



350 D ISCOVER ING STAT IST ICS  US ING R

The best option is probably “No response / Walk off ”. This is referenced with number 
3 in the data (it is the third category listed in Output 8.9). We can specify this by using 
reflevel = 3 in the function.

The next issue is what to include within the model. In this example, the main effects 
are not particularly interesting: based on past research, we don’t necessarily expect 
funny chat-up lines to be successful, but we do expect them to be more successful when 
used on women than on men. What this prediction implies is that the interaction of 
Gender and Funny will be significant. Similarly, chat-up lines with a high sexual content 
might not be successful overall, but we expect them to be relatively successful when 
used on men. Again, this means that we might not expect the Sex main effect to be 
significant, but we do expect the Sex×Gender interaction to be significant. As such, we 
need to enter these interaction terms (Sex×Gender and Funny×Gender) into the model. 
To evaluate these interactions we must also include the main effects. However, we are 
not particularly interested in higher-order interactions such as Sex×Funny×Gender 
because we don’t (theoretically) predict the success of chat-up lines should vary across 
genders with the combination of being sexy and funny. We can, therefore, create the 
model by executing:

chatModel <- mlogit(Success ~ 1 | Good_Mate + Funny + Gender + Sex + 
Gender:Sex +  Funny:Gender, data = mlChat, reflevel = 3)

This command looks (as I said) very like the glm() model. However, notice that instead of 
the outcome variable just being Success we write ‘Success~1 |’. We won’t worry about why, 
that’s just how you do it. Then you put the formula, as with the glm() or the lm() functions. 
Notice that the model contains all main effects but just two interactions: Sex×Gender and 
Funny×Gender.

8.9.2.    Interpreting the multinomial logistic regression output 3

The summary of the model can be obtained by executing:

summary(chatModel) 

SELF-TEST

ü	 What does the log-likelihood measure?

Call:

mlogit(formula = Success ~ 1 | Good_Mate + Funny + Gender + Sex + 

    Gender:Sex + Funny:Gender, data = mlChat, reflevel = 3, method = "nr", 

    print.level = 0)

Frequencies of alternatives:

No response/Walk Off     Get Phone Number  Go Home with Person 

             0.39216              0.47549              0.13235 
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nr method

6 iterations, 0h:0m:0s 

g’(-H)^-1g = 0.00121 

successive fonction values within tolerance limits 

Coefficients :

                                           Estimate Std. Error t-value  Pr(>|t|)    

altGet Phone Number                       -1.783070   0.669772 -2.6622 0.0077631 ** 

altGo Home with Person                    -4.286354   0.941398 -4.5532 5.284e-06 ***

altGet Phone Number:Good_Mate              0.131840   0.053726  2.4539 0.0141306 *  

altGo Home with Person:Good_Mate           0.130019   0.083521  1.5567 0.1195351    

altGet Phone Number:Funny                  0.139389   0.110126  1.2657 0.2056135    

altGo Home with Person:Funny               0.318456   0.125302  2.5415 0.0110376 *  

altGet Phone Number:GenderFemale          -1.646223   0.796247 -2.0675 0.0386891 *  

altGo Home with Person:GenderFemale       -5.626369   1.328589 -4.2348 2.287e-05 ***

altGet Phone Number:Sex                    0.276206   0.089197  3.0966 0.0019577 ** 

altGo Home with Person:Sex                 0.417283   0.122083  3.4180 0.0006307 ***

altGet Phone Number:GenderFemale:Sex      -0.348326   0.105875 -3.2900 0.0010020 ** 

altGo Home with Person:GenderFemale:Sex   -0.476639   0.163434 -2.9164 0.0035409 ** 

altGet Phone Number:Funny:GenderFemale     0.492441   0.139992  3.5176 0.0004354 ***

altGo Home with Person:Funny:GenderFemale  1.172404   0.199240  5.8844 3.996e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log-Likelihood: -868.74

McFadden R^2:  0.13816 

Likelihood ratio test : chisq = 278.52 (p.value=< 2.22e-16) 

Output 8.10

Output 8.10 shows the model parameters. There’s a lot of information scattered about 
in there to look at. We get a log-likelihood ratio of the overall model. Remember that 
the log-likelihood is a measure of how much unexplained variability there is in the data; 
therefore, the difference or change in log-likelihood indicates how much new variance has 
been explained by the model. The chi-square test tests the decrease in unexplained vari-
ance from the baseline model (if you ran that model you would find the log-likelihood 
was −1008.00)10 to the final model (−868.74), which is a difference of 139.26. We need 
to multiply this by 2 to get the chi-square test (because we want to compare the −2LL so 
we multiply by 2), which gives 278.52. This change is significant, which means that our 
final model explains a significant amount of the original variability (in other words, it’s a 
better fit than the original model). Just above the likelihood ratio test we are also given a 
McFadden R2, a measure of effect size.

To help with the interpretation we can exponentiate the coefficients, using the exp() func-
tion, as we did with the logistic coefficients. These coefficients are stored in a variable called 
coefficients attached to the model, so we can access them using chatModel$coefficients. To 
see the exponentiated versions of them, we could execute:

exp(chatModel$coefficients)

10 If you like, try this out by executing (note that all of the main effects and predictors are removed from the 
formula, so this represents a model including only the intercept):

chatBase<-mlogit(Success ~ 1, data = mlChat, reflevel = 3)
summary(chatBase)
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The resulting output is a bit horrible, and we can make it nicer by asking R to print the 
variable as a dataframe by enclosing the above command in the data.frame() function:

data.frame(exp(chatModel$coefficients))

The resulting odds ratios are shown in Output 8.11. 

                                                exp.chatModel.coefficients.
altGet Phone Number                                   0.16812128
altGo Home with Person                                0.01375498
altGet Phone Number:Good_Mate                         1.14092570
altGo Home with Person:Good_Mate                      1.13885057
altGet Phone Number:Funny                             1.14957104
altGo Home with Person:Funny                          1.37500360
altGet Phone Number:GenderFemale                      0.19277659
altGo Home with Person:GenderFemale                   0.00360163
altGet Phone Number:Sex                               1.31811957
altGo Home with Person:Sex                            1.51783194
altGet Phone Number:GenderFemale:Sex                  0.70586855
altGo Home with Person:GenderFemale:Sex               0.62086652
altGet Phone Number:Funny:GenderFemale                1.63630634
altGo Home with Person:Funny:GenderFemale             3.22974620 

Output 8.11

Now let’s look at the individual parameter estimates from Outputs 8.10 and 8.11. Note 
that each predictor has two parameters associated with it. This is because these param-
eters compare pairs of outcome categories. We specified No response/walk off as our 
reference category; therefore, the parts of the table outputs labelled Get Phone Number 
are comparing this category against the No response/walk off category. Similarly, the 
parts labelled Go home with person are comparing this category against the No response/
walk off category.

We can get confidence intervals for these coefficients using the confint() function (and 
again we exponentiate to make these confidence intervals for the odds ratios). Execute:

exp(confint(chatModel))

The resulting confidence intervals are shown in Output 8.12.

                                                 2.5 %     97.5 %
altGet Phone Number                       0.0452388315 0.62478988
altGo Home with Person                    0.0021734046 0.08705211
altGet Phone Number:Good_Mate             1.0268939646 1.26762012
altGo Home with Person:Good_Mate          0.9668821194 1.34140512
altGet Phone Number:Funny                 0.9263950895 1.42651186
altGo Home with Person:Funny              1.0755891423 1.75776681
altGet Phone Number:GenderFemale          0.0404843865 0.91795423
altGo Home with Person:GenderFemale       0.0002664414 0.04868514
altGet Phone Number:Sex                   1.1066999501 1.56992797
altGo Home with Person:Sex                1.1948318258 1.92814902
altGet Phone Number:GenderFemale:Sex      0.5735912484 0.86865066
altGo Home with Person:GenderFemale:Sex   0.4506952417 0.85529022
altGet Phone Number:Funny:GenderFemale    1.2436632929 2.15291265
altGo Home with Person:Funny:GenderFemale 2.1856202907 4.77267737

Output 8.12

Let’s look at the effects one by one; because we are just comparing two catego-
ries the interpretation is the same as for binary logistic regression (so if you don’t  
understand my conclusions reread the start of this chapter). First let’s look at the parts 
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of the outputs for the Get phone number category compared to the No response/walk 
off category

MM Good_Mate: Whether the chat-up line showed signs of good moral fibre signifi-
cantly predicted whether you got a phone number or no response, b = 0.13, p < 
.05. The odds ratio (1.141) tells us that as this variable increases, so as chat-up 
lines show one more unit of moral fibre, the change in the odds of getting a phone 
number (rather than no response) is 1.14. In short, you’re more likely to get a 
phone number than not if you use a chat-up line that demonstrates good moral 
fibre. 

MM Funny: Whether the chat-up line was funny did not significantly predict whether 
you got a phone number or no response, b = 0.14, p > .05. Note that although this 
predictor is not significant, the odds ratio (1.15) is approximately the same as for the 
previous predictor (which was significant). So, the effect size is comparable, but the 
non-significance stems from a relatively higher standard error. (Note that this effect 
is superseded by the interaction with gender below.)

MM Gender: The gender of the person being chatted up significantly predicted whether 
they gave out their phone number or gave no response, b = −1.65, p < .05. This 
is the effect of females compared to males. The odds ratio tells us that as gender 
changes from male (0) to female (1) the change in the odds of giving out a phone 
number compared to not responding is 0.19. In other words, the odds of a man giv-
ing out his phone number compared to not responding are 1/0.19 = 5.26 times the 
odds for a woman. Men are cheap.

MM Sex: The sexual content of the chat-up line significantly predicted whether you got a 
phone number or no response, b = 0.28, p < .01. The odds ratio tells us that as the 
sexual content increased by a unit, the change in the odds of getting a phone number 
(rather than no response) is 1.32. In short, you’re more likely to get a phone number 
than not if you use a chat-up line with high sexual content. (But this effect is super-
seded by the interaction with gender.)

MM Funny×Gender: The success of funny chat-up lines depended on whether they were 
delivered to a man or a woman because in interaction these variables predicted 
whether or not you got a phone number, b = 0.49, p < .001. Bearing in mind 
how we interpreted the effect of gender above, the odds ratio tells us that as gender 
changes from male (0) to female (1) in combination with funniness increasing, the 
change in the odds of giving out a phone number compared to not responding was 
1.64. In other words, as funniness increases, women become more likely to hand out 
their phone number than men. Funny chat-up lines are more successful when used 
on women than men.

MM Sex×Gender: The success of chat-up lines with sexual content depended on whether 
they were delivered to a man or a woman because in interaction these variables pre-
dicted whether or not you got a phone number, b = −0.35, p < .01. Bearing in mind 
how we interpreted the interaction above (note that b is negative here but positive 
above), the odds ratio tells us that as gender changes from male (0) to female (1) in 
combination with the sexual content increasing, the change in the odds of giving out 
a phone number compared to not responding is 0.71. In other words, as sexual con-
tent increases, women become less likely than men to hand out their phone number. 
Chat-up lines with a high sexual content are more successful when used on men than 
women.
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Now let’s look at the individual parameter estimates for the Go home with person cat-
egory compared to the No response/walk off category. We can interpret these effects as 
follows:

MM Good_Mate: Whether the chat-up line showed signs of good moral fibre did not sig-
nificantly predict whether you went home with the date or got no response, b = 0.13, 
p > .05. In short, you’re not significantly more likely to go home with the person if 
you use a chat-up line that demonstrates good moral fibre.

MM Funny: Whether the chat-up line was funny significantly predicted whether you went 
home with the date or no response, b = 0.32, p < .05. The odds ratio tells us that 
as chat-up lines are one unit funnier, the change in the odds of going home with the 
person (rather than no response) is 1.38. In short, you’re more likely to go home with 
the person than get no response if you use a chat-up line that is funny. (This effect, 
though, is superseded by the interaction with gender below.)

MM Female: The gender of the person being chatted up significantly predicted whether 
they went home with the person or gave no response, b = −5.63, p < .001. The odds 
ratio tells us that as gender changes from male (0) to female (1) the change in the 
odds of going home with the person compared to not responding is 0.004. In other 
words, the odds of a man going home with someone compared to not responding are 
1/0.004 = 250 times more likely than for a woman. Men are really cheap.

MM Sex: The sexual content of the chat-up line significantly predicted whether you went 
home with the date or got no response, b = 0.42, p < .01. The odds ratio tells us that 
as the sexual content increased by a unit, the change in the odds of going home with 
the person (rather than no response) is 1.52: you’re more likely to go home with the 
person than not if you use a chat-up line with high sexual content. (Note that this 
effect is superseded by the interaction with gender below.)

MM Funny×Gender: The success of funny chat-up lines depended on whether they were 
delivered to a man or a woman because in interaction these variables predicted 
whether or not you went home with the date, b = 1.17, p < .001. The odds ratio 
tells us that as gender changes from female (0) to male (1) in combination with fun-
niness increasing, the change in the odds of going home with the person compared to 
getting no response is 3.23. As funniness increases, women become more likely to go 
home with the person than men. Funny chat-up lines are more successful when used 
on women compared to men.

MM Sex×Gender: The success of chat-up lines with sexual content depended on whether 
they were delivered to a man or a woman because in interaction these variables pre-
dicted whether or not you went home with the date, b = −0.48, p < .01. The odds 
ratio tells us that as gender changes from male (0) to female (1) in combination with 
the sexual content increasing, the change in the odds of going home with the date 
compared to not responding is 0.62. As sexual content increases, women become less 
likely than men to go home with the person. Chat-up lines with sexual content are 
more successful when used on men than women.

SELF-TEST

ü	 Use what you learnt earlier in this chapter to check 
the assumptions of multicollinearity and linearity of 
the logit.
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8.9.3.    Reporting the results

We can report the results as with binary logistic regression using a table (see Table 8.3). 
Note that I have split the table by the outcome categories being compared, but otherwise it 
is the same as before. These effects are interpreted as in the previous section.

Table 8.3  How to report multinomial logistic regression

95% CI for odds ratio

B (SE) Lower Odds Ratio Upper

Phone number vs. no response

Intercept −1.78 (0.67)**

Good Mate    0.13 (0.05)* 1.03 1.14 1.27

Funny    0.14 (0.11) 0.93 1.15 1.43

Female −1.65 (0.80)* 0.04 0.19 0.92

Sexual Content    0.28 (0.09)** 1.11 1.32 1.57

Female × Funny    0.49 (0.14)*** 1.24 1.64 2.15

Female × Sex −0.35 (0.11)* 0.57 0.71 0.87

Going home vs. no response

Intercept −4.29 (0.94)***

Good Mate    0.13 (0.08) 0.97 1.14 1.34

Funny    0.32 (0.13)* 1.08 1.38 1.76

Female −5.63 (1.33)*** 0.00 0.00 0.05

Sexual Content    0.42 (0.12)** 1.20 1.52 1.93

Female × Funny    1.17 (0.20)*** 2.19 3.23 4.77

Female × Sex −0.48 (0.16)** 0.45 0.62 0.86

What have I discovered about statistics? 1

At the age of 10 I thought I was going to be a rock star. Such was my conviction about 
this that even today (many years on) I’m still not entirely sure how I ended up not being 
a rock star (lack of talent, not being a very cool person, inability to write songs that 
don’t make people want to throw rotting vegetables at you, are all possible explana-
tions). Instead of the glitzy and fun life that I anticipated I am instead reduced to writing 
chapters about things that I don’t even remotely understand.

08-Field_R-4368-Ch-08.indd   355 29/02/2012   6:18:20 PM



356 D ISCOVER ING STAT IST ICS  US ING R

R packages used in this chapter
car mlogit

R functions used in this chapter
anova()
as.factor()
binomial()
confint()
dfbeta()
dffits()
exp()
factor()
fitted()
function()
glm()

hatvalues()
head()
is.factor()
log()
mlogit()
mlogit.data()
pchisq()
relevel()
rstandard()
rstudent()
summary()
vif()

Key terms that I’ve discovered
−2LL
Binary logistic regression
Chi-square distribution
Complete separation
Cox and Snell’s R2

CS

Deviance
Hosmer and Lemeshow’s R2

L 

Interaction effect
Likelihood
Logistic regression
Log-likelihood

Main effect
Maximum-likelihood estimation
Multinomial logistic regression
Nagelkerke’s R2

N 

Normal distribution
Odds
Odds ratio
Polychotomous logistic regression 
Suppressor effects
Wald statistic
z-statistic

We began the chapter by looking at why we can’t use linear regression when we have 
a categorical outcome, but instead have to use binary logistic regression (two outcome 
categories) or multinomial logistic regression (several outcome categories). We then 
looked into some of the theory of logistic regression by looking at the regression equa-
tion and what it means. Then we moved onto assessing the model and talked about the 
log-likelihood statistic and the associated chi-square test. I talked about different meth-
ods of obtaining equivalents to R2 in regression (Hosmer– Lemeshow, Cox–Snell and 
Nagelkerke). We also discovered the z-statistic and odds ratio. The rest of the chapter 
looked at three examples using R to carry out various logistic regressions. So, hopefully, 
you should have a pretty good idea of how to conduct and interpret a logistic regression 
by now.

Having decided that I was going to be a rock star I put on my little denim jacket with 
Iron Maiden patches sewn onto it and headed off down the rocky road of stardom. The 
first stop was … my school. 
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Smart Alex’s tasks

MM Task 1: A psychologist was interested in whether children’s understanding of display 
rules can be predicted from their age, and whether the child possesses a theory of 
mind. A display rule is a convention of displaying an appropriate emotion in a given 
situation. For example, if you receive a Christmas present that you don’t like, the 
appropriate emotional display is to smile politely and say ‘Thank you, Auntie Kate, 
I’ve always wanted a rotting cabbage’. The inappropriate emotional display is to start 
crying and scream ‘Why did you buy me a rotting cabbage, you selfish old bag?’ Using 
appropriate display rules has been linked to having a theory of mind (the ability to 
understand what another person might be thinking). To test this theory, children 
were given a false belief task (a task used to measure whether someone has a theory 
of mind), a display rule task (which they could either pass or fail) and their age in 
months was measured. The data are in Display.dat. Run a logistic regression to see 
whether possession of display rule understanding (did the child pass the test? – yes/
no) can be predicted from possession of a theory of mind (did the child pass the false 
belief task? – yes/no), age in months and their interaction. 3

MM Task 2: Recent research has shown that lecturers are among the most stressed work-
ers. A researcher wanted to know exactly what it was about being a lecturer that 
created this stress and subsequent burnout. She took 467 lecturers and administered 
several questionnaires to them that measured: Burnout (burnt out or not), Perceived 
Control (high score = low perceived control), Coping Style (high score = high ability 
to cope with stress), Stress from Teaching (high score = teaching creates a lot of stress 
for the person), Stress from Research (high score = research creates a lot of stress for 
the person) and Stress from Providing Pastoral Care (high score = providing pastoral 
care creates a lot of stress for the person). The outcome of interest was burnout, and 
Cooper, Sloan, and Williams’s (1988) model of stress indicates that perceived control 
and coping style are important predictors of this variable. The remaining predictors 
were measured to see the unique contribution of different aspects of a lecturer’s work 
to their burnout. Can you help her out by conducting a logistic regression to see 
which factors predict burnout? The data are in Burnout.dat. 3

MM Task 3: A health psychologist interested in research into HIV wanted to know the fac-
tors that influenced condom use with a new partner (relationship less than 1 month 
old). The outcome measure was whether a condom was used (use: condom used = 1, 
not used = 0). The predictor variables were mainly scales from the Condom Attitude 
Scale (CAS) by Sacco, Levine, Reed, and Thompson (1991): gender (gender of the 
person); safety (relationship safety, measured out of 5, indicates the degree to which 
the person views this relationship as ‘safe’ from sexually transmitted disease); sexexp 
(sexual experience, measured out of 10, indicates the degree to which previous expe-
rience influences attitudes towards condom use); previous (a measure not from the 
CAS, this variable measures whether or not the couple used a condom in their previ-
ous encounter: 1 = condom used, 0 = not used, 2 = no previous encounter with this 
partner); selfcon (self-control, measured out of 9, indicates the degree of self-control 
that a person has when it comes to condom use, i.e., whether they get carried away 
with the heat of the moment, or exert control); perceive (perceived risk, measured 
out of 6, indicates the degree to which the person feels at risk from unprotected sex). 
Previous research (Sacco, Rickman, Thompson, Levine, & Reed, 1993) has shown 
that gender, relationship safety and perceived risk predict condom use. Carry out 
an appropriate analysis to verify these previous findings, and to test whether self- 
control, previous usage and sexual experience can predict any of the remaining 
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variance in condom use. (1) Interpret all important parts of the R output. (2) How 
reliable is the final model? (3) What are the probabilities that participants 12, 53 and 
75 will use a condom? (4) A female who used a condom in her previous encounter 
with her new partner scores 2 on all variables except perceived risk (for which she 
scores 6). Use the model to estimate the probability that she will use a condom in her 
next encounter. Data are in the file condom.dat. 3

Answers can be found on the companion website.
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9
Comparing two means

FIGURE 9.1
My (probably) 
eighth birthday. 
From left to right: 
my brother Paul 
(who still hides 
behind cakes 
rather than have 
his photo taken), 
Paul Spreckley, 
Alan Palsey, Clair 
Sparks and me

9.1.  What will this chapter tell me? 1

Having successfully slayed audiences at holiday camps around the country, my next step 
towards global domination was my primary school. I had learnt another Chuck Berry song 
(‘Johnny B. Goode’), but also broadened my repertoire to include songs by other artists (I 
have a feeling ‘Over the Edge’ by Status Quo was one of them).1 Needless to say, when the 
opportunity came to play at a school assembly I jumped at it. The headmaster tried to have 

1 This would have been about 1982, so just before they became the most laughably bad band on the planet. Some 
would argue that they were always the most laughably bad band on the planet, but they were the first band that 
I called my favourite band.
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me banned,2 but the show went on. It was a huge success (I want to reiterate my earlier 
point that 10-year-olds are very easily impressed). My classmates carried me around the 
playground on their shoulders. I was a hero. Around this time I had a childhood sweetheart 
called Clair Sparks. Actually, we had been sweethearts since before my new-found rock 
legend status. I don’t think the guitar playing and singing impressed her much, but she 
rode a motorbike (really, a little child’s one) which impressed me quite a lot; I was utterly 
convinced that we would one day get married and live happily ever after. I was utterly 
convinced, that is, until she ran off with Simon Hudson. Being 10, she probably literally 
did run off with him – across the playground. To make this important decision of which 
boyfriend to have, Clair had needed to compare two men (Andy and Simon) to see which 
one was better; sometimes in science we want to do the same thing, to compare one man 
against another to see if there is evidence that one is different from the other. Sorry, did 
I write ‘man’? I forgot the ‘e’: this chapter is about the process of comparing two means, 
not men.

9.2.  Packages used in this chapter 1

There are several packages we will use in this chapter. You will need the packages pastecs 
(for descriptive statistics), ggplot2 (for graphs), WRS (for robust methods) and of course 
Rcmdr (R Commander) if you’re going to use that rather than commands (see section 3.6). 
If you don’t have these packages installed you’ll need to install them by executing: 

install.packages("ggplot2"); install.packages("pastecs"); install.packages 
("WRS")

Then you need to load the packages by executing these commands:

library(ggplot2); library(pastecs); library(WRS)

9.3.  Looking at differences 1

Rather than looking at relationships between variables, researchers are sometimes inter-
ested in looking at differences between groups of people. In particular, in experimental 
research we often want to manipulate what happens to people so that we can make causal 
inferences. For example, if we take two groups of people and randomly assign one group 
a programme of dieting pills and the other group a programme of sugar pills (which they 
think will help them lose weight) then if the people who take the dieting pills lose more 
weight than those on the sugar pills we can infer that the diet pills caused the weight loss. 
This is a powerful research tool because it goes one step beyond merely observing vari-
ables and looking for relationships (as in correlation and regression).3 This chapter is the 
first of many that look at this kind of research scenario, and we start with the simplest 
scenario: when we have two groups, or, to be more specific, when we want to compare 
two means. As we have seen (Chapter 1), there are two different ways of collecting data: 

2 Seriously! Can you imagine a headmaster banning a 10-year-old from assembly? By this time I had an electric 
guitar and he used to play hymns on an acoustic guitar; I can assume only that he somehow lost all perspective 
on the situation and decided that a 10-year-old blasting out some Quo in a squeaky little voice was subversive or 
something.

3 People sometimes get confused and think that certain statistical procedures allow causal inferences and others 
don’t. This isn’t true (see Jane Superbrain Box 1.4).
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we can either expose different people to different experimental manipulations (between-
group or independent design), or take a single group of people and expose them to dif-
ferent experimental manipulations at different points in time (repeated-measures design). 
Sometimes people are tempted to compare artificially created groups by, for example, 
dividing people into groups based on a median score; however, this is generally a bad idea 
(see Jane Superbrain Box 9.1).

(40%) and Birgit (0%). If we split these four people at 
the median (50%) then we’re saying that Jip and Kiki 
are the same (they get a score of 1 = phobic) and 
Peter and Birgit are the same (they both get a score of 
0 = not phobic). In reality, Kiki and Peter are the most 
similar of the four people, but they have been put in 
different groups. So, median splits change the origi-
nal information quite dramatically (Peter and Kiki are 
originally very similar but become very different after 
the split, Jip and Kiki are relatively dissimilar originally 
but become identical after the split).

2.	 Effect sizes get smaller: if you correlate two continu-
ous variables then the effect size will be larger than 
if you correlate the same variables after one of them 
has been dichotomized. Effect sizes also get smaller 
in ANOVA and regression.

3.	 There is an increased chance of finding spurious effects.

So, if your supervisor has just told you to do a median 
split, have a good think about whether it is the right thing 
to do (and read MacCallum et al.’s paper). One of the 
rare situations in which dichotomizing a continuous vari-
able is justified, according to MacCallum et al., is when 
there is a clear theoretical rationale for distinct categories 
of people based on a meaningful break point (i.e., not the 
median); for example, phobic versus not phobic based 
on diagnosis by a trained clinician would be a legitimate 
dichotomization of anxiety.

Often in research papers you see that people have ana-
lysed their data using a ‘median split’. In our spider pho-
bia example, this means that you measure scores on a 
spider phobia questionnaire and calculate the median. 
You then classify anyone with a score above the median 
as a ‘phobic’, and those below the median as ‘non-pho-
bic’. In doing this you ‘dichotomize’ a continuous vari-
able. This practice is quite common, but is it sensible?

MacCallum, Zhang, Preacher, and Rucker (2002) 
wrote a splendid paper pointing out various problems on 
turning a perfectly decent continuous variable into a cat-
egorical variable:

1.	 Imagine there are four people: Peter, Birgit, Jip and 
Kiki. We measure how scared of spiders they are as 
a percentage and get Jip (100%), Kiki (60%), Peter 

JANE SUPERBRAIN 9.1

Are median splits the devil’s work? 2

9.3.1.   � A problem with error bar graphs of repeated-measures 
designs 1

We saw in Chapter 4 that it is important to visualize group differences using error bars. 
We’re now going to look at a problem that occurs when we graph repeated-measures 
error bars. To do this, we’re going to look at an example that I use throughout this chap-
ter (not because I am too lazy to think up different data sets, but because it allows me to 
illustrate various things). The example relates to whether arachnophobia (fear of spiders) 
is specific to real spiders or whether pictures of spiders can evoke similar levels of anxiety. 
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Twenty-four arachnophobes were used in all. Twelve were asked to play with a big hairy 
tarantula spider with big fangs and an evil look in its eight eyes. Their subsequent anxiety 
was measured. The remaining 12 were shown only pictures of the same big hairy tarantula 
and again their anxiety was measured. The data are in Table 9.1 (and spiderLong.dat if 
you’re having difficulty entering them into R yourself). Remember that each row in the 
data represents a different participant’s data. Therefore, you need a column representing 
the group to which they belonged and a second column representing their anxiety.

SELF-TEST

ü	 Enter these data into a dataframe called spiderLong. 
Using what you learnt in Chapter 4, plot an error bar 
graph of the spider data.

Table 9.1  Data from spiderLong.dat

Participant Group Anxiety

1 Picture 30

2 Picture 35

3 Picture 45

4 Picture 40

5 Picture 50

6 Picture 35

7 Picture 55

8 Picture 25

9 Picture 30

10 Picture 45

11 Picture 40

12 Picture 50

13 Real Spider 40

14 Real Spider 35

15 Real Spider 50

16 Real Spider 55

17 Real Spider 65

18 Real Spider 55

19 Real Spider 50

20 Real Spider 35

21 Real Spider 30

22 Real Spider 50

23 Real Spider 60

24 Real Spider 39
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OK, now let’s imagine that we’d collected these data using the same participants; that is, 
all participants had their anxiety rated after seeing the real spider, but also after seeing the 
picture (in counterbalanced order obviously). The data would now be arranged differently 
in R. Instead of having a coding variable, and a single column with anxiety scores in, we 
would arrange the data in two columns (one representing the picture condition and one 
representing the real condition). The data are displayed in Table 9.2 (and spiderWide.dat 
if you’re having difficulty entering them into R yourself). Note that the anxiety scores are 
identical to the between-group data (Table 9.1) – it’s just that we’re pretending that they 
came from the same people rather than different people.

SELF-TEST

ü	 Enter these data into a dataframe called spiderWide.

Figure 9.2 shows the error bar graphs from the two different designs. Remember that 
the data are exactly the same, all that has changed is whether the design used the same par-
ticipants (repeated measures) or different (independent). Now, we discovered in Chapter 
1 that repeated-measures designs eliminate some extraneous variables (such as age, IQ and 
so on) and so can give us more sensitivity in the data. Therefore, we would expect our 
graphs to be different: the repeated-measures graph should reflect the increased sensitivity 
in the design. Looking at the two error bar graphs, can you spot this difference between 
the graphs?

I can’t either; and this is the problem. The graphs should not be the same.  The moral is: 
Don’t use error bar graphs when you have repeated measures groups. Or if you do, adjust 
the data before you plot the graph (Loftus & Masson, 1994).

Table 9.2  Data from spiderWide.dat

Participant Picture (anxiety score) Real (anxiety score)

1 30 40

2 35 35

3 45 50

4 40 55

5 50 65

6 35 55

7 55 50

8 25 35

9 30 30

10 45 50

11 40 60

12 50 39
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9.3.2.    Step 1: calculate the mean for each participant 2

To correct the repeated-measures error bars requires several steps, but none of them are 
particularly difficult. To begin with, we need to calculate the average anxiety for each 
participant. We’re using the spiderWide dataframe so participants’ scores are stored in two 
columns, therefore we need to simply add these columns and divide by 2 by executing:

spiderWide$pMean<-(spiderWide$picture + spiderWide$real)/2

This command creates a variable called pMean in the dataframe spiderWide, by adding the 
scores for picture and real (from the same dataframe) and dividing by 2.

9.3.3.    Step 2: calculate the grand mean 2

The grand mean is the mean of all scores (regardless of from which condition the score 
comes) and so for the current data this value will be the mean of all 24 scores. A fairly 
simple way to calculate this value is to use the c() function, with which we’re familiar, to 
combine the picture and real variables into a single variable, and then apply the mean() 
function to this new variable. We can do this is a single command:

grandMean<-mean(c(spiderWide$picture, spiderWide$real))

Executing this command creates a variable called grandMean, which is the mean of picture 
and real combined into a single variable (c(spiderWide$picture, spiderWide$real)); in other 
words, it’s the mean of all scores.

9.3.4.    Step 3: calculate the adjustment factor 2

If you look at the variable labelled pMean, you should notice that the values for each 
participant are different, which tells us that some people had greater anxiety than others 
did across the conditions. The fact that participants’ mean anxiety scores differ represents 
individual differences between different people (so it represents the fact that some of the 
participants are generally more scared of spiders than others). These differences in natural 
anxiety contaminate the error bar graphs, which is why if we don’t adjust the values that 

FIGURE 9.2
Two error bar 
graphs of anxiety 
data in the 
presence of a 
real spider or a 
photograph. The 
data on the left are 
treated as though 
they are different 
participants, 
whereas those on 
the right are treated 
as though they 
are from the same 
participants
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we plot, we will get the same graph as if an independent design had been used. Loftus and 
Masson (1994) argue that to eliminate this contamination we should equalize the means 
between participants (i.e., adjust the scores in each condition such that when we take the 
mean score across conditions, it is the same for all participants). To do this, we need to 
calculate an adjustment factor by subtracting each participant’s mean score (pMean) from 
the grand mean (grandMean):

spiderWide$adj<-grandMean-spiderWide$pMean

Executing this command creates a variable adj (short for adjustment) in the spiderWide 
dataframe by taking the variable grandMean (which we just computed) and subtracting 
from it the mean anxiety for each participant (which is stored in the variable pMean, which 
we computed earlier on). The dataframe now looks like this:

  picture real pMean   adj
1      30   40  35.0   8.5
2      35   35  35.0   8.5
3      45   50  47.5  -4.0
4      40   55  47.5  -4.0
5      50   65  57.5 -14.0
6      35   55  45.0  -1.5
etc.

There is a new variable in the data editor called adj. The scores in this column represent 
the difference between each participant’s mean anxiety and the mean anxiety level across 
all participants. You’ll notice that some of the values are positive, and these participants 
are ones who were less anxious than average. Other participants were more anxious than 
average, and they have negative adjustment scores. We can now use these adjustment values 
to eliminate the between-subject differences in anxiety.

9.3.5.    Step 4: create adjusted values for each variable 2

So far, we have calculated the difference between each participant’s mean score and the 
mean score of all participants (the grand mean). This difference can be used to adjust the 
existing scores for each participant. First we need to adjust the scores in the picture condi-
tion. All we do is take the original score (picture) and add to it the value of the adjustment 
(adj):

spiderWide$picture_adj<-spiderWide$picture + spiderWide$adj

Executing this command creates a variable picture_adj in the spiderWide dataframe by add-
ing the adjustment (spiderWide$adj) to the original anxiety scores after seeing the picture 
(spiderWide$picture). We can do exactly the same to create adjusted values of real:

spiderWide$real_adj<-spiderWide$real + spiderWide$adj

Executing this command creates a variable real_adj in the spiderWide dataframe by adding 
the adjustment (spiderWide$adj) to the original anxiety scores after seeing the real spider 
(spiderWide$real). The dataframe now looks like this:

  picture real pMean   adj picture_adj real_adj
1      30   40  35.0   8.5        38.5     48.5
2      35   35  35.0   8.5        43.5     43.5
3      45   50  47.5  -4.0        41.0     46.0
4      40   55  47.5  -4.0        36.0     51.0
5      50   65  57.5 -14.0        36.0     51.0
6      35   55  45.0  -1.5        33.5     53.5
etc.
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Now, the variables real_adj and picture_adj represent the anxiety experienced in each 
condition, adjusted so as to eliminate any between-subject differences. If you don’t believe 
me, then use the mean() function to create a variable pMean2 that is the average of real_adj 
and picture_adj (just like we did in section 9.3.2). You should find that the value in this 
column is the same for every participant, thus proving that the between-subject variability 
in means is gone: the value will be 43.50 – the grand mean. We can also wrap all of these 
steps together in a function for use with other dataframes (R’s Souls’ Tip 9.1).

SELF-TEST

ü	 Create an error bar chart of the mean of the adjusted 
values that you have just made (real_adj and 
picture_adj).

FIGURE 9.3
Error bar graph 
of the adjusted 
values of the 
spiderWide 
dataframe
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The resulting error bar graph is shown in Figure 9.3. Compare this graph to the graphs 
in Figure 9.2 – what differences do you see? The first thing to notice is that the means in 
the two conditions have not changed. However, the error bars have changed: they have 
got smaller. Also, whereas in Figure 9.2 the error bars overlap, in this new graph they do 
not. In Chapter 2 we discovered that when error bars do not overlap we can be fairly con-
fident that our samples have not come from the same population (and so our experimental 
manipulation has been successful). Therefore, when we plot the proper error bars for the 
repeated-measures data it shows the extra sensitivity that this design has: the differences 
between conditions appear to be significant, whereas when different participants are used, 
there does not appear to be a significant difference. (Remember that the means in both 
situations are identical, but the sampling error is smaller in the repeated-measures design.) 
I expand upon this point in section 9.7.
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          R ’s  Souls ’  T ip  9 .1   How to impress your friends 3

 
The process we went through to adjust the scores for the fact they were from a repeated-measures design 
could be wrapped up in a function (see R’s Souls’ Tip 6.2). This would enable us to apply the function to a 
dataframe, which would be useful if we wanted to adjust lots of pairs of variables. The function would look 
like this:

rmMeanAdjust<-function(dataframe)
{
	 varNames<-names(dataframe)
	 pMean<-(dataframe[,1] + dataframe[,2])/2
	 grandmean<-mean(c(dataframe[,1], dataframe[,2]))
	 adj<-grandmean-pMean
	 varA_adj<-dataframe[,1] + adj
	 varB_adj<-dataframe[,2] + adj
	 output<-data.frame(varA_adj, varB_adj)
	 names(output)<-c(paste(varNames[1], "Adj", sep = "_"), paste(varNames[2],
"_Adj", sep = "_"))
	 return(output)
}

Executing these commands creates a function called rmMeanAdjust which takes a dataframe as input, and out-
puts a dataframe containing the adjusted scores. Let’s look at the contents of the function:

•	 varNames<-names(dataframe) gets the names of the variables in the dataframe entered into the function 
and stores them in varNames.

•	 pMean<-(dataframe[,1] + dataframe[,2])/2 computes pMean by adding the first and second columns of 
the dataframe and diving by 2.

•	 grandmean<-mean(c(dataframe[,1], dataframe[,2])) computes the grand mean by merging the first two 
columns of the dataframe and computing the mean.

•	 adj<-grandmean-pMean calculates the adjustment for each row of the dataframe by subtracting pMean 
from grandmean.

•	 varA_adj<-dataframe[,1] + adj creates a new variable (varA_adj) that is the first column of the dataframe 
plus the adjustment factor.

•	 varB_adj<-dataframe[,2] + adj creates a new variable (varB_adj) that is the second column of the dataframe 
plus the adjustment factor.

•	 output<-data.frame(varA_adj, varB_adj) binds varA_adj and varB_adj together in a dataframe named 
output.

•	 names(output)<-c(paste(varNames[1], “adj”, sep = “_”), paste(varNames[2], “_adj”, sep = “_”)) renames 
the columns of the dataframe as the name of the original variable in the original dataframe plus “_adj”. So, 
a variable called picture becomes picture_adj.

•	 return(output) returns the dataframe of adjusted values.

We can now use this function on a dataframe (remember that it will adjust the first two columns of the dataframe 
so we’re assuming that we’re entering a column dataframe with the scores for the two repeated-measures condi-
tions in each column). We apply the function to the original dataframe spiderWide (the one that contained only 
picture and real) by executing:

rmMeanAdjust(spiderWide)
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9.4.  The t-test 1

We have seen in previous chapters that the t-test is very versatile: it can 
be used to test whether a correlation coefficient is different from 0; it can 
also be used to test whether a regression coefficient, b, is different from 0. 
However, it can also be used to test whether two group means are different. 
It is to this use that we now turn.

The simplest form of experiment that can be done is one with only one 
independent variable that is manipulated in only two ways and only one out-
come is measured. More often than not the manipulation of the independent 
variable involves having an experimental condition and a control group (see 
Field & Hole, 2003). Some examples of this kind of design are:

MM �Is the movie Scream 2 scarier than the original Scream? We could measure heart rates 
(which indicate anxiety) during both films and compare them.

MM Does listening to music while you work improve your work? You could get some 
people to write an essay (or book!) while listening to their favourite music, and then 
write a different essay while working in silence (this is a control group). You could 
then compare the essay marks.

MM Does listening to Andy’s favourite music improve your work? You could repeat the 
above but rather than letting people work with their favourite music, you could play 
them some of my favourite music (as listed in the acknowledgements) and watch the 
quality of their work plummet. 

The t-test can analyse these sorts of scenarios. Of course, there are more complex experi-
mental designs and we will look at these in subsequent chapters. There are, in fact, two 
different t-tests and the one you use depends on whether the independent variable was 
manipulated using the same participants or different:

MM Independent-means t-test: This test is used when there are two experimental condi-
tions and different participants were assigned to each condition (this is sometimes 
called the independent-measures or independent-samples t-test).

The result is:

   picture_adj real__adj
1         38.5      48.5
2         43.5      43.5
3         41.0      46.0
4         36.0      51.0
5         36.0      51.0
6         33.5      53.5
7         46.0      41.0
8         38.5      48.5
9         43.5      43.5
10        41.0      46.0
11        33.5      53.5
12        49.0      38.0

Pretty cool, I think you’ll agree. By ‘cool’, I mean sad, obviously.

What’s the difference
between the independent

and dependent t-test?
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MM Dependent-means t-test: This test is used when there are two experimental condi-
tions and the same participants took part in both conditions of the experiment (this 
test is sometimes referred to as the matched-pairs or paired-samples t-test).

9.4.1.    Rationale for the t-test 1

Both t-tests have a similar rationale, which is based on what we learnt in Chapter 2 about 
hypothesis testing:

MM Two samples of data are collected and the sample means calculated. These means 
might differ by either a little or a lot.

MM If the samples come from the same population, then we expect their means to be roughly 
equal (see section 2.5.1). Although it is possible for their means to differ by chance 
alone, we would expect large differences between sample means to occur very infre-
quently. Under the null hypothesis we assume that the experimental manipulation has 
no effect on the participants: therefore, we expect the sample means to be very similar.

MM We compare the difference between the sample means that we collected to the dif-
ference between the sample means that we would expect to obtain if there were no 
effect (i.e., if the null hypothesis were true). We use the standard error (see section 
2.5.1) as a gauge of the variability between sample means. If the standard error is 
small, then we expect most samples to have very similar means. When the standard 
error is large, large differences in sample means are more likely. If the difference 
between the samples we have collected is larger than we would expect based on the 
standard error then we can assume one of two things:
	There is no effect and sample means in our population fluctuate a lot and we have, by 

chance, collected two samples that are atypical of the population from which they came.
	The two samples come from different populations but are typical of their respective 

parent population. In this scenario, the difference between samples represents a 
genuine difference between the samples (and so the null hypothesis is incorrect).

MM As the observed difference between the sample means gets larger, the more confident we 
become that the second explanation is correct (i.e., that the null hypothesis should be 
rejected). If the null hypothesis is incorrect, then we gain confidence that the two sample 
means differ because of the different experimental manipulation imposed on each sample.

I mentioned in section 2.6.1 that most test statistics can be thought of as the ‘variance 
explained by the model’ divided by the ‘variance that the model can’t explain’. In other 
words, effect/error. When comparing two means the ‘model’ that we fit to the data (the 
effect) is the difference between the two group means. We saw also in Chapter 2 that means 
vary from sample to sample (sampling variation) and that we can use the standard error 
as a measure of how much means fluctuate (in other words, the error in the estimate of 
the mean). Therefore, we can also use the standard error of the differences between the 
two means as an estimate of the error in our model (or the error in the difference between 
means). Therefore, we calculate the t-test using the following equation: 

t =

observed difference 
between sample  
means

−
expected difference 
between population means
(if null hypothesis is true)

     (9.1)
estimate of the standard error of the difference between two 
sample means
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The top half of the equation is the ‘model’ – our model being that the difference between 
means (which we expect to be non-zero) is bigger than the expected difference (which 
in most cases will be zero). The bottom half is the ‘error’. So, just as I said in Chapter 2, 
we’re basically getting the test statistic by dividing the model (or effect) by the error in the 
model. The exact form that this equation takes depends on whether the same or different 
participants were used in each experimental condition.

9.4.2.    The t-test as a general linear model 2

A lot of you might think it’s odd that a t-test can be used to test whether a correlation 
coefficient (or b  in regression) is different from 0 and yet now I’m telling you that it can 
be used to test differences between two means. You might well be thinking ‘but correla-
tions and bs show relationships, not differences between means – what is this fool going on 
about?’. You may be starting not to trust me, or stuffing the book in a box to post it back 
for a refund.

I used to think this too until I read a fantastic paper by Cohen (1968), which made 
me realize what I’d been missing; the complex, thorny, weed-infested and Andy-eating-
tarantula-inhabited world of statistics suddenly turned into a beautiful meadow filled with 
tulips and little bleating lambs all jumping for joy at the wonder of life. Actually, I’m still a 
bumbling fool trying desperately to avoid having the blood sucked from my flaccid corpse 
by the tarantulas of statistics, but it was a good paper. Recall from section 2.4.3 that all 
statistical procedures are basically the same, they’re just more or less elaborate versions of 
this simple model:

outcomei = (model) + errori

In Chapter 7 we saw that the t-test was used to test whether the regression coefficient 
of a predictor was equal to zero. The experimental design for which the independent t-test 
is used can be conceptualized as a regression equation (after all, there is one independent 
variable (predictor) and one dependent variable (outcome)). If we want to predict our out-
come, then we can use the general equation that I’ve repeated above.

If we want to use a linear model, then we saw that this general equation becomes equa-
tion (7.2) in which the model is defined by the slope and intercept of a straight line. 
Equation (9.2) shows a very similar equation in which Ai is the dependent variable (out-
come), b0 is the intercept, b1 is the weighting of the predictor and Gi is the independent 
variable (predictor). Now, I’ve also included the same equation but with some of the letters 
replaced with what they represent in the spider experiment (so A = anxiety, G = group). 
When we run an experiment with two conditions, the independent variable has only two 
values (group 1 or group 2). There are several ways in which these groups can be coded (in 
the spider example we coded group 1 with the value 0 and group 2 with the value 1). This 
coding variable is known as a dummy variable and values of this variable represent groups 
of entities. We have come across this coding in section 7.12:

A b b G

b b
i i i

i i i

= + +
= + +

( )

( )
0 1

0 1

ε
εanxiety group 	 (9.2)

Using the spider example, we know that the mean anxiety of the picture group was 40, 
and that the group variable is equal to 0 for this condition. Look at what happens when the 
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group variable is equal to 0 (the picture condition): equation (9.2) becomes (if we ignore 
the residual term)

X b b

b X

b

picture

picture

= + ×

=
=

0 1

0

0

0

40

( )

Therefore, b0 (the intercept) is equal to the mean of the picture group (i.e., it is the mean 
of the group coded as 0). Now let’s look at what happens when the group variable is equal 
to 1. This condition is the one in which a real spider was used, and the mean anxiety (X–

 
real) 

of this condition was 47. Remembering that we have just found out that b0 is equal to the 
mean of the picture group (X–

 
picture), equation (9.2) becomes

X

X X

X X

real

real picture

real picture

1)= + ×

= +

= −
= −

b b

b

b

b

0 1

1

1

1 47 40

(  

== 7

b1, therefore, represents the difference between the group means. As such, we can rep-
resent a two-group experiment as a regression equation in which the coefficient of the 
independent variable (b1) is equal to the difference between group means, and the inter-
cept (b0) is equal to the mean of the group coded as 0. In regression, the t-test is used to 
ascertain whether the regression coefficient (b1) is equal to 0, and when we carry out a 
t-test on grouped data we, therefore, test whether the difference between group means is 
equal to 0.

SELF-TEST

ü	 Let me prove that I’m not making it up as I go along. 
Using the lm() function, run a regression on the data 
in spiderLong.dat with Group as the predictor and 
Anxiety as the outcome. 

The resulting R output should contain the regression summary table shown in Output 
9.1. The first thing to notice is the value of the constant (b0): its value is 40, the same as the 
mean of the base category (the picture group). The second thing to notice is that the value 
of the regression coefficient b1 is 7, which is the difference between the two group means 
(47 − 40 = 7). Finally, the t-statistic, which tests whether b1 is significantly different from 
zero, is not significant, indicating that b1 (i.e., the difference between group means) is not 
significantly different from zero.

Call:
lm(formula = Anxiety ~ Group, data = spiderLong)

Residuals:
   Min     1Q Median     3Q    Max 
 -17.0   -8.5    1.5    8.0   18.0 
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Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)        40.000      2.944  13.587 3.53e-12 ***
GroupReal Spider    7.000      4.163   1.681    0.107    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 10.2 on 22 degrees of freedom
Multiple R-squared: 0.1139,	 Adjusted R-squared: 0.07359 
F-statistic: 2.827 on 1 and 22 DF,  p-value: 0.1068 

Output 9.1

Although we have looked at the situation in which the different groups are independent 
(i.e., different entities are tested in different conditions) repeated-measures designs can be 
conceptualized in much the same way; however, because in this situation data points will 
not be independent it’s more complicated to explain how it works (and also unnecessary). 
However, we will get into this subject more in Chapters 13, 14 and 19. For now, I hope to 
have demonstrated that differences between means can be represented in terms of linear 
models. If you have understood this section, then you are well on your way to understand-
ing the next six chapters of this book.

9.4.3.    Assumptions of the t-test 1

Given that the t-test is basically regression, it has much the same assumptions. Both the 
independent t-test and the dependent t-test are parametric tests based on the normal distri-
bution (see Chapter 5). Therefore, they assume:

MM The sampling distribution is normally distributed. In the dependent t-test this means 
that the sampling distribution of the differences between scores should be normal, not 
the scores themselves (see section 9.6.3.4).

MM Data are measured at least at the interval level.

The independent t-test, because it is used to test different groups of people, also assumes:

MM Scores in different treatment conditions are independent (because they come from 
different people).

MM Homogeneity of variance – well, at least in theory we assume equal variances, but in 
reality we don’t (Jane Superbrain Box 9.2).

These assumptions were explained in detail in Chapter 5 and, in that chapter, I empha-
sized the need to check these assumptions before you reach the point of carrying out your 
statistical test.  Let’s now look at each of the two t-tests in more detail.

9.5.  The independent t-test 1

9.5.1.    The independent t-test equation explained 1

We’ll stick with the situation in which different entities have been tested in the different 
conditions of your experiment. This is a situation in which the independent t-test is used. 
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If you choose not to think about the t-test and calculating the t-statistic as a form of regres-
sion, then you can think of it in terms of two equations that differ depending on whether 
the samples contain an equal number of people. We can calculate the t-statistic by using a 
numerical version of equation (9.1); in other words, we are comparing the model or effect 
against the error. When different participants participate in different conditions, pairs of 
scores will differ not just because of the experimental manipulation, but also because of 
other sources of variance (such as individual differences between participants’ motivation, 
IQ, etc.). Therefore, we make comparisons on a per condition basis (by looking at the 
overall effect in a condition):

t
X X

=
− − −( ) ( )1 2 1 2µ µ

estimate of the standard error 	 (9.3)

Instead of looking at differences between pairs of scores, we now look at differences 
between the overall means of the two samples and compare them to the differences we 
would expect to get between the means of the two populations from which the samples 
come. If the null hypothesis is true then the samples have been drawn from the same popu-
lation. Therefore, under the null hypothesis µ1 = µ2 and therefore, µ1 − µ2 = 0. Therefore, 
under the null hypothesis the equation becomes

t
X X

=
−( )1 2

estimate of the standard error 	 (9.4)

For the independent t-test we are looking at differences between groups and so we divide 
by the standard deviation of differences between groups. We can apply the logic of sampling 
distributions to this situation. Now, imagine we took several pairs of samples – each pair con-
taining one sample from the two different populations – and compared the means of these 

statisticians have stopped using this approach, for two 
reasons. First, violating this assumption only matters if 
you have unequal group sizes; if you don’t have unequal 
group sizes, the assumption is pretty much irrelevant and 
can be ignored. Second, the tests of homogeneity of vari-
ance tend to work very well when you have equal group 
sizes and large samples (when it doesn’t matter as much 
if you have violated the assumption) and don’t work as 
well with unequal group sizes and smaller samples – 
which is exactly when it matters.  

Plus, there is an adjustment (called Welch’s t-test) 
which is able to correct for violation of this assumption – 
it’s quite hard to do if you have to do it by hand, but very 
easy to do if you have a computer. If you have violated 
the assumption, a correction is made – and if you haven’t 
violated the assumption, a correction is not made, so you 
might as well always do Welch’s t-test and forget about 
the assumption. If you’re really interested in this, I like the 
article by Zimmerman (2004). 

You might have read about homogeneity of variance as 
being an assumption that is made by the independent 
t-test. It is the same assumption that we came across 
in regression, as the homoscedasticity assumption, and 
statisticians used to recommend testing for it (using 
Levene’s test) and if the assumption was violated, use 
an adjustment to correct for it. However, more recently 

JANE SUPERBRAIN 9.2

What about the assumption of  
homogeneity of variance? 2
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samples. From what we have learnt about sampling distributions, we know that the majority 
of samples from a population will have fairly similar means. Therefore, if we took several 
pairs of samples (from different populations), the differences between the sample means will 
be similar across pairs. However, often the difference between a pair of sample means will 
deviate by a small amount and very occasionally it will deviate by a large amount. If we could 
plot a sampling distribution of the differences between every pair of sample means that could 
be taken from two populations, then we would find that it had a normal distribution with a 
mean equal to the difference between population means (µ1 −µ2). The sampling distribution 
would tell us by how much we can expect the means of two (or more) samples to differ. As 
before, the standard deviation of the sampling distribution (the standard error) tells us how 
variable the differences between sample means are by chance alone. If the standard deviation 
is high then large differences between sample means can occur by chance; if it is small then 
only small differences between sample means are expected. It, therefore, makes sense that we 
use the standard error of the sampling distribution to assess whether the difference between 
two sample means is statistically meaningful or simply a chance result. Specifically, we divide 
the difference between sample means by the standard deviation of the sampling distribution.

So, how do we obtain the standard deviation of the sampling distribution of differences 
between sample means? Well, we use the variance sum law, which states that the variance of 
a difference between two independent variables is equal to the sum of their variances (see, 
for example, Howell, 2006). This statement means that the variance of the sampling distri-
bution is equal to the sum of the variances of the two populations from which the samples 
were taken. We saw earlier that the standard error is the standard deviation of the sampling 
distribution of a population. We can use the sample standard deviations to calculate the 
standard error of each population’s sampling distribution:

SEof samplingdistributionof population

SEof samplingdist

1 1

1

=
s

N

rributionof population2 2

2

=
s

N

Therefore, remembering that the variance is simply the standard deviation squared, we can 
calculate the variance of each sampling distribution:

varianceof samplingdistributionof population1
1

1

2

1=



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N
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2

2
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2
2
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The variance sum law means that to find the variance of the sampling distribution of dif-
ferences we merely add together the variances of the sampling distributions of the two 
populations:

var ianceof samplingdistributionof differences =
s
N

s
N

1
2

1

2
2

2

+

To find out the standard error of the sampling distribution of differences we merely take 
the square root of the variance (because variance is the standard deviation squared):

SEof samplingdistributionof differences = s
N

s
N

1
2

1

2
2

2

+
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Therefore, equation (9.4) becomes:

t
X X

s
N

s
N

=
−

+

1 2

1
2

1

2
2

2

	 (9.5)

Equation (9.5) is true only when the sample sizes are equal. Often in science it is not 
possible to collect samples of equal size (because, for example, people may not complete 
an experiment). When we want to compare two groups that contain different numbers of 
participants then equation (9.5) is not appropriate. Instead the pooled variance estimate 
t-test is used, which takes account of the difference in sample size by weighting the vari-
ance of each sample. We saw in Chapter 1 that large samples are better than small ones 
because they more closely approximate the population; therefore, we weight the variance 
by the size of sample on which it’s based (we actually weight by the number of degrees of 
freedom, which is the sample size minus 1). Therefore, the pooled variance estimate is:

s
n s n s

n np
2 1 1

2
2 2

2

1 2

1 1
2

=
− + −

+ −
( ) ( )

This is simply a weighted average in which each variance is multiplied (weighted) by its 
degrees of freedom, and then we divide by the sum of weights (or sum of the two degrees 
of freedom). The resulting weighted average variance is then just replaced in the t-test 
equation:

t
X X

s

n

s

n

=
−

+

1 2

2

1

2

2

p p

We can compare the obtained value of t against the maximum value we would expect 
to get by chance alone in a t-distribution with the same degrees of freedom (these val-
ues can be found in the Appendix); if the value we obtain exceeds this critical value we 
can be confident that this reflects an effect of our independent variable. One thing that 
should be apparent from the equation for t is that to compute it you don’t actually need 
any raw data. All you need are the means, standard deviations and sample sizes (see R’s 
Souls’ Tip 9.2).

The derivation of the t-statistic is merely to provide a conceptual grasp of what we are 
doing when we carry out a t-test using R. Therefore, if you don’t know what on earth I’m 
babbling on about then don’t worry about it (just spare a thought for my cat: he has to 
listen to this rubbish all the time) because R knows how to do it and that’s all that matters.

9.5.2.    Doing the independent t-test 1

I have probably bored most of you to the point of wanting to eat your own legs by now. 
Equations are boring and that is why R was invented to help us minimize our contact with 
them. Using our spider data again (spiderLong.dat), we have 12 arachnophobes who were 
exposed to a picture of a spider and 12 different spider-phobes who were exposed to a 
real-life tarantula (the groups are coded using the variable Group). Their anxiety was mea-
sured in each condition (Anxiety). I have already described how the data are arranged (see 
section 9.2), so we can move straight onto doing the test itself. 
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          R ’s  Souls ’  T ip  9 .2   Computing t from means, SDs and Ns 3

 
You can compute a t-test in R from only the two group means, the two group standard deviations and the two 
group sizes. First we’ll calculate: x1 (mean of group 1), x2 (mean of group 2), sd1 (standard deviation of group 
1), sd2 (standard deviation of group 2), n1 (sample size of group 1) and n2 (sample size of group 2). 

x1 <- mean(spiderLong[spiderLong$Group=="Real Spider",]$Anxiety)
x2 <- mean(spiderLong[spiderLong$Group=="Picture",]$Anxiety)
sd1 <- sd(spiderLong[spiderLong$Group=="Real Spider",]$Anxiety)
sd2 <- sd(spiderLong[spiderLong$Group=="Picture",]$Anxiety)
n1 <- length(spiderLong[spiderLong$Group=="Real Spider",]$Anxiety)
n2 <- length(spiderLong[spiderLong$Group=="Picture",]$Anxiety)

Now we can calculate the t-test by writing and executing a function (see R’s Souls’ Tip 6.2):

ttestfromMeans<-function(x1, x2, sd1, sd2, n1, n2)
{
	 df<-n1 + n2 - 2
	 poolvar<-(((n1-1)*sd1^2)+((n2-1)*sd2^2))/df
	 t<-(x1-x2)/sqrt(poolvar*((1/n1)+(1/n2)))
	 sig<-2*(1-(pt(abs(t),df)))
	 paste("t(df = ", df, ") = ", t, ", p = ", sig, sep = "")
}

Executing these commands creates a function called ttestfromMeans which takes the means, standard devia-
tions and sample sizes of the two groups, and outputs the resulting t-test to compare those two means. Let’s look 
at the contents of the function:

•	 df<-n1 + n2 - 2 computes the degrees of freedom.
•	 poolvar<-(((n1-1)*sd1^2)+((n2-1)*sd2^2))/df computes the pooled variance estimate, sp

2

•	 t <-(x1-x2)/sqrt(poolvar*((1/n1)+(1/n2))) computes the t-statistic.
•	 sig<-2*(1-(pt(abs(t),df))) calculates the p-value.
•	 paste("t(df = ", df, ") = ", t, ", p = ", sig, sep = "") pastes together some text and the values of t, df and 

the p-value to print to the console.
We can now use this function on the means, standard deviations and sample sizes that we computed earlier 

by executing:

ttestfromMeans(x1, x2, sd1, sd2, n1, n2)

The result is the same as if we’d computed it from the raw data (see Output 9.3):

[1] "t(df = 22) = 1.68134561495341, p = 0.106839192382597"

9.5.2.1.  General procedure for the independent t-test 1

To conduct an independent t-test you should follow this general procedure:

1	 Enter data.

2	 Explore your data: as with any analysis, it’s a good idea to begin by graphing your 
data and computing some descriptive statistics. You should also check distributional 
assumptions (see Chapter 5).
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3	 Compute the test: you can then run the t-test. Depending on what you found in the 
previous step, you might need to run a robust version of the test.

4	 Calculate an effect size: it is useful to quantify your effect with an effect size.

We will work through these steps in turn.

9.5.2.2.  Entering data 1

One of the strange things about the t-test using R is that if you use the t.test() function, 
it actually doesn’t matter how you enter your data: you can enter it in both wide or long 
format: it does not matter at all because the function contains an option paired = TRUE/
FALSE, which tells it whether to treat data as dependent or independent. However, R 
Commander does care, so we’ll stick to convention and enter the data in a long format, 
which R Commander expects. You should have already entered the data if you completed 
the self-help test earlier in the chapter; if not, you can enter the data as:

Group<-gl(2, 12, labels = c( "Picture", "Real Spider"))

Anxiety<-c(30, 35, 45, 40, 50, 35, 55, 25, 30, 45, 40, 50, 40, 35, 50, 55, 
65, 55, 50, 35, 30, 50, 60, 39)

The data are entered in two columns (one called Group which specifies whether a real 
spider or picture was used and one called Anxiety which indicates the person’s anxiety 
when faced with the picture/real spider). These commands create a variable called Anxiety 
with the 24 anxiety scores contained within it, and a variable called Group, which uses the 
gl() function to create a factor variable with two groups each containing 12 participants. 
Finally, we can merge these variables into a dataframe called spiderLong by executing:

spiderLong<-data.frame(Group, Anxiety)

9.5.2.3.  The independent t-test using R Commander 1

As always, first import the data, using Data⇒Import data⇒from text file, clipboard, or 
URL… (see section 3.7.3), click  and choose the file spiderLong.dat.

FIGURE 9.4
The independent 
t-test using R 
Commander

09-Field_R-4368-Ch-09.indd   377 28/02/2012   6:05:20 PM



378 D ISCOVER ING STAT IST ICS  US ING R

To run an independent t-test, choose Statistics⇒Means⇒Independent samples t-test.  
Figure 9.4 shows the dialog box that appears. On the left-hand side, in the list labelled 
Groups (pick one), choose a variable that distinguishes your two experimental groups. R 
Commander expects this variable to be a factor – there is only one in our data set, so this 
variable has been highlighted already (Group). On the right-hand side, in the list labelled 
Response Variable (pick one), choose the outcome variable. R Commander expects this 
variable to be numeric, and has highlighted the only variable in our data set, Anxiety.

Our hypothesis is two-sided (or two-tailed), so that option can be left as it is, and we’d 
like 95% confidence intervals – although if we’d like a different confidence level, we can 
change .95 to a different value (.99, to get 99% confidence intervals, for example). Finally, 
we don’t want to make the assumption of equal variances: if we make the assumption, 
and we’re wrong, then our p-value will be wrong; however, if we don’t make the assump-
tion when it would have been OK to make the assumption, it doesn’t matter, because the 
p-value won’t change (Jane Superbrain Box 9.2). To run the analysis click on . The 
output is described in section 9.5.2.6.

9.5.2.4.  Exploring data and testing assumptions 1

In Chapter 4 we saw that it is always a good idea to look at a graph of your data. In this 
case we will produce a line graph with error bars.

SELF-TEST

ü	 Use ggplot2 to produce a boxplot and bar chart with 
error bars showing confidence intervals for the spider 
data.

The bar chart should look like Figure 9.2 and the boxplot is shown in Figure 9.5. The 
bar chart shows that the error bars overlap, indicating that, on face value, there are no 

FIGURE 9.5
Boxplot of the 
anxiety data
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between-group differences (although this measure is only approximate). The boxplot 
shows that the spread of scores was reasonably similar in the two groups, although the real 
spider condition exhibits a spread of scores below the median that is wider than that above 
the median.

To get some descriptive statistics for each group we can use the by() function that we 
encountered in Chapter 5. Remember that this function takes the general form:

by(variable, group, output)

in which variable is the thing that you want to summarize (in this case Anxiety), group is 
the variable that defines the groups by which you want to organize the output (in this case 
Group), and output is a function that tells R what output you would like to see (i.e., the 
mean). If we use the function stat.desc() from the package pastecs then R will output a host 
of useful descriptive statistics). Therefore, by combining by() and stat.desc(), we can get a 
table of descriptives for each group in a single line of code:

by(spiderLong$Anxiety, spiderLong$Group, stat.desc, basic = FALSE, norm = 
TRUE)

Output 9.2 shows the resulting descriptive statistics (I have edited the output slightly 
to fit the page so you will see more decimal places). From this output, we can see that the 
group who saw the picture of the spider had a mean anxiety of 40, with a standard devia-
tion of 9.29. What’s more, the standard error of that group (the standard deviation of the 
sampling distribution) is 2.68 (SE = 9.293/√12 = 9.293/3.464 = 2.68). In addition, the 
table tells us that the average anxiety level in participants who were shown a real spider 
was 47, with a standard deviation of 11.03 and a standard error of 3.18 (SE = 11.029/√12 
= 11.029/3.464 = 3.18). Also, both normality tests are non-significant (p = .852 for the 
picture group and p = .621 for the real group) implying that we can probably assume nor-
mality of errors in the model.

spiderLong$Group: Picture
median    mean  SE.mean CI.mean.0.95  var   std.dev coef.var 
40.000   40.000  2.683   5.905       86.364   9.293    0.232

skewness  skew.2SE  kurtosis  kurt.2SE  normtest.W   normtest.p
0.000        0.000   -1.394     -0.566     0.965        0.852 
------------------------------------------------------------------- 
: 
spiderLong$Group: Real Spider
median    mean  SE.mean CI.mean.0.95  var   std.dev coef.var 
50.000   47.000  3.1834  7.007      121.636  11.029    0.235  

skewness  skew.2SE  kurtosis  kurt.2SE  normtest.W   normtest.p
-0.006      -0.004   -1.460     -0.592     0.949        0.621

Output 9.2

9.5.2.5.  The independent t-test using R 1

To do a t-test we use the function t.test(). There are two different ways that you can use this 
function and it depends on whether your group data are in a single column (as they are in 
spiderLong.dat) or if they are in two different columns (as they are in spiderWide.dat). If 
you have the data for different groups stored in a single column, then the t.test() function 
is used like the lm() function (in other words, like a regression):

newModel<-t.test(outcome ~ predictor, data = dataFrame, paired = FALSE/TRUE)
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in which:

MM newModel is an object created that contains information about the model. We can get 
summary statistics for this model by executing the name of the model.

MM outcome is a variable that contains the scores for the outcome measure (in this case 
Anxiety).

MM predictor is a variable that tells us to which group a score belongs (in this case Group).
MM dataFrame is the name of the dataframe containing the aforementioned variables.
MM paired determines whether or not you want to do a paired/dependent t-test (in which 

case include paired = TRUE) or an independent t-test (in which case exclude the 
option because this is the default, or include paired = FALSE).

However, if you have the data for different groups stored in two columns, then the 
t.test() function takes this form:

newModel<-t.test(scores group 1, scores group 2, paired = FALSE/TRUE)

in which, the options are the same as before except:

MM scores group 1 is a variable that contains the scores for the first group.

MM scores group 2 is a variable that contains the scores for the second group. (If you want 
to do a one-sample t-test then simply exclude this second variable.)

In both forms of the function, there are additional options that can be specified, but do 
not need to be if you are happy to use the defaults. These are:

MM alternative = “two.sided”/“less”/“greater”: This option determines whether you’re 
doing a two-tailed test, and if not the direction of your hypothesis. It has three pos-
sible values: the default value is to do a two-tailed test (alternative = “two.sided”, or 
don’t include the option). If you want to do a one-tailed test then you can specify 
either alternative = “less” (you predict that the difference between means will be less 
than zero) or alternative = “greater” (you predict that the difference between means 
will be greater than zero).

MM mu = 0: A difference between means of zero is the default null hypothesis, but can be 
changed. For example, including mu = 3 in the function would test the null hypoth-
esis that the difference between means is different to 3.

MM var.equal: By default the function assumes that variances are unequal (var.equal = 
FALSE). If for some reason you want to assume equal variances (we can’t think why 
you would), then include the option var.equal = TRUE.

MM conf.level = 0.95: This determines the alpha level for the p-value and confidence inter-
vals. By default it is 0.95 (for 95% confidence intervals) and usually you’d exclude 
this option, but if you want to use a different value, say 99%, you could include conf.
level = 0.99.

MM na.action: If you have complete data (as we have here) you can exclude this option, 
but if you have missing values (i.e., ‘NA’s in the dataframe) then it can be useful to 
use na.action = na.exclude, which will exclude all cases with missing values – see R’s 
Souls’ Tip 7.1.

Therefore, we could carry out an independent t-test on the data in the spiderLong data-
frame (which looks like this):
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         Group Anxiety
1      Picture      30
2      Picture      35
3      Picture      45
4      Picture      40
5      Picture      50
6      Picture      35
7      Picture      55
8      Picture      25
9      Picture      30
10     Picture      45
11     Picture      40
12     Picture      50
13 Real Spider      40
14 Real Spider      35
15 Real Spider      50
16 Real Spider      55
17 Real Spider      65
18 Real Spider      55
19 Real Spider      50
20 Real Spider      35
21 Real Spider      30
22 Real Spider      50
23 Real Spider      60
24 Real Spider      39

by executing:

ind.t.test<-t.test(Anxiety ~ Group, data = spiderLong)
ind.t.test

which creates a model called ind.t.test based on predicting anxiety scores (Anxiety) from 
group membership (Group). We can view this model by executing its name (hence the 
second command).

Alternatively, if we’d input the data as in spiderWide, which looks like this:

   picture real
1       30   40
2       35   35
3       45   50
4       40   55
5       50   65
6       35   55
7       55   50
8       25   35
9       30   30
10      45   50
11      40   60
12      50   39

we would need to run the t-test by executing:

ind.t.test<-t.test(spiderWide$real, spiderWide$picture)
ind.t.test

These commands create a model called ind.t.test based on the variables real and picture in 
the spiderWide dataframe. As before, we view this model by executing its name.
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9.5.2.6.  Output from the independent t-test 1

Regardless of how you enter the data or specify the t.test() function, the output is basically 
identical: see Output 9.3. First we are given the value for t, the degrees of freedom and 
the p-value. The p-value is greater than .05, and hence we cannot reject the null hypoth-
esis of no difference between the groups. Note that the t-value and p-value are the same 
as when we ran the analysis as a linear model in section 9.4.2 (Output 9.1). The p-value 
is a little bit different, because the degrees of freedom have been adjusted to correct for 
heteroscedasticity.4

The confidence intervals give the range of the difference that we would expect to include 
the true difference on 95% of occasions. The interval ranges from −15.6 to +1.65, which 
indicates a quite wide range of possible values for the true difference.  Finally, we’re given 
the means of the two groups: −40 and 47 (we knew these already from the descriptive 
statistics).

You might notice that the degrees of freedom are weird. Earlier on we said that the 
degrees of freedom are calculated by adding the two sample sizes and then subtracting 
the number of samples (df = N1 + N2 − 2 = 12 + 12 − 2 = 22); however, the output 
reports 21.39. This discrepancy is  because this function uses a Welch’s t-test, which does 
not make the assumption of homogeneity of variance. The Welch uses a correction which 
adjusts the degrees of freedom based on the  homogeneity of variance, so rather than  
22 degrees of freedom (as we’d expect) we have 21.39 degrees of freedom. This has had 
the effect of changing the p-value from 0.1068 to 0.107, both of which we would report 
as 0.107 anyway. When the sample sizes are equal, the adjustment will not make very 
much difference. (The formula is really big and complicated, and doesn’t make much 
sense to me anyway, but if you’re interested, Wikipedia has it: http://en.wikipedia.org/
wiki/Welch’s_t_test.)

        Welch Two Sample t-test

data:  Anxiety by Group 

t = -1.6813, df = 21.385, p-value = 0.1072

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:
 -15.648641   1.648641 

sample estimates:
    mean in group Picture mean in group Real Spider 
                       40                        47 

Output 9.3

9.5.2.7.  Robust methods to compare independent means 2

Wilcox (2005) describes some robust procedures for comparing two means from indepen-
dent groups. Load these functions using the instructions in section 5.8.4. Having done this, 

4 It’s possible to make the same adjustment with the lm() function to correct for heteroscedasticity, but it’s much 
more complicated. The approach is called a ‘sandwhich’ estimator, and it’s done using the sandwich() function.  
The sandwich function takes the arguments bread and meat. (Some descriptions written by vegetarians use bread 
and tofu.) (Really, we’re not joking: see http://www.bsos.umd.edu/gvpt/uslaner/robustregression.pdf.) 
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we now have access to Wilcox’s functions. Regardless of whether your data come from the 
same or different entities, these functions require the data to be in two different columns 
(one for each experimental condition). We already have the data in this format in the spi-
derWide dataframe.

This is the format that Wilcox’s functions expect. The first robust function, yuen(), is 
based on a trimmed mean. It takes the general form:

yuen(scores group 1, scores group 2,  tr = .2, alpha = .05)

in which

MM scores group 1 is a variable that contains the scores for the first group.

MM scores group 2 is a variable that contains the scores for the second group. 

MM tr is the proportion of trimming to be done. The default is .2 or 20%, and you need 
to use this option only if you want to specify an amount other than 20%.

MM alpha sets the alpha level for the test. You need to include this option only if you don’t 
want to use the conventional level of .05.

As such, for a test of independent means based on 20% trimming we simply execute:

yuen(spiderWide$real, spiderWide$picture)

If we wanted to trim only 10% of the data then we could execute:

yuen(spiderWide$real, spiderWide$picture, tr = .1)

If you execute this command you will see Output 9.4, which shows that based on this 
robust test there is not a significant difference in anxiety scores across the two spider 
groups, Ty(13.91) = 1.296, p = .216.

We can also compare trimmed means but include a bootstrap by using yuenbt(), which 
takes the general form:

yuenbt(scores group 1, scores group 2,  tr = .2, nboot = 599, alpha = .05, 
side = F)

As you can see, this function takes the same form as yuen(), but has two additional 
instructions:

MM nboot = 599: This specifies the number of bootstrap samples to be used. If you 
exclude this option then the default is 599, which, if anything, you might want to 
increase (but it’s probably not necessary to use more than 2000).

MM side = F: By default the function bootstraps confidence intervals as is, which means 
that they can be asymmetric. If you want to force the confidence intervals to be sym-
metrical then include side = T in the function. If you do this you will get a p-value, 
but by default you won’t (although you can infer significance from whether the con-
fidence interval crosses zero).

For a bootstrap test of independent means based on 20% trimming we simply execute:

yuenbt(spiderWide$real, spiderWide$picture, nboot = 2000)

If you execute this command you will see Output 9.4, which shows that based on this 
robust test there is not a significant difference (because the confidence interval crosses 
zero) in anxiety scores across the two spider groups, Yt = 1.19 (−5.40, 17.87).
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yuen() output yuenbt() output pb2gen() output

$ci
[1] -4.429 17.929

$p.value
[1] 0.2161433

$dif
[1] 6.75

$se
[1] 5.209309

$teststat
[1] 1.295757

$crit
[1] 2.146035

$df
[1] 13.91372

$ci
[1]-5.399 17.869

$test.stat
[1] 1.193625

$p.value
[1] NA

$ci
[1] -2.25 20.00

$p.value
[1] 0.16

$sq.se
[1] 21.96355

Output 9.4

A final method is to use a bootstrap and an M-estimator (rather than trimmed mean) by 
applying pb2gen() function. This function has the general form:

pb2gen(spiderWide$real, spiderWide$picture, alpha=.05, nboot=2000, est = 
mom)

which is the same as yuenbt() except that we can chose an estimator (the default of mom is 
fine). As such, for a bootstrap test of independent M-estimators we execute:

pb2gen(spiderWide$real, spiderWide$picture, nboot=2000)

If you execute the pb2gen() function with the default settings you will see Output 9.4, 
which shows that based on this robust test there is not a significant difference (because 
the confidence interval crosses zero) in anxiety scores across the two spider groups, p = 
.16. In short, all three robust methods suggest that the type of spider stimulus does not 
affect anxiety.

9.5.2.8.  Calculating the effect size 2

Even though our t-statistic is not statistically significant, this doesn’t necessarily mean that 
our effect is unimportant in practical terms. To discover whether the effect is substantive 
we need to use what we know about effect sizes (see section 2.6.4). I’m going to stick with 
the effect size r because it’s widely understood and frequently used. Converting a t-value 
into an r-value is actually really easy; we can use the following equation (e.g. Rosenthal, 
1991; Rosnow & Rosenthal, 2005):

r
t

t df
=

+

2

2
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We know the value of t and the df from the R output and so we can compute r as follows:

r =
−

− +
= =

( . )
( . ) .

.
.

.
1 681

1 681 21 39
2 826
24 22

34
2

2

We can also calculate r (the effect size) using R. The value of t is stored in our model 
as a variable called statistic[[1]] and the degrees of freedom are stored as parameter[[1]]. 
(Actually statistic and parameter can contain many things and so the ‘[[1]]’ tells R that we 
want the first value only.) We can access these values just as we would any other variable, 
we tell R where to find them (i.e., the name of the model, in this case ind.t.test) and then 
append a dollar sign and the name of the variable. Therefore, we can create a variable t that 
contains the value of t by executing:

t<-ind.t.test$statistic[[1]]

We can similarly create a variable called df containing the degrees of freedom by 
executing:

df<-ind.t.test$parameter[[1]]

We can then calculate r by executing:

r <- sqrt(t^2/(t^2+df))

This command is simply the equation above but in R-speak, and it creates a variable called 
r. If we want to see the value we could execute the variable name, or use the round() func-
tion to display it rounded off to, say 3 decimal places:

round(r, 3)

The result is the same as if we calculated by hand (r = .342). If you think back to our bench-
marks for effect sizes, this represents a medium effect (it is around .3, the threshold for a 
medium effect). Therefore, even though the effect was non-significant, it still represented 
a fairly substantial effect.

9.5.2.9.  Reporting the independent t-test 1

There is a fairly standard way to report any test statistic: you usually state the finding to which 
the test relates and then report the test statistic, its degrees of freedom and the probability 
value of that test statistic. There has also been a recent move (by the American Psychological 
Association among others) to recommend that an estimate of the effect size is routinely reported. 
Although effect sizes are still rather sporadically used, I want to get you into good habits so 
we’ll start thinking about effect sizes now. The R output tells us that the value of t was −1.68, 
that the number of degrees of freedom on which this was based was 21.39, and that it was 
not significant at p < .05. We can also see the means for each group. We could write this as:

✓	 On average, participants experienced greater anxiety from real spiders (M = 47.00, 
SE = 3.18), than from pictures of spiders (M = 40.00, SE = 2.68). This difference was 
not significant t(21.39) = −1.68, p > .05; however, it did represent a medium-sized 
effect r = .34.

Note how we’ve reported the means in each group (and standard errors) as before. For 
the test statistic everything is much the same as before except that I’ve had to report that 
p was greater than (>) .05 rather than less than (<). Finally, note that I’ve commented on 
the effect size at the end.
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9.6.  The dependent t-test 1

As with the independent t-test, the dependent t-test is a numeric version of equation (9.1):

t
D

s N

D

D

=
−µ

/
	 (9.6)

Equation (9.6) compares the mean difference between our samples (D–) to the difference 
that we would expect to find between population means (µD), and then takes into account 
the standard error of the differences (s ND / ). If the null hypothesis is true, then we expect 
there to be no difference between the population means (hence µD = 0).

9.6.1.    Sampling distributions and the standard error 1

In equation (9.1) I referred to the lower half of the equation as the standard error of dif-
ferences. The standard error was introduced in section 2.5.1 and is simply the standard 
deviation of the sampling distribution. Have a look back at this section now to refresh your 
memory about sampling distributions and the standard error. Sampling distributions have 
several properties that are important. For one thing, if the population is normally distrib-
uted then so is the sampling distribution; in fact, if the samples contain more than about 50 
scores the sampling distribution should be normally distributed. The mean of the sampling 
distribution is equal to the mean of the population, so the average of all possible sample 
means should be the same as the population mean. This property makes sense because if a 
sample is representative of the population then you would expect its mean to be equal to 
that of the population. However, sometimes samples are unrepresentative and their means 
differ from the population mean. On average, though, a sample mean will be very close to 
the population mean and only rarely will the sample mean be substantially different from 
that of the population. A final property of a sampling distribution is that its standard devia-
tion is equal to the standard deviation of the population divided by the square root of the 
number of observations in the sample. As I mentioned before, this standard deviation is 
known as the standard error.

We can extend this idea to look at the differences between sample means. If you were to 
take several pairs of samples from a population and calculate their means, then you could 

             CRAMMING SAM’S TIPS    The independent t-test

•	 The independent t-test compares two means, when those means have come from different groups of entities; for example, 
if you have used different participants in each of two experimental conditions.

•	 Look at the value labelled p-value. If the value is less than .05 then the means of the two groups are significantly different.
•	 Look at the values of the means to tell you how the groups differ.
•	 Report the t-statistic, the degrees of freedom and the p-value. Also report the means and their corresponding standard errors 

(or draw an error bar chart).
•	 Calculate and report the effect size.
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also calculate the difference between their means. I mentioned earlier that on average sam-
ple means will be very similar to the population mean: as such, most samples will have very 
similar means. Therefore, most of the time the difference between sample means from the 
same population will be zero, or close to zero. However, sometimes one or both of the 
samples could have a mean very deviant from the population mean and so it is possible 
to obtain large differences between sample means by chance alone. However, this would 
happen less frequently.

In fact, if you plotted these differences between sample means as a histogram, you would 
again have a sampling distribution with all of the properties previously described. The 
standard deviation of this sampling distribution is called the standard error of differences. 
A small standard error tells us that most pairs of samples from a population will have very 
similar means (i.e., the difference between sample means should normally be very small). 
A large standard error tells us that sample means can deviate quite a lot from the popula-
tion mean and so differences between pairs of samples can be quite large by chance alone.

9.6.2.    The dependent t-test equation explained 1

In an experiment, a person’s score in condition 1 will be different from their 
score in condition 2, and this difference could be very large or very small. If 
we calculate the differences between each person’s score in each condition 
and add up these differences we would get the total amount of difference. 
If we then divide this total by the number of participants we get the average 
difference (thus how much, on average, a person’s score differed in condi-
tion 1 compared to condition 2). This average difference is D– in equation 
(9.6) and it is an indicator of the systematic variation in the data (i.e., it 
represents the experimental effect). We need to compare this systematic vari-
ation against some kind of measure of the ‘systematic variation that we could 
naturally expect to find’. In Chapter 2 we saw that the standard deviation 
was a measure of the ‘fit’ of the mean to the observed data (i.e., it measures the error in 
the model when the model is the mean), but it is does not measure the fit of the mean to 
the population. To do this we need the standard error (see the previous section, where we 
revised this idea). 

The standard error is a measure of the error in the mean as a model of the population. 
In this context, we know that if we had taken two random samples from a population (and 
not done anything to these samples) then the means could be different just by chance. The 
standard error tells us by how much these samples could differ. A small standard error 
means that sample means should be quite similar, so a big difference between two sample 
means is unlikely. In contrast, a large standard error tells us that big differences between 
the means of two random samples are more likely. Therefore it makes sense to compare 
the average difference between means against the standard error of these differences. This 
gives us a test statistic that, as I’ve said numerous times in previous chapters, represents 
model/error. Our model is the average difference between condition means, and we divide 
by the standard error which represents the error associated with this model (i.e., how simi-
lar two random samples are likely to be from this population).

To clarify, imagine that an alien came down and cloned me millions of times. This popu-
lation is known as Landy of the Andys (this would be possibly the most dreary and strangely 
terrifying place I could imagine). Imagine the alien was interested in arachnophobia in this 
population (because I am petrified of spiders). Everyone in this population (my clones) will 
be the same as me, and would behave in an identical way to me. If you took two samples 
from this population and measured their fear of spiders, then the means of these samples 

How does the
t-test actually work?
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would be the same (we are clones), so the difference between sample means would be zero. 
Also, because we are all identical, then all samples from the population will be perfect 
reflections of the population (the standard error would be zero also). Therefore, if we were 
to get two samples that differed even very slightly then this would be very unlikely indeed 
(because our population is full of cloned Andys). Therefore, a difference between samples 
must mean that they have come from different populations. Of course, in reality we don’t 
have samples that perfectly reflect the population, but the standard error gives an idea of 
how well samples reflect the population from which they came.

Therefore, by dividing by the standard error we are doing two things: (1) standardizing 
the average difference between conditions (this just means that we can compare values of 
t without having to worry about the scale of measurement used to measure the outcome 
variable); and (2) contrasting the difference between means that we have against the dif-
ference that we could expect to get based on how well the samples represent the popula-
tions from which they came. If the standard error is large, then large differences between 
samples are more common (because the distribution of differences is more spread out). 
Conversely, if the standard error is small, then large differences between sample means are 
uncommon (because the distribution is very narrow and centred around zero). Therefore, 
if the average difference between our samples is large, and the standard error of differences 
is small, then we can be confident that the difference we observed in our sample is not a 
chance result. If the difference is not a chance result then it must have been caused by the 
experimental manipulation.

In a perfect world, we could calculate the standard error by taking all possible pairs 
of samples from a population, calculating the differences between their means, and then 
working out the standard deviation of these differences. However, in reality this is impos-
sible. Therefore, we estimate the standard error from the standard deviation of differences 
obtained within the sample (sD) and the sample size (N). Think back to section 2.5.1 where 
we saw that the standard error is simply the standard deviation divided by the square root 
of the sample size; likewise the standard error of differences (σD

–) is simply the standard 
deviation of differences divided by the square root of the sample size:

σ
D

DS

N

If the standard error of differences is a measure of the unsystematic variation within the 
data, and the sum of difference scores represents the systematic variation, then it should 
be clear that the t-statistic is simply the ratio of the systematic variation in the experiment 
to the unsystematic variation. If the experimental manipulation creates any kind of effect, 
then we would expect the systematic variation to be much greater than the unsystematic 
variation (so at the very least, t should be greater than 1). If the experimental manipulation 
is unsuccessful then we might expect the variation caused by individual differences to be 
much greater than that caused by the experiment (so t will be less than 1). We can com-
pare the obtained value of t against the maximum value we would expect to get by chance 
alone in a t-distribution with the same degrees of freedom (these values can be found in the 
Appendix); if the value we obtain exceeds this critical value we can be confident that this 
reflects an effect of our independent variable.

9.6.3.    Dependent t-tests using R 1

Using our spider data again, we’ll now assume that the data were collected using the same 
participants (spiderWide.dat): we have 12 arachnophobes who were exposed to a picture 
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of a spider (picture) and on a separate occasion a real live tarantula (real). Their anxiety 
was measured in each condition (half of the participants were exposed to the picture before 
the real spider while the other half were exposed to the real spider first). 

9.6.3.1.  General procedure for the dependent t-test 1

To conduct a dependent t-test you should follow the same general procedure as for the 
independent t-test:

1	 Enter data.

2	 Explore your data: begin by graphing your data and computing some descriptive 
statistics. You should also check distributional assumptions (see Chapter 5). We have 
done this already so we won’t do it again – the data are the same as the previous 
example.

3	 Compute the test: you can then run the t-test. Depending on what you found in the 
previous step, you might need to run a robust version of the test.

4	 Calculate an effect size: it is useful to quantify your effect with an effect size.

We will work through these steps in turn.

9.6.3.2.  Entering data 1

As I mentioned before, R does not expect your data in a particular format for the t-test, 
though R Commander does. For the dependent t-test it expects data in the wide format. 
You should have already entered the data in the dataframe spiderWide, if not, you can enter 
the data as:

picture<-c(30, 35, 45, 40, 50, 35, 55, 25, 30, 45, 40, 50)
real<-c(40, 35, 50, 55, 65, 55, 50, 35, 30, 50, 60, 39)

These commands create a variable called picture which contains the anxiety scores when a 
picture was used and a variable called real which contains the corresponding anxiety scores 
when faced with the real spider. We can merge these variables into a dataframe called spi-
derWide by executing:

spiderWide<-data.frame(picture, real)

9.6.3.3.  The dependent t-test using R Commander 1

As always, import the data, using Data⇒Import data⇒from text file, clipboard, or URL… 
(see section 3.7.3) click on  and choose the file spiderWide.dat.

To run a dependent t-test, choose Statistics⇒Means⇒Paired t-test….  Figure 9.6 shows 
the dialog box that appears. On the left-hand side, in the list labelled First variable (pick 
one) choose a variable representing your first experimental group (I’ve chosen picture). 
On the right-hand side, in the list labelled Second variable (pick one), choose the variable 
representing your second experimental group (I’ve chosen real). 

Our hypothesis is two-sided (or two-tailed), so that option can be left as it is, and we’d 
like 95% confidence intervals – although if we’d like a different confidence level, we can 
change .95 to a different value (.99 to get 99% confidence intervals, for example).  To run 
the analysis click on . The output is described in section 9.6.3.6.
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9.6.3.4.  Exploring data and testing assumptions 1

We’ve explored these data already in section 9.5.2.4. I’ll just remind you that with the data 
in this format you can get descriptive statistics by executing the following command:

stat.desc(spiderWide, basic = FALSE, norm = TRUE)

We talked about the assumption of normality in Chapter 5 and discovered that parametric 
tests (like the dependent t-test) assume that the sampling distribution is normal. This should 
be true in large samples, but in small samples people often check the normality of their data 
because if the data themselves are normal then the sampling distribution is likely to be also. 
With the dependent t-test we analyse the differences between scores because we’re inter-
ested in the sampling distribution of these differences (not the raw data). Therefore, if you 
want to test for normality before a dependent t-test then what you should do is compute 
the differences between scores, and then check if this new variable is normally distributed 
(or use a big sample and not worry about normality). It is possible to have two measures 
that are highly non-normal that produce beautifully distributed differences.

SELF-TEST

ü	 Using the spiderWide.dat data, compute the 
differences between the picture and real condition 
and check the assumption of normality for these 
differences.

9.6.3.5.  The dependent t-test using R 1

To do a dependent t-test we again use the function t.test() but this time include the option 
paired = TRUE. In section 9.5.2.5 we saw that the form of the command depends on the 

FIGURE 9.6
The dependent 
t-test using R 
Commander
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format of the data. In this case we have scores from different groups stored in different 
columns, so we could execute:

dep.t.test<-t.test(spiderWide$real, spiderWide$picture, paired = TRUE)

dep.t.test

Note that this command is identical to one of the ones we used in section 9.5.2.5 for the 
independent t-test, except that we have included paired = TRUE so that R knows to treat 
the scores as dependent. These commands create a model called dep.t.test based on the 
variables real and picture in the spiderWide dataframe. We view this model by executing its 
name (hence the second command).

If we had our data stored in long format so that our group scores are in a single column 
and group membership is expressed in a second column (as they are in spiderLong.dat), 
we can still run a dependent t-test. Again, we run it in the same way that we did for an 
independent t-test but we include the paired = TRUE option:

dep.t.test<-t.test(Anxiety ~ Group, data = spiderLong, paired = TRUE)

dep.t.test

which creates a model called dep.t.test based on predicting anxiety scores (Anxiety) from 
group membership (Group). We can view this model by executing its name.

9.6.3.6.  Output from the dependent t-test 1

Regardless of how you enter the data or specify the t.test() function, the output is identi-
cal: see Output 9.5. The test statistic, t, is calculated by dividing the mean of differences by 
the standard error of differences (see equation (9.6): t = 2.47). The size of t is compared 
against known values based on the degrees of freedom. When the same participants have 
been used, the degrees of freedom are simply the sample size minus 1 (df = N −1 = 11) –
you should check this value is what you expect it to be, to ensure you haven’t made a 
mistake. R uses the degrees of freedom to calculate the exact probability that a value 
of t as big as the one obtained could occur if the null hypothesis were true (i.e., there 
was no difference between these means). The probability for the spider data is very low 
(p = .031) and in fact it tells us that there is only a 3.1% chance that a value of t this big could 
happen if the null hypothesis were true. We saw in Chapter 2 that we generally accept a 
p < .05 as statistically meaningful; therefore, this t is significant because .031 is smaller 
than .05. The fact that the t-value is a positive number tells us that the first condition (the 
real condition) had a larger mean than the second (the picture condition) and so the real 
spider led to greater anxiety than the picture. Therefore, we can conclude that exposure to 
a real spider caused significantly more reported anxiety in arachnophobes than exposure 
to a picture, t(11) = 2.47, p < .05. 

	 Paired t-test
data:  spiderWide$real and spiderWide$picture 
t = 2.4725, df = 11, p-value = 0.03098

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:
  0.7687815 13.2312185 

sample estimates:
mean of the differences 
                      7 

Output 9.5
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This output provides a 95% confidence interval for the mean difference. Imagine we took 
100 samples from a population of difference scores and calculated their means (D–) and a con-
fidence interval for that mean. In 95 of those samples the constructed confidence intervals 
contains the true value of the mean difference. The confidence interval tells us the boundaries 
within which the true mean difference is likely to lie. So, assuming this sample’s confidence 
interval is one of the 95 out of 100 that contains the population value, we can say that the true 
mean difference lies between 0.77 and 13.23. The importance of this interval is that it does not 
contain zero (i.e., both limits are positive) because this tells us that the true value of the mean 
difference is unlikely to be zero. Crucially, if we were to compare pairs of random samples 
from a population we would expect most of the differences between sample means to be zero. 
But since our interval, based on our two samples, does not contain zero, we can be confident 
that our two samples do not represent random samples from the same population. Instead they 
represent samples from different populations induced by the experimental manipulation.

9.6.3.7.  Robust methods to compare dependent means 2

As with independent means, there are equivalent robust functions to test dependent groups 
in Rand Wilcox’s (2005) book. Load these functions using the instructions in section 5.8.4. 
As with the functions for independent designs, the data need to be in two different columns 
(one for each experimental condition). We already have the data in this format in the spi-
derWide dataframe.

The first robust function, yuend(), is based on a trimmed mean. It takes the general form:

yuend(scores group 1, scores group 2,  tr = .2, alpha = .05)

In other words, it works in exactly the same way as the yuen() function in section 9.5.2.7. 
Refer back to that section for a more detailed description of the format of these functions. 
As such, for a test of dependent means based on 20% trimming we simply execute:

yuend(spiderWide$real, spiderWide$picture)

If you execute this command you will see Output 9.6, which shows that based on this 
robust test there is not a significant difference in anxiety scores across the two spider 
groups, Ty(7) = 1.86, p = .106.

yuend() output ydbt() output

$ci
[1] -1.843818 15.343818

$siglevel
[1] 0.1056308

$dif
[1] 6.75

$se
[1] 3.634327

$teststat
[1] 1.85729

$df
[1] 7

$ci
[1]-1.6298 15.1298

$dif
[1] 6.75

$p.value
[1] 0.105 [1] NA

Output 9.6
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We can also compare trimmed means but include a bootstrap by using ydbt(), which takes 
the general form:

ydbt(scores group 1, scores group 2,  tr = .2, nboot = 599, alpha = .05, side 
= F)

As you can see, this function takes the same form as yuenbt() in section 9.5.2.7. As such, for 
a bootstrap test of dependent means based on 20% trimming we simply execute:

ydbt(spiderWide$real, spiderWide$picture, nboot = 2000)

If you execute this command you will see Output 9.6, which shows that based on this 
robust test there is not a significant difference (because the confidence interval crosses 
zero) in anxiety scores across the two spider groups, Yt = 6.75 (−1.63, 15.13), p = .105.

A final method is to use a bootstrap and an M-estimator (rather than trimmed mean) by 
applying bootdpci() function. This function has the general form:

bootdpci(scores group 1, scores group 2, alpha=.05, nboot=2000, est = tmean)

For a bootstrap test of dependent M-estimators we execute:

bootdpci(spiderWide$real, spiderWide$picture, est=tmean, nboot=2000)

If you execute the bootdpci() function with the default settings you will see Output 9.7, 
which shows that based on this robust test there is a significant difference (because the 
confidence interval does not cross zero and p is less than .05) in anxiety scores across the 
two spider groups, ψ– = 7.5 (0.50, 13.13), p = .037. In short, the robust methods disagree 
about whether the type of spider stimulus does not affect anxiety.

$output
     con.num psihat p.value p.crit ci.lower ci.upper
[1,]       1    7.5   0.037   0.05      0.5   13.125

Output 9.7

9.6.3.8.  Calculating the effect size 2

Even though our t-statistic is statistically significant, this doesn’t mean our effect is impor-
tant in practical terms. To discover whether the effect is substantive we need to use what 
we know about effect sizes (see section 2.6.4). We can compute this value in the same way 
that we did for the independent t-test (section 9.5.2.8) by executing:5

t<-dep.t.test$statistic[[1]]
df<-dep.t.test$parameter[[1]]
r <- sqrt(t^2/(t^2+df))
round(r, 3)

[1] 0.598

Notice that the code is identical to last time we used it except that we have used the dep.t.test 
model to get the values of t and the degrees of freedom. You may also notice that the effect 
has grown. If you think back to our benchmarks for effect sizes this represents a very large 
effect (it is above .5, the threshold for a large effect). Therefore, as well as being statistically 
significant, this effect is large and probably substantive finding. This growth in the effect 
size might seem slightly odd given that we used exactly the same data (but see section 9.7).

5Actually, this will overestimate the effect size because of the correlation between the two conditions. This is quite 
a technical issue and I’m trying to keep things simple here, but bear this in mind and if you’re interested read 
Dunlap, Cortina, Vaslow, and Burke (1996).
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9.6.3.9.  Reporting the dependent t-test 1

The rules that I made up – erm, I mean, reported – for the independent t-test pretty much 
apply for the dependent t-test. In this example the R output tells us that the value of t was 
2.47, that this was based on 11 degrees of freedom, and that it was significant at p = .031. 
We can also see the means for each group. We could write this as:

✓	 On average, participants experienced significantly greater anxiety from real spiders 
(M = 47.00, SE = 3.18) than from pictures of spiders (M = 40.00, SE = 2.68), t(11) = 
2.47, p < .05, r = .60.

Note how we’ve reported the means in each group (and standard errors) in the standard 
format. For the test statistic, note that we’ve used an italic t to denote the fact that we’ve 
calculated a t-statistic, then in brackets we’ve put the degrees of freedom and then stated 
the value of the test statistic. The probability can be expressed in several ways: often people 
report things to a standard level of significance (such as .05) as I have done here, but some-
times people will report the exact significance. Finally, note that I’ve reported the effect 
size at the end – you won’t always see this in published papers but that’s no excuse for you 
not to report it! 

Try to avoid writing vague, unsubstantiated things like this:

✘	 People were more scared of real spiders (t = 2.47).

More scared than what? Where are the degrees of freedom? Was the result statistically 
significant? Was the effect important (what was the effect size)?

             CRAMMING SAM’S TIPS    The dependent t-test

•	 The dependent t-test compares two means, when those means have come from the same entities; for example, if you have 
used the same participants in each of two experimental conditions.

•	 Look at the p-value. If the value is less than .05 then the means of the two conditions are significantly different.
•	 Look at the values of the means to tell you how the conditions differ.
•	 Report the t-statistic, the degrees of freedom and the significance value. Also report the means and their corresponding 

standard errors.
•	 If you’re feeling brave, calculate and report the effect size too.

9.7.  Between groups or repeated measures? 1

The two examples in this chapter are interesting (honestly!) because they illustrate the dif-
ference between data collected using the same participants and data collected using different 
participants. The examples use the same scores in each condition. When analysed as though 
the data came from the same participants the result was a significant difference between 
means, but when analysed as though the data came from different participants there was no 
significant difference between group means. This may seem like a puzzling finding – after 
all the numbers were identical in both examples. What this illustrates is the relative power 
of repeated-measures designs. When the same participants are used across conditions the 
unsystematic variance (often called the error variance) is reduced dramatically, making it 
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easier to detect any systematic variance. It is often assumed that the way in which you col-
lect data is irrelevant, but I hope to have illustrated that it can make the difference between 
detecting a difference and not detecting one. In fact, researchers have carried out studies 
using the same participants in experimental conditions, then repeated the study using differ-
ent participants in experimental conditions, and then used the method of data collection as 
an independent variable in the analysis. Typically, they have found that the method of data 
collection interacts significantly with the results found (see Erlebacher, 1977). 

What have I discovered about statistics? 1

We started this chapter by looking at my relative failures as a human being compared to 
Simon Hudson before investigating some problems with the way R produces error bars for 
repeated-measures designs. We then had a look at some general conceptual features of the 
t-test, a parametric test that’s used to test differences between two means. After this general 
taster, we moved onto look specifically at the dependent t-test (used when your conditions 
involve the same entities). I explained how it was calculated, how to do it in R and how to 
interpret the results. We then discovered much the same for the independent t-test (used 
when your conditions involve different entities). I also rattled on excitedly about how a sit-
uation with two conditions can be conceptualized as a general linear model, by which point 
those of you who have a life had gone to the pub for a stiff drink. My excitement about 
things like general linear models could explain why Clair Sparks chose Simon Hudson all 
those years ago. Perhaps she could see the writing on the wall! Fortunately, I was a ruth-
less pragmatist at the age of 10, and the Clair Sparks episode didn’t seem to concern me 
unduly; I just set my sights elsewhere during the obligatory lunchtime game of kiss chase. 
These games were the last I would see of women for quite some time …

          Labcoat  Len i ’s  Real  Research 9 .1   
�You don’t have to 
be mad to work here,  
but it helps 3

Board, B. J., & Fritzon, K. (2005). Psychology, Crime & Law, 11, 17–32.

In the UK you often see the ‘humorous’ slogan ‘You don’t have to be mad to work here, but it helps’ displayed 
in work places. Well, Board and Fritzon (2005) took this a step further by measuring whether 39 senior busi-
ness managers and chief executives from leading UK companies were mad (well, had personality disorders). 
They tested them with the Minnesota Multiphasic Personality Inventory Scales for DSM III Personality Disorders 
(MMPI-PD), which is a well-validated measure of 11 personality disorders: Histrionic, Narcissistic, Antisocial, 
Borderline, Dependent, Compulsive, Passive-aggressive, Paranoid, Schizotypal, Schizoid and Avoidant. They 
needed a comparison group, and what better one to choose than 317 legally classified psychopaths at Broadmoor 
Hospital (a high-security psychiatric hospital in the UK). 

The authors report the means and standard deviations for these two groups in Table 2 of their paper. Using 
these values we can run t-tests on these means. The data from Board and Fritzon’s Table 2 are in the file 

Board&Fritzon2005.dat. Use this file to run t-tests to see whether managers score higher on personal-
ity disorder questionnaires than legally classified psychopaths. 

Report these results. What do you conclude? 
Answers are in the additional material on the companion website (or look at Table 2 in the original article).
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R packages used in this chapter
ggplot2
pastecs

Rcmdr
WRS

R functions used in this chapter
bootdpci()
by()
data.frame()
head()
length()
lm()
mean()
names()
paste()
pb2gen()
return()

round()
sandwich()
sd()
sqrt()
stat.desc()
summary()
t.test()
ydbt()
yuen()
yuenbt()
yuend()

Key terms that I’ve discovered
Dependent t-test
Grand mean
Independent t-test

Standard error of differences
Variance sum law
Welch’s t-test

Smart Alex’s tasks

These scenarios are taken from Field and Hole (2003). In each case analyse the data in R.

MM Task 1: One of my pet hates is ‘pop psychology’ books. Along with banishing Freud 
from all bookshops, it is my avowed ambition to rid the world of these rancid putre-
faction-ridden wastes of trees. Not only do they give psychology a very bad name by 
stating the bloody obvious and charging people for the privilege, but they are also 
considerably less enjoyable to look at than the trees killed to produce them (admit-
tedly the same could be said for the turgid tripe that I produce in the name of educa-
tion, but let’s not go there just for now). Anyway, as part of my plan to rid the world 
of popular psychology I did a little experiment. I took two groups of people who 
were in relationships and randomly assigned them to one of two conditions. One 
group read the famous popular psychology book Women Are from Bras, Men Are from 
Penis, whereas another group read Marie Claire. I tested only 10 people in each of 
these groups, and the dependent variable was an objective measure of their happiness 
with their relationship after reading the book. I didn’t make any specific prediction 
about which reading material would improve relationship happiness. The data are in 
the file Penis.dat. Analyse them with the appropriate t-test. 1
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MM Task 2: Imagine Twaddle and Sons, the publishers of Women are from Bras, Men 
are from Penis, were upset about my claims that their book was about as useful as a 
paper umbrella. They decided to take me to task and design their own experiment in 
which participants read their book and one of my books (Field and Hole) at different 
times. Relationship happiness was measured after reading each book. To maximize 
their chances of finding a difference they used a sample of 500 participants, but got 
each participant to take part in both conditions (they read both books). The order 
in which books were read was counterbalanced and there was a delay of 6 months 
between reading the books. They predicted that reading their wonderful contribu-
tion to popular psychology would lead to greater relationship happiness than read-
ing some dull and tedious book about experiments. The data are in FieldHole.dat. 
Analyse them using the appropriate t-test. 1

Answers can be found on the companion website (or for more detail see Field and Hole, 
2003).

Further reading
Field, A. P., & Hole, G. (2003). How to design and report experiments. London: Sage. (In my com-

pletely unbiased opinion this is a useful book to get some more background on experimental 
methods.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: A practical 
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioral research: A conceptual primer (5th ed.). 
Upper Saddle River, NJ: Pearson/Prentice Hall.

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book has 
very clear introductions to the t-test.)

Interesting real research
Board, B. J., & Fritzon, K. (2005). Disordered personalities at work. Psychology, Crime & Law, 

11(1), 17–32.
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10
Comparing several means: 
ANOVA (GLM 1)

FIGURE 10.1
My brother Paul 
(left) and I (right) 
in our very fetching 
school uniforms.

10.1.  What will this chapter tell me? 1

There are pivotal moments in everyone’s life, and one of mine was at the age of 11. Where 
I grew up in England there were three choices when leaving primary school and moving 
onto secondary school: (1) state school (where most people go); (2) grammar school (where 
clever people who pass an exam called the 11+ go); and (3) private school (where rich 
people go). My parents were not rich and I am not clever and consequently I failed my 11+, 
so private school and grammar school (where my clever older brother had gone) were out. 
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This left me to join all of my friends at the local state school. I could not have been happier. 
Imagine everyone’s shock when my parents received a letter saying that some extra spaces 
had become available at the grammar school; although the local authority could scarcely 
believe it and had checked the 11+ papers several million times to confirm their findings, 
I was next on their list. I could not have been unhappier. So, I waved goodbye to all of my 
friends and trundled off to join my brother at Ilford County High School for Boys (a school 
that still hit students with a cane if they were particularly bad and that, for some consid-
erable time and with good reason, had ‘H.M. Prison’ painted in huge white letters on its 
roof). It was goodbye to normality, and hello to 6 years of learning how not to function in 
society. I often wonder how my life would have turned out had I not gone to this school; 
in the parallel universes where the letter didn’t arrive and Andy went to state school, or 
where my parents were rich and Andy went to private school, what became of him? If we 
wanted to compare these three situations we couldn’t use a t-test because there are more 
than two conditions.1 However, this chapter tells us all about the statistical models that we 
use to analyse situations in which we want to compare more than two conditions: analysis of 
variance (or ANOVA to its friends). This chapter will begin by explaining the theory of 
ANOVA when different participants are used (independent ANOVA). We’ll then look at how 
to carry out the analysis in R and interpret the results. 

10.2.  The theory behind ANOVA 2

10.2.1  Inflated error rates 2

Before explaining how ANOVA works, it is worth mentioning why we don’t sim-
ply carry out several t-tests to compare all combinations of groups that have been 
tested. Imagine a situation in which there were three experimental conditions and 
we were interested in differences between these three groups. If we were to carry 
out t-tests on every pair of groups, then that would involve doing three separate 
tests: one to compare groups 1 and 2, one to compare groups 1 and 3, and one 
to compare groups 2 and 3. If each of these t-tests uses a .05 level of significance 
then for each test the probability of falsely rejecting the null hypothesis (known 
as a Type I error) is only 5%. Therefore, the probability of no Type I errors is .95 
(95%) for each test. If we assume that each test is independent (hence, we can 
multiply the probabilities) then the overall probability of no Type I errors is .953 = .95 × 
.95 × .95 = .857, because the probability of no Type I errors is .95 for each test and there 
are three tests. Given that the probability of no Type I errors is .857, then we can calcu-
late the probability of making at least one Type I error by subtracting this number from 1 
(remember that the maximum probability of any event occurring is 1). So, the probability 
of at least one Type I error is 1 − .857 = .143, or 14.3%. Therefore, across this group of 
tests, the probability of making a Type I error has increased from 5% to 14.3%, a value 
greater than the criterion accepted by scientists. This error rate across statistical tests con-
ducted on the same experimental data is known as the familywise or experimentwise error 
rate. An experiment with three conditions is a relatively simple design, and so the effect 
of carrying out several tests is not severe. If you imagine that we now increase the number 
of experimental conditions from three to five (which is only two more groups) then the 

1 Really, this is the least of our problems: there’s the small issue of needing access to parallel universes.

Why not do lots
of t-tests?

10-Field_R-4368-Ch-10.indd   399 29/02/2012   6:16:27 PM



400 D ISCOVER ING STAT IST ICS  US ING SPSS

number of t-tests that would need to done increases to 10.2 The familywise error rate can 
be calculated using the following general equation: 

familywise error =1  (0.95) − n 	 (10.1)

in which n is the number of tests carried out on the data. With 10 tests carried out, the 
familywise error rate is 1 − .9510 = .40, which means that there is a 40% chance of having 
made at least one Type I error. For this reason we use ANOVA rather than conducting lots 
of t-tests.

10.2.2.    Interpreting F 2

When we perform a t-test, we test the hypothesis that the two samples have the same 
mean. Similarly, ANOVA tells us whether three or more means are the same, so it 
tests the null hypothesis that all group means are equal. An ANOVA produces an 
F-statistic or F-ratio, which is similar to the t-statistic in that it compares the amount 
of systematic variance in the data to the amount of unsystematic variance. In other 
words, F is the ratio of the model to its error.

ANOVA is an omnibus test, which means that it tests for an overall effect: 
so, it does not provide specific information about which groups were 
affected. Suppose an experiment was conducted with three different groups, 

and the F-ratio tells us that the means of these three samples are not equal (i.e., that 
X X X1 2 3= =  is not true). There are several ways in which the means can differ. The 
first possibility is that all three sample means are significantly different ( X X X1 2 3≠ ≠ ). 
A second possibility is that the means of groups 1 and 2 are the same but group 3 
has a significantly different mean from both of the other groups ( X X X1 2 3= ≠ ). 
Another possibility is that groups 2 and 3 have similar means but group 1 has a signifi-
cantly different mean ( X X X1 2 3≠ = ). Finally, groups 1 and 3 could have similar means 
but group 2 has a significantly different mean from both ( X X X1 3 2= ≠ ). So, in an experi-
ment, the F-ratio tells us only that the experimental manipulation has had some effect, but 
it doesn’t tell us specifically what the effect was.

10.2.3.    ANOVA as regression 2

I’ve hinted several times that all statistical tests boil down to variants on regression. In fact, 
ANOVA is just a special case of regression. This surprises many scientists because ANOVA 
and regression are usually used in different situations. The reason is largely historical in that 

2 These comparisons are group 1 vs. 2, 1 vs. 3, 1 vs. 4, 1 vs. 5, 2 vs. 3, 2 vs. 4, 2 vs. 5, 3 vs. 4, 3 vs. 5 and 4 vs. 5. 
The number of tests required – let’s call it C – is calculated using this equation:

C
k

k
=

−
!

( )!2 2

in which k is the number of experimental conditions. The ! symbol stands for factorial, which means that you 
multiply the value preceding the symbol by all of the whole numbers between zero and that value (so 5! = 5 × 4 
× 3 × 2 × 1 = 120). Thus, with five conditions we find that:

C =
−

=
×

=
5

2 5 2
120
2 6

10
!

( )!

What does an
ANOVA tell me?
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two distinct branches of methodology developed in the sciences: correlational research and 
experimental research. Researchers interested in controlled experiments adopted ANOVA 
as their procedure of choice, whereas those looking for real-world relationships adopted 
multiple regression. As we all know, scientists are intelligent, mature and rational people, 
and so neither group was tempted to slag off the other and claim that their own choice 
of methodology was far superior to the other (yeah, right!). With the divide in meth-
odologies came a chasm between the statistical methods adopted by the two opposing 
camps (Cronbach, 1957, documents this divide in a lovely article). This divide has lasted 
many decades, to the extent that now students are generally taught regression and ANOVA 
in very different contexts and many textbooks teach ANOVA and regression in entirely  
different ways.

Although many considerably more intelligent people than me have attempted to redress 
the balance (notably the great Jacob Cohen, 1968), I am passionate about making my own 
small, feeble-minded attempt to enlighten you (and I set the ball rolling in sections 7.12 
and 9.4.2). There are several good reasons why I think ANOVA should be taught within 
the context of regression. First, it provides a familiar context: I wasted many trees trying 
to explain regression, so why not use this base of knowledge to explain a new concept? (It 
should make it easier to understand.) Second, the traditional method of teaching ANOVA 
(known as the variance-ratio method) is fine for simple designs, but becomes impossibly 
cumbersome in more complex situations (such as analysis of covariance). The regression 
model extends very logically to these more complex designs without anyone needing to 
get bogged down in mathematics. Finally, the variance-ratio method becomes extremely 
unmanageable in unusual circumstances such as when you have unequal sample sizes.3 The 
regression method makes these situations considerably simpler. Although these reasons are 
good enough, it is also the case that R very much deals with ANOVA in a regression-y sort 
of way (known as the general linear model, or GLM).

I have mentioned that ANOVA is a way of comparing the ratio of systematic variance to 
unsystematic variance in an experimental study. The ratio of these variances is known as 
the F-ratio. However, any of you who have read Chapter 7 should recognize the F-ratio 
(see section 7.2.3) as a way to assess how well a regression model can predict an outcome 
compared to the error within that model. If you haven’t read Chapter 7 (surely not!), have 
a look before you carry on (it should only take you a couple of weeks to read). How can the 
F-ratio be used to test differences between means and whether a regression model fits the 
data? The answer is that when we test differences between means we are fitting a regression 
model and using F to see how well it fits the data, but the regression model contains only 
categorical predictors (i.e., grouping variables). So, just as the t-test could be represented 
by the linear regression equation (see section 9.4.2), ANOVA can be represented by the 
multiple regression equation in which the number of predictors is one less than the number 
of categories of the independent variable.

Let’s take an example. There was a lot of controversy, when I wrote the first edition of 
my SPSS book, surrounding the drug Viagra. Admittedly there’s less controversy now, but 
the controversy has been replaced by an alarming number of spam emails on the subject (for 
which I’ll no doubt be grateful in 20 years’ time), so I’m going to stick with the example.  
Viagra is a sexual stimulant (used to treat impotence) that broke into the black market 
under the belief that it will make someone a better lover (oddly enough, there was a glut of 
journalists taking the stuff at the time in the name of ‘investigative journalism’… hmmm!). 
In the psychology literature, sexual performance issues have been linked to a loss of libido 
(Hawton, 1989). Suppose we tested this hypothesis by taking three groups of participants 
and administering one group with a placebo (such as a sugar pill), one group with a low 
dose of Viagra and one with a high dose. The dependent variable was an objective measure 

3 Having said this, it is well worth the effort in trying to obtain equal sample sizes in your different conditions 
because unbalanced designs do cause statistical complications (see section 10.3).
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of libido (I will tell you only that it was measured over the course of a week – the rest I 
will leave to your own imagination). The data can be found in the file Viagra.dat (which is 
described in detail later in this chapter) and are in Table 10.1.

If we want to predict levels of libido from the different levels of Viagra then we can use 
the general equation that keeps popping up:

outcome el errori i= +(mod )

If we want to use a linear model, then we saw in section 9.4.2 that when there are only 
two groups we could replace the ‘model’ in this equation with a linear regression equation 
with one dummy variable to describe two groups. This dummy variable was a categorical 
variable with two numeric codes (0 for one group and 1 for the other). With three groups, 
however, we can extend this idea and use a multiple regression model with two dummy 
variables. In fact, as a general rule we can extend the model to any number of groups and 
the number of dummy variables needed will be one less than the number of categories of 
the independent variable. In the two-group case, we assigned one category as a base cat-
egory (remember that in section 9.4.2 we chose the picture condition to act as a base) and 
this category was coded 0. When there are three categories we also need a base category 
and you should choose the condition to which you intend to compare the other groups. 
Usually this category will be the control group. In most well-designed science experiments 
there will be a group of participants who act as a baseline for other categories. This base-
line group should act as the reference or base category, although the group you choose will 
depend upon the particular hypotheses that you want to test. In unbalanced designs (in 
which the group sizes are unequal) it is important that the base category contains a fairly 
large number of cases to ensure that the estimates of the regression coefficients are reliable. 
In the Viagra example, we can take the placebo group as the base category because this 
group was a placebo control. We are interested in comparing both the high- and low-dose 
groups to the group that received no Viagra at all. If the placebo group is the base category 
then the two dummy variables that we have to create represent the other two conditions: 
so, we should have one dummy variable called high and the other one called low). The 
resulting equation is described as:

libido high lowi i i ib b b= + + +0 2 1 ε 	 (10.2)

In equation (10.2), a person’s libido can be predicted from knowing their group code 
(i.e., the code for the high and low dummy variables) and the intercept (b0) of the model. 
The dummy variables in equation (10.2) can be coded in several ways, but the simplest way 

Table 10.1  Data in Viagra.dat

Placebo Low Dose High Dose

3 5 7

2 2 4

1 4 5

1 2 3

4 3 6

X
–

2.20 3.20 5.00

s 1.30 1.30 1.58

s2 1.70 1.70 2.50

Grand mean = 3.467 Grand SD = 1.767 Grand variance = 3.124
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is to use a similar technique to that of the t-test. The base category is always coded 0. If a 
participant was given a high dose of Viagra then they are coded 1 for the high dummy vari-
able and 0 for all other variables. If a participant was given a low dose of Viagra then they 
are coded 1 for the low dummy variable and 0 for all other variables (this is the same type 
of scheme we used in section 7.12). Using this coding scheme we can express each group 
by combining the codes of the two dummy variables (see Table 10.2).

Table 10.2  Dummy coding for the three-group experimental design

Group Dummy Variable 1 (high) Dummy Variable 2 (low)

Placebo 0 0

Low Dose Viagra 0 1

High Dose Viagra 1 0

Placebo group: Let’s examine the model for the placebo group. In the placebo group both 
the high and low dummy variables are coded 0. Therefore, if we ignore the error term (εi), 
the regression equation becomes:

libido

placebo

i b b b b

X b

= + × + × =

=
0 1 2 0

0

0 0( ) ( )

This is a situation in which the high- and low-dose groups have both been excluded (because 
they are coded with 0). We are looking at predicting the level of libido when both doses of 
Viagra are ignored, and so the predicted value will be the mean of the placebo group (because 
this group is the only one included in the model). Hence, the intercept of the regression 
model, b0, is always the mean of the base category (in this case the mean of the placebo group).

High-dose group: If we examine the high-dose group, the dummy variable high will be 
coded 1 and the dummy variable low will be coded 0. If we replace the values of these 
codes into equation (10.2) the model becomes:

libidoi b b b b b= + × + × = +0 1 2 0 20 1( ) ( )

We know already that b0 is the mean of the placebo group. If we are interested in only the 
high-dose group then the model should predict that the value of libido for a given partici-
pant equals the mean of the high-dose group. Given this information, the equation becomes:

libido

high placebo

high placebo

i b b

X X b

b X X

= +

= +

= −

0 2

2

2

Hence, b2 represents the difference between the means of the high-dose group and the 
placebo group.

Low-dose group: Finally, if we look at the model when a low dose of Viagra has been 
taken, the dummy variable low is coded 1 (and hence high is coded as 0). Therefore, the 
regression equation becomes:

libidoi b b b b b= + × + × = +0 1 2 0 11 0( ) ( )
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We know that the intercept is equal to the mean of the base category and that for the low-
dose group the predicted value should be the mean libido for a low dose. Therefore the 
model can be reduced to:

libido

low placebo

low placebo

i b b

X X b

b X X

= +

= +

= −

0 1

1

1

Hence, b1 represents the difference between the means of the low-dose group and the 
placebo group. This form of dummy variable coding is the simplest form, but as we will 
see later, there are other ways in which variables can be coded to test specific hypotheses. 
These alternative coding schemes are known as contrasts (see section 10.4.2). The idea 
behind contrasts is that you code the dummy variables in such a way that the b-values rep-
resent differences between groups that you are interested in testing.

SELF-TEST

ü	 To illustrate exactly what is going on I have created a 
file called dummy.dat. This file contains the Viagra 
data but with two additional variables (dummy1 
and dummy2) that specify to which group a data 
point belongs (as in Table 10.2). Access this file 
and run multiple regression analysis using libido 
as the outcome and dummy1 and dummy2 
as the predictors. If you’re stuck on how to run 
the regression then read Chapter 7 again (these 
chapters are ordered for a reason).

The resulting analysis is shown in Output 10.1. It might be a good idea to remind your-
self of the group means from Table 10.1. The first thing to notice is that, just as in the 
regression chapter, an ANOVA has been used to test the overall fit of the model. This test 
is significant, F(2, 12) = 5.12, p < .05. Given that our model represents the group differ-
ences, this ANOVA tells us that using group means to predict scores is significantly better 
than using the overall mean: in other words, the group means are significantly different.

In terms of the regression coefficients, bs, the constant is equal to the mean of the base 
category (the placebo group). The regression coefficient for the first dummy variable (b2) 
is equal to the difference between the means of the high-dose group and the placebo group 
(5.0 − 2.2 = 2.8). Finally, the regression coefficient for the second dummy variable (b1) is 
equal to the difference between the means of the low-dose group and the placebo group 
(3.2 − 2.2 = 1). This analysis demonstrates how the regression model represents the three-
group situation. We can see from the significance values of the t-tests that the difference 
between the high-dose group and the placebo group (b2) is significant because p < .05. 
The difference between the low-dose and the placebo group is not, however, significant 
(p = .282).

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   2.2000     0.6272   3.508  0.00432 **
dummy1        2.8000     0.8869   3.157  0.00827 **
dummy2        1.0000     0.8869   1.127  0.28158   
---
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 1.402 on 12 degrees of freedom
Multiple R-squared: 0.4604,	 Adjusted R-squared: 0.3704 
F-statistic: 5.119 on 2 and 12 DF,  p-value: 0.02469

Output 10.1

A four-group experiment can be described by extending the three-group scenario. I 
mentioned earlier that you will always need one less dummy variable than the number 
of groups in the experiment: therefore, this model requires three dummy variables. As 
before, we need to specify one category as a base category (a control group). This base 
category should have a code of 0 for all three dummy variables. The remaining three 
conditions will have a code of 1 for the dummy variable that described that condition 
and a code of 0 for the other two dummy variables. Table 10.3 illustrates how the coding 
scheme would work.

Table 10.3  Dummy coding for the four-group experimental design

Dummy 
variable 1

Dummy 
variable 2

Dummy 
variable 3

Group 1 1 0 0

Group 2 0 1 0

Group 3 0 0 1

Group 4 (base) 0 0 0

10.2.4.    Logic of the F-ratio 2

In Chapter 7 we learnt a little about the F-ratio and its calculation. To recap, we learnt 
that the F-ratio is used to test the overall fit of a regression model to a set of observed 
data. In other words, it is the ratio of how good the model is compared to how bad it is 
(its error). I have just explained how ANOVA can be represented as a regression equation, 
and this should help you to understand what the F-ratio tells you about your data. Figure 
10.2 shows the Viagra data in graphical form (including the group means, the overall mean 
and the difference between each case and the group mean). In this example, there were 
three groups; therefore, we want to test the hypothesis that the means of three groups 
are different (so the null hypothesis is that the group means are the same). If the group 
means were all the same, then we would not expect the placebo group to differ from the 
low-dose group or the high-dose group, and we would not expect the low-dose group to 
differ from the high-dose group. Therefore, on the diagram, the three shaded blue lines 
would be in the same vertical position (the exact position would be the grand mean – the 
solid horizontal line in the figure). We can see from the diagram that the group means 
are actually different because the horizontal blue lines (the group means) are in different 
vertical positions. We have just found out that in the regression model, b2 represents the 
difference between the means of the placebo and the high-dose group, and b1 represents the 
difference in means between the placebo and the low-dose groups. These two distances are 
represented in Figure 10.2 by the vertical arrows. If the null hypothesis is true and all the 
groups have the same means, then these b coefficients should be zero (because if the group 
means are equal then the difference between them will be zero). 
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The logic of ANOVA follows from what we understand about regression:

MM The simplest model we can fit to a set of data is the grand mean (the mean of the out-
come variable). This basic model represents ‘no effect’ or ‘no relationship between 
the predictor variable and the outcome’.

MM We can fit a different model to the data collected that represents our hypotheses. 
If this model fits the data well then it must be better than using the grand mean. 
Sometimes we fit a linear model (the line of best fit), but in experimental research we 
often fit a model based on the means of different conditions.

MM The intercept and one or more regression coefficients can describe the chosen model.

MM The regression coefficients determine the shape of the model that we have fitted; 
therefore, the bigger the coefficients, the greater the deviation between the line and 
the grand mean.

MM In correlational research, the regression coefficients represent the slope of the line, 
but in experimental research they represent the differences between group means.

MM The bigger the differences between group means, the greater the difference between 
the model and the grand mean.

MM If the differences between group means are large enough, then the resulting model 
will be a better fit of the data than the grand mean.

MM If this is the case we can infer that our model (i.e., predicting scores from the group 
means) is better than not using a model (i.e., predicting scores from the grand mean). 
Put another way, our group means are significantly different.

Just like when we used ANOVA to test a regression model, we can compare the improve-
ment in fit due to using the model (rather than the grand mean) to the error that still 
remains. Another way of saying this is that when the grand mean is used as a model, there 
will be a certain amount of variation between the data and the grand mean. When a model 
is fitted it will explain some of this variation, but some will be left unexplained. The F-ratio 

FIGURE 10.2
The Viagra data 
in graphical form. 
The shaded blue 
horizontal lines 
represent the 
mean libido of 
each group. The 
shapes represent 
the libido of 
individual 
participants 
(different shapes 
indicate different 
experimental 
groups). The 
black horizontal 
line is the 
average libido of 
all participants
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is the ratio of the explained to the unexplained variation. Look back at section 7.2.3 to 
refresh you memory on these concepts before reading on. This may all sound quite com-
plicated, but actually most of it boils down to variations on one simple equation (see Jane 
Superbrain Box 10.1).

general, in the form of equation (10.3). So, in ANOVA, as 
in regression, we use equation (10.3) to calculate the fit of 
the most basic model, and then the fit of the best model 
(the line of best fit). If the best model is any good then 
it should fit the data significantly better than our basic 
model:

deviation = observed model)∑( − 2 	 (10.3)

The interesting point is that all of the sums of squares in 
ANOVA are variations on this one basic equation. All that 
changes is what we use as the model, and what the cor-
responding observed data are. Look through the various 
sections on the sums of squares and compare the result-
ing equations to equation (10.3); hopefully, you can see 
that they are all basically variations on this general form 
of the equation!

At every stage of the ANOVA we’re assessing variation 
(or deviance) from a particular model (be that the most 
basic model, or the most sophisticated model). We saw 
back in section 2.4.1 that the extent to which a model 
deviates from the observed data can be expressed, in 

JANE SUPERBRAIN 10.1

You might be surprised to know that ANOVA 
boils down to one equation (well, sort of) 2

10.2.5.    Total sum of squares (SS
T
) 2

To find the total amount of variation within our data we calculate the difference between 
each observed data point and the grand mean. We then square these differences and add 
them together to give us the total sum of squares (SST):

SST grand= −
=
∑( )x xi
i

N
2

1
	 (10.4)

We also saw in section 2.4.1 that the variance and the sums of squares are related such that 
variance, s2 = SS/(N−1), where N is the number of observations. Therefore, we can calcu-
late the total sums of squares from the variance of all observations (the grand variance) by 
rearranging the relationship (SS = s2(N−1)). The grand variance is the variation between all 
scores, regardless of the experimental condition from which the scores come. Figure 10.3 
shows the different sums of squares graphically (note the similarity to Figure 7.4 which 
we looked at when we learnt about regression). The top left panel shows the total sum of 
squares: it is the sum of the squared distances between each point and the solid horizontal 
line (which represents the mean of all scores). 

The grand variance for the Viagra data is given in Table 10.1, and if we count the number 
of observations we find that there were 15 in all. Therefore, SST is calculated as follows:

SST grand= −

= − = × =

s n2 1

3 124 15 1 3 124 14 43 74

( )

. ( ) . .
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FIGURE 10.3
Graphical 
representation 
of the different 
sums of squares 
in ANOVA 
designs

SST uses the differences 
between the observed data 

and the mean value of Y

SSR uses the differences 
between the observed data 

and the model (group means)

SSM uses the differences 
between the mean value of Y 
and the model (group means)
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Before we move on, it is important to understand degrees of freedom, so have a look 
back at Jane Superbrain Box 2.2 to refresh your memory. We saw before that when we 
estimate population values, the degrees of freedom are typically one less than the number 
of scores used to calculate the population value. This is because to get these estimates we 
have to hold something constant in the population (in this case the mean), which leaves 
all but one of the scores free to vary (see Jane Superbrain Box 2.2). For SST, we used the 
entire sample (i.e., 15 scores) to calculate the sums of squares and so the total degrees 
of freedom (dfT) are one less than the total sample size (N – 1). For the Viagra data, this 
value is 14.
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10.2.6.    Model sum of squares (SS
M
) 2

So far, we know that the total amount of variation within the data is 43.74 units. We now 
need to know how much of this variation the regression model can explain. In the ANOVA 
scenario, the model is based upon differences between group means, and so the model 
sums of squares tell us how much of the total variation can be explained by the fact that 
different data points come from different groups.

In section 7.2.3 we saw that the model sum of squares is calculated by taking the differ-
ence between the values predicted by the model and the grand mean (see Figure 7.4). In 
ANOVA, the values predicted by the model are the group means (the dashed horizontal 
lines in Figure 10.3). The bottom panel in Figure 10.3 shows the model sum of squared 
error: it is the sum of the squared distances between what the model predicts for each data 
point (i.e., the dotted horizontal line for the group to which the data point belongs) and 
the overall mean of the data (the solid horizontal line).

For each participant the value predicted by the model is the mean for the group to which 
the participant belongs. In the Viagra example, the predicted value for the five participants 
in the placebo group will be 2.2, for the five participants in the low-dose condition it will 
be 3.2, and for the five participants in the high-dose condition it will be 5. The model sum 
of squares requires us to calculate the differences between each participant’s predicted 
value and the grand mean. These differences are then squared and added together (for 
reasons that should be clear in your mind by now). We know that the predicted value for 
participants in a particular group is the mean of that group. Therefore, the easiest way to 
calculate SSM is to do the following:

1	 Calculate the difference between the mean of each group and the grand mean.

2	 Square each of these differences.

3	 Multiply each result by the number of participants within that group (nk).

4	 Add the values for each group together.

The mathematical expression for this process is:

SSM grand= −
=

∑n x xk k
n

k

( )
1

2
	 (10.5)

Using the means from the Viagra data, we can calculate SSM as follows:

SSM = − + − + −

= −

5 2 200 3 467 5 3 200 3 467 5 5 00 3 467

5 1 26

2 2 2( . . ) ( . . ) ( . . )

( . 77 5 0 267 5 1 533
8 025 0 335 11 755
20 135

2 2 2) ( . ) ( . )
. . .

.

+ − +
= + +
=

For SSM, the degrees of freedom (dfM) will always be one less than the number of param-
eters estimated. In short, this value will be the number of groups minus one (which you’ll 
see denoted as k − 1). So, in the three-group case the degrees of freedom will always be 2 
(because the calculation of the sums of squares is based on the group means, two of which 
will be free to vary in the population if the third is held constant).
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10.2.7.    Residual sum of squares (SS
R
) 2

We now know that there are 43.74 units of variation to be explained in our data, and that 
our model can explain 20.14 of these units (nearly half). The final sum of squares is the 
residual sum of squares (SSR), which tells us how much of the variation cannot be explained 
by the model. This value is the amount of variation caused by extraneous factors such as 
individual differences in weight, testosterone or whatever. Knowing SST and SSM already, 
the simplest way to calculate SSR is to subtract SSM from SST (SSR = SST− SSM); however, 
telling you to do this provides little insight into what is being calculated and, of course, if 
you’ve messed up the calculations of either SSM or SST (or indeed both!) then SSR will be 
incorrect also.

We saw in section 7.2.3 that the residual sum of squares is the difference between what 
the model predicts and what was actually observed. In ANOVA, the values predicted 
by the model are the group means (the dashed horizontal lines in Figure 10.3). The top 
left panel shows the residual sum of squared error: it is the sum of the squared distances 
between each point and the dotted horizontal line for the group to which the data point 
belongs.

We already know that for a given participant, the model predicts the mean of the group 
to which that person belongs. Therefore, SSR is calculated by looking at the difference 
between the score obtained by a person and the mean of the group to which the person 
belongs. In graphical terms the vertical lines in Figure 10.3 represent this sum of squares. 
These distances between each data point and the group mean are squared and then added 
together to give the residual sum of squares, SSR, thus:

SSR = −
=
∑( )x xik k
i

n

1

2
	 (10.6)

Now, the sum of squares for each group represents the sum of squared differences 
between each participant’s score in that group and the group mean. Therefore, we can 
express SSR as SSR = SSgroup1 + SSgroup2 + SSgroup3 + …. Given that we know the relationship 
between the variance and the sums of squares, we can use the variances for each group in 
the Viagra data to create an equation like we did for the total sum of squares. As such, SSR 
can be expressed as:

SSR = −∑ s nk k
2 1( ) 	 (10.7)

This just means take the variance from each group (sk
2) and multiply it by one less than the 

number of people in that group (nk − 1). When you’ve done this for each group, add them 
all up. For the Viagra data, this gives us:

SS

(1.70)(5
R group1

2
group2 group3=

= −

s ( ) ( ) ( )n s n s n1
2

2
2

31 1 1− + − + −

11) (1.70)(5 1) (2.50)(5 1)
(1.70 4) (1.70 4) (2.50 4)
6.8

+ − + −
= + +
=

× × ×
++ +

=
6.8 10

23.60

The degrees of freedom for SSR (dfR) are the total degrees of freedom minus the degrees 
of freedom for the model (dfR = dfT −dfM = 14 − 2 = 12). Put another way, it’s N − k: the 
total sample size, N, minus the number of groups, k.
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10.2.8.    Mean squares 2

SSM tells us the total variation that the regression model (e.g., the experimental manip-
ulation) explains, and SSR tells us the total variation that is due to extraneous factors. 
However, because both of these values are summed values they will be influenced by the 
number of scores that were summed; for example, SSM used the sum of only 3 different 
values (the group means) compared to SSR and SST, which used the sum of 12 and 15 val-
ues, respectively. To eliminate this bias we can calculate the average sum of squares (known 
as the mean squares, MS), which is simply the sum of squares divided by the degrees of 
freedom. The reason why we divide by the degrees of freedom rather than the number of 
parameters used to calculate the SS is because we are trying to extrapolate to a population 
and so some parameters within that populations will be held constant (this is the same rea-
son why we divide by N − 1 when calculating the variance; see Jane Superbrain Box 2.2). 
So, for the Viagra data we find the following mean squares:

MSM
M

M

R
R

R

SS

MS
SS

= = =

= = =

df

df

20 135
2

10 067

23 60
12

1 967

.
.

.
.

MSM represents the average amount of variation explained by the model (e.g., the system-
atic variation), whereas MSR is a gauge of the average amount of variation explained by 
extraneous variables (the unsystematic variation).

10.2.9.    The F-ratio 2

The F-ratio is a measure of the ratio of the variation explained by the model and the varia-
tion explained by unsystematic factors. In other words, it is the ratio of how good the 
model is against how bad it is (how much error there is). It can be calculated by dividing 
the model mean squares by the residual mean squares.

F =
MS
MS

M

R 	
(10.8)

As with the independent t-test, the F-ratio is, therefore, a measure of the ratio of sys-
tematic variation to unsystematic variation. In experimental research, it is the ratio of the 
experimental effect to the individual differences in performance. An interesting point about 
the F-ratio is that because it is the ratio of systematic variance to unsystematic variance, if its 
value is less than 1 then it must, by definition, represent a non-significant effect. The reason 
why this statement is true is because if the F-ratio is less than 1 it means that MSR is greater 
than MSM, which in real terms means that there is more unsystematic than systematic vari-
ance. You can think of this in terms of the effect of natural differences in ability being greater 
than differences brought about by the experiment. In this scenario, we can, therefore, be 
sure that our experimental manipulation has been unsuccessful (because it has brought 
about less change than if we left our participants alone!). For the Viagra data, the F-ratio is:

F = = =
MS
MS

M

R

10 067
1 967

5 12
.

.
.
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‘Liar! Liar! Pants on fire!’ screams Oliver, his cheeks red and his 
eyes about to explode, ‘You promised in Chapter 5 to explain 
Levene’s test properly and you haven’t, you spatula head’. True 
enough, Oliver, I do have a spatula for a head. I also have a very 
nifty little demonstration of Levene’s test in the additional mate-
rial for this chapter on the companion website. It will tell you more 
than you could possibly want to know. Let’s go fry an egg …

OLIVER TWISTED

Please Sir, can I have some 
more … Levene’s test?

This value is greater than 1, which indicates that the experimental manipulation had some 
effect above and beyond the effect of individual differences in performance. However, it 
doesn’t yet tell us whether the F-ratio is large enough to not be a chance result. To discover 
this we can compare the obtained value of F against the maximum value we would expect 
to get by chance if the group means were equal in an F-distribution with the same degrees 
of freedom (these values can be found in the Appendix); if the value we obtain exceeds this 
critical value we can be confident that this reflects an effect of our independent variable 
(because this value would be very unlikely if there were no effect in the population). In this 
case, with 2 and 12 degrees of freedom the critical values are 3.89 (p = .05) and 6.93 (p = 
.01). The observed value, 5.12, is, therefore, significant at a .05 level of significance but 
not significant at a .01 level. The exact significance produced by R should, therefore, fall 
somewhere between .05 and .01 (which, incidentally, it does).

10.3.  Assumptions of ANOVA 3

The assumptions under which the F-statistic is reliable are the same as for all parametric 
tests based on the normal distribution (see section 5.2). That is, the variances in each experi-
mental condition need to be fairly similar (homogeneity of variance), observations should be 
independent and the dependent variable should be measured on at least an interval scale. In 
terms of normality, what matters is that distributions within groups are normally distributed.

10.3.1.    Homogeneity of variance 2

As with the t-test, there is an assumption that the variances of the groups are equal. This 
assumption can be tested using Levene’s test, which tests the null hypothesis that the vari-
ances of the groups are the same (see section 5.7.1). Basically, it is an ANOVA test con-
ducted on the absolute differences between the observed data and the mean or median 
from which the data came (see Oliver Twisted). If Levene’s test is significant (i.e., the 
p-value is less than .05) then we can say that the variances are significantly different. This 
would mean that we had violated one of the assumptions of ANOVA and we would have 
to take steps to rectify this matter.

10.3.2.    Is ANOVA robust? 3

You often hear people say ‘ANOVA is a robust test’, which means that it doesn’t matter 
much if we break the assumptions of the test: the F-ratio will still be accurate. There is 
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some truth to this statement, but it is also an oversimplification of the situation. 
For one thing, the term ANOVA covers many different situations and the perfor-
mance of F has been investigated in only some of those situations. There are two 
issues to consider. First, does F control the Type I error rate or is it significant 
even when there are no differences between means? Second, does F have enough 
power (i.e., is it able to detect differences when they are there)? Let’s have a look 
at the evidence.

Looking at normality first, Glass et al. (1972) reviewed a lot of evidence that 
suggests that F controls the Type I error rate well under conditions of skew, kurto-
sis and non-normality. Skewed distributions seem to have little effect on the error 
rate and power for two-tailed tests (but can have serious consequences for one-
tailed tests). However, some of this evidence has been questioned (see Jane Superbrain Box 
5.1). In terms of kurtosis, leptokurtic distributions make the Type I error rate too low (too 
many null effects are significant) and consequently the power is too high; platykurtic distri-
butions have the opposite effect. The effects of kurtosis seem unaffected by whether sample 
sizes are equal or not. One study that is worth mentioning in a bit of detail is by Lunney 
(1970) who investigated the use of ANOVA in just about the most non-normal situation 
you could imagine: when the dependent variable is binary (it could have values of only 0 or 
1). The results showed that when the group sizes were equal, ANOVA was accurate when 
there were at least 20 degrees of freedom and the smallest response category contained at 
least 20% of all responses. If the smaller response category contained less than 20% of all 
responses then ANOVA performed accurately only when there were 40 or more degrees 
of freedom. The power of F also appears to be relatively unaffected by non-normality 
(Donaldson, 1968). This evidence suggests that when group sizes are equal the F-statistic 
can be quite robust to violations of normality.

However, when group sizes are not equal the accuracy of F is affected by skew, and 
non-normality also affects the power of F in quite unpredictable ways (Wilcox, 2005). One 
situation that Wilcox describes shows that when means are equal the error rate (which 
should be 5%) can be as high as 18%. If you make the differences between means bigger 
you should find that power increases, but actually he found that initially power decreased 
(although it increased when he made the group differences bigger still). As such F can be 
biased when normality is violated.

Turning to violations of the assumption of homogeneity of variance, ANOVA is fairly 
robust in terms of the error rate when sample sizes are equal. However, when sample 
sizes are unequal, ANOVA is not robust to violations of homogeneity of variance (this is 
why earlier on I said it’s worth trying to collect equal-sized samples of data across condi-
tions!). When groups with larger sample sizes have larger variances than the groups with 
smaller sample sizes, the resulting F-ratio tends to be conservative. That is, it’s more likely 
to produce a non-significant result when a genuine difference does exist in the popula-
tion. Conversely, when the groups with larger sample sizes have smaller variances than 
the groups with smaller samples sizes, the resulting F-ratio tends to be liberal. That is, it 
is more likely to produce a significant result when there is no difference between groups 
in the population (put another way, the Type I error rate is not controlled) – see Glass et al. 
(1972) for a review. When variances are proportional to the means then the power of 
F seems to be unaffected by the heterogeneity of variance and trying to stabilize variances 
does not substantially improve power (Budescu, 1982; Budescu & Appelbaum, 1981). 

Violations of the assumption of independence are very serious indeed. Scariano and 
Davenport (1987) showed that when this assumption is broken (i.e., observations across 
groups are correlated) then the Type I error rate is substantially inflated. For example, 
using the conventional .05 Type I error rate when observations are independent, if these 
observations are made to correlate moderately (say, with a Pearson coefficient of .5), when 
comparing three groups, each of 10 observations, the actual Type I error rate is .74 (a 
substantial inflation!). Therefore, if observations are correlated you might think that you 

Is the F statistic
robust?
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If you have distributional problems, then there are 
robust (see section 5.8.4) variants of ANOVA that have 
been implemented in R by Wilcox (2005). These meth-
ods are based on bootstrapping or trimmed means 
and M-estimators (both of which can also include a 
bootstrap). We’ll cover these methods later in the 
chapter.

On balance, if you have the stomach for it, Wilcox’s 
robust methods are probably the best approach to deal-
ing with violations of assumptions. If you don’t have the 
stomach for it, there are a group of tests (often called 
assumption-free, distribution-free or non-parametric 
tests, none of which are particularly accurate names) 
that you can use instead. The one-way independent 
ANOVA has a non-parametric counterpart called the 
Kruskal–Wallis test. If you have non-normally distributed 
data, or have violated some other assumption, then this 
test can be a useful way around the problem. This test is 
described in Chapter 15.

As we saw in Chapter 5, one common way to rectify prob-
lems with assumptions is to transform all of the data and 
then reanalyse these transformed values (see Chapter 5). 
When homogeneity of variance is the problem there are ver-
sions of the F-ratio that have been derived to be robust when 
homogeneity of variance has been violated. One that can be 
implemented in R is Welch’s F (1951) – see Oliver Twisted.

JANE SUPERBRAIN 10.2

What do I do in ANOVA when assumptions are 
broken? 3  

‘You don’t understand Welch’s F,’ taunts Oliver, ‘Andy, Andy, brains 
all sandy ….’ Whatever, Oliver. Welch’s F adjusts F and the residual 
degrees of freedom to combat problems arising from violations of 
the homogeneity of variance assumption. There is a lengthy expla-
nation about Welch’s F in the additional material available on the 
companion website. Oh, and Oliver, microchips are made of sand.

OLIVER TWISTED

Please Sir, can I have some 
more … Welch’s F?

are working with the accepted .05 error rate (i.e., you’ll incorrectly find a significant result 
only 5% of the time) when in fact your error rate is closer to .75 (i.e., you’ll find a signifi-
cant result on 75% of occasions when, in reality, there is no effect in the population).

There are various things that can be done to combat the litany of woe that you have just 
read. To find out more see Jane Superbrain Box 10.2.

10.4.  Planned contrasts 2

The F-ratio tells us only whether the model fitted to the data accounts for more varia-
tion than extraneous factors, but it doesn’t tell us where the differences between groups 
lie. So, if the F-ratio is large enough to be statistically significant, then we know only that 
one or more of the differences between means are statistically significant (e.g., either b2 
or b1 is statistically significant). It is, therefore, necessary after conducting an ANOVA to 
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carry out further analysis to find out which groups differ. In multiple regression, each 
b coefficient is tested individually using a t-test and we could do the same for ANOVA. 
However, we would need to carry out two t-tests, which would inflate the familywise 
error rate (see section 10.2). Therefore, we need a way to contrast the different groups 
without inflating the Type I error rate. There are two ways in which to achieve this goal: 
the first is to break down the variance accounted for by the model into component parts: 
the second is to compare every group (as if conducting several t-tests) but to use a stricter 
acceptance criterion such that the familywise error rate does not rise above .05. The 
first option can be done using planned comparisons (also known as planned contrasts),4

whereas the latter option is done using post hoc comparisons (see next section). The dif-
ference between planned comparisons and post hoc tests can be likened to the difference 
between one- and two-tailed tests in that planned comparisons are done when you have 
specific hypotheses that you want to test, whereas post hoc tests are done when you have 
no specific hypotheses. Let’s first look at planned contrasts. 

10.4.1.    Choosing which contrasts to do 2

In the Viagra example we could have had very specific hypotheses. For one thing, we 
would expect any dose of Viagra to change libido compared to the placebo group. As a 
second hypothesis we might believe that a high dose should increase libido more than a 
low dose. To do planned comparisons, these hypotheses must be derived before the data are 
collected. It is fairly standard in science to want to compare experimental conditions to the 
control conditions as the first contrast, and then to see where the differences lie between 
the experimental groups. ANOVA is based upon splitting the total variation into two com-
ponent parts: the variation due to the experimental manipulation (SSM) and the variation 
due to unsystematic factors (SSR) (see Figure 10.4).

Planned comparisons take this logic a step further by breaking down the variation due 
to the experiment into component parts (see Figure 10.5). The exact comparisons that are 
carried out depend upon the hypotheses you want to test. Figure 10.5 shows a situation in 
which the experimental variance is broken down to look at how much variation is created 
by the two drug conditions compared to the placebo condition (contrast 1). Then the varia-
tion explained by taking Viagra is broken down to see how much is explained by taking a 
high dose relative to a low dose (contrast 2).

4 The terms comparison and contrast are used interchangeably.

FIGURE 10.4
Partitioning 
variance for 
ANOVA

SST (43.73)
Total Variance in the Data

SSM (20.13)
Variance Explained

by the Model

SSR (23.60)
Unexplained 

Variance

ANOVA
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FIGURE 10.5
Partitioning of 
experimental 
variance into 
component 
comparisons

SSM (20.13)
Variance Explained by the Model

Low + High Dose
Variance Explained by 
Experimental Groups

Placebo
Variance Explained
by Control Group Contrast 1

Low
Dose

Contrast 2High
Dose

Typically, students struggle with the notion of planned comparisons, but there are three 
rules that can help you to work out what to do:

1	 If we have a control group, this is usually because we want to compare it against the 
other groups.

2	 Each contrast must compare only two ‘chunks’ of variation.

3	 Once a group has been singled out in a contrast it can’t be used in another contrast.

Let’s look at these rules in detail. First, if a group is singled out in one comparison, then 
it should not reappear in another comparison. The important thing to remember is that we 
are breaking down one chunk of variation into smaller independent chunks. So, in Figure 
10.5 contrast 1 involved comparing the placebo group to the experimental groups; because 
the placebo group is singled out, it should not be incorporated into any other contrasts. 
You can think of partitioning variance as being similar to slicing up a cake. You begin with 
a cake (the total sum of squares) and you then cut this cake into two pieces (SSM and SSR). 
You then take the piece of cake that represents SSM and divide this up into smaller pieces. 
Once you have cut off a piece of cake you cannot stick that piece back onto the original 
slice, and you cannot stick it onto other pieces of cake, but you can divide it into smaller 
pieces of cake. Likewise, once a slice of variance has been split from a larger chunk, it 
cannot be attached to any other pieces of variance, it can only be subdivided into smaller 
chunks of variance. Now, all of this talk of cake is making me hungry, but hopefully it 
illustrates a point.

If you follow the independence of contrasts rule that I’ve just explained (the cake sli
cing!), and always compare only two pieces of variance, then you should always end up 
with one less contrast than the number of groups; there will be k − 1 contrasts (where k is 
the number of conditions you’re comparing).

Second, each contrast must compare only two chunks of variance. This rule is so that we 
can draw firm conclusions about what the contrast tells us. The F-ratio tells us that some of 
our means differ, but not which ones, and if we were to perform a contrast on more than 
two chunks of variance we would have the same problem. By comparing only two chunks 
of variance we can be sure that a significant result represents a difference between these 
two portions of experimental variation.
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Finally, in most social science research we use at least one control condition, and in the 
vast majority of experimental designs we predict that the experimental conditions will dif-
fer from the control condition (or conditions). As such, the biggest hint that I can give you 
is that when planning comparisons the chances are that your first contrast should be one 
that compares all of the experimental groups with the control group (or groups). Once you 
have done this first comparison, any remaining comparisons will depend upon which of 
the experimental groups you predict will differ.

To illustrate these principles, Figures 10.6 and 10.7 show the contrasts that might be 
done in a four-group experiment. The first thing to notice is that in both scenarios there 
are three possible comparisons (one less than the number of groups). Also, every contrast 
compares only two chunks of variance. What’s more, in both scenarios the first contrast is 
the same: the experimental groups are compared against the control group or groups. In 
Figure 10.6 there was only one control condition and so this portion of variance is used 
only in the first contrast (because it cannot be broken down any further). In Figure 10.7 
there were two control groups, and so the portion of variance due to the control conditions 
(contrast 1) can be broken down again so as to see whether or not the scores in the control 
groups differ from each other (contrast 3).

In Figure 10.6, the first contrast contains a chunk of variance that is due to the three 
experimental groups and this chunk of variance is broken down by first looking at whether 
groups E1 and E2 differ from E3 (contrast 2). It is equally valid to use contrast 2 to com-
pare groups E1 and E3 to E2, or to compare groups E2 and E3 to E1. The exact compari-
son that you choose depends upon your hypotheses. For contrast 2 in Figure 10.6 to be 
valid we need to have a good reason to expect group E3 to be different from the other 
two groups. The third comparison in Figure 10.6 depends on the comparison chosen for 

SSM
Variance Explained by the Experiment

Four Groups: E1, E2, E3 and C1

Experimental Groups
E1, E2 and E3

Control Group
C1

Contrast 1

E1 and E2
Contrast 2

E3

E1

Contrast 3

E2

FIGURE 10.6
Partitioning 
variance 
for planned 
comparisons 
in a four-group 
experiment using 
one control 
group
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FIGURE 10.7
Partitioning 
variance 
for planned 
comparisons 
in a four-group 
experiment using 
two control 
groups

What does a planned
contrast tell me?

contrast 2. Contrast 2 necessarily had to involve comparing two experimental 
groups against a third, and the experimental groups chosen to be combined 
must be separated in the final comparison. As a final point, you’ll notice that 
in Figures 10.6 and 10.7, once a group has been singled out in a comparison, 
it is never used in any subsequent contrasts.

When we carry out a planned contrast we compare ‘chunks’ of variance, 
and these chunks often consist of several groups. It is perhaps confusing to 
understand exactly what these contrasts tell us. Well, when you design a 
contrast that compares several groups to one other group, you are compar-
ing the means of the groups in one chunk with the mean of the group in 

the other chunk. As an example, for the Viagra data I suggested that an appropriate first 
contrast would be to compare the two dose groups with the placebo group. The means of 
the groups are 2.20 (placebo), 3.20 (low dose) and 5.00 (high dose) and so the first com-
parison, which compared the two experimental groups to the placebo, is comparing 2.20 
(the mean of the placebo group) to the average of the other two groups ((3.20 + 5.00)/2 
= 4.10). If this first contrast turns out to be significant, then we can conclude that 4.10 
is significantly greater than 2.20, which in terms of the experiment tells us that the aver-
age of the experimental groups is significantly different from the average of the controls. 
You can probably see that logically this means that, if the standard errors are the same, 
the experimental group with the highest mean (the high-dose group) will be significantly 
different from the mean of the placebo group. However, the experimental group with the 
lower mean (the low-dose group) might not necessarily differ from the placebo group; 

SSM
Variance Explained by the Experiment

Four Groups: E1, E2, C1 and C2

Experimental Groups
E1 and E2

Control Group
C1 and C2

Contrast 1

E1
Contrast 2

E2

Contrast 3

C1 C2
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we have to use the final comparison to make sense of the experimental conditions. For 
the Viagra data the final comparison looked at whether the two experimental groups dif-
fer (i.e., is the mean of the high-dose group significantly different from the mean of the 
low-dose group?). If this comparison turns out to be significant then we can conclude that 
having a high dose of Viagra significantly affected libido compared to having a low dose. 
If the comparison is non-significant then we have to conclude that the dosage of Viagra 
made no significant difference to libido. In this latter scenario it is likely that both doses 
affect libido more than placebo, whereas the former case implies that having a low dose 
may be no different than having a placebo. However, the word implies is important here: 
it is possible that the low-dose group might not differ from the placebo. To be completely 
sure we must carry out post hoc tests.

10.4.2.    Defining contrasts using weights 2

Hopefully by now you have got some idea of how to plan which comparisons to do (i.e., if 
your brain hasn’t exploded by now). Much as I’d love to tell you that all of the hard work 
is now over and R will magically carry out the comparisons that you’ve selected, it won’t. 
To get R to carry out planned comparisons we need to tell it which groups we would like 
to compare, and doing this can be quite complex. In fact, when we carry out contrasts we 
assign values to certain variables in the regression model (sorry, I’m afraid that I have to 
start talking about regression again) – just as we did when we used dummy coding for the 
main ANOVA. To carry out contrasts we assign certain values to the dummy variables in 
the regression model. Whereas before we defined the experimental groups by assigning the 
dummy variables values of 1 or 0, when we perform contrasts we use different values to 
specify which groups we would like to compare. The resulting coefficients in the regres-
sion model (b2 and b1) represent the comparisons in which we are interested. The values 
assigned to the dummy variables are known as weights.

This procedure can seem horribly confusing, but there are a few basic rules for assigning 
values to the dummy variables to obtain the comparisons you want. I will explain these 
simple rules before showing how the process actually works. Remember the previous sec-
tion when you read through these rules, and remind yourself of what I mean by a ‘chunk’ 
of variation.

MM Rule 1: Choose sensible comparisons. Remember that you want to compare only two 
chunks of variation and that if a group is singled out in one comparison, that group 
should be excluded from any subsequent contrasts.

MM Rule 2: Groups coded with positive weights will be compared against groups coded 
with negative weights. So, assign one chunk of variation positive weights and the 
opposite chunk negative weights.

MM Rule 3: The sum of weights for a comparison should be zero. If you add up the 
weights for a given contrast the result should be zero.

MM Rule 4: If a group is not involved in a comparison, automatically assign it a weight of 
0. If we give a group a weight of 0 then this eliminates that group from all calculations.

MM Rule 5: For a given contrast, the weights assigned to the group(s) in one chunk of 
variation should be equal to the number of groups in the opposite chunk of variation.

OK, let’s follow some of these rules to derive the weights for the Viagra data. The first 
comparison we chose was to compare the two experimental groups against the control:
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Therefore, the first chunk of variation contains the two experimental groups, and the 
second chunk contains only the placebo group. Rule 2 states that we should assign one 
chunk positive weights, and the other negative. It doesn’t matter which way round we 
do this, but for convenience let’s assign chunk 1 positive weights, and chunk 2 negative 
weights:

Chunk 1
Low Dose + High Dose

Chunk 2
Placebo

Contrast 1vs.

Chunk 1
Low Dose + High Dose

Chunk 2
Placebo

Contrast 1vs.

Positive Negative Sign of Weight

Chunk 1
Low Dose + High Dose

Chunk 2
Placebo

Contrast 1vs.

Positive Negative Sign of Weight

1 2 Magnitude

+1 −2 Weight

Using rule 5, the weight we assign to the groups in chunk 1 should be equivalent to the 
number of groups in chunk 2. There is only one group in chunk 2 and so we assign each 
group in chunk 1 a weight of 1. Likewise, we assign a weight to the group in chunk 2 that is 
equal to the number of groups in chunk 1. There are two groups in chunk 1 so we give the 
placebo group a weight of 2. Then we combine the sign of the weights with the magnitude 
to give us weights of −2 (placebo), 1 (low dose) and 1 (high dose):

Rule 3 states that for a given contrast, the weights should add up to zero, and by following 
rules 2 and 5 this rule will always be followed (if you haven’t followed these rules prop-
erly then this will become clear when you add the weights). So, let’s check by adding the 
weights: sum of weights = 1 + 1 − 2 = 0.

The second contrast was to compare the two experimental groups and so we want to 
ignore the placebo group. Rule 4 tells us that we should automatically assign this group a 
weight of 0 (because this will eliminate this group from any calculations). We are left with 
two chunks of variation: chunk 1 contains the low-dose group and chunk 2 contains the 
high-dose group. By following rules 2 and 5 it should be obvious that one group is assigned 
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a weight of +1 while the other is assigned a weight of −1. The control group is ignored 
(and so given a weight of 0). If we add the weights for contrast 2 we should find that they 
again add up to zero: sum of weights = 1 − 1 + 0 = 0.

Table 10.4  Orthogonal contrasts for the Viagra data

Group
Dummy variable 1 

(contrast1)
Dummy variable 2 

(contrast2)
Product 

contrast1 × contrast2

Placebo -2   0   0

Low dose   1 -1 -1

High dose   1   1   1

Total   0   0   0

Chunk 1
High Dose

Chunk 2
Low Dose

Contrast 2vs.

Positive Negative Sign of Weight

1 1 Magnitude

+1 −1 Weight

Placebo
Not in

Contrast

0

0

The weights for each contrast are codings for the two dummy variables in equation 
(10.2). Hence, these codings can be used in a multiple regression model in which b2 repre-
sents contrast 1 (comparing the experimental groups to the control), b1 represents contrast 
2 (comparing the high-dose group to the low-dose group), and b0 is the grand mean:

libido contrast contrasti i ib b b= + +0 1 1 2 2 	 (10.9)

Each group is specified now not by the 0 and 1 coding scheme that we initially used, but 
by the coding scheme for the two contrasts. A code of −2 for contrast 1 and a code of 0 
for contrast 2 identifies participants in the placebo group. Likewise, the high-dose group 
is identified by a code of 1 for both variables, and the low-dose group has a code of 1 for 
one contrast and a code of −1 for the other (see Table 10.4).

It is important that the weights for a comparison sum to zero because it ensures that you 
are comparing two unique chunks of variation. Therefore, we can perform a t-test. A more 
important consideration is that when you multiply the weights for a particular group, these 
products should also add up to zero (see the final column of Table 10.4). If the products add 
to zero then we can be sure that the contrasts are independent or orthogonal. It is important 
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for interpretation that contrasts are orthogonal. When we used dummy vari-
able coding and ran a regression on the Viagra data, I commented that we 
couldn’t look at the individual t-tests done on the regression coefficients 
because the familywise error rate is inflated (see section 10.4). However, if the 
contrasts are independent then the t-tests done on the b coefficients are also 
independent and so the resulting p-values are uncorrelated. You might think 
that it is very difficult to ensure that the weights you choose for your contrasts 
conform to the requirements for independence but, provided you follow the 
rules I have laid out, you should always derive a set of orthogonal compari-
sons. You should double-check by looking at the sum of the multiplied weights 

and if this total is not zero then go back to the rules and see where you have gone wrong (see 
the final column of Table 10.4).

Earlier on, I mentioned that when you used contrast codings in dummy variables in 
a regression model the b-values represented the differences between the means that the 
contrasts were designed to test. Although it is reasonable for you to trust me on this issue, 
for the more advanced students I’d like to take the trouble to show you how the regression 
model works (this next part is not for the faint-hearted and so those with an equation pho-
bia should move onto the next section!). When we do planned contrasts, the intercept b0 is 
equal to the grand mean (i.e., the value predicted by the model when group membership is 
not known), which when group sizes are equal is:

b
X X X

0 3
= =

+ +
grandmean high low placebo

Placebo group: If we use the contrast codings for the placebo group (see Table 10.4), the 
predicted value of libido equals the mean of the placebo group. The regression equation 
can, therefore, be expressed as:

libido contrast contrast2i

placebo
high low plaX

X X X

= + +

=
+ +

b b b0 1 1 2

ccebo

3
2 01 2









 + − + ×( ) ( )b b

Now, if we rearrange this equation and then multiply everything by 3 (to get rid of the 
fraction) we get:

2
3

6

1

1

b

b

=
+ +







 −

= + +

X X X
X

X X X

high low placebo
placebo

high low placcebo placebo

high low placebo

X

X X X

−

= + −

3

6 21b

We can then divide everything by 2 to reduce the equation to its simplest form:

3
2

1
3 2

1

1

b

b

=
+







 −

=
+







 −

X X
X

X X
X

high low
placebo

high low
placeebo













What are orthogonal
contrasts?
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This equation shows that b1 represents the difference between the average of the two 
experimental groups and the control group:

3
2

5 3 2
2

2 2

1 9

1b =
+







 −

=
+

−

=

X X
Xhigh low

placebo

.
.

.

We planned contrast 1 to look at the difference between the average of the experimental 
groups and the control, and so it should now be clear how b1 represents this difference. 
The observant among you will notice that rather than being the true value of the difference 
between experimental and control groups, b1 is actually a third of this difference (b1 = 1.9/3 
= 0.633). The reason for this division is that the familywise error is controlled by making 
the regression coefficient equal to the actual difference divided by the number of groups in 
the contrast (in this case 3).

High-dose group: For the situation in which the codings for the high-dose group (see 
Table 10.4) are used, the predicted value of libido is the mean for the high-dose group, and 
so the regression equation becomes:

libido contrast contrast

X
i

high

= + +

= + × + ×

b b b

b b b

b

0 1 1 2 2

0 1 2

2

1 1( ) ( )

== − −Xhigh b b1 0

We know already what b1 and b0 represent, so we place these values into the equation and 
then multiply by 3 to get rid of some of the fractions:

b b b

b

2 1 0

2

1
3 2

= − −

= −
+





−












X

X
X X

X

high

high
high low

placebo














−

+ +






= −
+

X X X

X
X X

high low placebo

high
high l

3

3 32b oow
placebo high low placeboX X X X

2







−













− + +( )

If we multiply everything by 2 to get rid of the other fraction, expand all of the brackets 
and then simplify the equation we get:

6 6 2 2

6
2b X X X X X X X= − + − − + +

=

high high low placebo high low placebo( ) ( )

XX X X X X X X

X

high high low placebo high low placebo

high

− − + − − −

= −

2 2 2 2

3 33X low

Finally, we can divide the equation by 6 to find out what b2 represents (remember that 
3/6 = 1/2):

b X X2

1
2

= −( )high low
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We planned contrast 2 to look at the difference between the experimental groups:

X Xhigh low− = − =5 3 2 1 8. .

It should now be clear how b2 represents this difference. Again, rather than being the 
absolute value of the difference between the experimental groups, b2 is actually half of this 
difference (1.8/2 = 0.9). The familywise error is again controlled, by making the regression 
coefficient equal to the actual difference divided by the number of groups in the contrast 
(in this case 2).

SELF-TEST

ü	 To illustrate these principles, I have created a file 
called Contrast.dat in which the Viagra data are 
coded using the contrast coding scheme used in 
this section. Run multiple regression analyses on 
these data using libido as the outcome and using 
dummy1 and dummy2 as the predictor variables 
(leave all default options).

Output 10.2 shows the result of this regression. The F-statistic for the model is the same 
as when dummy coding was used (compare it to Output 10.1), showing that the model 
fit is the same (it should be because the model represents the group means and these have 
not changed); however, the regression coefficients have now changed. The first thing to 
notice is that the intercept is the grand mean, 3.467 (see, I wasn’t telling lies). Second, the 
regression coefficient for contrast 1 is one-third of the difference between the average of 
the experimental conditions and the control condition (see above). Finally, the regression 
coefficient for contrast 2 is half of the difference between the experimental groups (see 
above). So, when a planned comparison is done in ANOVA a t-test is conducted compar-
ing the mean of one chunk of variation with the mean of a different chunk. From the 
significance values of the t-tests we can see that our experimental groups were significantly 
different from the control (p < .05) but that the experimental groups were not significantly 
different (p > .05).

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.4667     0.3621   9.574 5.72e-07 ***
dummy1        0.6333     0.2560   2.474   0.0293 *  
dummy2        0.9000     0.4435   2.029   0.0652 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 1.402 on 12 degrees of freedom
Multiple R-squared: 0.4604,	 Adjusted R-squared: 0.3704 
F-statistic: 5.119 on 2 and 12 DF,  p-value: 0.02469

Output 10.2
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10.4.3.    Non-orthogonal comparisons 2

I have spent a lot of time labouring how to design appropriate orthogonal comparisons with-
out mentioning the possibilities that non-orthogonal contrasts provide. Non-orthogonal 
contrasts are comparisons that are in some way related, and the best way to get them is to 
disobey Rule 1 in the previous section. Using my cake analogy again, non-orthogonal com-
parisons are where you slice up your cake and then try to stick slices of cake together again. 
So, for the Viagra data a set of non-orthogonal contrasts might be to have the same initial 
contrast (comparing experimental groups against the placebo), but then to compare the 
high-dose group to the placebo. This disobeys rule 1 because the placebo group is singled 
out in the first contrast but used again in the second contrast. The coding for this set of 
contrasts is shown in Table 10.5, and by looking at the last column it is clear that when you 
multiply and add the codings from the two contrasts the sum is not zero. This tells us that 
the contrasts are not orthogonal.

             CRAMMING SAM’S TIPS    Planned contrasts

•	 After an ANOVA you need more analysis to find out which groups differ.
•	 When you have generated specific hypotheses before the experiment, use planned contrasts.
•	 Each contrast compares two ‘chunks’ of variance. (A chunk can contain one or more groups.)
•	 The first contrast will usually be experimental groups vs. control groups.
•	 The next contrast will be to take one of the chunks that contained more than one group (if there were any) and divide it in to 

two chunks.
•	 You then repeat this process: if there are any chunks in previous contrasts that contained more than one group that haven’t 

already been broken down into smaller chunks, then create a new contrast that breaks it down into smaller chunks.
•	 Carry on creating contrasts until each group has appeared in a chunk on its own in one of your contrasts.
•	 You should end up with one less contrast than the number of experimental conditions. If not, you’ve done it wrong.
•	 In each contrast assign a ‘weight’ to each group that is the value of the number of groups in the opposite chunk in that 

contrast.
•	 For a given contrast, randomly select one chunk, and for the groups in that chunk change their weights to be negative 

numbers.
•	 Breathe a sigh of relief.

Table 10.5  Non-orthogonal contrasts for the Viagra data

Group
Dummy variable 1 

(Contrast1)
Dummy variable 2 

(Contrast2)
Product 

Contrast1 × Contrast2

Placebo -2 -1 2

Low dose 1 0 0

High dose 1 1 1

Total 0 0 3
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There is nothing intrinsically wrong with performing non-orthogonal 
contrasts. However, if you choose to perform this type of contrast you must 
be very careful about how you interpret the results. With non-orthogonal 
contrasts, the comparisons you do are related and so the resulting test sta-
tistics and p-values will be correlated to some extent. For this reason you 
should use a more conservative probability level to accept that a given con-
trast is statistically meaningful (see section 10.5).

10.4.4.    Standard contrasts 2

Although under most circumstances you will design your own contrasts, there are special 
contrasts that have been designed to compare certain situations. Some of these contrasts 
are orthogonal, whereas others are non-orthogonal. 

Table 10.6 shows the contrasts that are available in R using the contrasts() function. This 
function is used to code any categorical variable and the resulting codings can be used in 
pretty much any linear model (ANOVA, regression, logistic regression, etc.). Although 
the exact codings are not provided in Table 10.6, examples of the comparisons done in a 
three- and four-group situation are given (where the groups are labelled 1, 2, 3 and 1, 2, 
3, 4, respectively). When you code variables R will treat the lowest-value code as group 1, 
the next highest code as group 2, and so on. Therefore, depending on which comparisons 
you want to make you should code your grouping variable appropriately (and then use 
Table 10.6 as a guide to which comparisons R will carry out). One thing that clever readers 
might notice about the contrasts in Table 10.6 is that some are orthogonal (i.e., Helmert 
contrasts) while others are non-orthogonal (e.g., treatment). You might also notice that the 
comparisons calculated using treatment contrasts are the same as those given by using the 
dummy variable coding described in Table 10.2).

Table 10.6  Standard contrasts available in R

Name Definition Contrast
Three  

Groups
Four  

Groups

Dummy 
(default)

The default is dummy coding 
in which each category is 
compared to the first category

1 1 vs. 2 1 vs. 2

2 1 vs. 3 1 vs. 3

3 1 vs. 4

contr.
treatment() 

Each category is compared 
to a  
user-defined baseline category 
(in this case I chose the 
second category)

1 2 vs. 1 2 vs. 1

2 2 vs. 3 2 vs. 3

3 2 vs. 4

contr.
SAS()

Each category is compared 
to the  
last category

1 1 vs. 3 1 vs. 4

2 2 vs. 3 2 vs. 4

3 3 vs. 4

contr.
helmert()

Each category (except the last) is 
compared to the mean effect of 
all subsequent categories

1 1 vs. (2, 3) 1 vs. (2, 3, 
4)

2 2 vs. 3 2 vs. (3, 4)

3 3 vs. 4

Are non-orthogonal
contrasts legitimate?
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10.4.5.    Polynomial contrasts: trend analysis 2

One type of contrast deliberately omitted from Table 10.6 is the polynomial contrast, which 
can be obtained using contr.poly(). This contrast tests for trends in the data, and in its most 
basic form it looks for a linear trend (i.e., that the group means increase proportionately). 
However, there are other trends such as quadratic, cubic and quartic trends that can be 
examined. Figure 10.8 shows examples of the types of trend that can exist in data sets. The 
linear trend should be familiar to you all by now and represents a simple proportionate 
change in the value of the dependent variable across ordered categories (the diagram shows 
a positive linear trend, but of course it could be negative). A quadratic trend is where there is 
one change in the direction of the line (e.g., the line is curved in one place). An example of 
this might be a situation in which a drug enhances performance on a task at first, but then 
as the dose increases the performance drops again. To find a quadratic trend you need at 
least three groups (because in the two-group situation there are not enough categories of 
the independent variable for the means of the dependent variable to change one way and 
then another). A cubic trend is where there are two changes in the direction of the trend. 
So, for example, the mean of the dependent variable at first goes up across the first couple 
of categories of the independent variable, then across the succeeding categories the means 
go down, but then across the last few categories the means rise again. To have two changes 
in the direction of the mean you must have at least four categories of the independent vari-
able. The final trend that you are likely to come across is the quartic trend, and this trend has 
three changes of direction (so you need at least five categories of the independent variable).

Polynomial trends should be examined in data sets in which it makes sense to order the 
categories of the independent variable (so, for example, if you have administered five doses 
of a drug it makes sense to examine the five doses in order of magnitude). For the Viagra 
data there are only three groups and so we can expect to find only a linear or quadratic 
trend (and it would be pointless to test for any higher-order trends).

Each of these trends has a set of codes for the dummy variables in the regression model, so 
we are doing the same thing that we did for planned contrasts except that the codings have 
already been devised to represent the type of trend of interest. In fact, the graphs in Figure 10.8 
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have been constructed by plotting the coding values for the five groups. Also, if you add the 
codes for a given trend the sum will equal zero and if you multiply the codes you will find that 
the sum of the products also equals zero. Hence, these contrasts are orthogonal. The great thing 
about these contrasts is that you don’t need to construct your own coding values to do them, 
because the codings already exist.

10.5.  Post hoc procedures 2

Often it is the case that you have no specific a priori predictions about the data you have 
collected and instead you are interested in exploring the data for any between-group differ-
ences between means that exist. This procedure is sometimes called data mining or explor-
ing data. Now, personally I have always thought that these two terms have certain ‘rigging 
the data’ connotations to them and so I prefer to think of these procedures as ‘finding the 
differences that I should have predicted if only I’d been clever enough’. 

Post hoc tests consist of pairwise comparisons that are designed to compare all differ-
ent combinations of the treatment groups. So, it is rather like taking every pair of groups 
and then performing a t-test on each pair of groups. Now, this might seem like a particu-
larly stupid thing to say in the light of what I have already told you about the problems 
of inflated familywise error rates. However, pairwise comparisons control the familywise 
error by correcting the level of significance for each test such that the overall Type I error 
rate (a) across all comparisons remains at .05. There are several ways in which the fami-
lywise error rate can be controlled. The most popular (and easiest) way is to divide α by 
the number of comparisons, k, thus ensuring that the cumulative Type I error is below .05:

p
kcrit =
α

Therefore, if we conduct 10 tests, we use .005 as our criterion for significance. This method 
is known as the Bonferroni correction (Figure 10.9). There is a trade-off for controlling the 
familywise error rate, and that is a loss of statistical power. This means that the probability 
of rejecting an effect that does actually exist is increased (this is called a Type II error). 
By being more conservative in the Type I error rate for each comparison, we increase the 
chance that we will miss a genuine difference in the data.

FIGURE 10.9
Carlo Bonferroni 
before the 
celebrity of his 
correction led 
to drink, drugs 
and statistics 
groupies
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Let’s look at this method, and some variations, using an example. Some research has sug-
gested that children wearing superhero costumes might be more likely to harm themselves 
because of the unrealistic impression of invincibility that these costumes could create. 
For example, there are case studies of children reporting to hospital with severe injuries 
because of falling from windows or trying ‘to initiate flight without having planned for 
landing strategies’ (Davies, Surridge, Hole, & Munro-Davies, 2007). Having spent a lot 
of my childhood dressed in various costumes, I can relate to the imagined power that it 
bestows upon you; even now, I have been known to dress up as Fisher by donning a beard 
and glasses and trailing a goat around on a lead in the hope that it might make me more 
knowledgeable about statistics.

Imagine that we wanted to see whether different types of superhero costumes led to 
more severe injuries. We measured the severity of injury on a scale from 0 to 100 (0 = not 
at all injured, 100 = dead), and made a note of the type of costume a child was wearing. 
Let’s also entertain the possibility that children fell (probably because of trying to fly) into 
four groups: Spiderman, Superman, the Hulk, and Teenage Mutant Ninja Turtles (let’s face 
it, who wouldn’t want to dress up as a ninja turtle?). These entirely fabricated data are in 
Superhero.dat. There is a task at the end of the chapter to analyse these data, but for now, 
let’s look at comparing all of these groups; we would end up with the six comparisons 
in Table 10.7. The table shows the unadjusted p-value that you get for each comparison. 
The critical value of pcrit based on a Bonferroni correction for each comparison is the Type 
I error rate divided by the number of comparisons, α/k = .05/6 = .0083. If the observed 
p is smaller than the critical value then the comparison is significant (at α = .05). In this 
case, there is a significant difference between ninja turtle and Superman costumes (because 
.0000 is less than .0083) and between Superman and Hulk costumes (because .0014 is 
smaller than .0083). In all other cases p is bigger than the critical value so the difference is 
not significant.

There are various improvements that have been made to the Bonferroni correction over 
the years and the general principle behind them is easy to understand so it’s worth explain-
ing. In an attempt to make the Bonferroni correction less conservative (i.e., to make it 
better at detecting differences that actually exist), authors such as Hommel, Hochberg 
and Holm5 have suggested stepped approaches (Hochberg, 1988; Holm, 1979; Hommel, 

5 Their names all begin with ‘Ho’, which I find a strange coincidence. If your surname begins with ‘Ho’ too, 
beware: a life in multiple comparison research could await you.

Table 10.7  Critical values for p based on variations on Bonferroni (* indicates that a comparison 
is significant)

Bonferroni Holm Benjamini–Hochberg

p pcrit =
α–

        k
 
j

pcrit=
α–

        j
 
j

pcrit=( 
j
– )α

     k

NT–Super .0000 .0083 * 6 .0083 * 1 .0083 *

Super–Hulk .0014 .0083 * 5 .0100 * 2 .0167 *

Spider–Super .0127 .0083 4 .0125 3 .0250 *

NT–Spider .0252 .0083 3 .0167 4 .0333 *

NT–Hulk .1704 .0083 2 .0250 5 .0417

Spider–Hulk .3431 .0083 1 .0500 6 .0500
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1988). Holm’s method is very simple to explain. You begin by computing the p-value for 
all of the pairs of groups in your data, you then order them from smallest to largest. We 
assign each p in the list an index (I’ve labelled it j) that tells us where in the list it falls. 
Table 10.7 shows this process: for the largest p we assign an index of 1, the next largest 2, 
and so on until the smallest one, which will be indexed as the number of comparisons (k), 
in this case 6. The critical value for a given comparison is the Type I error rate divided by 
the index variable (j):

p
jcrit =
α

Starting from the smallest p-value, this means that you begin with the normal Bonferroni 
correction because j = k for this first comparison. However, notice that in subsequent 
comparisons we do not correct for every comparison made, instead we correct only for the 
remaining comparisons. Unlike the standard Bonferroni correction, the critical value of p 
gets bigger (and less conservative) for each comparison. The key idea behind this method 
is it is stepped. This means that as long as a comparison is significant, we proceed to the 
next one, but at the point that we encounter a non-significant comparison we stop and 
assume that all remaining comparisons are non-significant also. In Table 10.7, we see a 
significant difference between Ninja Turtle and Superman costumes (because .0000 is less 
than .0083); therefore, we move onto the next one down and see a significant difference 
between Superman and Hulk costumes (because .0014 is smaller than .01); therefore we 
move down again but find a non-significant difference between Spiderman and Superman 
costumes (because .0127 is larger than .0125); because of this non-significance we stop and 
do not consider any further comparisons.

A more modern take on this kind of sequential approach to multiple comparisons is to 
worry not about the familywise error rate, but to focus on the false discovery rate (FDR). 
By focusing on the familywise error rate we are obsessing (in some people, literally) about 
the possibility of making one or more Type I errors. The corresponding belief system can be 
summed up as ‘if I make even one Type I error then my entire set of conclusions is mean-
ingless’. With a belief system like that it’s no wonder people look depressed when they’re 
analysing data. Benjamini and Hochberg think about things differently. Their belief system 
can be summed up as the rather more joyful ‘let’s try to estimate how many Type I errors 
(or false discoveries) we have made’. The FDR is simply the proportion of falsely rejected 
null hypotheses:

 
FDR

numberof falsely
totalnumberof

=
rejected null hypotheses

rejjected null hypotheses

As such, the FDR approach to multiple comparisons is less strict than Bonferroni-based 
methods because it is concerned with keeping the FDR rather than the familywise error 
rate under control. In Benjamini and Hochberg’s method (Benjamini & Hochberg, 1995, 
2000) you start by computing the p-value for all of the pairs of groups in your data. You 
then order them and, as with Holm’s method, index the order with the letter j (notice we 
order them the opposite way around to Holm’s method). For each comparison you deem 
it significant if the observed p is smaller than a critical value defined as:

p
j
kcrit = α

Table 10.7 again shows this process. For the largest p-value we again have the normal 
Bonferroni correction (i.e., α/k), for the other comparisons we use a more liberal criterion. 
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Like Holm’s method this procedure is stepped; however, rather than working down the 
table we work up (hence it is known as a ‘step-up’ procedure). So, we begin at the bottom 
and conclude a non-significant difference between Spiderman and Hulk costumes (because 
.3431 is greater than .05); given this non-significance we move up the table and see a non-
significant difference between Ninja Turtle and Hulk costumes (because .1704 is greater 
than .0417); given this non-significance we again move up the table and see a significant 
difference between Ninja Turtle and Spiderman costumes (because .0252 is less than the 
critical value of .0333); because of this significance we stop and assume that all other com-
parisons are also significant. Procedurally this step-up approach is the opposite of Holm’s 
step-down procedure.

There are many other post hoc procedures. I have explained only a few of the main ones 
that can be implemented in R. I could go into all of the other methods in tedious detail but 
there are some excellent texts already available for those who wish to know (Klockars & 
Sax, 1986; Toothaker, 1993) and R does not implement most of them anyway. (That said, 
the nice thing about R of course is that you could write your own function to do them if 
you had a few spare hours, a maths degree, and a bottle of gin.) However, it is important 
that you have an idea of which post hoc tests perform best. ‘Best’ is a word that can mean 
many things. For post hoc procedures, deciding on what’s ‘best’ requires us to consider 
three things: whether the test controls the Type I error rate; whether the test controls the 
Type II error rate (i.e., has good statistical power); and whether the test is reliable when the 
test assumptions of ANOVA have been violated.

10.5.1.  �  Post hoc procedures and Type I (a) and 
Type II error rates 2

The Type I error rate and the statistical power of a test are linked. Therefore, there is 
always a trade-off: if a test is conservative (the probability of a Type I error is small) then 
it is likely to lack statistical power (the probability of a Type II error will be high). So, it is 
important that multiple comparison procedures control the Type I error rate but without a 
substantial loss in power. If a test is too conservative then we are likely to reject differences 
between means that are, in reality, meaningful.

Bonferroni’s and Tukey’s HSD6 tests both control the Type I error rate very well but are 
conservative tests (they lack statistical power). Of the two, Bonferroni has more power 
when the number of comparisons is small, whereas Tukey is more powerful when testing 
large numbers of means. Tukey generally has greater power than other tests of which you 
might have heard such as Dunn and Scheffé. Holm’s method should have more power than 
Bonferroni, and the Benjamini–Hochberg method should have more power than Holm’s 
procedure. If you are obsessed with controlling the Type I error rate, it is worth remember-
ing that the Benjamini–Hochberg method does not attempt to do this: it controls the FDR.

10.5.2.  �  Post hoc procedures and violations of test 
assumptions 2

Most research on post hoc tests has looked at whether the test performs well when the 
group sizes are different (an unbalanced design), when the population variances are very 

6 HSD stands for ‘honest significant difference’,which has a slightly dodgy ring to it if you ask me!

10-Field_R-4368-Ch-10.indd   431 29/02/2012   6:16:56 PM



432 D ISCOVER ING STAT IST ICS  US ING SPSS

different, and when data are not normally distributed. The good news is that most multiple 
comparison procedures perform relatively well under small deviations from normality. The 
bad news is that they perform badly when group sizes are unequal and when population 
variances are different.

There are a variety of tests designed to deal with these situations, none of which are 
implemented in R. Hochberg’s GT2 is one such test and is worth mentioning because it 
is not implemented in R and is completely different than the Hochberg and Benjamini–
Hochberg methods that I have already mentioned. Therefore, don’t use the Hochberg 
option in R thinking it can cope with unequal variances: it is a different test.

Instead of telling you what can’t be done, it might be more helpful to tell you what 
can be done. There are some robust methods that have been implemented in R by Wilcox 
(2005). As with methods for the ANOVA itself, these methods are based on bootstrapping 
or trimmed means and M-estimators (both of which can also include a bootstrap). All of 
these methods are very new and so there is very little on which to base advice on what to do 
for the best. However, all methods have been shown to control the Type I error well when 
applied to some very extreme distributions. If Type I error control is your main concern then 
the bootstrap seems to offer a small advantage, and if power is your concern then there are 
some benefits to methods based on M-estimators (Wilcox, 2003). However, the bottom line 
is that using any of these methods is undoubtedly better than using a non-robust method.

10.5.3.    Summary of post hoc procedures 2

The choice of comparison procedure will depend on the exact situation you have and 
whether it is more important for you to keep strict control over the familywise error rate, 
the FDR, or to have greater statistical power. However, some general guidelines can be 
drawn (Toothaker, 1993). When you have equal sample sizes and you are confident that 
your population variances are similar then Tukey has good power and tight control over 
the Type I error rate. Bonferroni is generally conservative, but if you want guaranteed 
control over the Type I error rate then this is the test to use. If there is any doubt over the 
underlying assumptions (e.g., unequal population variances) then use a robust method 
based on a bootstrap, trimmed means, or M-estimators. 

             CRAMMING SAM’S TIPS    Post hoc tests

•	 After an ANOVA you need a further analysis to find out which groups differ.
•	 When you have no specific hypotheses before the experiment, use post hoc tests.
•	 When you have equal sample sizes and group variances are similar, use Tukey.
•	 If you want guaranteed control over the Type I error rate, then use Bonferroni.
•	 If there is any doubt that group variances are equal, then use a robust method (e.g., bootstrap or trimmed means).

10.6.  One-way ANOVA using R 2

Hopefully you should all have some appreciation for the theory behind ANOVA, so let’s 
put that theory into practice by conducting an ANOVA test on the Viagra data.
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10.6.1.    Packages for one-way ANOVA in R 1

There are several packages that we will use in this chapter. If you’re using R Commander 
(see the next section) then you don’t need to worry: it will load everything it needs auto-
matically. If you’re using commands (which we recommend), you will need the packages 
car (for Levene’s test), compute.es (for effect sizes) ggplot2 (for graphs), multcomp (for 
post hoc tests), pastecs (for descriptive statistics), and WRS (for robust tests). If you do not 
have these packages installed (some should be installed from previous chapters), you can 
install them by executing the following commands:

install.packages("compute.es"); install.packages("car"); install.packages 
("ggplot2"); install.packages("multcomp"); install.packages("pastecs"); install. 
packages("WRS", repos="http://R-Forge.R-project.org")

You then need to load these packages by executing these commands:

library(compute.es); library(car); library(ggplot2); library(multcomp); 
library(pastecs); library(WRS)

10.6.2.    General procedure for one-way ANOVA 1

To conduct one-way ANOVA you should follow this general procedure:

1	 Enter data: obviously you need to enter your data.

2	 Explore your data: as with any analysis, it’s a good idea to begin by graphing your data 
and computing some descriptive statistics. You should also check distributional assump-
tions and use Levene’s test to check for homogeneity of variance (see Chapter 5).

3	 Compute the basic ANOVA: you can then run the main analysis of variance. 
Depending on what you found in the previous step, you might need to run a robust 
version of the test.

4	 Compute contrasts or post hoc tests: having conducted the main ANOVA you can fol-
low it up with either contrasts or post hoc tests. Again, the exact methods you choose 
will depend upon what you unearth in step 2.

We will work through these steps in turn.

10.6.3.    Entering data 1

As with the independent t-test, we need to enter the data into R using a coding variable to 
specify to which of the three groups the data belong. So, the data must be entered in two 
columns (one called dose which specifies how much Viagra the participant was given and 
one called libido which indicates the person’s libido over the following week). The data 
are in the file Viagra.dat, but I recommend entering them by hand to gain practice in data 
entry. I have coded the grouping variable so that 1 = placebo, 2 = low dose and 3 = high 
dose (see section 3.5.4.3).
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This data set is small (only 15 cases); therefore, we could enter the data directly into R 
by executing the following code:

libido<-c(3,2,1,1,4,5,2,4,2,3,7,4,5,3,6)
dose<-gl(3,5, labels = c("Placebo", "Low Dose", "High Dose"))
viagraData<-data.frame(dose, libido)

These commands create a variable called libido with the 15 libido scores contained within 
it, and a variable called dose, which uses the gl() function to create a factor variable with 
three groups each containing five participants. These variables are merged into a dataframe 
called viagraData. We can look at the contents of the dataframe by executing:

viagraData

You will see the following displayed in the console:

        dose libido
1    Placebo      3
2    Placebo      2
3    Placebo      1
4    Placebo      1
5    Placebo      4
6   Low Dose      5
7   Low Dose      2
8   Low Dose      4
9   Low Dose      2
10  Low Dose      3
11 High Dose      7
12 High Dose      4
13 High Dose      5
14 High Dose      3
15 High Dose      6

10.6.4.    One-way ANOVA using R Commander 2

Running ANOVA using commands gives you much more versatility than R Commander. 
However, you can do a basic one-way ANOVA using R Commander. First load the data 
from the file Viagra.dat by using the Data⇒Import data⇒from text file, clipboard, or 
URL… menu (see section 3.7.3). This data set has two variables: dose, which is the group-
ing variable (1 = placebo, 2 = low dose, 3 = high dose); and libido, which is each partici-
pant’s libido score. Once the data are loaded in a dataframe (I have called the dataframe 
viagraData), you need to convert the variable dose into a factor – see section 3.6.2 to 
remind yourself how to do that.

Once you have done that, you need to explore the data: get some descriptive statistics 
and test the assumptions. This is explained in Chapter 5. Levene’s test looks at whether 
variances across conditions are equal – in other words, it tests the assumption of homoge-
neity of variance (see section 10.3.1). Use the Statistics⇒Variances⇒Levene’s test… menu 
to run the analysis.  The resulting dialog box is fairly self-explanatory (Figure 10.10): 
select a factor from the list labelled Groups (in this case we have only one factor, dose) and 
select the outcome variable from the list labelled Response Variable (in this case libido). By 
default, R Commander will base Levene’s test on deviations from the median, which is a 
better measure than using deviations from the mean, but you can change this option if you 
like. Click on  to run the analysis. The resulting output is described in section 10.6.5.
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FIGURE 10.10
Levene’s 
test using R 
Commander

To do the ANOVA, use the Statistics⇒Means⇒One-way ANOVA… menu.7  The result-
ing dialog box is fairly self-explanatory (Figure 10.11). You need to enter a name for the 
model that you’re going to create (I have chosen viagraModel) in the box labelled Enter 
name for model:, select a factor from the list labelled Groups (in this case we have only 
one factor, dose) and select the outcome variable (in this case libido) from the list labelled 

7 If this menu isn’t active it could be because you haven’t converted dose into a factor. You need to have at least 
one factor in the dataframe for this menu to be active.

FIGURE 10.11
One-way 
ANOVA using R 
Commander
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FIGURE 10.12
Error bar chart 
of the Viagra 
data (95% 
bootstrapped 
confidence 
intervals)
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Response Variable. You cannot do planned comparisons using R Commander, but if you 
want a basic set of post hoc tests then select . Click on  to run the 
analysis. The resulting output is described in sections 10.6.6.1 and 10.6.8.2.

10.6.5.    Exploring the data 2

In Chapter 4 we saw that it is always a good idea to look at a graph of your data. In this 
case we will produce a line graph with error bars.

SELF-TEST

ü	 Use ggplot2 to produce a line chart with error bars 
showing bootstrapped confidence intervals for the 
Viagra data.

Figure 10.12 shows a line chart with error bars of the Viagra data. It’s clear from this 
chart that all of the error bars overlap, indicating that, at face value, there are no between-
group differences (although this measure is only approximate). The line that joins the 
means seems to indicate a linear trend in that, as the dose of Viagra increases, so does the 
mean level of libido.

To get some descriptive statistics for each group we can use the by() function that we 
encountered in Chapter 5. Remember that this function takes the general form:

by(variable, group, output)
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in which variable is the thing that you want to summarize (in this case libido), group is the 
variable that defines the groups by which you want to organize the output (in this case 
dose), and output is a function that tells R what output you would like to see (i.e., the 
mean). If we use the function stat.desc() from the package pastecs then R will output a host 
of useful descriptive statistics. Therefore, by combining by() and stat.desc(), we can get a 
table of descriptives for each group in a single line of code:

by(viagraData$libido, viagraData$dose, stat.desc)

Output 10.3 shows the resulting descriptive statistics (I have edited the output slightly to 
fit the page so you will see more decimal places and a few extra variables). Most of the 
variables are self-explanatory: we have the number of valid cases (nbr.val), minimum (min) 
and maximum (max) libido, the range, median, mean and variance (var), standard devia-
tion (std.dev), standard error (SE.mean) and confidence interval (CI.mean.0.95). 

viagraData$dose: Placebo
nbr.val  min  max  range  sum   median  mean  SE.mean 
5.000    1.00 4.00  3.00  11.00 2.00    2.2000  0.5831
 
CI.mean.0.95          var      std.dev     coef.var 
   1.6189318    1.7000000    1.3038405    0.5926548 
------------------------------------------------------------------- 
viagraData$dose: Low Dose

 nbr.val  min  max  range  sum   median  mean  SE.mean 
5.000    2.00 5.00  3.00   16.00 3.00    3.200 0.5831
 
CI.mean.0.95          var      std.dev     coef.var 
   1.6189318    1.7000000    1.3038405    0.4074502 
------------------------------------------------------------------- 
viagraData$dose: High Dose

nbr.val  min  max  range  sum   median  mean  SE.mean 
5.00    3.00 7.00  4.00   25.00 5.0    5.0000  0.7071 

CI.mean.0.95          var      std.dev     coef.var 
   1.9632432    2.5000000    1.5811388    0.3162278

Output 10.3

The first thing to notice from Output 10.3 is that the means and standard deviations 
correspond to those shown in Table 10.1. In addition, we are told the standard error. You 
should remember that the standard error is the standard deviation of the sampling distribu-
tion of these data (so for the placebo group, if you took lots of samples from the population 
from which these data come, the means of these samples would have a standard deviation 
of 0.5831).

We are also given confidence intervals for the mean. By now, you should be familiar 
with what a confidence interval tells us, and that is that if we took 100 samples from 
the population from which the placebo group came and constructed confidence inter-
vals for the mean, then 95 of these intervals would contain the true value of the mean. 
CI.mean.0.95 doesn’t give you the interval itself, but the value to add or subtract from 
the mean to create the interval. For example, in the placebo group the lower bound of 
the CI would be the mean minus CI.mean.0.95 (i.e., 2.2000 – 1.6189 = 0.5811) and the 
upper bound of the CI would be the mean plus CI.mean.0.95 (i.e., 2.2000 + 1.6189 = 
3.8189). In other words, the true value of the mean is likely to be between 0.5811 and 
3.8189. Although these diagnostics are not immediately important, we will refer back to 
them throughout the analysis.
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The final thing before we get to the ANOVA itself is to compute Levene’s test (see 
Chapter 5 and section 10.3.1). We encountered the levene.Test() function from the car 
package in Chapter 5, and we can again use it here. Just to remind you, it takes the general 
form:

leveneTest(outcome variable, group, center = median/mean)

So, if we want to do a Levene’s test to see whether the variance in libido (the outcome) 
varies across groups that received different doses of the drug (dose), we can execute:

leveneTest(viagraData$libido, viagraData$dose, center = median)

The output (Output 10.4) shows that Levene’s test is very non-significant, F(2, 12) = 
0.118, p = .89. This means that for these data the variances are very similar (hence the high 
probability value); in fact, if you look at Output 10.3 you’ll see that the variances of the 
placebo and low-dose groups are identical. Had this test been significant, we could instead 
conduct and report the results of Welch’s F or a robust version of ANOVA, which we’ll 
cover in the next section.

Levene’s Test for Homogeneity of Variance
      Df F value Pr(>F)
group  2  0.1176   0.89
      12  

Output 10.4

10.6.6.    The main analysis 2

10.6.6.1.  When the test assumptions are met 2

There are two functions that can be used for ANOVA: lm(), which we used in Chapter 7, 
and aov(). As I explained earlier in the chapter, ANOVA is just a special case of the general 
linear model; therefore, we can use the linear model function, lm(), to run the analysis. 
For the current example, we are predicting libido from group membership (i.e., dose of 
Viagra) so our model is:

libido dose errori i i= +

Therefore, we can create a model (which I’ve called viagraModel) using lm() by executing:

viagraModel<-lm(libido~dose, data = viagraData)

where libido~dose simply creates the model ‘libido predicted from dose’. 
The other function we can use is aov(), which stands for analysis of variance. Actually, 

aov() and lm() are exactly the same as each other. However, aov() takes the output from 
lm() and returns it to us in a way that is more in keeping with a traditional ANOVA 
approach. It’s what is known as a ‘wrapper’: it is lm() but ‘wrapped’ up differently. I’m 
going to stick with the aov() function because it yields output that maps onto traditional 
ANOVA methods, but be clear that underneath we’re actually using lm() to do the hard 
work.

The aov() function has the following general format:

newModel<-aov(outcome ~ predictor(s), data = dataFrame, na.action = an 
action))
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in which:

MM newModel is an object created that contains information about the model. We can 
get summary statistics for this model by executing summary(newModel) for the main 
ANOVA summary and summary.lm(newModel) for specific parameters of the model.

MM outcome is the variable that you’re trying to predict, also known as the dependent 
variable. In this example it will be the variable libido.

MM predictor(s) lists the variable or variables from which you’re trying to predict the 
outcome variable, also known as the independent variable(s). In this example it will 
be the variable dose. In more complex designs we can specify several predictors or 
independent variables, but we’ll come to that in subsequent chapters.

MM dataFrame is the name of the dataframe from which your outcome and predictor 
variables come.

MM na.action is an optional command. If you have complete data (as we have here) you 
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can be 
useful to use na.action = na.exclude, which will exclude all cases with missing values 
– see R’s Souls’ Tip 7.1).

For the current example, then, we could execute the following command:

viagraModel<-aov(libido ~ dose, data = viagraData)

to generate the model (note that the command is basically identical to when we used lm() 
to run an ANOVA above). We now have an object called viagraModel that contains infor-
mation about how well dose predicts libido. To see the summary statistics execute:

summary(viagraModel)

Executing this command generates Output 10.5. The output is divided into effects due 
to the model (the experimental effect) and residuals (this is the unsystematic variation in 
the data). The effect labelled dose is the overall experimental effect. In this row we are told 
the sums of squares for the model (SSM = 20.13) and this value corresponds to the value 
calculated in section 10.2.6. The degrees of freedom are equal to 2 and the mean squares 
value for the model corresponds to that calculated in section 10.2.8 (10.067). The sum of 
squares and mean squares represent the experimental effect. The row labelled Residuals 
gives details of the unsystematic variation within the data (the variation due to natural 
individual differences in libido and different reactions to Viagra). The table tells us how 
much unsystematic variation exists (the residual sum of squares, SSR) and this value (23.60) 
corresponds to the value calculated in section 10.2.7. The table then gives the average 
amount of unsystematic variation, the mean squares (MSR), which corresponds to the value 
(1.967) calculated in section 10.2.8. The test of whether the group means are the same is 
represented by the F-ratio for the effect of dose. The value of this ratio is 5.12, which is 
the same as was calculated in section 10.2.9. Finally, R tells us whether this value is likely 
to have happened by chance. The final column labelled Pr(>F) indicates the likelihood of 
an F-ratio the size of the one obtained occurring if there was no effect in the population 
(see also R’s Souls’ Tip 10.1). In this case, there is a probability of .025 that an F-ratio of 
this size would occur if in reality there was no effect (that’s only a 2.5% chance!). We have 
seen in previous chapters that we use a cut-off point of .05 as a criterion for statistical sig-
nificance. Hence, because the observed significance value is less than .05 we can say that 
there was a significant effect of Viagra. However, at this stage we still do not know exactly 
what the effect of Viagra was (we don’t know which groups differed). One thing that is 
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interesting here is that we obtained a significant experimental effect, yet our error bar plot 
indicated that no significant difference would be found. This contradiction illustrates how 
the error bar chart can act only as a rough guide to the data.

            Df Sum Sq Mean Sq F value  Pr(>F)  
dose         2 20.133 10.0667  5.1186 0.02469 *
Residuals   12 23.600  1.9667                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 10.5

          R ’s  Souls ’  T ip  10.1   One- and two-tailed tests in ANOVA 2

A question I get asked a lot by students is ‘is the significance of the ANOVA one- or two-tailed, and if it’s two-tailed 
can I divide by 2 to get the one-tailed value?’ The answer is that to do a one-tailed test you have to be making a 
directional hypothesis (i.e., the mean for cats is greater than for dogs). ANOVA is a non-specific test, so it just tells 
us generally whether there is a difference or not, and because there are several means you can’t possibly make 
a directional hypothesis. As such, it’s invalid to halve the significance value.

The aov() function also automatically generates some plots that we can use to test the 
assumptions. We can see these graphs by executing:

plot(viagraModel)

The results are in Figure 10.13. You will actually see four graphs, but the first two are the 
most important for ANOVA. The first graph (on the left of the figure) can be used for test-
ing homogeneity of variance. We encountered this kind of plot in Chapter 7: essentially, 
if it has a funnel shape then we’re in trouble. The plot we have shows points that are 
equally spread for the three groups, which implies that variances are similar across groups 
(which was also the conclusion reached by Levene’s test). The second plot (on the right) 
is a Q-Q plot (see Chapter 5), which tells us something about the normality of residuals in 
the model. We want our residuals to be normally distributed, which means that the dots 
on the graph should cling lovingly to the diagonal line. Ours look like they have had a bit 
of an argument with the diagonal line, which suggests that we may not be able to assume 
normality of errors and should perhaps use a robust version of ANOVA instead (which will 
be explained sooner than you might like).

10.6.6.2.  When variances are not equal across groups 2

If Levene’s test is significant then it is reasonable to assume that population variances are 
different across groups.8 In this case, if our distributions are as they should be, we can apply 

8 It’s worth reminding you that any significance test depends on sample size: in small samples there won’t be 
power to detect differences across groups, and in large samples even small differences in variances might be 
deemed significant. As such, don’t place too much weight on Levene’s test if it’s non-significant in a small sample, 
or significant in a large sample.
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FIGURE 10.13
Plots of an 
ANOVA model
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Welch’s F to the data, which makes adjustments for differences in group variances. This 
test is produced by the oneway.test() function, which is built into R. The format of this test 
is the same as aov():

oneway.test(outcome ~ predictor, data = dataframe)

Therefore, we can get the output for Welch’s F for the current data by executing:

oneway.test(libido ~ dose, data = viagraData)

Output 10.6 shows Welch’s F-ratio. For our data we didn’t need this test because our 
Levene’s test was not significant, indicating that our population variances were similar. 
However, when homogeneity of variance has been violated you should look at this F-ratio 
instead of the ones in the previous section. If you’re interested in how these values are 
calculated then look at Oliver Twisted, but to be honest it’s not that much fun and you’d 
probably enjoy yourself more if you spent the time sticking jellyfish down your pants. 
You’re much better off just trusting that R has done what it was supposed to do. Note that 
the error degrees of freedom have been adjusted – you should remember this when you 
report the values. For these data, Welch’s F(2, 7.94) = 4.23, p = .054, which is just about 
non-significant. If we were using this test it would imply that the mean libido did not differ 
significantly across different doses of Viagra.

	 One-way analysis of means (not assuming equal variances)

data:  libido and dose 
F = 4.3205, num df = 2.000, denom df = 7.943, p-value = 0.05374

Output 10.6

10.6.6.3.  Robust ANOVA – it’s not for the weak of heart 3

Wilcox (2005) describes a set of robust procedures for conducting one-way ANOVA. Load 
these functions using the instructions in section 5.8.4. Having done this, we now have 
access to Wilcox’s functions. The first issue with using these functions is that most of them 
require the data to be in wide format rather than the long format that we have been using 
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so far in this chapter. We can convert the data to wide format using the unstack() command 
(see section 3.9.4), which has the general form:

newDataFrame<-unstack(oldDataFrame, scores ~ columns)

In this case our scores are stored in the variable libido and we want to make different 
columns for each group, so our columns variable is dose. Therefore, we can reformat the 
data by executing:

viagraWide<-unstack(viagraData, libido ~ dose)

This command creates a new dataframe called viagraWide, which is our Viagra data but in 
wide format, so each column represents a different group:

  Placebo Low.Dose High.Dose
1       3        5         7
2       2        2         4
3       1        4         5
4       1        2         3
5       4        3         6

This is the format that Wilcox’s functions expect. The first robust function, t1way(), is 
based on a trimmed mean. It takes the general form:

t1way(dataFrame, tr = .2, grp = c(x, y, …, z))

in which,

MM dataFrame is the name of the dataframe to be analysed. 

MM tr is the proportion of trimming to be done. The default is .2 or 20%, and you need 
to use this option only if you want to specify an amount other than 20%.

MM grp can be used to specify particular groups by referring to their column in the 
dataframe; for example, if we wanted to analyse only the placebo and high-dose 
group, we could do this using grp = c(1,3).

As such, for an ANOVA of the Viagra data based on 20% trimmed means we simply execute:

t1way(viagraWide)

If we wanted to trim only 10% of the data then we could execute:

t1way(viagraWide, tr = .1)

If you execute this command you will see Output 10.7, which shows that, based on this 
robust test, there is not a significant difference in libido scores across the three dose groups, 
Ft(2, 7.94) = 4.32, p = .054.

We can also compare medians rather than means using med1way(), which takes the gen-
eral form:

med1way(dataFrame, grp = c(x, y, …, z))

in which, dataFrame is the name of the dataframe to be analysed and grp is used in the 
same way as in t1way(). As such, for an ANOVA of the Viagra data based on medians we 
simply execute:

med1way(viagraWide)

If you execute this command you will see Output 10.7, which shows that, based on this 
robust test, there is not a significant difference in median libido scores across the three dose 
groups, Fm = 4.78, p = .07.
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A final method is to add a bootstrap to the trimmed mean method using t1waybt(). This 
function has the general form:

t1waybt(dataFrame, tr = .2, alpha = .05, grp = c(x, y, …, z), nboot = 599)

which is the same as t1way() except that we have two additional options. The first is alpha, 
which sets the Type I error rate. The default is .05, which is fairly standard, so unless you 
want something different you don’t need to use this option. The second is nboot, which 
specifies the number of bootstrap samples to be used. The default is 599, which, if any-
thing, you might want to increase (but it’s probably not necessary to use more than 2000). 
As such, for an ANOVA of the Viagra data based on 20% trimmed means, with 599 boot-
strap samples, we execute:

t1waybt(viagraWide)

However, if we wanted, for example, a 5% trimmed mean with 2000 bootstrap samples 
we would execute:

t1waybt(viagraWide, tr = .05, nboot = 2000)

If you execute the t1waybt() function with the default settings you will see Output 10.7, 
which shows that, based on this robust test, there is not a significant difference in trimmed 
mean libido scores across the three dose groups, Ft = 3, p = .089. In short, all three robust 
methods suggest that dose does not have a significant impact on libido.

t1way() output med1way() output t1waybt() output

$TEST
[1] 4.320451

$nu1
[1] 2

$nu2
[1] 7.943375

$siglevel
[1] 0.05373847

$TEST
[1] 4.782879

$crit.val
[1] 5.472958

$p.value
[1] 0.07

$test
[1] 3

$p.value
[1] 0.0886076

Output 10.7

10.6.7.    Planned contrasts using R 2

To do planned comparisons in R we have to set the contrast attribute of our grouping vari-
able using the contrast() function and then re-create our ANOVA model using aov(). By 
default, dummy coding is used, which was explained in section 10.2.3. We can see this if 
we summarize our existing viagraModel using the summary.lm() function rather than sum-
mary(). By using summary.lm() we are asking for a summary of the parameters of the linear 
model (rather than the overall ANOVA). Assuming you still have the viagraModel object (if 
not, re-create it) execute this command:

summary.lm(viagraModel)
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You should get Output 10.8. Note that this is basically the same as Output 10.1, which we 
used to explain how dummy coding works. So, the ‘low dose’ effect is the effect of low 
dose compared to placebo and is non-significant (t = 1.13, p = .282), whereas the effect of 
high dose compared to the placebo group is significant (t = 3.16, p = .008).

Coefficients:
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)     2.2000     0.6272   3.508  0.00432 **
doseLow Dose    1.0000     0.8869   1.127  0.28158   
doseHigh Dose   2.8000     0.8869   3.157  0.00827 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 1.402 on 12 degrees of freedom
Multiple R-squared: 0.4604,	 Adjusted R-squared: 0.3704 
F-statistic: 5.119 on 2 and 12 DF,  p-value: 0.02469

Output 10.8

This is all very well, but what if we do not want dummy coding, but want to use our own 
planned comparisons, use another built-in comparison, or do a trend analysis? In general, 
we do this by resetting the contrast attribute associated with our predictor variable (in this 
case dose), using the following general command:

contrasts(predictor variable)<-contrast instructions

The contrast instructions can be either a set of weights for the contrasts that you want 
to do, or one of the built-in contrasts listed in Table 10.6. These built in functions 
can be:

contr.helmert(n)
contr.poly(n)
contr.treatment(n, base = x)
contr.SAS(n)

In all cases, n is the number of groups in the predictor variable (for dose, this value will be 
3). The contr.treatment() function has an additional option, base, which allows you to specify 
the group that you want to use as a baseline. Therefore, if you want dummy coding (i.e., the 
first category is the baseline) you would use contr.treatment(n, base = 1). The function contr.
SAS() is the same as using contr.treatment() when you select the last category as the baseline.

To put this all together, if we wanted to set the contrast property of dose to be a Helmert 
contrast then we would execute:

contrasts(viagraData$dose)<-contr.helmert(3)

Note that the 3 is the number of groups present in the dose variable. We’re not going to 
use this contrast, though, we’re going to specify our own.

10.6.7.1.  Your own contrasts 2

To conduct the planned comparisons described in section 10.4, we follow the general pro-
cedure just described. We need to tell R what weights to assign to each group. The first step 
is to decide which comparisons you want to do and then what weights must be assigned to 
each group for each of the contrasts. We have already gone through this process in section 
10.4.2, so we know that the weights for contrast 1 were −2 (placebo group), +1 (low-dose 
group) and +1 (high-dose group). If we wanted to express these weights we could create a 
new object called contrast1 and use the function c() to list the weights:

contrast1<-c(-2,1,1)
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This variable indicates that the first group has a weight of −2, and the second and third groups 
a weight of 1. The order of the numbers is important because it corresponds to the order of 
groups in your predictor variable. In the Viagra data, remember that the order of groups was: 
placebo (because it was coded with the lowest value, 1), low dose (because it was coded using 
the next lowest number, 2), and high dose (because it was coded with the highest number, 3). 
As such, contrast1 has the weights for placebo, low dose and high dose, in that order.

We can do the same for the second contrast. We know from section 10.4.2 that the 
weights for contrast 2 were: 0 (placebo group), −1 (low-dose group) and +1 (high-dose 
group). Remembering that the first weight we enter will be for the placebo group, we must 
enter the value 0 as the first weight, then −1 for the low-dose group and finally 1 for the 
high-dose group. It is imperative that you remember to input zero weights for any groups 
that are not in the contrast. We can specify this contrast by executing:

contrast2<-c(0,-1,1)

which creates a variable called contrast2 that contains the weights for the second contrast.
Having created these variables we now need to bind them together using cbind(), which 

literally binds two columns of data together, and set them as the contrast attached to our 
predictor variable, dose. We can do this by executing:

contrasts(viagraData$dose)<-cbind(contrast1, contrast2)

This command sets the contrast property of dose to contain the weights for the two con-
trasts that we want to conduct.9 If you have a look at the dose variable by executing:

viagraData$dose

You’ll see this:

[1] Placebo   Placebo   Placebo   Placebo   Placebo   Low Dose  Low 
Dose  Low Dose  Low Dose  Low Dose  High Dose High Dose High Dose
[14] High Dose High Dose
attr(,"contrasts")
          contrast1 contrast2
Placebo          -2         0
Low Dose          1        -1
High Dose         1         1
Levels: Placebo Low Dose High Dose

Note that the variable now has a contrast attribute that contains the weights that we just 
specified. This is very useful to look at to check that you have entered the weights cor-
rectly. Remember that when we do planned comparisons we arrange the weights such that 
we compare any group with a positive weight against any group with a negative weight. 
Therefore, the table of weights shows that contrast 1 compares the placebo group against 
the two experimental groups, and contrast 2 compares the low-dose group to the high-
dose group. These are the contrasts we wanted. Happy days.

Once we have set the contrast attribute we create a new model using aov(), in exactly the 
same way as we did before, by executing:

viagraPlanned<-aov(libido ~ dose, data = viagraData)

If you use the summary() command you’ll see that the model is the same as the viagraModel 
that we created earlier. However, to access the contrasts we need the model parameters, 
which are obtained by executing:

summary.lm(viagraPlanned)

9 I think that creating the contrast1 and contrast2 variables makes what we’re doing a bit easier to understand, but 
in reality I would normally create these contrasts by executing this single command:

contrasts(viagraData$dose)<-cbind(c(-2,1,1), c(0,-1,1))
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The resulting Output 10.9 is the same as Output 10.2, which we looked at earlier when 
explaining how these contrasts work. Re-read that earlier material to see from where the 
values of the parameters come. The table gives the standard error of each contrast and a 
t-statistic. The significance value of the contrast is given in the final column, and this value 
is two-tailed. Using the first contrast as an example, if we had used this contrast to test the 
general hypothesis that the experimental groups would differ from the placebo group, then 
we should use this two-tailed value. However, in reality we tested the hypothesis that the 
experimental groups would increase libido above the levels seen in the placebo group: this 
hypothesis is one-tailed. Provided the means for the groups bear out the hypothesis we can 
divide the significance values by 2 to obtain the one-tailed probability (i.e., .0293/2 = .0147). 
Hence, for contrast 1, we can say that taking Viagra significantly increased libido compared 
to the control group (p = .0147). For contrast 2 we also had a one-tailed hypothesis (that a 
high dose of Viagra would increase libido significantly more than a low dose) and the means 
bear this hypothesis out. The significance of contrast 2 tells us that a high dose of Viagra 
increased libido significantly more than a low dose (p(one-tailed) = .0652/2 = .0326). Notice 
that had we not had a specific hypothesis regarding which group would have the highest 
mean, then we would have had to conclude that the dose of Viagra had no significant effect 
on libido. For this reason it can be important as scientists that we generate hypotheses before 
collecting any data, because this method of scientific discovery is more powerful.

In summary, the planned contrasts revealed that taking Viagra significantly increased 
libido compared to a control group, t(12) = 2.47, p < .05, and taking a high dose signifi-
cantly increased libido compared to a low dose, t(12) = 2.03, p < .05 (one-tailed).

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.4667     0.3621   9.574 5.72e-07 ***
dose1         0.6333     0.2560   2.474   0.0293 *  
dose2         0.9000     0.4435   2.029   0.0652 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 1.402 on 12 degrees of freedom
Multiple R-squared: 0.4604,	 Adjusted R-squared: 0.3704 
F-statistic: 5.119 on 2 and 12 DF,  p-value: 0.02469

Output 10.9

10.6.7.2.  Trend analysis 2

To conduct a trend analysis we can use contr.poly(). It is important that we have coded 
the predictor variable groups in a meaningful order. We expect libido to be smallest in the 
placebo group, to increase in the low-dose group and then to increase again in the high-
dose group. To detect a meaningful trend, we need to have coded these groups in ascend-
ing order. We have done this by coding the placebo group with the lowest value 1, the 
low-dose group with the middle value 2 and the high-dose group with the highest coding 
value of 3. If we coded the groups differently, this would influence both whether a trend is 
detected and, if a trend is detected, whether it is statistically meaningful.

To obtain a trend analysis we follow the general procedure of setting the contrast attri-
bute of the predictor variable, which in this case we can do by executing:

contrasts(viagraData$dose)<-contr.poly(3)

The ‘3’ just tells contr.poly() how many groups there are in the predictor variable. Having 
set the contrast we again create a new model using aov(), by executing:

viagraTrend<-aov(libido ~ dose, data = viagraData)
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To access the contrasts we need the model parameters, which are obtained by executing:

summary.lm(viagraTrend)

The resulting Output 10.10 breaks down the experimental effect to see whether it can 
be explained by either a linear (dose.L) or a quadratic (dose.Q) relationship in the data. 
First, let’s look at the linear component. This comparison tests whether the means increase 
across groups in a linear way. The most important things to note are the value of the t and 
the corresponding significance value. For the linear trend t = 3.16 and this value is signifi-
cant at p = .008. Therefore, we can say that as the dose of Viagra increased from nothing 
to a low dose to a high dose, libido increased proportionately.

Moving onto the quadratic trend, this comparison is testing whether the pattern of 
means is curvilinear (i.e., is represented by a curve that has one bend). The error bar graph 
of the data suggests that the means cannot be represented by a curve and the results for the 
quadratic trend bear this out: t = 0.52 and this value is significant at p = .612, which is not 
very significant at all. 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.4667     0.3621   9.574 5.72e-07 ***
dose.L        1.9799     0.6272   3.157  0.00827 ** 
dose.Q        0.3266     0.6272   0.521  0.61201    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 1.402 on 12 degrees of freedom
Multiple R-squared: 0.4604,	 Adjusted R-squared: 0.3704 
F-statistic: 5.119 on 2 and 12 DF,  p-value: 0.02469

Output 10.10

10.6.8.    Post hoc tests using R 2

How you conduct post hoc tests in R depends on which test you’d like to do. Bonferroni 
and related methods (such as Holm and Benjamini–Hochberg) are done using the 
pairwise.t.test() function, which is part of the R base system. However, Tukey and Dunnett’s 
test (and some others that we’re not going to look at) can be done using the glht() function 
in the multcomp() package. Finally, Wilcox (2005) has some robust methods implemented 
in his functions lincon() and mcpp20(). This section is divided according to these different 
methods.

10.6.8.1.  Bonferroni and related methods 2

Bonferroni and related methods (e.g., Holm, Benjamini–Hochberg, Hommel, Hochberg) 
can be implemented using the pairwise.t.test() function that is built into R. This function 
takes the general form:

pairwise.t.test(outcome, predictor, paired = FALSE, p.adjust.method = 
"method")

in which:

MM outcome is the name of your outcome variable (in this case it will be libido 
(viagraData$libido).
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MM predictor is the name of your grouping variable (in this case it will be dose 
(viagraData$dose).

MM paired is a logical statement that by default is FALSE but can be set to TRUE (the 
capital letters matter). This specifies whether you want paired t-tests or not. For these 
data we have independent groups so we do not want paired t-tests and the default of 
FALSE is fine, but we’ll revisit this option in Chapter 13.

MM p.adjust.method is a string that specifies which correction you would like to apply to 
your p-values. You can replace “method” in the command above with “bonferroni”, 
“holm”, “hochberg”, “hommel”, “BH” (which produces the Benjamini–Hochberg 
method), “BY” (which produces the more recent Benjamini–Yekutieli method), “fdr” 
(the general false discovery rate method), and “none” (you don’t correct the p-value 
at all, you just do lots of t-tests – not advisable).

As such, we can obtain Bonferroni and Benjamini–Hochberg post hoc tests for the current 
data by executing these two commands:

pairwise.t.test(viagraData$libido, viagraData$dose, p.adjust.method = 
"bonferroni")

pairwise.t.test(viagraData$libido, viagraData$dose, p.adjust.method = "BH")

Both commands specify libido as the outcome variable, and dose as the grouping vari-
able, but they differ in the method that is set for correcting the p-values. The results can 
be seen in Output 10.11. Both methods produce a grid of p-values for all combinations of 
the groups. First of all, let’s look at the Bonferroni corrected values: the placebo group is 
compared to the low-dose group and reveals a non-significant difference (.845 is greater 
than .05), but when compared to the high-dose group there is a significant difference (.025 
is less than .05). 

SELF-TEST

ü	 Our planned comparison showed that any dose of 
Viagra produced a significant increase in libido, yet 
the post hoc tests indicate that a low dose does not. 
Why is there this contradiction?

In section 10.4.2, I explained that the first planned comparison would compare the 
experimental groups to the placebo group. Specifically, it would compare the average of 
the two group means of the experimental groups ((3.2 + 5.0)/2 = 4.1) to the mean of 
the placebo group (2.2). So, it was assessing whether the difference between these values 
(4.1 − 2.2 = 1.9) was significant. In the post hoc tests, when the low dose is compared 
to the placebo, the contrast is testing whether the difference between the means of these 
two groups is significant. The difference in this case is only 1, compared to a difference 
of 1.9 for the planned comparison. This explanation illustrates how it is possible to have 
apparently contradictory results from planned contrasts and post hoc comparisons. More 
important, it illustrates how careful we must be in interpreting planned contrasts.

The final comparison is the low-dose group compared to the high-dose group, which 
is not significant (because 0.196 is greater than .05). This result contradicts the planned 
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comparisons (remember that contrast 2 compared these groups and found a significant 
difference).

SELF-TEST

ü	 Why does the post hoc test show a non-significant 
difference between high and low dose, when 
the planned comparison showed a significant 
difference?

This contradiction occurs for two possible reasons. First, post hoc tests by their nature 
are two-tailed (you use them when you have made no specific hypotheses and you cannot 
predict the direction of hypotheses that don’t exist!) and contrast 2 was significant only 
when considered as a one-tailed hypothesis. However, even at the two-tailed level the 
planned comparison was closer to significance than the post hoc test and this fact illustrates 
that post hoc procedures are more conservative (i.e., have less power to detect true effects) 
than planned comparisons.

Looking now at the BH corrected tests, we find the same pattern of results as for 
Bonferroni: placebo is significantly different from a high dose (because .025 is less than 
.05), but not a low dose (.282 is greater than .05) and low and high doses did not signifi-
cantly differ (.098 is greater than .05).

Bonferroni BH

Pairwise comparisons using t 
tests with pooled SD 

data:  viagraData$libido and 
viagraData$dose 

          Placebo Low Dose
Low Dose  0.845   -       
High Dose 0.025   0.196   

P value adjustment method: 
bonferroni

Pairwise comparisons using t 
tests with pooled SD 

data:  viagraData$libido and 
viagraData$dose 

          Placebo Low Dose
Low Dose  0.282   -       
High Dose 0.025   0.098   

P value adjustment method: BH

Output 10.11

10.6.8.2.  Tukey and Dunnett 2

Tukey and Dunnett can be implemented using the glht() function that is part of the mult-
comp package (so remember to install and load it). This function takes the general form:

newModel<-glht(aov.Model, linfct = mcp(predictor = "method"), base = x)

in which:

MM newModel is an object containing the information from the post hoc tests. To see 
this information we can use summary(newModel) for the basic post hoc tests and 
confint(newModel) to see the confidence intervals.
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MM aov.Model is the name of a model that has already been created with the aov() func-
tion (in this case it will be viagraModel).

MM predictor is the name of your grouping variable (in this case it will be dose 
(viagraData$dose).

MM linfct = mcp(predictor = “method”) specifies which correction you would like to apply 
to your p-values. You can replace “method” in the command above with “Dunnett”, 
“Tukey”, “Sequen”, “AVE”, “Changepoint”, “Williams”, “Marcus”, “McDermott”, 
“UmbrellaWilliams”, and “GrandMean”.

MM base is used only when “Dunnett” is specified. This option allows you to specify 
the baseline group using a group number. In this case if we wanted the placebo as 
the baseline we would use base = 1, but if we wanted the high-dose group we could 
specify base = 3.

For the Viagra data, we can obtain Tukey post hoc tests by executing:

postHocs<-glht(viagraModel, linfct = mcp(dose = "Tukey"))
summary(postHocs)
confint(postHocs)

The first command creates an object (which I’ve called postHocs) that is based on the via-
graModel that we created in section 10.6.6.1. The linfct command is set to perform Tukey 
tests on the variable dose (the reason why we can type ‘dose’ rather than ‘viagraData$dose’ 
is because the function will look for ‘dose’ within viagraModel, which has been specified 
within the function). To access the information within postHocs we execute summary() to 
get the post hoc tests (Output 10.12) and confint() to get the corresponding confidence 
intervals (Output 10.13).

Output 10.12 shows the three comparisons (low dose vs. placebo, high dose vs. pla-
cebo, high dose vs. low dose), the estimate (which is the difference between the group 
means), the standard error associated with the difference between means, the t-test 
(which is simply the difference between means divided by the standard error, so for the 
first contrast it is 1/0.8869 = 1.127), and its associated p-value. As with the tests in the 
previous section, this output confirms significant differences between the high dose and 
placebo groups, t = 3.16, p < .05, but not between the low-dose group and the placebo, 
t = 1.13, p = .52, and high dose, t = 2.03, p = .15, groups. The confidence intervals 
(Output 10.13) also confirm this because they do not cross zero for the comparison of 
the high dose and placebo group, which means that the true difference between group 
means is likely not to be zero (i.e., no difference); conversely, for the other contrasts the 
confidence intervals cross zero, implying that the true difference between means could 
be zero.

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = libido ~ dose, data = viagraData)

Linear Hypotheses:
                          Estimate Std. Error t value Pr(>|t|)  
Low Dose - Placebo == 0     1.0000     0.8869   1.127   0.5162  
High Dose - Placebo == 0    2.8000     0.8869   3.157   0.0208 *
High Dose - Low Dose == 0   1.8000     0.8869   2.029   0.1474  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method)

Output 10.12
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Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = libido ~ dose, data = viagraData)

Quantile = 2.6671
95% family-wise confidence level
 
Linear Hypotheses:
                          Estimate lwr     upr    
Low Dose - Placebo == 0    1.0000  -1.3656  3.3656
High Dose - Placebo == 0   2.8000   0.4344  5.1656
High Dose - Low Dose == 0  1.8000  -0.5656  4.1656

Output 10.13

We can obtain Dunnett post hoc tests for the Viagra data by executing:

postHocs<-glht(viagraModel, linfct = mcp(dose = "Dunnett"), base = 1)
summary(postHocs)
confint(postHocs)

The first command is the same as before, except that we have replaced “Tukey” with “Dunnett”. 
We have also added the base command (because we’re using Dunnett) to specify which group 
to use as the control group. We have used base = 1, which means ‘use the first group’, which 
in this case is the placebo group. To access the information we again execute summary() and 
confint(). The results are in Output 10.14. I won’t labour the point because the conclusions are 
the same as for Tukey; all I will say is that you should note that Dunnett’s test compares groups 
to a baseline so we end up with two tests rather than three. In this case we asked every group to 
be compared to the placebo group, so there is no comparison of the high and low-dose groups.

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = libido ~ dose, data = viagraData)

Linear Hypotheses:
                         Estimate Std. Error t value Pr(>|t|)  
Low Dose - Placebo == 0    1.0000     0.8869   1.127   0.4459  
High Dose - Placebo == 0   2.8000     0.8869   3.157   0.0152 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = libido ~ dose, data = viagraData)

Quantile = 2.5023
95% family-wise confidence level
 
Linear Hypotheses:
                         Estimate lwr     upr    
Low Dose - Placebo == 0   1.0000  -1.2194  3.2194
High Dose - Placebo == 0  2.8000   0.5806  5.0194

Output 10.14
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10.6.8.3.  Run for cover – it’s robust post hoc tests 3

As with the robust ANOVA, to run robust post hoc tests we need to (1) source Rand Wilcox’s 
functions (see section 10.6.6.3 for how to do this); and (2) input data in the wide format – 
therefore, we’ll use the object viagraWide that we created in section 10.6.6.3. We are going 
to use two functions: lincon(), which is based on trimmed means; and mcppb20(), which 
uses a percentile bootstrap to compute p-values as well as trimming the group means. The 
latter method, in particular, seems good at controlling the Type I error rate. The general 
forms of these functions are similar to t1way() and t1waybt(), which we encountered ear-
lier in the chapter:10

lincon(dataframe, tr = .2, grp = c(x, y, …, z))
mcppb20(dataframe, tr = .2, nboot = 2000, grp = c(x, y, …, z))

The options for each function are the same as described in section 10.6.6.3. Note that 
these functions take the same parameters, except that mcppb20() has an additional nboot 
command to control the number of bootstrap samples (the default is 2000, which is fine). 
Trimming on the means defaults to 20% (tr = .2). If you are happy with the default values 
then we can execute these commands on the viagraWide dataframe as follows:

lincon(viagraWide)
mcppb20(viagraWide)

It’s as easy as that. Output 10.15 comes from lincon(). Note that the confidence intervals 
are corrected for the number of tests, but the p-values are not. As such, we should ascertain 
significance from whether or not the confidence intervals cross zero. In this case they all 
do, which implies that none of the groups are significantly different. This is different from 
what we found when we did not trim the means (see the previous two sections).

SELF-TEST

ü	 Repeat the analysis with 10% trimmed means. How 
do your conclusions differ?

[1] "Note: confidence intervals are adjusted to control FWE"
[1] "But p-values are not adjusted to control FWE"
$test
     Group Group      test crit       se df
[1,]     1     2 0.8660254 3.74 1.154701  4
[2,]     1     3 2.5980762 3.74 1.154701  4
[3,]     2     3 1.7320508 3.74 1.154701  4
$psihat
     Group Group psihat ci.lower ci.upper    p.value
[1,]     1     2     -1 -5.31858  3.31858 0.43533094
[2,]     1     3     -3 -7.31858  1.31858 0.06016985
[3,]     2     3     -2 -6.31858  2.31858 0.15830242

Output 10.15

10 They actually have a few extra options, but I’m keeping things simple.
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Output 10.16 comes from mcpp20(). Unlike lincon(), both the confidence intervals and 
p-values are corrected for the number of tests. The main table lists three contrasts. To make 
sense of these we have to look at the contrast codes listed under $con. These are like the 
contrast weights that we looked at earlier in the chapter, so groups with positive weights 
are compared to those with negative weights. From the contrast codes we can see that con-
trast 1 compares groups 1 and 2 (i.e., placebo vs. low dose), contrast 2 compares groups 1 
and 3 (i.e., placebo vs. high dose), and contrast 3 compares groups 2 and 3 (i.e., low dose 
vs. high dose).

Looking at the confidence intervals, it’s clear that only the interval for contrast 2 does 
not cross zero, implying a significance difference between the high dose and placebo group 
(which is confirmed by the associated p-value, which is smaller than .05). For the other two 
comparisons the confidence intervals cross zero (and the ps are greater than .05), implying 
non-significant differences in libido between the low-dose group and both placebo (con-
trast 1) and high-dose (contrast 3) groups. Essentially, this profile of results is consistent 
with what we found using non-robust post hoc tests.

[1] "Taking bootstrap samples. Please wait."
$psihat
     con.num psihat       se  ci.lower   ci.upper p-value
[1,]       1     -1 1.154701 -3.333333  1.3333333  0.3250
[2,]       2     -3 1.154701 -5.333333 -0.3333333  0.0055
[3,]       3     -2 1.154701 -4.333333  0.6666667  0.0840

$crit.p.value
[1] 0.017

$con
     [,1] [,2] [,3]
[1,]    1    1    0
[2,]   -1    0    1
[3,]    0   -1   -1

Output 10.16

             CRAMMING SAM’S TIPS    One-way ANOVA

•	 The one-way independent ANOVA compares several means, when those means have come from different groups of 
people; for example, if you have several experimental conditions and have used different participants in each condition.

•	 When you have generated specific hypotheses before the experiment use planned comparisons, but if you don’t have 
specific hypotheses use post hoc tests.

•	 There are lots of different post hoc tests: when you have equal sample sizes and homogeneity of variance is met, use 
Tukey’s HSD. If there is any doubt about the underlying assumptions then use a robust method. 

•	 Test for homogeneity of variance using Levene’s test. Find the table with this label: if the p-value is less than .05 then the 
assumption is violated. If homogeneity of variance has been met (the significance of Levene’s test is greater than .05), 
run a normal ANOVA. If, however, the assumption is violated (the significance of Levene’s test is less than .05) compute 
Welch’s F instead of the normal ANOVA, or use a robust method based on trimmed means and/or a bootstrap.

•	 In the main ANOVA, if the value of p is less than .05 then the means of the groups are significantly different.
•	 For contrasts and post hoc tests, look at the confidence intervals and p-values to discover if your comparisons are sig-

nificant. If the confidence intervals do not contain zero or the p-value is less than .05 then the effect is significant.
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          Labcoat  Len i ’s  Real  Research 10.1   Scraping the barrel? 1

Gallup, G. G. J., et al. (2003). Evolution and Human Behavior, 24, 277–289.

Evolution has endowed us with many beautiful things (cats, dolphins, the Great Barrier Reef, etc.), all selected 
to fit their ecological niche. Given evolution’s seemingly limitless capacity to produce beauty, it’s something of a 
wonder how it managed to produce such a monstrosity as the human penis. One theory is that the penis evolved 
into the shape that it is because of sperm competition. Specifically, the human penis has an unusually large 
glans (the ‘bell end’, as it’s affectionately known) compared to other primates, and this may have evolved so that 
the penis can displace seminal fluid from other males by ‘scooping it out’ during intercourse. To put this idea to 
the test, Gordon Gallup and his colleagues came up with an ingenious study (Gallup et al., 2003). Armed with 
various female masturbatory devices from Hollywood Exotic Novelties, an artificial vagina from California Exotic 
Novelties, and some water and cornstarch to make fake sperm, they loaded the artificial vagina with 2.6 ml of fake 
sperm and inserted one of three female sex toys into it before withdrawing it. Over several trials, three different 
female sex toys were used: a control phallus that had no coronal ridge (i.e., no bell end), a phallus with a minimal 
coronal ridge (small bell end) and a phallus with a coronal ridge.

They measured sperm displacement as a percentage using the following equation (included here because it 
is more interesting than all of the other equations in this book):

weightof vagina withsemen weightof vagina following insertio− nn and removal of phallus

weightof vagina withsemen weightof − eempty vagina
100×

As such, 100% means that all of the sperm was displaced by the phallus, and 0% means that none of the 
sperm was displaced. If the human penis evolved as a sperm displacement device, then Gallup et al. predicted: 
(1) that having a bell end would displace more sperm than not; and (2) the phallus with the larger coronal ridge 
would displace more sperm than the phallus with the minimal coronal ridge. The conditions are ordered (no ridge, 
minimal ridge, normal ridge) so we might also predict a linear trend. The data can be found in the file Gallup 

et al.csv. Draw an error bar graph of the means of the three conditions. Conduct a one-way ANOVA with 
planned comparisons to test the two hypotheses above. What did Gallup et al. find?

Answers are in the additional material on the companion website (or look at pages 280–281 in the 
original article).

10.7.  Calculating the effect size 2

One thing you will notice is that R doesn’t routinely provide an effect size for one-way 
independent ANOVA. However, we saw in equation (7.4) that:

R2 =
SS
SS

M

T

We can actually get this value from the main ANOVA by using summary.lm() on the object 
you create with aov(). For example, for the viagraModel this function gives us Output 
10.8, at the bottom of which we see that r2 = .46. For some bizarre reason, in the context 
of ANOVA, r2 is usually called eta squared, η2. It is then a simple matter to take the square 
root of this value to give us the effect size, r (√.46  = .68). Using the benchmarks for effect 
sizes this represents a large effect (it is above the .5 threshold for a large effect). Therefore, 
the effect of Viagra on libido is a substantive finding.
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However, this measure of effect size is slightly biased because it is based purely on sums 
of squares from the sample and no adjustment is made for the fact that we’re trying to 
estimate the effect size in the population. Therefore, we often use a slightly more complex 
measure called omega squared (ω2). This effect size estimate is still based on the sums of 
squares that we’ve met in this chapter, but like the F-ratio it uses the variance explained 
by the model, and the error variance (in both cases the average variance, or mean squared 
error, is used):

ω
2 =

−
+

SS MS
SS MS

M M R

T R

( )df

All of these values can be found in Output 10.5 (although SST is not in the output, it is eas-
ily calculated as SST = SSM + SSR). In this example we’d get:

ω
2 20 13 2 1 97 1 1 97

43 73 1 97
16 19
45 70

=
− × −

+

=

=

. ( . ) .
. .

.

.
.

, or 20. 3 (2)

335
ω = .60

As you can see, this has led to a slightly lower estimate than using r, and in general ω is a 
more accurate measure. Although in the sections on ANOVA I will use ω as my effect size 
measure, think of it as you would r (because it’s basically an unbiased estimate of r anyway). 
People normally report ω2, and it has been suggested that values of .01, .06 and .14 rep-
resent small, medium and large effects respectively (Kirk, 1996). Remember, though, that 
these are rough guidelines and that effect sizes need to be interpreted within the context 
of the research literature.

‘There’s no place like omega’, chants Oliver as he clicks the heels 
of his red shoes together. Much as you want to wake up in Kansas, 
Oliver, you’re going to find yourself in bubo-infested Dickensian 
London. If you’d like to join him there, read the online material, 
which shows you how to write a function to calculate ω2 in R. I 
think you’ll agree it’s not entirely different from a bubo infestation.

OLIVER TWISTED

Please Sir, can I have some 
more … omega?

Most of the time it isn’t that interesting to have effect sizes for the overall ANOVA 
because it’s testing a general hypothesis. Instead, we really want effect sizes for the differ-
ences between pairs of groups. We can obtain these using the mes() function of the calcu-
late.es package. This function takes the general form:

mes(meangroup1, meangroup2, sdgroup1, sdgroup2, ngroup1, ngroup2)

In other words, we simply input the mean, standard deviation (sd) and sample size (n) of 
the two groups that we want to compare. We have this information in Output 10.3. For 
example, if we want to compare the placebo and low-dose group we would execute:

mes(2.2, 3.2, 1.3038405, 1.3038405, 5, 5)
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We have entered the mean of the placebo group (2.2), the mean of the low-dose group 
(3.2), the standard deviation of the placebo group (1.3038), the  standard deviation of the 
low-dose group (also 1.3038), and both groups have a sample size of 5. Similarly, we can 
get effect sizes for the difference between the placebo and high-dose group by executing:

mes(2.2, 5, 1.3038405, 1.5811388, 5, 5)

Finally, the difference between the low- and high-dose groups can be quantified by 
executing:

mes(3.2, 5, 1.3038405, 1.5811388, 5, 5)

The outputs of these commands are shown in Output 10.17 (I have edited them to show 
only the effect sizes d and r). The difference between the placebo and low-dose group is a 
medium-sized effect (the means are about three-quarters of a standard deviation different), 
d = −0.77, r = –.36; the difference between the placebo and high-dose group is a very large 
effect (a difference between the group means of almost 2 standard deviations), d = −1.93, 
r = –.69; finally, the difference between the low- and high-dose groups is a largish effect 
(more than a standard deviation difference between the group means), d = −1.24, r = –.53.

Placebo vs. Low Dose:

$MeanDifference
         d      var.d          g      var.g 
-0.7669650  0.4294118 -0.6927426  0.3503214 

$Correlation
          r       var.r 
-0.35805743  0.07113067

Placebo vs. High Dose:

$MeanDifference
         d      var.d          g      var.g 
-1.9321836  0.5866667 -1.7451981  0.4786126 

$Correlation
          r       var.r 
-0.69480834  0.02029603

Low Dose vs. High Dose:

$MeanDifference
         d      var.d          g      var.g 
-1.2421180  0.4771429 -1.1219130  0.3892612 

$Correlation
          r       var.r 
-0.52758935  0.04482986

Output 10.17

An alternative is to compute effect sizes for the orthogonal contrasts. We can use the 
same equation as in section 9.5.2.8:

r
t

tcontrast =
+

2

2 26
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We could write a function (see R’s Souls’ Tip 6.2) to do this computation for us in R:

rcontrast<-function(t, df)
{r<-sqrt(t^2/(t^2 + df))
	 print(paste("r = ", r))
	 }

Executing this command creates a function called rcontrast. First, we tell R that we want 
to be able to input t and df into the function (these are specified in brackets). This means 
that to use the function we have to input these values in brackets in the correct order. 
The rest of the function uses these values to compute r and then print the result. The first 
command takes the value of t and df entered into the function and places them into the 
equation written above in R-speak (because of how I have labelled everything in the func-
tion you should be able to compare directly the command with the equation above) to get 
a value of r. The command prints some text (in speech marks) followed by the value of r. 
If you can’t be bothered to write out the command, you should be able to use it directly if 
you have the package associated with this book, DSUR, loaded (see section 3.4.5).

Having executed this function, we can use it to calculate r for the contrasts. Output 10.9 
gives us the value of t for each contrast (2.474 and 2.029). The degrees of freedom can be 
calculated as in normal regression (see section 7.2.4) as N – p – 1, in which N is the total 
sample size (in this case 15), and p is the number of predictors (in this case 2, the two con-
trast variables). Therefore, the degrees of freedom are 15 – 2 – 1 = 12. Therefore, we can 
execute the following commands:

rcontrast(2.474, 12)
rcontrast(2.029, 12)

The resulting values of r are

[1] "r =  0.581182458413787"
[1] "r =  0.505407970122564" 

Both effects are fairly large.

10.8.  Reporting results from one-way 
independent ANOVA 2

When we report an ANOVA, we have to give details of the F-ratio and the degrees of free-
dom from which it was calculated. For the experimental effect in these data the F-ratio was 
derived by dividing the mean squares for the effect by the mean squares for the residual. 
Therefore, the degrees of freedom used to assess the F-ratio are the degrees of freedom for 
the effect of the model (dfM = 2) and the degrees of freedom for the residuals of the model 
(dfR = 12). Therefore, the correct way to report the main finding would be:

	There was a significant effect of Viagra on levels of libido, F(2, 12) = 5.12, p < .05, 
ω = .60.

Notice that the value of the F-ratio is preceded by the values of the degrees of freedom 
for that effect. Also, we rarely state the exact significance value of the F-ratio: instead we 
report that the significance value, p, was less than the criterion value of .05 and include an 
effect size measure. The linear contrast can be reported in much the same way:

MM There was a significant linear trend, F(1, 12) = 9.97, p < .01, ω = .62, indicating that 
as the dose of Viagra increased, libido increased proportionately.
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Notice that the degrees of freedom have changed to reflect how the F-ratio was calculated. 
I’ve also included an effect size measure (have a go at calculating this as we did for the main 
F-ratio and see if you get the same value). Also, we have now reported that the F-value was 
significant at a value less than the criterion value of .01. We can also report our planned 
contrasts or group comparisons:

MM Planned contrasts revealed that taking any dose of Viagra significantly increased 
libido compared to having a placebo, t(12) = 2.47, p < .05 (one-tailed), and that tak-
ing a high dose significantly increased libido compared to taking a low dose, t(12) = 
2.03, p < .05 (one-tailed).

MM Despite fairly large effect sizes, Bonferroni tests revealed non-significant differences 
between the low-dose group and both the placebo, p = .845, d = −0.77, and high-
dose, p = .196, d = −1.24,  groups. The high-dose group, however, had a mean almost 
2 standard deviations bigger than the placebo group, p = .025, d = −1.93.

What have I discovered about statistics? 1

This chapter has introduced you to analysis of variance (ANOVA), which is the topic of 
the next few chapters also. One-way independent ANOVA is used in situations when you 
want to compare several means, and you’ve collected your data using different partici-
pants in each condition. I started off explaining that if we just do lots of t-tests on the 
same data then our Type I error rate becomes inflated. Hence we use ANOVA instead. 
I looked at how ANOVA can be conceptualized as a general linear model (GLM) and 
so is in fact the same as multiple regression. Like multiple regression, there are three 
important measures that we use in ANOVA: the total sum of squares, SST (a measure 
of the variability in our data), the model sum of squares, SSM (a measure of how much 
of that variability can be explained by our experimental manipulation), and SSR (a mea-
sure of how much variability can’t be explained by our experimental manipulation). We 
discovered that, crudely speaking, the F-ratio is just the ratio of variance that we can 
explain to the variance that we can’t. We also discovered that a significant F-ratio tells 
us only that our groups differ, not how they differ. To find out where the differences lie 
we have two options: specify specific contrasts to test hypotheses (planned contrasts), or 
test every group against every other group (post hoc tests). The former are used when 
we have generated hypotheses before the experiment, whereas the latter are for explor-
ing data when no hypotheses have been made. Finally, we discovered how to implement 
these procedures in R.

We also saw that my life was changed by a letter that popped through the letterbox 
one day saying only that I could go to the local grammar school if I wanted to. When 
my parents told me, rather than being in celebratory mood, they were very downbeat; 
they knew how much it meant to me to be with my friends and how I had got used to my 
apparent failure. Sure enough, my initial reaction was to say that I wanted to go to the 
local school. I was unwavering in this view. Unwavering, that is, until my brother con-
vinced me that being at the same school as him would be really cool. It’s hard to measure 
how much I looked up to him, and still do, but the fact that I willingly subjected myself 
to a lifetime of social dysfunction just to be with him is a measure of sorts. As it turned 
out, being at school with him was not always cool – he was bullied for being a boffin (in 
a school of boffins) and being the younger brother of a boffin made me a target. Luckily, 
unlike my brother, I was not a boffin and played football, which seemed to be good 
enough reasons for them to leave me alone. Most of the time.
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R packages used in this chapter

car
compute.es
ggplot2
multcomp

pastecs
Rcmdr
WRS

R functions used in this chapter

aov()
by()
cbind()
contrasts()
contr.helmert()
contr.poly()
contr.SAS()
contr.treatment()
gl()
glht()
levene.test()
lincon()
lm()

mcppb20()
med1way()
mes()
oneway.test()
pairwise.t.test()
read.csv()
read.delim()
stat.desc()
summary()
summary.lm()
t1way()
t1waybt()
unstack()

Key terms that I’ve discovered

Analysis of variance (ANOVA)
Bonferroni correction
Cubic trend
Eta squared, η2

Experimentwise error rate
Familywise error rate
Grand variance
Harmonic mean
Helmert contrast
Independent ANOVA
Omega squared (ω2)

Orthogonal
Pairwise comparisons
Planned contrasts
Polynomial contrast
Post hoc tests
Quadratic trend
Quartic trend
Treatment contrast
Weights
Welch’s F

Smart Alex’s tasks

MM Task 1: Imagine that I was interested in how different teaching methods affected 
students’ knowledge. I noticed that some lecturers were aloof and arrogant in their 
teaching style and humiliated anyone who asked them a question, while others 
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were encouraging and supporting of questions and comments. I took three statistics 
courses where I taught the same material. For one group of students I wandered 
around with a large cane and beat anyone who asked daft questions or got questions 
wrong (punish). In the second group I used my normal teaching style, which is to 
encourage students to discuss things that they find difficult and to give anyone work-
ing hard a nice sweet (reward). The final group I remained indifferent to and neither 
punished nor rewarded students’ efforts (indifferent). As the dependent measure I 
took the students’ exam marks (percentage). Based on theories of operant condition-
ing, we expect punishment to be a very unsuccessful way of reinforcing learning, but 
we expect reward to be very successful. Therefore, one prediction is that reward will 
produce the best learning. A second hypothesis is that punishment should actually 
retard learning such that it is worse than an indifferent approach to learning. The 
data are in the file Teach.dat. Carry out a one-way ANOVA and use planned compari-
sons to test the hypotheses that: (1) reward results in better exam results than either 
punishment or indifference; and (2) indifference will lead to significantly better exam 
results than punishment. 2

MM Task 2: Earlier in this chapter we encountered some data relating to children’s inju-
ries while wearing superhero costumes. Children reporting to the emergency centre 
at hospitals had the severity of their injury (injury) assessed (on a scale from 0, no 
injury, to 100, death). In addition, a note was taken of which superhero costume they 
were wearing (hero): Spiderman, Superman, the Hulk or a Teenage Mutant Ninja 
Turtle. Use one-way ANOVA and multiple comparisons to test the hypotheses that 
different costumes are associated with more severe injuries. 2

MM Task 3: In Chapter 15 (section 15.6) there are some data looking at whether eating 
soya meals reduces your sperm count. Have a look at this section, access the data for 
that example, but analyse them with ANOVA. What’s the difference between what 
you find and what is found in section 15.6.4? Why do you think this difference has 
arisen? 2

MM Task 4: Students (and lecturers for that matter) love their mobile phones, which is 
rather worrying given some recent controversy about links between mobile phone 
use and brain tumours. The basic idea is that mobile phones emit microwaves, and 
so holding one next to your brain for large parts of the day is a bit like sticking your 
brain in a microwave oven and hitting the ‘cook until well done’ button. If we wanted 
to test this experimentally, we could get six groups of people and strap a mobile 
phone to their heads (so that they can’t remove it). Then, by remote control, we turn 
the phones on for a certain amount of time each day. After 6 months, we measure the 
size of any tumour (in mm3) close to the site of the phone antenna (just behind the 
ear). The six groups experienced 0, 1, 2, 3, 4 or 5 hours per day of phone microwaves 
for 6 months. The data are in Tumour.dat (from Field & Hole, 2003, so there is a 
very detailed answer in there). 2

MM Task 5: Using the Glastonbury data from Chapter 7 (GlastonburyFestivalRegression.
dat), carry out a one-way ANOVA on the data to see if the change in hygiene (change) 
is significantly different across people with different musical tastes (music). Do a 
contrast to compare each group against ‘No Affiliation’. Compare the results to those 
described in section 7.12. 2

MM Task 6: Labcoat Leni’s Real Research 15.2 describes an experiment (Çetinkaya & 
Domjan, 2006) on quails with fetishes for terrycloth objects (really, it does). In this 
example, you are asked to analyse two of the variables that they measured with a 
Kruskal–Wallis test. However, there were two other outcome variables (time spent 
near the terrycloth object and copulatory efficiency). These data can be analysed 
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with one-way ANOVA. Read Labcoat Leni’s Real Research 15.2 to get the full story, 
then carry out two one-way ANOVAs and Bonferroni post hoc tests on the aforemen-
tioned outcome variables. 2

Answers can be found on the companion website.

Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental statistics for the behavioral sciences, also in its 6th edition, 2007. 
Both are excellent texts that provide very detailed coverage of the standard variance approach to 
ANOVA but also the GLM approach that I have discussed.)

Iversen, G. R., & Norpoth, H. (1987). ANOVA (2nd ed.). Sage University Paper Series on Quantitative 
Applications in the Social Sciences, 07-001. Newbury Park, CA: Sage. (Quite high level, but a 
good read for those with a mathematical brain.)

Klockars, A. J., & Sax, G. (1986). Multiple comparisons. Sage University Paper Series on Quantitative 
Applications in the Social Sciences, 07-061. Newbury Park, CA: Sage. (High-level but thorough 
coverage of multiple comparisons – in my opinion this book is better than Toothaker for planned 
comparisons.)

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural 
research: A correlational approach. Cambridge: Cambridge University Press. (Fantastic book on 
planned comparisons by three of the great writers on statistics.)

Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioral research: A conceptual primer (5th ed.). 
Upper Saddle River, NJ: Pearson/Prentice Hall. (Look, they wrote another great book!)

Toothaker, L. E. (1993). Multiple comparison procedures. Sage University Paper Series on Quantitative 
Applications in the Social Sciences, 07-089. Newbury Park, CA: Sage. (Also high level, but gives 
an excellent précis of post hoc procedures.)

Wright, D. B.,& London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (If this chapter 
is too complex then Wright and London’s book is a very readable basic introduction to ANOVA.)

Interesting real research
Davies, P., Surridge, J., Hole, L., & Munro-Davies, L. (2007). Superhero-related injuries in paediat-

rics: A case series. Archives of Disease in Childhood, 92(3), 242–243.
Gallup, G. G. J., Burch, R. L., Zappieri, M. L., Parvez, R., Stockwell, M., & Davis, J. A. (2003). 

The human penis as a semen displacement device. Evolution and Human Behavior, 24, 277–289.
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FIGURE 11.1
Davey Murray 
(guitarist from 
Iron Maiden) and 
me backstage in 
London in 1986; 
my grimace 
reflects the utter 
terror I was feeling 
at meeting my hero

11.1.  What will this chapter tell me? 2

My road to rock stardom had taken a bit of a knock with my unexpected entry to an all-boys 
grammar school (rock bands and grammar schools really didn’t go together). I needed to be 
inspired and I turned to the masters: Iron Maiden. I first heard Iron Maiden at the age of 
11 when a friend of mine lent me Piece of Mind and told me to listen to ‘The Trooper’. It 
was, to put it mildly, an epiphany. I became their smallest (I was 11) biggest fan and started 
to obsess about them in the unhealthiest way possible. I started stalking the man who ran 
their fan club with letters, and, bless him, he replied. Eventually this stalking paid off and 
he arranged for me to go backstage when they played the Hammersmith Odeon in London 
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(now the Apollo Hammersmith) on 5 November 1986 (Somewhere on Tour, in case you’re 
interested). Not only was it the first time that I had seen them live, but also I got to meet 
them. It’s hard to put into words how bladder-splittingly exciting this was. I was so utterly 
awe-struck that I managed to say precisely no words to them. As usual, then, a social situa-
tion provoked me to make an utter fool of myself.1 When it was over I was in no doubt that 
this was the best day of my life. In fact, I thought, I should just kill myself there and then 
because nothing would ever be as good as that again.2 This may be true, but I have subse-
quently had many other very nice experiences, so who is to say that they were not better? I 
could compare experiences to see which one is the best, but there is an important confound: 
my age. At the age of 13, meeting Iron Maiden was bowel-weakeningly exciting, but adult-
hood (sadly) dulls your capacity for this kind of unqualified joy of life. Therefore, to really 
see which experience was best, I would have to take account of the variance in enjoyment 
that is attributable to my age at the time. This will give me a purer measure of how much 
variance in my enjoyment is attributable to the event itself. This chapter describes analysis of 
covariance, which extends the basic idea of ANOVA from the previous chapter to situations 
when we want to factor in other variables that influence the outcome variable.

11.2.  What is ANCOVA? 2

In the previous chapter we saw how one-way ANOVA could be characterized in 
terms of a multiple regression equation that used dummy variables to code group 
membership. In addition, in Chapter 7 we saw how multiple regression could incor-
porate several continuous predictor variables. It should, therefore, be no surprise 
that the regression equation for ANOVA can be extended to include one or more 
continuous variables that predict the outcome (or dependent variable). Continuous 
variables such as these, that are not part of the main experimental manipulation but 
have an influence on the dependent variable, are known as covariates and they can 
be included in an ANOVA analysis. When we measure covariates and include them 
in an analysis of variance we call it analysis of covariance (or ANCOVA for short). 
This chapter focuses on this technique. 

In the previous chapter we used an example looking at the effects of Viagra on libido. 
Let’s think about things other than Viagra that might influence libido: well, the obvious 
one is the libido of the participant’s sexual partner (after all, ‘it takes two to tango’), but 
there are other things too such as medication (antidepressants or the contraceptive pill) 
and fatigue that suppress libido. If these variables (the covariates) are measured, then it is 
possible to control for the influence they have on the dependent variable by including them 
in the regression model. From what we know of hierarchical regression (see Chapter 7), it 
should be clear that if we enter the covariate into the regression model first, and then enter 
the dummy variables representing the experimental manipulation, we can see what effect 
an independent variable has after the effect of the covariate. As such, we partial out the 
effect of the covariate. There are two reasons for including covariates in ANOVA:

MM To reduce within-group error variance: In the discussion of ANOVA and t-tests we 
got used to the idea that we assess the effect of an experiment by comparing the 
amount of variability in the data that the experiment can explain against the variabil-
ity that it cannot explain. If we can explain some of this ‘unexplained’ variance (SSR) 
in terms of other variables (covariates), then we reduce the error variance, allowing 
us to more accurately assess the effect of the independent variable (SSM).

1 In my teens I stalked many bands, and Iron Maiden are by far the nicest of the bands I’ve met. 

2 Apart from my wedding day as it turned out.

What’s a covariate?
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MM Elimination of confounds: In any experiment, there may be unmeasured variables 
that confound the results (i.e., variables other than the experimental manipulation 
that affect the outcome variable). If any variables are known to influence the depen-
dent variable being measured, then ANCOVA is ideally suited to remove the bias of 
these variables. Once a possible confounding variable has been identified, it can be 
measured and entered into the analysis as a covariate.

There are other reasons for including covariates in ANOVA but because I do not intend to 
describe the computation of ANCOVA in any detail I recommend that the interested reader 
consult my favourite sources on the topic (Stevens, 2002; Wildt & Ahtola, 1978).

Imagine that the researcher who conducted the Viagra study in the previous chapter 
suddenly realized that the libido of the participants’ sexual partners would affect the par-
ticipants’ own libido (especially because the measure of libido was behavioural). Therefore, 
they repeated the study on a different set of participants, but this time took a measure 
of the partners’ libido. The partners’ libido was measured in terms of how often they 
tried to initiate sexual contact. In the previous chapter, we saw that this experimental 
scenario could be characterized in terms of equation (10.2). Think back to what we know 
about multiple regression (Chapter 7) and you can hopefully see that this equation can be 
extended to include this covariate as follows:

libido covariate high low

libido part
i i i i i

i

b b b b

b b

= + + + +
= +

0 3 2 1

0 3

ε

nner’s libido high lowi i i ib b+ + +2 1 ε 	
(11.1)

11.3.  Assumptions and issues in ANCOVA 3

ANCOVA has the same assumptions as ANOVA except that there are two important addi-
tional considerations: (1) independence of the covariate and treatment effect, and (2) 
homogeneity of regression slopes.

11.3.1.    Independence of the covariate and treatment effect 3

I said in the previous section that one use of ANCOVA is to reduce within-group error vari-
ance by allowing the covariate to explain some of this error variance. However, for this to 
be true the covariate must be independent of the experimental effect.

Figure 11.2 shows three different scenarios. Part A shows a basic ANOVA and is similar 
to Figure 10.4; it shows that the experimental effect (in our example, libido) can be parti-
tioned into two parts that represent the experimental or treatment effect (in this case the 
administration of Viagra) and the error or unexplained variance (i.e., factors that affect 
libido that we haven’t measured). Part B shows the ideal scenario for ANCOVA in which 
the covariate shares its variance only with the bit of libido that is currently unexplained. 
In other words, it is completely independent of the treatment effect (it does not overlap 
with the effect of Viagra at all). This scenario is the only one in which ANCOVA is appro-
priate. Part C shows a situation in which people often use ANCOVA when they should 
not. In this situation the effect of the covariate overlaps with the experimental effect. In 
other words, the experimental effect is confounded with the effect of the covariate. In this 
situation, the covariate will reduce (statistically speaking) the experimental effect because 
it explains some of the variance that would otherwise be attributable to the experiment. 
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When the covariate and the experimental effect (independent variable) are not independ-
ent, the treatment effect is obscured, spurious treatment effects can arise and at the very 
least the interpretation of the ANCOVA is seriously compromised (Wildt & Ahtola, 1978).

The problem of the covariate and treatment sharing variance is common and is ignored 
or misunderstood by many people (Miller & Chapman, 2001). In a very readable review, 
Miller and Chapman cite many situations in which people misapply ANCOVA, and I rec-
ommend reading this paper. To summarize the main issue, when treatment groups differ 
on the covariate, putting the covariate into the analysis will not ‘control for’ or ‘balance 
out’ those differences (Lord, 1967, 1969). This situation arises mostly when participants 
are not randomly assigned to experimental treatment conditions. For example, anxiety and 
depression are closely correlated (anxious people tend to be depressed) so if you wanted 
to compare an anxious group of people against a non-anxious group on some task, the 
chances are that the anxious group would also be more depressed than the non-anxious 
group. You might think that by adding depression as a covariate into the analysis you can 
look at the ‘pure’ effect of anxiety, but you can’t. This would be the situation in part C 
of Figure 11.2; the effect of the covariate (depression) would contain some of the vari-
ance from the effect of anxiety. Statistically speaking all that we know is that anxiety and 
depression share variance; we cannot separate this shared variance into ‘anxiety variance’ 
and ‘depression variance’, it will always just be ‘shared’. Another common example is if 
you happen to find that your experimental groups differ in their ages. Placing age into the 
analysis as a covariate will not solve this problem – it is still confounded with the experi-
mental manipulation. ANCOVA is not a magic solution to this problem. 

Total Variance in Libido

Variance Explained 
by Viagra

Unexplained
Variance

Total Variance in Libido

Variance Explained
by Viagra

Variance 
Explained by

Covariate

Total Variance in Libido

Variance 
Explained 
by Viagra

Unexplained
Variance

Variance 
Explained by 

Covariate

FIGURE 11.2
The role of the 
covariate in 
ANCOVA (see text 
for details)
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This problem can be avoided by randomizing participants to experimental groups, or by 
matching experimental groups on the covariate (in our anxiety example, you could try to 
find participants for the low anxious group who score high on depression). We can check 
whether this problem is likely to be an issue by checking whether experimental groups dif-
fer on the covariate before we run the ANCOVA. To use our anxiety example again, we 
could test whether our high and low anxious groups differ on levels of depression (with a 
t-test or ANOVA). If the groups do not significantly differ then we can use depression as 
a covariate.

11.3.2.    Homogeneity of regression slopes 3

When an ANCOVA is conducted we look at the overall relationship between the outcome 
(dependent variable) and the covariate: we fit a regression line to the entire data set, ignor-
ing to which group a person belongs. In fitting this overall model we, therefore, assume 
that this overall relationship is true for all groups of participants. For example, if there’s a 
positive relationship between the covariate and the outcome in one group, we assume that 
there is a positive relationship in all of the other groups too. If, however, the relationship 
between the outcome (dependent variable) and covariate differs across the groups then 
the overall regression model is inaccurate (it does not represent all of the groups). This 
assumption is very important and is called the assumption of homogeneity of regression 
slopes. The best way to think of this assumption is to imagine plotting a scatterplot for each 
experimental condition with the covariate on one axis and the outcome on the other. If 
you then calculated, and drew, the regression line for each of these scatterplots you should 
find that the regression lines look more or less the same (i.e., the values of b in each group 
should be equal).

Let’s try to make this concept a bit more concrete. The main example in this chapter 
leads on from the example in the previous chapter in which we explored whether different 
doses of Viagra affect libido. Imagine that we repeated this experiment, but measured part-
ner’s libido as well and wanted to include this variable as a covariate. The homogeneity of 
regression slopes assumption means that we assume that the relationship between the out-
come (dependent variable) and the covariate is the same in each of our treatment groups. 
Figure 11.3 shows a scatterplot that displays this relationship (i.e., the relationship between 
partner’s libido, the covariate, and participant’s libido, the outcome) for each of the three 
experimental conditions. Each symbol represents the data from a particular participant, 
and the type of symbol tells us the group (circles = placebo, triangles = low dose, squares = 
high dose). The lines are the regression slopes for the particular group; they summarize the 
relationship between libido and partner’s libido shown by the dots (black = placebo group, 
light blue = low-dose group, dark blue = high-dose group).

It should be clear that there is a positive relationship (the regression line slopes upwards 
from left to right) between partner’s libido and participant’s libido in both the placebo 
and low-dose conditions. In fact, the slopes of the lines for these two groups (black and 
light blue) are very similar, showing that the relationship between libido and partner’s 
libido is very similar in these two groups. This situation is an example of homogeneity 
of regression slopes (the regression slopes in the two groups are similar). However, in 
the high-dose condition there appears to be no relationship at all between participant’s 
libido and that of their partner (the squares are fairly randomly scattered and the regres-
sion line is very flat and shows a slightly negative relationship). The slope of this line is 
very different from the other two, and this difference gives us cause to doubt whether 
there is homogeneity of regression slopes (because the relationship between participant’s 
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libido and that of their partner is different in the high-dose group than in the other two 
groups).

Although, in a traditional ANCOVA, heterogeneity of regression slopes is a bad thing, 
there are situations where you might actually expect regression slopes to differ across 
groups and that this is, in itself, an interesting hypothesis. When research is conducted 
across different locations, you might reasonably expect the effects you get to differ slightly 
across those locations. For example, if you had a new treatment for backache, you might 
get several physiotherapists to try it out in different hospitals. You might expect the effect 
of the treatment to differ across these hospitals (because therapists will differ in expertise, 
the patients they see will have different problems and so on). Heterogeneity of regres-
sion slopes is not a bad thing per se. If you have violated the assumption of homogeneity 
of regression slopes, or if the variability in regression slopes is an interesting hypothesis 
in itself, then you can explicitly model this variation using multilevel linear models (see 
Chapter 19).

11.4.  ANCOVA using R 2

In the previous section I said that we would develop the example from the previous chapter 
(which looked at the effect of Viagra on libido), but covary the effect of partner’s libido. 
Let’s now look at the data and run the analysis.

11.4.1.    Packages for ANCOVA in R 1

In this chapter, you will need the packages car (for Levene’s test, Type III sums of squares), 
compute.es (for effect sizes), effects (for adjusted means), ggplot2 (for graphs), multcomp 
(for post hoc tests), pastecs (for descriptive statistics), and WRS (for robust tests). If you do 
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not have these packages installed (some should be installed from previous chapters), you 
can install them by executing the following commands:

install.packages("car"); install.packages("compute.es"); install.packages 
("effects"); install.packages("ggplot2"); install.packages("multcomp"); install. 
packages("pastecs"); install.packages("WRS", repos="http://R-Forge.R-project.
org")

You then need to load these packages by executing these commands:

library(car); library(compute.es); library(effects); library(ggplot2); 
library(multcomp); library(pastecs); library(WRS)

11.4.2.    General procedure for ANCOVA 1

To conduct ANCOVA you should follow this general procedure:

1	 Enter data: I’m stating the obvious again.

2	 Explore your data: begin by graphing your data and computing some descriptive 
statistics. You should also check distributional assumptions and use Levene’s test to 
check for homogeneity of variance (see Chapter 5).

3	 Check that the covariate and any independent variables are independent: you need 
to run an ANOVA with the covariate as the outcome and any independent variables 
as predictors to check that the covariate does not differ significantly across levels of 
these variables. If you get a significant result then stop the analysis here. You have 
basically entered a bottomless pit of despair from which there is no escape.

4	 Do the ANCOVA: assuming all was fine in steps 2 and 3, run the main analysis of 
covariance. Depending on what you found with step 2, you might need to run a 
robust version of the test.

5	 Compute contrasts or post hoc tests: you can try to follow up the analysis to see 
which groups differ.

6	 Check for homogeneity of regression slopes: rerun the ANCOVA, including the inter-
action between the independent variable and the covariate. If this interaction is sig-
nificant then you cannot assume homogeneity of regression slopes.

We will work through these steps in turn.

11.4.3.    Entering data 1

The data for the main example are in Table 11.1 and can be found in the file ViagraCovariate.
dat. Table 11.1 shows the participant’s libido and their partner’s libido, and Table 11.2 
shows the means and standard deviations of these data. You can load this data file by setting 
your working directory to the location of the file (see section 3.4.4) and executing:

viagraData<-read.delim("ViagraCovariate.dat", header = TRUE)

In essence, if you’re entering the data in an external package such as Excel then the 
data should be laid out more or less as they are in Table 11.1. So, create a coding variable 
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called Dose and, as in Chapter 10, let’s use 1 = placebo, 2 = low dose, 3 = high dose. There 
were different numbers of participants in each condition, so you need to enter nine values 
of 1 into this column (so that the first nine rows contain the value 1), followed by eight 
rows containing the value 2, followed by 13 rows containing the value 3. At this point, 
you should have one column with 30 rows of data entered. Next, create a second variable 
called libido and enter the 30 scores that correspond to the person’s libido. Finally, cre-
ate a third variable called partnerLibido. Then, enter the 30 scores that correspond to the 
partner’s libido. 

TABLE 11.1  Data from ViagraCovariate.dat

Dose Participant’s libido Partner’s libido

Placebo 3 4

2 1

5 5

2 1

2 2

2 2

7 7

2 4

4 5

Low dose 7 5

5 3

3 1

4 2

4 2

7 6

5 4

4 2

High dose 9 1

2 3

6 5

3 4

4 3

4 3

4 2

6 0

4 1

6 3

2 0

8 1

5 0
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We could enter the data directly into R by executing the following code:

libido<-c(3,2,5,2,2,2,7,2,4,7,5,3,4,4,7,5,4,9,2,6,3,4,4,4,6,4,6,2,8,5)
p a r t n e r L i b i d o < - c ( 4 , 1 , 5 , 1 , 2 , 2 , 7 , 4 , 5 , 5 , 3 , 1 , 2 , 2 , 6 , 4 , 2 , 1 , 3 , 5 , 
4,3,3,2,0,1,3,0,1,0)
dose<-c(rep(1,9),rep(2,8), rep(3,13))

These commands create a variable called libido with the 30 libido scores contained within 
it, a variable called partnerLibido containing the libido scores for the corresponding part-
ners, and a variable called dose which uses the rep() function to repeat the number 1 nine 
times, the number 2 eight times and the number 3 thirteen times (see the data below). We 
need to convert the numeric variable dose into a factor (i.e., categorical variable) and we 
can do this, as we did in the last chapter, by executing:

dose<-factor(dose, levels = c(1:3), labels = c("Placebo", "Low Dose", "High 
Dose"))

Remember that we have specified that the levels of dose are 1, 2 and 3 (levels = c(1:3)), 
and that we want to label these levels as Placebo, Low Dose and High Dose (labels = 
c(“Placebo”, “Low Dose”, “High Dose”)). Finally, we can merge these variables into a 
dataframe called viagraData by executing:

viagraData<-data.frame(dose, libido, partnerLibido)

The resulting data look like this:

        dose libido partnerLibido
1    Placebo      3             4
2    Placebo      2             1
3    Placebo      5             5
4    Placebo      2             1
5    Placebo      2             2
6    Placebo      2             2
7    Placebo      7             7
8    Placebo      2             4
9    Placebo      4             5
10  Low Dose      7             5
11  Low Dose      5             3
12  Low Dose      3             1
13  Low Dose      4             2
14  Low Dose      4             2
15  Low Dose      7             6
16  Low Dose      5             4
17  Low Dose      4             2
18 High Dose      9             1
19 High Dose      2             3
20 High Dose      6             5
21 High Dose      3             4
22 High Dose      4             3
23 High Dose      4             3
24 High Dose      4             2
25 High Dose      6             0
26 High Dose      4             1
27 High Dose      6             3
28 High Dose      2             0
29 High Dose      8             1
30 High Dose      5             0
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SELF-TEST

ü	 Use R to find out the means and standard 
deviations of both the participant’s libido and the 
partner’s libido in the three groups. (Answers are in 
Table 11.2.)

Table 11.2  Means (and standard deviations) from ViagraCovariate.dat

Dose Participant’s libido Partner’s libido

Placebo 3.22 (1.79) 3.44 (2.07)

Low dose 4.88 (1.46) 3.12 (1.73)

High dose 4.85 (2.12) 2.00 (1.63)

11.4.4.    ANCOVA using R Commander 2

There is no menu in R Commander that relates directly to ANCOVA. However, because 
ANCOVA is simply regression, you could theoretically run it through the Statistics⇒Fit 
models⇒Linear regression… menu. However, I don’t recommend using R Commander for 
ANCOVA because it doesn’t deal very well with categorical predictors, and you can’t con-
trol the order in which variables are entered (which is pretty important as we shall see). For 
these reasons I’m going to force you to use commands in this chapter. You could, however, 
use R Commander for some of the preliminary analyses; if you want to do this then see the 
previous chapter (section 10.6.4).

11.4.5.    Exploring the data 2

We’ll begin with some graphs. To look at the spread of data it’s useful to look at boxplots 
for each group both for libido and partner’s libido. In addition, it is helpful to look at the 
relationship between the outcome variable and the covariate within each group (this tells 
us about homogeneity of regression slopes). In this section, we’ll look at some boxplots.

SELF-TEST

ü	 Use ggplot2 to produce boxplots for the Viagra data. 
Try to re-create Figure 11.4.

Figure 11.4 shows boxplots for the levels of libido in both participants and their part-
ners across the three doses of Viagra. Levels of libido seem to increase for participants as 
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the dose of Viagra increases but the opposite is true for their partners. Also, the spread of 
scores is more variable for the participants than their partners.

If you completed the earlier self-test, then you will already have some descriptive sta-
tistics for the data; if not, we can use the by() function and combine it with the stat.desc() 
function in the pastecs package to get descriptive statistics for each group separately (see 
Chapter 5 for more detail). Execute this command for both libido and partnerLibido:

by(viagraData$libido, viagraData$dose, stat.desc)
by(viagraData$partnerLibido, viagraData$dose, stat.desc)

The resulting output should confirm the means and standard deviations in Table 11.2 
(amongst other things).

The final thing to do at this stage is to compute Levene’s test (see Chapter 5 and sec-
tion 10.3.1). We encountered the leveneTest() function from the car package in Chapter 5, 
and we can again use it here. If we want to do Levene’s test to see whether the variance in 
libido (the outcome) varies across groups that received different doses of the drug (dose), 
we can execute:

leveneTest(viagraData$libido, viagraData$dose, center = median)

The output (Output 11.1) shows that Levene’s test is very non-significant, F(2, 27) = 
0.33, p = .72. This means that for these data the variances are very similar (hence the high 
probability value). Had this test been significant, we could instead conduct and report a 
robust version of ANOVA, which we’ll cover later in this chapter.

Levene's Test for Homogeneity of Variance
      Df F value Pr(>F)
group  2  0.3256 0.7249
      27  

Output 11.1

A good double-check of Levene’s test is to look at the highest and lowest variances. For 
our three groups we have standard deviations of 1.79 (placebo), 1.46 (low dose) and 2.12 
(high dose) – see Table 11.1. If we square these values we get variances of 3.20 (placebo), 
2.13 (low dose) and 4.49 (high dose). We then take the largest variance and divide it by the 
smallest: in this case 4.49/2.13 = 2.11. If we look at Figure 5.8 we can get the approximate 
critical value when comparing three variances and with 10 people per group (we have 
unequal groups, but this will do as an approximation). The critical value in this situation 
is approximately 5. Our observed value of 2.11 is less than this critical value of 5 so we 
probably don’t need to worry too much about the differences in variances.
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11.4.6.  �  Are the predictor variable and covariate
independent? 2

In section 11.3.1, I mentioned that before including a covariate in an analysis we should 
check that it is independent of the experimental manipulation. In this case, the proposed 
covariate is partner’s libido, and we need to check that this variable was roughly equal 
across levels of our independent variable. In other words, is the mean level of partner’s 
libido roughly equal across our three Viagra groups? We can test this by running an ANOVA 
with partnerLibido as the outcome and dose as the predictor.

SELF-TEST

ü	 Conduct an ANOVA to test whether partner’s libido 
(our covariate) is independent of the dose of Viagra 
(our independent variable).

Output 11.2 shows the results of such an ANOVA. The main effect of dose is not signifi-
cant, F(2, 27) = 1.98, p = .16, which shows that the average level of partner’s libido was 
roughly the same in the three Viagra groups. In other words, the means for partner’s libido 
in Table 11.2 are not significantly different in the placebo, low- and high-dose groups. This 
result means that it is appropriate to use partner’s libido as a covariate in the analysis.

            Df Sum Sq Mean Sq F value Pr(>F)
dose         2 12.769  6.3847  1.9793 0.1577
Residuals   27 87.097  3.2258

Output 11.2

11.4.7.    Fitting an ANCOVA model 2

To create an ANCOVA model we can use the aov() function that we discovered in the 
previous chapter (see section 10.6.6.1). Remember that the aov() function is just the lm() 
function in disguise, so we can use what we learnt in Chapter 7 to add new variables into 
our ANOVA model. Remember that to add a predictor, we simply write ‘+ variableName’ 
into the model. So, in Chapter 10 our ANOVA model was:

viagraModel<-aov(libido ~ dose, data = viagraData)

To add the predictor partnerLibido, we could simply change the model to this:

viagraModel<-aov(libido ~ dose + partnerLibido, data = viagraData)

Note that we have simply added ‘+ partnerLibido’ to the list of predictors. In essence, this 
is all there is to it. We could simply execute this command, sit back, crack open a cool drink 
and admire our handiwork. However, just as we were starting to enjoy a wave of smugness 
at having conducted an ANCOVA, the sinister shadow of humility would slap us on the 
face and point out that we need to think about the order of our predictors. If we use 
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the aov() function alone then we’ll get different results if we specify our model as ‘libido ~ 
dose + partnerLibido’ than if we specify ‘libido ~ partnerLibido + dose’ (note the order of 
predictors). This is curious and is something to which we need to give some thought (see 
R’s Souls’ Tip 11.1).

          R ’s  Souls ’  T ip  11 .1   Order matters 2

The order in which we enter predictors into a model makes a difference to the effects in the overall ANOVA – which 
is very confusing. Luckily it does not affect the model parameters (i.e., the bs). Let’s look at an example. 

First, let’s fit the ANCOVA model with partnerLibido entered first and then dose. To create this model (called 
covariateFirst), we specify the model as libido ~ partnerLibido + dose. We can see the ANOVA table for this model 
by executing the following commands:

covariateFirst<-aov(libido ~ partnerLibido + dose, data = viagraData)
summary(covariateFirst)

The resulting ANOVA table is:

              Df Sum Sq Mean Sq F value  Pr(>F)  
partnerLibido  1  6.734  6.7344  2.2150 0.14870  
dose           2 25.185 12.5926  4.1419 0.02745 *
Residuals     26 79.047  3.0403

This model implies a non-significant effect of the covariate (partnerLibido) on the participant’s libido, but a 
significant effect of dose.

 Let’s now redo the model but specifying the predictors in the opposite order. To create this model (called 
doseFirst), we specify the model as libido ~ dose + partnerLibido. Note that all we have done is change the order 
of the predictors. We can see the ANOVA table for this model by executing the following commands:

doseFirst<-aov(libido ~ dose + partnerLibido, data = viagraData)
summary(doseFirst)

The resulting ANOVA table is:

              Df Sum Sq Mean Sq F value  Pr(>F)  
dose           2 16.844  8.4219  2.7701 0.08117 .
partnerLibido  1 15.076 15.0757  4.9587 0.03483 *
Residuals     26 79.047  3.0403  

This model implies the complete opposite of the previous one: a significant effect of the covariate (partnerLibido) 
on the participant’s libido, but a non-significant effect of dose.

This is strange, isn’t it? The reason is that when R computes the fit of the model it uses Type I, or sequential, 
sums of squares by default. This means that any predictor entered into the model is evaluated after predictors 
before it in the model. Hence, order matters: in our first model partnerLibido is evaluated as the only term in the 
model, whereas in the second model it is evaluated after dose has already been entered and evaluated. 

An alternative (adopted by many statistics packages) is to use Type III sums of squares. For our first model 
(covariateFirst), we could get the Type III sums of squares by executing (see text for details):

Anova(covariateFirst, type = "III")

For our second model (doseFirst), we could execute:

Anova(doseFirst, type = "III")
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Before we get carried away creating our ANCOVA model, we need to think about two 
related questions. First, how should we compute the sums of squares? Second, which con-
trasts do we want to do? The answer to the second question depends, to some extent, on 
the answer to the first. The first issue is complex. Essentially we have the choice between 
evaluating our model using Type I, II or III sums of squares. For an explanation of the differ-
ence between these sums of squares and their relative merits, see Jane Superbrain Box 11.1. 

The outputs for both models are below:

libido ~ partnerLibido + dose
              Df Sum of Sq     RSS    AIC F value   Pr(F)  
<none>                      79.047 37.065                  
partnerLibido  1    15.076  94.123 40.302  4.9587 0.03483 *
dose           2    25.185 104.232 41.363  4.1419 0.02745 *
---

Model: libido ~ dose + partnerLibido
              Df Sum of Sq     RSS    AIC F value   Pr(F)  
<none>                      79.047 37.065                  
dose           2    25.185 104.232 41.363  4.1419 0.02745 *
partnerLibido  1    15.076  94.123 40.302  4.9587 0.03483 *

Note that even though the predictors have been entered in the opposite order the results are now consistent in 
the two models.

evaluated after the first. If we entered a third predictor 
then this would be evaluated after the first and second, 
and so on. In other words the order that we enter the pre-
dictors matters. Therefore, if we entered our variables in 
the order partnerLibido, dose and then partnerLibido 
× dose, then dose would be evaluated after the effect 
of partnerLibido and partnerLibido × dose would be 
evaluated after the effects of both partnerLibido and 
dose. R’s Souls’ Tip 11.1 demonstrates Type I sums of 
squares in more detail.

Type III sums of squares differ from Type I in that all 
effects are evaluated taking into consideration all other 
effects in the model (not just the ones entered before). 
This process is comparable to doing a forced entry 
regression including the covariate(s) and predictor(s) 
in the same block. Therefore, in our example, the effect 
of dose would be evaluated after the effects of both 
partnerLibido and partnerLibido × dose, the effect of 
partnerLibido would be evaluated after the effects of both 
dose and partnerLibido × dose, finally, partnerLibido × 
dose would be evaluated after the effects of both dose 
and partnerLibido.

We can compute sums of squares in four different ways, 
which gives rise to what are known as Type I, II, III and IV 
sums of squares. To explain these, we need an example. 
Let’s imagine that we’re predicting libido from partner-
Libido (the covariate), dose (the independent variable) 
and their interaction (partnerLibido × dose).

The simplest explanation of Type I sums of squares 
is that they are like doing a hierarchical regression in 
which we put one predictor into the model first, and then 
enter the second predictor. This second predictor will be 

JANE SUPERBRAIN 11.1

Types of sums of squares 3

(Continued)
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(Continued)

Type II sums of squares are somewhere in between 
Type I and III in that all effects are evaluated taking into 
consideration all other effects in the model except for 
higher-order effects that include the effect being evaluated. 
In our example, this would mean that the effect of dose 
would be evaluated after the effect of partnerLibido (note 
that unlike Type III sums of squares, the interaction term 
is not considered); similarly, the effect of partnerLibido 
would be evaluated after only the effect of dose. Finally, 
because there is no higher-order interaction that includes 
partnerLibido × dose, this effect would be evaluated 
after the effects of both dose and partnerLibido. In other 
words, for the highest-order term Type II and Type III sums 
of squares are the same. Type IV sums of squares are 
essentially the same as Type III but are designed for situa-
tions in which there are missing data.

The obvious question is which type of sums of squares 
should you use:

•	 Type I: Unless the variables are completely indepen-
dent of each other (which is unlikely to be the case) then 
Type I sums of squares cannot really evaluate the true 
main effect of each variable. For example, if we enter 
partnerLibido first, its sums of squares are computed 
ignoring dose; therefore any variance in libido that is 
shared by dose and partnerLibido will be attributed 
to partnerLibido (i.e., variance that it shares with dose 
is attributed solely to it). The sums of squares for dose 
will then be computed excluding any variance that has 
already been ‘given over’ to partnerLibido. As such the 
sums of squares won’t reflect the true effect of dose 
because variance in libido that dose shares with part-
nerLibido is not attributed to it because it has already 
been ‘assigned’ to partnerLibido. Consequently, Type I 
sums of squares tend not to be used to evaluate hypoth-
eses about main effects and interactions because the 
order of predictors will affect the results.

•	 Type II: If you’re interested in main effects then you 
should use Type II sums of squares. Unlike Type III 
sums of squares, Type IIs give you an accurate picture 
of a main effect because they are evaluated ignoring 

the effect of any interactions involving the main effect 
under consideration. Therefore, variance from a main 
effect is not ‘lost’ to any interaction terms containing 
that effect. If you are interested in main effects and do 
not predict an interaction between your main effects 
then these tests will be the most powerful. However, if 
an interaction is present, then Type II sums of squares 
cannot reasonably evaluate main effects (because 
variance from the interaction term is attributed to 
them). However, if there is an interaction then you 
shouldn’t really be interested in main effects anyway. 
One advantage of Type II sums of squares is that they 
are not affected by the type of contrast coding used to 
specify the predictor variables.

•	 Type III: Type III sums of squares tend to get used as 
the default in many statistical packages. They have the 
advantage over Type IIs that when an interaction is pres-
ent, the main effects associated with that interaction are 
still meaningful (because they are computed taking the 
interaction into account). Perversely, this advantage is 
a disadvantage too because it’s pretty silly to entertain 
‘main effects’ as meaningful in the presence of an inter-
action. Type III sums of squares encourage people to do 
daft things like get excited about main effects that are 
superseded by a higher-order interaction. Type III sums 
of squares are preferable to other types when sample 
sizes are unequal; however, they work only when pre-
dictors are encoded with orthogonal contrasts.

Hopefully, it should be clear that the main choice in 
ANOVA designs is between Type II and Type III sums of 
squares. The choice depends on your hypotheses and 
which effects are important in your particular situation. If 
your main hypothesis is around the highest-order interac-
tion then it doesn’t matter which you choose (you’ll get the 
same results); if you don’t predict an interaction and are 
interested in main effects then Type II will be most power-
ful; and if you have an unbalanced design then use Type 
III. This advice is, of course, a simplified version of reality; 
be aware that there is (often heated) debate about which 
sums of squares are appropriate to a given situation.

If we want Type I sums of squares, then in ANCOVA we enter the covariate(s) first, and 
the independent variable(s) second. So, we would need to specify the model not as we did 
above, but as:

viagraModel<-aov(libido ~ partnerLibido + dose, data = viagraData)

Note that the order of predictors in the model is the covariate (partnerLibido) followed 
by the independent variable (dose), which means that the effect of dose is evaluated after 
the effect of partnerLibido. If we specify the predictors in the opposite order we could get 
completely different results (R’s Souls’ Tip 11.1).
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We can get Type II and III sums of squares by using the Anova() function in the car pack-
age.3 This function takes the general form:

Anova(modelName, type = "III")

Note that the function needs a capital letter at the beginning (otherwise you’ll use a func-
tion that does something different than what you want), and we replace modelName with 
the name of the model for which we want Type III sums of squares. The type option 
defaults to type = “II” (Type II sums of squares), but we can change it to type = “III” to get 
Type III sums of squares. 

The second question we asked was about which contrasts to select. This issue goes back 
to our discussion of planned comparisons in Chapter 10. By default, R will use dummy 
coding on the dose variable (it will compare each group to the first group). This is a non-
orthogonal contrast. If we want to use an orthogonal contrast such as a Helmert contrast 
or set our own contrast then we need to use the contrast() function to set the contrast for 
dose before we create the model (see section 10.6.7). The reason why the answer to this 
question depends on which sums of squares we use is because to calculate Type III sums of 
squares properly we must specify orthogonal contrasts. By default R will use a non-orthog-
onal contrast (dummy coding), therefore, if we do not change the contrast or contrasts to 
be orthogonal the Type III sums of squares computed will be wrong. We must, therefore, 
either set a Helmert contrast by executing:

contrasts(viagraData$dose)<-contr.helmert(3)

or set our own contrast codes as we did in section 10.4. To remind you, we chose some 
planned contrasts in Chapter 10, in which the first contrast compared the placebo group to 
all doses of Viagra, and the second contrast then compared the high and low doses (see sec-
tion 10.4). We saw in sections 10.4 and 10.6.7 that to do this in R we had to enter certain 
numbers to code these contrasts. For the first contrast we discovered an appropriate set of 
codes would be −2 for the placebo group and then 1 for both the high- and low-dose groups. 
For the second contrast the codes would be 0 for the placebo group, −1 for the low-dose 
group and 1 for the high-dose group (see Table 10.4). If you want to do these contrasts for 
ANCOVA, then you enter these codes into the contrasts() function for dose just as we did in 
section 10.6.7:

contrasts(viagraData$dose)<-cbind(c(-2,1,1), c(0,-1,1))

We will use these contrasts; therefore, to run the ANCOVA (with Type III sums of 
squares) we would execute:

contrasts(viagraData$dose)<-cbind(c(-2,1,1), c(0,-1,1))

viagraModel<-aov(libido ~ partnerLibido + dose, data = viagraData)

Anova(viagraModel, type="III")

The first line sets the contrasts for dose, the second line creates the ANCOVA model, and 
the third line prints the model summary with Type III sums of squares.

11.4.8.    Interpreting the main ANCOVA model 2

Output 11.3 shows the main ANCOVA. Looking first at the significance values, it is clear 
that the covariate significantly predicts the dependent variable, because the significance 
value is less than .05. Therefore, the person’s libido is influenced by their partner’s libido. 

3 You can also use the drop1() function to get Type III sums of squares. For ANOVA and ANCOVA, this takes the form:

drop1(modelName, ~., test="F")
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What’s more interesting is that when the effect of partner’s libido is removed, the effect of 
Viagra is significant (p is .027, which is less than .05). 

Anova Table (Type III tests)

Response: libido
              Sum Sq Df F value    Pr(>F)    
(Intercept)   76.069  1 25.0205 3.342e-05 ***
partnerLibido 15.076  1  4.9587   0.03483 *  
dose          25.185  2  4.1419   0.02745 *  
Residuals     79.047 26                      

Output 11.3

Looking back at the group means from Table 11.2 for the libido data, it seems pretty 
clear that the significant ANOVA reflects a difference between the placebo group and the 
two experimental groups (because the low- and high-dose groups have very similar means, 
4.88 and 4.85, whereas the placebo group mean is much lower at 3.22). Actually we can’t 
interpret these group means because they have not been adjusted for the effect of the cov-
ariate. These original means tell us nothing about the group differences reflected by the 
significant ANCOVA. To get the adjusted means we need to use the effect() function in the 
effects package. This produces a summary table of means for a specified effect in a model 
created by aov() or lm(), but adjusted for other variables in the model (so called marginal 
means). The function takes the general form:

object<-effect("name of effect", modelName, se=TRUE)
summary(object)
object$se

Note that we create an object that contains information about a given effect. 
The “name of effect” should be replaced with the effect in the model that interests 
you (in the current example we want the effect of dose). We also have to tell the 
function the name of the model (so we would replace modelName with the name 
of the ANCOVA model, in this case, viagraModel). Finally, if we want to see the 
standard errors associated with each mean, then we need to include the option 
se=TRUE.

The effect object we created with this command contains various bits of informa-
tion, but to print the adjusted means and confidence intervals we can just apply the 
summary() function to the newly created object. The standard errors are stored as 

a variable called se within the effect object; therefore, to see the standard errors we need 
to execute object$se.

To put all of this into practice for the Viagra data, to see the adjusted means we should 
execute: 

adjustedMeans<-effect("dose", viagraModel, se=TRUE)
summary(adjustedMeans)
adjustedMeans$se

Output 11.4 shows the adjusted means (and their confidence intervals) and also the stand-
ard errors. Unlike the means in Table 11.2, these adjusted means for the low-dose and 
high-dose groups are fairly different. In other words, when the means are adjusted for 
the effect of the covariate it looks very much like as dose increases, libido increases (from 
2.93 in the placebo group, to 4.71 in the low-dose group and 5.15 in the high-dose 
group). The standard errors for each group appear after the adjustedMeans$se com-
mand: 0.59 for the placebo group, 0.62 for the low-dose group and 0.50 for the high-
dose group.

How do I interpret
ANCOVA?
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dose effect
dose
  Placebo  Low Dose High Dose 
 2.926370  4.712050  5.151251 

 Lower 95 Percent Confidence Limits
dose
  Placebo  Low Dose High Dose 
 1.700854  3.435984  4.118076 

 Upper 95 Percent Confidence Limits
dose
  Placebo  Low Dose High Dose 
 4.151886  5.988117  6.184427
> adjustedMeans$se

       31        32        33 
0.5962045 0.6207971 0.5026323

Output 11.4

11.4.9.    Planned contrasts in ANCOVA 2

The overall ANCOVA does not tell us which means differ, so to break down the overall 
effect of dose we need to look at the contrasts that we specified before we created the 
ANCOVA model. To see these contrasts we can use the summary.lm() function on the 
ANCOVA model (viagraModel): 

summary.lm(viagraModel)

Output 11.5 shows the model parameters, which correspond to the contrasts that we 
specified for the variable dose. The first dummy variable (dose1) compares the placebo 
group with the low- and high-dose groups. As such, it compares the adjusted mean of the 
placebo group (2.93) with the average of the adjusted means for the low- and high-dose 
groups ((4.71+5.15)/2 = 4.93). The b-value for the first dummy variable should therefore 
be the difference between these values: 4.93−2.93 = 2. However, we also discovered in a 
rather complex and boring bit of section 10.4.2 that this value gets divided by the number 
of groups within the contrast (i.e., 3) and so will be 2/3 = .67 (as it is in the output). The 
associated t-statistic is significant, indicating that the placebo group was significantly dif-
ferent from the combined mean of the Viagra groups.

The second dummy variable (dose2) compares the low- and high-dose groups, and so the 
b-value should be the difference between the adjusted means of these groups: 5.15−4.71 = 
0.44. We again discovered in section 10.4.2 that this value also gets divided by the number of 
groups within the contrast (i.e., 2) and so will be 0.44/2 = 0.22 (as in the output). The associ-
ated t-statistic is not significant (its significance is .59 which is greater than .05), indicating that 
the high-dose group did not produce a significantly higher libido than the low-dose group.

The final thing to notice is the value of b for the covariate (0.416). This value tells us 
that, other things being equal, if a partner’s libido increases by one unit, then the person’s 
libido should increase by just under half a unit (although there is nothing to suggest a causal 
link between the two). The sign of this coefficient tells us the direction of the relationship 
between the covariate and the outcome. So, in this example, because the coefficient is posi-
tive it means that partner’s libido has a positive relationship with the participant’s libido: 
as one increases so does the other. A negative coefficient would mean the opposite: as one 
increases, the other decreases.
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Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)     3.1260     0.6250   5.002 3.34e-05 ***
partnerLibido   0.4160     0.1868   2.227  0.03483 *  
dose1           0.6684     0.2400   2.785  0.00985 ** 
dose2           0.2196     0.4056   0.541  0.59284  

Output 11.5

11.4.10.    Interpreting the covariate 2

I’ve already mentioned that the parameter estimates tell us how to interpret the covariate. 
If the b-value for the covariate is positive then it means that the covariate and the outcome 
variable have a positive relationship (as the covariate increases, so does the outcome). If 
the b-value is negative it means the opposite: that the covariate and the outcome variable 
have a negative relationship (as the covariate increases, the outcome decreases). For these 
data the b-value was positive, indicating that as the partner’s libido increases, so does the 
participant’s libido. Another way to discover the same thing is simply to draw a scatterplot 
of the covariate against the outcome.

SELF-TEST

ü	 Plot a scatterplot of partnerLibido against libido.

FIGURE 11.5
Scatterplot of 
partner’s libido 
against libido
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Figure 11.5 shows the resulting scatterplot for these data and confirms what we already 
know: the effect of the covariate is that as partner’s libido increases, so does the partici-
pant’s libido (as shown by the slope of the regression line).
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11.4.11.    Post hoc tests in ANCOVA 2

It is also possible to obtain post hoc tests as we did for ANOVA (see section 10.6.8). 
However, because we want to test differences between the adjusted means, we can use only 
the glht() function; the pairwise.t.test() function will not test the adjusted means. As such, 
we are limited to using Tukey or Dunnett’s post hoc tests. Remember from Chapter 10 that 
to use this function we enter our model (in this case the ANCOVA model) into it and then 
use the summary() and confint() functions to see the post hoc tests in the console. For the 
viagraModel, we could therefore execute:

postHocs<-glht(viagraModel, linfct = mcp(dose = "Tukey"))
summary(postHocs)
confint(postHocs)

Output 11.6 shows the three comparisons (low dose vs. placebo, high dose vs. placebo, 
high dose vs. low dose). Note that the estimate in each case is the difference between 
the adjusted group means (Output 11.4): the estimate for the low dose vs. placebo is 
4.71 − 2.93 = 1.78; for high dose vs. placebo it is 5.15 − 2.93 = 2.22; and for the low vs. 
high is 5.15 − 4.71 = 0.44. The output also gives us the standard error associated with 
the difference between adjusted means, the t-test (which is simply the difference between 
means divided by the standard error), and its associated p-value. This output suggests sig-
nificant differences between the high-dose and placebo groups (t = 2.77, p < .05), but not 
between the low-dose group and the placebo (t = 2.10, p = .12), and high-dose (t = 0.54, p = 
.85) groups. The confidence intervals (Output 11.7) also confirm this conclusion because 
they do not cross zero for the comparison of the high dose and placebo groups, which 
means that the true difference between group means is likely not to be zero; conversely, 
for the other contrasts the confidence intervals cross zero, implying that the true difference 
between means could be zero.

	  Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = libido ~ partnerLibido + dose, data = viagraData)

Linear Hypotheses:
                          Estimate Std. Error t value Pr(>|t|)  
Low Dose - Placebo == 0     1.7857     0.8494   2.102   0.1088  
High Dose - Placebo == 0    2.2249     0.8028   2.771   0.0264 *
High Dose - Low Dose == 0   0.4392     0.8112   0.541   0.8516  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method)

Output 11.6

	  Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = libido ~ partnerLibido + dose, data = viagraData)

Quantile = 2.4856
95% family-wise confidence level
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Linear Hypotheses:
                          Estimate lwr     upr    
Low Dose - Placebo == 0    1.7857  -0.3255  3.8968
High Dose - Placebo == 0   2.2249   0.2294  4.2204
High Dose - Low Dose == 0  0.4392  -1.5772  2.4556

Output 11.7

11.4.12.    Plots in ANCOVA 2

We saw in the previous chapter that the aov() function automatically generates some plots 
that we can use to test the assumptions. We can see these graphs by executing:

plots(viagraModel)

The results are in Figure 11.6. You will actually see four graphs, but the first two are the 
most important. The first graph (on the left of the figure) can be used for testing homoge-
neity of variance. We encountered this kind of plot in Chapter 7: if it has a funnel shape 
then we’re in trouble. The plot we have does show funnelling (the spread of scores is wider 
at some points than at others), which implies that the residuals might be heteroscedastic 
(a bad thing). The second plot (on the right) is a Q-Q plot (see Chapter 5), which tells us 
about the normality of residuals in the model. We want our residuals to be normally dis-
tributed, which means that the dots on the graph should hover around the diagonal line. 
On ours, it looks like the diagonal line has not washed for several weeks and the dots are 
running away from the smell. Again, this is not good news for the model. These plots sug-
gest that a robust version of ANCOVA might be in order.
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Plots of an 
ANCOVA model

11.4.13.    Some final remarks 2

This example illustrates how ANCOVA can help us to exert stricter experimental control 
by taking account of confounding variables to give us a ‘purer’ measure of effect of the 
experimental manipulation.
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SELF-TEST

ü	 Run a one-way ANOVA to see whether the three 
groups differ in their levels of libido.

Output 11.8 shows (for illustrative purposes) the ANOVA table for these data when the 
covariate is not included. It is clear from the significance value, which is greater than .05, 
that Viagra seems to have no significant effect on libido. Therefore, without taking account 
of the libido of the participants’ partners we would have concluded that Viagra had no 
significant effect on libido, yet it does.

            Df Sum Sq Mean Sq F value Pr(>F)
dose         2 16.844  8.4219  2.4159 0.1083
Residuals   27 94.123  3.4860  

Output 11.8

11.4.14.    Testing for homogeneity of regression slopes 3

We saw earlier in the chapter that the assumption of homogeneity of regression slopes means 
that the relationship between the covariate and outcome variable (in this case partnerLibido 
and libido) should be similar at different levels of the predictor variable (in this case in the 
three dose groups). Figure 11.3 showed scatterplots of the relationship between partnerLibido 
and libido in the three groups. This scatterplot showed that although this relationship was 
comparable in the low-dose and placebo groups, it appeared different in the high-dose group.

SELF-TEST

ü	 Use ggplot2 to re-create Figure 11.3.

To test the assumption of homogeneity of regression slopes we need to run the ANCOVA 
again, but include the interaction between the covariate and predictor variable. We can do this 
in three ways. The first is to re-specify the whole model from scratch. We can include interaction 
terms by linking variable names with a colon. For example, the interaction of partnerLibido 
and dose would be written in R as partnerLibido:dose (or indeed dose:partnerLibido, it doesn’t 
matter). Therefore, to include this interaction in an ANCOVA model we could execute:

hoRS<-aov(libido ~ partnerLibido + dose + dose:partnerLibido, data = 
viagraData)

This command creates a model called hoRS (short for homogeneity of regression slopes), 
which includes the covariate, the independent variable and their interaction.

The second way is to use the fact that you can include variables and their interactions in the 
same model by specifying variable1*variable2 as the predictor. Doing so will enter not just the 
interaction but also the effects of the individual variables as well. So, for example, this command:

hoRS<-aov(libido ~ partnerLibido*dose, data = viagraData)

does exactly the same thing as the previous command.
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The final method is to update our original ANCOVA model (viagraModel) to include 
the interaction term using the update() function (see R’s Souls’ Tip 7.2). The viagraModel 
already includes partnerLibido and dose, so all we need to do is add the interaction term 
by including ‘+ dose:partnerLibido’ as follows:

hoRS<-update(viagraModel, .~. + partnerLibido:dose)

The .~. simply means ‘keep the same outcome variable and predictor as before’ and the 
‘+ partnerLibido: dose’ means ‘add the interaction term’. This method is, as you can see, 
the quickest. Execute one of these commands to create the hoRS object and then use the 
anova() function to get the Type III sums of squares by executing:4

Anova(hoRS, type=”III”)

Output 11.9 shows the main summary table for the ANCOVA including the interaction 
term. The effects of the dose of Viagra and the partner’s libido are still significant, but the 
main thing in which we’re interested is the interaction term, so look at the significance 
value of the covariate by outcome interaction (partnerLibido:dose), if this effect is sig-
nificant then the assumption of homogeneity of regression slopes has been broken. The 
effect here is significant (p < .05); therefore the assumption is not tenable. Although this 
finding is not surprising given the pattern of relationships shown in Figure 11.3, it does 
raise concern about the main analysis. This example illustrates why it is important to test 
assumptions and not to just blindly accept the results of an analysis.

Anova Table (Type III tests)

Response: libido
                   Sum Sq Df F value    Pr(>F)    
(Intercept)        53.542  1 21.9207 9.323e-05 ***
partnerLibido      17.182  1  7.0346  0.013947 *  
dose               36.558  2  7.4836  0.002980 ** 
partnerLibido:dose 20.427  2  4.1815  0.027667 *  
Residuals          58.621 24     

Output 11.9

11.5.  Robust ANCOVA 3

As with one-way ANOVA, Wilcox (2005) describes a set of robust procedures for conduct-
ing one-way ANCOVA. To access these we again need to load the WRS package (see section 
5.8.4.). There are two functions that we will look at which can be used to compare trimmed 
means between two groups including a covariate: ancova() and ancboot(). These methods 
all work on the same principle. To free the analysis from the restrictions of homogeneity 
of regression slopes, as well as the other distributional assumptions, these tests compare 
trimmed means at different points along the covariate. In other words, rather than assume 
that the relationship between the covariate and outcome variable is constant in the two 
groups, it finds five points where the slopes are the same (i.e., five values of the covari-
ate for which the relationship between the outcome and covariate is roughly the same in 
both groups). It then compares the trimmed means at these five points to see whether 

4 We could also use Type II sums of squares here: because we’re interested only in the highest-order 
interaction, Type II and III sums of squares will give us exactly the same results (see Jane Superbrain 
Box 11.1.).
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they differ. This process is quite useful because it gives you an idea of how the differences 
between group means changes as a function of the covariate.

The function ancova() does the analysis just described, and ancboot() does the same but 
uses a bootstrap-t method to compute confidence intervals. These functions have the fol-
lowing basic form:

ancova(covGrp1, dvGrp1, covGrp2, dvGrp2, tr = .2)
ancboot(covGrp1, dvGrp1, covGrp2, dvGrp2, tr = .2, nboot = 599)

In these commands covGrp1 is a variable that contains the data for the covariate from 
the first group, dvGrp1 is a variable that contains the data for the outcome variable (i.e., 
dependent variable) from the first group; covGrp2 is a variable that contains the data 
for the covariate from the second group; and dvGrp2 is a variable that contains the data for 
the outcome variable from the second group. The level of trimming is by default 20%, but 
can be changed by including the tr = option. The second command also includes the nboot 
option to control the number of bootstrap samples (the default is 599).

Let’s take a look at a new example. Two news stories caught my eye that related to some 
physics research (Di Falco, Ploschner, & Krauss, 2010). In the first headline (November 2010) 
the Daily Mirror (a UK newspaper) reported  ‘Scientists make Harry Potter’s invisible cloak’. 
I’m not really a Harry Potter aficionado,5 so it wasn’t his mention that caught my attention, 
but the idea of being able to don a cloak that would render me invisible and able to get up to 
mischief was very exciting indeed. Where could I buy one? By February 2011 the same news-
paper was reporting on a different piece of research (Chen et al., 2011), but it came with a 
slightly more sedate headline: ‘Harry Potter-style “invisibility cloak” built by scientists’.

Needless to say, scientists hadn’t actually made Harry Potter’s cloak of invisibility. Di 
Falco et al. had created a flexible material (Metaflex) that had optical properties that meant 
that if you layered it up you might be able to create something around which light would 
bend. Not exactly a cloak in the clothing sense of the word, but easier to wear than, say, a 
slab of granite. Chen et al. also hadn’t made a ‘cloak of invisibility’ in the clothing sense, 
but had created a calcite lump of invisibility. This could hide small objects (centimetres 
and millimeters in scale): you could conceal my brain but little else. Nevertheless, with a 
suitably large piece of calcite in tow, I could theoretically hide my whole body (although 
people might get suspicious of the apparently autonomous block of calcite manoeuvring 
itself around the room on a trolley).

Although the newspapers probably overstated the case a little, these are two very exciting 
pieces of research that bring the possibility of a cloak of invisibility closer to a reality. So, I 
imagine a future in which we have some cloaks of invisibility to test out. As a psychologist 
(with his own slightly mischievous streak) I might be interested in the effect that wearing a 
cloak of invisibility has on people’s tendency to mischief. I took 80 participants and placed 
them in an enclosed community. The community was riddled with hidden cameras so that we 
could record mischievous acts. We recorded how many mischievous acts everyone conducted 
in the first 3 weeks (mischief1). After 3 weeks we told about half of the sample (n = 34) that 
we were switching the cameras off so that no one would be able to see what they were getting 
up to; the remainder (n = 46) were given a cloak of invisibility. These people with cloaks were 
told not to tell anyone else about their cloak and that they could wear it whenever they liked. 
We recorded the number of mischievous acts over the next 3 weeks (mischief2). The variable 
cloak records whether or not a person was given a cloak (cloak = 2) or not (cloak = 1). These 
data are in the file CloakofInvisibility.dat. Load this file into a dataframe called invisibility-
Data by setting your working directory to the correct folder and executing:

invisibilityData<-read.delim("CloakofInvisibility.dat", header = TRUE)

5 Though perhaps I should be, given that another UK newspaper once dubbed me ‘the Harry Potter of the social 
sciences’ (http://www.discoveringstatistics.com/docs/thes_170909.pdf). I wasn’t sure whether this made me a 
heroic wizard battling against the evil forces of statistics, or an adult with a mental age of 11. 
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We can convert the numeric variable cloak into a factor (i.e., categorical variable) by executing:

invisibilityData$cloak<-factor(invisibilityData$cloak, levels = c(1:2), 
labels = c("No Cloak", "Cloak"))

We have specified that the levels of cloak are 1 and 2 (levels = c(1:2)), and that we want to 
label these levels as No Cloak and Cloak (labels = c(“No Cloak”, “Cloak”)).

SELF-TEST

ü	 Use ggplot2 to produce boxplots for the invisibility 
data. Try to re-create Figure 11.7.
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Boxplots of the 
invisibility data

Figure 11.7 shows boxplots for the number of mischievous acts before and after the 
cloaks were given out by whether or not the person was given a cloak. Levels of mischief 
are comparable at baseline, and increase in both groups (not surprising given that those 
without cloaks were told that the cameras were being switched off). The whiskers show 
that the spread of scores is greater for the participants who received cloaks.

SELF-TEST

ü	 Create a standard ANCOVA model of these data. 
What conclusions can you draw?

The main difficulty in running robust regression is getting the data into the right format. 
Figure 11.8 shows the data from the invisibilityData dataframe (edited to save space). 
You can see that the groups have been stacked and the covariates and dependent variable 
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(outcome) are in different columns. The functions for robust ANCOVA require us to create 
four variables, which I have labelled as follows in the functions:

MM covGrp1: This variable contains scores for the covariate (mischief1) for the first 
group (in this case the ‘No Cloak’ group of the cloak variable). This is the upper left 
block of data in Figure 11.8.

MM dvGrp1: This variable contains scores for the dependent variable/outcome (mischief2) 
for the first group (in this case the ‘No Cloak’ group of the cloak variable). This is the 
upper right block of data in Figure 11.8.

MM covGrp2: This variable contains scores for the covariate (mischief1) for the second 
group (in this case the ‘Cloak’ group of the cloak variable). This is the lower left 
block of data in Figure 11.8.

MM dvGrp2: This variable contains scores for the dependent variable/outcome (mischief2) 
for the second group (in this case the ‘Cloak’ group of the cloak variable). This is the 
lower right block of data in Figure 11.8.
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SELF-TEST

ü	 Can you use what you have learnt about R to create 
the four variables covGrp1, dvGrp1, covGrp2, 
dvGrp2?

To create these variables, we could start by splitting the dataframe into two new data-
frames: one for the cloak group and the other for the no-cloak group. We can achieve this 
by executing these commands:

noCloak<-subset(invisibilityData, cloak=="No Cloak")
invisCloak<-subset(invisibilityData, cloak=="Cloak")

Note that we have created two new dataframes (named noCloak and invisCloak). In both 
cases we have used the subset() function (section 3.9.2), specified the original dataframe 
(invisibilityData), set a condition on which to select rows (this condition is that the value 
of the variable cloak is equal to ‘Cloak’ for the first dataframe and ‘No Cloak’ for the 
second).

We can now create the four variables by selecting the appropriate columns (i.e., vari-
ables) from these new dataframes. Execute these four commands:

covGrp1<-invisCloak$mischief1
dvGrp1<-invisCloak$mischief2
covGrp2<-noCloak$mischief1
dvGrp2<-noCloak$mischief2

The first command creates a variable called covGrp1 which contains the values of the mis-
chief1 variable within the invisCloak dataframe; the second creates a variable called dvGrp1 
which contains the values of the mischief2 variable within the invisCloak dataframe; the 
third and fourth commands do the same but using the noCloak dataframe.6

Having created these variables, we can input them into the robust ANCOVA commands 
(note that I have also changed the number of bootstrap samples to 2000) and execute them:

ancova(covGrp1, dvGrp1, covGrp2, dvGrp2)
ancboot(covGrp1, dvGrp1, covGrp2, dvGrp2, nboot = 2000)

Output 11.10 shows the results of the ancova() function and Output 11.11 shows 
the results from ancboot(). Both of these outputs can be interpreted in the same way. 
The X column indicates five values for the covariate (in this case 2, 4, 5, 6, 7) for which 
the relationship between baseline mischief and post-cloak mischief are comparable in 
the two groups. At these points we are told the number of cases in the data for the two 
groups (n1 and n2) that have a covariate value close to x (not exactly x, but close to 
it). Based on these two samples, trimmed means (20% by default) are computed and 
the difference between them tested. This difference is stored in the column DIF and its 
estimates standard error in the se column. The test statistic comparing the difference is 

6 The astute amongst you might wonder why we don’t create these variables directly from the original dataframe. 
For example, we could create covGrp1 by executing:

covGrp1<-subset(invisibilityData, cloak=="Cloak", select = mischief1)

However, if we used this command, covGrp1 would be a dataframe and not a variable. The robust ANCOVA 
commands don’t seem to like dataframes, which is why we don’t use this quicker method.
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in the TEST column (and is just the difference divided by the standard error). The confi-
dence interval of the difference between trimmed means is included (these are corrected 
to control for the fact that we have done five tests). Note that the confidence intervals 
are the first things to be different in the two outputs: this is because in the output from 
ancboot() these confidence intervals are based on bootstrapping. Finally, we are told a 
p-value for the test of the difference between trimmed means. If this value is less that 
.05 we conclude that there is a significant difference between the trimmed means when 
adjusting for the covariate.

[1] "NOTE: Confidence intervals are adjusted to control the probability"
[1] "of at least one Type I error."
[1] "But p-values are not"
$output
 X n1 n2  DIF    TEST    se     ci.low   ci.hi  p.value  crit.val
 2 21 17 1.4056 1.8882 0.74441 -0.673383 3.4846 0.072261 2.79278
 4 31 26 1.7336 3.1302 0.55382  0.226996 3.2401 0.003720 2.72031
 5 32 26 1.0125 1.6767 0.60388 -0.639430 2.6644 0.104360 2.73551
 6 29 24 1.1711 2.3109 0.50675 -0.205854 2.5480 0.027304 2.71716
 7 24 17 1.3750 2.6145 0.52591 -0.079079 2.8291 0.015021 2.76490

Output 11.10

[1] "Note: confidence intervals are adjusted to control FWE"
[1] "But p-values are not adjusted to control FWE"
[1] "Taking bootstrap samples. Please wait."
$output
     X n1 n2      DIF     TEST      ci.low    ci.hi p.value
[1,] 2 21 17 1.405594 1.888193 -0.63118033 3.442369  0.0800
[2,] 4 31 26 1.733553 3.130180  0.21825768 3.248848  0.0050
[3,] 5 32 26 1.012500 1.676646 -0.63977784 2.664778  0.1140
[4,] 6 29 24 1.171053 2.310930 -0.21544474 2.557550  0.0270
[5,] 7 24 17 1.375000 2.614530 -0.06392599 2.813926  0.0115

$crit
[1] 2.736084

Output 11.11

Outputs 11.10 and 11.11 show significant differences between trimmed means for four 
of the five design points. In other words, in most cases the groups differ significantly in 
their mean level of mischief after the intervention (adjusted for baseline levels of mischie-
vousness). We didn’t get a significant difference for values of the covariate around 5 (the 
middle of the five design points tested), which seems to suggest that having an invisibility 
cloak increased mischievousness in those who were ordinarily not very mischievous (base-
line scores around 2 and 4) or ordinarily highly mischievous (baseline scores around 6 and 
7), but not in the ‘averagely mischievous’ person.

The robust ANCOVA function also produces a plot (Figure 11.9) of the covariate plot-
ted against the outcome variable. Two regression splines are fitted (one for each group) 
but note that these are not straight lines (i.e., the slopes are not assumed to be linear). We 
can use this graph to help interpret the results by looking at the spread of data points for 
the two groups at each of the design points in the robust analysis (i.e., values of x = 2, 4, 
5, 6, 7). Notice that the circles are usually higher than the crosses. The one exception is 
when X = 5, where there is a cross at the highest point and a circle at the lowest point. This 
probably explains why we found no significant group differences at this design point in 
the robust analysis (it is the one point where it is not obvious that the circles are generally 
higher than the crosses).
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Plot of baseline 
mischievousness 
(X) against 
post-cloak 
mischievousness 
(Y) from the 
ancova() function

          Labcoat  Len i ’s  Real  Research 11 .1   Space invaders 2

Muris, P., et al. (2008). Child Psychiatry and Human Development, 39, 469–480.

Anxious people tend to interpret ambiguous information in a negative way. For example, being highly anxious 
myself, if I overheard a student saying ‘Andy Field’s lectures are really different’ I would assume that ‘different’ 
meant ‘rubbish’, but it could also mean ‘refreshing’ or ‘innovative’. One current mystery is how these interpre-
tational biases develop in children. Peter Muris and his colleagues addressed this issue in an ingenious study. 
Children did a task in which they imagined that they were astronauts who had discovered a new planet. Although 
the planet was similar to Earth, some things were different. They were given some scenarios about their time 
on the planet (e.g., ‘On the street, you encounter a spaceman. He has a sort of toy handgun and he fires at you 
…’) and the child had to decide which of two outcomes occurred. One outcome was positive (‘You laugh: it is a 
water pistol and the weather is fine anyway’) and the other negative (‘Oops, this hurts! The pistol produces a red 
beam which burns your skin!’). After each response the child was told whether their choice was correct. Half of 
the children were always told that the negative interpretation was correct, and the remainder were told that the 
positive interpretation was correct.

Over 30 scenarios children were trained to interpret their experiences on the planet as negative or positive. 
Muris et al. then gave children a standard measure of interpretational biases in everyday life to see whether the 
training had created a bias to interpret things negatively. In doing so, they could ascertain whether children learn 
interpretational biases through feedback (e.g., from parents) about how to disambiguate ambiguous situations.

The data from this study are in the file Muris et al (2008).dat. The independent variable is Training (positive 
or negative) and the outcome was the child’s interpretational bias score (Interpretational_Bias) – a high score 
reflects a tendency to interpret situations negatively. It is important to factor in the Age and Gender of the child 
and also their natural anxiety level (which they measured with a standard questionnaire of child anxiety called the 
SCARED) because these things affect interpretational biases also. Labcoat Leni wants you to carry out a one-

way ANCOVA on these data to see whether Training significantly affected children’s Interpretational_
Bias using Age, Gender and SCARED as covariates. What can you conclude?

Answers are in the additional material on the companion website (or look at pages 475–476 in the 
original article).
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11.6.  Calculating the effect size 2

We saw in the previous chapter that we can use eta squared, η2, as an effect size measure 
in ANOVA. This effect size is just r2 by another name and is calculated by dividing the 
effect of interest, SSM, by the total amount of variance in the data, SST. As such, it is 
the proportion of total variance explained by an effect. In ANCOVA (and some of the 
more complex ANOVAs that we’ll encounter in future chapters), we have more than 
one effect; therefore, we could calculate eta squared for each effect. However, we can 
also use an effect size measure called partial eta squared (partial η2). This differs from eta 
squared in that it looks not at the proportion of total variance that a variable explains, 
but at the proportion of variance that a variable explains that is not explained by other 
variables in the analysis. Let’s look at this with our example; say we want to know the 
effect size of the dose of Viagra. Partial eta squared is the proportion of variance in libido 
that the dose of Viagra shares that is not attributed to partner’s libido (the covariate). If 
you think about the variance that the covariate cannot explain, there are two sources: 
it cannot explain the variance attributable to the dose of Viagra, SSViagra and it cannot 
explain the error variability, SSR. Therefore, we use these two sources of variance instead 
of the total variability, SST, in the calculation. The difference between eta squared and 
partial eta squared is shown as:

η η
2 2= =

+
SS
SS

partial
SS

SS SS
Effect

Total

Effect

Effect Residual 	
(11.2)

To calculate it for our Viagra example, we need to use the sums of squares in Output 11.3 
for the effect of dose (25.19), the covariate (15.08) and the error (79.05): 

             CRAMMING SAM’S TIPS    ANCOVA

•	 Analysis of covariance (ANCOVA) compares several means, but adjusting for the effect of one or more other variables (called 
covariates); for example, if you have several experimental conditions and want to adjust for the age of the participants.

•	 Before the analysis you should check that the independent variables and covariate(s) are independent. You can do this using 
ANOVA or a t-test to check that levels of the covariate do not differ significantly across groups. 

•	 You need to decide whether to use Type I or Type III sums of squares. If you use Type III you must do an orthogonal contrast 
rather than a non-orthogonal one.

•	 If you have generated specific hypotheses before the experiment use planned comparisons. You obtain these contrasts using 
the contrast() function.

•	 In the resulting output from the ANCOVA, look at the p-value for both the covariate and the independent variable. If the value 
is less than .05 then for the covariate it means that this variable has a significant relationship to the outcome variable; for the 
independent variable it means that the means are significantly different across the experimental conditions after partialling 
out the effect that the covariate has on the outcome.

•	 If you don’t have specific hypotheses you can use post hoc tests by using the glht() function.
•	 For contrasts and post hoc tests, again look to the p-values to discover if your comparisons are significant (they will be if the 

significance value is less than .05).
•	 Test the same assumptions as for ANOVA, but in addition you should test the assumption of homogeneity of regression 

slopes. This has to be done by customizing the ANCOVA model to look at the independent variable×covariate interaction.
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These values show that dose explained a bigger proportion of the variance not attributable 
to other variables than partnerLibido.

As with ANOVA, you can also use omega squared (ω2). However, as we saw in section 
10.7, this measure can be calculated only when we have equal numbers of participants in 
each group (which is not the case in this example). So, we’re a bit stumped.

However, all is not lost because, as I’ve said many times already, the overall effect size is 
not nearly as interesting as the effect size for more focused comparisons. If we think about 
the planned contrasts that we did, we can use the same equation as in section 9.6.3.8:

r
t

tContrast =
+

2

2 26

Remember that in section 10.7 we wrote a function to compute this for us called rcon-
trast(), which you should be able to use if you have the package associated with this book, 
DSUR, loaded – see section 3.4.5). All we need are the values of t and df.

Output 11.5 gives us the value of t for the covariate (2.227) and our contrasts compar-
ing different groups.7 The degrees of freedom can be calculated as in normal regression 
(see section 7.2.4) as N − p − 1, in which N is the total sample size (in this case 30), and p 
is the number of predictors (in this case 3, the two contrast variables and the covariate). 
Therefore, the degrees of freedom are 26.

Therefore, first, create a variable (I’ve called it t) containing the three values of t from 
Output 11.5, and another called df  that is the value of the degrees of freedom:

t<-c(2.227, 2.785, 0.541)
df<-26

We can print the corresponding effect sizes for the three t-values to the console by placing 
these variables t and df into the rcontrast() function and executing:

rcontrast(t, df)

Having executed this command R will print the resulting values to the console:

  effect_size     r
1        r =  0.400
2        r =  0.479
3        r =  0.106

If you think back to our benchmarks for effect sizes, the effect of the covariate (.400) and 
the difference between the combined dose groups and the placebo (.479) both represent 
medium to large effect sizes (they’re both between .4 and .5). Therefore, as well as being 

7 We should use a slightly more elaborate procedure when groups are unequal. It’s a bit beyond the 
scope of this book, but Rosnow, Rosenthal, and Rubin (2000) give a very clear account.
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statistically significant, these effects are substantive findings. The difference between the 
high- and low-dose groups (.106) was a fairly small effect.

An alternative is to calculate effect sizes between all combinations of groups, just as we 
did for ANOVA. We could again use the mes() function from the calculate.es package:

mes(meangroup1, meangroup2, sdgroup1, sdgroup2, ngroup1, ngroup2)

We know the adjusted means (Output 11.4) and sample sizes, the problem is that we 
don’t know the adjusted standard deviations. We could either use the unadjusted standard 
deviations as an approximation, or we could estimate them from the standard errors of 
the adjusted means (Output 11.4). We discovered in Chapter 2 that the standard error is 
the standard deviation divided by the square root of the sample size on which the mean is 
based. If we rearrange this equation we get:

s Nx= σ

In other words, the standard deviation is the standard error multiplied by the square root 
of the sample size.8 We already have the standard errors for the adjusted means stored in 
the variable adjustedMeans$se (see section 11.4.8). If we create a variable, n, containing 
the three group’s sample sizes by executing:

n<-c(9,8,13)

then we can approximate the standard deviations by multiplying the square root of this vari-
able (sqrt(n) in R-speak) by the corresponding standard errors (stored in adjustedMeans$se). 
Therefore, to print the standard deviations to the console, execute:

adjustedMeans$se*sqrt(n)

You should find that the values are:

1.788613 1.755879 1.812267

Now we have all the information we need to use the mes() function. For example, if we 
want to compare the low-dose group with the placebo we would execute:

mes(5.988117, 4.151886, 1.755879, 1.788613, 8, 9)

We have entered the mean of the low-dose group (5.988117), the mean of the placebo 
group (4.151886), the corresponding standard deviations (1.755879 and 1.788613), and 
the sample sizes (8 and 9).

Similarly we can get effect sizes for the difference between the high-dose and placebo 
groups by executing:

mes(6.184427, 4.151886, 1.812267, 1.788613, 13, 9)

Finally, the difference between the high- and low-dose groups can be quantified by 
executing:

mes(6.184427, 5.988117, 1.812267, 1.755879, 13, 8)

The outputs of these commands are shown in Output 11.12 (I have edited the outputs to 
show only the effect sizes d and r). The difference between the low-dose and placebo group 
is a large effect (the adjusted means are about a standard deviation different), d = 1.04, r = 
.46; the difference between the high-dose and placebo groups is also a large effect (over a 
standard deviation difference between the adjusted group means), d = 1.13, r = .48; finally, 

8 Strictly speaking, this is true only when the sample size is greater than about 30, which is not the case here.
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the difference between the high- and low-dose groups is a very small effect (the adjusted 
means are about a tenth of standard deviation different), d = 0.11, r = .05.

Low Dose vs. Placebo:
$MeanDifference
        d     var.d         g     var.g 
1.0354225 0.2676435 0.9827739 0.2411175 

$Correlation
         r      var.r 
0.45912390 0.03277639 

High Dose vs. Placebo:

$MeanDifference
        d     var.d         g     var.g 
1.1274090 0.2169217 1.0845960 0.2007595 

$Correlation
         r      var.r 
0.48480943 0.02347250

High Dose vs. Low Dose:

$MeanDifference
        d     var.d         g     var.g 
0.1095664 0.2022089 0.1051837 0.1863557 

$Correlation
         r      var.r 
0.05313258 0.04728373

Output 11.12

11.7.  Reporting results 2

Reporting ANCOVA is much the same as reporting ANOVA, except we now have to report 
the effect of the covariate as well. For the covariate and the experimental effect we give 
details of the F-ratio and the degrees of freedom from which it was calculated. In both 
cases, the F-ratio was derived from dividing the mean squares for the effect by the mean 
squares for the residual. Therefore, the degrees of freedom used to assess the F-ratio are 
the degrees of freedom for the effect of the model (dfM = 1 for the covariate and 2 for the 
experimental effect) and the degrees of freedom for the residuals of the model (dfR = 26 for 
both the covariate and the experimental effect) – see Output 11.3. Therefore, the correct 
way to report the main findings would be:

MM The covariate, partner’s libido, was significantly related to the participant’s libido, 
F(1, 26) = 4.96, p < .05, r = .40. There was also a significant effect of the dose of 
Viagra on levels of libido after controlling for the effect of partner’s libido, F(2, 26) 
= 4.14, p < .05, partial η2 = .24.

We can also report some contrasts (see Output 11.5):
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MM Planned contrasts revealed that taking a high or low dose of Viagra significantly 
increased libido compared to taking a placebo, t(26) = 2.79, p < .01, r = .48; there 
was no significant difference between the high and low doses of Viagra, t(26) = 0.54, 
p = .59, r = .11.

Post hoc tests could be reported as follows (see Output 11.6):

MM Tukey post hoc tests revealed that the covariate adjusted mean of the high-dose group 
was significantly greater than that of the placebo (difference = 2.22, t = 2.77, p < .05, 
d = 1.13). However, there was no significant difference between the low-dose and pla-
cebo groups (difference = 1.79, t = 2.10, p = .11, d = 1.04) and between the low-dose 
and high-dose groups (difference = 0.44, t = 0.54, p = .85, d = 0.11). Despite the lack 
of significance between the low-dose and placebo groups, the effect size was quite large.

What have I discovered about statistics? 2

This chapter has shown you how the general linear model that was described in Chapter 
10 can be extended to include additional variables. The advantages of doing so are that 
we can remove the variance in our outcome that is attributable to factors other than our 
experimental manipulation. This gives us tighter experimental control, and may also 
help us to explain some of our error variance, and, therefore, give us a purer measure 
of the experimental manipulation. We didn’t go into too much theory about ANCOVA, 
we just looked conceptually at how the regression model can be expanded to include 
these additional variables (covariates). Instead we jumped straight into an example, 
which was to look at the effect of Viagra on libido (as in Chapter 10) but including 
partner’s libido as a covariate. I explained how to do the analysis using R and interpret 
the results. We also looked at an additional assumption that has to be considered when 
doing ANCOVA: the assumption of homogeneity of regression slopes. This just means 
that the relationship between the covariate and the outcome variable should be the same 
in all of your experimental groups. We finished off by looking at some very state-of-the-
art robust versions of ANCOVA for when our data are up to mischief; we also learnt 
that this would be more likely if they possessed an invisibility cloak. The moral here is 
never to give your data set an invisibility cloak.

Having seen Iron Maiden in all of their glory, I was inspired. Although I had briefly 
been deflected from my destiny by the shock of grammar school, I was back on track. I 
had to form a band. There was just one issue: no one else played a musical instrument. 
The solution was easy: through several months of covert subliminal persuasion I con-
vinced my two best friends (both called Mark, oddly enough) that they wanted nothing 
more than to start learning the drums and bass guitar. A power trio was in the making!

R packages used in this chapter
car
compute.es
effects
ggplot2

multcomp
pastecs
WRS
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R functions used in this chapter
ancboot()
ancova() 
Anova()
aov()
by()
confint()
contrasts()
drop1()
effect()
factor()
ggplot()

glht()
leveneTest()
lm()
mes()
plot()
reshape()
stat.desc()
subset()
summary()
summary.lm()
update()

Key terms that I’ve discovered
Adjusted mean
Analysis of covariance (ANCOVA)
Covariate

Homogeneity of regression slopes
Partial eta squared (partial η2) 
Partial out

Smart Alex’s tasks

MM Task 1: Stalking is a very disruptive and upsetting (for the person being stalked) expe-
rience in which someone (the stalker) constantly harasses or obsesses about another 
person. It can take many forms, from being sent intensely disturbing letters threatening 
to boil your cat if you don’t reciprocate the stalker’s undeniable love for you, to follow-
ing you around your local area in a desperate attempt to see which CD you buy on a 
Saturday. A psychologist, who’d had enough of being stalked by people, decided to try 
two different therapies on different groups of stalkers (25 stalkers in each group – this 
variable is called Group). To the first group of stalkers he gave what he termed cruel-to-
be-kind therapy. This therapy was based on punishment for stalking behaviours: every 
time the stalkers followed him around, or sent him a letter, the psychologist attacked 
them with a cattle prod. The second therapy was psychodyshamic therapy, which is a 
recent development on  psychodynamic therapy that acknowledges its limited empirical 
support (you could say it’s based on Fraudian theory). In keeping with Freud’s ideas the 
therapist would discuss the stalker’s penis (or lack of it if they were a woman), the penis 
of their father, their dog’s penis, the penis of the cat down the road and anyone else’s 
penis that sprang to mind. At the end of therapy, the psychologist measured the number 
of hours in the week that the stalker spent stalking their prey (stalk2). The therapist 
believed that the success of therapy might well depend on how bad the problem was to 
begin with, so had measured the number of hours that the patient spent stalking prior 
to treatment (stalk1). The data are in the file Stalker.dat. Analyse the effect of therapy 
on stalking behaviour after therapy, controlling for the amount of stalking behaviour 
before therapy. Also try conducting a robust ANCOVA. 2

MM Task 2: A marketing manager for a certain well-known drinks manufacturer was 
interested in the therapeutic benefit of certain soft drinks for curing hangovers. He 
took 15 people out on the town one night and got them drunk. The next morning as 
they awoke, dehydrated and feeling as though they’d licked a camel’s sandy feet clean 
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with their tongue, he gave five of them water to drink, five of them Lucozade (in case 
this isn’t sold outside the UK, it’s a very nice glucose-based drink) and the remaining 
five a leading brand of cola (this variable is called drink). He then measured how 
well they felt (on a scale from 0 = I feel like death to 10 = I feel really full of beans 
and healthy) two hours later (this variable is called well). He wanted to know which 
drink produced the greatest level of wellness. However, he realized it was important 
to control for how drunk the person got the night before, and so he measured this on 
a scale from 0 = as sober as a nun to 10 = flapping about like a haddock out of water 
on the floor in a puddle of their own vomit. The data are in the file HangoverCure.
dat. Conduct an ANCOVA to see whether people felt better after different drinks 
when controlling for how drunk they were the night before. 2

MM Task 3: The annual elephant football (soccer) event in Nepal9 is the highlight of the 
elephant calendar. However, in recent years a heated argument has arisen between 
the African and Asian elephants. It started in 2010 when the president of the Asian 
Elephant Football Association, an elephant named Boji, claimed that Asian elephants 
were more talented than their African counterparts. The head of the African Elephant 
Soccer Association, an elephant called Tunc, replied in a press statement that read ‘I 
make it a matter of personal pride never to take seriously any remark made by some-
thing that looks like an enormous scrotum’. I was called in to settle things. I collected 
data from the two types of elephants (elephant) over a season. For each elephant, I 
measured how many goals they scored in the season (goals) and how many years of 
experience they had (experience). The data are in Elephant Football.dat. Analyse the 
effect of the type of elephant on goal scoring, controlling for the amount of  football 
experience the elephant has. Also try conducting a robust ANCOVA. 3

The answers are on the companion website, and task 1 has a full interpretation in Field 
and Hole (2003).

Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental statistics for the behavioral sciences, also in its 6th edition, 2007.)
Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal 

Psychology, 110, 40–48.
Rutherford, A. (2000). Introducing ANOVA and ANCOVA: A GLM approach. London: Sage.
Wildt, A. R. & Ahtola, O. (1978). Analysis of covariance. Sage University Paper Series on Quantitative 

Applications in the Social Sciences, 07-012. Newbury Park, CA: Sage. (This text is pretty high 
level but very comprehensive if you want to know the maths behind ANCOVA.)

Interesting real research
Chen, X. Z., Luo, Y., Zhang, J. J., Jiang, K., Pendry, J. B., & Zhang, S. A. (2011). Macroscopic 

invisibility cloaking of visible light. Nature Communications, 2, art. 176. doi: 17610.1038/
ncomms1176.

Di Falco, A., Ploschner, M., & Krauss, T. F. (2010). Flexible metamaterials at visible wavelengths. 
New Journal of Physics, 12, 113006. doi: 11300610.1088/1367-2630/12/11/113006.

Muris, P., Huijding, J., Mayer, B., & Hameetman, M. (2008). A space odyssey: Experimental manip-
ulation of threat perception and anxiety-related interpretation bias in children. Child Psychiatry 
and Human Development, 39(4), 469–480.

9 http://news.bbc.co.uk/1/hi/8435112.stm
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12
Factorial ANOVA (GLM 3)

FIGURE 12.1
Andromeda 
coming to a living 
room near you in 
1988 (from left to 
right: Malcolm, me 
and the two Marks)

12.1.  What will this chapter tell me? 2

After persuading my two friends (Mark and Mark) to learn the bass and drums, I took the 
rather odd decision to stop playing the guitar. I didn’t stop, as such, but I focused on sing-
ing instead. In retrospect, I’m not sure why because I am not a good singer. Mind you, I’m 
not a good guitarist either. The upshot was that a classmate, Malcolm, ended up as our 
guitarist. I really can’t remember how or why we ended up in this configuration, but we 
called ourselves Andromeda, we learnt several Queen and Iron Maiden songs and we were 
truly awful. I have some tapes somewhere to prove just what a cacophony of tuneless drivel 
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we produced, but the chances of these recordings appearing on the companion website are 
slim at best. Suffice it to say, you’d be hard pushed to recognize which Iron Maiden and 
Queen songs we were trying to play. I try to comfort myself with the fact that we were only 
14 or 15 at the time, but even youth does not excuse the depths of ineptitude to which 
we sank. Still, we garnered a reputation for being too loud in school assembly and we 
did a successful tour of our friends’ houses (much to their parents’ amusement I’m sure). 
We even started to write a few songs (I wrote one called ‘Escape from Inside’, about the 
film The Fly, that contained the wonderful rhyming couplet of ‘I am a fly, I want to die’: 
genius!). The only thing that we did that resembled the activities of a ‘proper’ band was 
to split up due to ‘musical differences’; these differences being that Malcolm wanted to 
write 15-part symphonies about a boy’s journey to worship electricity pylons and discover 
a mythical beast called the cuteasauros, whereas I wanted to write songs about flies and 
dying (preferably both). When we could not agree on a musical direction the split became 
inevitable. We could have tested empirically the best musical direction for the band by writ-
ing and performing two songs: Malcolm his 15-part symphony and me my 3-minute song 
about a fly. If we played these songs to various people and measured their screams of agony 
then we could ascertain the best musical direction to gain popularity. We have two variables 
that predict screams: whether Malcolm or I wrote the song (songwriter), and whether the 
song was a 15-part symphony or a song about a fly (song type). The one-way ANOVA that 
we encountered in Chapter 10 cannot deal with two predictor variables – this is a job for 
factorial ANOVA.

12.2.  Theory of factorial ANOVA  
(independent design) 2

In the previous two chapters we have looked at situations in which we’ve tried to test for 
differences between groups when there has been a single independent variable (i.e., one 
variable has been manipulated). However, at the beginning of Chapter 10 I said that one of 
the advantages of ANOVA was that we could look at the effects of more than one independ-
ent variable (and how these variables interact). This chapter extends what we already know 
about ANOVA to look at situations where there are two (or more) independent variables. 
We’ve already seen in the previous chapter that it’s very easy to incorporate a second vari-
able into the ANOVA framework when that variable is a continuous variable (i.e., not split 
into groups), but now we’ll move on to situations where there is a second independent vari-
able that has been systematically manipulated by assigning people to different conditions. 

12.2.1.    Factorial designs 2

In Chapters 10 and 11 we have looked at the effects of a single independent variable on 
some outcome. However, independent variables often get lonely and want to have friends. 
Scientists are obliging individuals and often put a second (or third) independent variable 
into their designs to keep the others company. When an experiment has two or more inde-
pendent variables it is known as a factorial design (this is because, as we have seen, variables 
are sometimes referred to as factors). There are several types of factorial design:

MM Independent factorial design: In this type of experiment there are several independent 
variables or predictors and each has been measured using different entities (between 
groups). We discuss this design in this chapter.
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MM Repeated-measures (related) factorial design: This is an experiment
	� in which several independent variables or predictors have been measured, 

but the same entities have been used in all conditions. This design is discussed 
in Chapter 13.

MM Mixed design: This is a design in which several independent variables
	� or predictors have been measured; some have been measured with different 

entities, whereas others used the same entities. This design is discussed in 
Chapter 14.

As you might imagine, analysing these types of experiments can get quite com-
plicated. Fortunately, we can extend the ANOVA model that we encountered 

in the previous two chapters to deal with these more complicated situations. When we 
use ANOVA to analyse a situation in which there are two or more independent variables 
it is sometimes called factorial ANOVA; however, the specific names attached to different 
ANOVAs reflect the experimental design that they are being used to analyse (see Jane 
Superbrain Box 12.1). This section extends the one-way ANOVA model to the factorial 
case (specifically when there are two independent variables). In subsequent chapters we 
will look at repeated-measures designs, factorial repeated-measures designs and finally 
mixed designs.

participants. In this case we use the term mixed. When 
we name an ANOVA, we are simply telling the reader how 
many independent variables we used and how they were 
measured. In general terms we could write the name of 
an ANOVA as:

•	 (number of independent variables)-way (how these 
variables were measured) ANOVA.

By remembering this you can understand the name of 
any ANOVA you come across. Look at these examples 
and try to work out how many variables were used and 
how they were measured:

•	 one-way independent ANOVA;
•	 two-way repeated-measures ANOVA;
•	 two-way mixed ANOVA;
•	 three-way independent ANOVA.

The answers you should get are:

•	 one independent variable measured using different 
participants;

•	 two independent variables both measured using the 
same participants;

•	 two independent variables: one measured using dif-
ferent participants and the other measured using the 
same participants;

•	 three independent variables all of which are measured 
using different participants.

ANOVAs can be quite confusing because there appear 
to be lots of them. When you read research articles 
you’ll quite often come across phrases like ‘a two-way 
independent ANOVA was conducted’, or ‘a three-way 
repeated-measures ANOVA was conducted’. These 
names may look confusing but they are quite easy if 
you break them down. All ANOVAs have two things in 
common: they involve some quantity of independent 
variables, and these variables can be measured using 
either the same or different participants. If the same par-
ticipants are used we typically use the term repeated 
measures, and if different participants are used we 
use the term independent. When there are two or more 
independent variables, it’s possible that some variables 
use the same participants whereas others use different 

JANE SUPERBRAIN 12.1

Naming ANOVAs 2

What is a factorial
design?
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12.3.  Factorial ANOVA as regression 3

12.3.1.    An example with two independent variables 2

Throughout this chapter we’ll use an example that has two independent variables. This is 
known as a two-way ANOVA (see Jane Superbrain Box 12.1). I’ll look at an example with 
two independent variables because this is the simplest extension of the ANOVAs that we 
have already encountered.

An anthropologist was interested in the effects of alcohol on mate selection at night-
clubs. Her rationale was that after alcohol had been consumed, subjective perceptions 
of physical attractiveness would become more inaccurate (the well-known beer-goggles 
effect). She was also interested in whether this effect was different for men and women. 
She picked 48 students: 24 male and 24 female. She then took groups of eight participants 
to a nightclub and gave them no alcohol (participants received placebo drinks of alcohol-
free lager), 2 pints of strong lager, or 4 pints of strong lager. At the end of the evening she 
took a photograph of the person that the participant was chatting up. She then got a pool 
of independent judges to assess the attractiveness of the person in each photograph (out of 
100). The data are in Table 12.1 and goggles.csv.

Table 12.1  Data for the beer-goggles effect

Alcohol None 2 Pints 4 Pints

Gender Female Male Female Male Female Male

65 50 70 45 55 30

70 55 65 60 65 30

60 80 60 85 70 30

60 65 70 65 55 55

60 70 65 70 55 35

55 75 60 70 60 20

60 75 60 80 50 45

55 65 50 60 50 40

Total 485 535 500 535 460 285

Mean 60.625 66.875 62.50 66.875 57.50 35.625

Variance 24.55 106.70 42.86 156.70 50.00 117.41

12.3.2.    Extending the regression model 3

We saw in section 10.2.3 that one-way ANOVA could be conceptualized as a regression 
equation (a general linear model). In this section we’ll consider how we extend this linear 
model to incorporate two independent variables. To keep things as simple as possible I 
want you to imagine that we have only two levels of the alcohol variable in our example 
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(none and 4 pints). As such, we have two predictor variables, each with two levels. All of 
the general linear models we’ve considered in this book take the general form of:

outcome el errori i= +(mod )

For example, when we encountered multiple regression in Chapter 7 we saw that this 
model was written as (see equation (7.9)):

Y X Xi i i n ni i= + + + + +( )0b b X b b1 1 2 2 … ε

Also, when we came across one-way ANOVA, we adapted this regression model to concep-
tualize our Viagra example, as (see equation (10.2)):

libido high lowi i i ib b b= + + +( )0 2 1 ε

In this model, the high and low variables were dummy variables (i.e., variables that can 
take only values of 0 or 1). In our current example, we have two variables: gender (male or 
female) and alcohol (none and 4 pints). We can code each of these with zeros and ones; for 
example, we could code gender as male = 0, female = 1, and we could code the alcohol 
variable as 0 = none, 1 = 4 pints. We could then directly copy the model we had in one-
way ANOVA:

attractiveness gender alcoholi i i ib b b= + + +( )0 1 2 ε

However, this model does not consider the interaction between gender and alcohol. If we 
want to include this term too, then the model simply extends to become (first expressed 
generally and then in terms of this specific example):

attractiveness

attractiveness
i i i i i

i

b b A b B b AB

b

= + + + +
=

( )

(
0 1 2 3

0

ε

++ + + +b b bi i i i1 2 3gender alcohol eractionint ) ε 	 (12.1)

The question is: how do we code the interaction term? The interaction term represents the 
combined effect of alcohol and gender; to get any interaction term in regression you simply 
multiply the variables involved. This is why you see interaction terms written as gender × 
alcohol, because in regression terms the interaction variable literally is the two variables 
multiplied by each other. Table 12.2 shows the resulting variables for the regression (note 
that the interaction variable is simply the value of the gender dummy variable multiplied 
by the value of the alcohol dummy variable). So, for example, a male receiving 4 pints of 
alcohol would have a value of 0 for the gender variable, 1 for the alcohol variable and 0 
for the interaction variable. The group means for the various combinations of gender and 
alcohol are also included because they’ll come in useful in due course.

Table 12.2  Coding scheme for factorial ANOVA

Gender Alcohol Dummy (Gender) Dummy (Alcohol) Interaction Mean

Male None 0 0 0 66.875

Male 4 Pints 0 1 0 35.625

Female None 1 0 0 60.625

Female 4 Pints 1 1 1 57.500
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To work out what the b-values represent in this model we can do the same as we did for 
the t-test and one-way ANOVA; that is, look at what happens when we insert values of 
our predictors (gender and alcohol). To begin with, let’s see what happens when we look 
at men who had no alcohol. In this case, the value of gender is 0, the value of alcohol is 0 
and the value of interaction is also 0. The outcome we predict (as with one-way ANOVA) 
is the mean of this group (66.875), so our model becomes:

attractiveness gender alcohol eractioni i i ib b b b= + + + +( int )0 1 2 3 εii

X b b b b

b X

b

Men None

Men None

,

,

( ( ) ( )

.

= + + +

=

=

0

0

0

1 2 3

66 875

× 0) × 0 × 0

So, the constant b0 in the model represents the mean of the group for which all variables 
are coded as 0. As such it’s the mean value of the base category (in this case men who had 
no alcohol). 

Now, let’s see what happens when we look at females who had no alcohol. In this case, 
the gender variable is 1 and the alcohol and interaction variables are still 0. Also remember 
that b0 is the mean of the men who had no alcohol. The outcome is the mean for women 
who had no alcohol. Therefore, the equation becomes:

X b b b b

X b b

X

Women None

Women None

Women

,

,

( ( ) ( )= + + +

= +
0

0

1 2 3

1

×1) × 0 × 0

,, ,

, ,

. .

None Men None

Women None Men None

= +

= −

= −

X b

b X X

b

1

1

1 60 625 66 8755

6 251b = − .

So, b1 in the model represents the difference between men and women who had no alcohol. 
More generally we can say it’s the effect of gender for the base category of alcohol (the base 
category being the one coded with 0, in this case no alcohol). 

Now let’s look at males who had 4 pints of alcohol. In this case, the gender variable is 0, 
the alcohol variable is 1 and the interaction variable is still 0. We can also replace b0 with 
the mean of the men who had no alcohol. The outcome is the mean for men who had 4 
pints. Therefore, the equation becomes:

X b b b b

X b b

X

Men P s

Men P s

Men

, int

, int

,

( ( ) ( )4 1 2 3

4 2

4

0

0

= + + +

= +

× 0) ×1 × 0

PP s Men None

Men P s Men None

int ,

, int ,

. .

= +

= −

= −

X b

b X X

b

2

2 4

2 35 625 66 8755

31 252b = − .

So, b2 in the model represents the difference between having no alcohol and 4 pints in 
men. Put more generally, it’s the effect of alcohol in the base category of gender (i.e., the 
category of gender that was coded with a 0, in this case men). 
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Finally, we can look at females who had 4 pints of alcohol. In this case, gender is 1, alcohol is 
1 and interaction is also 1. We can also replace b0, b1 and b2 with what we now know they rep-
resent. The outcome is the mean for women who had 4 pints. Therefore, the equation becomes:

X b b b b

X b b b

Women P s

Women P s

, int

, int

( ( ) ( )4 1 2 3

4 1

0

0

= + + +

= + +

×1) ×1 ×1

22 3

4

+

= + −

+

b

X X X X

X

Women P s Men None Women None Men None

Men

, int , , ,( )

( ,, int ,

, int , , int

)4 3

4 4

P s Men None

Women P s Women None Men P

− +

= +

X b

X X X ss Men None

Men None Women None Women P s Men

− +

= − + −

X b

b X X X X

,

, , , int

3

3 4 ,, int

. . . .

.

4

3

3

66 875 60 625 57 500 35 625

28 125

P s

b

b

= − + −
=

So, b3 in the model really compares the difference between men and women in the no-alcohol 
condition to the difference between men and women in the 4 pints condition. Put another 
way, it compares the effect of gender after no-alcohol to the effect of gender after 4 pints.1 
If you think about it in terms of an interaction graph, this makes perfect sense. For example, 
the top left-hand side of Figure 12.2 shows the interaction graph for these data. Now imagine 
we calculated the difference between men and women for the no-alcohol groups. This would 

1 In fact, if you rearrange the terms in the equation you’ll see that you can also phrase the interaction the opposite 
way around: it represents the effect of alcohol in men compared to women.
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be the difference between the lines on the graph for the no-alcohol group (the difference 
between group means, which is 6.25). If we then do the same for the 4 pints group, we find 
that the difference between men and women is −21.875. If we plotted these two values as 
a new graph we’d get a line connecting 6.25 to −21.875 (see the bottom left-hand side of 
Figure 12.2). This reflects the difference between the effect of gender after no alcohol com-
pared to after 4 pints. We know that beta values represent gradients of lines, and in fact b3 in 
our model is the gradient of this line (this is 6.25 − (−21.875) = 28.125).

Let’s also see what happens if there isn’t an interaction effect: the right-hand side of Figure 
12.2 shows the same data except that the mean for the females who had 4 pints has been 
changed to 30. If we calculate the difference between men and women after no alcohol we 
get the same as before: 6.25. If we calculate the difference between men and women after 4 
pints we now get 5.625. If we again plot these differences on a new graph, we find a virtually 
horizontal line. So, when there’s no interaction, the line connecting the effect of gender after no 
alcohol and after 4 pints is flat and the resulting b3 in our model would be close to 0 (remember 
that a zero gradient means a flat line). In fact its actual value would be 6.25−5.625 = 0.625.

SELF-TEST

ü	 The file GogglesRegression.dat contains the 
dummy variables used in this example. Just to prove 
that all of this works, use this file and run a multiple 
regression on the data.

The resulting table of coefficients is in Output 12.1. The important thing to note is 
that the beta value for the interaction (28.125) is the same as we’ve just calculated, which 
should hopefully convince you that factorial ANOVA is – as is everything, it would seem – 
just regression dressed up in a different costume.

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   66.875      3.055  21.890  < 2e-16 ***
gender        -6.250      4.320  -1.447    0.159    
alcohol      -31.250      4.320  -7.233 7.13e-08 ***
interaction   28.125      6.110   4.603 8.20e-05 ***
---

Output 12.1

What I hope to have shown you in this example is how even complex ANOVAs are just 
forms of regression (a general linear model). You’ll be pleased to know (I’ll be pleased to 
know for that matter) that this is the last I’m going to say about ANOVA as a general linear 
model. I hope I’ve given you enough background so that you get a sense of the fact that we 
can just keep adding independent variables into our model. All that happens is these new 
variables just get added into a multiple regression equation with an associated beta value 
(just like the regression chapter). Interaction terms can also be added simply by multiplying 
the variables that interact. These interaction terms will also have an associated beta value. 
So, any ANOVA (no matter how complex) is just a form of multiple regression.

12.4.  Two-way ANOVA: behind the scenes 2

Now that we have a good conceptual understanding of factorial ANOVA as an extension 
of the basic idea of a linear model, we will turn our attention to some of the specific 
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calculations that go on behind the scenes. The reason for doing this is that it should help 
you to understand what the output of the analysis means.

Two-way ANOVA is conceptually very similar to one-way ANOVA. Basically, we still 
find the total sum of squared errors (SST) and break this variance down into variance that 
can be explained by the experiment (SSM) and variance that cannot be explained (SSR). 
However, in two-way ANOVA, the variance explained by the experiment is made up of not 
one experimental manipulation but two. Therefore, we break the model sum of squares 
down into variance explained by the first independent variable (SSA), variance explained 
by the second independent variable (SSB) and variance explained by the interaction of these 
two variables (SSA × B) – see Figure 12.3.

FIGURE 12.3
Breaking down the 
variance in two-
way ANOVA

SST
Total Variability

SSM
Variance Explained by the 

Experiment

SSR
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Variance Explained
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Interaction of A and B

SSB
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Variable B

12.4.1.    Total sums of squares (SS
T
) 2

We start off in the same way as we did for a one-way ANOVA. That is, we calculate how 
much variability there is between scores when we ignore the experimental condition from 
which they came. Remember from one-way ANOVA (equation (10.4)) that SST is calcu-
lated using the following equation: 

SST grand

grand

= −

= −
=
∑( )

( )

x x

s N

i

N
2

1

2 1
i
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The grand variance is simply the variance of all scores when we ignore the group to which 
they belong. So if we treated the data as one big group it would look as follows:

65 50 70 45 55 30

70 55 65 60 65 30

60 80 60 85 70 30

60 65 70 65 55 55

60 70 65 70 55 35

55 75 60 70 60 20

60 75 60 80 50 45

55 65 50 60 50 40

Grand mean = 58.33

If we calculate the variance of all of these scores, we get 190.78 (try this on your calculator 
if you don’t trust me). We used 48 scores to generate this value, and so N is 48. As such 
the equation becomes:

SST grand= −

= −
=

s N2 1

190 78 48 1
8966 66

( )

. ( )
.

The degrees of freedom for this SS will be N − 1, or 47.

12.4.2.    The model sum of squares (SS
M
) 2

The next step is to work out the model sum of squares. As I suggested earlier, this sum of 
squares is then further broken into three components: variance explained by the first inde-
pendent variable (SSA), variance explained by the second independent variable (SSB) and 
variance explained by the interaction of these two variables (SSA × B). 

Before we break down the model sum of squares into its component parts, we must first 
calculate its value. We know we have 8966.66 units of variance to be explained, and our 
first step is to calculate how much of that variance is explained by our experimental manipu-
lations overall (ignoring which of the two independent variables is responsible). When we 
did one-way ANOVA we worked out the model sum of squares by looking at the difference 
between each group mean and the overall mean (see section 10.2.6). We can do the same 
here. We effectively have six experimental groups if we combine all levels of the two inde-
pendent variables (three doses for the male participants and three doses for the females). 
So, given that we have six groups of different people we can then apply the equation for the 
model sum of squares that we used for one-way ANOVA (equation (10.5)):

SSM grand= −
=

∑n x xk k

k

( )2

1n
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The grand mean is the mean of all scores (we calculated this above as 58.33) and n is the 
number of scores in each group (i.e., the number of participants in each of the six experi-
mental groups; eight in this case). Therefore, the equation becomes:

SSM = − + − + − +

+

8 60 625 58 33 8 66 875 58 33 8 62 5 58 33

8 6

2 2 2( . . ) ( . . ) ( . . )

(

…

66 875 58 33 8 57 5 58 33 8 35 625 58 33

8 2 295 8

2 2 2

2

. . ) ( . . ) ( . . )

( . )

− + − + −
= + (( . ) ( . ) ( . ) ( . ) ( . )

.
8 545 8 4 17 8 8 545 8 0 83 8 22 705

42 1362

2 2 2 2 2+ + + − + −
= ++ + + + +
=

584 1362 139 1112 584 1362 5 5112 4124 1362

5479 167

. . . . .

.

The degrees of freedom for this SS will be the number of groups used, k, minus 1. We used 
six groups and so df = 5.

At this stage we know that the model (our experimental manipulations) can explain 
5479.167 units of variance out of the total of 8966.66 units. The next stage is to further 
break down this model sum of squares to see how much variance is explained by our inde-
pendent variables separately.

12.4.2.1.  The main effect of gender (SS
A
) 2

To work out the variance accounted for by the first independent variable (in this case, 
gender) we need to group the scores in the data set according to the gender to which they 
belong. So, basically we ignore the amount of drink that has been drunk, and we just place 
all of the male scores into one group and all of the female scores into another. So, the data 
will look like this (note that the first box contains the three female columns from our origi-
nal table and the second box contains the male columns):

A1: Female A2: Male

65 70 55 50 45 30

70 65 65 55 60 30

60 60 70 80 85 30

60 70 55 65 65 55

60 65 55 70 70 35

55 60 60 75 70 20

60 60 50 75 80 45

55 50 50 65 60 40

Mean Female = 60.21 Mean Male = 56.46

We can then apply the equation for the model sum of squares that we used to calculate the 
overall model sum of squares:

SS grandA
n

= −
=

∑n x xk k

k

( )2

1
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The grand mean is the mean of all scores (above) and n is the number of scores in each group 
(i.e., the number of males and females; 24 in this case). Therefore, the equation becomes:

SSgender = − + −

= + −

24 60 21 58 33 24 56 46 58 33

24 1 88 24 1

2 2

2

( . . ) ( . . )

( . ) ( .. )
. .
.

87
84 8256 83 9256
168 75

2

= +
=

The degrees of freedom for this SS will be the number of groups used, k, minus 1. We 
used two groups (males and females) and so df = 1. To sum up, the main effect of gender 
compares the mean of all males against the mean of all females (regardless of which alcohol 
group they were in).

12.4.2.2.  The main effect of alcohol (SS
B
) 2

To work out the variance accounted for by the second independent variable (in this case, 
alcohol) we need to group the scores in the data set according to how much alcohol was 
consumed. So, basically we ignore the gender of the participant, and we just place all of the 
scores after no drinks in one group, the scores after 2 pints in another group and the scores 
after 4 pints in a third group. So, the data will look like this:

B1: None B2: 2 Pints B3: 4 Pints
65 50 70 45 55 30
70 55 65 60 65 30
60 80 60 85 70 30
60 65 70 65 55 55
60 70 65 70 55 35
55 75 60 70 60 20
60 75 60 80 50 45
55 65 50 60 50 40

Mean None = 63.75 Mean 2 pints = 64.6875 Mean 4 pints = 46.5625

We can then apply the same equation for the model sum of squares that we used for the 
overall model sum of squares and for the main effect of gender:

SS grandB
n

= −
=

∑n x xk k

k

( )2

1

The grand mean is the mean of all scores (58.33 as before) and n is the number of scores 
in each group (i.e., the number of scores in each of the boxes above, in this case 16). 
Therefore, the equation becomes:

SSalcohol = − + − + −16 63 75 58 33 16 64 6875 58 33 16 46 5625 52 2( . . ) ( . . ) ( . 88 33

16 5 42 16 6 3575 16 11 7675
470 0224 646 6

2

2 2 2

. )

( . ) ( . ) ( . )
. .

= + + −
= + 8849 2215 5849

3332 292
+

=
.

.

The degrees of freedom for this SS will be the number of groups used, k, minus 1 (see sec-
tion 10.2.6). We used three groups and so df = 2. To sum up, the main effect of alcohol 
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compares the means of the no-alcohol, 2-pints and 4-pints groups (regardless of whether 
the scores come from men or women).

12.4.2.3.  The interaction effect (SS
A × B

) 2

The final stage is to calculate how much variance is explained by the interaction of the two 
variables. The simplest way to do this is to remember that the SSM is made up of three com-
ponents (SSA, SSB and SSA × B). Therefore, given that we know SSA and SSB we can calculate 
the interaction term using subtraction:

SS SS SS SSMA B B× = − −A

Therefore, for these data, the value is:

SS SS SS SSMA B A B× = − −
= − −
=

5479 167 168 75 3332 292
1978 125

. . .
.

The degrees of freedom can be calculated in the same way, but are also the product of the 
degrees of freedom for the main effects (either method works):

df df df df df df dfA B A B A B A B× ×= − − = ×
= − − = ×
= =

M

5 1 2 1 2
2 2

12.4.3.    The residual sum of squares (SS
R
) 2

The residual sum of squares is calculated in the same way as for one-way ANOVA (see section 
10.2.7) and again represents individual differences in performance or the variance that can’t 
be explained by factors that were systematically manipulated. We saw in one-way ANOVA 
that the value is calculated by taking the squared error between each data point and its cor-
responding group mean. An alternative way to express this was as (see equation (10.7)):

SSR

group 1 group group

= ∑ −

= − + − + −

s n

s n s n s n
k k
2

2
1 2

2
2 3

2
3

1

1 1

( )

( ) ( ) ( 11 12) ( )+ + −… groups nn n

So, we use the individual variances of each group and multiply them by one less than 
the number of people within the group (n). We have the individual group variances in our 
original table of data (Table 12.1) and there were eight people in each group (therefore, 
n = 8) and so the equation becomes:

SS = ( 1)+ ( 1)+ ( 1)+ (R group1
2

1 group2
2

2 group3
2

3 group4
2s n s n s n s− − − nn

s n s n

4

group5
2

5 group6
2

6

1)+

+ ( 1)+ ( 1)

= 24.55(8 1) 106.7(8

− …

− −

− + − 11) 42.86(8 1) 156.7(8 1) 50(8 1) 117.41(8 1)

=(24.55 7) (1

+ − + − + − + −
× + 006.7 7) (42.86 7) (156.7 7) (50 7) (117.41 7)

=171.85 746.
× + × + × + × + ×

+ 99 300 1096.9 350 821.87
= 3487.52

+ + + +

12-Field_R-4368-Ch-12.indd   510 29/02/2012   6:31:25 PM



511CHAPTER 12   FACTOR IAL  ANOVA (GLM 3)

The degrees of freedom for each group will be one less than the number of scores per group (i.e., 
7). Therefore, if we add the degrees of freedom for each group, we get a total of 6 × 7 = 42.

12.4.4.    The F-ratios 2

Each effect in a two-way ANOVA (the two main effects and the interaction) has its own 
F-ratio. To calculate these we have to first calculate the mean squares for each effect by 
taking the sum of squares and dividing by the respective degrees of freedom (think back to 
section 10.2.8). We also need the mean squares for the residual term. So, for this example 
we’d have four mean squares calculated as follows:

MS
SS

MS
SS

MS

A
A

A

B
B

B

A

df

df

= = =

= = =

×

168 75
1

168 75

3332 292
2

1666 146

.
.

.
.

BB
A B

A Bdf

df

= = =

= = =

×

×

SS

MS
SS

R
R

R

1978 125
2

989 062

3487 52
42

83 036

.
.

.
.

The F-ratios for the two independent variables and their interactions are then calculated 
by dividing their mean squares by the residual mean squares. Again, if you think back to 
one-way ANOVA this is exactly the same process.

F

F

A
A

B
B

= = =

= = =

MS
MS

MS
MS

R

R

168 75
83 036

2 032

1666 146
83 036

20 06

.
.

.

.
.

. 55

989 062
83 036

11 911FA B
A B

×
×= = =

MS
MSR

.
.

.

Each of these F-ratios can be compared against critical values (based on their degrees of free-
dom, which can be different for each effect) to tell us whether these effects are likely to reflect 
data that have arisen by chance, or reflect an effect of our experimental manipulations (these 
critical values can be found in the Appendix). If an observed F exceeds the corresponding criti-
cal values then it is significant. R will calculate each of these F-ratios and their exact significance, 
but what I hope to have shown you in this section is that two-way ANOVA is basically the same 
as one-way ANOVA except that the model sum of squares is partitioned into three parts: the 
effect of each of the independent variables and the effect of how these variables interact.

12.5.    Factorial ANOVA using R 2

12.5.1.    Packages for factorial ANOVA in R 1

If you’re using commands (which we recommend), then you will need the packages car 
(for Levene’s test), compute.es (for effect sizes), ggplot2 (for graphs), multcomp (for post 
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hoc tests), pastecs (for descriptive statistics), reshape (for reshaping the data) and WRS (for 
robust tests). If you do not have these packages installed (some should be installed from 
previous chapters), you can install them by executing the following commands:

install.packages("car"); install.packages("compute.es"); install.packages 
("ggplot2"); install.packages("multcomp"); install.packages("pastecs"); install. 
packages("reshape"); install.packages("WRS", repos="http://R-Forge.R-project.
org")

You then need to load these packages by executing these commands:

library(car); library(compute.es); library(ggplot2); library(multcomp); 
library(pastecs); library(reshape); library(WRS)

12.5.2.    General procedure for factorial ANOVA 1

To conduct factorial ANOVA you should follow this general procedure:

1	 Enter data: you’ve probably gathered this much by now.

2	 Explore your data: as always, we’ll begin by graphing the data and computing descrip-
tive statistics. You should check distributional assumptions and use Levene’s test to 
check for homogeneity of variance (see Chapter 5).

3	 Construct or choose contrasts: you need to decide what contrasts to do and to specify 
them appropriately for all of the independent variables in your analysis. If you want 
to use Type III sums of squares, these contrasts must be orthogonal.

4	 Compute the ANOVA: you can then run the main analysis of variance. Depending on 
what you found in the previous step, you might need to run a robust version of the 
test.

5	 Compute contrasts or post hoc tests: having conducted the main ANOVA, you can 
follow it up with post hoc tests or look at the results of your contrasts. Again, the 
exact methods you choose will depend upon what you unearth in step 2.

We will work through these steps in turn.

12.5.3.    Factorial ANOVA using R Commander 2

Running factorial ANOVA using commands gives you much more versatility than R 
Commander. However, you can do a basic factorial ANOVA using R Commander. First 
load the data from the file goggles.csv by using the Data⇒Import data⇒from text file, 
clipboard, or URL… menu (see section 3.7.3). Note that this file is a comma-separated 
(not a tab-delimited) file. This data set has three variables: gender, which is entered as text 
(‘Male’ and ‘Female’), alcohol, which is also entered as text (‘None’, ‘2 Pints’ and ‘4 Pints’), 
and attractiveness, which is the outcome variable. I have called the dataframe gogglesData. 
Note that because gender and alcohol contained text strings, rather than numbers, R has 
assumed that these variables are factors.

We can explore the data by getting some descriptive statistics and testing the assump-
tions. This is explained in Chapter 5. Levene’s test looks at whether variances across con-
ditions are equal. Use the Statistics⇒Variances⇒Levene’s test… menu to run the analysis 
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as in Chapters 5 and 10. You will need to run separate tests for alcohol and gender (as you 
will see, by using commands we can also run the test for the interaction of these variables).  

To do the ANOVA, use the Statistics⇒Means⇒Multi-way ANOVA… menu. The result-
ing dialog box is fairly self-explanatory (Figure 12.4). You need to enter a name for the 
model that you’re going to create (I have chosen gogglesModel) in the box labelled Enter 
name for model, select any factors from the list labelled Factors (in this case we have two 
factors, alcohol and gender) and select the outcome variable (in this case attractiveness) 
from the list labelled Response Variable. You cannot do planned comparisons or post hoc 
tests using this menu. Click on  to run the analysis. The resulting output is described 
in sections 12.5.8. Note that R Commander uses Type II sums of squares when computing 
a factorial ANOVA, which may or may not be what you want (see Jane Superbrain Box 
11.1 in the previous chapter).

FIGURE 12.4
Factorial-way 
ANOVA using R 
Commander

12.5.4.    Entering the data 2

The data for the example can be found in the file goggles.csv. You can load this data file by 
setting your working directory and executing:

gogglesData<-read.csv("goggles.csv", header = TRUE)

Note that we have used the read.csv() function because the data are stored in a comma-
separated values file (.csv). If we look at the data in R we will see that levels of the between-
group variables have been entered in single columns. 

   gender alcohol attractiveness
1  Female    None             65
2  Female    None             70
3  Female    None             60
4  Female    None             60
5  Female    None             60
6  Female    None             55
7  Female    None             60
8  Female    None             55
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9  Female 2 Pints             70
10 Female 2 Pints             65
11 Female 2 Pints             60
12 Female 2 Pints             70
13 Female 2 Pints             65
14 Female 2 Pints             60
15 Female 2 Pints             60
16 Female 2 Pints             50
17 Female 4 Pints             55
18 Female 4 Pints             65
19 Female 4 Pints             70
20 Female 4 Pints             55
21 Female 4 Pints             55
22 Female 4 Pints             60
23 Female 4 Pints             50
24 Female 4 Pints             50
25   Male    None             50
26   Male    None             55
27   Male    None             80
28   Male    None             65
29   Male    None             70
30   Male    None             75
31   Male    None             75
32   Male    None             65
33   Male 2 Pints             45
34   Male 2 Pints             60
35   Male 2 Pints             85
36   Male 2 Pints             65
37   Male 2 Pints             70
38   Male 2 Pints             70
39   Male 2 Pints             80
40   Male 2 Pints             60
41   Male 4 Pints             30
42   Male 4 Pints             30
43   Male 4 Pints             30
44   Male 4 Pints             55
45   Male 4 Pints             35
46   Male 4 Pints             20
47   Male 4 Pints             45
48   Male 4 Pints             40

These data were originally entered in Excel, and as you can see we need two different cod-
ing variables to represent gender and alcohol consumption. Therefore, in Excel, I created 
a variable called gender into which I typed ‘Female’ or ‘Male’; because I have used words 
rather than numbers, when R imports the data it guesses that this variable is a factor (i.e., 
we don’t need to explicitly convert it to a factor like we would had I used numbers to rep-
resent males and females). R will code this factor with the levels in alphabetical order (so, 
females will be level 1 and males level 2 of gender, which coincidentally is the same order 
as in the data file).

Next, I created a variable called alcohol and entered ‘None’, ‘2 Pints’ or ‘4 Pints’. Again, 
R guesses that this variable is a factor when it imports the data, and organizes the levels of 
this variable alphabetically. The alphabetic ordering means that R has imported this factor 
with the groups ordered as ‘2 Pints’, ‘4 Pints’ and ‘None’. This is because numbers (e.g., 2 
and 4) are deemed to come before letters in the alphabet. Ideally, we might like the groups 
to be ordreed as they are in the data (i.e., ‘None’, ‘2 Pints’ and ‘4 Pints’). To reorder the 
groups, we can use the levels option of the factor() function. All we need to do is type the 
levels in the order that we want them. So, by executing:
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gogglesData$alcohol<-factor(gogglesData$alcohol, levels = c("None", "2 
Pints", "4 Pints"))

we take the variable alcohol from the gogglesData dataframe, and we reorder the levels of 
the factor as ‘None’, ‘2 Pints’ and ‘4 Pints’ (levels = c(“None”, “2 Pints”, “4 Pints”)).

You can see from the data that there are 24 females followed by 24 males, and within 
these groups there are 8 people who had no alcohol, 8 who had two pints and 8 who 
consumed four pints. Finally, I created a variable called attractiveness into which I put the 
scores (out of 100) representing the attractiveness of the each participant’s date.

If we wanted to enter the data directly into R, we would need to assign group codes for 
the gender and alcohol variables. We might code gender as 1 for females and 2 for males, 
and we might code alcohol as no alcohol = 1, 2 pints = 2 and 4 pints = 3. The way this 
coding works is as follows:

Gender Alcohol Participant was

1 1 Male who consumed no alcohol

1 2 Male who consumed 2 pints

1 3 Male who consumed 4 pints

2 1 Female who consumed no alcohol

2 2 Female who consumed 2 pints

2 3 Female who consumed 4 pints

We can create these two coding variables very quickly by using the gl() function (Chapter 3). 
Remember that this function takes the general form:

factor<-gl(number of levels, cases in each level, total cases, labels = 
c("label1", "label2"…))

This function creates a factor variable called factor; you specify the number of levels or 
groups of the factor, how many cases are in each level/group, optionally the total number 
of cases (the default is to multiply the number of groups by the number of cases per group), 
and you can also use the labels option to list names for each level/group. For gender, we 
want 24 females followed by 24 males, so we can specify it as: 

gender<-gl(2, 24, labels = c("Female", "Male"))

The numbers in the function tell R that we want 2 groups of 24 cases, the labels option 
then specifies the names to attach to these two groups. To create the alcohol variable we 
want 3 groups that each contain 8 cases. This will create 24 cases (3 × 8 = 24), or, put 
another way, it will create the codes for the first gender group (i.e., females). However, we 
want this pattern to be repeated for the second gender group also; we can do this by adding 
a third value to the function that is the total number of cases (i.e., 48). By specifying the 
total number of cases, the gl() function will repeat the pattern of 24 codes until it reaches 
this total number of cases – in other words if we specify 48 as the limit, it will repeat the 
pattern twice.

alcohol<-gl(3, 8, 48, labels = c("None", "2 Pints", "4 Pints"))

We can add the attractiveness values by creating a numeric variable in the usual way:

attractiveness<-c(65,70,60,60,60,55,60,55,70,65,60,70,65,60, 
60,50,55,65,70,55,55,60,50,50,50,55,80,65,70,75,75,65,45,60,85,65,70, 
70,80,60,30,30,30,55,35,20,45,40)

Finally, we can merge these variables into a dataframe called gogglesData by executing:

gogglesData<-data.frame(gender, alcohol, attractiveness)
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FIGURE 12.5
Boxplots of the 
beer-goggles data
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12.5.5.    Exploring the data 2

As ever, we’ll look at some graphs first. Let’s start with the means across the different 
conditions.

SELF-TEST

ü	 Use ggplot2 to plot a line graph (with error bars) 
of the attractiveness of the date with alcohol 
consumption on the x-axis and different-coloured 
lines to represent males and females.

The resulting plot (shown later in the chapter in Figure 12.8) is what is known as an inter-
action graph. These graphs are useful for interpreting significant interaction effects (should 
the analysis throw one up).

We can also look at boxplots for attractiveness scores for men and women at each level 
of alcohol consumption.

SELF-TEST

ü	 Use ggplot2 to plot boxplots of the attractiveness of 
the date at each level of alcohol consumption on the 
x-axis and different panels to represent males and 
females.

Figure 12.5 shows boxplots for these data. For females, the median score (the horizontal 
line in the middle of each box) does not change much across the doses of alcohol, and also 
the spread of their scores is relatively narrow; however, for males, the spread of scores is 
wider than for females, and the median attractiveness seems to fall dramatically after 4 pints.
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We have used the by() and stat.desc() functions before to get descriptive statistics for 
separate groups (see section 10.6.5 for more detail). Therefore, if we wanted to explore 
the effects of alcohol and gender on the attractiveness of the dates selected, we could do so 
by executing separate commands:

by(gogglesData$attractiveness, gogglesData$gender, stat.desc)
by(gogglesData$attractiveness, gogglesData$alcohol, stat.desc)

The resulting output is useful for interpreting the main effects of alcohol and gender 
on the attractiveness of mates. However, we are also interested in how these variables 
interact. This requires obtaining statistics for all combinations of alcohol and gender. 
To do this we need to use the list() function to create a list of variables that we can 
then feed into the by() function. If, for example, we execute list(gogglesData$alcohol, 
gogglesData$gender) we create a list (just like a shopping list) that contains the variables 
alcohol and gender. If we place this list within the by() function, then we will get descrip-
tive statistics for all combinations of levels of the variables within the list. To see what I 
mean, execute:

by(gogglesData$attractiveness, list(gogglesData$alcohol, 
gogglesData$gender), stat.desc)

The resulting (edited) output is in Output 12.2. Notice that the descriptive statistics 
are split by every combination of gender and alcohol, resulting in six different groups of 
information. So, for example, we can see that in the no-alcohol condition, males typically 
chatted up a female who was rated at about 67% on the attractiveness scale, whereas 
females selected a male who was rated as 61% on that scale. These means will be useful in 
interpreting the direction of any effects that emerge in the analysis.

: None
: Female
      median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var 
      60.000  60.625  1.752    4.143      24.554 4.9551   0.0817 
------------------------------------------------------------------
: 2 Pints
: Female
      median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var
      62.500  62.500 2.315   5.473         42.857 6.547   0.105
-------------------------------------------------------------------
: 4 Pints
: Female
      median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var 
      55.000  57.500 2.500   5.912         50.000 7.071   0.123
-------------------------------------------------------------------
: None
: Male
      median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var
      67.500  66.875 3.652   8.636         106.696 10.329 0.154
-------------------------------------------------------------------
: 2 Pints
: Male
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var           67.500  
66.875    4.426   10.465         156.696 12.518    0.187 
-------------------------------------------------------------------
: 4 Pints
: Male
      median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var 
      32.500 35.625  3.831   9.059         117.411 10.836 0.304

Output 12.2
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The final thing to do at this stage is to compute Levene’s test (see Chapter 5 and section 
10.3.1). We can again use the leveneTest() function from the car package here. If we want 
to do a Levene’s test to see whether the variance in attractiveness differs across different 
gender and alcohol groups seperately, we can simply execute:

leveneTest(gogglesData$attractiveness, gogglesData$gender, center = median)
leveneTest(gogglesData$attractiveness, gogglesData$alcohol, center = 
median)

However, as with the descriptive statistics, we’re primarily interested in the interaction 
of these variables, so we would ideally like to know whether the variances differ across 
all six groups (not just the two gender groups and three alcohol groups). To do this, we 
can add the interaction() option to the leveneTest() function, which will compute Levene’s 
test across any combination of groups for the variables specified within interaction(). In 
this case, we want to know whether the variances differ across all six groups that result 
from the combination of gender and alcohol (i.e., female_none, female_2 pints, female_4 
pints, male_none, male_2 pints, male_4 pints). Therefore, we specify both variables within 
interaction(), that is, interaction(gogglesData$alcohol, gogglesData$gender). The resulting 
command that we need to execute is therefore: 

leveneTest(gogglesData$attractiveness, interaction(gogglesData$alcohol, 
gogglesData$gender), center = median)

Output 12.3 shows the results of Levene’s test. We have encountered Levene’s test 
numerous times before, so you should know that it tests whether there are any significant 
differences between group variances and so a non-significant result like the one we have 
here, F(5, 42) = 1.425, p = .235, is indicative of the assumption being met. 

Levene’s Test for Homogeneity of Variance
      Df F value Pr(>F)
group  5  1.4252 0.2351
      42  

Output 12.3

12.5.6.    Choosing contrasts 2

We saw in Chapter 10 that it’s useful to follow up ANOVA with contrasts that break 
down the main effects and tell us where the differences between groups lie. For one-way 
ANOVA, we entered codes that define the contrasts we want to do. We can follow the 
same procedure for factorial ANOVA except that we have to define contrasts for all of the 
independent variables. One very important consideration here is that if we want to look at 
Type III sums of squares (see Jane Superbrain Box 11.1) then we must use an orthogonal 
contrast for these sums of squares to be computed correctly.

We encountered an orthogonal contrast in Table 10.6: the Helmert contrast. This con-
trast will give you what you want in many different situations; however, if it doesn’t and 
you want to define your own contrasts then this can be done in the same way as we dis-
cussed in Chapter 10 (see Oliver Twisted).

The effect of gender has only two levels, so we could code an orthogonal contrast as 
simply −1 (females) and 1 (males). Remember that when we code contrasts anything with 
a positive sign is compared to anything with a negative sign, so this contrast will compare 
males to females.
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‘This example is too similar to the one in Chapter 10’, sulks Oliver 
as he stamps his feet on the floor. ‘It smells of rotting cabbage.’ 
I think actually, Oliver, the stench of rotting cabbage is probably 
because you stood your Dickensian self under a window when 
someone emptied his or her toilet bucket into the street. On the web-
site I’ve prepared a different (slightly more complicated) example of 
how to specify your own contrasts to give you a bit more practice.

OLIVER TWISTED

Please Sir, can I have some 
more … contrasts?

The effect of alcohol has three levels: none, 2 pints and 4 pints. The no-alcohol group 
is a control, so, following the advice from Chapter 10, our first contrast might compare 
the no-alcohol group to the remaining categories (that is, all of the groups that had some 
alcohol). We need a second contrast then to separate the two alcohol groups. The resulting 
codes are in Table 12.3; this scenario is basically the same as the Viagra data in Chapter 10 
so reread that chapter if you don’t understand the values in the table. 

Table 12.3  Orthogonal contrasts for the alcohol variable

Group Contrast1 Contrast2

No Alcohol -2   0

2 Pints   1 -1

4 Pints   1   1

Setting contrasts for the two variables will also produce parameter estimates for the 
interaction term. So, in this case, we’ll get not only a contrast comparing no alcohol to the 
combined effect of 2 and 4 pints, but also one that tests whether this effect is different in 
men and women. Similarly, contrast 2 tests whether the 2- and 4-pints groups differ, but 
we will also get a parameter estimate that tests whether the difference between the 2- and 
4-pints groups is affected by the gender of the participant. To set the orthogonal contrasts 
we execute:

contrasts(gogglesData$alcohol)<-cbind(c(-2, 1, 1), c(0, -1, 1))
contrasts(gogglesData$gender)<-c(-1, 1)

The first command sets the two contrasts for alcohol, just as we did in Chapter 10; the 
second sets a single contrast for gender. We can check that we have set the contrast cor-
rectly by executing the name of the variable and looking at the contrast attribute:

> gogglesData$alcohol
 
attr(,"contrasts")
        [,1] [,2]
None      -2    0
2 Pints    1   -1
4 Pints    1    1
Levels: None 2 Pints 4 Pints

> gogglesData$gender
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attr(,"contrasts")
       [,1]
Female   -1
Male      1
Levels: Female Male

Remembering that positive numbers are compared with negative and a zero means that 
the group is not involved at all, we can see that for alcohol we have set the first contrast 
to compare ‘none’ with the 2- and 4-pints groups (combined) and a second contrast that 
ignores the no-alcohol group and compares only the 2-pints against the 4-pints group.

12.5.7.    Fitting a factorial ANOVA model 2

To create a factorial ANOVA model we can use the aov() function that we have used in 
the previous two chapters (see section 10.6.6.1). Remember that the aov() function is just 
the lm() function in disguise, so we can use what we learnt in Chapter 7 to add new vari-
ables into our ANOVA model. Remember, that to add a predictor, we simply write ‘+ vari-
ableName’ into the model. In the current model we wish to predict attractiveness scores 
from both gender and alcohol so our model is simply ‘attractiveness ~ gender + alcohol’, 
isn’t it? Actually, it’s not, because we also need to include the interaction term. To specify an 
interaction term we link variable names with a colon. For example, the interaction of gender 
and alcohol would be written in R as gender:alcohol (or indeed alcohol:gender, it doesn’t 
matter). Therefore, to specify the model including the interaction term, we could execute:

gogglesModel<-aov(attractiveness ~ gender + alcohol + gender:alcohol, data 
= gogglesData)

This command creates a model called gogglesModel, which includes the two independent 
variables and their interaction.

The above method is good because it makes very explicit the predictors in the model 
(and is a useful reminder that we’re simply using a linear model, as we have throughout the 
book so far). However, there is a quicker method. You can include two variables and their 
interactions in a model by specifying variable1*variable2 as the predictor. Doing so will 
enter not just the interaction but also the effects of the individual variables as well. So, for 
example, this command:

gogglesModel<-aov(attractiveness ~ alcohol*gender, data = gogglesData)

does exactly the same thing as the previous command (see R’s Souls’ Tip 12.1).
We had a fairly lengthy discussion about sums of squares in the previous chapter (see 

Jane Superbrain Box 11.1) and I refer you back there if what I’m about to say doesn’t make 
any sense. If we want to look at the Type III sums of squares for the model, we need to also 
execute this command after we have created the model:

Anova(gogglesModel, type="III")

This takes the model that we have just created (gogglesModel) but, rather than displaying 
the Type I sums of squares (the default), it will show us the Type III sums of squares.

12.5.8.    Interpreting factorial ANOVA 2

Output 12.4 tells us whether any of the independent variables have had an effect on the 
dependent variable. The important things to look at in the table are the significance values 
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          R ’s  Souls ’  T ip  12 .1   Specifying more complex designs 2

It follows that if you have three independent variables then you can simply add the third variable into the model in 
the same way. For example, if we had also measured whether the lighting at the club was dim or bright (which 
would affect how well you could see your date), then we could specify the model as:

gogglesModel<-aov(attractiveness ~ gender*alcohol*lighting, data = gogglesData)

Note that we have used ‘gender*alcohol*lighting’ as the predictors, which will add in the three main effects 
but also all of the interactions between these variables.

of the independent variables. The first thing to notice is that there is a significant main 
effect of alcohol (because the significance value is less than .05). The F-ratio is highly 
significant, indicating that the amount of alcohol consumed significantly affected whom 
the participant would try to chat up. This means that overall, when we ignore whether the 
participant was male or female, the amount of alcohol influenced their mate selection. The 
best way to see what this means is to look at a bar chart of the average attractiveness at each 
level of alcohol (ignore gender completely). This graph displays the means in Output 12.2 
that we calculated in section 12.4.2.2.

Anova Table (Type III tests)

Response: attractiveness
               Sum Sq Df   F value    Pr(>F)    
(Intercept)    163333  1 1967.0251 < 2.2e-16 ***
gender            169  1    2.0323    0.1614    
alcohol          3332  2   20.0654 7.649e-07 ***
gender:alcohol   1978  2   11.9113 7.987e-05 ***
Residuals        3488 42  

Output 12.4

SELF-TEST

ü	 Plot error bar graphs of the main effects of alcohol 
and gender.

Figure 12.6 clearly shows that when you ignore gender the overall attractiveness of the 
selected mate is very similar when no alcohol has been drunk and when 2 pints have been 
drunk (the means of these groups are approximately equal). Hence, this significant main 
effect is likely to reflect the drop in the attractiveness of the selected mates when 4 pints 
have been drunk. This finding seems to indicate that a person is willing to accept a less 
attractive mate after 4 pints.

Output 12.4 also tells us about the main effect of gender. This time the F-ratio is not sig-
nificant (p = .161, which is larger than .05). This effect means that overall, when we ignore 
how much alcohol had been drunk, the gender of the participant did not influence the 
attractiveness of the partner that the participant selected. In other words, other things being 
equal, males and females selected equally attractive mates. The bar chart (that you have 
hopefully produced from the self-test) of the average attractiveness of mates for men and 
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How do I interpret
interactions?

FIGURE 12.6
Graph showing 
the main effect of 
alcohol
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women (ignoring how much alcohol had been consumed) reveals the meaning of this main 
effect. Figure 12.7 plots the means in Output 12.2 that we calculated in section 12.4.2.1. 
This graph shows that the average attractiveness of the partners of male and female partici-
pants was fairly similar (the means are different by only 4%). Therefore, this non-significant 
effect reflects the fact that the mean attractiveness was similar. We can conclude from this 
that, other things being equal, men and women chose equally attractive partners.

Finally, Output 12.4 tells us about the interaction between the effect of  
gender and the effect of alcohol. The F-value is highly significant (because the p-value 
is less than .05). What this actually means is that the effect of alcohol on mate selec-
tion was different for male participants than it was for females. In the presence of 
this significant interaction it makes no sense to interpret the main effects. Figure 12.8 
shows the plot that we produced earlier as a self-test task; this graph tells us some-
thing about the nature of this interaction effect.

Figure 12.8 shows that for women, alcohol has very little effect: the attractive-
ness of their selected partners is quite stable across the three conditions (as shown 
by the near-horizontal line). However, for the men, the attractiveness of their part-

ners is stable when only a small amount has been drunk, but rapidly declines when 4 pints 
have been drunk. Non-parallel lines usually indicate a significant interaction effect. In this 
particular graph the lines actually cross, which indicates a fairly large interaction between 
independent variables. The lines tell us that alcohol has little effect on mate selection until 
4 pints have been drunk and that the effect of alcohol is prevalent only in male participants. 
In short, the results show that women maintain high standards in their mate selection 
regardless of alcohol, whereas men have a few beers and then try to get off with anything 
on legs. One interesting point that these data demonstrate is that we earlier concluded that 
alcohol significantly affected how attractive a mate was selected (the alcohol main effect); 
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FIGURE 12.7
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Graph of the 
interaction of 
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however, the interaction effect tells us that this is true only in males (females appear unaf-
fected). This shows why main effects should not be interpretted when a significant interac-
tion involving those main effects exists. 
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12.5.9.    Interpreting contrasts 2

To see the output for the contrasts that we specified, execute:

summary.lm(gogglesModel)

Doing so will display the parameter estimates for the model (Output 12.5). Let’s look at 
each effect in the analysis in turn:

MM gender1: This is the contrast for the main effect of gender; because gender has only 
two groups this is the same as the effect of gender from Output 12.4. (Quite literally, 
in fact: the t- and F-statistics are directly related by F = t2. Our t-value for this con-
trast is −1.426, and the value of F for the effect of gender is −1.4262 = 2.03).

MM alcohol1: This contrast compares the no-alcohol group to the two alcohol groups. 
This tests whether the mean of the no-alcohol group (63.75) is different than the 
mean of the 2-pints and 4-pints groups combined ((64.69 + 46.56)/2 = 55.625). This 
is a difference of −8.125 (55.63 − 63.75). As explained in Chapter 10, the estimate 
for this difference is this difference divided by the number of groups involved in the 
contrast (−8.125/3 = −2.708). The p-value is .006, which is smaller than .05, indicat-
ing a significant difference. So we could conclude that the effect of alcohol is that any 
amount of alcohol reduces the attractiveness of the dates selected compared to when 
no alcohol is drunk. Of course this is misleading because, in fact, the means for the no-
alcohol and 2-pints groups are fairly similar (63.75 and 64.69), so 2 pints of alcohol 
don’t reduce the attractiveness of selected dates. The comparison is significant because 
it’s testing the combined effect of 2 and 4 pints; 4 pints has such a drastic effect that it 
drags down the overall mean. This example shows why you need to be careful about 
how you interpret contrasts: you need to have a look at the next contrast as well.

MM alcohol2: This contrast tests whether the mean of the 2-pints group (64.69) is dif-
ferent than the mean of the 4-pints group (46.56). This is a difference of −18.13 
(46.56 − 64.69); as explained in Chapter 10, the estimate is this value divided by the 
number of groups involved in the contrast (−18.13/2 = 9.06). The p-value is .000, 
which is smaller than .05, and therefore indicates a significant difference between the 
groups. We can conclude that having 4 pints significantly reduced the attractiveness 
of selected dates compared to having only 2 pints.

MM gender1:alcohol1: This contrast tests whether the effect of alcohol1 described above 
is different in men and women. It answers the question: is the effect of alcohol com-
pared to no alcohol on the attractiveness of dates comparable in men and women? 
The p-value is .010, which is significant, so the answer is no, the extent to which 
alcohol vs. no alcohol has an effect on date attractiveness is different in men and 
women. Figure 12.9 (left) shows what this contrast is testing. The ‘Alcohol’ group is 
the combined 2- and 4-pints groups. For the women, the difference in means between 
the no-alcohol group and the other groups combined is 60 − 60.625 = −0.625 (the 
line is flat, reflecting this small difference). For the men, the difference between the 
two means is 51.25 −  66.875 = −15.625 (the line for males on the graph slopes 
down, reflecting this decrease). This contrast tests whether −0.625 (the difference for 
females) is significantly different from 15.625 (the difference for males). In terms of 
the graph, it tests whether the lines for males and females have different slopes.

MM gender1:alcohol2: This contrast tests whether the effect of alcohol2 described above 
is different in men and women. It answers the question: is the effect of 2 pints com-
pared to 4 pints on the attractiveness of dates comparable in men and women? The 
p-value is .000, which is significant, so the answer is no, the extent to which 2 vs. 4 
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pints has an effect on date attractiveness is different in men and women). Figure 12.9 
(right) shows what this contrast is testing. For the women, the difference in means 
between the 2- and 4-pints groups is 57.50  −  62.50 = −5 (the line slopes down 
slightly). For the men, the difference between the two means is 35.625 − 66.875 = 
−31.25 (the line for males on the graph slopes down much more than for females). 
This contrast tests whether −5 (the difference for females) is significantly different 
from −31.25 (the difference for males). In terms of the graph, it tests whether the 
lines for males and females have different slopes.

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)        58.333      1.315  44.351  < 2e-16 ***
gender1            -1.875      1.315  -1.426 0.161382    
alcohol1           -2.708      0.930  -2.912 0.005727 ** 
alcohol2           -9.062      1.611  -5.626 1.37e-06 ***
gender1:alcohol1   -2.500      0.930  -2.688 0.010258 *  
gender1:alcohol2   -6.562      1.611  -4.074 0.000201 ***

Output 12.5
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FIGURE 12.9
Graphical displays 
of the contrasts 
for the beer-
goggles data

12.5.10.    Simple effects analysis 3

A popular way to break down an interaction term is to use a technique called simple effects 
analysis. This analysis looks at the effect of one independent variable at individual levels of 
the other independent variable. So, for example, in our beer-goggles data we could do simple 
effects analysis looking at the effect of gender at each level of alcohol. This would mean tak-
ing the average attractiveness of the date selected by men and comparing it to that for women 
after no drinks, then making the same comparison for 2 pints and then finally for 4 pints. 
Another way of looking at this is to say we would compare each black dot  to the correspond-
ing blue dot  in Figure 12.8: based on the graph, we might expect to find no difference after 
no alcohol and after 2 pints (in both cases the black and blue dots are located in about the 
same position) but we would expect a difference after 4 pints (because the black and blue 
dots  are quite far apart). The alternative way to do it would be to compare the mean attrac-
tiveness after no alcohol, 2 pints and 4 pints for men and then in a separate analysis do the 
same but for women. (This would be a bit like doing a one-way ANOVA on the effect of alco-
hol in men, and then doing a different one-way ANOVA for the effect of alcohol in women.) 
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‘I want to impress my friends by doing a simple effects analysis by hand’, 
boasts Oliver. You don’t really need to know how simple effects analyses 
are calculated to run them, Oliver, but seeing as you asked, it is explained 
in the additional material available from the companion website.

OLIVER TWISTED

Please Sir, can I have 
some more … simple 
effects?

None (0 Pints) Alcohol (2 or 4 Pints)

0 M 0 F 2 F 2 M 4 F 4 Mvs.

2 Pints 4 Pints

2 M 2 F 4 F 4 M
vs.

2 Pints

2 F
vs.

2 Pints

2 M

4 Pints

4 F
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4 Pints
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0 M
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−2 −2 1 1 1 1
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Simple
effect of
Gender 
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FIGURE 12.10
Schematic 
representation of 
the contrasts and 
codes for simple 
effects analysis on 
the goggles data
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          R ’s  Souls ’  T ip  12 .2   Simple effects analysis in R 3

Unfortunately, simple effects are not that easy to do in R. The first thing we need to do is create a variable in the 
dataframe that merges the variables of interest into a single factor. In other words, rather than have alcohol and 
gender as separate variables, we want a new variable that simply codes the six groups that result from com-
bining all levels of alcohol and gender. We can do this using the gl() function to add a variable (simple) to the 
dataframe that is six groups each containing eight observations:

gogglesData$simple<-gl(6,8)

We can then use the factor() function to specify labels for these six groups:

gogglesData$simple<-factor(gogglesData$simple, levels = c(1:6), labels = c("F_
None","F_2pints", "F_4pints","M_None","M_2pints", "M_4pints"))

The data now look like this (I’ve edited out cases to save space):

   gender alcohol   alcohol2 attractiveness   simple
1  Female    None No Alcohol             65   F_None
2  Female    None No Alcohol             70   F_None
…    …      …         …                  …       …
9  Female 2 Pints    Alcohol             70 F_2pints
10 Female 2 Pints    Alcohol             65 F_2pints
…    …      …         …                  …       …
17 Female 4 Pints    Alcohol             55 F_4pints
18 Female 4 Pints    Alcohol             65 F_4pints
…    …      …         …                  …       …
25   Male    None No Alcohol             50   M_None
26   Male    None No Alcohol             55   M_None
…    …      …         …                  …       …
33   Male 2 Pints    Alcohol             45 M_2pints
34   Male 2 Pints    Alcohol             60 M_2pints
…    …      …         …                  …       …
47   Male 4 Pints    Alcohol             45 M_4pints
48   Male 4 Pints    Alcohol             40 M_4pints

Note that we have added the variable simple, which codes whether a person was male or female and how much 
alcohol they had in a single variable.

Next, we create contrasts that break these six groups up using the standard rules for planned contrasts. 
Figure 12.10 shows how we would break the groups up into five contrasts to do a simple effects analysis of  
gender. The first contrast compares no alcohol to alcohol (2 or 4 pints combined). Remember that these two 
‘chunks’ of variation are made up of the different gender groups and so need to be broken down further. For 
example, the no-alcohol group is made up of the males that had no alcohol (‘0 M’) and the females that had no 
alcohol (‘0 F’), and the alcohol chunk contains the males and females that had 2 pints (‘2 M’ and ‘2 F’) and the 
males and females that had 4 pints (‘4 M’ and ‘4 F’). The second contrast breaks down the ‘alcohol’ chunk to 
compare 2 pints against 4 pints. Again, remember that both chunks at this stage are made up of the two corre-
sponding gender groups. The third contrast takes the no-alcohol ‘chunk’ and compares the two gender groups 
contained within it. This contrast is the simple effect of gender when no alcohol was consumed. The fourth con-
trast takes the 2-pint ‘chunk’ and breaks the variance down to compare the two gender groups contained within it. 
This contrast is the simple effect of gender when 2 pints were consumed. Finally, the fifth contrast takes the 4-pint 
‘chunk’ and compares the two gender groups contained within it. This contrast is the simple effect of gender 

(Continued)
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when 4 pints were consumed. If you look back to Chapter 10 you’ll see that these contrasts conform to the rules 
of orthogonal contrasts, and that the codes in Figure 12.10 specify the contrasts.

To create these contrasts in R we can create five variables (one for each contrast) that contain the codes for 
the respective groups. (Bear in mind that in the dataframe the groups are ordered as: female none, female 2 
pints, female 4 pints, male none, male 2 pints, male 4 pints, and we have to order the codes accordingly.) I have 
also labelled the contrasts in a way that tells us something about what they represent:

alcEffect1<-c(-2, 1, 1, -2, 1, 1)
alcEffect2<-c(0, -1, 1, 0, -1, 1)
gender_none<-c(-1, 0, 0, 1, 0, 0)
gender_twoPint<-c(0, -1, 0, 0, 1, 0)
gender_fourPint<-c(0, 0, -1, 0, 0, 1)

To tidy things up lets merge these variables into an object called simpleEff:

simpleEff<-cbind(alcEffect1, alcEffect2, gender_none, gender_twoPint, gender_fourPint)

We can now set the contrasts for the variable simple to be this object: 

contrasts(gogglesData$simple)<-simpleEff

We then create a new model in which attractiveness is predicted from simple (which, remember, contains both 
the effects of alcohol and gender but coded so that the contrasts give us simple effects): 

simpleEffectModel<-aov(attractiveness ~ simple, data = gogglesData)

To see the contrasts we use summary.lm() on the newly created model:

summary.lm(simpleEffectModel)

The resulting output contains the parameter estimates for the five contrasts. Looking at the significance values for 
each simple effect, it appears that there was no significant difference between men and women when they drank 
no alcohol, p = .177, or when they drank 2 pints, p = .34, but there was a very significant difference, p < .001, 
when 4 pints were consumed (which, judging from the interaction graph, reflects the fact that the mean for men 
is considerably lower than for women).

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)             58.333      1.315  44.351  < 2e-16 ***
simplealcEffect1        -2.708      0.930  -2.912  0.00573 ** 
simplealcEffect2        -9.062      1.611  -5.626 1.37e-06 ***
simplegender_none        3.125      2.278   1.372  0.17742    
simplegender_twoPint     2.188      2.278   0.960  0.34243    
simplegender_fourPint  -10.938      2.278  -4.801 2.02e-05 ***

(Continued)

12.5.11.  Post hoc analysis 2

The variable alcohol has three levels and so you might want to perform post hoc tests to see 
where the differences between groups lie. I want to stress again that the significant main 
effect of alcohol that we observed should not be interpreted given the significant interac-
tion with gender. Therefore, I’m covering post hoc tests here for illustrative purposes: if 
this was a real piece of research I would focus on the interaction effect and not perform 
post hoc tests on alcohol.
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We saw in Chapter 10 that we can specify Bonferroni post hoc tests using the 
pairwise.t.test() function and Tukey tests using glht(). Refer back to that chapter for details 
of these functions, but for the present example we could obtain post hoc tests for alcohol 
by executing either of these commands:

pairwise.t.test(gogglesData$attractiveness, gogglesData$alcohol, p.adjust.
method = "bonferroni")
postHocs<-glht(gogglesModel, linfct = mcp(alcohol = "Tukey"))
summary(postHocs)
confint(postHocs)

The resulting post hoc tests are shown in Outputs 12.6 (Bonferroni) and 12.7 (Tukey); 
they both break down the main effect of alcohol and can be interpreted as if a one-way 
ANOVA had been conducted on the alcohol variable (i.e., the reported effects for alcohol 
are collapsed with regard to gender). The Bonferroni and Tukey tests show the same pat-
tern of results: when participants had drunk no alcohol or 2 pints of alcohol, they selected 
equally attractive mates. However, after 4 pints had been consumed, participants selected 
significantly less attractive mates than after both 2 pints (p < .001) and no alcohol (p < 
.001). It is interesting to note that the mean attractiveness of partners after no alcohol and 
2 pints was so similar that the probability of the obtained difference between those means 
is 1 (i.e., completely probable). 

	 Pairwise comparisons using t tests with pooled SD 
data:  gogglesData$attractiveness and gogglesData$alcohol 

        None    2 Pints
2 Pints 1.00000 -      
4 Pints 0.00024 0.00011

P value adjustment method: bonferroni

Output 12.6

	  Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = attractiveness ~ gender + alcohol + gender:alcohol, 
    data = gogglesData)

Linear Hypotheses:
                       Estimate Std. Error t value Pr(>|t|)    
2 Pints - None == 0      0.9375     3.2217   0.291    0.954    
4 Pints - None == 0    -17.1875     3.2217  -5.335 1.01e-05 ***
4 Pints - 2 Pints == 0 -18.1250     3.2217  -5.626  < 1e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Adjusted p values reported -- single-step method)

> confint(postHocs)

	  Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = attractiveness ~ gender + alcohol + gender:alcohol, 
    data = gogglesData)
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Quantile = 2.4303
95% family-wise confidence level
 

Linear Hypotheses:
                       Estimate lwr      upr     
2 Pints - None == 0      0.9375  -6.8921   8.7671
4 Pints - None == 0    -17.1875 -25.0171  -9.3579
4 Pints - 2 Pints == 0 -18.1250 -25.9546 -10.2954

Output 12.7

12.5.12.    Overall conclusions 2

In summary, we should conclude that alcohol has an effect on the attractiveness of selected 
mates. Overall, after a relatively small dose of alcohol (2 pints) humans are still in control 
of their judgements and the attractiveness levels of chosen partners are consistent with 
a control group (no alcohol consumed). However, after a greater dose of alcohol, the 
attractiveness of chosen mates decreases significantly. This effect is what is referred to as 
the ‘beer-goggles effect’. More interesting, the interaction shows a gender difference in 
the beer-goggles effect. Specifically, it looks as though men are significantly more likely to 
pick less attractive mates when drunk. Women, in comparison, manage to maintain their 
standards despite being drunk. What we still don’t know is whether women will become 
susceptible to the beer-goggles effect at higher doses of alcohol.

12.5.13.    Plots in factorial ANOVA 2

We saw in the previous two chapters that the aov() function automatically generates some 
plots that we can use to test the assumptions. We can see these graphs by executing:

plot(gogglesModel)

The results are in Figure 12.11. The first graph (on the left) can be used for testing homo-
geneity of variance: if it has a funnel shape then we’re in trouble. The plot we have does 
show funnelling (the spread of scores is wider at some points than at others), which implies 
that the residuals might be heteroscedastic (a bad thing). The second plot (on the right) is 
a Q-Q plot (see Chapter 5), which tells us about the normality of residuals in the model. 
We want our residuals to be normally distributed, which means that the dots on the graph 
should hover around the diagonal line. On our plot this is the case, suggesting that we can 
assume normality of our residuals/errors. 

12.6.  Interpreting interaction graphs 2

Interactions are very important, and the key to understanding them is being able to inter-
pret interaction graphs. We’ve already had a look at one interaction graph when we inter-
preted the analysis in this chapter. We used Figure 12.8 to conclude that the interaction 
probably reflected the fact that men and women chose equally attractive dates after no 
alcohol and 2 pints, but that at 4 pints men’s standards dropped significantly more than 
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women’s. Imagine we’d got the profile of results shown in Figure 12.12; do you think we 
would’ve still got a significant interaction effect?

This profile of data probably would also give rise to a significant interaction term 
because, although the attractiveness of men and women’s dates is similar after no alcohol 
and 4 pints of alcohol, there is a big difference after 2 pints. This reflects a scenario in 
which the beer-goggles effect is equally big in men and women after 4 pints (and doesn’t 
exist after no alcohol) but kicks in quicker for men: the attractiveness of their dates plum-
mets after 2 pints, whereas women maintain their standards until 4 pints (at which point 
they’d happily date an unwashed skunk). Let’s try another example. Is there a significant 
interaction in Figure 12.13?
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FIGURE 12.11
Plots of the beer-
goggles model

             CRAMMING SAM’S TIPS    Two-way independent ANOVA

•	 Two-way independent ANOVA compares several means when there are two independent variables and different participants 
have been used in all experimental conditions. For example, if you wanted to know whether different teaching methods 
worked better for different subjects, you could take students from four courses (Psychology, Geography, Management and 
Statistics) and assign them to either lecture-based or book-based teaching. The two variables are course and method of 
teaching. The outcome might be the end of year mark (as a percentage).

•	 Test for homogeneity of variance using Levene’s test. If the p-value is less than .05 then the assumption is violated. 
•	 A ‘main effect’ is the effect of a variable in isolation, whereas an ‘interaction’ represents the combined effect of two or more 

variables.
•	 In the main analysis you’ll get a summary table containing a main effect of each predictor variable and an effect of the inter-

action between the two variables; if the p-value is less than .05 then the effect is significant. For main effects consult post 
hoc tests to see which groups differ, and for the interaction look at contrasts, an interaction graph or conduct simple effects 
analysis. If the interaction effect is significant it makes little sense to interpret or do further analysis on the main effects.

•	 For post hoc tests, look at the p-value of each test to discover if your comparisons are significant (they will be if the signifi-
cance value is less than .05).

•	 Test the same assumptions as for one-way independent ANOVA (see Chapter 10).
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FIGURE 12.12
Another interaction 
graph

FIGURE 12.13
A ‘lack of’ 
interaction graph

For the data in Figure 12.13 there is unlikely to be a significant interaction because 
the effect of alcohol is the same for men and women. So, for both men and women, the 
attractiveness of their dates after no alcohol is quite high, but after 2 pints all types drop by 
a similar amount (the slope of the male and female lines is about the same). After 4 pints 
there is a further drop and, again, this drop is about the same in men and women (the 
lines again slope at about the same angle). The fact that the line for males is lower than for 
females just reflects the fact that across all conditions, men have lower standards than their 
female counterparts: this reflects a main effect of gender (i.e., males generally chose less 
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attractive dates than females at all levels of alcohol). There are two general points that we 
can make from these examples:

MM Non-parallel lines on an interaction graph imply significant interactions. However, 
it’s important to remember that this doesn’t mean that non-parallel lines automati-
cally mean that the interaction is significant: whether the interaction is significant 
will depend on the degree to which the lines are not parallel.

MM If the lines on an interaction graph cross then obviously they are not parallel and this 
can give away a possible significant interaction. However, contrary to popular belief, 
it isn’t always the case that if the lines of the interaction graph cross then the interac-
tion is significant.
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FIGURE 12.14
Bar charts 
showing 
interactions 
between two 
variables

A further complication is that sometimes people draw bar charts rather than line charts. 
Figure 12.14 shows some bar charts of interactions between two independent variables. 
Panels (a) and (b) actually display the data from the example used in this chapter (in fact, 
why not have a go at plotting them). As you can see, there are two ways to present the 
same data: panel (a) shows the data when levels of alcohol are placed along the x-axis 
and different-coloured bars are used to show means for males and females, and panel 
(b) shows the opposite scenario in which gender is plotted on the x-axis and different 
colours distinguish the dose of alcohol. Both of these graphs show an interaction effect. 
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What you’re looking for is for the differences between coloured bars to be different at 
different points along the x-axis. So, for panel (a) you’d look at the difference between 
the light and dark blue bars for no alcohol, and then look to 2 pints and ask, ‘Is the dif-
ference between the bars different than when I looked at no alcohol?’ In this case the 
dark and light blue bars look the same at no alcohol as they do at 2 pints – hence, no 
interaction. However, we’d then move on to look at 4 pints, and we’d again ask, ‘Is the 
difference between the light and dark blue bars different than what it has been in any of 
the other conditions?’ In this case the answer is yes: for no alcohol and 2 pints, the light 
and dark blue bars were about the same height, but at 4 pints the dark blue bar is much 
higher than the light one. This shows an interaction: the pattern of responses changes at 
4 pints. Panel (b) shows the same thing but plotted the other way around. Again we look 
at the pattern of responses. So, first we look at the men and see that the pattern is that 
the first two bars are the same height, but the last bar is much shorter. The interaction 
effect is shown up by the fact that for the women there is a different pattern: all three 
bars are about the same height.

SELF-TEST

ü	 What about panels (c) and (d): do you think there is 
an interaction?

Again, they display the same data in two different ways, but it’s different data than what 
we’ve used in this chapter. First let’s look at panel (c): for the no-alcohol data, the dark 
bar is a little bit bigger than the light one; moving on to the 2-pints data, the dark bar is 
also a little bit taller than the light bar; and finally for the 4-pints data the dark bar is again 
higher than the light one. In all conditions the same pattern is shown – the dark blue bar 
is a bit higher than the light blue one (i.e., females pick more attractive dates than men 
regardless of alcohol consumption) – therefore, there is no interaction. Looking at panel 
(d), we see a similar result. For men, the pattern is that attractiveness ratings fall as more 
alcohol is drunk (the bars decrease in height) and then for the women we see the same pat-
tern: ratings fall as more is drunk. This again is indicative of no interaction: the change in 
attractiveness due to alcohol is similar in men and women. 

12.7.  Robust factorial ANOVA 3

As with one-way ANOVA, Wilcox (2005) describes robust procedures for conducting fac-
torial ANOVA. To access these we need to load the WRS package (see section 5.8.4.). There 
are four functions that we will look at: 

MM t2way(): This performs a two-way independent ANOVA on trimmed means.

MM mcp2atm(): This performs post hoc tests for a two-way independent design based on 
trimmed means.

MM pbad2way(): This performs a two-way independent ANOVA using M-measures of 
location (e.g., the median) and a bootstrap.

MM mcp2a(): This performs post hoc tests for the above function.
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The first problem we have is that these functions need the data to be in wide format 
rather than long (see Chapter 3). Figure 12.15 shows the existing data format (long) and 
how we need it to look (wide). Essentially we want levels of our two factors to be repre-
sented in different columns. Therefore, rather than a dataframe with three columns and 48 
rows, we want one with six columns and eight rows.

We could re-enter the data in the wide format (which is very tempting when you’ve spent 
half an hour trying to work out how to get R to restructure it for you), but we’re going to 
look at how to use melt() and cast() to do the restructuring for us. To get the restructuring 
to work, we need to add a variable to our dataframe that identifies the rows in the wide 
format. Notice in Figure 12.15 that the data are made up of six chunks that represent the 
combinations of gender and alcohol, and each chunk contains eight rows. We want to 
move these chunks from being stacked on top of each other to being beside each other. To 
do this, R needs to know what row a particular score will end up in when we move each 
block of scores from the stack into the columns. The easiest approach is simply to create a 
variable (called row) that identifies within each chunk the row number of a given score. In 
other words, it will be a value from 1 to 8 telling us whether the score is the first, second, 
third, etc. score within the chunk. At the moment, the chunks are stacked on top of each 
other so we want a variable that is the sequence of numbers 1 to 8 repeated for each of the 
six chunks. We can add this variable to the dataframe by executing:

gogglesData$row<-rep(1:8, 6)

This command uses the rep() function to create a variable row in the dataframe goggles-
Data, that is, the numbers 1 to 8 repeated six times (rep(1:8, 6)). The dataframe now looks 
like this (edited):

   gender alcohol attractiveness row
1  Female    None             65   1
2  Female    None             70   2
3  Female    None             60   3
4  Female    None             60   4
5  Female    None             60   5
6  Female    None             55   6
7  Female    None             60   7
8  Female    None             55   8
9  Female 2 Pints             70   1
10 Female 2 Pints             65   2
11 Female 2 Pints             60   3
12 Female 2 Pints             70   4
13 Female 2 Pints             65   5
14 Female 2 Pints             60   6
15 Female 2 Pints             60   7
16 Female 2 Pints             50   8

Note that the structure is the same as before – it’s just that we have a new variable called 
row that identifies the scores within each combination of gender and alcohol as a value 
from 1 to 8.

Now we have changed the data set we need to make it molten so that we can cast the data 
into the wide format. To do this we use the melt() function (see section 3.9.4). Remember 
that in this function we differentiate variables that identify attributes of the scores (in this 
case, gender, alcohol, and row all tell us about a given attractiveness score, for example, 
that it was the first score in the male group who drank 2 pints) from the scores or measured 
variables themselves. Attributes are specified with the id option, and scores with the meas-
ured option. Therefore, we can create a molten dataframe called gogglesMelt by executing:

gogglesMelt<-melt(gogglesData, id = c("row", "gender", "alcohol"), measured = 
c("attractiveness"))
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FIGURE 12.15
Restructuring the 
data for robust 
factorial ANOVA

Having melted the data, we want to cast it in the wide format using cast(). To do this we 
use a formula in the form: variables specifying the rows ~ variables specifying the columns. 
In this case, row tells us in which row to place a score, and we want the alcohol and gender 
variables split across different columns, so we’d use the formula: row ~ gender + alcohol. 
Therefore, we can make a wide dataframe called gogglesWide by executing:

gogglesWide<-cast(gogglesMelt,  row ~ gender + alcohol)

Note that we have applied this command to the molten data set (gogglesMelt). The result 
is that the data have been transformed from the long format to the wide format. However, 
because we added the variable row to the dataframe, our new dataframe also contains this 
variable, and for the analysis we want only the alcohol and gender variables, therefore, we 
want to remove row. We can do this by executing:

gogglesWide$row<-NULL
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which basically zaps the variable row into oblivion. If you look at the dataframe you’ll see 
a lovely wide format set of data:

gogglesWide

F_None   F_2 Pints    F_4 Pints   M_None     M_2 Pints    M_4 Pints
65         70             55        50           45           30
70         65             65        55           60           30
60         60             70        80           85           30
60         70             55        65           65           55
60         65             55        70           70           35
55         60             60        75           70           20
60         60             50        75           80           45
55         50             50        65           60           40

It’s important to note the order of the columns because this affects how we specify the 
robust analysis. In this case, the hierarchy of the independent variables is gender followed 
by alcohol. In other words, we have taken the six groups and first divided them into male 
and female, then within the male and female groups we have subdivided according to the 
amount of alcohol they drank. We would say that gender is factor A and alcohol factor B. If 
this idea is not clear then Figure 12.15 might help you to visualize it. As such, the order of 
the columns reflects a 2 × 3 design (2 levels of gender divided up into 3 levels of alcohol). 
If the columns were ordered as F_None, M_None, F 2 Pints, M 2 Pints, F 4 Pints, M 4 
Pints, then we would have a 3 × 2 design (3 levels of alcohol each divided up into 2 levels 
of gender). In this case factor A would be alcohol and factor B gender.

The function t2way() takes the general form:

t2way(levels of factor A, levels of factor B, data, tr = .2, alpha = .05)

As with other functions we’ve encountered, the level of trimming is by default 20% (tr = 
.2) but can be changed by including the tr = option. Also the default alpha level is .05 but 
can be changed by including the alpha = option. Assuming we are happy with the default 
level of trimming, we need only specify the dataframe (gogglesWide) and the levels of factor 
A (2 in this case as explained above) and factor B (3 in this case). Therefore, we can do a 
robust two-way factorial ANOVA based on trimmed means by executing:

t2way(2,3, gogglesWide)

The function pbad2way() has a similar format:

pbad2way(levels of factor A, levels of factor B, data, est = mom, nboot = 
2000)

The main differences are an option to control the number of bootstrap samples (nboot), 
although the default of 2000 is fine, and an option est to control the M-estimator that you 
want to use. You can use est = median (to use the median) or est = mom (to use a method 
based on identifying and removing outliers). In smaller samples you might find that est = 
mom throws up an error message, in which case switch to est = median. If we’re happy 
with 2000 bootstrap samples and using mom rather than median then we can run the 
analysis for the current data by executing:2

pbad2way(2,3, gogglesWide)

The output of both of these commands is shown in Output 12.8. For t2way() (left-hand 
side of Output 12.8) we are given a test statistic for factor A ($Qa), factor B ($Qb) and 
their interaction ($Qab) as well as the corresponding p-value ($A.p.value, $B.p.value, and 

2 If you want to compare medians then execute:

pbad2way(2,3, gogglesWide, est = median)
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$AB.p.value respectively). Remember that factor A was gender and factor B alcohol; there-
fore, we could conclude that there was no significant main effect of gender, Q = 1.67, p 
= .209, but there was a significant main effect of alcohol, Q = 48.28,  p = .001, and a 
significant gender × alcohol interaction, Q = 26.26, p = .001. The bottom of the output 
shows the trimmed means on which these results are based: factor A (gender) is repre-
sented by rows, and factor B (alcohol) by columns. So, for example, the trimmed mean of 
the attractiveness score for females who drank 2 pints was 63.3.

The output of pbad2way() (right-hand side of Output 12.8) tells us much the same things 
but we get only p-values and no test statistics: there was no significant main effect of gen-
der, p = .171, but there was a significant main effect of alcohol,  p < .001, and a significant 
gender × alcohol interaction, p < .001. 

t2way()	 pbad2way()

$Qa	 $sig.levelA
[1] 1.666667	 [1] 0.171

$A.p.value	 $sig.levelB
[1] 0.209	 [1] 0

$Qb	 $sig.levelAB
[1] 48.2845	 [1] 5e-04

$B.p.value
[1] 0.001

$Qab
[1] 26.25718

$AB.p.value
[1] 0.001

$means
     [,1]     [,2]     [,3]
[1,] 60.0 63.33333 56.66667
[2,] 67.5 67.50000 35.00000

Output 12.8

The post hoc tests for each analysis are conducted using the same command structure. 
That is, we define the number of levels of factor A, then factor B, then indicate the data-
frame. Therefore, to run post hoc tests based on a 20% trimmed mean, we execute:3

mcp2atm(2,3, gogglesWide)

To conduct post hoc tests based on an M-estimator we execute:4

mcp2a(2,3, gogglesWide)

Output 12.9 shows the post hoc tests based on trimmed means (mcp2atm). The main 
effect of gender is tested by $Factor.A$test and $Factor.A$psihat. We have two choices. 

3 Obviously if you changed the level of trim for the main analysis you would need to do the same here. For 
example, for 10% trimmed means:

t2way(2,3, gogglesWide, tr = .1)
mcp2atm(2,3, gogglesWide, tr = .1)
4 Remember that if you chose the median as your M-estimator then you would need to execute:
mcp2a(2,3, gogglesWide, est = median)
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The first is to interpret the value in the column labelled test against the critical value (crit): 
if the test value is larger than the critical value then the test is significant (at p < .05). In 
this case, 1.29 is smaller than 2.06 so the result is non-significant. The second choice is to 
interpret psihat and its confidence interval and p-value. We should focus on interpreting 
the confidence interval because (unlike the p-value) it is corrected for the number of tests. 
In this case the confidence interval crosses zero, which indicates a non-significant result. 
These tests of gender, because it contains only two levels, basically just confirm what we 
already know from the main analysis.

The effect of alcohol ($Factor.B$test and $Factor.B$psihat) is more interesting because 
it breaks down the main effect of alcohol. There are three contrasts to interpret, but 
how do we know what they mean? To interpret these contrasts we need to look at the 
contrast codes for factor A, B and the interaction at the bottom of the output. The rows 
labelled [1,] … [6,] relate to the six columns of data. In other words they are: F_None, 
F_2 Pints, F_4 Pints, M_None, M_2 Pints, M_4 Pints. Remembering that groups with 
positive codes are compared against groups with negative codes, $conA tells us that A 
was the effect of gender (you have the three female groups coded with 1 and the three 
male groups coded with −1). Similarly, $conB tells us that B was the effect of alcohol 
split into three contrasts. Each contrast is in a separate column. We could rewrite this 
matrix as:

     		  Con1 Con2  Con3
F_None		  1    1    0
F_2 Pints 	 -1    0    1
F_4 Pints	  0   -1   -1
M_None		  1    1    0
M_2 Pints	 -1    0    1
M_4 Pints	  0   -1   -1

Remembering that 0 means that the group is not involved, and that positives are compared 
to negatives, the first contrast (column 1) compares 2 pints to none, the second contrast 
(column 2) is 4 pints compared to none, and the third (column 3) is 2 pints compared to 
4 pints).

Finally, the codes for the interaction ($conAB) are the same as for the main effect of 
alcohol except that the plus and minus signs are reversed for males and females, which 
tests whether the effect of alcohol differs across gender. In other words, contrast 1 com-
pares whether the difference between 2 pints and no alcohol is different in men and 
women.

For the main effect of alcohol, contrast 1 is not significant (−0.52 is smaller than 2.68 
and the confidence interval for psihat crosses zero), but contrasts 2 (5.75 is greater than 
2.65 and the confidence interval for psihat does not contain zero) and 3 (6.18 is greater 
than 2.64 and the confidence interval for psihat does not contain zero) are. This indicates 
a significant difference in attractiveness scores for 4 pints compared to both no alcohol and 
2 pints, but not between 2 pints and no alcohol.

For the interaction term, we get the same profile of results: contrast 1 is not signifi-
cant (−0.52 is smaller than 2.68 and the confidence interval for psihat crosses zero), 
but contrasts 2 (−4.68 is greater than 2.65 – you can ignore the minus sign – and 
the confidence interval for psihat does not contain zero) and 3 (−4.08 is greater than 
2.64 and the confidence interval for psihat does not contain zero) are. These find-
ings indicate that the difference in attractiveness scores for 4 pints compared to both 
no alcohol and 2 pints differed in men and women, but that the lack of difference  
between 2 pints and no alcohol was similar for males and females. This profile of 
results tells the same story as the factorial ANOVA that we interpreted in the main part 
of the chapter.
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$Factor.A
$Factor.A$test
     con.num     test     crit       se       df
[1,]       1 1.290994 2.065879 7.745967 23.57301

$Factor.A$psihat
     con.num psihat  ci.lower ci.upper   p.value
[1,]       1     10 -6.002228 26.00223 0.2092233

$Factor.B
$Factor.B$test
     con.num       test     crit       se       df
[1,]       1 -0.5203149 2.678921 6.406377 14.50207
[2,]       2  5.7486837 2.647995 6.233311 16.11968
[3,]       3  6.1847459 2.636865 6.332785 16.81814

$Factor.B$psihat
     con.num    psihat  ci.lower ci.upper      p.value
[1,]       1 -3.333333 -20.49551 13.82885 6.106962e-01
[2,]       2 35.833333  19.32755 52.33911 2.905447e-05
[3,]       3 39.166667  22.46796 55.86537 1.047835e-05

$Factor.AB
$Factor.AB$test
     con.num       test     crit       se       df
[1,]       1 -0.5203149 2.678921 6.406377 14.50207
[2,]       2 -4.6791611 2.647995 6.233311 16.11968
[3,]       3 -4.0793005 2.636865 6.332785 16.81814

$Factor.AB$psihat
     con.num     psihat  ci.lower  ci.upper      p.value
[1,]       1  -3.333333 -20.49551  13.82885 0.6106961628
[2,]       2 -29.166667 -45.67245 -12.66089 0.0002466289
[3,]       3 -25.833333 -42.53204  -9.13463 0.0007964981

$All.Tests
[1] NA

$conA
     [,1]
[1,]    1
[2,]    1
[3,]    1
[4,]   -1
[5,]   -1
[6,]   -1

$conB
     [,1] [,2] [,3]
[1,]    1    1    0
[2,]   -1    0    1
[3,]    0   -1   -1
[4,]    1    1    0
[5,]   -1    0    1
[6,]    0   -1   -1
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$conAB
     [,1] [,2] [,3]
[1,]    1    1    0
[2,]   -1    0    1
[3,]    0   -1   -1
[4,]   -1   -1    0
[5,]    1    0   -1
[6,]    0    1    1

Output 12.9

Output 12.10 shows the post hoc tests based on an M-estimator (mcp2a).  The interpre-
tation of these results is exactly the same as for the trimmed means. If the value of sig.test 
is less than the critical value (sig.crit) and the confidence interval does not cross zero then 
the contrast is significant. For the main effect of alcohol we find a significant difference in 
attractiveness scores for 4 pints compared to both no alcohol, ψ

∧
 = 35.80, p < .001, and 

2 pints, ψ
∧

 = 40.80, p < .001, but not between 2 pints and no alcohol, ψ
∧

 = −5, p = .383. 
Similarly, for the interaction term, males and females were comparable in terms of the dif-
ference in attractiveness ratings between 4 pints compared to both no alcohol, ψ

∧
 = −32.23, 

p < .001, and 2 pints, ψ
∧

 = −27.23, p < .01, but not between 2 pints and no alcohol, ψ
∧

 = 
−5, p = .318.

$FactorA
     con.num   psihat sig.test sig.crit  ci.lower ci.upper
[1,]       1 14.46429   0.1515    0.025 -10.08929 28.23214

$FactorB
     con.num   psihat sig.test sig.crit  ci.lower ci.upper
[1,]       1 -5.00000   0.3825    0.025 -18.83929 13.24405
[2,]       2 35.80357   0.0000    0.025  20.62500 51.84524
[3,]       3 40.80357   0.0000    0.025  21.25000 55.20833

$Interactions
     con.num    psihat sig.test sig.crit  ci.lower   ci.upper
[1,]       1  -5.00000   0.3180    0.025 -19.37500  12.500000
[2,]       2 -32.23214   0.0005    0.025 -45.20833 -13.750000
[3,]       3 -27.23214   0.0015    0.025 -41.96429  -9.583333

Output 12.10

‘These robust tests are not nearly complicated enough’, salivates 
Oliver with a maniacal look in his eye and suspiciously empty 
bowl of additive-ridden sweets by his side. ‘I want to add in a 
third independent variable, and then I want the magic number fer-
ret to lick the brains from my skull.’ Oh dear, he’s lost it. You can 
lose it too by finding out how to do a robust three-way indepen-
dent ANOVA on the companion website. If you’re lucky you 
might get a brain licking too or, at the very least, a headache.

OLIVER TWISTED

Please Sir, can I have some 
more … robust methods?
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12.8.  Calculating effect sizes 3

As we saw in previous chapters (e.g., section11.6), we can use omega squared (ω2) as an 
effect size measure. The calculation of ω2 becomes somewhat more cumbersome in facto-
rial designs (‘somewhat’ being one of my characteristic understatements!). Howell (2006), 
as ever, does a wonderful job of explaining the complexities of it all (and has a nice table 
summarizing the various components for a variety of situations). Condensing all of this 
down, I’ll just say that we need to first compute a variance component for each of the 
effects (the two main effects and the interaction term) and the error, and then use these to 
calculate effect sizes for each. If we call the first main effect A, the second main effect B and 
the interaction effect A × B, then the variance components for each of these are based on 
the mean squares of each effect and the sample sizes on which they’re based:
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In these equations, a is the number of levels of the first independent variable, b is the number 
of levels of the second independent variable and n is the number of people per condition.

We also need to estimate the total variability, and this is just the sum of these other vari-
ables plus the residual mean squares:

∧ ∧ ∧ ∧= + + +σ σ σ σtotal RMS2 2 2 2
α β αβ

The effect size is then the variance estimate for the effect in which you’re interested 
divided by the total variance estimate:

ωeffect
effect
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2
2

2
=

∧

∧
σ

σ

We can write a function in R to compute the effect sizes for us (see R’s Souls’ Tip 6.2). This 
process might seem like a faff, but remember that once you have the function written, you 
can use it again and again. Output 12.4 gives us the sums of squares for each effect and the 
interaction, so it would be nice to be able to enter these values to get the resulting omega 
squared. We can write and execute this function:

omega_factorial<-function(n, a, b, SSa, SSb, SSab, SSr)
{
	 MSa<-SSa/(a-1)
	 MSb<-SSb/(b-1)
	 MSab<-SSab/((a-1)*(b-1))
	 MSr<-SSr/(a*b*(n-1))
	 varA<-((a-1)*(MSa-MSr))/(n*a*b)
	 varB<-((b-1)*(MSb-MSr))/(n*a*b)
	 varAB<-((a-1)*(b-1)*(MSab-MSr))/(n*a*b)
	 varTotal<-varA + varB + varAB + MSr
	 print(paste("Omega-Squared A: ", varA/varTotal))
	 print(paste("Omega-Squared B: ", varB/varTotal))
	 print(paste("Omega-Squared AB: ", varAB/varTotal))
	 }
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This creates a function called omega_factorial.5 First, we tell R that we want to be able 
to input n, a, b, SSa, SSb, SSab, and SSr into the function (these are specified in brackets). 
This means that to use the function we have to input these values in brackets in the cor-
rect order. The rest of the function uses these values to compute the various values of ω2. 
The first four commands take the sums of squares and convert them to mean squares by 
dividing by the degrees of freedom (rather than have you input the degrees of freedom 
by hand, we calculate them from a and b, the number of levels of the two independent 
variables). The next four lines calculate the variance estimates in the equations above; for 
example, varA computes σ α

∧2  by writing out the equation above in R-speak (because of how 
I have labelled everything in the function you should be able to compare directly the com-
mand in the function with the equation above). The final three lines print some text (in 
speech marks) that describes which ω2 we’re calculating followed by each variance estimate 
divided by the total variance estimate (i.e., σ σ

∧ ∧
effect total
2 2/ ).

Having executed this function we can use it to calculate ω2 in the current data by using 
the values of n (8 people per group), a (levels of gender = 2), b (levels of alcohol = 3) and 
the four sums of squares from Output 12.4:

omega_factorial(8, 2, 3, 169, 3332, 1978, 3488)

Executing this command will print the following to the console:

[1] "Omega-Squared A:  0.00949745068429"
[1] "Omega-Squared B:  0.34982188991376"
[1] "Omega-Squared AB:  0.200209417472152"

For the main effect of gender we get ωgender
2 0 009= . ; for the main effect of alcohol we get 

ωalcohol
2 0 350= . ; and for the interaction ωgender alcohol× =2 0 200. .
I have mentioned several times that it is perhaps more useful to quantify focused differ-

ences (i.e., between two things) than overall effects. In the case of a factorial ANOVA when 
there is a significant interaction, we might compute effect sizes for the simple effects (sec-
tion 12.5.10). In other words, compute the differences between means for one indepen-
dent variable at different levels of the other independent variable. In the current example, 
we might compute effect sizes for the effect of gender at different levels of alcohol. We 
could again use the mes() function from the calculate.es package:

mes(meanmales, meanfemales, sdmales, sdfemales, nmales, nfemales)

We have all the information we need to use the mes() function in Output 12.2. For example, 
if we want to compare men and women who drank no alcohol we would execute:

mes(66.875, 60.625, 10.3293963, 4.95515604, 8, 8)

We have entered the mean of the men who drank no alcohol (66.875), the mean of women 
who drank no alcohol (60.625), the corresponding standard deviations (10.329 and 4.955), 
and the sample sizes (both 8).

Similarly we can get effect sizes for the difference between men and women who drank 
2 pints by executing:

mes(66.875, 62.5, 12.5178444, 6.5465367, 8, 8)

Finally, the difference between men and women who drank 4 pints can be quantified by 
executing:

mes(35.625, 57.5, 10.8356225, 7.0710678, 8, 8)

The (edited) outputs of these commands are shown in Output 12.11. The difference in 
attractiveness scores between males and females who drank no alcohol is a medium effect 

5 If you install the package DSUR, which we produced for this book, you can use this function without executing 
these commands.
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(the means are under a standard deviation different), d = 0.77, r = .36; the difference 
between males and females who drank 2 pints is a fairly small effect (there is less than half 
a standard deviation difference between the group means), d = 0.44, r = .21; finally, the 
difference between males and females who drank 4 pints is a very large effect (the means 
are more than 2 standard deviation apart), d = −2.39, r = −.77.

No Alcohol: Males vs. Females

$MeanDifference
        d     var.d         g     var.g 
0.7715168 0.2686012 0.7294340 0.2400984 

$Correlation
         r      var.r 
0.35990788 0.04428981 

2 Pints: Males vs. Females

$MeanDifference
        d     var.d         g     var.g 
0.4379891 0.2559948 0.4140988 0.2288298 

$Correlation
        r     var.r 
0.2139249 0.0556082 

4 Pints: Males vs. Females

$MeanDifference
         d      var.d          g      var.g 
-2.3909552  0.4286458 -2.2605394  0.3831598 

$Correlation
           r        var.r 
-0.767030763  0.007475955

Output 12.11

12.9.  Reporting the results of two-way  
ANOVA 2

As with the other ANOVAs we’ve encountered, we have to report the details of the F-ratio 
and the degrees of freedom from which it was calculated. For the various effects in these 
data the F-ratio will be based on different degrees of freedom: it was derived from divid-
ing the mean squares for the effect by the mean squares for the residual. For the effects of 
alcohol and the alcohol × gender interaction, the model degrees of freedom were 2 (dfM = 2), 
but for the effect of gender the degrees of freedom were only 1 (dfM = 1). For all effects, 
the degrees of freedom for the residuals were 42 (dfR = 42). We can, therefore, report the 
three effects from this analysis as follows:

✓	There was a significant main effect of the amount of alcohol consumed at the night-
club, on the attractiveness of the mate they selected, F(2, 42) = 20.07, p < .001, 
ω2 = .35. The Bonferroni post hoc tests revealed that the attractiveness of selected 
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dates was significantly lower after 4 pints than both after 2 pints and no alcohol 
(both ps < .001). The attractiveness of dates after 2 pints and no alcohol were not 
significantly different.

✓	There was a non-significant main effect of gender on the attractiveness of selected 
mates, F(1, 42) = 2.03, p = .161, ω2 = .009.

✓	There was a significant interaction effect between the amount of alcohol consumed 
and the gender of the person selecting a mate, on the attractiveness of the partner 
selected, F(2, 42) = 11.91, p < .001, ω2= .20. This indicates that male and female 
genders were affected differently by alcohol. Specifically, the attractiveness of part-
ners was similar in males (M = 66.88, SD = 10.33) and females (M = 60.63, SD = 
4.96) after no alcohol, d = 0.77; the attractiveness of partners was also similar in 
males (M = 66.88, SD = 12.52) and females (M = 62.50, SD = 6.55) after 2 pints, 
d = 0.44; however, attractiveness of partners selected by males (M = 35.63, SD = 
10.84) was significantly lower than those selected by females (M = 57.50, SD = 
7.07) after 4 pints, d = −2.39.

          Labcoat  Len i ’s  Real  Research 12 .1   �Don’t forget your 
toothbrush? 2

Davey, G. C. L., et al. (2003). Journal of Behavior Therapy & Experimental Psychiatry, 34, 141–160.

We have all experienced that feeling after we have left the house of wondering whether we locked the door, or 
closed the window, or whether we remembered to remove the bodies from the fridge in case the police turn 
up. This behaviour is normal; however, people with obsessive compulsive disorder (OCD) tend to check things 
excessively. They might, for example, check whether they have locked the door so often that it takes them an hour 
to leave their house. It is a very debilitating problem.

One theory of this checking behaviour in OCD suggests that it is caused by a combination of the mood you 
are in (positive or negative) interacting with the rules you use to decide when to stop a task (do you continue until 
you feel like stopping, or until you have done the task as best as you can?). Davey, Startup, Zara, MacDonald, 
and Field (2003) tested this hypothesis by inducing a negative, positive or no mood in different people and then 
asking them to imagine that they were going on holiday and to generate as many things as they could that they 
should check before they went away. Within each mood group, half of the participants were instructed to gener-
ate as many items as they could (known as an ‘as many as can’ stop rule), whereas the remainder were asked 
to generate items for as long as they felt like continuing the task (known as a ‘feel like continuing’ stop rule). The 
data are in the file Davey2003.dat.

Davey et al. hypothesized that people in negative moods, using an ‘as many as can’ stop rule, would generate 
more items than those using a ‘feel like continuing’ stop rule. Conversely, people in a positive mood would gener-
ate more items when using a ‘feel like continuing’ stop rule compared to an ‘as many as can’ stop rule. Finally, 

in neutral moods, the stop rule used shouldn’t affect the number of items generated. Draw an error bar 
chart of the data and then conduct the appropriate analysis to test Davey et al.’s hypotheses.

Answers are in the additional material on the companion website (or look at pages 148–149 in the 
original article).
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R packages used in this chapter
car
compute.es
ggplot2

multcomp
pastecs
reshape
WRS

R functions used in this chapter
Anova()
aov()
by()
cast()
contrasts()
confint()
factor()
ggplot()
gl()
glht()
mcp2a()
mcp2atm()
leveneTest()

list()
lm()
melt()
mes()
pairwise.t.test()
pbad2way()
plot()
read.csv()
rep()
stat.desc()
summary()
summary.lm()
t2way()

What have I discovered about statistics? 2

This chapter has been a whistle-stop tour of factorial ANOVA. In fact we’ll come across 
more factorial ANOVAs in the next two chapters, but for the time being we’ve just looked 
at the situation where there are two independent variables, and different people have 
been used in all experimental conditions. We started off by discovering that even com-
plex ANOVAs are simply regression analyses in disguise. We moved on to look at how to 
calculate the various sums of squares in this analysis, but, most important, we saw that 
we get three effects: two main effects (the effect of each of the independent variables) 
and an interaction effect. We moved on to see how this analysis is done using R and how 
the output is interpreted. Much of this was similar to the ANOVAs we’ve come across in 
previous chapters, but one big difference was the interaction term. We spent a bit of time 
exploring interactions (and especially interaction graphs) to see what an interaction looks 
like and how to spot it. The brave readers also found out how to follow up an interaction 
with simple effects analysis. Finally, we discovered that calculating effect sizes in factorial 
designs is a complete headache and should be attempted only by the criminally insane. 
So far we’ve steered clear of repeated-measures designs, but in the next chapter I have to 
resign myself to the fact that I can’t avoid explaining them for the rest of my life.

We also discovered that no sooner had I started my first band than it disintegrated. I 
went with drummer Mark to sing in a band called the Outlanders, who were much bet-
ter musically but were not, if the truth were told, metal enough for me. They also sacked 
me after a very short period of time for not being able to sing like Bono (an insult at the 
time, but in retrospect …). 
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Key terms that I’ve discovered
Beer-goggles effect
Factorial ANOVA
Independent factorial design

Interaction graph
Mixed design
Related factorial design
Simple effects analysis

Smart Alex’s tasks

MM Task 1: People’s musical tastes change as they get older (my parents, for example, 
after years of listening to relatively cool music when I was a kid, subsequently hit their 
mid-forties and developed a worrying obsession with country and western music). 
This worries me immensely because the future seems bleak if it is spent listening to 
Garth Brooks and thinking ‘oh boy, did I underestimate Garth’s immense talent when 
I was in my 20s’. So, I did some imaginary research to find out whether my fate really 
was sealed, or whether it’s possible to be old and like good music too. First, I got 
two groups of people (45 people in each group): one group contained young people 
(which I arbitrarily decided was under 40 years of age) and the other group contained 
more mature individuals (above 40 years of age). This is my first independent vari-
able, age. I then split each of these groups of 45 into three smaller groups of 15 and 
assigned them to listen to Fugazi (who everyone knows are the coolest band on the 
planet),6 ABBA or Barf Grooks (a less well-known country and western musician not 
to be confused with anyone real who produces music that makes me want to barf). 
This is my second independent variable, music. After listening to the music I got each 
person to rate it on a scale ranging from −100 (please poke a pencil through my ear-
drum so I don’t have to listen any more) through 0 (I am completely indifferent) to 
+100 (I love this music so much, it gives me a tingle down my spine). This variable 
is called liking. The data are in the file fugazi.dat. Conduct a two-way independent 
ANOVA on them. 2

MM Task 2: In Chapter 3�������������������������������������������������������            we used some data that related to men and women’s psy-
chological arousal levels when watching either Bridget Jones’s Diary or Memento 
(ChickFlick.dat). Analyse these data to see whether men and women differ in their 
reactions to different types of films. 2

MM Task 3: At the start of this chapter I described a way of empirically researching 
whether I wrote better songs than my old band mate Malcolm, and whether this 
depended on the type of song (a symphony or song about flies). The outcome vari-
able would be the number of screams elicited by audience members during the songs. 
These data are in the file Escape From Inside.dat. Draw an error bar graph (lines) and 
analyse and interpret these data. 2

MM Task 4: Using R’s Souls’ Tip 12.2, conduct a simple effects analysis of the effect of 
alcohol at different levels of gender (which is the opposite to the example in the 
chapter). 3

MM Task 5: Back in 2008, hospitals were reporting an increase in injuries related 
to playing Nintendo Wii (http://www.telegraph.co.uk/news/uknews/1576244/Spate-
of-injuries-blamed-on-Nintendo-Wii.html). These injuries were attributed mainly to 

6 See http://www.dischord.com
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muscle and tendon strains. A researcher was interested to see whether these inju-
ries could be prevented. She hypothesized that a stretching warm-up before playing 
Wii would help lower injuries, and that athletes would be less susceptible to injuries 
because their regular activity makes them more flexible. She took 60 athletes and 
60 non-athletes (athlete), half of them played Wii and half watched others play-
ing as a control (wii), and within these groups half did a 5-minute stretch routine 
before playing/watching whereas the other half did not (stretch). The outcome was 
a pain score out of 10 (where 0 is no pain, and 10 is severe pain) after playing for 4 
hours (injury). The data are in the file Wii.dat. Conduct a three-way ANOVA to test 
whether athletes are less prone to injury, and whether the prevention programme 
worked. 3

The answers are on the companion website. Task 1 is an example from Field and Hole 
(2003) and so has a more detailed answer if you feel like you want it.

Further reading
Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 

might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)
Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural research: 

A correlational approach. Cambridge: Cambridge University Press. (This is quite advanced but 
really cannot be bettered for contrasts and effect size estimation.)

Rosnow, R. L., & Rosenthal, R. (2005). Beginning behavioral research: A conceptual primer (5th ed.). 
Upper Saddle River, NJ: Pearson/Prentice Hall. (Has some wonderful chapters on ANOVA, with 
a particular focus on effect size estimation, and some very insightful comments on what interac-
tions actually mean.)

Interesting real research
Davey, G. C. L., Startup, H. M., Zara, A., MacDonald, C. B., & Field, A. P. (2003). Perseveration of 

checking thoughts and mood-as-input hypothesis. Journal of Behavior Therapy & Experimental 
Psychiatry, 34, 141–160.
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13
Repeated-measures  
designs (GLM 4)

FIGURE 13.1
Scansion in the 
early days; I used 
to stare a lot (from 
left to right: me, 
Mark and Mark)

13.1.  What will this chapter tell me? 2

At the age of 15, I was on holiday with my friend Mark (the drummer) in Cornwall. I had 
a pretty decent mullet by this stage (nowadays I just wish I had enough hair to grow a mul-
let) and had acquired a respectable collection of heavy metal T-shirts from going to various 
gigs. We were walking along the cliff tops one evening at dusk reminiscing about our times 
in Andromeda. We came to the conclusion that the only thing we hadn’t enjoyed about 
that band was Malcolm and that maybe we should reform it with a different guitarist.1 As I 

1 I feel bad about saying this because Malcolm was a very nice guy and, to be honest, at that age (and some would 
argue beyond) I could be a bit of a cock.
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was wondering who we could get to play guitar, Mark pointed out the blindingly obvious: I 
played guitar. So, when we got home Scansion was born.2 As the singer, guitarist and song-
writer, I set about writing some songs. I moved away from writing about flies and set my 
sights on the pointlessness of existence, death, betrayal and so on. We had the dubious hon-
our of being reviewed in the music magazine Kerrang! (in a live review they called us ‘twee’, 
which is really not what you want to be called if you’re trying to make music so heavy that 
it ruptures the bowels of Satan). Our highlight, however, was playing a gig at the famous 
Marquee Club in London (this club has closed now, not as a result of us playing there I has-
ten to add, but in its day it started the careers of people like Jimi Hendrix, The Who, Iron 
Maiden and Led Zeppelin).3 This was the biggest gig of our career and it was essential that 
we played like we never had before. As it turned out, we did: I ran on stage, fell over and in 
the process detuned my guitar beyond recognition and broke the zip on my trousers. I spent 
the whole gig out of tune and spread-eagled to prevent my trousers falling down. Like I said, 
I’d never played like that before. We used to get quite obsessed with comparing how we 
played at different gigs. I didn’t know about statistics then (happy days) but if I had I would 
have realized that we could rate ourselves and compare the mean ratings for different gigs; 
because we would always be the ones doing the rating, this would be a repeated-measures 
design, so we would need a repeated-measures ANOVA to compare these means. That’s 
what this chapter is about; hopefully it won’t make our trousers fall down.

13.2.  Introduction to repeated-measures designs 2

Over the last three chapters we have looked at a procedure called ANOVA, which is used 
for testing differences between several means. So far we’ve concentrated on situations in 
which different entities contribute to different means; put another way, different people 
take part in different experimental conditions. Actually, it doesn’t have to be different peo-
ple (I tend to say people because I’m a psychologist and so spend my life torturing, I mean 
testing, people in the name of science), it could be different plants, different companies, 
different plots of land, different viral strains, different goats or even different duck-billed 
platypuses (or whatever the plural is). Anyway, the point is that I’ve completely ignored 
situations in which the same people (plants, goats, hamsters, seven-eyed green galactic 
leaders from space, or whatever) contribute to the different means because explaining how 
to do it in R is a bit of an R-se. I’ve put it off long enough, and now I’m going to take you 
through what happens when we do ANOVA on repeated-measures data.

SELF-TEST

ü	 What is a repeated-measures design? (Clue: it is 
described in Chapter 1.)

‘Repeated measures’ is a term used when the same entities participate in all conditions of 
an experiment or provide data at multiple time points. For example, you might test the 
effects of alcohol on enjoyment of a party. Some people can drink a lot of alcohol with-
out really feeling the consequences, whereas others, like myself, have only to sniff a pint 
of lager and they start flapping around on the floor waving their arms and legs around 
shouting ‘Look at me, I’m Andy, King of the lost world of the Haddocks’. Therefore, it 
2 Scansion is a term for the rhythm of poetry. We got the name by searching through a dictionary until we found 
a word that we liked. Originally we didn’t think it was ‘metal’ enough, and we decided that any self-respecting 
heavy metal band needed to have a big spiky ‘X’ in their name. So, for the first couple of years we spelt it 
‘Scanxion’. Like I said, I could be a bit of a cock back then.

3 http://www.themarqueeclub.net
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is important to control for individual differences in tolerance to alcohol, and this can be 
achieved by testing the same people in all conditions of the experiment: participants could 
be given a questionnaire assessing their enjoyment of the party after they had consumed 1 
pint, 2 pints, 3 pints and 4 pints of lager.

We saw in Chapter 1 that this type of design has several advantages; however, there is 
a big disadvantage if you’re going to use ANOVA to analyse your data. In Chapter 10 we 
saw that the accuracy of the F-test in ANOVA depends upon the assumption that scores in 
different conditions are independent (see section 10.3). When repeated measures are used 
this assumption is violated: scores taken under different experimental conditions are likely 
to be related because they come from the same participants. As such, the conventional 
F-test will lack accuracy. The relationship between scores in different treatment conditions 
means that an additional assumption has to be made and, put simplistically, we assume 
that the relationship between pairs of experimental conditions is similar (i.e., the level of 
dependence between experimental conditions is roughly equal). This assumption is called 
the assumption of sphericity, which, trust me, is a pain in the neck to try to pronounce 
when you’re giving statistics lectures at 9 a.m.

13.2.1.    The assumption of sphericity 2

The assumption of sphericity can be likened to the assumption of homogeneity of variance 
in between-group ANOVA. Sphericity (denoted by ε and sometimes referred to as circular-
ity) is a more general condition of compound symmetry. Compound symmetry 
holds true when both the variances across conditions are equal (this is the same 
as the homogeneity of variance assumption in between-group designs) and the 
covariances between pairs of conditions are equal. So, we assume that the varia-
tion within experimental conditions is fairly similar and that no two conditions 
are any more dependent than any other two. Although compound symmetry has 
been shown to be a sufficient condition for ANOVA using repeated-measures 
data, it is not a necessary condition. Sphericity is a less restrictive form of com-
pound symmetry (in fact, much of the early research into repeated-measures 
ANOVA confused compound symmetry with sphericity). Sphericity refers to the 
equality of variances of the differences between treatment levels. So, if you were 
to take each pair of treatment levels, and calculate the differences between each pair of 
scores, then it is necessary that these differences have approximately equal variances. As 
such, you need at least three conditions for sphericity to be an issue.

13.2.2.    How is sphericity measured? 2

If we were going to check the assumption of sphericity by hand, which incidentally only a 
complete lunatic would do, then we could start by calculating the differences between pairs 
of scores in all combinations of the treatment levels. Once this has been done, we could 
calculate the variance of these differences. Table 13.1 shows data from an experiment with 
three conditions. The differences between pairs of scores are computed for each partici-
pant and the variance for each set of differences is calculated. We saw above that sphericity 
is met when these variances are roughly equal. For these data, sphericity will hold when:

VarianceA–B ≈ VarianceA–C ≈ VarianceB–C

In these data there is some deviation from sphericity because the variance of the differ-
ences between conditions A and B (15.7) is greater than the variance of the differences 
between A and C (10.3) and between B and C (10.7). However, these data have local 

What is sphericity?
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circularity (or local sphericity) because two of the variances of differences are very similar. 
Therefore, the sphericity assumption has been met for any multiple comparisons involving 
these conditions (for a discussion of local circularity see Rouanet & Lépine, 1970). The 
deviation from sphericity in the data in Table 13.1 does not seem too severe (all variances 
are roughly equal), but can we assess whether a deviation is severe enough to warrant action?

Table 13.1  Hypothetical data to illustrate the calculation of the variance of the differences 
between conditions

Group A Group B Group C A−B A−C B−C

10 12   8 -2   2 4

15 15 12   0   3 3

25 30 20 -5   5 10

35 30 28   5   7 2

30 27 20   3 10 7

Variance: 15.7 10.3 10.7

13.2.3.  �  Assessing the severity of departures from
sphericity 2

Sphericity can be assessed using a test known as Mauchly’s test, which tests the hypothesis 
that the variances of the differences between conditions are equal. Therefore, if Mauchly’s 
test statistic is significant (i.e., has a probability value less than .05) we should conclude 
that there are significant differences between the variances of differences and, therefore, 
the condition of sphericity is not met. If, however, Mauchly’s test statistic is non-significant 
(i.e., p > .05) then it is reasonable to conclude that the variances of differences are not sig-
nificantly different (i.e., they are roughly equal). So, in short, if Mauchly’s test is significant 
then we must be wary of the resulting F-ratios. However, like any significance test, it is 
dependent on sample size: in big samples small deviations from sphericity can be signifi-
cant, and in small samples large violations can be non-significant.

13.2.4.  �  What is the effect of violating the assumption
of sphericity? 3

Rouanet and Lépine (1970) provided a detailed account of the validity of the F-ratio 
under violations of the sphericity assumption. They argued that there are two different 
F-ratios that can be used to assess treatment comparisons, labelled F′ and F″, respectively. 
F′ refers to an F-ratio derived from the mean squares of the comparison in question and 
the specific error term for the comparison of interest – this is the F-ratio normally used. F″ 
is derived not from the specific error mean square but from the total error mean squares 
for all repeated-measures comparisons. Rouanet and Lépine (1970) showed that for F″ 
to be valid, overall sphericity must hold (i.e., the whole data set must be spherical), but 
for F′ to be valid, sphericity must hold for the specific comparison in question (see also 
Mendoza, Toothaker, & Crain, 1976). F′ is the statistic generally used, and the effect of 
violating sphericity is a loss of power (compared to when F″ is used) and a test statistic 
(F-ratio) that simply cannot be compared to tabulated values of the F-distribution (see 
Oliver Twisted).

13-Field_R-4368-Ch-13.indd   552 29/02/2012   5:50:48 PM



553CHAPTER 13   REPEATED-MEASURES DES IGNS (GLM 4)

Not only does sphericity create problems for the F in repeated-measures ANOVA, but 
also it causes some amusing complications for post hoc tests (Jane Superbrain Box 13.1). If 
you don’t want to worry about what these complications are then the take-home message 
is that when sphericity is violated, the Bonferroni method seems to be generally the most 
robust of the univariate techniques, especially in terms of power and control of the Type I 
error rate. When sphericity is definitely not violated, Tukey’s test can be used.

‘Balls’ says Oliver, ‘are spherical, and I like balls. Maybe I’ll like sphe-
ricity too if only you could explain it to me in more detail.’ Be care-
ful what you wish for, Oliver. In my youth I wrote an article called 
‘A bluffer’s guide to sphericity’, which I used to cite in this book, 
roughly on this page. Occasionally people ask me for it, so I thought 
I might as well reproduce it in the additional material for this chapter.

OLIVER TWISTED

Please Sir, can I have some 
more … sphericity?

procedure but with a separate error term with either n−1 
degrees of freeedom (labelled SEP1) or (n−1)(k−1) degrees 
of freeedom (labelled SEP2); Bonferroni’s procedure (BON); 
and a multivariate approach, the Roy–Bose simultaneous 
confidence interval (SCI). Maxwell (1980) tested these a priori 
procedures, varying the sample size, number of levels of the 
repeated factor and departure from sphericity. He found that 
the multivariate approach was always ‘too conservative for 
practical use’ (p. 277), and this was most extreme when n 
(the number of participants) is small relative to k (the num-
ber of conditions). Tukey’s test inflated the alpha rate unac-
ceptably with increasing departures from sphericity even 
when a separate error term was used (SEP1 and SEP2). The 
Bonferroni method, however, was extremely robust (although 
slightly conservative) and controlled alpha levels regardless 
of the manipulation. Therefore, in terms of Type I error rates, 
the Bonferroni method was best.

In terms of test power (the Type II error rate) for a small 
sample (n = 8) Maxwell found WSD to be most power-
ful under conditions of non-sphericity, but this advantage 
was severely reduced when n = 15. 

Keselman and Keselman (1988) extended Maxwell’s 
work within unbalanced designs. They too used Tukey’s 
WSD, a modified WSD (with non-pooled error variance), 
Bonferroni t-statistics and a multivariate approach, and 
found that when unweighted means were used (with 
unbalanced designs) none of the four tests could control 
the Type I error rate. When weighted means were used 
only the multivariate tests could limit alpha rates, although 
Bonferroni t-statistics were considerably better than the two 
Tukey methods. In terms of power, Keselman and Keselman 
(1988) concluded that ‘as the number of repeated treatment 
levels increases, BON is substantially more powerful than 
SCI’ (p. 223).

The violation of sphericity has implications for mul-
tiple comparisons. Boik (1981) provided an estimable 
account of the effects of non-sphericity on post hoc 
tests in repeated-measures designs, and concluded that 
even very small departures from sphericity produce large 
biases in the F-test. He recommends against using these 
tests for repeated-measure contrasts. When experimental 
error terms are small, the power to detect relatively strong 
effects can be as low as .05 (when sphericity = .80). Boik 
argues that the situation for multiple comparisons can-
not be improved and concludes by recommending a 
multivariate analogue. Mitzel and Games (1981) found 
that when sphericity does not hold (ε   <  1) the pooled 
error term conventionally employed in pairwise compari-
sons resulted in non-significant differences between two 
means declared significant (i.e., a lenient Type I error 
rate) or undetected differences (a conservative Type I 
error rate). Mitzel and Games, therefore, recommended 
the use of separate error terms for each comparison. 

Maxwell (1980) systematically tested the power and alpha 
levels for five post hoc tests under repeated-measures condi-
tions. The tests assessed were Tukey’s wholly significant dif-
ference (WSD) test, which uses a pooled error term; Tukey’s 

JANE SUPERBRAIN 13.1

Sphericity and post hoc tests 3
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13.2.5.    What do you do if you violate sphericity? 2

If data violate the sphericity assumption, there are several corrections that 
can be applied to produce a valid F-ratio. There are three commonly used 
corrections based upon the estimates of sphericity advocated by Greenhouse 
and Geisser (1959) and Huynh and Feldt (1976). Both of these estimates 
give rise to a correction factor that is applied to the degrees of freedom used 
to assess the observed F-ratio. The calculation of these estimates is beyond 
the scope of this book (interested readers should consult Girden, 1992); we 
need know only that the three estimates differ. The Greenhouse–Geisser cor-
rection (usually denoted as ε̂) varies between 1/(k−1), where k is the number 
of repeated-measures conditions, and 1. The closer ε̂  is to 1, the more homo-

geneous the variances of differences, and hence the closer the data are to being spherical. 
For example, in a situation in which there are five conditions the lower limit of ε̂  will be
1/(5−1), or .25 (known as the lower-bound estimate of sphericity). 

Huynh and Feldt (1976) reported that when the Greenhouse–Geisser estimate is greater 
than .75 too many false null hypotheses fail to be rejected (i.e., the correction is too con-
servative) and Collier, Baker, Mandeville, and Hayes (1967) showed that this was also true 
when the sphericity estimate was as high as .90. Huynh and Feldt, therefore, proposed 
their own less conservative correction (usually denoted as ε~ ). However, Maxwell and 
Delaney (1990) report that ε~  overestimates sphericity. Stevens (2002) therefore recom-
mends taking an average of the two and adjusting df by this averaged value. Girden (1992) 
recommends that when estimates of sphericity are greater than .75 the Huynh–Feldt correc-
tion should be used, but when sphericity estimates are less than .75 or nothing is known 
about sphericity at all, then the Greenhouse–Geisser correction should be used instead. We 
will see how these values are used in due course.

Given that violations of sphericity affect the accuracy of F, a second option when you 
have data that violate sphericity is to use a test other than F. The first possibility is to use 
multivariate test statistics (multivariate analysis of variance, MANOVA), because they are 
not dependent upon the assumption of sphericity (see O’Brien & Kaiser, 1985). MANOVA 
is covered in depth in Chapter 16, but we can get R to produce multivariate test statistics 
in the context of repeated-measures ANOVA.  However, there may be trade-offs in power 
between these univariate and multivariate tests (see Jane Superbrain Box 13.2). A second 
possibility is to analyse the data as a multilevel model (described in detail in Chapter 19). 
This idea probably sounds a bit scary, but it is simply a regression in which we can include 
multiple observations from the same entities. If we analyse the data in this way then we 
can interpret the model coefficients without worrying about sphericity because dummy-
coding our grouping variables ensures that these coefficients only ever compare two things 
(and sphericity is only an issue when comparing three or more means). Also, the model fit 
can be tested without an F-ratio, and if we’re feeling really brave we can explicitly model 
the assumed relationship between observations at different time points (this is called the 
covariance structure and is described in Chapter 19). Although we cover a basic ANOVA 
approach to be consistent with what you might well be taught, we recommend the multi-
level approach and demonstrate that as well for all of the examples.

13.3.  Theory of one-way  
repeated-measures ANOVA 2

In a repeated-measures ANOVA the effect of our experiment is shown up in the within-
participant variance (rather than in the between-group variance). Remember that in 

What do I do if
sphericity is violated?
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independent ANOVA (section 10.2) the within-participant variance is our residual vari-
ance (SSR); it is the variance created by individual differences in performance. This var-
iance is not contaminated by the experimental effect, because whatever manipulation 
we’ve carried out has been done on different people. However, when we carry out our 
experimental manipulation on the same people, the within-participant variance will be 
made up of two things: the effect of our manipulation and, as before, individual differ-
ences in performance. So, some of the within-subject variation comes from the effects of 
our experimental manipulation: we did different things in each experimental condition 
to the participants, and so variation in an individual’s scores will partly be due to these 
manipulations. For example, if everyone scores higher in one condition than another, it’s 
reasonable to assume that this happened not by chance, but because we did something dif-
ferent to the participants in one of the conditions compared to any other one. Because we 
did the same thing to everyone within a particular condition, any variation that cannot be 
explained by the manipulation we’ve carried out must be due to random factors outside 
our control, unrelated to our experimental manipulations (we could call this ‘error’). As 
in independent ANOVA, we use an F-ratio that compares the size of the variation due to 
our experimental manipulations to the size of the variation due to random factors, the 
only difference being how we calculate these variances. If the variance due to our manipu-
lations is big relative to the variation due to random factors, we get a big value of F, and 
we can conclude that the observed results are unlikely to have occurred if there was no 
effect in the population.

Figure 13.2 shows how the variance is partitioned in a repeated-measures ANOVA. The 
important thing to note is that we have the same types of variances as in independent 
ANOVA: we have a total sum of squares (SST), a model sum of squares (SSM) and a residual 
sum of squares (SSR). The only difference between repeated-measures and independent 

Nicewander (1974) conducted a Monte Carlo study com-
paring univariate and multivariate techniques under vio-
lations of compound symmetry and normality and found 
that ‘as the degree of violation of compound symmetry 
increased, the empirical power for the multivariate tests 
also increased. In contrast, the power for the univariate 
tests generally decreased’ (p. 174). Maxwell and Delaney 
(1990) noted that the univariate test is relatively more 
powerful than the multivariate test as n decreases and 
proposed that ‘the multivariate approach should prob-
ably not be used if n is less than a + 10 (a is the number 
of levels for repeated measures)’ (p. 602). As a rule it 
seems that when you have a large violation of spheric-
ity (ε < .7) and your sample size is greater than (a + 10) 
then multivariate procedures are more powerful, but with 
small sample sizes or when sphericity holds (ε > .7) the 
univariate approach is preferred (Stevens, 2002). It is 
also worth noting that the power of MANOVA increases 
and decreases as a function of the correlations between 
dependent variables (see Jane Superbrain Box 16.1) and 
so the relationship between treatment conditions must be 
considered.

There is a trade-off in test power between univariate and 
multivariate approaches (although some authors argue 
that this can be overcome with suitable mastery of the 
techniques – O’Brien and Kaiser, 1985). Davidson (1972) 
compared the power of adjusted univariate techniques 
with those of Hotelling’s T2 (a MANOVA test statistic) 
and found that the univariate technique was relatively 
powerless to detect small reliable changes between 
highly correlated conditions when other less correlated 
conditions were also present. Mendoza, Toothaker, and 

JANE SUPERBRAIN 13.2

Power in ANOVA and MANOVA 3
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ANOVA is from where those sums of squares come: in repeated-measures ANOVA the 
model and residual sums of squares are both part of the within-participant variance. Let’s 
have a look at an example. 

I’m a Celebrity, Get Me Out of Here! is a TV show in which celebrities (well, they’re 
not really celebrities as such, more like ex-celebrities), in a pitiful attempt to salvage 
their careers (or just have careers in the first place), go and live in the jungle in Australia 
for a few weeks. During the show these contestants have to do various humiliating and 
degrading tasks to win food for their camp mates. These tasks invariably involve creepy-
crawlies in places where creepy-crawlies shouldn’t go; for example, you might be locked 
in a coffin full of rats, forced to put your head in a bowl of large spiders, or have eels 
and cockroaches poured onto you. It’s cruel, voyeuristic, gratuitous, car-crash TV, 
and I love it. As a vegetarian, a particular favourite task for me is the bushtucker tri-
als in which the celebrities have to eat things like live stick insects, witchetty grubs, fish  
eyes and kangaroo testicles/penises. Honestly, seeing a fish eye exploding in someone’s 
mouth forever scars your mental image of them. I’ve often wondered (perhaps a little too 
much) which of the bushtucker foods is the most revolting. Imagine that I tested this by 
getting eight celebrities, and forced them to eat four different animals (the aforementioned 
stick insect, kangaroo testicle, fish eye and witchetty grub) in counterbalanced order. On 
each occasion I measured the time it took the celebrity to retch, in seconds. This is a 
repeated-measures design because every celebrity eats every food. The independent vari-
able was the type of food eaten and the dependent variable was the time taken to retch.

The data for this example are in Table 13.2. There were four foods, each eaten by eight 
different celebrities. Their times taken to retch are shown. In addition, the mean amount of 
time to retch for each celebrity is shown in the table (and the variance in the time taken to 
retch), and also the mean time to retch for each item eaten. The total variance in retching 
time will, in part, be caused by the fact that different animals are more or less palatable (the 
manipulation), and will, in part, be caused by the fact that the celebrities themselves will 
differ in their constitution (individual differences).

FIGURE 13.2
Partitioning 
variance for 
repeated-
measures ANOVA

SST
Total Variability

Between-Participant
SSB

SSW
Within-Participant 

Variability

SSM
Effect of 

Experiment

SSR
Error (variation not 
explained by the 

experiment)
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Table 13.2  Data for the bushtucker example

Celebrity Stick insect Kangaroo testicle Fish eye Witchetty grub Mean s2

1 8 7 1 6 5.50 9.67

2 9 5 2 5 5.25 8.25

3 6 2 3 8 4.75 7.58

4 5 3 1 9 4.50 11.67

5 8 4 5 8 6.25 4.25

6 7 5 6 7 6.25 0.92

7 10 2 7 2 5.25 15.58

8 12 6 8 1 6.75 20.92

Mean 8.13 4.25 4.13 5.75

13.3.1.    The total sum of squares (SS
T
) 2

Remember from one-way independent ANOVA that SST is calculated using the following 
equation (see equation (10.4)):

SST grand= −s N2 1( )

Well, in repeated-measures designs the total sum of squares is calculated in exactly the 
same way. The grand variance in the equation is simply the variance of all scores when we 
ignore the group to which they belong. So if we treated the data as one big group it would 
look as follows:

8 7 1 6

9 5 2 5

6 2 3 8

5 3 1 9

8 4 5 8

7 5 6 7

10 2 7 2

12 6 8 1

Grand Mean = 5.56
Grand Variance = 8.19

The variance of these scores is 8.19 (try this on your calculator). We used 32 scores to 
generate this value, so N is 32. As such the equation becomes:

SST grand= −

= −
=

s N2 1

8 19 32 1
253 89

( )

. ( )
.
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The degrees of freedom for this sum of squares, as with the independent ANOVA, will be 
N−1, or 31.

13.3.2.    The within-participant sum of squares (SS
W
) 2

The crucial difference in this design is that there is a variance component called the within-
participant variance (this arises because we’ve manipulated our independent variable 
within each participant). This is calculated using a sum of squares. Generally speaking, 
when we calculate any sum of squares we look at the squared difference between the mean 
and individual scores. This can be expressed in terms of the variance across scores and the 
number of scores on which that variance is based. For example, when we calculated the 
residual sum of squares in independent ANOVA (SSR) we used the following equation (look 
back to equation (10.7)):

SSR = −

= −
=

∑
i

n

i ix x

s n
1

2

2 1

( )

( )

This equation gave us the variance between individuals within a particular group, and so is 
an estimate of individual differences within a particular group. Therefore, to get the total 
value of individual differences we have to calculate the sum of squares within each group 
and then add them up:

SSR group group group group= − + − + − +s n s n s n s n1
2

1 2
2

2 3
2

3
21 1 1( ) ( ) ( ) … (( )nn − 1

This is all well and good when we have different people in each group, but in repeated-
measures designs we’ve subjected people to more than one experimental condition, and, 
therefore, we’re interested in the variation not within a group of people (as in independ-
ent ANOVA) but within an actual person. That is, how much variability is there within an 
individual? To find this out we actually use the same equation but we adapt it to look at 
people rather than groups. So, if we call this sum of squares SSW (for within-participant SS) 
we could write it as: 

SSW person person person= − + − + + −s n s n s nn n1
2

1 2
2

2
21 1 1( ) ( ) ( )…

This equation simply means that we are looking at the variation in an individual’s scores 
and then adding these variances for all the people in the study. The ns simply represent 
the number of scores on which the variances are based (i.e., the number of experimental 
conditions, or in this case the number of foods). 

All of the variances we need are in Table 13.2, so we can calculate SSW as:

SSW celebrity celebrity celebrity n= − + − + +s n s n s n1
2

1 2
2

2
21 1( ) ( ) (… nn −

= − + − + − + − + − +

1

9 67 4 1 8 25 4 1 7 58 4 1 11 67 4 1 4 25 4 1

0

)

. ( ) . ( ) . ( ) . ( ) . ( )

.. ( ) . ( ) . ( )

. . . .

92 4 1 15 58 4 1 20 92 4 1

29 24 75 22 75 35 12 75 2

− + − + −
= + + + + + 775 46 75 62 75

236 50

+ +
=

. .

.
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The degrees of freedom for each person are n − 1 (i.e., the number of conditions minus 1). 
To get the total degrees of freedom we add the dfs for all participants. So, with eight participants 
(celebrities) and four conditions (i.e., n = 4), there are 3 degrees of freedom for each celebrity 
and 8 × 3 = 24 degrees of freedom in total.

13.3.3.    The model sum of squares (SS
M
) 2

So far, we know that the total amount of variation within the data is 253.58 units. We 
also know that 236.50 of those units are explained by the variance created by individuals’ 
(celebrities’) performances under different conditions. Now some of this variation is the 
result of our experimental manipulation and some of this variation is simply random fluc-
tuation. The next step is to work out how much variance is explained by our manipulation 
and how much is not.

In independent ANOVA, we worked out how much variation could be explained by our 
experiment (the model SS) by looking at the means for each group and comparing these 
to the overall mean. So, we measured the variance resulting from the differences between 
group means and the overall mean (see equation (10.5)). We do exactly the same thing with 
a repeated-measures design. First we calculate the mean for each level of the independent 
variable (in this case the mean time to retch for each food) and compare these values to the 
overall mean of all foods.

So, we calculate this SS in the same way as for independent ANOVA:

1	 Calculate the difference between the mean of each group and the grand mean.

2	 Square each of these differences.

3	 Multiply each result by the number of participants that contribute to that
mean (ni).

4	 Add the values for each group together:

SSM grand= −
=

∑n x xk k

k

( )2

1n

Using the means from the bushtucker data (see Table 13.2), we can calculate SSM as follows:

SSM = − + − + − + −8 8 13 5 56 8 4 25 5 56 8 4 13 5 56 8 5 75 5 562 2 2( . . ) ( . . ) ( . . ) ( . . )22

2 2 2 28 2 57 8 1 31 8 1 44 8 0 19
83 13

= + − + − +
=

( . ) ( . ) ( . ) ( . )
.

For SSM, the degrees of freedom (dfM) are again one less than the number of things used 
to calculate the sum of squares. For the model sums of squares we calculated the sum of 
squared errors between the four means and the grand mean. Hence, we used four things 
to calculate these sums of squares. Therefore, the degrees of freedom will be 3. So, as with 
independent ANOVA the model degrees of freedom are always the number of conditions 
(k) minus 1:

df kM = − =1 3
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13.3.4.    The residual sum of squares (SS
R
) 2

We now know that there are 253.58 units of variation to be explained in our data, and that 
the variation across our conditions accounts for 236.50 units. Of these 236.50 units, our 
experimental manipulation can explain 83.13 units. The final sum of squares is the residual 
sum of squares (SSR), which tells us how much of the variation cannot be explained by 
the model. This value is the amount of variation caused by extraneous factors outside of 
experimental control. Knowing SSW and SSM already, the simplest way to calculate SSR is to 
subtract SSM from SSW (SSR = SSW − SSM):

SS SS SSR W M= −
= −
=

236 50 83 13
153 37

. .
.

The degrees of freedom are calculated in a similar way:

df df dfR W M= −
= −
=

24 3
21

13.3.5.    The mean squares 2

SSM tells us how much variation the model (e.g., the experimental manipulation) explains 
and SSR tells us how much variation is due to extraneous factors. However, because both 
of these values are summed values the number of scores that were summed influences 
them. As with independent ANOVA we eliminate this bias by calculating the average sum 
of squares (known as the mean squares, MS), which is simply the sum of squares divided 
by the degrees of freedom:

MS
SS

MS
SS

M
M

M

R
R

R

= = =

= = =

df

df

83 13
3

27 71

153 37
21

7 30

.
.

.
.

MSM represents the average amount of variation explained by the model (e.g., the system-
atic variation), whereas MSR is a gauge of the average amount of variation explained by 
extraneous variables (the unsystematic variation).

13.3.6.    The F-ratio 2

The F-ratio is a measure of the ratio of the variation explained by the model and the vari-
ation explained by unsystematic factors. It can be calculated by dividing the model mean 
squares by the residual mean squares. You should recall that this is exactly the same as for 
independent ANOVA:

F =
MS
MS

M

R
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So, as with the independent ANOVA, the F-ratio is still the ratio of systematic variation to 
unsystematic variation. As such, it is the ratio of the experimental effect to the effect on 
performance of unexplained factors. For the bushtucker data, the F-ratio is:

F = = =
MS
MS

M

R

27 71
7 30

3 79
.

.
.

This value is greater than 1, which indicates that the experimental manipulation had some 
effect above and beyond the effect of extraneous factors. As with independent ANOVA, 
this value can be compared against a critical value based on its degrees of freedom (which 
are dfM and dfR, which are 3 and 21 in this case).

13.3.7.    The between-participant sum of squares 2

I mentioned that the total variation is broken down into a within-participant variation and 
a between-participant variation. We sort of forgot about the between-participant variation 
because we didn’t need it to calculate the F-ratio. However, I will just briefly mention what 
it represents. The easiest way to calculate this term is by subtraction, because we know 
from Figure 13.2 that:

SS SS SST B W= +

Now, we have already calculated SST and SSW so by rearranging the equation and replacing 
the values of these terms, we get:

SS SS SSB T W= −
= −
=

253 89 236 50
17 39

. .
.

This term represents individual differences between cases. So, in this example, different 
celebrities will have different tolerances of eating these sorts of food. This is shown by the 
means for the celebrities in Table 13.2. For example, celebrity 4 (M = 4.50) was, on aver-
age, more than 2 seconds quicker to retch than participant 8 (M = 6.75). Celebrity 8 had a 
better constitution than celebrity 4. The between-participant sum of squares reflects these 
differences between individuals. In this case only 17.08 units of variation in the times to 
retch can be explained by individual differences between our celebrities.

13.4.  One-way repeated-measures designs using R 2

13.4.1.    Packages for repeated measures designs in R 1

I’ve discovered four ways of doing repeated-measures designs of the sort that you might 
analyse with ANOVA; there might be more, but once you’ve found four there really isn’t 
much incentive to keep checking. These methods are:

MM Anova(): We’ve used this function in other chapters, and it is good in that it pro-
duces sphericity tests and corrections like you might be used to seeing in other sta-
tistics packages. However, the process involved in using the function doesn’t follow 
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naturally from the way I have taught ANOVA thus far, so I decided not to cover this 
method. If you’re curious though then a search engine is your friend.

MM lm() or aov(): These functions follow most naturally from how we have done ANOVAs in 
the previous chapters. However, they don’t produce sphericity test. Also, if you’re going 
to take this linear model approach you’re better off doing it using lme(). So, I will men-
tion this method for continuity but mainly I use it as a stepping stone to describe lme().

MM lme(): This function enables you to do a regression in which observations can be corre-
lated (which happens in repeated-measures designs). This form of regression is known as 
a multilevel model and is covered in more detail in Chapter 19. Therefore, this method 
naturally develops what we have already learnt about the lm() function. Using lme() has 
the benefit that we can forget about sphericity, and it’s also how ‘proper’ statisticians 
would deal with repeated-measures data. The downside is that this approach is a little 
different from what you might be used to if you have ever analysed repeated-measures 
designs (i.e., you are not using ANOVA) with other packages such as SPSS or SAS.

MM ezANOVA(): In case lme() freaks you out we’ll also look at a function called ezANOVA, 
which as the name suggests enables you to do ANOVA easily (and in a way that 
closely matches other statistics packages that you might have used).

If you’re using commands (which actually you have to), then you will need the packages ez 
(if you’re going to use ANOVA), ggplot2 (for graphs), multcomp (for post hoc tests), nlme 
(if you decide to use a multilevel model), pastecs (for descriptive statistics), reshape (for 
reshaping the data) and WRS (for robust tests). If you do not have these packages installed 
(some should be installed from previous chapters), you can install them by executing the 
following commands:

install.packages("ez"); install.packages("ggplot2"); install.packages 
("multcomp"); install.packages("nlme"); install.packages("pastecs"); 
install.packages("reshape"); install.packages("WRS", repos="http://R-Forge. 
R-project.org")

You then need to load these packages by executing these commands:

library(ez); library(ggplot2); library(multcomp); library(nlme); 
library(pastecs); library(reshape);  library(WRS)

13.4.2.    General procedure for repeated-measures designs 1

To conduct repeated-measures analysis you should follow this general procedure:

1	 Enter data: which turns out not to be as straightforward as you might think.

2	 Explore your data: you know the routine by now – graphs, descriptive statistics and 
maybe even a bit of sphericity checking if you’re not going to use lme().

3	 Construct or choose contrasts: you need to decide what contrasts to do and to specify 
them appropriately for all of the independent variables in your analysis.

4	 Compute the ANOVA/multilevel model: you can then run the main analysis. Depending 
on what you found in the previous step, you might need to run a robust test.

5	 Compute contrasts or post hoc tests: having conducted the main analysis you can fol-
low it up with post hoc tests or look at the results of your contrasts. Again, the exact 
methods you choose will depend upon what you unearth in step 2.

We will work through these steps in turn.
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13.4.3.    Repeated-measures ANOVA using R Commander 2

Figure 13.3 shows how to do repeated-measures ANOVA using R Commander: you can’t, 
sad faces all round.

FIGURE 13.3
Repeated-
measures 
ANOVA using R 
Commander

13.4.4.    Entering the data 2

The data for the example can be found in the file Bushtucker.dat. You can load this data file 
by setting your working directory to the appropriate location and executing:

bushData<-read.delim("Bushtucker.dat", header = TRUE)

I have structured the data in the format that you’d be most likely to use if you had entered 
the data in another software package and followed the usual conventions. The data have 
been entered in ‘wide’ format; that is, levels of the repeated-measures variable are spread 
across different columns. 

participant stick_insect kangaroo_testicle fish_eye witchetty_grub
P1            8                 7        1              6
P2            9                 5        2              5
P3            6                 2        3              8
P4            5                 3        1              9
P5            8                 4        5              8
P6            7                 5        6              7
P7           10                 2        7              2
P8           12                 6        8              1

These data were originally entered in Excel, and, as you can see, I created a column in 
which I entered text that identifies each participant (P1, P2 etc.). The remaining four 
columns represent each participant’s time to retch after consuming each of the four food 
types. For example, participant 7 took 10 seconds to retch after the stick insect, 2 after the 
kangaroo testicle and witchetty grub and 7 after the fish eye.

Although the format of the data follows typical conventions, to run the analysis in R we need 
the data to be in the long format. We can do this using the melt() function, which we’ve used 
many times before (e.g., Chapter 3). Remember that in this function we specify columns in the 
data that identify characteristics of the scores (such as from whom they originate) using the id 
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option, and columns that identify the scores themselves using the measured option. In this case 
our scores are split over four columns (stick_insect, kangaroo_testicle, fish_eye, witchetty_grub), 
so these are our measured variables, and participant tells us from whom the scores originate, so 
this is our id variable. We can create a new dataframe (called longBush) by executing:

longBush<-melt(bushData, id = "participant", measured = c("stick_insect", 
"kangaroo_testicle", "fish_eye", "witchetty_grub"))

This dataframe contains three columns: the first identifies the participant, the second 
identifies the type of food, and the third contains the scores (time to retch). By default, 
these columns will be named participant, variable, and value, which are not the most help-
ful of labels. Let’s rename these columns so that we actually know what they represent by 
executing:

names(longBush)<-c("Participant", "Animal", "Retch")

Finally, let’s convert the Animal variable to a factor with suitable labels by executing:

longBush$Animal<-factor(longBush$Animal, labels = c("Stick Insect", "Kangaroo 
Testicle", "Fish Eye", "Witchetty Grub"))

The data now look like this:4

   Participant            Animal Retch
1           P1      Stick Insect     8
9           P1 Kangaroo Testicle     7
17          P1          Fish Eye     1
25          P1    Witchetty Grub     6
2           P2      Stick Insect     9
10          P2 Kangaroo Testicle     5
18          P2          Fish Eye     2
26          P2    Witchetty Grub     5
3           P3      Stick Insect     6
11          P3 Kangaroo Testicle     2
19          P3          Fish Eye     3
27          P3    Witchetty Grub     8
4           P4      Stick Insect     5
12          P4 Kangaroo Testicle     3
20          P4          Fish Eye     1
28          P4    Witchetty Grub     9
5           P5      Stick Insect     8
13          P5 Kangaroo Testicle     4
21          P5          Fish Eye     5
29          P5    Witchetty Grub     8
6           P6      Stick Insect     7
14          P6 Kangaroo Testicle     5
22          P6          Fish Eye     6
30          P6    Witchetty Grub     7
7           P7      Stick Insect    10
15          P7 Kangaroo Testicle     2
23          P7          Fish Eye     7
31          P7    Witchetty Grub     2
8           P8      Stick Insect    12
16          P8 Kangaroo Testicle     6
24          P8          Fish Eye     8
32          P8    Witchetty Grub     1

4 To make it clearer that there are four observations for each person I have sorted the data by participant by 
executing:

longBush<-longBush[order(longBush$Participant),]
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Notice that each participant (identified by the Participant variable) has four scores (dis-
tinguished by the variable Animal). These four scores are now represented by four different 
rows rather than four columns as they were before.

If we wanted to enter the data directly into R, we would first need to create the variable 
that identifies participants by using the gl() function (Chapter 3). Remember that this func-
tion takes the general form:

factor<-gl(number of levels, cases in each level, total cases, labels = 
c("label1", "label2"…))

This function creates a factor variable called factor; you specify the number of levels or 
groups of the factor, how many cases are in each level/group, optionally the total number 
of cases (the default is to multiply the number of groups by the number of cases per group), 
and you can also use the labels option to list names eight participants, so we can specify it as: 

Participant<-gl(8, 4, labels = c("P1", "P2", "P3", "P4", "P5", "P6", "P7", 
"P8" ))

The numbers in the function tell R that we had eight sets of four scores, and the labels 
option then specifies the names to attach to these eight sets, which correspond to their par-
ticipant number. To create the Animal variable we want four groups, each containing one 
score. This will create four cases (4 × 1 = 4), or, put another way, it will create the codes 
for the first participant. However, we want this pattern to be repeated for the remaining 
participants; we can do this by adding a third value to the function that is the total number 
of cases (i.e., 32). By specifying the total number of cases the gl() function will repeat the 
pattern of four codes until it reaches this total number of cases:

Animal<-gl(4, 1, 32, labels = c("Stick Insect", "Kangaroo Testicle", "Fish 
Eye", "Witchetty Grub"))

We can add the times to retch by creating a numeric variable in the usual way:

Retch<-c(8, 7, 1, 6, 9, 5, 2, 5, 6, 2, 3, 8, 5, 3, 1, 9, 8, 4, 5, 8, 7, 5, 
6, 7, 10, 2, 7, 2, 12, 6, 8, 1)

Finally, we can merge these variables into a dataframe called longBush by executing:

longBush<-data.frame(Participant, Animal, Retch)

13.4.5.    Exploring the data 2

As ever, we’ll look at some graphs first. Let’s start with the means across the different 
conditions.

SELF-TEST

ü	 Use ggplot2 to plot a bar graph (with error bars) of 
the time to retch with the type of animal eaten on the 
x-axis.

The resulting plot (Figure 13.4) shows that on average celebrities were quickest to retch 
after eating a testicle or eyeball (the means are lowest). Comparatively speaking, the stick 
insect was the most palatable because it took the longest time to induce retching.
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We can also look at boxplots for the time taken to retch after eating the different animals.

SELF-TEST

ü	 Use ggplot2 to plot boxplots of the time to retch after 
eating each animal (x-axis).

Figure 13.5 shows boxplots for these data. These show a similar profile to the bar chart: 
the median time to retch is highest for the stick insect and lowest for the testicle and eye-
ball. In addition, we can see that the middle part of the distribution of scores is a little more 
spread out for the fish eye and witchetty grub (the ‘boxes’ are longer) than the testicle and 
stick insect.

We have previously used the by() function and the stat.desc() function in the pastecs 
package to get descriptive statistics for separate groups (see Chapter 5 for more detail). 
Therefore, if we wanted to explore the effects of the type of animal on retching times, we 
could do so by executing:

by(longBush$Retch, longBush$Animal, stat.desc)
longBush$Animal: Stick Insect
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FIGURE 13.4
Mean time to retch 
after eating four 
different animals
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median   mean   SE.mean  CI.mean.0.95  var  std.dev coef.var
8.0000  8.1250  0.7892     1.8661    4.9821  2.2320  0.2747
------------------------------------------------------------ 
longBush$Animal: Kangaroo Testicle

median   mean   SE.mean  CI.mean.0.95  var  std.dev coef.var
4.5000  4.2500  0.6478     1.5318    3.3571  1.8323 0.4311 
------------------------------------------------------------ 
longBush$Animal: Fish Eye

median   mean   SE.mean  CI.mean.0.95  var  std.dev coef.var
4.0000  4.1250  0.9717     2.2977    7.5536  2.7484 0.6663 
------------------------------------------------------------ 
longBush$Animal: Witchetty Grub

median   mean   SE.mean  CI.mean.0.95  var  std.dev coef.var
6.5000   5.7500 1.0308    2.4374    8.5000   2.9155 0.5070

Output 13.1

The resulting (edited) output is in Output 13.1. From this table we can see that, on 
average, the time taken to retch was longest after eating the stick insect, and shortest after 
eating a testicle or eyeball. These mean values are useful for interpreting any significant 
effects that the main analysis throws up (pun intended).
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FIGURE 13.5
Boxplots of the 
bushtucker data
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13.4.6.    Choosing contrasts 2

It’s useful to follow up the main analysis with contrasts that break down the main effect 
(or effects) and tell us where the differences between groups lie. For one-way independent 
ANOVA, we entered codes that defined the contrasts we want to do. We can follow the 
same procedure for repeated-measures designs. As we have seen before, if we want to look 
at Type III sums of squares (see Jane Superbrain Box 11.1) then we must specify contrasts, 
and the contrasts must also be orthogonal, otherwise the resulting sums of squares will not 
be the Type III ones that we’re expecting.

Let’s imagine that we predicted that because eyes and testicles resemble human body 
parts, celebrities would be more disgusted by eating them than witchetty grubs and stick 
insects (which are eaten whole and don’t resemble anything very human). Our first con-
trast might, therefore, compare the fish eye and kangaroo testicle (combined) to the witch-
etty grub and stick insect (combined). We need a second contrast then to separate the fish 
eye from the kangaroo testicle, and a third contrast to separate the witchetty grub from the 
stick insect. The resulting codes are in Table 13.3. 

Table 13.3  Orthogonal contrasts for the Animal variable

Group Contrast1 Contrast2 Contrast3

Stick insect 1 0 -1

Kangaroo testicle -1 -1 0

Fish eye -1 1 0

Witchetty grub 1 0 1

To set these orthogonal contrasts (see Chapter 10) we can first create variables represent-
ing each contrast (which is useful mainly because you can give the contrasts informative 
names), and then bind these variables together and set them as the contrast for Animal:

PartvsWhole<-c(1, -1, -1, 1)
TesticlevsEye<-c(0, -1, 1, 0)
StickvsGrub<-c(-1, 0, 0, 1)
contrasts(longBush$Animal)<-cbind(PartvsWhole, TesticlevsEye, StickvsGrub)

The first three commands each create a variable relating to a contrast that contains the 
codes for each group from Table 13.3. The final command sets these three variables to be 
the contrasts for Animal. We can check that we have set the contrast correctly by executing 
the name of the variable and looking at the contrast attribute:

longBush$Animal 

attr(,"contrasts")
                  PartvsWhole TesticlevsEye StickvsGrub
Stick Insect                1             0          -1
Kangaroo Testicle          -1            -1           0
Fish Eye                   -1             1           0
Witchetty Grub              1             0           1

Remembering that positive numbers are compared with negative and a zero means that the 
group is not involved at all, we can clearly see that the first contrast compares the eye and 
testicle (combined) with the stick insect and grub (combined). The second contrast ignores 
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the stick insect and witchetty grub and compares the testicle to the eye (not a sentence I’d 
ever envisaged using in a statistics textbook). The third contrast ignores the testicle and eye 
and compares the stick insect to the witchetty grub.

13.4.7.  �  Analysing repeated measures: two ways to
skin a .dat 2

13.4.7.1.  The easier (but slightly limited) way:  
repeated-measures ANOVA 2

To conduct an ANOVA using a repeated-measures design we can use the function ezANOVA() 
in the package ez. The advantage of this method is that it produces an output that resem-
bles what you’ll be used to seeing if you have ever attempted repeated-measures ANOVA 
using a different package (such as SPSS or SAS). It will also compute sphericity estimates 
and the aforementioned corrections for sphericity. The general format of this function is:

newModel<-ezANOVA(data = dataFrame, dv = .(outcome variable), wid = .(variable  
that identifies participants),  within = .(repeated measures predictors), 
between = .(between-group predictors), detailed = FALSE, type = 2)

This creates a model (newModel) from your dataframe (dataFrame). You can then set the 
following options:

MM dv: This is the variable containing the scores (i.e., the outcome variable). In this case 
the outcome was the time to retch, which is represented by the variable Retch.

MM wid: ezANOVA requires a variable that identifies the participants so that it can ascer-
tain from which participant a given score came. In our current dataframe this is the 
variable Participant.

MM within: This is a variable or list of variables representing the independent variables 
or predictors that were manipulated as repeated measures. In the current data this 
would be the variable Animal, which represents the type of food that was eaten.

MM between: This is a variable or list of variables representing the independent variables 
or predictors that were manipulated as between-group variables. In the current data 
we don’t have a variable manipulated in this way, but if you have a mixed design (as 
in the next chapter) you will need this option.

MM detailed: This option is set to FALSE by default, but setting it to TRUE gives you a 
slightly more detailed (and in my opinion useful) output.

MM type: This option determines the type of sums of squares. If omitted it defaults to type 
= 2, which produces Type II sums of squares. If you want Type III sums of squares 
(Jane Superbrain Box 11.1) then change this option to type = 3.

Note that some of these options take the form option = .(). Placing lists of variables within 
.() is just a convention of this function. It does not have any special significance, and does 
not have the power to turn you into a dragon.

Based on this description, hopefully you can see that we can run the ANOVA by executing:

bushModel<-ezANOVA(data = longBush, dv = .(Retch), wid = .(Participant),  
within = .(Animal), detailed = TRUE, type = 3)
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To see the output execute the model name:

bushModel

$ANOVA
Effect     DFn DFd  SSn     SSd       F        p       p<.05   ges
(Intercept) 1   7 990.125  17.375 398.899 1.973536e-07  *    0.8529
Animal      3  21  83.125 153.375   3.794 2.557030e-02  *    0.3274

$'Mauchly’s Test for Sphericity'

  Effect     W        p       p<.05
2 Animal 0.136248 0.04684581     *

$'Sphericity Corrections'

Effect    GGe       p[GG]   p[GG]<.05  HFe       p[HF]    p[HF]<.05
Animal 0.5328456 0.06258412           0.6657636 0.04833061    *

Output 13.2

Output 13.2 shows the results from ezANOVA(). We’ll begin with the sphericity informa-
tion. Mauchly’s test for sphericity (see also R’s Souls’ Tip 13.1) should be non-significant 
if we are to assume that the condition of sphericity has been met. The important column is 
the one containing the significance value (p) and in this case the value, .047, is less than the 
critical value of .05 (which is why there is an asterisk next to the p-value), so we reject the 
assumption that the variances of the differences between levels are equal. In other words, 
the assumption of sphericity has been violated, W = 0.14, p = .047. Knowing that we have 
violated this assumption a pertinent question is: how should we proceed?

We discovered earlier that there are two corrections based upon the estimates of spheri
city advocated by Greenhouse and Geisser (1959) and Huynh and Feldt (1976). Both of 
these estimates give rise to a correction factor that is applied to the degrees of freedom 
used to assess the observed F-ratio. The closer the Greenhouse–Geisser correction, ε̂, is to 
1, the more homogeneous the variances of differences, and hence the closer the data are 
to being spherical. In a situation in which there are four conditions (as with our data) the 
lower limit of ε̂ will be 1/(4−1), or .33. Output 13.2 shows that the calculated value of ε̂ 
is .533 (GGe in the output). This is closer to the lower limit of .33 than it is to the upper 
limit of 1 and it therefore represents a substantial deviation from sphericity. The output 
also contains the Huynh–Feldt estimate (HFe in the output), which is slightly closer to 1 

          R ’s  Souls ’  T ip  13 .1   My Mauchly’s test has vanished 2

Sometimes the output for Mauchly’s test is nowhere to be found. It has gone, vanished, been sucked into the 
void. ‘I must have done something wrong’, you think to yourself. You check your commands, rerun them, perhaps 
you reinstall R and try it all again. Still they will not return. Perhaps you rob a bank and buy a new computer, but 
still nothing. In despair, you turn to alcohol. Eventually a budding research career has evaporated like the alcohol 
on your breath.

Actually, you haven’t done anything wrong, so hold off on buying the gin, just for a while. The reason for the 
missing output is that (as I mentioned in section 13.2.1) you need at least three conditions for sphericity to be 
an issue (read that section if you want to know why). Therefore, if you have a repeated-measures variable that 
has only two levels then sphericity is met. Hence, the estimates of sphericity will be 1 (perfect sphericity) and the 
resulting significance test cannot be computed. Therefore, no output is generated. Maybe, a nice touch would be 
for it to print ‘Hooray! Hooray! Sphericity has gone away!’ We can dream.

13-Field_R-4368-Ch-13.indd   570 29/02/2012   5:50:59 PM



571CHAPTER 13   REPEATED-MEASURES DES IGNS (GLM 4)

than the Greenhouse–Geisser estimate (worryingly, it’s value is .666, which could be proof 
that our data are evil). We will come back to these estimates very shortly.

Output 13.2 also shows the results of the ANOVA for the within-subject variable. This 
table can be read in much the same way as for one-way between-group ANOVA (see 
Chapter 10). There is a sum of squares for the repeated-measures effect of Animal, which 
tells us how much of the total variability is explained by the experimental effect. Note 
the value of 83.13, which is the model sum of squares (SSM) that we calculated in section 
13.3.3. There is also an error term (SSd in the output), which is the amount of unexplained 
variation across the conditions of the repeated-measures variable. This is the residual sum 
of squares (SSR) that was calculated in section 13.3.4, and note that the value is 153.38 
(which is the same value as we calculated). As I explained earlier, these sums of squares are 
converted into mean squares by dividing by the degrees of freedom. As we saw before, the 
df for the effect of Animal (DFn in the output) is simply k − 1, where k is the number of 
levels of the independent variable. The error df (DFd in the output) is (n − 1)(k −1), where 
n is the number of participants (or in this case, the number of celebrities) and k is as before.
The F-ratio is obtained by dividing the mean squares for the experimental effect (27.71) by 
the error mean squares (7.30). As with between-group ANOVA, this test statistic represents 
the ratio of systematic variance to unsystematic variance. The value of F = 3.79 (the same 
as we calculated earlier) is then compared against a critical value for 3 and 21 degrees of 
freedom. R displays the exact significance level for the F-ratio. The significance of F is 
.026, which is significant because it is less than the criterion value of .05: the output help-
fully places an asterisk next to any values that are significant at .05 in the column labelled 
p<.05.  We can, therefore, conclude that there was a significant difference between the four 
animals in their capacity to induce retching when eaten. However, this main test does not 
tell us which animals differed from each other.

Although this result seems very plausible, we have learnt that the violation of the sphe-
ricity assumption makes the F-test inaccurate. We know from Output 13.2 that these data 
were non-spherical and so we need to make allowances for this violation. Output 13.2 also 
contains p-values that have been corrected using the Greenhouse–Geisser and Huynh–Feldt 
corrections (Jane Superbrain Box 13.3); these are labelled p[GG] and p[HF], respectively. 
For these data the corrections result in the observed F being non-significant when using the 
Greenhouse–Geisser correction (because p = .063, which is greater than .05). However, it 
was noted earlier that this correction is quite conservative, and so can miss effects that gen-
uinely exist. It is, therefore, useful to consult the Huynh–Feldt corrected p-value as well. 

the degrees of freedom associated with the F-statistic 
(therefore, the critical value against which the obtained 
F-statistic is compared changes). The F-ratio itself remains 
unchanged. The degrees of freedom are adjusted by 
multiplying them by the estimate of sphericity shown  
in Output 13.2 (see the previous Oliver Twisted). For 
example, the Greenhouse–Geisser estimate of sphericity 
was .533. The original degrees of freedom for the model 
were 3; this value is corrected by multiplying by the esti-
mate of sphericity (3 × .533 = 1.599). Likewise the error 
df was 21; this value is corrected in the same way (21 × 
.533 = 11.19). The F-ratio is then tested against a critical 
value with these new degrees of freedom (1.599, 11.19). 
The Huynh–Feldt correction is applied in the same way.

The Greenhouse–Geisser and Huynh–Feldt adjusted 
p-values are calculated by making an adjustment to 

JANE SUPERBRAIN 13.3

Adjusting for sphericity 3
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Using this correction, the F-value is still significant because the probability value of .048 is 
just below the criterion value of .05. So, by this correction, we would accept the hypothesis 
that the type of animal eaten affected the time to retch. However, it was also noted earlier 
that this correction is quite liberal and so tends to accept values as significant when, in real-
ity, they are not significant. This leaves us with the puzzling dilemma of whether or not to 
accept this F-statistic as significant (and also illustrates how ridiculous it is to have a fixed 
criterion like .05 against which to determine significance).

I mentioned earlier that Stevens (2002) recommends taking an average of the two esti-
mates, and certainly when the two corrections give different results (as is the case here) 
this can be useful. If the two corrections give rise to the same conclusion it makes little 
difference which you choose to report (although if you accept the F-statistic as significant 
you might as well report the more conservative Greenhouse–Geisser estimate to avoid 
criticism). Although it is easy to calculate the average of the two correction factors and 
to correct the degrees of freedom accordingly, it is not so easy to then calculate an exact 
probability for those degrees of freedom. Therefore, should you ever be faced with this 
perplexing situation (and to be honest that’s fairly unlikely) I recommend taking an aver-
age of the two significance values to give you a rough idea of which correction is giving the 
most accurate answer. In this case, the average of the two p-values is (.063 + .048)/2 = .056. 
Therefore, we should probably go with the Greenhouse–Geisser correction and conclude 
that the F-ratio is non-significant.

These data illustrate how important it is to use a valid critical value of F: it can potentially 
mean the difference between making a Type I error and not. However, it also highlights how 
arbitrary it is that we use a .05 level of significance. These two corrections produce signifi-
cance values that differ by only .015 and yet they lead to completely opposite conclusions. 
The decision about ‘significance’ has, in some ways, become rather arbitrary. The F, and hence 
the size of effect, is unaffected by these corrections and so whether the p falls slightly above or 
slightly below .05 is less important than how big the effect is. We might be well advised to look 
at an effect size to see whether the effect is substantive regardless of its significance.

In terms of post hoc tests, we can use the pairwise.t.test() function that we have used in 
previous chapters (see Chapter 10 in particular). The format of this option is exactly the 
same as before except that we need to add the option paired = TRUE to reflect the fact that 
means are dependent (so, we’re asking for paired t-tests rather than independent t-tests). 
To get post hoc tests for the current data, execute:

pairwise.t.test(longBush$Retch, longBush$Animal, paired = TRUE, p.adjust.
method = "bonferroni")
	
Pairwise comparisons using paired t tests 

data:  longBush$Retch and longBush$Animal 

                  Stick Insect Kangaroo Testicle Fish Eye
Kangaroo Testicle 0.0121       -                 -       
Fish Eye          0.0056       1.0000            -       
Witchetty Grub    1.0000       1.0000            1.0000  

P value adjustment method: bonferroni

Output 13.3

Output 13.3 shows the results of the post hoc tests. We can see that the time to retch was 
significantly longer after eating a stick insect compared to a kangaroo testicle (p = .012) 
and a fish eye (p = .006) but not compared to a witchetty grub. The time to retch after 
eating a kangaroo testicle was not significantly different than after eating a fish eyeball or 
witchetty grub (both ps > .05). Finally, the time to retch was not significantly different after 
eating a fish eyeball compared to a witchetty grub (p > .05).

13-Field_R-4368-Ch-13.indd   572 29/02/2012   5:51:00 PM



573CHAPTER 13   REPEATED-MEASURES DES IGNS (GLM 4)

13.4.7.2.  The slightly more complicated way:  
the multilevel approach 2

The most complicated thing about the slightly more complicated way is trying to explain 
it; it is not actually that hard to do. The method we will use is known as a multilevel linear 
model, and the whole of Chapter 19 is dedicated to explaining these models. Therefore, 
I’m going to gloss over some of the details and refer you to that chapter if you want to get 
a better understanding of what we’re doing. In short, a multilevel model is simply a regres-
sion or linear model that considers dependency in the data. We learnt in Chapter 7 that 
one of the assumptions of regression was that residuals (errors) needed to be independent. 
If they’re not, demons will rise from statistics hell and waggle their reproductive organs at 
us. Repeated-measures designs, as we have seen, have dependent data, therefore depend-
ent residuals; if we try to analyse them with an ordinary regression, we need to prepare 
ourselves to run screaming from the demons’ ….

A multilevel model is an extension of regression that handles dependent data by expli
citly modelling the dependency. It is, therefore, very well suited to repeated-measures 
experimental designs. One advantage of this approach is that we can continue to think 
about the analysis as a linear model; we just use a different function, lme(), rather than 
aov(), which will allow us to model the fact that some scores come from the same entities 
and are, therefore, correlated.

We saw in Chapter 10 that we can write a one-way ANOVA as a linear model in R as:

newModel<-aov(outcome ~ predictor, data = dataFrame)

In the current example we’re trying to predict the time taken to retch (Retch) from the 
type of animal eaten (Animal), and our dataframe is called longBush. Therefore, we could 
write our model as:

bushModel<-aov(Retch ~ Animal, data = longBush)

However, this model takes no account of the fact that the predictor (Animal) is made up 
of data from the same people (and thus dependent). As it stands, we would violate an 
assumption of our linear model. We need to factor this dependency into the model.5 We 
can do this using lme(), which has an option random that enables us to specify that there is 
variability in participants’ propensities to retch within the variable Animal.

The general format of lme() is as follows:

newModel <-lme(outcome ~ predictor(s), random = random effects, data = 
dataFrame, method = "ML")

The key thing to focus on is that this command is basically exactly the same as if we had 
used the lm() and aov() functions. We simply specify our outcome and predictor variables. 
However, there are two additional options. The first is to specify a method. The default 
is something known as restricted maximum-likelihood estimation (REML), but – for vari-
ous reasons that we’ll get into in Chapter 19 – it’s preferable to use maximum likelihood 
(ML), so always set the method to be “ML” when doing repeated-measures ANOVA. The 
second option is random =, which allows us to specify any random effects. Again, we’ll get 
into what random effects are in Chapter 19, because it’s quite complicated. However, for 

5 We can do this using aov() by adding an error term to the model that is based on within-participant variability 
across different animals, Error(Participant/Animal):

bushModel<-aov(Retch ~ Animal + Error(Participant/Animal), data = longBush)

However, the resulting model would still be assessed using an F-ratio which means that we need to worry about 
sphericity, which is slightly irritating because aov() won’t throw out sphericity-corrected estimates, or indeed the 
estimates themselves. For this reason, I favour using lme() and forgetting that sphercity even exists.
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now I’ll just say that in the current context a random effect is an effect that can vary across 
different entities. For example, if we want to model the fact that people’s overall threshold 
to retch will vary, we can write this as random = ~1|Participant/Animal. All this means 
is that if you look at the variable Participant within the variable Animal (that’s what the 
‘Participant/Animal’ bit means), then overall levels (that’s represented by 1) of the outcome 
(time to retch) vary. By including this term, we’re telling the model that data with the same 
value of Participant within different levels of Animal are dependent (i.e., from the same 
person). I know, it’s a bit of a head crusher.

Whether any of that made sense or not, trust me that we can specify our model as

bushModel<-lme(Retch ~ Animal, random = ~1|Participant/Animal, data = long-
Bush, method = "ML")

Notice that we have defined the model in exactly the same was as for aov(), we have simply 
added in a term that lets the model know that the variable Animal is made up of the same 
participants repeated multiple times across the variable Animal (random = ~1|Participant/
Animal). If we execute this model and ask for a summary, we will get a set of parameters 
that relate to the contrasts that we set earlier for Animal. If we want to test whether Animal 
had an overall effect, then we need to compare the model that we have just created to 
one in which the predictor is absent. To do this, we create another model, but rather than 
include Animal as a predictor, we include only the intercept (which we denote with ‘1’). As 
such we create the baseline model as follows:

baseline<-lme(Retch ~ 1, random = ~1|Participant/Animal, data = longBush, 
method = "ML")

Notice that this command is exactly the same as before except that the model is ‘Retch ~ 1’ 
rather than ‘Retch ~ Animal’.6 By comparing these models we can see whether adding the 
variable Animal as a predictor significantly improves the model (in other words, by using 
group means to predict the speed of retching, does the model fit the data better than when 
we don’t include this predictor?). To compare the models (see section 7.8.4.2) execute:

anova(baseline, bushModel)

Output 13.5 shows the comparison of the baseline model and the model that includes 
Animal as a predictor (bushModel). The degrees of freedom change from 4 for the baseline 
model to 7 for bushModel, which is a difference of 3. This is because Animal has been 
coded with three contrasts, which means that three parameters (one for each contrast) have 
been added to the model. The AIC and BIC tell us about the fit of the model (smaller values 
mean a better fit). The fact that these values are smaller in the final model than the baseline 
tells us that the fit of the model has got better. The likelihood ratio (L.Ratio in the output) 
tells us whether this improvement in fit is significant, and because the p-value of .0054 is 
less than .05 it is. Therefore, Animal is a significant predictor of Retch. We can conclude, 
then, that the type of animal consumed had a significant effect on the time taken to retch, 
χ2(3) = 12.69, p = .005.

       Model df    AIC      BIC    logLik   Test  L.Ratio p-value
baseline  1  4 165.0875 170.9504 -78.54373                        
bushModel 2  7 158.3949 168.6551 -72.19747 1 vs 2 12.69253  0.0054

Output 13.4

6 In actual fact when we write ‘Retch ~ Animal’ the model that we get is ‘Retch ~ 1 + Animal’. The ‘1’ is the 
intercept and R incudes it automatically (which is why we don’t have to explicitly mention the ‘1’ when we start 
including predictors in the model). You can see, then, that the baseline and final models differ only in the inclusion 
of Animal as a predictor; therefore, if the final model is a significantly better fit of the data than the baseline then 
this finding tells us that Animal is a significant predictor of Retch.
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We can further explore the model by executing:

summary(bushModel)

Output 13.5 shows the parameter estimates for the model. Most important, these include 
the parameters for the three contrasts that we set. First, when we compare whole animals 
(stick insect and witchetty grub combined) to animal parts (testicle and eye) retching times 
were significantly different, b = 1.38, t(21) = 3.15, p = .005.  From the descriptive statistics 
(Output 13.1) it looks as though people retched more quickly after eating parts of animals 
((4.25 + 4.125)/2 = 4.188) than whole animals ((8.125 + 5.75)/2 = 6.938). The second 
contrast tells us that there was no significant difference in the time to retch after eating a 
kangaroo testicle and a fish eye, b = −0.063, t(21) = −0.101, p = .920. The final contrast 
tells us that there was a trend for retching times to be shorter after eating a witchetty grub 
(M = 5.75) than a stick insect (M = 8.125), b = −1.188, t(21) = −1.924, p = .068.

Formula: ~1 | Animal %in% Participant
        (Intercept)   Residual
StdDev:    2.309935 0.01176165

Fixed effects: Retch ~ Animal 
                      Value Std.Error DF   t-value p-value
(Intercept)          5.5625 0.4365423 21 12.742178  0.0000
AnimalPartvsWhole    1.3750 0.4365423 21  3.149752  0.0048
AnimalTesticlevsEye -0.0625 0.6173641 21 -0.101237  0.9203
AnimalStickvsGrub   -1.1875 0.6173641 21 -1.923500  0.0681

Output 13.5

Although the contrasts tell us everything we need to know, if there had not been a 
logical set of contrasts to do we might have done post hoc tests. We can, of course, use 
the pairwise.t.test() function as explained in the previous section. However, by doing the 
analysis in the slightly more complicated way, we also have the option to use the glht() 
function that we have used in previous chapters (see Chapter 10 in particular). The format 
of this option is exactly the same as when we have used this function before; therefore, to 
get post hoc tests for the current data, execute: 

postHocs<-glht(bushModel, linfct = mcp(Animal = "Tukey"))

summary(postHocs)

confint(postHocs)	

Linear Hypotheses:
                             Estimate Std. Error z value Pr(>|z|)   
Testicle - Stick Insect == 0  -3.875      1.155  -3.355  0.00444 **
Fish Eye - Stick Insect == 0  -4.000      1.155  -3.463  0.00319 **
Witchetty - Stick Insect == 0 -2.375      1.155  -2.056  0.16759   
Fish Eye - Testicle == 0      -0.125      1.155  -0.108  0.99955   
Witchetty - Testicle == 0      1.500      1.155   1.299  0.56371   
Witchetty - Fish Eye == 0      1.625      1.155   1.407  0.49492

	  Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:
                                        Estimate lwr     upr    
Kangaroo Testicle - Stick Insect == 0   -3.8750  -6.8401 -0.9099
Fish Eye - Stick Insect == 0            -4.0000  -6.9651 -1.0349
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Witchetty Grub - Stick Insect == 0      -2.3750  -5.3401  0.5901
Fish Eye - Kangaroo Testicle == 0       -0.1250  -3.0901  2.8401
Witchetty Grub - Kangaroo Testicle == 0  1.5000  -1.4651  4.4651
Witchetty Grub - Fish Eye == 0           1.6250  -1.3401  4.5901

Output 13.6

Output 13.6 shows the results of the post hoc tests. We can see that the time to retch was 
significantly longer after eating a stick insect compared to a kangaroo testicle (p = .004) 
and a fish eye (p = .003) but not compared to a witchetty grub. The time to retch after 
eating a kangaroo testicle was not significantly different to after eating a fish eyeball or 
witchetty grub (both ps > .05). Finally, the time to retch was not significantly different after 
eating a fish eyeball compared to a witchetty grub (p > .05).

             CRAMMING SAM’S TIPS    Repeated-measures ANOVA

•	 The one-way repeated-measures ANOVA compares several means, when those means have come from the same partici-
pants; for example, if you measured people’s statistical ability each month over a year-long course.

•	 There are several ways to do repeated-measures ANOVA. One is a conventional ANOVA approach using the ezANOVA() func-
tion; the other is to use a multilevel linear model using the lme() function.

•	 In repeated-measures ANOVA there is an additional assumption: sphericity. This assumption needs to be considered only 
when you have three or more repeated-measures conditions. If you use the ezANOVA() function then test for sphericity using 
Mauchly’s test. If the p-value is less than .05 then the assumption is violated. If the significance of Mauchly’s test is greater 
than .05 then the assumption of sphericity has been met.

•	 If the assumption of sphericity has been met then use the p-value for the main ANOVA. If the assumption was violated then 
read the p-value corrected using either the Greenhouse–Geisser (p[GG]) or Huynh–Feldt (p[HF]) estimate of sphericity (read 
this chapter to find out the relative merits of the two procedures). If the p-value is less than .05 then the means of the groups 
are significantly different.

•	 If you use lme() then you can forget about sphericity.
•	 For contrasts and post hoc tests, again look to the p-values to discover if your comparisons are significant (they will be if the 

significance value is less than .05).

13.4.8.    Robust one-way repeated-measures ANOVA 3

As with the other ANOVAs we have encountered, Wilcox (2005) describes robust proce-
dures for conducting one-way repeated-measures ANOVA. To access these we need to again 
load the WRS package (see section 5.8.4.). There are four functions that we will look at: 

•	 rmanova(): This performs one-way repeated-measures ANOVA on trimmed means.
•	 rmmcp(): This performs post hoc tests for one-way repeated-measures design based 

on trimmed means.
•	 rmanovab(): This performs one-way repeated-measures ANOVA using a bootstrap 

procedure.
•	 pairdepb(): This performs post hoc tests for the above function.

These functions need the data to be in wide format rather than long (see Chapter 3). 
However, the data were originally in this format so we can simply reuse these (remember 
they are stored in an object called bushData). The data look like this:
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participant stick_insect kangaroo_testicle fish_eye witchetty_grub
P1            8                 7        1              6
P2            9                 5        2              5
P3            6                 2        3              8
P4            5                 3        1              9
P5            8                 4        5              8
P6            7                 5        6              7
P7           10                 2        7              2
P8           12                 6        8              1

We want only the scores so we need to get rid of the participant variable. The partici-
pant variable is in the first column, so we could create a new dataframe (bushData2) that 
excludes this first column by executing:

bushData2<-bushData[, -c(1)]

This command takes the bushData object and retains all of the rows (hence no command 
before the comma) but drops column 1 by specifying −c(1), the minus sign means ‘delete’ 
in this context. The new dataframe now contains only the scores:

bushData2

stick_insect kangaroo_testicle fish_eye witchetty_grub
 8                 7        1              6
 9                 5        2              5
 6                 2        3              8
 5                 3        1              9
 8                 4        5              8
 7                 5        6              7
10                 2        7              2
12                 6        8              1

The function rmanova() takes the general form:

rmanova(data, tr = .2)

As with other functions we’ve encountered, the level of trimming is by default 20% (tr = 
.2), but can be changed by including the tr = option. Also, the default alpha level is .05. 
Assuming we are happy with the default level of trimming, we need only specify the data-
frame (bushData2); therefore, we can do one-way repeated-measures ANOVA based on 
trimmed means by executing:

rmanova(bushData2)

The function rmanovab() has the format:

rmanovab(data, tr = .2, alpha = .05, nboot = 599) 

The main differences are an option to control the number of bootstrap samples (nboot), 
and an option to change the level of significance (the default of .05 is fine though). I would 
normally use 2000 bootstrap samples, so if we wanted to change this option, but leave the 
default level of trim (20%) and alpha (.05) then we can run the analysis for the current 
data by executing:

rmanovab(bushData2, nboot = 2000)

The output of both of these commands is shown in Output 13.7. For rmanova() (left-
hand side of Output 13.7) we are given a test statistic, F, for the effect of animal ($test), the 
degrees of freedom ($df), the p-value ($siglevel), the group means ($tmeans). Given that 
the significance level (.1002) is greater than .05, we can say that there were no significant 
differences in retch times after eating different animals, F(2.31, 11.55) = 2.75, p = .100. 
(Note that I have reported the test statistic, its degrees of freedom and the p-value, which 
you can find in the output.)
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rmanova() rmanovab()
[1] "The number of groups 
to be compared is"

1] "The number of groups 
to be compared is"

[1] 4 [1] 4

$test $teststat

[1] 2.752794 [1] 2.752794

$df $crit

[1]  2.309193 11.545964 [1] 4.841391 

$siglevel

[1] 0.1002

$tmeans

[1] 8.000000 4.166667 
4.000000 6.000000

$ehat

[1] 0.5873188

$etil

[1] 0.7697309

Output 13.7

The output of rmanovab() (right-hand side of Output 13.7) tells us much the same 
things, but we get only a test statistic ($teststat) and the critical value for this statistic at a 
.05 level of significance ($crit). If the test statistic is significant at p < .05 (or whatever alpha 
you specified if you didn’t use the default value) then the test statistic should be greater 
than the critical value. In this case, the test statistic (2.75) is less than the critical value 
(4.84) indicating no significant differences in retch times after eating different animals, F = 
2.75, Fcrit = 4.84, p > .05. Both of these robust methods yield non-significant results (unlike 
the multilevel models).

The post hoc tests for each analysis are conducted using the same command structure. 
Assuming you leave the default options, to run post hoc tests based on a 20% trimmed 
mean, execute:7

rmmcp(bushData2)

To conduct post hoc tests based on trimmed means and a bootstrap:

pairdepb(bushData2, nboot = 2000)

Output 13.8 shows the post hoc tests based on trimmed means (rmmcp). If the value of 
p.value is less than the critical value (p.crit) and the confidence interval does not cross zero 
then the comparison is significant. The columns labelled group tell you which groups are 
being compared (the numbers relate to the columns in the dataframe). 

MM [1,] tests the difference between the stick insect and kangaroo testicle. This contrast is 
not significant because p.value (.014) is greater than p.crit (.010) and the confidence 
interval crosses zero.

7 Obviously if you changed the level of trim for the main analysis you would need to do the same here. For 
example, for 15% trimmed means:

rmanova(bushData2, tr = .15)
rmmcp(bushData2, tr = .15)
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MM [2,] tests the difference between the stick insect and fish eye. This difference is not 
significant because p.value (.012) is greater than p.crit (.009) and the confidence 
interval crosses zero.

MM [3,] tests the difference between the stick insect and witchetty grub. This difference is 
not significant because p.value (.441) is greater than p.crit (.017) and the confidence 
interval crosses zero.

MM [4,] tests the difference between the kangaroo testicle and fish eye. This difference 
is not significant because p.value (1) is greater than p.crit (.05) and the confidence 
interval crosses zero.

MM [5,] tests the difference between the kangaroo testicle and witchetty grub. This dif-
ference is not significant because p.value (.344) is greater than p.crit (.013) and the 
confidence interval crosses zero.

MM [6,] tests the difference between the fish eye and witchetty grub. This difference is 
not significant because p.value (.460) is greater than p.crit (.025) and the confidence 
interval crosses zero.

We could report that there was no significant difference between the time to retch after 
eating a stick insect compared to a kangaroo testicle, ̂ = 3.67 (−0.48, 7.82), p > .05, fish 
eye ̂ = 4.00 (−0.36, 8.36), p > .05, or witchetty grub ̂ = 2.00 (−8.10, 12.10), p > .05; or 
a kangaroo testicle compared to a fish eye ̂ = 0 (−5.39, 5.39), p > .05, or witchetty grub 
̂ = −1.83 (−9.23, 5.57), p > .05; or a fish eye compared to a witchetty grub ̂ = −2.00 
(−12.55, 8.55), p > .05. Note that in each case I have reported psihat and its confidence 
interval.

$test
     Group Group       test    p.value  p.crit        se
[1,]     1     2  3.7282016 0.01359625 0.01020 0.9834947
[2,]     1     3  3.8733436 0.01172054 0.00851 1.0326995
[3,]     1     4  0.8355727 0.44148206 0.01690 2.3935678
[4,]     2     3  0.0000000 1.00000000 0.05000 1.2769904
[5,]     2     4 -1.0454201 0.34371248 0.01270 1.7536809
[6,]     3     4 -0.8000000 0.46001407 0.02500 2.5000000

$psihat
     Group Group    psihat    ci.lower  ci.upper
[1,]     1     2  3.666667  -0.4830017  7.816335
[2,]     1     3  4.000000  -0.3572784  8.357278
[3,]     1     4  2.000000  -8.0992023 12.099202
[4,]     2     3  0.000000  -5.3880170  5.388017
[5,]     2     4 -1.833333  -9.2326553  5.565989
[6,]     3     4 -2.000000 -12.5482728  8.548273

$con
     [,1]
[1,]    0

$num.sig
[1] 0

Output 13.8

Output 13.9 shows the post hoc tests based on trimmed means and a bootstrap (pairdepb).  
The interpretation of these results is similar to that for the trimmed means. If the value of 
test is greater than the critical value ($crit) and the confidence interval does not cross zero 
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then the contrast is significant. Therefore, we’re comparing each value of test against 4.98; 
as you can see, all values of test are smaller than this value and their confidence intervals 
cross zero, so we can conclude that none of the groups differ significantly.

We could again report that (note that the values and confidence intervals for psihat 
have changed): there was no significant difference between the time to retch after eating 
a stick insect compared to a kangaroo testicle, ̂ = 3.83 (−0.70, 8.37), p > .05, fish eye 
̂ = 4.00 (−1.15, 9.15), p > .05, or witchetty grub ̂ = 2.00 (−7.78, 11.78), p > .05; or a 
kangaroo testicle compared to a fish eye ̂ = 0.17 (−7.27, 7.61), p > .05, or witchetty grub 
̂ = −1.83 (−9.76, 6.09), p > .05; or a fish eye compared to a witchetty grub ̂ = −2.00 
(−12.90, 8.90), p > .05. 

[1] "Taking bootstrap samples. Please wait."
$test
     Group Group       test        se
[1,]     1     2  4.2097438 0.9105859
[2,]     1     3  3.8729833 1.0327956
[3,]     1     4  1.0192944 1.9621417
[4,]     2     3  0.1116291 1.4930394
[5,]     2     4 -1.1527967 1.5903354
[6,]     3     4 -0.9144599 2.1870833

$psihat
     Group Group     psihat    ci.lower  ci.upper
[1,]     1     2  3.8333333  -0.7038692  8.370536
[2,]     1     3  4.0000000  -1.1461402  9.146140
[3,]     1     4  2.0000000  -7.7768199 11.776820
[4,]     2     3  0.1666667  -7.2727438  7.606077
[5,]     2     4 -1.8333333  -9.7575433  6.090877
[6,]     3     4 -2.0000000 -12.8976429  8.897643

$crit
[1] 4.982729

Output 13.9

13.5.  Effect sizes for repeated-measures designs 3

As with independent ANOVA, the best measure of the overall effect size is omega squared 
(ω2). However, just to make life even more complicated than it already is, the equations 
we’ve previously used for omega squared can’t be used for repeated-measures data. If you 
do use the same equation on repeated-measures data it will slightly overestimate the effect 
size. For the sake of simplicity some people do use the same equation for one-way inde-
pendent and repeated-measures ANOVAs (and I’m guilty of this in another book), but if 
you want to hit simplicity in the face with Stingy the particularly poison-ridden jellyfish, 
and embrace complexity like a particularly hot date, then the equation is (hang onto your 
hats):
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I know what you’re thinking, and it’s something along the lines of ‘are you having a 
laugh?’. Well, no, I’m not, but really the equation isn’t too bad if you break it down. 
First, there are some mean squares that we’ve come across before (and calculated before). 
There’s the mean square for the model (MSM) and the residual mean square (MSR) both 
of which we calculated earlier in the chapter. There’s also k, the number of conditions in 
the experiment, which for these data would be 4 (there were four animals), and there’s 
n, the number of people who took part (in this case, the number of celebrities, 8). The 
main problem is that we have all of these values from calculating everything by hand, but 
why would you ever calculate an ANOVA by hand except if you were writing a competing 
textbook?

A practical solution is to use generalized eta-squared (Bakeman, 2005) because it is pro-
duced by ezANOVA() in the column labelled ges. We can see from Output 13.2 that the 
value for Animal is .3274. 

I’ve mentioned at various other points that it’s actually more useful to have effect size 
measures for focused comparisons anyway (rather than the main ANOVA), and so a slightly 
easier approach to calculating effect sizes is to calculate them for the contrasts we did (see 
Output 13.5). We can use the equation that we’ve seen before to convert the t-values to r:

r
t

t df
=

+

2

2

Remember in section 10.7 we wrote a function to compute this called rcontrast(), which you 
should be able to use if you have the package associated with this book, DSUR, loaded – see 
section 3.4.5). We can use this function to calculate r for the contrasts we did by executing 
these commands (the values of t and df come from Output 13.5):

rcontrast(3.149752, 21)
rcontrast(-0.101237, 21)
rcontrast(-1.923500, 21)

The resulting values of r are

[1] "r =  0.566434937677424"
[1] "r =  0.0220863356562026"
[1] "r =  0.387030341310243"

which show that the difference between body parts and whole animals was a large effect 
(r = .57), between the stick insect and witchetty grub a medium effect (r = .39), but between 
the testicle and eyeball a very small effect (r = .02).

13.6.  Reporting one-way  
repeated-measures designs 2

What we report when we conduct repeated-measures ANOVA depends on how we do it. If 
you have used a traditional ANOVA approach (e.g., using ezANOVA) then you report the 
same details as with an independent ANOVA. The only additional thing we should concern 
ourselves with is reporting the corrected degrees of freedom if sphericity was violated. 
Personally, I’m also keen on reporting the results of sphericity tests as well. As with the 
independent ANOVA, the degrees of freedom used to assess the F-ratio are the degrees of 
freedom for the effect of the model (dfM = 1.60) and the degrees of freedom for the residu-
als of the model (dfR = 11.19). Remember that in this example we corrected both using the 

13-Field_R-4368-Ch-13.indd   581 29/02/2012   5:51:01 PM



582 D ISCOVER ING STAT IST ICS  US ING R

Greenhouse–Geisser estimates of sphericity, which is why the degrees of freedom are as 
they are. Therefore, we could report the main finding as:

✓	 Mauchly’s test indicated that the assumption of sphericity had been violated, χ2(5) = 
11.41, p < .05, therefore Greenhouse–Geisser corrected tests are reported (ε = .53). 
The results show that the time to retch was not significantly affected by the type of 
animal eaten, F(1.60, 11.19) = 3.79, p > .05, η2 = . 327.

Alternatively, we could report the Huynh–Feldt corrected values: 

✓	 Mauchly’s test indicated that the assumption of sphericity had been violated, χ2(5) = 
11.41, p < .05, therefore degrees of freedom were corrected using Huynh–Feldt esti-
mates of sphericity (ε = .67). The results show that the time to retch was significantly 
affected by the type of animal eaten, F(2, 13.98) = 3.79, p < .05, η2 = . 327.

If you have done a multilevel model then you would write your results differently (you 
could also put the results in a table as in section 19.8):

✓	 The type of animal consumed had a significant effect on the time taken to retch, χ2(3) 
= 12.69, p = .005. Orthogonal contrasts revealed that retching times were signifi-
cantly quicker for animal parts (testicle and eye) compared to whole animals (stick 
insect and witchetty grub), b = 1.38, t(21) = 3.15, p = .005; there was no significant 
difference in the time to retch after eating a kangaroo testicle and a fish eye, b = 
−0.063, t(21) = −0.101, p = .920, or between eating a witchetty grub or a stick insect, 
b = −1.188, t(21) = −1.924, p = .068.

          Labcoat  Len i ’s  Real  Research 13 .1   �Who’s afraid of the big 
bad wolf? 2

Field, A. P. (2006). Journal of Abnormal Psychology, 115(4), 742–752.

I’m going to let my ego get the better of me and talk about some of my own research. When I’m not scaring my 
students with statistics, I scare small children with Australian marsupials. There is a good reason for doing this, 
which is to try to discover how children develop fears (which will help us to prevent them). Most of my research 
looks at the effect of giving children information about animals or situations that are novel to them (rather like 
a parent, teacher or TV show would do). In one particular study (Field, 2006), I used three novel animals (the 
quoll, quokka and cuscus) and children were told negative things about one of the animals, positive things about 
another, and were given no information about the third (our control). I then asked the children to place their hands 
in three wooden boxes, each of which they believed contained one of the aforementioned animals. My hypothesis 
was that they would take longer to place their hand in the box containing the animal about which they had heard 
negative information.

The data from this part of the study are in the file Field(2006).dat. Labcoat Leni wants you to carry out a one-
way repeated-measures ANOVA on the times taken for children to place their hands in the three boxes (negative 
information, positive information, no information). First, draw an error bar graph of the means, then do some nor-
mality tests on the data, then do a log transformation on the scores, and do the ANOVA on these log-transformed 
scores (if you read the paper, you’ll notice that I found that the data were not normal, so I log-transformed them 

before doing the ANOVA). Do children take longer to put their hands in a box that they believe contains 
an animal about which they have been told nasty things? 

Answers are in the additional material on the companion website (or look at page 748 in the original 
article).
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13.7.  Factorial repeated-measures designs 2

We have seen already that simple between-group designs can be extended to incorporate a 
second (or third) independent variable. It is equally easy to incorporate a second, third or 
even fourth independent variable into a repeated-measures analysis. 

There is evidence from advertising research that attitudes towards stimuli can be changed 
using positive imagery (e.g., Stuart, Shimp, & Engle, 1987). As part of an initiative to stop 
binge drinking in teenagers, the government funded some scientists to look at whether neg-
ative imagery could be used to make teenagers’ attitudes towards alcohol more negative. 
The scientists designed a study to address this issue by comparing the effects of negative 
imagery against positive and neutral imagery for different types of drinks. Table 13.4 illus-
trates the experimental design and contains the data for this example (each row represents 
a single participant).

Participants viewed a total of nine mock adverts over three sessions. In one session, they 
saw three adverts: (1) a brand of beer (Brain Death) presented with a negative image (a 
dead body with the slogan ‘drinking Brain Death makes your liver explode’); (2) a brand 
of wine (Dangleberry) presented in the context of a positive image (a sexy naked man or 
woman – depending on the participant’s preference – and the slogan ‘drinking Dangleberry 
wine makes you irresistible’); and (3) a brand of water (Puritan) presented alongside a neu-
tral image (a person watching television accompanied by the slogan ‘drinking Puritan water 
makes you behave completely normally’). In a second session (a week later), the participants 

Table 13.4  Data from Attitude.dat

Drink Beer Wine Water

Imagery +ve −ve Neut +ve −ve Neut +ve −ve Neut

Male 1 6 5 38 -5 4 10 -14 -2

43 30 8 20 -12 4 9 -10 -13

15 15 12 20 -15 6 6 -16 1

40 30 19 28 -4 0 20 -10 2

8 12 8 11 -2 6 27 5 -5

17 17 15 17 -6 6 9 −6 -13

30 21 21 15 -2 16 19 -20 3

34 23 28 27 -7 7 12 -12 2

34 20 26 24 -10 12 12 -9 4

26 27 27 23 -15 14 21 -6 0

Female 1 -19 -10 28 -13 13 33 -2 9

7 -18 6 26 -16 19 23 -17 5

22 -8 4 34 -23 14 21 -19 0

30 -6 3 32 -22 21 17 -11 4

40 -6 0 24 -9 19 15 -10 2

15 -9 4 29 -18 7 13 -17 8

20 -17 9 30 -17 12 16 -4 10

9 -12 -5 24 -15 18 17 -4 8

14 -11 7 34 -14 20 19 -1 12

15 -6 13 23 -15 15 29 -1 10

13-Field_R-4368-Ch-13.indd   583 29/02/2012   5:51:02 PM



584 D ISCOVER ING STAT IST ICS  US ING R

saw the same three brands, but this time Brain Death was accompanied by the positive imag-
ery, Dangleberry by the neutral image and Puritan by the negative. In a third session, the 
participants saw Brain Death accompanied by the neutral image, Dangleberry by the nega-
tive image and Puritan by the positive. After each advert participants were asked to rate the 
drinks on a scale ranging from −100 (dislike very much) through 0 (neutral) to 100 (like very 
much). The order of adverts was randomized, as was the order in which people participated 
in the three sessions. This design is quite complex. There are two independent variables: 
the type of drink (beer, wine or water) and the type of imagery used (positive, negative or 
neutral). These two variables completely cross over, producing nine experimental conditions. 

13.7.1.    Entering the data 2

The data for the example can be found in the file Attitude.dat. You can load this data file 
by setting your working directory to the appropriate location and executing:

attitudeData<-read.delim("Attitude.dat", header = TRUE)

I have again structured the data in the format that you’d be most likely to use if you had 
entered the data in another software package and followed the usual conventions. The 
data have been entered in ‘wide’ format; that is, levels of the repeated-measures variable are 
spread across different columns. 

In this experiment there are nine experimental conditions and so the data have been 
entered in nine columns (so the format is identical to Table 13.4):

beerpos Beer + Sexy Person

beerneg Beer + Corpse

beerneut Beer + Person in Armchair

winepos Wine + Sexy Person

wineneg Wine + Corpse

wineneut Wine + Person in Armchair

waterpos Water + Sexy Person

waterneg Water + Corpse

waterneut Water + Person in Armchair

There is also a column to indicate to which person each row of data belongs (called 
participant).

As with the previous example, although the format of the data follows typical conven-
tions, because of the way R handles repeated-measures designs we need the data to be in 
the long format. We can again do this using the melt() function. We specify columns in the 
data that identify characteristics of the scores (such as, from whom they originate) using 
the id option, and columns that identify the scores themselves using the measured option. 
In this case our scores are split over nine columns (beerpos, beerneg, beerneut, winepos, 
wineneg, wineneut, waterpos, waterneg, waterneut), so these are our measured variables, 
and participant tells us from whom the scores originate so this is our id variable. We can 
create a new dataframe (called longAttitude) by executing:

longAttitude <-melt(attitudeData, id = "participant", measured = c( "beerpos", 
"beerneg", "beerneut", "winepos", "wineneg", "wineneut", "waterpos", "waterneg", 
"waterneut"))
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This dataframe contains three columns: the first identifies the participant, the second 
identifies the name of the column from which the data originate, and the third contains the 
attitude scores. By default, these columns will be named participant, variable, and value, 
which are not the most helpful of labels. Let’s rename these columns so that we actually 
know what they represent by executing:

names(longAttitude)<-c("participant", "groups", "attitude")

The variable groups is a mixture of our two predictor variables (imagery and type of 
drink). Note for example, that the first 60 rows are scores for the drink beer and within 
these 60 rows, 20 are positive imagery, 20 negative imagery and 20 neutral imagery. We 
therefore, need to create two variables that dissociate the type of imagery from the type of 
drink; these two variables will be the two predictors in our model. First, let’s create a vari-
able called drink, which specifies whether beer, wine or water was in the advert. We can 
do this using the gl() function that we used earlier in the chapter. Execute this command:

longAttitude$drink<-gl(3, 60, labels = c("Beer", "Wine", "Water"))

This creates a variable drink in the dataframe longAttitude. The numbers in the function 
tell R that we had three sets three sets, which correspond to the type of drink. Essentially, 
this will create 60 rows with the label Beer then 60 labelled Wine then 60 labelled Water.

We also need a variable that tells us the type of imagery that was used. To do this we 
want three groups that each contain 20 scores. This will create 60 cases (3 × 20 = 60), or, 
put another way, it will create the codes for the first level (beer) of the drink variable. We 
want this pattern to be repeated for the remaining 2 levels of drink (i.e., wine and water). 
We can do this by adding a third value to the function that is the total number of cases (i.e., 
180). By specifying the total number of cases the gl() function will repeat the pattern of 
codes until it reaches this total number of cases

longAttitude$imagery<-gl(3, 20, 180, labels = c("Positive", "Negative", 
"Neutral"))

The data now look like this (edited and ordered by participant):

    participant groups attitude drink  imagery
1            P1  beerpos     1  Beer Positive
21           P1  beerneg     6  Beer Negative
41           P1 beerneut     5  Beer  Neutral
61           P1  winepos    38  Wine Positive
81           P1  wineneg    -5  Wine Negative
101          P1 wineneut     4  Wine  Neutral
121          P1 waterpos    10 Water Positive
141          P1 waterneg   -14 Water Negative
161          P1 waterneu    -2 Water  Neutral
…           …        …      …    …    …
10          P10  beerpos    26  Beer Positive
30          P10  beerneg    27  Beer Negative
50          P10 beerneut    27  Beer  Neutral
70          P10  winepos    23  Wine Positive
90          P10  wineneg   -15  Wine Negative
110         P10 wineneut    14  Wine  Neutral
130         P10 waterpos    21 Water Positive
150         P10 waterneg    -6 Water Negative
170         P10 waterneu     0 Water  Neutrall

Notice that each participant (identified by the participant variable) has nine scores (dis-
tinguished by the variables drink and imagery). In the reformatted data the nine scores 
within each participant are now represented by nine different rows rather than nine col-
umns as they were before.
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SELF-TEST

ü	 Using what you learnt earlier in the chapter and the 
commands that we have just used to create drink 
and imagery, can you work out how to enter the 
data into R directly?

13.7.2.    Exploring the data 2

As ever, we’ll look at some graphs first. To save space we’ll look just at the boxplots at this 
stage.

SELF-TEST

ü	 Use ggplot2 to plot boxplots of the attitude scores 
for each type of drink (x-axis) after adverts using 
different imagery (different plots).

The resulting plot (Figure 13.6) shows that the median scores are highest (in general) after 
positive imagery, and lowest after negative. Scores are most spread out for beer (the box 
and whiskers are longest).
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Boxplots of the 
attitude data

We have previously used the by() function and the stat.desc() function in the pastecs 
package to get descriptive statistics for separate groups (see Chapter 5 for more detail). We 
also saw in the previous chapter that if we want to create descriptives for a combination 
of variables we can simply list all of the variables in the list() function; therefore, to get 
descriptive statistics for the combined levels of drink and imagery we execute:

by(longAttitude$attitude, list(longAttitude$drink, longAttitude$imagery), 
stat.desc, basic = FALSE)

The resulting (edited) output is in Output 13.10. From this table we can see that the vari-
ability among scores was greatest when beer was used as a product (compare the standard 
deviations of the beer variables against the others). Also, when a corpse image was used 
(negative imagery), the ratings given to the products were negative (as expected) for wine 
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and water but not for beer (so for some reason, negative imagery didn’t seem to work when 
beer was used as a stimulus). The values in this table will help us later to interpret the main 
effects of the analysis.

: Beer
: Positive

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
18.500  21.050  2.909      6.088      169.208  13.008     0.618 
------------------------------------------------------------------- 
: Wine
: Positive

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
25.000   25.350 1.507      3.153       45.397   6.738     0.266 
------------------------------------------------------------------- 
: Water
: Positive

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
17.000   17.400 1.582      3.311       50.042   7.074     0.407 
------------------------------------------------------------------- 
: Beer
: Negative

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
0.00     4.45   3.87       8.10       299.42   17.30      3.89 
------------------------------------------------------------------- 
: Wine
: Negative

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
-13.500 -12.000 1.382      2.893       38.211   6.181    -0.515 
------------------------------------------------------------------- 
: Water
: Negative

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
-10.000 -9.200  1.521      3.184       46.274   6.802    -0.739 
------------------------------------------------------------------- 
: Beer
: Neutral

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
8.00     10.00  2.30       4.82       106.00   10.30      1.03 
------------------------------------------------------------------- 
: Wine
: Neutral

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
12.500   11.650 1.396      2.922       38.976   6.243     0.536 
------------------------------------------------------------------- 
: Water
: Neutral

median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
2.50     2.35   1.53       3.20        46.77    6.84      2.91

Output 13.10
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13.7.3.    Setting contrasts 2

As with one-way repeated-measures designs, we need to set contrasts before proceeding to 
the main analysis. Just to remind you, these contrasts are important because (1) they help 
us to break down any main effects or interactions into more interpretable effects, and (2) 
if you use Type III sums of squares then you must first set (orthogonal) contrasts for these 
to be computed correctly. In this example, we need to set contrasts for both drink and 
imagery.

For drink, we have two alcoholic drinks (beer and wine) and one non-alcoholic (water). 
The government is interested in preventing binge drinking, so water is an obvious control 
group. Therefore, our first contrast should compare the alcoholic drinks (beer and wine) 
to water (the control). We need a second contrast then to separate the beer and wine. 
Therefore, contrast 1 answers the question ‘are the effects different for alcoholic and non-
alcoholic drinks?’ and contrast 2 answers the question ‘are the effects different for different 
types of alcoholic drink?’ The resulting codes are in Table 13.5. 

Table 13.5  Orthogonal contrasts for the drink variable

Group Contrast1 Contrast2

Beer   1 -1

Wine   1   1

Water -2   0

Table 13.6  Orthogonal contrasts for the imagery variable

Group Contrast1 Contrast2

Positive   1 -1

Negative -2   0

Neutral   1   1

To set these orthogonal contrasts (see Chapter 10) we can first create variables represent-
ing each contrast (which is useful because you can give the contrasts informative names), 
and then bind these variables together and set them as the contrast for drink:

AlcoholvsWater<-c(1, 1, -2)
BeervsWine<-c(-1, 1, 0)
contrasts(longAttitude$drink)<-cbind(AlcoholvsWater, BeervsWine)

The first two commands each create a variable relating to a contrast that contains the codes 
for each group from Table 13.5. The final command sets these variables to be the contrasts 
for drink.

For imagery, the government is interested in preventing binge drinking and so their main 
hypothesis is about whether negative imagery is effective compared to other forms usually 
used in advertising (i.e., positive or neutral). Therefore, our first contrast should compare 
negative imagery to other forms (positive and neutral combined). We need a second con-
trast then to separate the positive and neutral imagery. Therefore, contrast 1 answers the 
question ‘are the effects different for negative imagery compared to other forms?’ and 
contrast 2 answers the question ‘are the effects different for positive and neutral imagery?’ 
The resulting codes are in Table 13.6. 
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We can set these contrasts in the same way as for drink. We first create variables repre-
senting each contrast, and then bind these variables together and set them as the contrast 
for imagery:

NegativevsOther<-c(1, -2, 1)
PositivevsNeutral<-c(-1, 0, 1)
contrasts(longAttitude$imagery)<-cbind(NegativevsOther, PositivevsNeutral)

The first two commands each create a variable relating to a contrast that contains the 
codes for each group from in Table 13.6. The final command sets these variables to be the 
contrasts for drink.

We can check that we have set the contrast correctly by executing the name of the vari-
able and looking at the contrast attribute:

longAttitude$drink

attr(,"contrasts")
      AlcoholvsWater BeervsWine
Beer               1         -1
Wine               1          1
Water             -2          0

Levels: Beer Wine Water

longAttitude$imagery

         NegativevsOther PositivevsNeutral
Positive               1                -1
Negative              -2                 0
Neutral                1                 1
Levels: Positive Negative Neutral

Remembering that positive numbers are compared with negative and a zero means that 
the group is not involved at all, we can see that for drink, contrast 1 compares water to 
the other drinks and contrast 2 compares wine and beer; for imagery, contrast 1 compares 
negative imagery to other forms, and contrast 2 compares positive and neutral imagery.

13.7.4.    Factorial repeated-measures ANOVA 2

As with one-way repeated-measures ANOVA, we can do a fairly easy analysis using the 
ezANOVA() function. Earlier in the chapter we saw that all we need to do is to specify our 
repeated-measures predictor within the option labelled within = .(). In the previous example, 
we specified a single variable within the brackets, but when we have several predictors we 
can simply list the predictors separated by commas. The rest of the function is similar to the 
previous example. For these data, therefore, we would execute these commands:

attitudeModel<-ezANOVA(data = longAttitude, dv = .(attitude), wid = .(par-
ticipant),  within = .(imagery, drink), type = 3, detailed = TRUE)
attitudeModel

This creates a model (attitudeModel) from our dataframe (longAttitude). Note that we 
have set the variable attitude as the outcome (dv = .(attitude)), we have told the function 
that participants can be identified by the variable participants (wid = .(participant)), the 
predictors are drink and imagery (within = .(imagery, drink)), that we want Type III sums 
of squares (type = 3), and that we want to see the sums of squares in the output (detailed 
= TRUE). Executing the second command (attitudeModel) simply prints the model to the 
console.
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$ANOVA
         Effect DFn DFd   SSn  SSd      F        p p<.05   ges
1   (Intercept)   1  19 11218 1920 111.01 2.26e-09     * 0.413
2         drink   2  38  2092 7786   5.11 1.09e-02     * 0.116
3       imagery   2  38 21629 3353 122.56 2.68e-17     * 0.575
4 drink:imagery   4  76  2624 2907  17.15 4.59e-10     * 0.141

$'Mauchly's Test for Sphericity'
         Effect     W        p p<.05
2         drink 0.267 6.95e-06     *
3       imagery 0.662 2.45e-02     *
4 drink:imagery 0.595 4.36e-01      

$'Sphericity Corrections'
         Effect   GGe    p[GG] p[GG]<.05   HFe    p[HF] p[HF]<.05
2         drink 0.577 2.98e-02         * 0.591 2.88e-02         *
3       imagery 0.747 1.76e-13         * 0.797 3.14e-14         *
4 drink:imagery 0.798 1.90e-08         * 0.979 6.81e-10         *

Output 13.11

Output 13.11 shows the results from ezANOVA(). Mauchly’s sphericity test (see section 
13.2.3) is computed for each of the three effects in the model (two main effects and one 
interaction). The significance values of these tests indicate that both the main effects of 
drink (p < .001) and imagery (p = .025) have violated this assumption and so the F-values 
should be corrected (see Jane Superbrain Box 13.3). For the interaction the assumption of 
sphericity is met (because p = .436) and so we need not correct the F-ratio for this effect.

Output 13.11 also shows the results of the ANOVA (and whether each effect is signifi-
cant after correcting the F-values for sphericity). Looking at the significance values, it is 
clear that there is a significant effect of the type of drink used as a stimulus (sphericity 
was violated, so for this effect we look at p[GG] or p[HF], both of which are significant 
because they are less than .05), a significant main effect of the type of imagery used (again 
sphericity was violated, so we look at p[GG] or p[HF], both of which are significant), and 
a significant interaction between these two variables (sphericity was not violated, so we 
can look at p in the table labelled $ANOVA). I will examine each of these effects in turn.

13.7.4.1.  The effect of drink 2

Output 13.11 told us that the effect of the type of drink used in the advert was significant. 
For this effect we looked at one of the corrected significance values because sphericity was 
violated (see above). Both of the corrected values were significant and so we may as well 
report the conservative Greenhouse–Geisser corrected values of the degrees of freedom. 
This effect tells us that if we ignore the type of imagery that was used, participants still 
rated some types of drink significantly differently.

To interpret this effect we should plot the means and look at some descriptive statistics.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot an error bar graph 
and get the means for the main effect of drink.

13-Field_R-4368-Ch-13.indd   590 29/02/2012   5:51:08 PM



591CHAPTER 13   REPEATED-MEASURES DES IGNS (GLM 4)

Output 13.12 shows the means for the main effect of drink.8 Figure 13.7 uses this infor-
mation to display the means for each condition. It is clear from this graph that beer and 
wine were rated higher than water (with beer being rated most highly). To see the nature 
of this effect we could look at the post hoc tests (see below) and the contrasts. However, 
because we have a significant interaction effect it does not make sense (despite the fact that 
Type III sums of squares make you think that it does) to interpret this main effect because 
it is superseded by the interaction with imagery.

longAttitude$drink: Beer
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var       
12.50    11.83      1.97       3.95       233.46     15.28       1.29 
----------------------------------------------------------------------- 
longAttitude$drink: Wine
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var       
12.00     8.33      2.17        4.33      281.51     16.78       2.01 
----------------------------------------------------------------------- 
longAttitude$drink: Water
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var        
3.50      3.52      1.67        3.34      166.69     12.91       3.67

Output 13.12

13.7.4.2.  The effect of imagery 2

Output 13.11 also indicates that the effect of the type of imagery used in the advert had a 
significant influence on participants’ ratings of the stimuli. Again, we must look at one of 
the corrected significance values because sphericity was violated (see above). Both of the 

8 These means are obtained by taking the average of the means in Output 13.10 for a given condition. For 
example, the mean for the beer condition (ignoring imagery) is

X
X X X

Beer
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+ +

3
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corrected values are highly significant and so we can again report the Greenhouse–Geisser 
corrected values of the degrees of freedom. This effect tells us that if we ignore the type 
of drink that was used, participants’ ratings of those drinks were different according to the 
type of imagery that was used.

To interpret this effect we should plot the means and look at some descriptive statistics.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot an error bar graph 
and get the means for the main effect of imagery.

Output 13.13 shows the means for the main effect of imagery. Figure 13.8 uses this 
information to illustrate the means for each condition. It is clear from this graph that 
positive imagery resulted in very positive ratings (compared to the neutral imagery) and 
negative imagery resulted in negative ratings (especially compared to the effect of neutral 
imagery). Remember that because we have a significant interaction effect it does not make 
sense to interpret this main effect because it is superseded by the interaction with drink.

longAttitude$imagery: Positive
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
20.500    21.267  1.265     2.531           95.962  9.796      0.461 
----------------------------------------------------------------------- 
longAttitude$imagery: Negative
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var       
-9.00     -5.58    1.71     3.43            176.15  13.27      -2.38 
----------------------------------------------------------------------- 
longAttitude$imagery: Neutral
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var        
7.00      8.00    1.14      2.29            78.44   8.86       1.11

Output 13.13
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13.7.4.3.  The interaction effect (drink × imagery) 2

Output 13.11 indicated that imagery interacted in some way with the type of drink used 
as a stimulus. From the output we should report that there was a significant interaction 
between the type of drink used and imagery associated with it, F(4, 76) = 17.16, p < .001. 
This effect tells us that the type of imagery used had a different effect depending on which 
type of drink it was presented alongside. We can use the means in Output 13.10 to deter-
mine the nature of this interaction. 

SELF-TEST

ü	 Using ggplot2, plot a line graph with error bars of the 
means for the drink × imagery interaction.

Figure 13.9 shows the interaction graph, and we are looking for non-parallel lines. 
The graph shows that the pattern of responding across drinks was similar when positive 
and neutral imagery were used. That is, ratings were positive for beer, they were slightly 
higher for wine and then they went down slightly for water. The fact that the line repre-
senting positive imagery is higher than the neutral line indicates that positive imagery gave 
rise to higher ratings than neutral imagery across all drinks. The bottom line (representing 
negative imagery) shows a different effect: ratings were lower for wine and water but not 
for beer. Therefore, negative imagery had the desired effect on attitudes towards wine and 
water, but for some reason attitudes towards beer remained fairly neutral. Therefore, the 
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interaction is likely to reflect the fact that negative imagery has a different effect than both 
positive and neutral imagery (because it decreases ratings rather than increasing them). 
This interaction is completely in line with the experimental predictions. To verify the 
interpretation of the interaction effect, we can look at some post hoc tests or the contrasts 
(we’ll get to those later).

To get post hoc tests for the interaction term we need to use a variable that combines 
imagery and drink into a single coding variable. Fortunately we already have such a vari-
able in the data set; it’s called groups and it was created when we converted our original 
data set from wide format to long. We can use this variable in the pairwise.t.test() function 
to get comparisons between all nine groups that the interaction term encompasses. The 
format of this option is exactly the same as we used earlier in the chapter, and we execute:

pairwise.t.test(longAttitude$attitude, longAttitude$groups, paired = TRUE, 
p.adjust.method = "bonferroni")

Output 13.14 shows the results of the post hoc tests. We can see (in bold in the output) 
that for beer there are significant differences between positive imagery and both negative 
(p = .002) and neutral (p = .020), but not between negative and neutral (p = 1.00); for wine, 
there are significant differences between positive imagery and both negative (p < .001) and 
neutral (p < .001), and between negative and neutral (p < .001); and for water, there are 
significant differences between positive imagery and both negative (p < .001) and neutral 
(p < .001), and between negative and neutral (p < .001). These findings support our earlier 
conclusion that beer is unusual in that negative imagery does appear to reduce attitudes 
compared to neutral imagery.

	 Pairwise comparisons using paired t tests 

data:  longAttitude$attitude and longAttitude$groups 

          beerpos beerneg beerneut winepos wineneg wineneut waterpos waterneg
beerneg   0.00217 -       -        -       -       -        -        -       
beerneut  0.01982 1.00000 -        -       -       -        -        -       
winepos   1.00000 0.01105 0.00310  -       -       -        -        -       
wineneg   5.6e-08 0.00265 2.0e-07  1.9e-10 -       -        -        -       
wineneut  0.39905 1.00000 1.00000  2.2e-05 2.3e-07 -        -        -       
waterpos  1.00000 0.47584 1.00000  0.07300 1.3e-09 0.10547  -        -       
waterneg  2.9e-06 0.18860 0.00010  3.2e-10 1.00000 1.1e-07  4.9e-11  -       
waterneut 0.00212 1.00000 0.74838  4.3e-10 0.00041 8.1e-05  9.0e-07  0.00068 

P value adjustment method: bonferroni 

Output 13.14

13.7.5.    Factorial repeated-measures designs as a GLM 3

Earlier in the chapter we used lme(), which looks at repeated-measures data in a linear 
model. I have already outlined various advantages to this method. It is a simple matter to 
extend what we have already learnt to a situation that includes more than one predictor 
or independent variable. All we do is extend the model to include each predictor and any 
interactions. We saw earlier that if we want to look at individual effects then we should 
build up the model from a baseline that includes no predictors other than the intercept.

baseline<-lme(attitude ~ 1, random = ~1|participant/drink/imagery, data = 
longAttitude, method = "ML")
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Compare this model with the one that we used for the one-way repeated-measures design 
earlier in the chapter. We have specified the model as the outcome predicted only from the 
intercept (attitude ~ 1), specified the relevant dataframe (data = longAttitude), and asked 
to use maximum likelihood to estimate the model (method = “ML”). The main thing that 
has changed is the random part of the model, which is slightly more complex than before 
to reflect the fact that there are now two predictors. The random part of model (random 
= ~1/participant/drink/imagery) simply tells R that the variables drink and imagery are 
nested within the variable participant (in other words, scores for levels of these variables 
can be found within each participant). Execute the above command to create the baseline 
model.

If we want to see the overall effect of each predictor then we need to add them one at 
a time. To add drink to the model we could just change the model from attitude ~ 1 to 
attitude ~ drink. In other words, execute:

baseline<-lme(attitude ~ drink, random = ~1|participant/drink/imagery, data 
= longAttitude, method = "ML")

However, it is quicker to use the update() function (see R’s Souls’ Tip 7.2):

drinkModel<-update(baseline, .~. + drink)

This command takes the model called baseline (which we have already created), and the 
.~. means keep the outcome and predictors the same as the baseline model (the dots mean 
‘keep the same’, so the fact that we put dots on both sides of the ~ means that we want 
to keep both the outcome and predictors the same as in the baseline model). The ‘+ drink’ 
means ‘add drink as a predictor’. Therefore, ‘.~. + drink’ can be interpreted as ‘keep 
the same outcomes and predictors as the baseline model but add drink as a predictor’. 
Executing this command creates a model called drinkModel that includes only drink as a 
predictor.

In a similar way we can add imagery to the model as a predictor.

imageryModel<-update(drinkModel, .~. + imagery)

This command takes the model called drinkModel (which we have just created), as before, 
the .~. means keep the outcome and predictors the same as in drinkModel and the ‘+ 
imagery’ adds imagery as a predictor. Therefore, ‘.~. + imagery’ can be interpreted as 
‘keep the same outcomes and predictors as drinkModel but add imagery as a predictor’. 
Executing this command creates a model called imageryModel that includes both drink and 
imagery as predictor.

Finally, we can add the interaction term by executing:

attitudeModel<-update(imageryModel, .~. + drink:imagery)

This command takes the model called imageryModel (which we have just created), as 
before, the .~. means keep the outcome and predictors the same as in imageryModel, and 
the ‘+ drink:imagery’ adds the drink × imagery interaction as a predictor. Executing this 
command, therefore, creates a model called attitudeModel that includes the main effects of 
drink and imagery as well as their interaction as predictors.

To compare these models we can list them in the order in which we want them compared 
in the anova() function (see 7.8.4.2):

anova(baseline, drinkModel, imageryModel, attitudeModel)

Executing the above command produces Output 13.15, which first compares the effect 
of drink to the baseline (i.e., no predictors). By adding drink as a predictor we increase 
the degrees of freedom by 2 (the two contrasts that we used to code this variable) and 
significantly improve the model. In other words, the type of drink had a significant effect 
on attitudes, χ2(2) = 9.1, p = .010. Next, we see the effect of adding the main effect of 
imagery into the model (compared to the previous model that contained only the effect of 
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drink). Again the degrees of freedom are increased by 2 (the two contrasts used to code 
this variable) and the fit of the model is significantly improved; the type of imagery used 
in the advert had a significant effect on attitudes, χ2(2) = 151.9, p < .001. The final model 
(which includes both main effects and the interaction between them) is then compared 
to the previous model (that includes only the two main effects). The interaction term is 
made up of four contrasts (the number of contrasts for each variable in the interaction 
multiplied) and significantly improves the model fit; therefore, attitudes were significantly 
affected by the combined effect of the type of drink and type of imagery, χ2(4) = 42.0, 
p < .001. These results confirm the overall effects that we looked at with ezANOVA() in the 
previous section, and you should look back at that section to remind yourself of how we 
interpreted these effects.

              Model df  AIC  BIC logLik   Test L.Ratio p-value
baseline          1  5 1504 1520   -747                       
drinkModel        2  7 1498 1521   -742 1 vs 2     9.1  0.0104
imageryModel      3  9 1351 1379   -666 2 vs 3   151.9  <.0001
attitudeModel     4 13 1317 1358   -645 3 vs 4    42.0  <.0001

Output 13.15

We can further explore the model by executing:

summary(attitudeModel)

Output 13.16 shows the parameter estimates for the model (I’ve edited some of the names 
to save space). Most important, these include the parameters for the contrasts that we set 
for each variable. First, we get the two contrasts for drink, which show a significant effect 
on attitudes when comparing alcoholic drinks to water, b = 2.19, t(38) = 3.18, p = .003, 
but not when comparing beer with wine b = −1.75, t(38) = −1.47, p = .150. next, we get 
the two contrasts for imagery, which show a significant effect on attitudes when comparing 
negative imagery to other types, b = 6.74, t(114) = 17.26, p < .001, and when comparing 
positive to neutral imagery, b = −6.63, t(114) = −9.81, p < .001. The next four effects are 
the contrasts for the interaction term and we’ll look at these in turn.

Linear mixed-effects model fit by maximum likelihood
 Data: longAttitude 
   AIC  BIC logLik
  1317 1358   -645

Fixed effects: attitude ~ drink + imagery + drink:imagery 
                              Value Std.Error  DF t-value p-value
(Intercept)                    7.89     0.973 114    8.12  0.0000
AlcoholvsWater                 2.19     0.688  38    3.18  0.0029
BeervsWine                    -1.75     1.191  38   -1.47  0.1500
NegativevsOther                6.74     0.391 114   17.26  0.0000
PositivevsNeutral             -6.63     0.676 114   -9.81  0.0000
AlcoholvsWater:NegativevsOther 0.19     0.276 114    0.69  0.4922
BeervsWine:NegativevsOther     3.24     0.478 114    6.77  0.0000
AlcoholvsWater:PositivevsNeut  0.45     0.478 114    0.93  0.3533
BeervsWine:positivevsNeut     -0.66     0.828 114   -0.80  0.4256

Output 13.16

13.7.5.1.  Alcohol vs. water, negative vs. other imagery 2

The first interaction term looks at the effect of alcoholic drinks (i.e., wine and beer com-
bined) relative to water when comparing negative imagery with other types of imagery (i.e., 
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positive and neutral combined). This contrast is non-significant. This result tells us that the 
decreased liking found when negative imagery is used (compared to other forms) is the same 
for both alcoholic drinks and water. The top left panel of Figure 13.10 shows the means 
being compared. The gap between the lines, which represents the effect of negative imagery 
compared to other forms, is roughly the same for alcoholic drinks and water. This finding 
indicates that the effect of negative imagery (compared to other forms) in lowering attitudes 
is comparable in alcoholic and non-alcoholic drinks, b = 0.19, t(114) = 0.69, p = .492.

13.7.5.2.  Beer vs. wine, negative vs. other imagery 2

The second interaction term looks at whether the effect of negative imagery compared 
to other types of imagery (i.e., positive and neutral combined) is comparable in beer and 
wine. This contrast is significant. This result tells us that the decreased liking found when 
negative imagery is used (compared to other forms) is different in beer and wine. The top 
right panel of Figure 13.10 shows the means being compared. The gap between the lines, 
which represents the effect of negative imagery compared to other forms, is much bigger 
for wine than it is for beer. This finding suggests that the effect of negative imagery (com-
pared to other forms) in lowering attitudes to beer was significantly smaller than for wine, 
b = 3.24, t(114) = 6.77, p < .001.
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13.7.5.3.  Alcohol vs. water, positive vs. neutral imagery 2

The third interaction term looks at whether the effect of positive imagery (compared 
to neutral) is comparable in alcoholic drinks (i.e., wine and beer combined) relative to 
water. This contrast is non-significant. This result tells us that the increased liking found 
when positive imagery is used (compared to neutral) is similar for both alcoholic drinks 
and water. The bottom left panel of Figure 13.10 shows the means being compared. The 
distance between the lines, which represents the effect of positive imagery compared to 
neutral, is roughly the same for beer as it is for wine. This finding suggests that positive 
imagery has a similar effect in increasing attitudes (compared to neutral imagery) in both 
alcoholic and non-alcoholic drinks, b = 0.45, t(114) = 0.93, p = .353.

13.7.5.4.  Beer vs. wine, positive vs. neutral imagery 2

The final interaction term looks at whether the effect of positive imagery compared to 
neutral is comparable in beer and wine. This contrast is not significant. This result tells us 
that the increased liking found when positive imagery is used (compared to neutral) is com-
parable in beer and wine. The bottom right panel of Figure 13.10 shows the means being 
compared. Note that the distance between the lines (i.e., the effect of positive imagery 
compared to neutral) is roughly the same for beer as it is for wine. In summary, the effect of 
positive imagery (compared to neutral) in increasing attitudes to beer was not significantly 
different to that for wine, b = −0.66, t(114) = −0.80, p = .426.

13.7.5.5.  Limitations of these contrasts 2

These contrasts, by their nature, tell us nothing about the differences between water 
and beer and wine separately, or the effect of negative imagery compared to, say, neutral 
imagery alone. If you need more comparisons, you could run post hoc tests (as explained 
earlier in the chapter).

Although it may seem tiresome to spend so long interpreting an analysis so thoroughly, 
you are well advised to take such a systematic approach if you want to truly understand the 

             CRAMMING SAM’S TIPS    Two-way repeated-measures ANOVA

•	 Two-way repeated-measures ANOVA compares several means when there are two independent variables, and the same 
participants have been used in all experimental conditions. 

•	 We recommend treating your data as a multilevel model (i.e., repeated-measures regression). However, if you don’t then 
test the assumption of sphericity when you have three or more repeated-measures conditions. Test for sphericity using 
Mauchly’s test. If the p-value is less than .05 then the assumption is violated. If the significance of Mauchly’s test is greater 
than .05 then the assumption of sphericity has been met. You should test this assumption for all effects (in a two-way ANOVA 
this means you test it for the effect of both variables and the interaction term).

•	 In a two-way ANOVA you will have three effects: a main effect of each variable and the interaction between the two. For each 
effect, if the assumption of sphericity has been met then use the p-value for the main ANOVA. If the assumption was violated 
then read the p-value corrected using either the Greenhouse–Geisser (p[GG]) or Huynh–Feldt (p[HF]) estimate of sphericity 
(read this chapter to find out the relative merits of the two procedures). If the p-value is less than .05 then the means of the 
groups are significantly different.

•	 Break down the main effects and interaction terms using contrasts and post hoc tests; again look to the p-values to discover 
if your comparisons are significant (they will be if the significance value is less than .05).
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effects that you obtain. Interpreting interaction terms is complex, and I can think of a few 
well-respected researchers who still struggle with them, so don’t feel disheartened if you 
find them hard. Try to be thorough, and break each effect down as much as possible using 
contrasts, and hopefully you will find enlightenment.

13.7.6.    Robust factorial repeated-measures ANOVA 3

At the time of writing there aren’t any functions (that I can find) that deal with factorial 
repeated-measures designs. This is a blessing for me (I don’t have to work out how to 
use them and then write about them) but a curse for you (if you happen to have misbe-
having data). 

13.8.  Effect sizes for factorial 
repeated-measures designs 3

Calculating omega squared for one-way repeated-measures ANOVA was hair-raising 
enough, so we’ll definitely leave it alone for factorial designs (you can read this as ‘I don’t 
know how to do it’). However, ezANOVA produces generalized eta-squared (Output 
13.11); in this case the values were .575 for the main effect of imagery, .116 for the main 
effect of drink and .141 for the interaction term. This shows a relatively strong effect of 
imagery, but fairly modest effects of drink and the interaction.

As I keep saying, effect sizes are really more useful when they describe a focused effect, 
so I’d advise calculating effect sizes for your contrasts when you’ve got a factorial design 
(and any main effects that compare only two groups). We can use the rcontrast() function 
that we used for one-way ANOVA: simply input each value of t and its associated degrees 
of freedom for each of the eight effects in Output 13.16 (remember that you have to load 
the DSUR package first). For drink there were two contrasts: alcohol vs. water

> rcontrast(3.18, 38)
[1] "r =  0.458457001137587"

and beer vs. wine

> rcontrast(-1.47, 38)
[1] "r =  0.231961343984559"

For imagery we contasted negative vs. other

> rcontrast(17.26, 114)
[1] "r =  0.850434536664415"

and positive vs. neutral

> rcontrast(-9.81, 114)
[1] "r =  0.676574089263451"

Finally, we had four interaction contrasts: alcohol vs. water with negative vs. other imagery

> rcontrast(0.69, 114)
[1] "r =  0.0644898962213597"

beer vs. wine with negative vs. other imagery

> rcontrast(6.77, 114)
[1] "r =  0.535495195928629"
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alcohol vs. water with positive vs. neutral imagery

> rcontrast(0.93, 114)
[1] "r =  0.0867739323982253"

and beer vs. wine with positive vs. neutral imagery

> rcontrast(-0.80, 114)
[1] "r =  0.0747174253416562"

As such, the effect in the interaction that was significant (beer vs. wine, negative vs. other 
imagery) yields a fairly large effect size. The remaining effects in the interaction, which 
were not significant, yield fairly small effect sizes (all under .1).

13.9.  Reporting the results from factorial 
repeated-measures designs 2

As we saw before, how you report repeated-measures ANOVA depends on how you do it. 
If you have used a traditional ANOVA approach (e.g., using ezANOVA) then report it as 
you would any factorial ANOVA: remember that you’ve got three effects to report, and 
these effects might have different degrees of freedom. For the main effects of drink and 
imagery, the assumption of sphericity was violated so we’d have to report the Greenhouse–
Geisser corrected degrees of freedom. We can, therefore, begin by reporting the violation 
of sphericity:

✓	 Mauchly’s test indicated that the assumption of sphericity had been violated for the 
main effects of drink, W = 0.267, p < .001, ε = .58, and imagery, W = 0.662, p < .05, 
ε = .75. Therefore degrees of freedom were corrected using Greenhouse–Geisser 
estimates of sphericity.

We can then report the three effects from this analysis as follows:

✓	 All effects are reported as significant at p < .05. There was a significant main effect of 
the type of drink on ratings of the drink, F(1.15, 21.93) = 5.11.

✓	 There was also a significant main effect of the type of imagery on ratings of the 
drinks, F(1.50, 28.40) = 122.57.

✓	 There was a significant interaction effect between the type of drink and the type of 
imagery used, F(4, 76) = 17.16. This indicates that imagery had different effects on 
people’s ratings, depending on which type of drink was used. Bonferroni post hoc 
tests revealed that for beer there were significant differences between positive ima
gery and both negative (p = .002) and neutral (p = .020), but not between negative 
and neutral (p = 1.00); for wine, there were significant differences between positive 
imagery and both negative (p < .001) and neutral (p < .001), and between negative and 
neutral (p < .001); and for water, there were significant differences between positive 
imagery and both negative (p < .001) and neutral (p < .001), and between negative 
and neutral (p < .001). These findings suggest that beer is unusual in that negative 
imagery does appear to reduce attitudes compared to neutral imagery.

If you have done a multilevel model then you would write your results differently (you 
could also put the results in a Table as in section 19.8):
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✓	 The type of drink had a significant effect on attitudes, χ2(2) = 9.1, p = .010, as did 
the type of imagery used in the advert, χ2(2) = 151.9, p < .001. Most important, the 
drink × imagery interaction was significant, χ2(4) = 42.0, p < .001. Contrasts revealed 
that (1) the effect of negative imagery (compared to other forms) in lowering atti-
tudes is comparable in alcoholic and non-alcoholic drinks, b = 0.19, t(114) = 0.69, 
p = .492; (2) the effect of negative imagery (compared to other forms) in lowering 
attitudes to beer was significantly smaller than for wine, b = 3.24, t(114) = 6.77,
p < .001; (3) positive imagery has a similar effect in increasing attitudes (compared to 
neutral imagery) in both alcoholic and non-alcoholic drinks, b = 0.45, t(114) = 0.93, 
p = .353; and (4) the effect of positive imagery (compared to neutral) in increasing 
attitudes to beer was not significantly different from that for wine, b = −0.66, t(114) 
= −0.80, p = .426.

What have I discovered about statistics? 2

This chapter has helped us to walk through the murky swamp of repeated-measures 
designs. We discovered that is was infested with rabid leg-eating crocodiles. The first 
thing we learnt was that with repeated-measures designs there is yet another assumption 
to worry about: sphericity. Having recovered from this shock revelation, we were fortu-
nate to discover that this assumption, if violated, can be easily remedied. It can also be 
remedied by doing a multilevel model; not so easy, but as rewarding as a cocktail on a hot 
beach. We then moved on to look at the theory of repeated-measures ANOVA for one 
independent variable. Although not essential by any stretch of the imagination, this was a 
useful exercise to demonstrate that basically it’s exactly the same as when we have an inde-
pendent design (well, there are a few subtle differences, but I was trying to emphasize the 
similarities). We then worked through an example using R, before tackling the particularly 
foul-tempered, starving hungry, and mad as Stabby the mercury-sniffing hatter, piranha 
fish of omega squared. That’s a road I kind of regretted going down after I’d started, but, 
stubborn as ever, I persevered. This led us ungracefully on to factorial repeated-meas-
ures designs and, specifically, the situation where we have two independent variables. We 
learnt that, as with other factorial designs, we have to worry about interaction terms. But, 
we also discovered some useful ways to break these terms down using contrasts. I kept 
going on about multilevel models a lot as well, which is a topic to which we shall return, 
but not until I’ve taken a three-month trip to the aforementioned hot beach. 

By 16 I had started my first ‘serious’ band. We actually stayed together for about 
7 years (with the same line-up, and we’re still friends now) before Mark (drummer) 
moved to Oxford, I moved to Brighton to do my Ph.D., and rehearsing became a mam-
moth feat of organization. We had a track on a CD, some radio play and transformed 
from a thrash metal band to a blend of Fugazi, Nirvana and metal. I never split my trou-
sers during a gig again (although I did once split my head open). Why didn’t we make 
it? Well, Mark was an astonishingly good drummer so it wasn’t his fault, the other Mark 
was an extremely good bassist too (of the three of us he is the one that has always been 
in a band since we split up), so the weak link was me. This was especially unfortunate 
given that I had three roles in the band (guitar, singing, songs) – my poor band mates 
never stood a chance. I stopped playing music for quite a few years after we split. I still 
wrote songs (for personal consumption) but the three of us were such close friends that 
I couldn’t bear the thought of playing with other people. At least not for a few years …
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R packages used in this chapter
compute.es
ez
ggplot2
multcomp

nlme
pastecs
reshape
WRS

R functions used in this chapter
Anova()
aov()
by()
cast()
contrasts()
ezANOVA()
ggplot()
gl()
glht()
lm()

lme()
melt()
pairdepb()
rmanova()
rmanovab()
rmmcp()
stat.desc()
summary()
update()

Key terms that I’ve discovered
Compound symmetry
Greenhouse–Geisser correction 
Huynh–Feldt correction
Lower bound

Mauchly’s test
Repeated-measures ANOVA
Sphericity

Smart Alex’s tasks
MM Task 1: Students often worry about the consistency of marking between lecturers. 

Lecturers obtain reputations for being ‘hard’ or ‘light’ markers (or to use the stu-
dents’ terminology, ‘evil manifestations from Beelzebub’s bowels’ and ‘nice people’), 
but there is often little to substantiate these reputations. A group of students put 
the idea to the test by submitting the same essays to four different lecturers. The 
mark given by each lecturer was recorded for each of the eight essays. This design 
is repeated measures because every lecturer marked every essay. The independent 
variable was the lecturer who marked the report and the dependent variable was the 
percentage mark given. The data are in the file TutorMarks.dat. Conduct a one-way 
ANOVA on these data by hand. 2

MM Task 2: Repeat the analysis above using R and interpret the results. 2

MM Task 3: Imagine I wanted to look at the effect alcohol has on the roving eye. The ‘rov-
ing eye’ effect is the propensity of people in relationships to ‘eye up’ members of the 
opposite sex. I took 20 men and fitted them with incredibly sophisticated glasses that 
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could track their eye movements and record both the movement and the object being 
observed (this is the point at which it should be apparent that I’m making it up as I 
go along). Over four different nights I plied these poor souls with 1, 2, 3 or 4 pints of 
strong lager in a nightclub. Each night I measured how many different women they 
eyed up (a woman was categorized as having been eyed up if the man’s eye moved 
from her head to her toe and back up again). To validate this measure we also col-
lected the amount of dribble on the man’s chin while looking at a woman. The data 
are in the file RovingEye.dat. Analyse them with a one-way ANOVA. 2

MM Task 4: In the previous chapter we came across the beer-goggles effect, a severe per-
ceptual distortion after imbibing alcohol that makes previously unattractive people 
suddenly become the hottest thing since Spicy Gonzalez’s extra-hot Tabasco-marinated 
chillies. One minute you’re standing in a zoo admiring the orang-utans, and 2 pints 
later you’re wondering why someone would put the adorable Zoë Field in a cage. 
Imagine we followed up the fabricated example from the previous chapter to look at 
whether the beer-goggles effect is made worse by the fact that it usually occurs in clubs 
that have dim lighting. We took a sample of 26 men (because the effect is stronger 
in men) and gave them various doses of alcohol over four different weeks (0 pints,  
2 pints, 4 pints and 6 pints of lager). This is our first independent variable. Each week 
(and, therefore, in each state of drunkenness) participants were asked to select a mate 
in a normal club (that had dim lighting) and then select a second mate in a specially 
designed club that had bright lighting. As such, the second independent variable was 
whether the club had dim or bright lighting. The outcome measure was the attractive-
ness of each mate as assessed by a panel of independent judges. To recap, all partici-
pants took part in all levels of the alcohol consumption variable, and selected mates 
in both brightly and dimly lit clubs. The data are in the file BeerGogglesLighting.dat. 
Analyse them with a two-way repeated-measures ANOVA. 2

Answers can be found on the companion website.

Further reading
Field, A. P. (1998). A bluffer’s guide to sphericity. Newsletter of the Mathematical, Statistical and 

Computing Section of the British Psychological Society, 6(1), 13–22. (Available in the additional 
material for this chapter.)

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioural research: 
A correlational approach. (Cambridge: Cambridge University Press. This is quite advanced but 
really cannot be bettered for contrasts and effect size estimation.)

Interesting real research
Field, A. P. (2006). The behavioral inhibition system and the verbal information pathway to chil-

dren’s fears. Journal of Abnormal Psychology, 115(4), 742–752.
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14
Mixed designs (GLM 5)

FIGURE 14.1
My 18th birthday 
cake

14.1.  What will this chapter tell me? 1

Most teenagers are anxious and depressed, but I probably had more than my fair share. 
The parasitic leech that was the all-boys grammar school that I attended had feasted on my 
social skills, leaving in its wake a terrified husk. Although I had no real problem with play-
ing my guitar and shouting in front of people, speaking to them was another matter entirely. 
In the band I felt at ease, in the real world I did not. Your 18th birthday is a time of great 
joy, where (in the UK at any rate) you cast aside the shackles of childhood and embrace the 
exciting new world of adult life. Your birthday cake might symbolize this happy transition 
by reflecting one of your great passions. Mine had a picture on it of a longhaired person 
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who looked somewhat like me, slitting his wrists. That pretty much sums it up. Still, you 
can’t lock yourself in your bedroom with your Iron Maiden albums for ever, and soon 
enough I tried to integrate with society. Between the ages of 16 and 18 this pretty much 
involved getting drunk. I quickly discovered that getting drunk made it much easier to speak 
to people, and getting really drunk made you unconscious and then the problem of speaking 
to people went away entirely. This situation was exacerbated by the sudden presence of girls 
in my social circle. I hadn’t seen a girl since Clair Sparks; they were particularly problematic 
because not only had you to talk to them, but what you said had to be really impressive 
because then they might become your girlfriend. Also, in 1990, girls didn’t like to talk about 
Iron Maiden – they probably still don’t. Speed dating1 didn’t exist back then, but if it had it 
would have been a sick and twisted manifestation of hell on earth for me. The idea of having 
a highly pressured social situation where you have to think of something witty and amusing 
to say or be thrown to the baying vultures of eternal loneliness would have had me inject-
ing pure alcohol into my eyeballs; at least that way I could be in a coma and unable to see 
the disappointment on the faces of those forced to spend 3 minutes in my company. That’s 
what this chapter is all about: speed dating, oh, and mixed ANOVA too, but if I mention 
that you’ll move swiftly onto the next chapter when the bell rings.

14.2.  Mixed designs 2

If you thought that the previous chapter was bad, well, I’m about to throw 
an added complication into the mix. We can combine repeated-measures and 
independent designs, and this chapter looks at this situation. As if this wasn’t 
bad enough, I’m also going to use it as an excuse to show you a design with 
three independent variables (at this point you should imagine me leaning 
back in my chair, cross-eyed, dribbling and laughing maniacally). A mixture 
of between-group and repeated-measures variables is called a mixed design. It 
should be obvious that you need at least two independent variables for this 
type of design to be possible, but you can have more complex scenarios too 
(e.g., two between-group and one repeated-measures, one between-group and 
two repeated-measures, or even two of each). R allows you to test almost any 
design you might want to, and of virtually any degree of complexity. However, 
interaction terms are difficult enough to interpret with only two variables, so 
imagine how difficult they are if you include four. The best advice I can offer is to stick to 
three or fewer independent variables if you want to be able to interpret your interaction 
terms,2 and certainly don’t exceed four unless you want to give yourself a migraine.

This chapter will go through an example of a mixed ANOVA. There won’t be any theory 
because really and truly you’ve probably had enough ANOVA theory by now to have 
a good idea of what’s going on (you can read this as ‘it’s too complex for me and I’m 
going to cover up my own incompetence by pretending you don’t need to know about 
it’). Essentially though, as we have seen, any ANOVA is a linear model, so when we have 
three independent variables or predictors we simply add this third predictor into the 

1 In case speed dating goes out of fashion and no one knows what I’m going on about, the basic idea is that lots 
of men and women turn up to a venue (or just men or just women if it’s a gay night), one-half of the group sit 
individually at small tables and the remainder choose a table, get 3 minutes to impress the other person at the 
table with their tales of heteroscedastic data, then a bell rings and they get up and move to the next table. Having 
worked around all of the tables, the end of the evening is spent either stalking the person whom you fancied or 
avoiding the hideous mutant who was going on about hetero… something or other.

2 Fans of irony will enjoy the four-way ANOVAs that I conducted in Field and Davey (1999) and Field and Moore 
(2005), to name but two examples. 

What is a mixed
design?
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linear model, give it a b and remember to also include any interactions involving the new 
predictor.

This chapter is spent looking at an example using R and then interpreting the output. In 
the process you’ll hopefully develop your understanding of interactions and how to break 
them down using contrasts.

14.3.  What do men and women look for  
in a partner? 2

The example we’re going to use in this chapter stays with the dating theme. It seems that lots 
of magazines (or perhaps it’s just my wife’s copies of Marie Claire, which I don’t read – hon-
estly) go on all the time about how men and women want different things from relationships. 
The big question seems to be: are looks or personality more important? Imagine you wanted 
to put this to the test. You devised a cunning plan whereby you’d set up a speed-dating night. 
Little did the people who came along know that you’d got some of your friends to act as the 
dates. Each date varied in their attractiveness (attractive, average or ugly) and their charisma 
(charismatic, average and dull). By combining these characteristics you get nine different com-
binations and each combination was represented by one of your stooge dates. As such, your 
stooge dates were made up of nine different people. Three were extremely attractive people 
but differed in their personality: one had tons of charisma,3 one had some charisma and the 
other was as dull as this book. Another three people were of average attractiveness, and again 
differed in their personality: one was highly charismatic, one had average charisma and the 
third was a dullard. The final three were, with no offence intended to pigs, pig-ugly, and again 
one was charismatic, one had some charisma and the final poor soul was mind-numbingly 
tedious. Obviously you had two sets of stooge dates: one set was male and the other female, 
so that your participants could match up with dates of the appropriate sex.

The participants themselves were not these nine stooges, but 10 men and 10 women who 
came to the speed-dating event that you had set up. Over the course of the evening they speed-
dated all nine stooges of the gender that they’d normally date. After their 3-minute date, they 
rated how much they’d like to have a proper date with the person as a percentage (100% = ‘I’d 
pay large sums of money for their phone number’, 0% = ‘I’d pay a large sum of money for a 
plane ticket to get me as far away from them as possible’). As such, each participant rated nine 
different people who varied in their attractiveness and personality. So, there are two repeated-
measures variables: looks (with three levels because the person could be attractive, average or 
ugly) and personality (again with three levels because the person could have lots of charisma, 
have some charisma or be a dullard). The people giving the ratings could be male or female, 
so we should also include the gender of the person making the ratings (male or female), and 
this, of course, will be a between-group variable. The data are in Table 14.1.

14.4.  Entering and exploring your data 2

14.4.1.    Packages for mixed designs in R 1

You can analyse a mixed design using any of the four methods that I outlined in the previ-
ous chapter for doing a repeated-measures designs. As with the previous chapter, we’re 

3 The highly attractive people with tons of charisma were, of course, taken to a remote cliff top and shot after the 
experiment because life is hard enough without having people like that floating around making you feel inadequate.
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going to stick with ezANOVA() for those of you who want to adopt an ANOVA approach 
to the data, and lme() for those of you who want to use a multilevel model (which we 
recommend).

As with fully repeated-measures designs, you have to use commands because R 
Commander doesn’t have an interface for repeated-measures designs. You will need the 
packages ez (if you’re going to use ANOVA), ggplot2 (for graphs), nlme (if you use a mul-
tilevel model), pastecs (for descriptive statistics), reshape (for reshaping the data) and WRS 
(for robust tests). If you do not have these packages installed (some should be installed 
from previous chapters), you can install them by executing the following commands:

install.packages("ez"); install.packages("ggplot2"); install.packages("nlme"); 
install.packages("pastecs"); install.packages("reshape"); install.packages 
("WRS", repos="http://R-Forge.R-project.org")

You then need to load these packages by executing these commands:

library(ez); library(ggplot2); library(nlme); library(pastecs); 
library(reshape); library(WRS)

Table 14.1  Data from LooksOrPersonality.dat (Att = attractive, Av = average, Ug = ugly)

High Charisma Some Charisma Dullard

Looks Att Av Ug Att Av Ug Att Av Ug

Male 86 84 67 88 69 50 97 48 47

91 83 53 83 74 48 86 50 46

89 88 48 99 70 48 90 45 48

89 69 58 86 77 40 87 47 53

80 81 57 88 71 50 82 50 45

80 84 51 96 63 42 92 48 43

89 85 61 87 79 44 86 50 45

100 94 56 86 71 54 84 54 47

90 74 54 92 71 58 78 38 45

89 86 63 80 73 49 91 48 39

Female 89 91 93 88 65 54 55 48 52

84 90 85 95 70 60 50 44 45

99 100 89 80 79 53 51 48 44

86 89 83 86 74 58 52 48 47

89 87 80 83 74 43 58 50 48

80 81 79 86 59 47 51 47 40

82 92 85 81 66 47 50 45 47

97 69 87 95 72 51 45 48 46

95 92 90 98 64 53 54 53 45

95 93 96 79 66 46 52 39 47
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14.4.2.    General procedure for mixed designs 1

To analyse research with a mixed design you should follow this general procedure:

1	 Enter data: which is about as awkward as it was for repeated-measures designs.

2	 Explore your data: as with repeated-measures designs, look at graphs, descriptive 
statistics and check sphericity if you’re using ANOVA (boo, hiss) rather than a mul-
tilevel model (hooray!).

3	 Construct or choose contrasts: you need to decide what contrasts to do and to specify 
them appropriately for all of the independent variables in your analysis.

4	 Compute the main model: you can then run the main analysis. Depending on what 
you found in the previous step, you might need to run a robust version of the test.

5	 Compute contrasts or post hoc tests: having conducted the main analysis, you can 
follow it up with post hoc tests or look at the results of your contrasts.

We will work through these steps in turn.

14.4.3.    Entering the data 2

The data for the example can be found in the file LooksOrPersonality.dat. You can load 
this data file by setting your working directory to the appropriate location and executing:

dateData<-read.delim("LooksOrPersonality.dat", header = TRUE)

I have again structured the data in the format that you’d be most likely to use if you had 
entered the data in another software package and followed the usual conventions. The 
data have been entered in ‘wide’ format; that is, levels of the repeated-measures variable are 
spread across different columns. 

In this experiment there are nine experimental conditions and so the data have been 
entered in nine columns (so the format is identical to Table 14.1):

att_high Attractive + High Charisma

av_high Average Looks + High Charisma

ug_high Ugly + High Charisma

att_some Attractive + Some Charisma

av_some Average Looks + Some Charisma

ug_some Ugly + Some Charisma

att_none Attractive + Dullard

av_none Average Looks + Dullard

ug_none Ugly + Dullard

There is also a column to indicate to which person each row of data belongs (called partici-
pant) and a column to indicate their gender (gender).

As with the example in the previous chapter, although the format of the data follows 
typical conventions, because of the way R handles repeated-measures designs we need the 
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data to be in the long format. We can again use the melt() function. We specify columns in 
the data that identify characteristics of the scores (such as from whom they originate and 
characteristics of that person) using the id option, and columns that identify the scores 
themselves using the measured option. In this case our scores are split over nine columns 
(att_high, av_high, ug_high, att_some, av_some, ug_some, att_none, av_none, ug_none), so 
these are our measured variables. We have two variables that remain constant for each of 
the nine scores: the participant from which the score comes and their gender. These are our 
id variables. We can create a new dataframe (called speedData) by executing:

speedData<-melt(dateData, id = c("participant","gender"), measured = c("att_
high", "av_high", "ug_high", "att_some", "av_some", "ug_some", "att_none", 
"av_none", "ug_none"))

This dataframe contains four columns: the first identifies the participant, the second 
identifies their gender, the third identifies the name of the column from which the data 
originate, and the fourth contains the rating of the date. By default, these columns will be 
named participant, gender, variable, and value. The latter two labels are not helpful, so 
we’ll rename these columns so that we know what they represent by executing:

names(speedData)<-c("participant", "gender", "groups", "dateRating")

The variable groups is a mixture of our two predictor variables (looks and personality). 
Note, for example, that the first 60 rows are scores for the high-charisma dates and, within 
these 60 rows, the first 20 are the scores for the attractive stooges, the next 20 are the 
scores for the average looking stooges, and the final 20 are the scores for the ugly stooges. 
We therefore, need to create two variables that dissociate the attractiveness of the stooge 
from their charisma level; these two variables will be the two predictors in our model.

First, let’s create a variable called personality, which specifies whether the date being 
rated had high, average or low charisma. We can do this using the gl() function that we 
have used in previous chapters. Execute this command:

speedData$personality<-gl(3, 60, labels = c("Charismatic", "Average", 
"Dullard"))

This creates a variable personality in the dataframe speedData. The numbers in the func-
tion tell R that we want to create three sets of 60 scores, the labels option then speci-
fies the names to attach to these three sets, which correspond to the levels of charisma. 
Essentially, this will create 60 rows with the label Charismatic then 60 labelled Average 
then 60 labelled Dullard.

We also need a variable (called looks) that tells us how attractive the date was. To do this 
we want three groups that each contain 20 scores. This will create 60 cases (3 × 20 = 60), 
or, put another way, it will create the codes for the first level (Charismatic) of the personal-
ity variable. We want this pattern to be repeated for the remaining two levels of personality 
(i.e., Average and Dullard). We can do this by adding a third value to the function that is the 
total number of cases (i.e., 180). By specifying the total number of cases, the gl() function 
will repeat the pattern of codes until it reaches this total number of cases

speedData$looks<-gl(3, 20, 180, labels = c("Attractive", "Average", "Ugly"))

The data now look like this (edited and ordered by participant):

    participant gender   groups dateRating personality      looks
1           P01   Male att_high         86 Charismatic Attractive
21          P01   Male  av_high         84 Charismatic    Average
41          P01   Male  ug_high         67 Charismatic       Ugly
61          P01   Male att_some         88     Average Attractive
81          P01   Male  av_some         69     Average    Average
101         P01   Male  ug_some         50     Average       Ugly
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121         P01   Male att_none         97     Dullard Attractive
141         P01   Male  av_none         48     Dullard    Average
161         P01   Male  ug_none         47     Dullard       Ugly
…           …        …      …    …    …
20          P20 Female att_high         95 Charismatic Attractive
40          P20 Female  av_high         93 Charismatic    Average
60          P20 Female  ug_high         96 Charismatic       Ugly
80          P20 Female att_some         79     Average Attractive
100         P20 Female  av_some         66     Average    Average
120         P20 Female  ug_some         46     Average       Ugly
140         P20 Female att_none         52     Dullard Attractive
160         P20 Female  av_none         39     Dullard    Average
180         P20 Female  ug_none         47     Dullard       Ugly

Notice that each participant (identified by the participant variable) has a value indicating 
their gender and then nine scores (distinguished by the variables looks and personality). In 
the reformatted data the nine scores within each participant are now represented by nine 
different rows rather than nine columns as they were before.

SELF-TEST

ü	 Using what you learnt earlier in the chapter and the 
commands that we have just used to create looks 
and personality, can you work out how to enter the 
data into R directly?

14.4.4.    Exploring the data 2

As ever, we’ll look at some graphs first. To save space we’ll look just at the boxplots at this 
stage.

SELF-TEST

ü	 Use ggplot2 to plot boxplots of the rating of the 
dates according to their level of attractiveness 
(x-axis), and level of charisma (different colours) for 
men and women (different plots).

The resulting plot (Figure 14.2) shows that the pattern of scores for average-looking 
dates was quite similar for males and females (their ratings decreased as the dates varied 
from charismatic to dullards). For attractive dates, males and females gave similar ratings 
except for when the date was dull (when males’ ratings remained high but females’ ratings 
dropped). For ugly dates, again the ratings were similar for men and women, except that 
women rated the charismatic dates higher than males did.
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We have previously used the by() function and the stat.desc() function in the pastecs 
package to get descriptive statistics for separate groups (see Chapter 5 for more detail). We 
also saw in the previous chapter that if we want to create descriptives for a combination 
of variables we can simply list all of the variables in the list() function; therefore, to get 
descriptive statistics for the combined levels of gender, looks and personality we execute:

by(speedData$dateRating, list(speedData$looks, speedData$personality, 
speedData$gender), stat.desc, basic = FALSE)

The resulting (edited) output is in Output 14.1. The output contains descriptive statistics 
(means, standard deviations, etc.) for each of the nine conditions split according to whether 
participants were male or female. These descriptive statistics are interesting because they 
show us the pattern of means across all experimental conditions (so we use these means to 
produce the graphs of the three-way interaction).

: Attractive
: Charismatic
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
89.000  88.300   1.802     4.075      32.456     5.697      0.065 
----------------------------------------------------------------------- 
: Average
: Charismatic
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
84.000  82.800   2.215    5.011       49.0667    7.005      0.085 
----------------------------------------------------------------------- 
: Ugly
: Charismatic
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
56.500  56.800   1.812     4.100       32.844    5.731      0.101 
----------------------------------------------------------------------- 
: Attractive
: Average
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
87.500  88.500   1.815     4.106       32.944    5.740      0.065 
----------------------------------------------------------------------- 
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: Average
: Average
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
71.000  71.800   1.397     3.160       19.5111   4.417      0.061 
----------------------------------------------------------------------- 
: Ugly
: Average
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
48.500  48.300   1.700     3.846       28.900    5.376      0.111 
----------------------------------------------------------------------- 
: Attractive
: Dullard
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
86.500  87.300   1.720     3.890       29.567    5.438      0.062 
----------------------------------------------------------------------- 
: Average
: Dullard
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
48.000  47.800   1.323     2.994       17.511    4.185      0.088 
----------------------------------------------------------------------- 
: Ugly
: Dullard
: Male
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
45.500  45.800   1.133     2.564       12.844    3.584      0.078 
----------------------------------------------------------------------- 
: Attractive
: Charismatic
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
89.000  89.600   2.099     4.748       44.044    6.637      0.074 
----------------------------------------------------------------------- 
: Average
: Charismatic
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
90.500  88.400   2.634     5.958       69.378    8.329      0.094 
----------------------------------------------------------------------- 
: Ugly
: Charismatic
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
86.000  86.700   1.720     3.890       29.567    5.438      0.063 
----------------------------------------------------------------------- 
: Attractive
: Average
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
86.000  87.100   2.152     4.869       46.322    6.81       0.078 
----------------------------------------------------------------------- 
: Average
: Average
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
68.000  68.900   1.882     4.258       35.433    5.953      0.086 
----------------------------------------------------------------------- 
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: Ugly
: Average
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
52.000  51.200   1.724     3.901       29.733    5.453      0.107 
----------------------------------------------------------------------- 
: Attractive
: Dullard
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
51.500  51.800   1.093     2.474       11.956   3.458       0.067 
----------------------------------------------------------------------- 
: Average
: Dullard
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
48.000  47.000   1.183     2.677       14.000    3.742      0.080 
----------------------------------------------------------------------- 
: Ugly
: Dullard
: Female
median   mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
46.500  46.100   0.971     2.197       9.433     3.07       0.067

Output 14.1

14.5.  Mixed ANOVA 2

As with repeated-measures ANOVA, we can do a fairly easy analysis using the ezANOVA() 
function. If you want to approach the analysis in this way and you plan to use Type III sums 
of squares (see Jane Superbrain Box 11.1) then you have to set an orthogonal contrast for 
your predictor variables, otherwise you might think you’re getting type III sums of squares, 
but actually you won’t be. Let’s do this first.

For both personality and looks we could consider the lowest categories (Dullard 
and Ugly) as useful control conditions. Therefore, for personality, we could cre-
ate contrasts that compare some charisma (i.e., average and charismatic) to being 
a dullard, and then compare the charismatic with the average date (Table 14.2).  
Likewise, for looks, we could create a contrast that compares some attractiveness 
(i.e., average and attractive combined) to being ugly, and then a second contrast that 
compares the attractive with the average date (Table 14.3). These contrasts would be 
orthogonal (the rationale is basically the same as for the contrasts that we encountered 
in Chapter 10).

To set these orthogonal contrasts (see Chapter 10) we can first create variables repre-
senting each contrast (which is useful mainly because you can give the contrasts inform-
ative names), and then bind these variables together and set them as the contrast for 
personality:

SomevsNone<-c(1, 1, -2)
HivsAv<-c(1, -1, 0)
contrasts(speedData$personality)<-cbind(SomevsNone, HivsAv)

The first two commands each create a variable relating to a contrast that contains the codes 
for each group from Table 14.2. The final command sets these variables to be the contrasts 
for personality.
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We can set the contrasts for looks in the same way as for personality: we first create 
variables representing each contrast, and then bind these variables together and set them 
as the contrast for looks:

AttractivevsUgly<-c(1, 1, -2)
AttractvsAv<-c(1, -1, 0)
contrasts(speedData$looks)<-cbind(AttractivevsUgly, AttractvsAv)

The first two commands each create a variable relating to a contrast that contains the 
codes for each group from in Table 14.3. The final command sets these variables to be the 
contrasts for looks.

Having set the contrasts, we can use the ezANOVA() function in much the same way as 
for a repeated-measures design. The only difference is that we can add our between-group 
variable (gender) by using the between = .() option. Have a quick look back to section 
13.4.7.1 to remind yourself of the format of the function, and how the between = .() option 
fits into it. We can run the analysis by executing the following command:

speedModel<-ezANOVA(data = speedData, dv = .(dateRating), wid =  
.(participant),  between = .(gender), within = .(looks, personality), type 
= 3, detailed = TRUE)
speedModel

Executing these commands creates a model called speedModel; within the ezANOVA() 
function we have the following commands:

MM data = speedData: This tells ezANOVA that the data are in the dataframe called 
speedData.

MM dv = .(dateRating): This tells ezANOVA that the outcome variable is dateRating.

MM wid = .(participant): This tells ezANOVA that participants can be identified using the 
variable participant.

MM between = .(gender): This tells ezANOVA that gender was measured using different 
entities/participants (i.e., it is a between-group variable).

MM within = .(looks, personality): This tells ezANOVA that looks and personality were 
measured using the same entities/participants (i.e., they are repeated-measures 
variables).

Table 14.3  Orthogonal contrasts for the looks variable

Group Contrast1 Contrast2

Attractive   1 -1

Average   1   1

Ugly -2   0

Table 14.2  Orthogonal contrasts for the personality variable

Group Contrast1 Contrast2

Charismatic   1 -1

Average   1   1

Dullard -2   0
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MM type = 3: This tells ezANOVA that we want Type III sums of squares.

MM detailed = TRUE: This tells ezANOVA to produced a detailed output (i.e., one that 
includes sums of squares).

Executing the second command (speedModel) simply prints the model to the console.

$ANOVA
           Effect DFn DFd   SSn   SSd    F        p p<.05      ges
       (Intercept) 1 18  846249.8 760 2.00e+04 7.01e-29 * 9.94e-01
            gender 1 18      0.2  760 4.74e-03 9.46e-01   4.07e-05
             looks 2 36  20779.6  883 4.24e+02 9.59e-26 * 8.09e-01
      gender:looks 2 36   3944.1  883 8.04e+01 5.23e-14 * 4.45e-01
       personality 2 36  23233.6 1274 3.28e+02 7.69e-24 * 8.26e-01
gender:personality 2 36   4420.1 1274 6.24e+01 1.97e-12 * 4.74e-01
 looks:personality 4 72   4055.3 1993 3.66e+01 1.10e-16 * 4.52e-01
 gender:looks:pers 4 72   2669.7 1993 2.41e+01 1.11e-12 * 3.52e-01

$'Mauchly's Test for Sphericity'
                    Effect     W     p p<.05
3                    looks 0.960 0.708      
4             gender:looks 0.960 0.708      
5              personality 0.929 0.536      
6       gender:personality 0.929 0.536      
7        looks:personality 0.613 0.534      
8 gender:looks:personality 0.613 0.534      

$'Sphericity Corrections'
                  Effect  GGe   p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
                   looks 0.962 7.62e-25  *    1.074 9.59e-26      *
            gender:looks 0.962 1.49e-13  *    1.074 5.23e-14      *
             personality 0.934 2.06e-22  *    1.038 7.69e-24      *
      gender:personality 0.934 9.44e-12  *    1.038 1.97e-12      *
       looks:personality 0.799 9.00e-14  *    0.992 1.43e-16      *
gender:looks:personality 0.799 1.47e-10  *    0.992 1.34e-12      *

Output 14.2

SELF-TEST

ü	 Output 14.2 shows the results of Mauchly’s 
sphericity test. Based on what you have already 
learnt, was sphericity violated?

Output 14.2 shows the results of Mauchly’s sphericity test for each of the three repeated-
measures effects in the model and their interaction with gender. None of the effects violate 
the assumption of sphericity because all of the values in the column labelled p are above .05 
(there are also no asterisks in the column labelled p < .05 for Mauchley’s test); therefore, 
we can assume sphericity when we look at our F-statistics.

Output 14.2  shows the summary table (labelled $ANOVA) of the effects in the ANOVA. 
There are the three main effects of our predictor variables, but also three interaction effects 
involving two variables and another interaction that includes all three variables. 

Again, we need to look at the column labelled p and if the values in this column are less 
than .05 for a particular effect then it is statistically significant. Working down from the 
top of the table we find a non-significant effect of gender, which means that if we ignore 
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the attractiveness and charisma levels of the data, male and female participants did not 
differ in the ratings they gave. There is a significant effect of looks, which means that if 
we ignore whether the date was charismatic, and whether the rating was from a man or a 
woman, then the attractiveness of a person significantly affected the ratings they received. 
The looks × gender interaction is also significant, which means that although the ratings 
were affected by whether the date was attractive, average or ugly, the way in which ratings 
were affected by attractiveness was different in male and female raters.

Next, we find a significant effect of personality, which means that if we ignore whether 
the date was attractive, and whether the rating was from a man or a woman, then the cha-
risma of a person significantly affected the ratings they received. The personality × gender 
interaction is also significant, indicating that this effect of charisma differed in male and 
female raters.

There is a significant interaction between looks and personality, which means that if we 
ignore the gender of the rater, the profile of ratings across different levels of attractiveness 
was different for highly charismatic dates, charismatic dates and dullards. (It is equally 
true to say this the opposite way around: the profile of ratings across different levels of 
charisma was different for attractive, average and ugly dates.) Just to add to the mount-
ing confusion, the looks × personality × gender interaction is also significant, meaning 
that the looks × personality interaction was significantly different in male and female 
participants.

This is all a lot to take in, so we’ll look at each of these effects in turn in subsequent sec-
tions. First, though, we will look at how to analyse the data as a multilevel model.

SELF-TEST

ü	 What is the difference between a main effect and an 
interaction?

             CRAMMING SAM’S TIPS    Mixed ANOVA

•	 Mixed designs are where you compare several means when there are two or more independent variables, and at least one of 
them has been measured using the same participants and at least one other has been measured using different participants. 

•	 You can analyse these designs using a traditional ANOVA framework, or as a multilevel model.
•	 If you plan to look at Type III sums of squares then you must set an orthogonal contrast for all predictors before constructing 

the model.
•	 If you use an ANOVA approach, then test the assumption of sphericity for the repeated-measures variable(s) when they have 

three or more conditions using Mauchly’s test. If the value in the column labelled p is less than .05 then the assumption is 
violated. You should test this assumption for all effects (if there are two or more repeated-measures variables, this means 
you test the assumption for all variables and the corresponding interaction terms).

•	 For each effect in the ANOVA, if the assumption of sphericity has been met then use the p-value for the main ANOVA. If 
the assumption was violated then read the p-value corrected using either the Greenhouse–Geisser (p[GG]) or Huynh–Feldt 
(p[HF]) estimate of sphericity. If the p-value is less than .05 then the means of the groups are significantly different.

•	 Look at the means, or better still draw graphs, to help you interpret the contrasts.
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14.6.  Mixed designs as a GLM 3

I outlined various advantages to analysing repeated-measures data with a multilevel model 
in the previous chapter. We can extend the repeated-measures designs from the previous 
chapter by simply adding the between-group variable (and any interaction terms) as an 
additional predictor. Remember that when we use a multilevel model, the repeated meas-
ures are specified in the random part of the model, so adding in a between-group predictor 
does not affect this part of the model (because it is not a repeated measure). We can liter-
ally just set up the model as we would for a repeated-measures design, but then add the 
between-group predictor.

14.6.1.    Setting contrasts 2

Before we build the model, we need to set contrasts. You might find this weird because 
we already set some contrasts for using ezANOVA. However, the contrasts we set before 
were simply so that we could get Type III sums of squares, and we were constrained to 
use orthogonal contrasts. However, if we use a multilevel model we don’t have to worry 
about orthogonal contrasts because we don’t need to concern ourselves with types of sums 
of squares in the same way that we do for ANOVA. Therefore, I’m going to use different 
contrasts to highlight how, despite the steeper learning curve, multilevel models are worth 
using for repeated-measures data because they offer a much more flexible framework for 
analysing your data.

If we look at the first variable, looks, there were three conditions: attractive, average 
and ugly. In many ways it makes sense to compare the attractive and ugly conditions to 
the average, because the average person represents the norm. This would not make sense 
as an orthogonal contrast because it would mean grouping the attractive and ugly groups 
together in a contrast and these groups are polar opposites (i.e., we might expect their 
ratings to cancel out because presumably attractive dates receive higher ratings than ugly 
dates). However, we can set up this contrast as a non-orthogonal contrast. Table 14.4 shows 
how this would be done. The key is that the baseline category is coded as 0 for all contrasts 
(that’s how R knows it is the baseline). So, we give our baseline group (average attractive-
ness) a value of 0 in both contrasts. Then for one of the contrasts we assign a 1 to attrac-
tive and in the other we assign a 1 to ugly. Contrast 1 compares the attractive condition to 
the average condition (we can tell this because the attractive group is assigned a 1 for this 
contrast), and contrast 2 compares the ugly condition to the average condition (we can tell 
this because the ugly group is assigned a 1 for this contrast).

To set these contrasts (see Chapter 10) we can first create variables representing each 
contrast (which is useful in giving the contrasts informative names), and then bind these 
variables together and set them as the contrast for looks:

AttractivevsAv<-c(1, 0, 0)
UglyvsAv<-c(0, 0, 1)
contrasts(speedData$looks)<-cbind(AttractivevsAv, UglyvsAv)

The first two commands each create a variable relating to a contrast that contains the codes 
for each group from Table 14.4. The final command sets these variables to be the contrasts 
for looks.

Now, let’s think about the second predictor. The personality variable also has a category 
that represents the norm, and that is the dates with the average amount of charisma. Again 
we could use this condition as a control against which to compare our two extremes (lots 

14-Field_R-4368-Ch-14.indd   617 28/02/2012   3:44:07 PM



618 D ISCOVER ING STAT IST ICS  US ING R

of charisma and none whatsoever). Therefore, we could again set the contrasts codes such 
that charismatic is compared to average charisma in contrast 1 and dullard is compared to 
average charisma in contrast 2. The codes are in Table 14.5 and you should note that we 
have used the same codes that we did for looks.

To set these contrasts we can first create variables representing each contrast and set 
them as the contrast for personality:

HighvsAv<-c(1, 0, 0)
DullvsAv<-c(0, 0, 1)
contrasts(speedData$personality)<-cbind(HighvsAv, DullvsAv)

The first two commands each create a variable relating to a contrast that contains the codes 
for each group from  Table 14.5. The final command sets these variables to be the contrasts 
for personality.

We also have a third variable gender. We don’t need to set an explicit contrast for this 
variable because it has only two levels (male or female) therefore the default contrast will 
be fine. (With only two groups any contrast we set can only compare these two groups, 
therefore setting a contrast is pointless.) If your third variable had more than two levels 
then you should also set a contrast for this variable that tests the hypotheses that you have.

We can check that we have set the contrast correctly by executing the name of the vari-
able and looking at the contrast attribute:

speedData$looks

attr(,"contrasts")
           AttractivevsAv UglyvsAv
Attractive              1        0
Average                 0        0
Ugly                    0        1
Levels: Attractive Average Ugly

speedData$personality

attr(,"contrasts")
            HighvsAv DullvsAv
Charismatic        1        0
Average            0        0
Dullard            0        1
Levels: Charismatic Average Dullard

As you can see the codes match those in Tables 14.4 and 14.5.

Table 14.5  Non-orthogonal contrasts for the personality variable

Group Contrast1 Contrast2

Charismatic 1 0

Average 0 0

Dullard 0 1

Table 14.4  Non-orthogonal contrasts for the looks variable

Group Contrast1 Contrast2

Attractive 1 0

Average 0 0

Ugly 0 1
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14.6.2.    Building the model 2

We saw in the previous chapter that if we want to look at the overall main effects and 
interactions then we should build up the model one predictor at a time from a baseline that 
includes no predictors other than the intercept. We can specify the baseline model as we 
did in the previous chapter:

baseline<-lme(dateRating ~ 1, random = ~1|participant/looks/personality, 
data = speedData, method = "ML")

Compare this model with the one that we used for a factorial repeated-measures design in 
the previous chapter. Apart from the variables we’re using, it is exactly the same: we have 
specified the model as the outcome predicted only from the intercept (dateRating ~ 1), 
specified the relevant dataframe (data = speedData), and asked to use maximum likelihood 
to estimate the model (method = “ML”). The random part of the model reflects the fact that 
there are two repeated-measures predictors: random = ~1|participant/looks/personality 
tells R that the variables looks and personality are nested within the variable participant 
(in other words, scores for levels of these variables can be found within each participant). 
Execute the above command to create the baseline model.

To see the overall effect of each main effect and interaction we need to add them to the 
model one at a time. To add looks to the model we could just change the model from dat-
eRating ~ 1 to dateRating ~ looks. In other words, execute:

looksM<-lme(dateRating ~ looks, random = ~1|participant/looks/personality, 
data = speedData, method = "ML")

However, it is quicker to use the update() function (see R’s Souls’ Tip 7.2):

looksM<-update(baseline, .~. + looks)

This command takes the model called baseline (which we have already created), and the .~. 
means keep the outcome and predictors the same as the baseline model (the dots mean ‘keep 
the same’, so the fact that we put dots on both sides of the ~ means that we want to keep 
both the outcome and predictors the same as in the baseline model). The ‘+ looks’ means 
‘add looks as a predictor’. Therefore, ‘.~. + looks’ can be interpreted as ‘keep the same 
outcomes and predictors as the baseline model but add looks as a predictor’. Executing this 
command creates a model called looksM that includes only looks as a predictor.

In a similar way we can add personality to the model as a predictor.

personalityM<-update(looksM, .~. + personality)

This command takes the model called looksM (which we have just created), as before, the 
.~. means keep the outcome and predictors the same as in looksM, and the ‘+ personality’ 
adds personality as a predictor. Therefore, ‘.~. + personality’ can be interpreted as ‘keep 
the same outcomes and predictors as looksM but add personality as a predictor’. Executing 
this command creates a model called personalityM that includes both looks and personality 
as predictors.

We can add gender to the model in exactly the same way:

genderM<-update(personalityM, .~. + gender)

This command takes the previous model (personalityM), keeps all of the same predictors 
and outcomes (.~.) and adds gender (+ gender). Therefore, executing this command creates 
a model called genderM that includes looks, personality and gender as predictors.

We also need to add in the interactions between pairs of variables (the two-way inter-
actions). There are three of these interactions made up from all of the combinations of 
the three main effects: looks × personality, looks × gender, and personality × gender. 
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Remember that in R an interaction is written using a colon, so the looks × personality 
interaction can be specified as looks:personality.

We can add these interactions one at a time using the update command. Each time we 
create a new model that contains all of the terms from the previous model but adds in an 
interaction:

looks_gender<-update(genderM, .~. + looks:gender)
personality_gender<-update(looks_gender, .~. + personality:gender)
looks_personality<-update(personality_gender, .~. + looks:personality)

Note that the model called looks_gender is created by taking the genderM model (which 
contains all of the main effects) and adding the looks × gender interaction to it. Similarly, 
the personality_gender model is created by taking the looks_gender model and adding the 
personality × gender interaction to it. Hopefully you get the gist.

We also need to include the interaction of all three variables, which would be written in 
R as looks:personality:gender. Again, we do this with the update command. We take the 
model with all of the main effects and two-way interactions (looks_personality) and add in 
the three-way interaction:

speedDateModel<-update(looks_personality, .~. + looks:personality:gender)

Executing this command creates a model called speedDateModel, which contains all main 
effects and interactions. This is the final model.

To compare these models we can list them in the order in which we want them compared 
in the anova() function:

anova(baseline, looksM, personalityM, genderM, looks_gender, personality_
gender, looks_personality, speedDateModel)

Executing the above command produces Output 14.3, which first compares the effect of 
looks to the baseline (i.e., no predictors). By adding looks as a predictor we increase the 
degrees of freedom by 2 (the two contrasts that we used to code this variable) and signifi-
cantly improve the model. In other words, the attractiveness of the date had a significant 
effect on ratings, χ2(2) = 68.30, p < .0001. Next, we see the effect of adding the main effect 
of personality into the model (compared to the previous model that contained only the 
effect of looks). Again the degrees of freedom are increased by 2 (the two contrasts used to 
code this variable) and the fit of the model is significantly improved; the personality of the 
date had a significant effect on attitudes, χ2(2) = 138.76, p < .0001. The next model tells 
us whether adding gender improved the fit of the model; it did not, indicating that gender 
did not have a significant overall effect on ratings χ2(1) = 0.002, p = .966. This effect adds 
only 1 degree of freedom because it was coded with a single contrast.

                   Model df      AIC      BIC    logLik   Test   L.Ratio p-value

baseline               1  5 1575.766 1591.730 -782.8829                         

looksM                 2  7 1511.468 1533.819 -748.7343 1 vs 2  68.29719  <.0001

personalityM           3  9 1376.704 1405.441 -679.3520 2 vs 3 138.76442  <.0001

genderM                4 10 1378.702 1410.632 -679.3511 3 vs 4   0.00180  0.9662

looks_gender           5 12 1343.161 1381.477 -659.5808 4 vs 5  39.54079  <.0001

personality_gender     6 14 1289.198 1333.899 -630.5988 5 vs 6  57.96394  <.0001

looks_personality      7 18 1220.057 1277.530 -592.0283 6 vs 7  77.14102  <.0001

speedDateModel         8 22 1148.462 1218.707 -552.2309 7 vs 8  79.59473  <.0001 

Output 14.3

The next model (looks_gender) shows that the looks × gender interaction is also sig-
nificant, χ2(2) = 39.54, p < .0001. This interaction adds 2 degrees of freedom (because 
looks is coded with two contrasts and gender only one, so we get 2 × 1 = 2 df). This sig-
nificant interaction means that although the ratings were affected by whether the date was 
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attractive, average or ugly, the way in which ratings were affected by attractiveness was 
different in male and female raters.

The next model (personality_gender) shows that the personality × gender interaction is 
also significant, χ2(2) = 57.96, p < .0001, indicating that this effect of charisma differed in 
male and female raters. This interaction adds 2 degrees of freedom (because personality is 
coded with two contrasts and gender only one, so we get 2 × 1 = 2 df).

The next model (looks_personality) tells us that there is a significant interaction between 
looks and personality, χ2(4) = 77.14, p < .0001. This interaction adds 4 degrees of freedom 
(because it is made up of two variables each coded with two contrasts, so we get 2 × 2 = 4 df). 
This interaction term means that if we ignore the gender of the rater, the profile of ratings 
across different levels of attractiveness was different for highly charismatic dates, charismatic 
dates and dullards. (It is equally true to say this the opposite way around: the profile of rat-
ings across different levels of charisma was different for attractive, average and ugly dates.)

The final model (speedDateModel) shows that the looks × personality × gender interac-
tion is also significant, χ2(4) = 79.59, p < .0001, meaning that the looks × personality inter-
action was significantly different in male and female participants. This interaction adds 4 
degrees of freedom (because personality is coded with two contrasts, looks is also coded 
with two contrasts, and gender with only one, so we get 2 × 2 × 1 = 4 df).

These results confirm the findings from the ANOVA and just demonstrate really that 
there are two ways to skin this data analysis cat. The end results are the same. However, the 
multilevel model approach has the advantages that (1) we don’t need to concern ourselves 
with sphericity, and (2) we can now break down these very complicated effects by looking 
at the model parameters (which reflect the contrasts that we used to code the predictor 
variables). We can see the model parameters by executing:

summary(speedDateModel)

Output 14.4 shows the parameter estimates for the model (I’ve edited some of the names 
to save space and put some spaces in the table to try to group related contrasts together). 

Linear mixed-effects model fit by maximum likelihood

Fixed effects: dateRating ~ looks + personality + gender + 
looks:personality +      looks:gender + personality:gender + 
looks:personality:gender 
                               Value Std.Error  DF  t-value p-value
(Intercept)                     68.9  1.740866 108 39.57800  0.0000

AttractivevsAv                  18.2  2.400632  36  7.58134  0.0000
UglyvsAv                       -17.7  2.400632  36 -7.37306  0.0000

HighvsAv                        19.5  2.400632 108  8.12286  0.0000
DullvsAv                       -21.9  2.400632 108 -9.12260  0.0000

gender                           2.9  2.461957  18  1.17792  0.2542

AttractivevsAv:gender           -1.5  3.395006  36 -0.44183  0.6613
UglyvsAv:gender                 -5.8  3.395006  36 -1.70839  0.0962

HighvsAv:gender                 -8.5  3.395006 108 -2.50368  0.0138
DullvsAv:gender                 -2.1  3.395006 108 -0.61856  0.5375

AttractivevsAv:HighvsAv        -17.0  3.395006 108 -5.00736  0.0000
UglyvsAv:HighvsAv               16.0  3.395006 108  4.71280  0.0000
AttractivevsAv:DullvsAv        -13.4  3.395006 108 -3.94697  0.0001
UglyvsAv:DullvsAv               16.8  3.395006 108  4.94845  0.0000
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AttractivevsAv:HighvsAv:gender   5.8  4.801263 108  1.20802  0.2297
UglyvsAv:HighvsAv:gender       -18.5  4.801263 108 -3.85315  0.0002
AttractivevsAv:DullvsAv:gender  36.2  4.801263 108  7.53968  0.0000
UglyvsAv:DullvsAv:gender         4.7  4.801263 108  0.97891  0.3298

Output 14.4

14.6.3.    The main effect of gender 2

We saw in Output 14.3 that gender did not have a significant overall effect on ratings of the 
dates, c2(1) = 0.002, p = .966. This effect tells us that if we ignore all other variables, male 
participants’ ratings were basically the same as those of female participants.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot an error bar graph 
and get the means for the main effect of gender.

FIGURE 14.3
Error bar graph of 
the main effect of 
gender
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Output 14.5 is a table of means for the main effect of gender with the associated stand-
ard errors. This information is plotted in Figure 14.3. It is clear from this graph that 
men and women’s ratings were generally the same when we ignore the other predictors. 
However, remember that because there are significant interactions involving this main 
effect we shouldn’t really interpret it (because the higher-order interactions supersede it).
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speedData$gender: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var 
71.000    68.600  1.961     3.896      346.018   18.602      0.271 
----------------------------------------------------------------------- 
speedData$gender: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
67.500    68.533  2.036     4.046      373.218   19.319      0.282

Output 14.5

14.6.4.    The main effect of looks 2

 

SELF-TEST

ü	 Based on the previous section and what you have 
learned in previous chapters, can you interpret the 
main effect of looks?

We came across the main effect of looks in Output 14.3. Now we’re going to have a look 
at what this effect means. We can report that the attractiveness of the date had a significant 
effect on ratings, χ2(2) = 68.30, p < .0001. This effect tells us that if we ignore all other 
variables, ratings were different for attractive, average and unattractive dates.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot an error bar graph 
and get the means for the main effect of looks.

speedData$looks: Attractive
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var       
86.00     82.10   1.90     3.81       217.52     14.75       0.18 
----------------------------------------------------------------------- 
speedData$looks: Average
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
70.000    67.783  2.181     4.364      285.359   16.893      0.249 
----------------------------------------------------------------------- 
speedData$looks: Ugly
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
50.000    55.817  1.957     3.917      229.881   15.162     0.272

Output 14.6

Output 14.6 is a table of means for the main effect of looks with the associated standard 
errors. To make things easier, this information is plotted in Figure 14.4. You can see that 
as attractiveness falls, the mean rating falls too. So this main effect seems to reflect that 
the raters were more likely to express a greater interest in going out with attractive people 
than average or ugly people. However, we really need to look at some contrasts to find out 
exactly what’s going on.
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Output 14.4 shows the contrasts that we requested. The first contrast that we set 
(AttractivevsAv) shows that attractive dates were rated significantly higher than average 
dates, b = 18.2, t(36) = 7.58, p < .001. The second contrast (UglyvsAv) shows that aver-
age dates were rated significantly higher than ugly ones, −17.7, t(36) = −7.37, p < .001. 
Remember that because there are significant interactions involving looks, we shouldn’t 
really interpret the main effect (because the higher-order interactions supersede it).

14.6.5.    The main effect of personality 2

The main effect of personality is in Output 14.3. We can report that there was a significant 
main effect of charisma, χ2(2) = 138.76, p < .0001. This effect tells us that if we ignore 
all other variables, ratings were different for highly charismatic, averagely charismatic and 
dullard people.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot an error bar 
graph and get the means for the main effect of 
personality.

Output 14.7 and Figure 14.5 show that as charisma declines, the mean rating falls too. 
So this main effect seems to reflect that the raters were more likely to express a greater 
interest in going out with charismatic people than average people or dullards. 
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speedData$personality: Charismatic
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var            
86.000    82.100   1.704        3.409      174.193   13.198      0.161 
----------------------------------------------------------------------- 
speedData$personality: Average
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var             
71.00     69.30      2.15      4.30       276.96     16.64       0.24 
----------------------------------------------------------------------- 
speedData$personality: Dullard
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var            
48.000    54.300     2.000     4.002      240.010    15.492      0.285

Output 14.7
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FIGURE 14.5
Error bar graph of 
the main effect of 
personality

Output 14.4 shows the contrasts that we requested. The first contrast that we set 
(HighvsAv) shows that highly charismatic dates were rated significantly higher than dates 
with average charisma, b = 19.5, t(108) = 8.12, p < .001. The second contrast (DullvsAv) 
shows that dates with average charisma were rated significantly higher than dullards, b = 
−21.9, t(108) = −9.12, p < .001. Remember that because there are significant interactions 
involving personality, we shouldn’t really interpret the main effect (because the higher-
order interactions supersede it).

14.6.6.    The interaction between gender and looks 2

Output 14.3 indicated that gender interacted in some way with the attractiveness of the 
date. We can report that there was a significant interaction between the attractiveness 
of the date and the gender of the participant, χ2(2) = 39.54, p < .0001. This effect tells 
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us that the profile of ratings across dates of different attractiveness was different for 
men and women.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot a line graph and 
get the means for the looks × gender interaction.

: Attractive
: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
88.000    88.033  0.996     2.037       29.757    5.455      0.062 
----------------------------------------------------------------------- 
: Average
: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
71.000    67.467  2.873     5.876      247.637   15.736      0.233 
----------------------------------------------------------------------- 
: Ugly
: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
48.500    50.300  1.239     2.535       46.079    6.788      0.135 
----------------------------------------------------------------------- 
: Attractive
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
82.500    76.167  3.366     6.885      339.937   18.437      0.242 
----------------------------------------------------------------------- 
: Average
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
67.500    68.100  3.330     6.811      332.714   18.240      0.268 
----------------------------------------------------------------------- 
: Ugly
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
52.500    61.333  3.458     7.072      358.644   18.938      0.309

Output 14.8

The means and interaction graph (Figure 14.6 and Output 14.8) shows the meaning 
of this result. The graph shows the average male ratings of dates of different attractive-
ness ignoring how charismatic the date was (blue line). The women’s scores are shown 
as a black line. The graph clearly shows that male and female ratings are very similar for 
average-looking dates, but men give higher ratings (i.e., they’re really keen to go out with 
these people) than women for attractive dates, but women express more interest in going 
out with ugly people than men do. In general, this interaction seems to suggest that men’s 
interest in dating a person is more influenced by their looks than for females. Although 
both males’ and females’ interest decreases as attractiveness decreases, this decrease is more 
pronounced for men. This interaction can be clarified using the contrasts in Output 14.4. 
However, we wouldn’t normally interpret this interaction because the significant higher-
order three-way interaction supersedes it.
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14.6.6.1.  Looks × gender interaction 1: 
attractive vs. average, male vs. female 2

The first contrast for the looks × gender interaction term (AttractivevsAv:gender) compares 
male and female ratings of attractive relative to average-looking dates. This contrast is 
not significant, b = −1.5, t(36) = −0.44, p = .661. This result tells us that the increased 
interest in attractive dates compared to average-looking dates found for men is not signifi-
cantly more than for women. So, in Figure 14.6 the slope of the blue line (men) between 
the attractive dates and average dates is not steeper than the black line (females). We can 
conclude that the preferences for attractive dates, compared to average-looking dates, are 
similar for males and females.

14.6.6.2.  Looks × gender interaction 2: 
ugly vs. average, male vs. female 2

The second contrast (UglyvsAv:gender) compares male and female ratings of ugly relative 
to average-looking dates. This contrast is not significant, b = −5.8, t(36) = −1.71, p = .096, 
which suggests that the decreased interest in ugly dates compared to average-looking dates 
found for male raters is not significantly different than for female raters. In Figure 14.6 the 
slope of the blue line (men) between the ugly dates and average dates is not steeper than 
the black line (females). We can conclude that the preferences for average-looking dates, 
compared to ugly dates, are similar for males and females.
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14.6.7.    The interaction between gender and personality 2

Gender interacted with how charismatic the date was (Output 14.3). We can report that 
there was a significant interaction between the attractiveness of the date and the gender 
of the participant, χ2(2) = 57.96, p < .0001. This effect suggests that the profile of ratings 
across dates of different levels of charisma was different for men and women.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot a line graph 
and get the means for the personality × gender 
interaction.

: Charismatic
: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var             
82.00     75.97   2.77      5.67       230.72    15.19       0.20 
----------------------------------------------------------------------- 
: Average : Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var            
71.000    69.533  3.197     6.538      306.533   17.508      0.252 
----------------------------------------------------------------------- 
: Dullard
: Male
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var             
49.00     60.30   3.63      7.43       396.36    19.91       0.33 
----------------------------------------------------------------------- 
: Charismatic
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var           
89.0000   88.2333 1.2361    2.5282      45.8402   6.7705     0.0767 
----------------------------------------------------------------------- 
: Average
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var            
68.000    69.067  2.926     5.984      256.823   16.026      0.232 
----------------------------------------------------------------------- 
: Dullard
: Female
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var           
48.0000   48.3000 0.7629    1.5602      17.4586   4.1784     0.0865

Output 14.9

The means tell us the meaning of this interaction (see Figure 14.7 and Output 14.9). The 
graph shows the average male ratings of dates of different levels of charisma, ignoring how 
attractive they were (blue line). The women’s scores are shown as a black line. The graph 
shows almost the reverse pattern as for the attractiveness data; again male and female rat-
ings are very similar for dates with average amounts of charisma, but this time men show 
more interest in dates who are dullards than women do, and women show slightly more 
interest in very charismatic dates than men do. In general, this interaction seems to sug-
gest than women’s interest in dating a person is more influenced by their charisma than 
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for men. Although both males’ and females’ interest decreases as charisma decreases, this 
decrease is more pronounced for females. This interaction can be clarified using the con-
trasts in Output 14.4. However, we wouldn’t normally interpret this interaction because 
the significant higher-order three-way interaction supersedes it.

14.6.7.1.  Personality × gender interaction 1: high vs. some 
charisma, male vs. female 2

The first contrast for this interaction term (HighvsAv:gender) looks at high charisma com-
pared to average charisma, comparing male and female scores. This contrast is significant, 
b = −8.5, t(108) = −2.50, p = .014. This result tells us that the increased interest in highly 
charismatic dates compared to averagely charismatic dates found for women is significantly 
more than for men. So, in Figure 14.7 the slope of the black line (women) between the 
charismatic dates and dates with average charisma is steeper than the equivalent blue line 
(men). We can conclude that the preferences for very charismatic dates, compared to aver-
agely charismatic dates, are significantly greater for females than males.

14.6.7.2.  Personality × gender interaction 2: 
dullard vs. some charisma, male vs. female 2

The second contrast for this interaction term (DullvsAv:gender) looks at differences in male 
and female ratings of dullards compared to dates with average charisma. This contrast is 
not significant, b = −2.1, t(108) = −0.62, p = .538. This result tells us that the decreased 
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interest in dull dates compared to averagely charismatic dates found for women is not 
significantly more than for men. So, in Figure 14.7 the slope of the black line (females) 
between dates with some charisma and dullard dates is not significantly steeper than the 
corresponding blue line (males). We can conclude that the preferences for dates with some 
charisma over dullards are similar for females than males.

14.6.8.    The interaction between looks and personality 2

Output 14.3 indicated that the attractiveness of the date interacted in some way with how 
charismatic the date was. We can report that there was a significant interaction between the 
attractiveness of the date and the charisma of the date, χ2(4) = 77.14, p < .0001. This effect 
tells us that the profile of ratings across dates of different levels of charisma was different 
for attractive, average and ugly dates.

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot a line graph 
and get the means for the looks × personality 
interaction.

The means tell us the meaning of this interaction (see Output 14.10 and Figure 14.8). 
The graph shows the average ratings of dates of different levels of attractiveness when the 
date also had high levels of charisma (black), some charisma (light blue) and no charisma 
(blue). Look first at the difference between attractive and average-looking dates. The interest 
in highly charismatic dates doesn’t change (the line is more or less flat between these two 
points), but for dates with some charisma or no charisma interest levels decline. So, if you 
have lots of charisma you can get away with being average-looking and people will still want 
to date you. Now, if we look at the difference between average-looking and ugly dates, a dif-
ferent pattern is observed. For dates with no charisma (blue) there is little difference between 
ugly and average people (so if you’re a dullard you have to be really attractive before people 
want to date you). However, for those with charisma, there is a decline in interest if you’re 
ugly (so if you’re ugly, having charisma won’t help you much). This interaction is very com-
plex, but we can break it down using the contrasts in Output 14.4. However, we wouldn’t 
normally interpret this interaction because the significant higher-order three-way interaction 
supersedes it. 

: Attractive
: Charismatic
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var     
89.0000   88.9500 1.3543    2.8345      36.6816   6.0565     0.0681 
----------------------------------------------------------------------- 
: Average
: Charismatic
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var     
86.5000   85.6000 1.7938    3.7546      64.3579   8.0223     0.0937 
----------------------------------------------------------------------- 
: Ugly
: Charismatic
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
73.000    71.750  3.639     7.616      264.829   16.274      0.227 
----------------------------------------------------------------------- 
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: Attractive
: Average
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var     
86.5000   87.8000 1.3795    2.8874      38.0632   6.1695     0.0703 
----------------------------------------------------------------------- 
: Average
: Average
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var     
71.0000   70.3500 1.1883    2.4871      28.2395   5.3141     0.0755 
----------------------------------------------------------------------- 
: Ugly
: Average
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var       
49.50     49.75   1.22      2.56        29.99     5.48       0.11 
----------------------------------------------------------------------- 
: Attractive
: Dullard
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
68.000    69.550  4.191     8.772      351.313   18.743      0.269 
----------------------------------------------------------------------- 
: Average
: Dullard
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var      
48.000    47.400  0.869     1.818       15.095    3.885      0.082 
----------------------------------------------------------------------- 
: Ugly
: Dullard
median    mean   SE.mean  CI.mean.0.95   var    std.dev   coef.var     
46.0000   45.9500 0.7272    1.5220      10.5763   3.2521     0.0708

Output 14.10

Attractive

0

20

40

60

80

100

Average

Charisma

Charisma
Charismatic
Average Charisma
Dullard

M
ea

n
 R

at
in

g
 o

f 
D

at
e

Ugly

FIGURE 14.8
Graph of the 
interaction 
between looks and 
personality

14-Field_R-4368-Ch-14.indd   631 28/02/2012   3:44:21 PM



632 D ISCOVER ING STAT IST ICS  US ING R

14.6.8.1.  Looks × personality interaction 1: attractive vs. 
average, high charisma vs. some charisma 2

The first contrast for this interaction term (AttractivevsAv:HighvsAv) investigates ratings of 
attractive compared to average-looking dates, when comparing charismatic dates to those 
with average charisma. This is like asking: is the difference between high charisma and 
average charisma the same for attractive people and average-looking people? The best way 
to understand what this contrast is testing is to extract the relevant bit of the interaction 
graph, which I have done in Figure 14.9. If you look at this you can see that the interest 
(as indicated by high ratings) in attractive dates was the same regardless of whether they 
had high or average charisma. However, for average-looking dates, there was more interest 
when that person had high charisma rather than average. The contrast is highly significant, 
b = −17.0, t(108) = −5.01, p < .001, and tells us that as dates become less attractive there is 
a greater decline in interest when charisma is average compared to when charisma is high.

14.6.8.2.  Looks × personality interaction 2: ugly vs. average, 
high charisma vs. some charisma 2

The second contrast for this interaction term (UglyvsAv:HighvsAv) investigates ratings of 
ugly compared to average looking dates when comparing charismatic to average-charisma 
dates. This is like asking: is the difference between high charisma and average charisma the 
same for ugly people and average-looking people? I have again extracted the relevant bit of 
the interaction graph (Figure 14.10). You can see that the interest (as indicated by high rat-
ings) decreases from average-looking dates to ugly ones in both high- and some-charisma 
dates; however, this fall is slightly greater in the average-charisma dates (the light blue line 
is slightly steeper). The contrast is significant, b = 16.0, t(108) = 4.71, p < .001, and tells 
us that as dates become less attractive there is a greater decline in interest when charisma 
is low compared to when charisma is high.
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14.6.8.3.  Looks × personality interaction 3: attractive vs. 
average, dullard vs. some charisma 2

The third contrast for this interaction term (AttractivevsAv:DullvsAv) investigates ratings 
of attractive compared to average looking dates, when comparing dullards to dates with 
average charisma. This is like asking: is the difference between no charisma and average 
charisma the same for attractive people and average-looking people? Again, the best way to 
understand what this contrast is testing is to extract the relevant bit of the interaction graph 
(see Figure 14.11). If you look at this you can see that the interest (as indicated by high 
ratings) in attractive dates was higher when they had some charisma than when they were 
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FIGURE 14.10
Graph displaying 
looks × personality 
interaction 2: 
ugly vs. average, 
high charisma vs. 
some charisma
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vs. average, 
dullard vs. some 
charisma

14-Field_R-4368-Ch-14.indd   633 28/02/2012   3:44:22 PM



634 D ISCOVER ING STAT IST ICS  US ING R

a dullard. The same is also true for average-looking dates. In fact the two lines are fairly 
parallel. The contrast, however, is significant, b = −13.4, t(108) = −3.95, p < .001, and 
tells us that as dates become less attractive the decline in interest is different depending on 
whether charisma is average or low. This significant contrast seems at odds with what the 
graph shows (as was the case for the previous contrast) – if this contradiction is bothering 
you then read Jane Superbrain Box 14.1.

JANE SUPERBRAIN 14.1

Contrasts that are significant when 
the graphs don’t seem to show 

an interaction 3

The parameters in the model will depend on what else 
is included in the model. I have said many times in 
this chapter (and others) that you should not interpret 
main effects and interactions when a higher-order 
interaction is significant. These data are a good illus-
tration of why. Contrast 3 of the looks × personal-
ity interaction had a graph that showed parallel 

summary(looks_personality)

                             Value Std.Error  DF   t-value p-value
(Intercept)              70.46667  1.884462 112  37.39353  0.0000
AttractivevsAv           11.20000  2.467340  36   4.53930  0.0001
UglyvsAv                -15.40000  2.467340  36  -6.24154  0.0000
HighvsAv                 21.61667  2.467340 112   8.76112  0.0000
DullvsAv                -28.71667  2.467340 112 -11.63872  0.0000
genderMale               -0.23333  2.252362  18  -0.10359  0.9186
AttractivevsAv:gender    12.50000  2.467340  36   5.06619  0.0000
UglyvsAv:gender         -10.40000  2.467340  36  -4.21507  0.0002
HighvsAv:gender         -12.73333  2.467340 112  -5.16075  0.0000
DullvsAv:gender          11.53333  2.467340 112   4.67440  0.0000
AttractivevsAv:HighvsAv -14.10000  3.021861 112  -4.66600  0.0000
looksUglyvsAv:HighvsAv    6.75000  3.021861 112   2.23372  0.0275
AttractivevsAv:DullvsAv   4.70000  3.021861 112   1.55533  0.1227
UglyvsAv:DullvsAv        19.15000  3.021861 112   6.33715  0.0000

lines, which we usually associate with non-significant 
interactions, yet the contrast was significant. This is 
because of the influence of the higher-order looks × 
personality × gender interaction. When we built up 
the model we created a model that contained every-
thing apart from the three-way interaction (this is the 
model called looks_personality). Let’s have a look at 
the parameter estimates for this model by using the 
summary() function:

The contrast in bold is contrast 3 of the looks × per-
sonality interaction, which, from the graph, looked non-
significant. This contrast looks at the effect of attractive 
dates compared to average ones in dull dates relative 
to those with average charisma. When the three-way 
interaction was included this contrast was highly sig-
nificant, but in its absence the contrast reflects the non-
significant result that we’d expect from the graph. This 
example highlights the reason why you should interpret 
the highest-order significant effect and not worry about 
interpreting lower-order effects in the model.
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14.6.8.4.  Looks × personality interaction 4: 
ugly vs. average, dullard vs. some charisma 2

The final contrast for this interaction term (UglyvsAv:DullvsAv) investigates ratings of ugly 
compared to average-looking dates, when comparing dullards to dates with average charisma. 
This is like asking: is the difference between no charisma and some charisma the same for ugly 
people and average-looking people? Figure 14.12 shows the relevant bits of the interaction 
graph; you can see that the interest (as indicated by high ratings) in average-looking dates 
was higher when they had some charisma than when they were a dullard, but for ugly dates 
the ratings were roughly the same regardless of the level of charisma. This contrast is highly 
significant, b = 16.8, t(108) = 4.95, p < .001, and tells us that as dates become less attractive 
the decline in interest in dates with a bit of charisma is significantly greater than for dullards.
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FIGURE 14.12
Graph displaying 
looks × personality 
interaction 4: 
ugly vs. average, 
dullard vs. some 
charisma

14.6.9.  �  The interaction between looks, personality
and gender 3

The three-way interaction tells us whether the looks × personality interaction described 
above is the same for men and women (i.e., whether the combined effect of attractiveness 
of the date and their level of charisma is the same for male participants as for female sub-
jects). Output 14.3 tells us that there is a significant three-way looks × personality × gender 
interaction, χ2(4) = 79.59, p < .0001. This is the highest-order effect that is significant, and 
consequently, we would ordinarily focus on interpreting this effect and not all the lower-
order ones (which I have interpreted only for illustrative purposes).

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot a line graph 
and get the means for the looks × personality × 
gender interaction.
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The nature of this interaction is revealed in Figure 14.13, which shows the 
looks × personality interaction for men and women separately (the means 
on which this graph is based appear in Output 14.1). The male graph shows 
that when dates are attractive, men will express a high interest regardless of 
charisma levels (the different coloured data points overlap). At the opposite 
end of the attractiveness scale, when a date is ugly, men will express very 
little interest (ratings are all low), regardless of the date’s charisma. The 
only time charisma makes any difference to a man is if the date is average-
looking, in which case high charisma boosts interest, being a dullard reduces 

interest, and having a bit of charisma leaves things somewhere in between. The take-home 
message is that men are superficial cretins who are more interested in physical attributes. 

The picture for women is very different. If someone has high levels of charisma then it 
doesn’t really matter what they look like, women will express an interest in them (the black 
line is relatively flat). At the other extreme, if the date is a dullard, then they will express no 
interest in them, regardless of how attractive they are (the dark blue line is relatively flat). 
The only time attractiveness makes a difference is when someone has an average amount of 
charisma, in which case being attractive boosts interest, and being ugly reduces it. Put another 
way, women prioritize charisma over physical appearance. Again, we can look at some con-
trasts to further break this interaction down (Output 14.4). These contrasts are similar to 
those for the looks × personality interaction, but they now also take into account the effect of 
gender as well.

How do I interpret a
three-way interaction?
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FIGURE 14.13
Graphs showing 
the looks by 
charisma 
interaction for 
men and women. 
Lines represent 
high charisma 
(black), some 
charisma (light 
blue) and no 
charisma  
(dark blue)

14.6.9.1.  Looks × personality × gender interaction 1: 
attractive vs. average, high charisma vs.  
some charisma, male vs. female 3

The first contrast for this interaction term compares ratings for attractive dates to average-
looking dates, when high charisma is compared to average charisma in males compared to 
females, b = 5.8, t(108) = 1.21, p = .230. The interaction graph in Figure 14.14 shows that 
interest (as indicated by high ratings) in attractive dates was the same regardless of whether 
they had high or average charisma. However, for average-looking dates, there was more 
interest when that person had high charisma rather than some charisma. Most important, 
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this pattern of results is the same in males and females, and this is reflected in the non-
significance of this contrast.

14.6.9.2.  Looks × personality × gender interaction 2: ugly vs. 
average, high charisma vs. some charisma, males vs. females 3

The second contrast for this interaction term compares interest in ugly compared to average-
looking dates, when high charisma is compared to average charisma, in men compared to 
women. The interaction graph in Figure 14.15 shows that the patterns are different for men 
and women. This is reflected by the fact that the contrast is significant, b = −18.5, t(108) 
= −3.85, p < .001. To unpick this we need to look at the graph. First, let’s look at the men. 
For men, as attractiveness goes down, so does interest when the date has high charisma and 
when they have average charisma. In fact the lines are parallel. So, regardless of charisma, 
there is a similar reduction in interest as attractiveness declines. For women the picture is 
quite different. When charisma is high, there is no decline in interest as attractiveness falls 
(the black line is flat); however, when charisma is average, the attractiveness of the date does 
matter and interest is lower in an ugly date than in an average-looking date. Another way to 
look at it is that for dates with average charisma, the reduction in interest as attractiveness 
goes down is about the same in men and women (the light blue lines have the same slope). 
However, for dates who have high charisma, the decrease in interest if these dates are ugly 
rather than average looking is much more dramatic in men than women (the black line is 
much steeper for men than it is for women). This is what the significant contrast tells us.

14.6.9.3.  Looks × personality × gender interaction 3: 
attractive vs. average, dullard vs. some charisma,  
male vs. female 3

The third contrast for this interaction term compares interest in attractive compared to 
average-looking dates, when dullards are compared to average charisma, in men compared 
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gender interaction 
1: attractive vs. 
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to women. The interaction graph in Figure 14.16 shows that the patterns are different 
for men and women. This is reflected by the fact that the contrast is significant, b = 36.2, 
t(108) = 7.54, p < .001. To unpick this effect we need to look at the graph. First, if we look 
at average-looking dates, for both men and women more interest is expressed when the 
date has average charisma than when they are a dullard (and the distance between the lines 
is about the same). So the difference doesn’t appear to be here. If we now look at attractive 
dates, we see that men are equally interested in their dates regardless of their charisma, but 
women are much less interested in an attractive person if they are a dullard. Put another 
way, for attractive dates, the distance between the lines is much smaller for men than it is 
for women. Another way to look at it is that for dates with average charisma, the reduction 

Average Looks

0

20

40

60

80

100

Ugly Average Looks Ugly

Female Male

Attractiveness

Charisma

Charismatic

Average Charisma

M
ea

n
 R

at
in

g
 o

f 
D

at
e

FIGURE 14.15
Graph displaying 
looks × personality 
× gender 
interaction 2: 
ugly vs. average, 
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in interest as attractiveness goes down is about the same in men and women (the black lines 
have the same slope). However, for dates who are dullards, the decrease in interest if these 
dates are average-looking rather than attractive is much more dramatic in men than women 
(the light blue line is much steeper for men than it is for women).

14.6.9.4.  Looks × personality × gender interaction 4: ugly vs. 
average, dullard vs. some charisma, male vs. female 3

The final contrast for this interaction term compares interest in ugly compared to average-
looking dates, when comparing dullards to average charisma, in men compared to women. 
The interaction graph in Figure 14.17 shows that interest (as indicated by high ratings) in 
ugly dates was the same regardless of whether they had average charisma or were a dull-
ard. However, for average-looking dates, there was more interest when that person had 
some charisma rather than if they were a dullard. Most important, this pattern of results is 
similar in males and females, and this is reflected in the non-significance of this contrast, b 
= 4.7 , t(108) = 0.98, p = .330.
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FIGURE 14.17
Graph displaying 
looks × personality 
× gender 
interaction 4: 
ugly vs. average, 
dullard vs. some 
charisma, males 
vs. females

14.6.10.    Conclusions 3

These contrasts tell us nothing about the differences between the attractive and ugly condi-
tions, or the high-charisma and dullard conditions, because these were never compared. We 
could rerun the analysis and specify our contrasts differently to get these effects. However, 
what is clear from our data is that differences exist between men and women in terms of 
how they’re affected by the looks and personality of potential dates. Men appear to be 
enthusiastic about dating anyone who is attractive, regardless of how awful their personal-
ity. Women are almost completely the opposite: they are enthusiastic about dating anyone 
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with a lot of charisma, regardless of how they look (and are unenthusiastic about dating 
people without charisma regardless of how attractive they look). The only consistency 
between men and women is when there is some charisma (but not lots), in which case 
for both genders the attractiveness influences how enthusiastic they are about dating the 
person.

What should be even clearer from this chapter is that when more than two independent 
variables are used in a model, it yields complex interaction effects that require a great deal 
of concentration to interpret (imagine interpreting a four-way interaction). Therefore, it 
is essential to take a systematic approach to interpretation, and plotting graphs is a par-
ticularly useful way to proceed. It is also advisable to think carefully about the appropriate 
contrasts to use to answer the questions you have about your data. It is these contrasts that 
will help you to interpret interactions, so make sure you select sensible ones.

             CRAMMING SAM’S TIPS    Multilevel models

•	 The multilevel model approach is a more flexible approach to analysing mixed designs. You can also forget about sphericity.
•	 It makes it easy to include contrasts to break apart interaction effects. Set appropriate contrasts for all predictors before you 

begin.
•	 Build the model up one predictor at a time so that you can test the overall effect of each predictor.
•	 If you build models up hierarchically, you can compare them using the anova() function. If each model contains only one 

additional predictor then by comparing models you can see the effect of each predictor as it is added to the model.
•	 When you have a model with all predictors and interactions included, you can look at the model parameters to see the con-

trasts that you have set. These will help you to break down any interaction effects. If a contrast has a value of p less than .05 
we consider it significant.

•	 Begin by interpreting the highest-order effect (i.e., the significant interaction that contains the most predictors). You should 
not interpret any lower order effects contained within that interaction. For example, if the a × b interaction is significant then 
don’t interpret the main effects of a or b; similarly if the a × b × c interaction is significant then don’t interpret the a × b, a × 
c, or b × c interactions or the main effects of a, b or c.

14.7.  Calculating effect sizes 3

I keep emphasizing the fact that effect sizes are really more useful when they summarize a 
focused effect. This also gives me a useful excuse to circumvent the complexities of omega 
squared in mixed designs (it’s the road to madness, I assure you). Therefore, just calculate 
effect sizes for your contrasts when you’ve got a factorial design (and any main effects 
that compare only two groups).4 Output 14.4 shows the values for several contrasts, all 
of which have a t-value and associated degrees of freedom. We can compute approximate 
effect sizes in the same way that we did for repeated-measures designs, using:

r
t

t df
=

+

2

2

4 Of course if you have used ezANOVA() then you could report generalized eta squared for your effects (ges in 
Output 14.2); however, I question how useful this kind of effect size is for effects with more than two groups, 
and for interaction terms.
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Remember that in section 10.7 we wrote a function to compute this called rcontrast(), 
which you should be able to use if you have the package associated with this book, DSUR, 
loaded – see section 3.4.5). We can get the effect sizes simply by executing:

rcontrast(t, df)

in which t is the value of t for the effect that you want to quantify and df is its associated degrees 
of freedom. We should really only quantify the highest-order interaction because other effects 
in Output 14.4 are not interesting, given that the three-way interaction is significant.

Therefore, we can get the effect sizes by executing rcontrast() for each of the four con-
trasts for the three-way interaction:

rcontrast(-1.20802, 108)

[1] "r =  0.115464310595437"

rcontrast(3.85315, 108)

[1] "r =  0.347643452246021"

rcontrast(-7.53968, 108)

[1] "r =  0.587236020509728"

rcontrast(-0.97891, 108)

[1] "r =  0.0937805285056477"

In other words, we get:

MM rAttractive vs. Average, High vs. Average, Male vs. Female = .12,

MM rUgly vs. Average, High vs. Average, Male vs. Female = .35,

MM rAttractive vs. Average, Dull vs. Average, Male vs. Female = .59,

MM rUgly vs. Average, Dull vs. Average, Male vs. Female = .09.

The two effects that were significant (attractive vs. average, dullard vs. some, male vs. 
female and ugly vs. average, high vs. some, male vs. female) yielded fairly substantial effect 
sizes. The two effects that were not significant yielded fairly small effect sizes.

14.8.  Reporting the results of mixed ANOVA 2

As you’ve probably gathered, when you have more than two independent variables there’s 
a hell of a lot of information that people tend to report. They report all of the main effects, 
all of the interactions and any contrasts they may have done. This can take up a lot of space 
and one good tip is: reserve the detail for the effects that actually matter (e.g., main effects 
and lower-order interactions should not be interpreted if you’ve got significant higher-
order interactions that include those variables). I’m a big fan of giving brief explanations of 
results in the results section to really get the message across about what a particular effect 
is telling us, and so I tend to not just report results, but offer some interpretation as well. 
Having said that, some journal editors are big fans of telling me my results sections are too 
long. So, you should probably ignore everything I say. 

If you’ve taken the ANOVA approach, then, you could report something like this 
(although not as a list!):

✓	 All effects are reported as significant at p < .05. There were significant main effects 
of the attractiveness of the date, F(2, 36) = 423.73, and the amount of charisma the 
date possessed, F(2, 36) = 328.25 on interest expressed by the participant. However, 
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the ratings from male and female participants were, in general, the same, F(1, 18) < 
1, r = .02.

✓	 There were significant interaction effects of the attractiveness of the date and the 
gender of the participant, F(2, 36) = 80.43, the level of charisma of the date and the 
gender of the participant, F(2, 36) = 62.45, and the level of charisma of the date and 
the attractiveness of the date, F(4, 72) = 36.63. 

✓	 Most important, the looks × personality × gender interaction was significant, F(4, 72) 
= 24.12. This indicates that the looks × personality interaction described previously 
was different in male and female participants. 

If you have used a multilevel model then you’d report something like this:

✓	 There were significant main effects of the attractiveness of the date, χ2(2) = 68.30, 
p < .0001, and the amount of charisma the date possessed, χ2(2) = 138.76, p < .0001, 
on interest expressed by the participant. However, the ratings from male and female 
participants were, in general, the same, χ2(1) = 0.002, p = .966.

✓	 There were significant interaction effects of the attractiveness of the date and the 
gender of the participant, χ2(2) = 39.54, p < .0001, the level of charisma of the date 
and the gender of the participant, χ2(2) = 57.96, p < .0001, and the level of charisma 
of the date and the attractiveness of the date, χ2(4) = 77.14, p < .0001. 

✓	 Most important, the looks × personality × gender interaction was significant, χ2(4) = 
79.59, p < .0001. This indicates that the looks × personality interaction described pre-
viously was different in male and female participants. Contrasts were used to break 
down this interaction; these contrasts compared male and females scores at each level 
of charisma compared to the middle category of ‘average charisma’ across each level 
of attractiveness compared to the category of average attractiveness. The first con-
trast revealed a non-significant difference between male and female responses when 
comparing attractive dates to average-looking dates when the date had high charisma 
compared to some charisma, b = 5.8, t(108) = 1.21, p = .230, r = .12, and tells us 
that for both males and females, as dates become less attractive there is a greater 
decline in interest when charisma is average compared to when it is high. The second 
contrast looked for differences between males and females when comparing ugly 
dates to average-looking dates when the date had high charisma compared to average 
charisma. This contrast was significant, b = −18.5, t(108) = −3.85, p < .001, r = .35, 
and tells us that for dates with average charisma, the reduction in interest as attrac-
tiveness goes down is about the same in men and women, but for dates who have high 
charisma, the decrease in interest if these dates are ugly rather than average-looking is 
much more dramatic in men than women. The third contrast investigated differences 
between males and females when comparing attractive dates to average-looking dates 
when the date was a dullard compared to when they had average charisma. This con-
trast was significant, b = 6.2, t(108) = 7.54, p < .001, r = .59, and tells us that for dates 
with average charisma, the reduction in interest as attractiveness goes down is about 
the same in men and women, but for dates who are dullards, the decrease in interest 
if these dates are average-looking rather than attractive is much more dramatic in 
men than women. The final contrast looked for differences between men and women 
when comparing ugly dates to average-looking dates when the date was a dullard 
compared to when they had average charisma. This contrast was not significant, b = 
4.7 , t(108) = 0.98, p = .330, r = .09, and tells us that for both men and women, as 
dates become less attractive the decline in interest in dates with average charisma is 
greater than for dullards.
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14.9.  Robust analysis for mixed designs 3

If I had £1 (or $1, €1 or whatever currency you fancy) for every time someone had told me 
with 100% confidence that there was no ‘non-parametric’ equivalent of mixed ANOVA, 
then I’d have a nice shiny new drum kit. Contrary to this popular assertion, there are robust 
methods that can be used (see section 5.8.4) based on trimmed means and M-estimators 
that are described in Rand Wilcox’s book (Wilcox, 2005). Wilcox also makes available 
functions to do these tests in R. To access these tests we need to load the WRS package (see 
section 5.8.4.). There are four functions that we will look at: 

MM tsplit(): This performs a two-way mixed ANOVA on trimmed means.

MM sppba(): This computes the main effect of factor A of a two-way mixed design using 
an M-estimator and bootstrap.

          Labcoat  Len i ’s  Real  Research 14.1   Keep the faith(ful)? 3

Schützwohl, A. (2008). Personality and Individual Differences, 44, 633–644.

People can be jealous. People can be especially jealous when they think that their partner is being unfaithful. An 
evolutionary view of jealousy suggests that men and women have evolved distinctive types of jealousy because 
male and female reproductive success is threatened by different types of infidelity. Specifically, a woman’s sexual 
infidelity deprives her mate of a reproductive opportunity and in some cases burdens him with years investing in 
a child that is not his. Conversely, a man’s sexual infidelity does not burden his mate with unrelated children, but 
may divert his resources from his mate’s progeny. This diversion of resources is signalled by emotional attach-
ment to another female. Consequently, men’s jealousy mechanism should have evolved to prevent a mate’s 
sexual infidelity, whereas in women it has evolved to prevent emotional infidelity. If this is the case then men and 
women should divert their attentional resources towards different cues to infidelity: women should be ‘on the look-
out’ for emotional infidelity, whereas men should be watching out for sexual infidelity.

Achim Schützwohl put this theory to the test in a unique study in which men and women saw sentences 
presented on a computer screen (Schützwohl, 2008). On each trial, participants saw a target sentence that was 
always emotionally neutral (e.g., ‘The gas station is at the other side of the street’). However, the trick was that 
before each of these targets, a distractor sentence was presented that could also be affectively neutral, or could 
indicate sexual infidelity (e.g., ‘Your partner suddenly has difficulty becoming sexually aroused when he and you 
want to have sex’) or emotional infidelity (e.g., ‘Your partner doesn’t say ‘‘I love you’’ to you anymore’). The idea 
was that if these distractor sentences grabbed a person’s attention then (1) they would remember them, and (2) 
they would not remember the target sentence that came afterwards (because their attentional resources were still 
focused on the distractor). These effects should show up only in people currently in a relationship. The outcome 
was the number of sentences that a participant could remember (out of 6), and the predictors were whether the 
person had a partner or not (Relationship), whether the trial used a neutral distractor, an emotional infidelity 
distractor or a sexual infidelity distractor, and whether the sentence was a distractor or the target following the 
distractor. Schützwohl analysed men and women’s data separately (presumably to avoid having to interpret a 
hideous four-way interaction). The predictions are that women should remember more emotional infidelity sen-
tences (distractors) but fewer of the targets that followed those sentences (target). For men, the same effect 

should be found but for sexual infidelity sentences.
The data from this study are in the file Schützwohl(2008).dat. Labcoat Leni wants you to carry out 

two three-way mixed ANOVAs (one for men and the other for women) to test these hypotheses. Answers 
are in the additional material on the companion website (or look at pages 638–642 in the original article).
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MM sppbb(): This computes the main effect of factor B of a two-way mixed design using 
an M-estimator and bootstrap .

MM sppbi(): This computes the A × B interaction of a two-way mixed design using an 
M-estimator and bootstrap.

There is not a function for analysing a three-way mixed design like the main example in the 
chapter, so we’ll use a different example. 

My wife has a theory that she has received fewer friend requests from random men on 
Facebook since she changed her profile picture to a photo of us both. Like the geeky bof-
fin couple we are, we decided to think about ways you could test her theory scientifically. 
We could systemmatically manipulate how people present themselves on social networking 
sites, and measure how many friend request they get from people they don’t know. In our 
fertile imaginations, we took 40 women who had profiles on a social networking website; 
17 of them had a relationship status of ‘single’ and the remaining 23 had their status as ‘in 
a relationship’. We asked them not to change this status and this acted as a between-group 
variable (relationship_status). We believed that people would get fewer requests from 
strangers if they were in a relationship. Over a 6-week period we asked these women to set 
their profile picture to a photo of them on their own (alone) and to count how many friend 
requests they got from men they didn’t know, then to switch it to a photo of them with a 
man (couple) and again record their friend requests from random men. Each profile picture 
was up for 3 weeks, and the order in which women displayed the two types of picture was 
randomized. This is a mixed design with relationship status as the between-group variable, 
type of profile picture as the repeated-measures variable, and the number of friend requests 
from strange men the outcome.

The data are in the file ProfilePicture.dat. Set your working directory to the location of 
this file and load the data into a dataframe by executing:

pictureData<-read.delim("ProfilePicture.dat", header = TRUE)

The data are currently in this format (I’ve edited out some cases):

   case relationship_status couple alone
1     1   In a Relationship      4     4
2     2   In a Relationship      4     6
3     3   In a Relationship      4     7
4     4   In a Relationship      3     5
…     …        …                 …     …
36   36              Single      5    10
37   37              Single      4     8
38   38              Single      6     9
39   39              Single      7    10
40   40              Single      3     5

The variables in each column are described above. 

SELF-TEST

ü	 Using ggplot2 and stat.desc, plot a line graph and 
get the means for the relationship_status × profile 
picture interaction.
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The first problem we have is that the robust functions need the data to be in wide format 
rather than long (see Chapter 3). Figure 14.18 shows the existing data format and how we 
need it to look (wide). Essentially we want levels of our two factors to be represented in 
different columns. Our repeated measure (type of picture) is already spread across differ-
ent columns (couple and alone), but relationship status is differentiated by different rows 
of data (rows 1–17 are those in a relationship whereas 18–40 are single). Therefore, we 
need to take the rows representing people who are single and shift them into two columns 
alongside the columns currently labelled couple and single.

We can do this restructuring using the melt() and cast() functions from the reshape pack-
age. To get the restructuring to work, we need to add a variable to our dataframe that 
identifies the rows in the wide format. Notice in Figure 14.18 that the data are made up of 
four chunks that represent the combinations of the type of picture and relationship_status, 
and each chunk contains several rows. We want to move the chunks that are currently 
stacked on top of each other so that they are beside each other (Figure 14.18). To do this, 
R needs to know what row a particular score will end up in when we move each block of 
scores from the stacks into the columns. The easiest approach is simply to create a variable 
(called row) that identifies within each chunk the row number of a given score. In other 

SingleIn a Relationship

Factor A: Relationship Status

Factor B: Profile Picture

Couple Couple AloneAlone

Factor B: Profile Picture

relationship_status couple alone

In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
In a Relationship
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Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single

4
4
4
3
4
2
4
3
3
3
3
4
3
1
3
4
4

4
6
7
5
3
5
6
4
7
5
8
7
6
4
6
6
7

6
3
4
4
3
3
4
4
2
6
4
4
3
2
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3
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8
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9
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4
4
4
3
4
2
4
3
3
3
3
4
3
1
3
4
4

4
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5
3
5
6
4
7
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7
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3
4
4
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4
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3
2
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2
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4
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3
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8
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6
5
8
11
8
7
5
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8
9
10
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FIGURE 14.18
Restructuring the 
data for robust 
mixed ANOVA
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words, it will be a value telling us whether the score is the first, second, third, etc. score 
within the chunk. At the moment the chunks are stacked on top of each other, so we want 
a variable that is the sequence of numbers 1 to 17 for the first chunk and 1 to 23 for the 
second (because the relationship status groups contain 17 and 23 people, respectively). We 
can add this variable to the dataframe by executing:

pictureData$row<-c(1:17, 1:23)

This command creates a variable row in the dataframe pictureData, that is, the numbers 
1 to 17 followed by the numbers 1 to 23. The structure of the data will be the same as 
before, it’s just that we have a new variable called row that identifies the scores within each 
relationship status group.

Next we need to make it molten so that we can cast the data into the wide format. To do 
this we use the melt() function (see section 3.9.4). Remember that in this function we dif-
ferentiate variables that identify attributes of the scores (in this case, case, relationship_sta-
tus and row all tell us about a given score, for example, that it was the third score in the 
‘single’ group) from the scores or measured variables themselves (in this case the columns 
labelled couple and alone both contain scores). Attributes are specified with the id option, 
and scores with the measured option. Therefore, we can create a molten dataframe called 
profileMelt by executing:

profileMelt<-melt(pictureData, id = c("case", "row", "relationship_status"), 
measured = c("couple", "alone"))

The data now look like this (I have edited out many cases to save space):

   case row relationship_status variable value
1     1   1   In a Relationship   couple     4
2     2   2   In a Relationship   couple     4
…     …   …           …             …        …
18   18   1              Single   couple     6
19   19   2              Single   couple     3
…     …   …           …             …        …
41    1   1   In a Relationship    alone     4
42    2   2   In a Relationship    alone     6
…     …   …           …             …        …
79   39  22              Single    alone    10
80   40  23              Single    alone     5

The variable that differentiates whether the profile picture was the person alone, or 
the person alongside a man, has been labelled variable and the variable that contains the 
number of friend requests is called value. These labels are not that informative, so let’s 
rename them as profile_picture and friend_requests using the names() function.

names(profileMelt)<-c("case", "row", "relationship_status", "profile_picture", 
"friend_requests")

Executing this command takes the dataframe profileMelt and assigns the names in c() to 
each column. As such, our variables all now have names that relate to what they represent.

Finally, we want to cast our data into the wide format using cast(). To do this we use a 
formula in the form: variables specifying the rows ~ variables specifying the columns. In 
this case, row tells us in which row to place a score, and we want the relationship_status 
and profile_picture variables split across different columns, so we’d use the formula: row 
~ relationship_status + profile_picture. Therefore, we can make a wide dataframe called 
profileData by executing:

profileData<-cast(profileMelt, row ~ relationship_status + profile_picture, 
value = "friend_requests")
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Note that we have applied this command to the molten data set (profileMelt). The value = 
“friend_requests” explicitly tells the function in which column to find the outcome variables. (The 
function will work without this command because it will take an educated guess at which col-
umns contains the scores, but it’s good practice to specify the outcome variable in the function.)

The result is that the data have been transformed to the wide format. However, because 
we added the variable row to the dataframe, our new dataframe also contains this variable, 
and for the analysis we don’t want it. We can remove this variable by executing:

profileData$row<-NULL

If you look at the dataframe you’ll see a lovely wide format set of data (I have abbreviated 
‘in a relationship’ to ‘IAR’):

profileData

IAR_With Man      IAR_Alone      Single_With Man  Single_Alone
4                       4               6            8
4                       6               3            8
4                       7               4            9
3                       5               4            9
4                       3               3           10
2                       5               3           11
4                       6               4            7
3                       4               4            6
3                       7               2            8
3                       5               6            5
3                       8               4            9
4                       7               4            6
3                       6               3            5
1                       4               2            8
3                       6               4           11
4                       6               5            8
4                       7               3            7
NA                      NA              2            5
NA                      NA              5           10
NA                      NA              4            8
NA                      NA              6            9
NA                      NA              7           10
NA                      NA              3            5

Note that because the in ‘a relationship’ group contained fewer cases (17 rather than 23) 
there are NAs in the data set. These won’t affect the functions for robust analyses.

It’s important to note the order of the columns because this affects how we specify the 
robust analysis. In this case, the hierarchy of the independent variables is relationship_status 
followed by profile_picture. In other words, we have taken the four groups of scores and first 
divided them into in a relationship and single, then within these groups we have subdivided 
according to the type of profile picture that was used. We would say that relationship_status is 
factor A and profile_picture factor B (Figure 14.18). As such, the order of the columns reflects 
a 2 × 2 design (two levels of relationship status divided up into two levels of profile picture).

The function tsplit() takes the general form:

tsplit(levels of factor A, levels of factor B, data, tr = .2)

As with other functions we’ve encountered, the level of trimming is by default 20% (tr 
= .2), but can be changed by including the tr = option. Assuming we are happy with the 
default level of trimming, we need only specify the dataframe (profileData) and the levels 
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of factor A (two in this case as explained above) and factor B (two in this case). Therefore, 
we can do a robust two-way factorial ANOVA based on trimmed means by executing:

tsplit(2, 2, profileData)

The functions sppba(), sppbb(), sppbi() all have the same format:

sppba(levels of factor A, levels of factor B, data, est = mom, nboot = 2000)

The main differences are an option to control the number of bootstrap samples (nboot), 
and an option est = to control the M-estimator that you want to use. You can use est = 
median (to use the median) or est = mom (to use a method based on identifying and remov-
ing outliers). In smaller samples you might find that est = mom throws up an error message, 
in which case switch to est = median. The default number of bootstrap samples is 599; let’s 
increase that to 2000 and run the analysis by executing:5

sppba(2, 2, profileData, est = mom, nboot = 2000)
sppbb(2, 2, profileData, est = mom, nboot = 2000)
sppbi(2, 2, profileData, est = mom, nboot = 2000)

tsplit() sppba(), sppbb(), sppbi()

$Qa
[1] 10.78843

$Qa.siglevel
            [,1]
[1,] 0.002795259

$Qb
[1] 92.12093

$Qb.siglevel
             [,1]
[1,] 2.618876e-10

$Qab
[1] 8.167141

$Qab.siglevel
            [,1]
[1,] 0.008003836

sppba

$p.value
[1] 0.001

$psihat
[1] -1.464194

$con
     [,1]
[1,]    1
[2,]   -1

sppbb 

$p.value
[1] 0.0004997501

$center
[1] -3.171429

sppbi

$p.value
[1] 0.015

$psihat
[1] 1.4375

$con
     [,1]
[1,]    1
[2,]   -1

Output 14.11

5 If you want to compare medians then execute:

sppba(2, 2, profileData, est = median, nboot = 2000)
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The output of these commands is shown in Output 14.11. For tsplit() (left-hand side 
of Output 14.11) we are given a test statistic for factor A ($Qa), factor B ($Qb) and their 
interaction ($Qab) as well as the corresponding p-value ($Qa.siglevel, $Qb.siglevel and 
$Qab.siglevel, respectively). Remember that factor A was relationship status and factor 
B the profile picture used; therefore, we could conclude that there were significant main 
effects of relationship status, Q = 10.79, p = .003, and type of profile picture, Q = 92.13, 
p < .001, and a significant relationship status × type of profile picture interaction, Q = 8.17, 
p = .008.

The sppba(), sppbb() and sppbi() outputs (right-hand side of Output 12.8) tell us much 
the same things, and in each case we get a test statistic ($psihat) and an associated p-value 
($p.value). There were significant main effects of relationship status, Ψ̂ = -1.46, p = .001, 
and type of profile picture,Ψ̂ = -3.17, p < .001, and a significant relationship status × type 
of profile picture interaction, Ψ̂ = 1.44, p = .015. 

These results are shown in Figure 14.19. The main effect of profile picture reflects 
the fact that more friend requests generally are made when the picture shows the 
woman on her own (the blue line is higher than the black), the main effect of relation-
ship status reflects the fact that for both lines the number of requests is higher when the 
person’s status is ‘single’ than when it says ‘in a relationship’. The significant interaction 
seems to reflect the fact that the blue line is steeper than the black. In other words, the 
increases in friend requests obtained when your relationship status is ‘single’ (compared 
to ‘in a relationship’) is more when your profile picture shows you alone. Basically, in 
terms of attracting friend requests from strange men you’ve never met, your best bet 
is to say you’re single and put a picture of you alone on your profile. The weirdos will 
come in droves.
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FIGURE 14.19
Graph showing 
the mean number 
of friend requests 
on a social 
networking site 
from weird men 
as a function 
of a woman’s 
relationship status 
and whether their 
profile picture 
shows them alone 
or with a man

14-Field_R-4368-Ch-14.indd   649 28/02/2012   3:44:33 PM



650 D ISCOVER ING STAT IST ICS  US ING R

R packages used in this chapter
ez
ggplot2
multcomp
nlme

pastecs
reshape
WRS

What have I discovered about statistics? 2

Three-way ANOVA is a confusing nut to crack. I’ve probably done hundreds of three-
way ANOVAs in my life and still I kept getting confused throughout writing this chapter 
(and so if you’re confused after reading it it’s not your fault, it’s mine). Hopefully, what 
you should have discovered is that the general linear model is flexible enough that you 
can mix and match independent variables that are measured using the same or differ-
ent participants. In addition, we’ve looked at how ANOVA is also flexible enough to 
go beyond merely including two independent variables. Hopefully, you’ve also started 
to realize why there are good reasons to limit the number of independent variables that 
you include (for the sake of interpretation).

Of course, far more interesting than that is that you’ve discovered that men are 
superficial creatures who value looks over charisma, and that women are prepared 
to date the hunchback of Notre Dame provided he has sufficient charisma. This is 
why as a 16–18-year-old my life was so complicated, because where on earth do you 
discover your hidden charisma? Luckily for me, some girls find alcoholics appeal-
ing. The girl I was particularly keen on at 16 was, as it turned out, keen on me too. 
I refused to believe this for at least a month. All of our friends were getting bored 
of us declaring our undying love for each other to them but then not speaking to 
each other; they eventually intervened. There was a party one evening and all of her 
friends had spent hours convincing me to ask her on a date, guaranteeing me that she 
would say ‘yes’. I had psyched myself up, I was going to do it: I was actually going 
to ask a girl out on a date. My whole life had been leading up to this moment and I 
must not do anything to ruin it. By the time she arrived my nerves had got the bet-
ter of me and she had to step over my paralytic corpse to get into the house. Later 
on, my friend Paul Spreckley (see Figure 9.1) physically carried the girl in question 
from another room and put her next to me and then said something to the effect of 
‘Andy, I’m going to sit here until you ask her out’. He had a long wait but eventually, 
miraculously, the words came out of my mouth. Like the undying love of many a 
16-year-old, our love died about 2 years later.
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R functions used in this chapter
by()
c()
cast()
cbind()
contrasts()
ezANOVA()
ggplot()
gl()
list()
lme()

melt()
names()
rcontrast()
sppba()
sppbb()
sppbi()
stat.desc()
summary()
tsplit()
update()

Key terms that I’ve discovered
Mixed ANOVA Mixed design

Smart Alex’s tasks

MM Task 1: I am going to extend the example from the previous chapter (advertising and 
different imagery) by adding a between-group variable into the design.6 To recap, 
participants viewed a total of nine mock adverts over three sessions. In these adverts 
there were three products (a brand of beer, a brand of wine, and a brand of water). 
These could be presented alongside positive, negative or neutral imagery. Over the 
three sessions and nine adverts, each type of product was paired with each type of 
imagery (read the previous chapter if you need more detail). After each advert par-
ticipants rated the drinks on a scale ranging from −100 (dislike very much) through 
0 (neutral) to 100 (like very much). The design, thus far, has two independent vari-
ables: the type of drink (beer, wine or water) and the type of imagery used (positive, 
negative or neutral). I also took note of each person’s gender. It occurred to me 
that men and women might respond differently to the products (because, in keeping 
with stereotypes, men might mostly drink lager whereas women might drink wine). 
Therefore, I wanted to analyse the data taking this additional variable into account. 
Now, gender is a between-group variable because a participant can be only male or 
female: they cannot participate as a male and then change into a female and partici-
pate again! The data are the same as in the previous chapter (Table 13.4) and can be 
found in the file MixedAttitude.dat. Run a mixed ANOVA on these data. 3

MM Task 2: Text messaging is very popular among mobile phone owners, to the point 
that books have been published on how to write in text speak (BTW, hope u no wat 
I mean by txt spk). One concern is that children may use this form of communica-
tion so much that it will hinder their ability to learn correct written English. One 

6 Previously the example contained two repeated-measures variables (drink type and imagery type), but now it 
will include three variables (two repeated measures and one between-group).
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concerned researcher conducted an experiment in which one group of children was 
encouraged to send text messages on their mobile phones over a six-month period. 
A second group was forbidden from sending text messages for the same period. To 
ensure that kids in this latter group didn’t use their phones, this group was given 
armbands that administered painful shocks in the presence of microwaves (like those 
emitted from phones). There were 50 different participants: 25 were encouraged to 
send text messages, and 25 were forbidden. The outcome was a score on a gram-
matical test (as a percentage) that was measured both before and after the experi-
ment. The first independent variable was, therefore, text message use (text messagers 
versus controls) and the second independent variable was the time at which gram-
matical ability was assessed (before or after the experiment). The data are in the file 
TextMessages.dat. 3

MM Task 3: A researcher was interested in the effects on people’s mental health of par-
ticipating in Big Brother (see Chapter 1 if you don’t know what Big Brother is). The 
researcher hypothesized that they start off with personality disorders that are exac-
erbated by being forced to live with people as attention seeking as them. To test this 
hypothesis, she gave eight contestants a questionnaire measuring personality disor-
ders before they entered the house, and again when they left the house. A second 
group of eight people acted as a waiting list control. These people were short-listed to 
go into the house, but never actually made it. They too were given the questionnaire 
at the same points in time as the contestants. The data are in BigBrother.dat. Conduct 
a mixed ANOVA on the data. 2

MM Task 4: In this chapter we did a robust analysis on some data about how people’s 
profile pictures on social networking sites affect their friend requests. Reanalyse these 
data using a non-robust analysis. The data are in the file ProfilePicture.dat. 2

Answers can be found on the companion website. Some more detailed comments about 
task 2 can be found in Field and Hole (2003).

Further reading
Field, A. P. (1998). A bluffer’s guide to sphericity. Newsletter of the Mathematical, Statistical and 

Computing Section of the British Psychological Society, 6(1), 13–22. (Available in the additional 
material on the companion website.)

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you 
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.)

Interesting real research
Schützwohl, A. (2008). The disengagement of attentive resources from task-irrelevant cues to sexual 

and emotional infidelity. Personality and Individual Differences, 44, 633–644.
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15
Non-parametric tests

FIGURE 15.1
In my office during 
my Ph.D., probably 
preparing some 
teaching – I had 
quite long hair 
back then because 
it hadn’t started 
falling out at that 
point

15.1.  What will this chapter tell me? 1

After my psychology degree (at City University, London) I went to the University of Sussex 
to do my Ph.D. (also in psychology) and, like many people, I had to teach to survive. Much 
to my dread, I was allocated to teach second-year undergraduate statistics. This was pos-
sibly the worst combination of events that I could ever imagine. I was still very shy at the 
time, and I didn’t have a clue about statistics. Standing in front of a room full of strangers 
and trying to teach them ANOVA was only marginally more appealing than dislocating 
my knees and running a marathon – with broken glass in my trainers (sneakers). I obses-
sively prepared for my first session so that it would go well; I created handouts, I invented 
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examples, I rehearsed what I would say. I went in terrified but at least knowing that if 
preparation was any predictor of success then I would be OK. About half way through the 
first session as I was mumbling on to a room of bored students, one of them rose majesti-
cally from her seat. She walked slowly towards me, and I’m convinced that she was sur-
rounded by an aura of bright white light and dry ice. Surely she had been chosen by her 
peers to impart a message of gratitude for the hours of preparation I had done and the skill 
with which I was unclouding their brains of the mysteries of ANOVA. She stopped beside 
me. We stood inches apart and my eyes raced around the floor looking for the reassurance 
of my shoelaces: ‘No one in this room has a rabbit1 clue what you’re going on about’, 
she spat before storming out. Scales have not been invented yet to measure how much I 
wished I’d ran the dislocated-knees marathon that morning and then taken the day off. I 
was absolutely mortified. To this day I have intrusive thoughts about groups of students in 
my lectures walking zombie-like towards the front of the lecture theatre chanting ‘No one 
knows what you’re going on about’ before devouring my brain in a rabid feeding frenzy. 
The point is that sometimes our lives, like data, go horribly, horribly wrong. This chapter 
is about data that are as wrong as dressing a cat in a pink tutu.

15.2.  When to use non-parametric tests 1

We’ve seen in the last few chapters how we can use various techniques to look for dif-
ferences between means. However, all of these tests rely on parametric assumptions (see 

Chapter 5). Data are often unfriendly and don’t always turn up in nice 
normally distributed packages! Just to add insult to injury, it’s not always 
possible to correct for problems with the distribution of a data set – so, 
what do we do in these cases? The answer is that we can use special kinds of 
statistical procedures known as non-parametric tests.2 Non-parametric tests 
are sometimes known as assumption-free tests because they make fewer 
assumptions about the type of data on which they can be used.3 Most of 
these tests work on the principle of ranking the data: that is, finding the 
lowest score and giving it a rank of 1, then finding the next highest score 
and giving it a rank of 2, and so on. This process results in high scores 

being represented by large ranks, and low scores being represented by small ranks. The 
analysis is then carried out on the ranks rather than the actual data. This process is an 
ingenious way around the problem of using data that break the parametric assumptions. 
Some people believe that non-parametric tests have less power than their parametric 
counterparts, but as we will see in Jane Superbrain Box 15.2 below this is not always 
true. In this chapter we’ll look at four of the most common non-parametric proce-
dures: the Wilcoxon rank-sum test (which is also known as the Mann–Whitney test), 
the Wilcoxon signed-rank test, Friedman’s test and the Kruskal–Wallis test. For each of 
these we’ll discover how to carry out the analysis in R and how to interpret and report 
the results.

1 She didn’t say ‘rabbit’, but she did say a word that describes what rabbits do a lot; it begins with an ‘f ’ and the 
publishers think that it will offend you.

2 Having said which, with the advent of the kinds of robust procedures we have used throughout this book, I’m 
not sure for how much longer people will use these tests.

3 Non-parametric tests sometimes get referred to as distribution-free tests, with an explanation that they make no 
assumptions about the distribution of the data. Technically, this isn’t true: they do make distributional assumptions 
(e.g., the ones in this chapter all assume a continuous distribution), but they are less restrictive ones than their 
parametric counterparts.

What are non-parametric
tests?
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15.3.  Packages used in this chapter 1

Most of the tests used in this chapter are in the stats package, which is installed and loaded 
automatically. However, we will need the packages clinfun (for the Jonckheere test), pastecs 
(for descriptive statistics), pgirmess (for post hoc tests), ggplot2 (for graphs), and Rcmdr (R 
Commander) if you’re going to use that rather than commands (see section 3.6). If you 
don’t have these packages installed you’ll need to install them by executing: 

install.packages("clinfun"); install.packages("ggplot2"); install.packages 
("pastecs"); install.packages("pgirmess"); 

Then you need to load the packages by executing these commands:

library(clinfun); library(ggplot2); library(pastecs); library(pgirmess)

15.4.  Comparing two independent conditions:  
the Wilcoxon rank-sum test 1

When you want to test differences between two conditions and different participants have 
been used in each condition then you have two choices: the Mann–Whitney test (Mann & 
Whitney, 1947) and the Wilcoxon’s rank-sum test (Wilcoxon, 1945; Figure 15.2). These 
tests are the non-parametric equivalent of the independent t-test. In fact both tests are 
equivalent, and there’s another, more famous, Wilcoxon test, so it gets extremely confus-
ing for most of us. R does the Wilcoxon rank-sum test, but if you read about the Mann–
Whitney test, it’s the same. (I’d prefer it if R did the Mann–Whitney test, that way we’d 
only have one Wilcoxon test to worry about. But that’s not the way it is, so we’ll have to 
get used to it.) 

For example, a neurologist might collect data to investigate the depressant effects of 
certain recreational drugs. She tested 20 clubbers in all: 10 were given an ecstasy tablet to 
take on a Saturday night and 10 were allowed to drink only alcohol. Levels of depression 
were measured using the Beck Depression Inventory (BDI) the day after and midweek. The 
data are in Table 15.1 and in the file Drug.dat.

15.4.1.    Theory of the Wilcoxon rank-sum test 2

The logic behind the Wilcoxon rank-sum test is incredibly elegant. First, let’s imagine a 
scenario in which there is no difference in depression levels between ecstasy and alcohol 
users. If we were to rank the data ignoring the group to which a person belonged from 
lowest to highest (i.e., give the lowest score a rank of 1 and the next lowest a rank of 2, 
etc.), then what should we find? Well, if there’s no difference between the groups then we 
would expect to find a similar number of high and low ranks in each group; specifically, 
if we added up the ranks, then we’d expect the summed total of ranks in each group to be 
about the same. Now think about what would happen if there was a difference between the 
groups. Let’s imagine that the ecstasy group is more depressed than the alcohol group. If 
we ranked the scores as before, then we would expect the higher ranks to be in the ecstasy 
group and the lower ranks to be in the alcohol group. Again, if we summed the ranks in 
each group, we’d expect the sum of ranks to be higher in the ecstasy group than in the 
alcohol group.
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The Wilcoxon rank-sum test works on this principle. Let’s have a look at 
how ranking works in practice. Figure 15.3 shows the ranking process for 
both the Wednesday and Sunday data. To begin with, let’s use our data for 
Wednesday, because it’s more straightforward. First, just arrange the scores 
in ascending order, attach a label to remind you which group they came from 
(I’ve used A for alcohol and E for ecstasy), then assign potential ranks start-
ing with 1 for the lowest score and going up to the number of scores you 
have. The reason why I’ve called these ‘potential’ ranks is that sometimes the 

Table 15.1  Data for drug experiment

Participant Drug BDI (Sunday) BDI (Wednesday)

  1 Ecstasy 15 28

  2 Ecstasy 35 35

  3 Ecstasy 16 35

  4 Ecstasy 18 24

  5 Ecstasy 19 39

  6 Ecstasy 17 32

  7 Ecstasy 27 27

  8 Ecstasy 16 29

  9 Ecstasy 13 36

10 Ecstasy 20 35

11 Alcohol 16 5

12 Alcohol 15 6

13 Alcohol 20 30

14 Alcohol 15 8

15 Alcohol 16 9

16 Alcohol 13 7

17 Alcohol 14 6

18 Alcohol 19 17

19 Alcohol 18 3

20 Alcohol 18 10

FIGURE 15.2
Frank Wilcoxon

How do I rank data?
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same score occurs more than once in a data set (e.g., in these data a score of 6 occurs twice, 
and a score of 35 occurs three times). These are called tied ranks and these values need 
to be given the same rank, so all we do is assign a rank that is the average of the potential 
ranks for those scores. So, with our two scores of 6, because they would’ve been ranked 3 
and 4, we take an average of these values (3.5) and use this value as a rank for both occur-
rences of the score. Likewise, with the three scores of 35, we have potential ranks of 16, 
17 and 18; we actually use the average of these three ranks, (16 + 17 + 18)/3 = 17. When 
we’ve ranked the data, we add up all of the ranks for the two groups. So, add the ranks 
for the scores that came from the alcohol group (you should find the sum is 59) and then 
add the ranks for the scores that came from the ecstasy group (this value should be 151).   
We’re almost at the answer. 

For each of these values, we need to correct for the number of people in the group, by 
subtracting the mean rank of the group for a group of that many people (because otherwise 
larger groups would have larger ranks). The mean rank is the mean of the numbers from 
1 to 10:

meanrank = + + + + + + + + +1 2 3 4 5 6 7 8 9 10

There’s a slightly easier formula, especially if you have a lot of numbers:

meanrank =
N N( )+

=
×

=

1
2

10 11
2

55

We therefore calculate two potential values for W, one for each group:

W

W

=
=

= − =

sumof ranks meanrank−
−W = 591

2

55 4

151 55 96

Typically, we take the smallest of these values to be our test statistic, therefore the test 
statistic for the Wednesday data is W = 4. However, which of the two values of W is 
reported by R depends on which way around you input variables into the function, which 
is a little confusing, but don’t worry about it – it makes no difference to the significance.

SELF-TEST

ü	 Based on what you have just learnt, try ranking the 
Sunday data. (The answers are in Figure 15.3 – there are 
lots of tied ranks and the data are generally horrible.)

You should find that when you’ve ranked the data, and added the ranks for the two 
groups, the sum of ranks for the alcohol group is 90.5 and for the ecstasy group it is 119.5. 
These are the sums of the ranks. We take the smaller of the two (90.5) and subtract 55, 
thereby obtaining a value of W of 35.5. 

Having computed the test statistic, R then calculates the associated p-value, which can 
be done in two ways.  First, there is the exact approach, which is the best one to take. The 
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exact approach uses a Monte Carlo method to obtain the significance level.4 This basically 
involves creating lots of data sets that match the sample, but instead of putting people into 
the correct groups, it puts them into a random group. Because the people were assigned to 
a group randomly, we know that the null hypothesis is true – so it calculates the value for 
W, based on these data in which the null hypothesis is true. Let’s think about this – if the 
null hypothesis is true, and the results of this analysis look like your analysis, well, that’s 
not so good for your hypothesis. However, R doesn’t just put the people into a random 
group and analyse them once, it then repeats it, and looks at the results again … and again 
… and again. It does this thousands of times and looks at how often the difference that 
appears in the data when the null hypothesis is true is as large as the difference in your data. 

This method is great, because we don’t need to make any assumptions about the 
distribution,5 but it’s not so great because it takes a long time; and as the sample size 
increases, the length of time it takes increases more and more. If your sample is big enough 
you might actually die before you get an answer. In addition, if you have ties in the data, 
you cannot use the exact method.

With large sample sizes, you are better off using a normal approximation to calculate 
the p-value. The normal approximation doesn’t assume that the data are normal. Instead 
it assumes that the sampling distribution of the W statistic is normal, which means that 
a standard error can be computed that is used to calculate a z and hence a p-value. The 
default in R is to use a normal approximation if the sample size is larger than 40; and if you 
have ties, you have to use a normal approximation whether you like it or not.

If you use a normal approximation to calculate the p-value, you also have the option to use 
a continuity correction.6 The reason for the continuity correction is that we’re using a normal 
distribution, which is smooth, but a person can change in rank only by 1 (or 0.5, if there are 
ties), which is not smooth. Therefore, the p-value using the normal approximation is a lit-
tle too small; the continuity correction attempts to rectify this problem but can make your 
p-value a little too high instead. The difference that the correction makes is pretty small – there 
is no consensus on the best thing to do. If you don’t specify, R will include the correction.

15.4.2.    Inputting data and provisional analysis 1

SELF-TEST

ü	 See whether you can use what you have learnt about 
data entry to enter the data in Table 15.1 into R.

4 If you’re wondering why it’s called the Monte Carlo method, it’s because back in the late nineteenth century 
when Karl Pearson was trying to simulate data he didn’t have a computer to do it for him. So he used to toss 
coins. A lot. That is, until a friend suggested that roulette wheels, if unbiased, were excellent random number 
generators. Rather than trying to persuade the Royal Society to fund trips to Monte Carlo casinos to collect data 
from their roulette wheels, he purchased copies of Le Monaco, a weekly Paris periodical that published exactly 
the data that he required, at the cost of 1 franc (Pearson, 1894; Plackett, 1983). When simulated data are used 
to test a statistical method, or to estimate a statistic, it is known as the Monte Carlo method even though we use 
computers now and not roulette wheels. 

5 Actually it does make an assumption, but it’s a good one: it assumes that the distribution in your sample looks 
exactly like the distribution in your sample. This assumption is, of course, true. It also explains why it has to do 
this analysis every time you run the test, because it’s different for every sample (unlike tests like the t-test, where 
it is assumed that the distribution is normal).

6 If you’re reading this book out of order, the continuity correction is the same as the Yates correction that you 
came across in Chapter 18. Or if you’re reading it in order, that you will come across in Chapter 18.
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When the data are collected using different participants in each group, we need to input 
the data using a factor variable. So, the data editor will have three columns of data. The 
first column is a coding variable (called something like drug), which, in this case, will have 
only two levels (ecstasy group and alcohol group). We can create this variable using the gl() 
function (see section 3.5.4.3), by executing:

drug<-gl(2, 10, labels = c("Ecstasy", "Alcohol"))

This command creates a variable called drug, which contains two blocks of 10 rows of 
data: the first block will be labelled Ecstasy and the second block Alcohol.

The second column will have values for the dependent variable (BDI) measured the day after 
(call this variable sundayBDI) and the third will have the midweek scores on the same ques-
tionnaire (call this variable wedsBDI). We can, therefore, create these variables by executing:

sundayBDI<-c(15, 35, 16, 18, 19, 17, 27, 16, 13, 20, 16, 15, 20, 15, 16, 13, 
14, 19, 18, 18)
wedsBDI<-c(28, 35, 35, 24, 39, 32, 27, 29, 36, 35, 5, 6, 30, 8, 9, 7, 6, 17, 
3, 10)

Finally, we can tie these variables together in a dataframe called drugData by executing:

drugData<-data.frame(drug, sundayBDI, wedsBDI)

If you don’t want to do that, you’ll find the data in the file called Drug.dat, which you 
can load by executing:

drugData<-read.delim("Drug.dat", header = TRUE)

First, we would run some exploratory analyses on the data and because we’re going to 
be looking for group differences we need to run these exploratory analyses for each group. 

SELF-TEST

ü	 Carry out some analyses to test for normality and 
homogeneity of variance in these data (see sections 
5.6 and 5.7).

The results of these exploratory analyses are shown in Outputs 15.1 and 15.2. Output 
15.1 shows that for the Sunday data the distribution for ecstasy, p < .05, appears to be non-
normal whereas the alcohol data, W = 0.96 , ns, are normal; we can tell this by whether 
the significance of the Shapiro–Wilk test is less than .05 (and, therefore, significant) or 
greater than .05 (and, therefore, non-significant, ns). For the Wednesday data, although the 
data for ecstasy are normal, W = 0.94 , ns, the data for alcohol appear to be significantly 
non-normal, W = 0.75, p < .01. This finding would alert us to the fact that the sampling 
distribution might also be non-normal for the Sunday and Wednesday data and that a non-
parametric test should be used. 

Output 15.2 shows the results of Levene’s test. For the Sunday data, F(1, 18) = 3.64, 
ns, and for Wednesday, F(1, 18) = 0.51, ns, the variances are not significantly different, 
indicating that the assumption of homogeneity has been met.

drug: Ecstasy
              Sunday_BDI Wednesday_BDI
median       17.50000000    33.5000000
mean         19.60000000    32.0000000
SE.mean       2.08806130     1.5129074
CI.mean.0.95  4.72352283     3.4224344
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var          43.60000000    22.8888889
std.dev       6.60302961     4.7842334
coef.var      0.33688927     0.1495073
skewness      1.23571300    -0.2191665
skew.2SE      0.89929826    -0.1594999
kurtosis      0.26030385    -1.4810114
kurt.2SE      0.09754697    -0.5549982
normtest.W    0.81064005     0.9411414
normtest.p    0.01952069     0.5657834
------------------------------------------------------------------- 
drug: Alcohol
              Sunday_BDI Wednesday_BDI
median       16.00000000   7.500000000
mean         16.40000000  10.100000000
SE.mean       0.71802197   2.514181996
CI.mean.0.95  1.62427855   5.687474812
var           5.15555556  63.211111111
std.dev       2.27058485   7.950541561
coef.var      0.13845030   0.787182333
skewness      0.11686189   1.500374383
skew.2SE      0.08504701   1.091907319
kurtosis     -1.49015904   1.079109997
kurt.2SE     -0.55842624   0.404388605
normtest.W    0.95946594   0.753466710
normtest.p    0.77976592   0.003933045

Output 15.1

Levene’s Test for Homogeneity of Variance (center = "mean")
      Df F value  Pr(>F)  
group  1  3.6436 0.07236 .
      18                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Levene’s Test for Homogeneity of Variance (center = «mean»)
      Df F value Pr(>F)
group  1  0.5081 0.4851
      18 

Output 15.2

15.4.3.    Running the analysis using R Commander 1

As always, import the data, using Data⇒Import data⇒from text file, clipboard, or URL… 
(see section 3.7.3) click on  and choose the file Drug.dat. 

To run the Wilcoxon test on independent samples, select Statistics⇒Nonparametric 
tests⇒Two-sample Wilcoxon test… to activate the dialog box in Figure 15.4. In the box 
on the left, labelled Groups (pick one), select the variable that defines the groups that 
you want to compare; this variable must be a factor with two levels. In our case we want 
to select the variable drug. On the right, in the list labelled Response Variable (pick one), 
choose the outcome variable on which you want to compare groups. In this case, we’ll pick 
sundayBDI first.
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The Wilcoxon test offers two main different ways to calculate a p-value. The first option 
is the default. The default depends on the sample size and the presence of ties. If the sample 
size is 40 or fewer, then the default will be to do an exact test, as long as there are no ties. 
If the sample is larger than 40, the default will be to use a normal approximation with 
continuity correction. You can override this default if you like, but remember that if you 
have ties the exact test won’t work, and if you have a large sample the exact test may not 
finish before your funeral.

You should probably leave the default option of a two-sided test as it is (although if you 
have predicted a direction of the effect you could choose to test whether or not the differ-
ence will be bigger (Difference > 0) or smaller (Difference < 0) than zero. When you have 
selected your variables, click on  to run the analysis. The output will be discussed in 
due course.

15.4.4.    Running the analysis using R 1

The function for the Wilcoxon test is called wilcox.test() and works in a very similar way to 
the t.test() function (see section 9.5.2). That is, there are two different ways that you can 
use this function and it depends on whether your group data are in a single column or if 
they are in two different columns. 

If you have the data for different groups stored in a single column, then the wilcox.test() 
function is used like the lm() function (in other words, like a regression):

newModel<-wilcox.test(outcome ~ predictor, data = dataFrame, paired = FALSE/
TRUE)

in which:

MM newModel is an object created that contains information about the model. We can get 
summary statistics for this model by executing the name of the model.

FIGURE 15.4
The non-parametric 
tests menu in R 
Commander and 
the dialog box for 
the Wilcoxon test 
for independent 
samples
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MM outcome is a variable that contains the scores for the outcome measure (in this case drug).

MM predictor is a variable that tells us to which group a score belongs (in this case sun-
dayBDI or wedsBDI).

MM dataFrame is the name of the dataframe containing the aforementioned variables.

MM paired = FALSE determines whether or not you want to do the Wilcoxon test 
on matched (in which case include paired = TRUE) or independent samples (in 
which case exclude the option because this is the default or include paired = 
FALSE).

However, if you have the data for different groups stored in two columns, then the wil-
cox.test() function takes this form:

newModel<-wilcox.test(scores group 1, scores group 2, paired = FALSE/TRUE)

in which the options are the same as before except that:

MM scores group 1 is a variable that contains the scores for the first group.

MM scores group 2 is a variable that contains the scores for the second group.

In both forms of the function, there are additional options that can be specified (but do 
not need to be). These are:

MM alternative = c(“two.sided”/“less”/“greater”): This option determines whether you’re 
doing a two-tailed test, which is the default and happens if we don’t include this 
option. If you want to do a one-tailed test then you need to include the option alter-
native = “less” (if you predict that the difference between means will be less than 
zero) or alternative = “greater” (if you predict that the difference between means will 
be greater than zero).

MM mu = 0: A difference between groups of zero is the default null hypothesis, but can 
be changed. For example, including mu = 5 would test the null hypothesis that the 
difference between groups is different to 5.

MM exact: By default the function does an exact test (exact = TRUE). You can switch this 
option off by including exact = FALSE.

MM correct: By default the function does a continuity correction (correct = TRUE); but if 
you don’t want one include correct = FALSE.

MM conf.level = 0.95: This determines the alpha level for the p-value and confidence 
intervals. By default it is 0.95 (for 95% confidence intervals), but if you want to use 
a different value, say 99%, you could include conf.level = 0.99.

MM na.action: If you have complete data (as we have here) you can exclude this option, 
but if you have missing values (i.e., NAs in the dataframe) then it can be useful to 
use na.action = na.exclude, which will exclude all cases with missing values – see R’s 
Souls’ Tip 7.1).

Therefore, to compute a basic Wilcoxon test for our Sunday data we could execute:

sunModel<-wilcox.test(sundayBDI ~ drug, data = drugData)
sunModel

For the Wednesday data we need only change the name of the outcome variable:

wedModel<-wilcox.test(wedsBDI ~ drug, data = drugData)
wedModel
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These commands create models called sunModel and wedModel that predict Sunday and 
Wednesday depression levels from group membership (drug). We execute the name of 
the model to see the output.7 Having left all of the default options as they are, R will 
calculate the p-value, using the exact approach if N is less than 40 and there are no ties, 
or the normal approximation approach if N is more than 40 or if there are any ties. It will 
also use a continuity correction. To use a normal approximation rather than exact p, and 
to get rid of the continuity correction we can exclude exact = FALSE and correct = FALSE 
respectively:

sunModel<-wilcox.test(sundayBDI ~ drug, data = drugData, exact = FALSE,  
correct= FALSE)
wedModel<-wilcox.test(wedsBDI ~ drug, data = drugData, exact = FALSE,  
correct= FALSE)

15.4.5.    Output from the Wilcoxon rank-sum test 1

The output from the Wilcoxon tests is shown in Output 15.3 (Sunday) and Output 15.4 
(Wednesday). For the BDI score on Sunday, you will find the p-value is 0.286 with the 
continuity correction (the default − if you rerun the test without this correction, you’ll 
find the p-value is 0.269). We could say that the type of drug did not significantly affect 
depression levels the day after, W = 35.5, p = .286.

Wilcoxon rank sum test with continuity correction

data:  sundayBDI by drug 
W = 35.5, p-value = 0.2861
alternative hypothesis: true location shift is not equal to 0 

Output 15.3

Wilcoxon rank sum test with continuity correction

data:  wedsBDI by drug 
W = 4, p-value = 0.000569
alternative hypothesis: true location shift is not equal to 0 

Output 15.4

For the Wednesday data, however, the type of drug did significantly affect depression 
levels the day after, W = 4, p < .001. Note that because we left the default of an exact test, 
R gives us a warning message that it cannot do this, because of the ties.

15.4.6.    Calculating an effect size 2

As we’ve seen throughout this book, it’s important to report effect sizes so that people have 
a standardized measure of the size of the effect you observed, which they can compare to 
other studies. R doesn’t calculate an effect size for us, but we can calculate approximate 
effect sizes fairly easily. First, we take the p-value. Recall that R used a normal approxima-
tion to calculate the p-value; it did this via calculating a z for the data. It doesn’t report, or 
store, the z-value, but we can recover it from the p-value using the qnorm() function. We 

7 We could run the commands without creating a model to get the output in a single command, but having the 
models is useful later for computing effect sizes.
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can then convert the z-value into an effect size estimate. The equation to convert a z-score 
into the effect size estimate, r, is as follows (from Rosenthal, 1991, p. 19):

r
z

N
=

in which z is the z-score and N is the size of the study (i.e., the number of total observa-
tions) on which z is based. 

We can write ourselves a function (or access the function directly from our DSUR 
package – see section 3.4.5) to get the effect size from the models we created earlier. The 
function looks like this:

rFromWilcox<-function(wilcoxModel, N){
	 z<- qnorm(wilcoxModel$p.value/2)
	 r<- z/ sqrt(N)
	 cat(wilcoxModel$data.name, “Effect Size, r = “, r)
}

Executing these commands creates a function called rFromWilcox(), which takes a model 
computed using wilcox.test() and the total sample size (N) as input. The first command 
within the function calculates the value of z using the qnorm() function. The p-value for 
a wilcox.test() model is stored in an object with the name p.value, so we can refer to it 
directly by appending $p.value to the name of the model. Therefore, the command takes 
the p-value associated with the model entered into the function, divides it by 2 so that 

wilc1 <- w1-n1*(n1+1)/2; wilc2 
<- w2-n2*(n2+1)/2
wilc = min(wilc1, wilc2)
wilc
m1 <- mean(r1); m2 <- mean(r2)
m1; m2

First, we create g1 and g2. These are the BDI scores 
on Sunday for the alcohol group (g1) and ecstasy group 
(g2). We count the number of people in each group, 
using the length() function, and call these values n1
and n2.

Then we put g1 and g2 back together, using c(g1, 
g2), into one long variable, which we convert to ranks, 
with the rank() function.

We get the ranks out again, and put these into r1 and 
r2. The ranks for group 1 are the numbers from 1 to the 
number of people in group 1 (10). The ranks for group 2 
are the number in group 1, plus 1 (11), to the number in 
both groups (20). We find the sums of these ranks, with 
the sum() function, and correct for the number of people; 
we call these wilc1 and wilc2. The Wilcoxon W is the 
smaller of these two. In addition, we calculate the mean 
rank for each group, which can be a useful descriptive 
statistic. These are given as m1 and m2.

The Wilcoxon rank-sum test is a good example of some-
thing you could easily program yourself, if there wasn’t 
already a function in R. In addition, you can get some 
useful information, and learn a little about R. Here’s the 
code to do the Wilcoxon test:

g1 <- drugData$sundayBDI[drugData$drug == 
"Alcohol"]
g2 <- drugData$sundayBDI[drugData$drug == 
"Ecstasy"]
n1 <- length(g1); n2 <- length(g2)
w <- rank(c(g1, g2)) 
r1 <- w[1:n1]; r2 <- w[(n1+1):(n1+n2)]
w1 <- sum(r1); w2 <- sum(r2)

JANE SUPERBRAIN 15.1

Doing it from scratch 2
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we’re looking at only one end of the normal distribution, and then applies qnorm to it 
(which gives us the z associated with that value of p). The second command computes r 
using the equation above by dividing z (which we’ve just computed) by the square root 
of N (which we know because it is entered into the function). The final command prints 
to the console the object data.name from the original model (this tells us what the model 
represents) then a text string that tells us what the output shows, and then the value of r 
computed in the previous command. 

For the current example, we could apply this function by executing:

rFromWilcox(sunModel, 20)
rFromWilcox(wedModel, 20)

In both cases we enter the model name and the total sample size. The resulting output 
shows us that the r values are −0.25 for Sunday and −0.78 for Wednesday:

sundayBDI by drug Effect Size, r =  -0.2470529
wedsBDI by drug Effect Size, r =  -0.7790076

This represents a small to medium effect for the Sunday data (it is below the .3 criterion 
for a medium effect size) and a huge effect for the Wednesday data (the effect size is well 
above the .5 threshold for a large effect). The Sunday data show how a moderately large 
effect size can still be non-significant in a small sample.

15.4.7.    Writing the results 1

For the Wilcoxon rank-sum test, we need to report only the test statistic (which is denoted 
by W) and its significance. Of course, we really ought to include the effect size as well. So, 
we could report something like:

	 Depression levels in ecstasy users (Mdn = 17.50) did not differ significantly from 
alcohol users (Mdn = 16.00) the day after the drugs were taken, W = 35.5, p = 0.286, 
r = −.25. However, by Wednesday, ecstasy users (Mdn = 33.50) were significantly 
more depressed than alcohol users (Mdn = 7.50), W = 4, p < .001, r = −.78.

Note that I’ve reported the median for each condition – this statistic is more appropriate 
than the mean for non-parametric tests. 

             CRAMMING SAM’S TIPS    Some important terms

•	� The Wilcoxon rank-sum test compares two conditions when different participants take part in each condition and the result-
ing data violate any assumption of the independent t-test.

•	 Look at the p-value. If the value is less than .05 then the two groups are significantly different. 
•	 You might want to calculate the mean rank.
•	 Report the W-statistic and the significance value. Also report the medians and their corresponding ranges (or draw a 

boxplot).
•	 You should calculate the effect size and report this too.
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15.5.  Comparing two related conditions: the 
Wilcoxon signed-rank test 1

The Wilcoxon signed-rank test (Wilcoxon, 1945), not to be confused with the rank-sum 
test in the previous section, is used in situations in which there are two sets of scores to 
compare, but these scores come from the same participants. As such, think of it as the non-
parametric equivalent of the dependent t-test. 

Imagine the experimenter in the previous section was now interested in the change in 
depression levels, within people, for each of the two drugs. We now want to compare 
the BDI scores on Sunday to those on Wednesday. When testing the differences between 
related scores, we assume normality of the differences (see Chapter 9). Let’s first test this 
assumption.

SELF-TEST

ü	 Compute the change in BDI scores from Sunday to 
Wednesday and then compute normality tests for 
this change score separately for the alcohol and 
ecstasy groups.

a non-parametric test on the same data, and those data 
meet the appropriate assumptions, then the parametric 
test will have greater power to detect the effect than the 
non-parametric test.

The problem is that to define the power of a test we 
need to be sure that it controls the Type I error rate (the 
number of times a test will find a significant effect when 
in reality there is no effect to find – see section 2.6.2). We 
saw in Chapter 2 that this error rate is normally set at 5%. 
We know that when the sampling distribution is normally 
distributed then the Type I error rate of tests based on 
this distribution is indeed 5%, and so we can work out 
the power. However, when data are not normal the Type I 
error rate of tests based on this distribution won’t be 5% 
(in fact we don’t know what it is for sure as it will depend 
on the shape of the distribution) and so we have no way 
of calculating power (because power is linked to the Type 
I error rate – see section 2.6.5). So, although you often 
hear (in the first edition of my SPSS book, for example!) 
of non-parametric tests having an increased chance of 
a Type II error (i.e., more chance of accepting that there 
is no difference between groups when, in reality, a differ-
ence exists), this is true only if the sampling distribution is 
normally distributed.

Ranking the data is a useful way around the distribu-
tional assumptions of parametric tests, but there is a 
price to pay: by ranking the data we lose some informa-
tion about the magnitude of differences between scores. 
Consequently, non-parametric tests can be less power-
ful than their parametric counterparts. Statistical power 
(section 2.6.5) refers to the ability of a test to find an 
effect that genuinely exists. So, by saying that non-para-
metric tests are less powerful, we mean that if there is a 
genuine effect in our data then a parametric test is more 
likely to detect it than a non-parametric one. However, 
this statement is true only if the assumptions of the para-
metric test are met. So, if we use a parametric test and 

JANE SUPERBRAIN 15.2

Non-parametric tests and statistical power 2
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Output 15.5 shows the results of a descriptive analysis. For the alcohol group we have a 
non-normal distribution, W = 0.83, p < .05, in the change scores, but for the ecstasy group 
the difference scores are approximately normal, W = 0.91, p = .273. Therefore, we need 
to use a non-parametric test for the alcohol group (although we’ll do one for the ecstasy 
group too, just to get some practice).

drugData$drug: Alcohol
median   mean   SE.mean CI.mean  var   std.dev coef.var
-7.500  -6.300   2.098   4.746  44.011   6.634  -1.053   

skewness  skew.2SE  kurtosis  kurt.2SE   normtest.W  normtest.p
   1.239     0.902     0.987     0.370      0.828      0.032 
------------------------------------------------------------------- 
drugData$drug: Ecstasy
median   mean   SE.mean CI.mean  var   std.dev coef.var
14.000   12.400  2.531   5.724  64.044   8.002   0.645

skewness  skew.2SE  kurtosis  kurt.2SE   normtest.W  normtest.p
-0.414      -0.301   -1.369     -0.513      0.909      0.273

Output 15.5

15.5.1.    Theory of the Wilcoxon signed-rank test 2

The Wilcoxon signed-rank test works in a fairly similar way to the dependent t-test 
(Chapter 9) in that it is based on the differences between scores in the two conditions 
you’re comparing. Once these differences have been calculated they are ranked (just like in 
section 15.4.1) but the sign of the difference (positive or negative) is assigned to the rank. 
If we use the same data as before, we can compare depression scores on Sunday to those 
on Wednesday for the two drugs separately.

Table 15.2 shows the ranking for these data. Remember that we’re ranking the two 
drugs separately. First, we calculate the difference between Sunday and Wednesday (that’s 
just Sunday’s score subtracted from Wednesday’s). If the difference is zero (i.e., the scores 
are the same on Sunday and Wednesday) then we exclude these data from the ranking. 
We make a note of the sign of the difference (positive or negative) and then rank the dif-
ferences (starting with the smallest) ignoring whether they are positive or negative. The 
ranking is the same as in section 15.4.1, and we deal with tied scores in exactly the same 
way. Finally, we collect together the ranks that came from a positive difference between 
the conditions, and add them up to get the sum of positive ranks (T+). We also add up the 
ranks that came from negative differences between the conditions to get the sum of nega-
tive ranks (T−). So, for ecstasy, T+ = 36 and T− = 0 (in fact there were no negative ranks), 
and for alcohol, T+ = 8 and T− = 47. The test statistic, T, is the smaller of the two values, 
and so is 0 for ecstasy and 8 for alcohol.

To calculate the significance of the test statistic (T), we again look at the mean ( )T  and 
standard error ( )SET

, which, like the rank-sum test in the previous section, are functions 
of the sample size, n (because we used the same participants, there is only one sample size):

T
n n

SE
n n n

T

=
+

=
+ +

( )

( )( )

1
4
1 2 1
24
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Table 15.2  Ranking data in the Wilcoxon signed-rank test

 
BDI Sunday

 
BDI Wednesday

 
Difference

 
Sign

 
Rank

Positive 
ranks

Negative 
ranks

Ecstasy

15 28 13 + 2.5 2.5

35 35 0 Exclude

16 35 19 + 6 6

18 24 6 + 1 1

19 39 20 + 7 7

17 32 15 + 4.5 4.5

27 27 0 Exclude

16 29 13 + 2.5 2.5

13 36 23 + 8 8

20 35 15 + 4.5 4.5

Total = 36 0

Alcohol

16 5 −11 − 9 9

15 6 −9 − 7 7

20 30 10 + 8 8

15 8 −7 − 3.5 3.5

16 9 −7 − 3.5 3.5

13 7 −6 − 2 2

14 6 −8 − 5.5 5.5

19 17 −2 − 1 1

18 3 −15 − 10 10

18 10 −8 − 5.5 5.5

Total = 8 47

In both groups, n is simply 10 (because that’s how many participants were used). 
However, remember that for our ecstasy group we excluded two people because they had 
differences of zero, therefore the sample size we use is 8, not 10. This gives us:

T

SET

Ecstasy

Ecstasy

=
+

=

=
+ +

=

8 8 1
4

18

8 8 1 16 1
24

7 14

( )

( )( )
.

For the alcohol group there were no exclusions so we get:

T

SET

Alcohol

Alcohol

=
+

=

=
+ +

=

10 10 1
4

27 50

10 10 1 20 1
24

9 81

( )
.

( )( )
.
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As before, if we know the test statistic, the mean of test statistics and the standard error, 
then we can easily convert the test statistic to a z-score using the equation that we came 
across way back in Chapter 1:

z
X X

s
T T
SET

=
−

=
−

If we calculate this value for the ecstasy and alcohol depression scores we get:

z
T T
SE

z
T T
SE

T

T

Ecstasy

Alcohol

=
−

=
−

= −

=
−

=
−

= −

0 18
7 14

2 52

8 27 5
9 81

.
.

.
.

11 99.

If these values are bigger than 1.96 (ignoring the minus sign) then the test is significant at 
p < .05. So, it looks as though there is a significant difference between depression scores 
on Wednesday and Sunday for both ecstasy and alcohol.

15.5.2.    Running the analysis with R Commander 1

To do the same analysis using R Commander we can use the same dataframe as before, but 
because we want to look at the change for each drug separately, we need to use the subset  
command and ask R to split the file by the variable drug. This process ensures that any 
subsequent analysis is done for the ecstasy group and the alcohol group separately. To do 
this in R Commander, select Data⇒Active data set⇒Subset active data set… to open the 
dialog box shown in Figure 15.5. We want to keep all of the variables, so we leave the box 
at the top checked.

For the Subset expression, remember that you need to use a double equals sign for ‘is 
equal to’ in R, so we write “drug==Alcohol”. Finally, we give the data set a new name; 
we’ll call it alcoholData. Click on  to create the dataframe. Repeat the process to 
create a dataframe called ecstasyData that contains only the data from the ecstasy group.

Now we have the data prepared, we can use R Commander to run the Wilcoxon 
signed-rank test. Make sure you have the alcoholData data set as the active data set in 
R Commander, and select Statistics ⇒ Nonparametric tests ⇒ Paired-samples Wilcoxon 
test… to open the dialog box in Figure 15.6.

FIGURE 15.5
R Commander 
menu and dialog 
box for subset
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Pick the two variables that you would like to compare: in our case, there are only two 
to select from, so choose one in the left-hand box, and the other in the right-hand box (it 
doesn’t matter which way around you do it).

You can choose a p-value calculation method. As with the rank-sum test (section 15.4.3), 
you can leave this as the default, in which case R will use the exact method to calculate 
the p-value if your sample size is less than 40, and the normal approximation if larger than 
40. You can  choose the exact method, which is often better than the normal approxima-
tion, but cannot be used if you have ties in the data, and can be slow if your sample size is 
large. If you choose the normal approximation method, you can do this with or without 
the continuity correction. If you choose the default, the continuity correction will be used. 
We will select the normal approximation (we have ties, so we cannot use the exact method 
anyway) and we will choose not to use the continuity correction.

You can leave the default option of a two-sided test as it is (although if you have pre-
dicted a direction of the effect you could choose to test whether or not the difference will 
be bigger (Difference > 0) or smaller (Difference < 0) than zero. When you have selected 
your variables, click on  to run the analysis. The output will be discussed very soon.

15.5.3.    Running the analysis using R 1

We want to run our analysis on the alcohol and ecstasy groups separately; therefore, our 
first job is to split the dataframe into two.

SELF-TEST

ü	 Use the subset() function to create separate 
dataframes for the different drugs called alcoholData 
and ecstasyData.

If you completed the self-test then you should now have two dataframes called alcohol
Data and ecstasyData. We can again use the wilcox.test() function, but this time because 
our data are stored in different columns (wedsBDI and sundayBDI) we need to enter the 
names of the two variables we want to compare rather than a formula, and we need to 

FIGURE 15.6
Dialog box for 
the Wilcoxon 
signed-rank test
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include the option paired = TRUE to tell R that the data are paired. (If we don’t include 
this option R will do a Wilcoxon rank-sum test.) For these examples, we’re also going 
to include the option correct = FALSE, because we do not want a continuity correction. 
Therefore, to run the analysis for the alcohol group execute:

alcoholModel<-wilcox.test(alcoholData$wedsBDI, alcoholData$sundayBDI, paired = 
TRUE, correct= FALSE)
alcoholModel

and for the ecstasy group:

ecstasyModel<-wilcox.test(ecstasyData$wedsBDI, ecstasyData$sundayBDI, paired = 
TRUE, correct= FALSE)
ecstasyModel

In both cases we create a model (alcoholModel and ecstasyModel) based on a Wilcoxon test 
between the sundayBDI and wedsBDI variables.

15.5.4.    Wilcoxon signed-rank test output 1

Output 15.6 shows the output for the alcohol group. You will get a warning when 
the function runs, telling you that it couldn’t do an exact test, because there are 
ties. We didn’t ask for an exact test, but when the sample size is less than 40 R tries 
to do one anyway. It reports the value of T+ (which it calls V)8 and that this value is 
significant at p = .047. Therefore, we should conclude (based on the medians) that 
when taking alcohol there was a significant decline in depression (as measured by 
the BDI) from the morning after to midweek (p = .047).

Output 15.7 shows the results for the ecstasy group. We should conclude that 
when taking ecstasy there was a significant increase in depression (as measured by 
the BDI) from the morning after to midweek, p = .012).

	 Wilcoxon signed rank test
data:  alcoholData$wedsBDI and alcoholData$sundayBDI 
V = 8, p-value = 0.04657
alternative hypothesis: true location shift is not equal to 0 

Output 15.6

        Wilcoxon signed rank test

data:  ecstacy$bdi.wednesday and ecstacy$bdi.sunday 
V = 36, p-value = 0.01151
alternative hypothesis: true location shift is not equal to 0 

Output 15.7

From the results of the two different groups, we can see that there is an opposite effect 
when alcohol is taken to that when ecstasy is taken. Alcohol makes you slightly depressed 
the morning after, but this depression has dropped by midweek. Ecstasy also causes some 
depression the morning after consumption; however, this depression increases towards the 

8 The order in which you input variables into the function will affect the value of V because it is T+ and whether 
ranks are positive or negative depends on which way around you subtract scores. In Table 15.2 we subtracted 
Sunday BDI scores from those on the Wednesday and T+ = 36 and T− = 0 for the ecstasy group, but if we had 
subtracted Wednesday scores from Sunday scores these would have been the opposite way around (T+ = 0 and T− = 
36). So the order that you put variables into the functions affects the value of T+ (and, therefore, V). You don’t 
need to worry about this little quirk: the p-value will be the same whichever way around you specify the variables.

What are the effects
of ecstasy?
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middle of the week. Of course, to see the true effect of the morning after we would have 
had to take measures of depression before the drugs were administered. This opposite 
effect between groups of people is known as an interaction (i.e., you get one effect under 
certain circumstances and a different effect under other circumstances) and we came across 
this in Chapters 12–14.

15.5.5.    Calculating an effect size 2

The effect size can be calculated in the same way as for the Wilcoxon rank-sum test (see the 
equation in section 15.4.6); therefore, we can reuse the rFromWilcox() function. In both 
the alcohol and ecstasy groups we had 20 observations (although we only used 10 people 
and tested them twice, it is the number of observations, not the number of people, that is 
important here). Therefore, we can get the effect sizes by inputting the model names and 
the number of observations into the function:

rFromWilcox(alcoholModel, 20)
rFromWilcox(ecstasyModel, 20)

The resulting output is:

alcoholData$wedsBDI and alcoholData$sundayBDI Effect Size, r =  -0.4450246

ecstasyData$wedsBDI and ecstasyData$sundayBDI Effect Size, r =  -0.5649883

For the alcohol group we find a medium to large change in depression when alcohol 
is taken, r = −.45, which is between Cohen’s criteria of .3 and .5 for a medium and large 
effect, respectively. For the ecstasy group, r = − .56, which represents a large change in 
levels of depression when ecstasy is taken (it is above Cohen’s benchmark of .5).

15.5.6.    Writing the results 1

For the Wilcoxon test, we need only report the significance of the test and preferably an 
effect size. So, we could report something like:

✓	 For ecstasy users, depression levels were significantly higher on Wednesday (Mdn = 
33.50) than on Sunday (Mdn = 17.50), p = .047, r = −.56. However, for alcohol users 
the opposite was true: depression levels were significantly lower on Wednesday (Mdn 
= 7.50) than on Sunday (Mdn = 16.0), p = .012, r = −.45.

             CRAMMING SAM’S TIPS    The Wilcoxon signed-rank test

•	� The Wilcoxon signed-rank test compares two conditions when the same participants take part in each condition and the 
resulting data violate an assumption of the dependent t-test.

•	 Look at the p-value. If the value is less than .05 then the two groups are significantly different.
•	 Report the significance value of the test and an effect size if possible. Also report the medians and their corresponding 

ranges (or draw a boxplot).
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          Labcoat  Len i ’s  Real  Research 15 .1   Having a quail of a time? 1

 
Matthews, R. C., et al. (2007). Psychological Science, 18(9), 758–762.

We encountered some research in Chapter 2 in which we discovered that you can influence aspects of male 
quail sperm production through ‘conditioning’. The basic idea is that the male is granted access to a female for 
copulation in a certain chamber (e.g., one that is coloured green) but gains no access to a female in a different 
context (e.g., a chamber with a tilted floor). The male, therefore, learns that when he is in the green chamber 
his luck is in, but if the floor is tilted then frustration awaits. For other males the chambers will be reversed (i.e., 
they get sex only when in the chamber with the tilted floor). The human equivalent (well, sort of) would be if you 
always managed to pull in the Pussycat Club but never in the Honey Club.9 During the test phase, males get to 
mate in both chambers. The question is: after the males have learnt that they will get a mating opportunity in a 
certain context, do they produce more sperm or better-quality sperm when mating in that context compared to the 
control context? (That is, are you more of a stud in the Pussycat Club? OK, I’m going to stop this analogy now.)

Mike Domjan and his colleagues predicted that if conditioning evolved because it increases reproductive fit-
ness then males who mated in the context that had previously signalled a mating opportunity would fertilize a sig-
nificantly greater number of eggs than quails that mated in their control context (Matthews, Domjan, Ramsey, & 
Crews, 2007). They put this hypothesis to the test in an experiment that is utter genius. After training, they allowed 
14 females to copulate with two males (counterbalanced): one male copulated with the female in the chamber 
that had previously signalled a reproductive opportunity (Signalled), whereas the second male copulated with 
the same female but in the chamber that had not previously signalled a mating opportunity (Control). Eggs were 
collected from the females for 10 days after the mating and a genetic analysis was used to determine the father 
of any fertilized eggs.

The data from this study are in the file Matthews et al. (2007).dat. Labcoat Leni wants you to carry out a 
Wilcoxon signed-rank test to see whether more eggs were fertilized by males mating in their signalled 
context compared to males in their control context.

Answers are in the additional material on the companion website (or look at page 760 in the original 
article).

15.6.  Differences between several independent 
groups: the Kruskal–Wallis test 1

In Chapter 10 we discovered a technique called one-way independent ANOVA that could 
be used to test for differences between several independent groups. I mentioned several 
times in that chapter that the F-statistic can be robust to violations of its assumptions (sec-
tion 10.3). We also saw that there are measures that can be taken when you have hetero-
geneity of variance (Jane Superbrain Box 10.2). However, there is another alternative: the 
one-way independent ANOVA has a non-parametric counterpart called the Kruskal–Wallis 
test (Kruskal & Wallis, 1952). If you have data that have violated an assumption then 
this test can be a useful way around the problem. If you’d like to know a bit more about 
William Kruskal (Figure 15.7) then there is a lovely biography by Fienberg, Stigler, and 
Tanur (2007).

I read a story in a newspaper claiming that scientists had discovered that the chemical 
genistein, which occurs naturally in soya, was linked to lowered sperm counts in Western 

9 These are both clubs in Brighton that I’ve never been to because I don’t like that sort of thing.
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FIGURE 15.7
William Kruskal

males. In fact, when you read the actual study, it had been conducted on rats, it found no 
link to lowered sperm counts, but there was evidence of abnormal sexual development 
in male rats (probably because this chemical acts like oestrogen). The journalist naturally 
interpreted this as a clear link to apparently declining sperm counts in Western males 
(never trust what you read in the newspapers). Anyway, as a vegetarian who eats lots of 
soya products and probably would like to have kids one day, I might want to test this idea 
in humans rather than rats. I took 80 males and split them into four groups that varied in 
the number of soya meals they ate per week over a year-long period. The first group was 
a control group and had no soya meals at all per week (i.e., none in the whole year); the 
second group had one soya meal per week (that’s 52 over the year); the third group had 
four soya meals per week (that’s 208 over the year); and the final group had seven soya 
meals a week (that’s 364 over the year). At the end of the year, all of the participants were 
sent away to produce some sperm that I could count (when I say ‘I’, I mean someone else 
in a laboratory as far away from me as humanly possible).10

15.6.1.    Theory of the Kruskal–Wallis test 2

The theory for the Kruskal–Wallis test is very similar to that of the Mann–Whitney (and 
Wilcoxon rank-sum) test, so before reading on look back at section 15.4.1. Like the 
Wilcoxon rank-sum test, the Kruskal–Wallis test is based on ranked data. So, to begin with, 
you simply order the scores from lowest to highest, ignoring the group to which the score 
belongs, and then assign the lowest score a rank of 1, the next highest a rank of 2 and so 

10 In case any medics are reading this chapter, these data are made up and, because I have absolutely no idea what 
a typical sperm count is, they’re probably ridiculous. I apologize and you can laugh at my ignorance.
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on (see section 15.4.1 for more detail). When you’ve ranked the data you collect the scores 
back into their groups and simply add up the ranks for each group. The sum of ranks for 
each group is denoted by Ri (where i is used to denote the particular group). Table 15.3 
shows the raw data for this example along with the ranks.

SELF-TEST

ü	 Have a go at ranking the data and see if you get the 
same results as me.

Once the sum of ranks has been calculated for each group, the test statistic, H, is calcu-
lated as:

H
N N

Ri
ni

N
i

k
=

+
− +∑

=

12
1

3 1
1

2

( )
( ) 	 (15.1)

Table 15.3  Data for the soya example with ranks

No Soya 1 Soya Meal 4 Soya Meals 7 Soya Meals

Sperm 
(millions) Rank

Sperm 
(millions) Rank

Sperm 
(millions) Rank

Sperm 
(millions) Rank

0.35 4 0.33 3 0.40 6 0.31 1

0.58 9 0.36 5 0.60 10 0.32 2

0.88 17 0.63 11 0.96 19 0.56 7

0.92 18 0.64 12 1.20 21 0.57 8

1.22 22 0.77 14 1.31 24 0.71 13

1.51 30 1.53 32 1.35 27 0.81 15

1.52 31 1.62 34 1.68 35 0.87 16

1.57 33 1.71 36 1.83 37 1.18 20

2.43 41 1.94 38 2.10 40 1.25 23

2.79 46 2.48 42 2.93 48 1.33 25

3.40 55 2.71 44 2.96 49 1.34 26

4.52 59 4.12 57 3.00 50 1.49 28

4.72 60 5.65 61 3.09 52 1.50 29

6.90 65 6.76 64 3.36 54 2.09 39

7.58 68 7.08 66 4.34 58 2.70 43

7.78 69 7.26 67 5.81 62 2.75 45

9.62 72 7.92 70 5.94 63 2.83 47

10.05 73 8.04 71 10.16 74 3.07 51

10.32 75 12.10 77 10.98 76 3.28 53

21.08 80 18.47 79 18.21 78 4.11 56

Total (Ri) 927 883 883 547
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In this equation, Ri is the sum of ranks for each group, N is the total sample size (in this 
case 80) and ni is the sample size of a particular group (in this case we have equal sample 
sizes and they are all 20). Therefore, all we really need to do for each group is square the 
sum of ranks and divide this value by the sample size for that group. We then add up these 
values. That deals with the middle part of the equation; the rest of it involves calculating 
various values based on the total sample size. For these data we get:

H = + + +






−

=

12
80 81

927
20

883
20

883
20

547
20

3 81

12
6480

4

2 2 2 2

( )
( )

( 22966 45 38984 45 38384 45 14960 45 243

0 0019 135895 8

. . . . )

. ( . )

+ + + −

= − 2243
251 66 243
8 659

= −
=

.
.

This test statistic has a special kind of distribution known as the chi-square distribution (see 
Chapter 18) and for this distribution there is one value for the degrees of freedom, which 
is one less than the number of groups (k − 1), in this case 3.

15.6.2.    Inputting data and provisional analysis 1

SELF-TEST

ü	 See whether you can enter the data in Table 15.3 into 
R (you don’t need to enter the ranks). Then conduct 
some exploratory analyses on the data (see sections 
5.6 and 5.7).

When the data are collected using different participants in each group, we input the data 
using a coding variable. So, the data editor will have two columns of data. The first column 
is a factor (called something like Soya), which, in this case, will have four levels. We can 
create this variable using the gl() function by executing:

Soya<-gl(4, 20, labels = c("No Soya", "1 Soya Meal", "4 Soya Meals", "7 Soya 
Meals"))

This command creates a variable called Soya, which contains four blocks of 20 rows of 
data; the first block will be labelled No Soya, the second block 1 Soya Meal, and so on. The 
second variable will have values for the dependent variable (sperm count) measured at the 
end of the year (call this variable Sperm) – see the online materials for a fuller description. 
Finally, we can tie these variables together in a dataframe called soyaData by executing:

soyaData<-data.frame(Sperm, Soya)

The data can also be found in the file Soya.dat. If you prefer, load this file into a data-
frame called soyaData by executing:

soyaData<-read.delim("Soya.dat", header = TRUE)
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Then the variable Soya, which contains text, will be imported as a factor. This is fine, 
except that whereas when we created this factor ourselves we could specify the order of 
the groups, when we import the data the order of the groups will be alphabetic. For these 
data they will be:

1	 1 soya meal per week

2	 4 soya meals per week

3	 7 soya meals per week

4	 No soya meals per week

For reasons that will become apparent, it’s useful to have the first level as our control cat-
egory (i.e., no soya), which is how we ordered the groups when entering the data by hand. 
Therefore, we need to reorder the factor levels (look back to R’s Souls’ Tip 3.13). We can 
do this by executing:

soyaData$Soya<-factor(soyaData$Soya, levels = levels(soyaData$Soya)[c(4, 1, 
2, 3)])

This command uses the factor() function to reorder the levels of the Soya variable. It
re-creates the variable Soya in the soyaData dataframe (soyaData$Soya) based on itself, but 
then uses the levels() function to reorder the groups. We simply put the order of the levels 
that we’d like in the c() function, so in this case we have asked for the levels to be ordered 
4, 1, 2, 3, which means that the current fourth group (no soya) will become the first group, 
the current first group will become the second group, and so on. Having executed this 
command, our groups will be ordered:

1	 No soya meals per week

2	 1 soya meal per week

3	 4 soya meals per week

4	 7 soya meals per week

Having got the data loaded, we would run some exploratory analyses and because we’re 
going to be looking for group differences we need to run these exploratory analyses for 
each group. If you do these analyses (as requested in the self help test) you should find the 
same results shown in Outputs 15.8 and 15.9.

Output 15.8 shows that the Kruskal–Wallis test is significant for the group that ate no 
soya, W(20) = 0.805, p = .001, one soya meal per week W(20) = .826, p = .002 ), and four 
soya meals, W(20) = 0.743, p < .001. The test for those who ate seven meals per week is 
not quite significant, W(20) = 0.912, p = .07. As such, the data for all of the groups are 
significantly (or close to being) different from normal.

Output 15.9 shows the results of Levene’s test (section 5.7.1). The assumption of 
homogeneity of variance has been violated, F(3, 76) = 2.86, p = .042. As such, these data 
are not normally distributed, and the groups have heterogeneous variances.

soyaData$Soya: No Soya
skewness    skew.2SE   kurtosis    kurt.2SE  normtest.W  normtest.p 
1.546141    1.509598   2.328051    1.172959   0.805256    0.001036 
------------------------------------------------------------------- 
soyaData$Soya: 1 Soya Meal
skewness    skew.2SE   kurtosis    kurt.2SE  normtest.W  normtest.p 
1.350566    1.318646   1.422732    0.716825   0.825832    0.002154 
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soyaData$Soya: 4 Soya Meals
skewness    skew.2SE   kurtosis    kurt.2SE  normtest.W  normtest.p 
1.822237    1.779169   2.792615    1.407024   0.742743    0.000136 
 
soyaData$Soya: 7 Soya Meals
 skewness   skew.2SE   kurtosis   kurt.2SE normtest.W normtest.p 
 0.608671   0.594286   -0.916165  -0.461598 0.912261   0.070391 

Output 15.8

Levene’s Test for Homogeneity of Variance (center = median)
      Df F value  Pr(>F)  
group  3  2.8606 0.04237 *
      76                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Output 15.9

15.6.3.    Doing the Kruskal–Wallis test using R Commander 1

Import the data, using Data⇒Import data⇒from text file, clipboard, or URL… (see sec-
tion 3.7.3), click on  and choose the file Soya.dat. To run the Kruskal–Wallis test, 
select Statistics⇒Nonparametric tests⇒Kruskal-Wallis test to activate the dialog box in 
Figure 15.8. In the box on the left, labelled Groups (pick one), select the variable that 
defines the groups that you want to compare; this variable must be a factor. In our case we 
want to select the variable Soya. On the right, in the list labelled Response variable (pick 
one), choose the outcome variable on which you want to compare groups. In this case, 
we’ll pick Sperm. To run the analysis click on . We’ll examine the output shortly.

FIGURE 15.8
Dialog box for the 
Kruskal–Wallis 
test

15.6.4.    Doing the Kruskal–Wallis test using R 1

The Kruskal–Wallis test is done using the kruskal.test() function, which works in the same 
way as the wilcox.test() function that we used for the rank-sum test. The general form of 
the function is:

newModel<-kruskal.test(outcome ~ predictor, data = dataFrame, na.action = 
"an.action")

For the current data, we could, therefore execute:

kruskal.test(Sperm ~ Soya, data = soyaData)
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This command does the Kruskal–Wallis test on sperm scores predicted from the soya group 
to which a person belonged. Note that we have executed the command directly, without 
creating a model, which is fine because we don’t really need to use the output of the func-
tion for any reason other than interpretation.

To interpret the Kruskal–Wallis test, it is useful to obtain the mean rank for each group.  
We can do this by adding a variable called Ranks to the dataframe with the rank() function:

soyaData$Ranks<-rank(soyaData$Sperm)

This command creates a variable Ranks in the soyaData dataframe that is the ranks for 
the variable Sperm. We can then obtain the mean rank for each group using the by() and 
mean() functions:

by(soyaData$Ranks, soyaData$Soya, mean)

15.6.5.    Output from the Kruskal–Wallis test 1

Output 15.10 shows the test statistic, H, for the Kruskal–Wallis test (although R labels it 
chi-squared, because of its distribution, rather than H), its associated degrees of freedom (in 
this case we had 4 groups so the degrees of freedom are 4 − 1, or 3) and the significance. 
The crucial thing to look at is the significance value, which is .034; because this value is 
less than .05 we could conclude that the amount of soya meals eaten per week does sig-
nificantly affect sperm counts. Like a one-way ANOVA, though, this test tells us only that 
a difference exists; it doesn’t tell us exactly where the differences lie. One way to get an 
idea is to look at the mean ranks (Output 15.11). These show that the ranks were lowest 
(27.35) in the group that had seven soya meals per week, but fairly similar in the other 
three groups, which implies that any differences might be between the seven soya meals 
group and the other three groups.

	 Kruskal-Wallis rank sum test
data:  Sperm by Soya 
Kruskal-Wallis chi-squared = 8.6589, df = 3, p-value = 0.03419
Output 15.10
soyaData$Soya: No Soya Meals
[1] 46.35
------------------------------------------------------------------- 
soyaData$Soya: 1 Soya Meal
[1] 44.15
------------------------------------------------------------------- 
soyaData$Soya: 4 Soya Meals
[1] 44.15
------------------------------------------------------------------- 
soyaData$Soya: 7 Soya Meals
[1] 27.35

Output 15.11

SELF-TEST

ü	 Use ggplot2 to draw a boxplot of these data
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FIGURE 15.9
Boxplot for the 
sperm counts of 
individuals eating 
different numbers 
of soya meals per 
week

One way to see which groups differ is to look at a boxplot (see section 4.7) of the groups 
(see Figure 15.9). The first thing to note is that there are some outliers (note the circles 
and asterisks that lie above the top whiskers) – these are men who produced a particularly 
rampant amount of sperm. Using the control as our baseline, the medians of the first three 
groups seem quite similar; however, the median of the group that ate seven soya meals per 
week does seem a little lower, so perhaps this is where the difference lies. However, these 
conclusions are subjective. What we really need are some contrasts or post hoc tests like we 
used in ANOVA (see sections 10.4 and 10.5).

15.6.6.    Post hoc tests for the Kruskal–Wallis test 2

One way to do non-parametric post hoc procedures is essentially the 
same as doing Wilcoxon rank-sum tests on all possible comparisons. This 
method is described by Siegel and Castellan (1988) and involves taking 
the difference between the mean ranks of the different groups and com-
paring this to a value based on the value of z (corrected for the number 
of comparisons being done) and a constant based on the total sample size 
and the sample size in the two groups being compared. The inequality is:

R R z
N N

n nu v k k
u v

−
+

+




−≥ α / ( )

( )
1

1
12

1 1
	 (15.2)

Can I do non-
parametric

post hoc tests?
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The left-hand side of this inequality is just the difference between the mean rank of the 
two groups being compared, but ignoring the sign of the difference (so the two vertical 
lines that enclose the difference between mean ranks just indicate that if the difference 
is negative then we ignore the negative sign and treat it as positive). For the rest of the 
expression, k is the number of groups (in the soya example, 4), N is the total sample size 
(in this case 80), nu is the number of people in the first group that’s being compared (we 
have equal group sizes in the soya example so it will be 20 regardless of which groups we 
compare), and nv is the number of people in the second group being compared (again this 
will be 20 regardless of which groups we compare because we have equal group sizes in the 
soya example). The only other thing we need to know is z

α/k(k −1), and to get this value we 
need to decide a level for α, which is the level of significance at which we want to work. 
You should know by now that in the social sciences we traditionally work at a .05 level 
of significance, so α will be .05. We then calculate k(k −1), which for these data will be 
4(4 − 1) = 12. Therefore, α/k(k − 1) = .05/12 = .00417. So, z

α/k(k − 1) just means ‘the value 
of z for which only α/k(k − 1) other values of z are bigger’ (or in this case ‘the value of z 
for which only .00417 other values of z are bigger’). In practical terms this means we go to 
the table in the Appendix, look at the column labelled Smaller Portion and find the number 
.00417 (or the nearest value to this, which, if you look at the table, is .00415), and we then 
look in the same row at the column labelled z. In this case, you should find that the value 
of z is 2.64. The next thing to do is to calculate the right-hand side of inequality (15.2):

criticaldifference = zα / ( )
( )

.
(

k k
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N N
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+
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For this example, because the sample sizes across groups are equal, this critical difference 
can be used for all comparisons. However, when sample sizes differ across groups, the criti-
cal difference will have to be calculated for each comparison individually. The next step is 
simply to calculate all of the differences between the mean ranks of all of the groups (the 
mean ranks can be found in Output 15.11), as in Table 15.4.

Inequality (15.2) basically means that if the difference between mean ranks is bigger than 
or equal to the critical difference for that comparison, then that difference is significant. 
In this case, because we have only one critical difference, it means that if any difference is 

Table 15.4  Differences between mean ranks for the soya data

Comparison R
–

u R
–

v R
–

u
 – R

–
v R

–
u

 – R
–

v

No Meals − 1 Meal 46.35 44.15   2.20   2.20

No Meals − 4 Meals 46.35 44.15   2.20   2.20

No Meals − 7 Meals 46.35 27.35 19.00 19.00

1 Meal − 4 Meals 44.15 44.15   0.00   0.00

1 Meal − 7 Meals 44.15 27.35 16.80 16.80

4 Meals − 7 Meals 44.15 27.35 16.80 16.80
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bigger than 19.40, then it is significant. As you can see, all differences are below this value, 
so we would have to conclude that none of the groups were significantly different.

We can do all of these calculations using the kruskalmc() function from the pgirmess 
package. You use this function in exactly the same way as the kruskal.test function, so for 
the current example, we can do the post hoc tests by executing:

kruskalmc(Sperm ~ Soya, data = soyaData)

Output 15.12 shows the output of the function and, as you can see, it lists all of the pos-
sible pairs of groups, along with the critical difference that we calculated above, and the 
absolute difference between mean ranks that we calculated in Table 15.4. Conveniently, 
there is also a column labelled difference that tells us whether the observed difference 
is greater than the critical difference (TRUE) or not (FALSE). In other words, it tells us 
whether or not the difference is significant. In the current example, none of the differences 
are bigger than the critical difference; hence they all say FALSE, which means that the dif-
ferences are all non-significant.

Multiple comparison test after Kruskal-Wallis 
p.value: 0.05 
Comparisons
                            obs.dif critical.dif difference
No Soya Meals-1 Soya Meal       2.2     19.38715      FALSE
No Soya Meals-4 Soya Meals      2.2     19.38715      FALSE
No Soya Meals-7 Soya Meals     19.0     19.38715      FALSE
1 Soya Meal-4 Soya Meals        0.0     19.38715      FALSE
1 Soya Meal-7 Soya Meals       16.8     19.38715      FALSE
4 Soya Meals-7 Soya Meals      16.8     19.38715      FALSE

Output 15.12

One of the problems with comparing every group against all others is that we have to be 
quite strict about accepting a difference as significant, otherwise we will inflate the Type I 
error rate (section 10.2.1). To reduce this problem we could use more focused comparisons. 

In this example, we have a control group that had no soya meals. As such, a nice succinct 
set of comparisons would be to compare each group against the control:

MM Test 1: one soya meal per week compared to no soya meals

MM Test 2: four soya meals per week compared to no soya meals

MM Test 3: seven soya meals per week compared to no soya meals

This results in three tests, rather than six, so these tests can be less strict than if we compare 
all groups. Fortunately, we can implement this analysis using the kruskalmc() function by 
using the cont option. This option takes the form of cont = ‘one-tailed’ or ‘two-tailed’ 
and, if included, will compare all levels against the first. Therefore, the only complication 
is that we need to make sure that the no-soya group is the first level of the Soya factor. 
Fortunately, we thought ahead and made the no-soya group the first level when we loaded/
entered the data into R; however, in other situations you can reorder factor levels if 
necessary (see R’s Souls’ Tip 3.13). Therefore, to compare each group to the no-soya group 
(using a two-tailed test) we simply execute:

kruskalmc(Sperm ~ Soya, data = soyaData, cont = 'two-tailed')

Note that the command is exactly the same as before, except that we have added cont = 
‘two-tailed’ to it, which will make it compare all groups to the first group only.

Output 15.13 shows the results of this test. Note that we have only three tests now and 
consequently our critical difference has decreased (the observed differences between the 
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mean ranks of groups are the same as for the corresponding parts of the previous output). 
Looking at the column labelled difference, we can see that there was a significant differ-
ence between the no-soya and seven soya meals a week group. This result contradicts our 
earlier finding (Output 15.12) in which the test for the no-soya group compared to the 
seven meals group was deemed non-significant; why do you think that is? Well, for our 
current tests, we have done three comparisons and so corrected the critical difference for 
only these three tests. However, our earlier tests corrected for six tests, which resulted in a 
stricter (therefore, larger) critical difference. This example illustrates the benefits of choos-
ing selective comparisons over blindly comparing everything and anything.

Multiple comparison test after Kruskal-Wallis, treatment vs control 
(two-tailed) 
p.value: 0.05 
Comparisons
                            obs.dif critical.dif difference
No Soya Meals-1 Soya Meal       2.2     15.63787      FALSE
No Soya Meals-4 Soya Meals      2.2     15.63787      FALSE
No Soya Meals-7 Soya Meals     19.0     15.63787       TRUE

Output 15.13

15.6.7.    Testing for trends: the Jonckheere–Terpstra test 2

Sometimes we don’t think that groups will just be different, but we want to hypothesize 
a trend. The Jonckheere–Terpstra statistic tests for an ordered pattern to the medians of 
the groups you’re comparing. Essentially it does the same thing as the Kruskal–Wallis test 
(i.e., test for a difference between the medians of the groups) but it incorporates informa-
tion about whether the order of the groups is meaningful. As such, you should use this test 
when you expect the groups you’re comparing to produce a meaningful order of medians. 
So, in the current example we expect that the more soya a person eats, the more their 
sperm count will go down. Therefore, the control group should have the highest sperm 
count, those having one soya meal per week should have a lower sperm count, the sperm 
count in the four meals per week group should be lower still, and the seven meals per 
week group should have the lowest sperm count. Therefore, there is an order to our medi-
ans: they should decrease across the groups. Conversely, there might be situations where 
you expect your medians to increase. For example, there’s a phenomenon in psychology 
known as the ‘mere exposure effect’, which basically means that the more you’re exposed 
to something, the more you’ll like it. Record companies use this to good effect by making 
sure songs are played on radio for about two months prior to their release, so on the day of 
release, everyone loves the song and is dying to have it and rushes out to buy it, sending it 
to number one.11 Anyway, if you took three groups and exposed them to a song 10 times, 
20 times and 30 times respectively and then measured how much people liked the song, 
you’d expect the medians to increase. Those who heard it 10 times would like it a bit, but 
those who heard it 20 times would like it more, and those who heard it 30 times would 
like it the most.

The Jonckheere–Terpstra test (actually referred to more often just as the Jonckheere test) 
was designed for these situations. In R, it works on the principle that your coding variable 

11 In most cases the mere exposure effect seems to have the reverse effect on me: the more I hear the manufactured 
rubbish that gets into the charts, the more I want to rid my brain of the mental anguish it creates by making myself 
deaf by ramming hot irons into my ears.
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(the one that defines the groups) specifies the order in which you expect the medians to 
change (it doesn’t matter whether you expect them to increase or decrease). For our soya 
example, our groups are in the correct order because we entered them that way and if you 
loaded the data from the file, I showed you already how to change the order (see R’s Souls’ 
Tip 3.13). The test determines whether the medians of the groups ascend or descend in the 
order specified by the coding variable; therefore, given the order of levels for the variable 
Soya, it will test whether the median sperm count increases or decreases across the groups.
The Jonckheere–Terpstra test is carried out using the jonckheere.test() function, which is 
found in the clinfun package. This function takes the general form:

jonckheere.test(outcome variable, group variable (as numbers))

In other words we only need to specify the name of the outcome variable and the name 
of the grouping variable. The only slight complication is that for the grouping variable 
we need to use the numeric codes rather than the names of the groups (because the func-
tion uses the numbers to determine the order of the groups). However, we can do this by 
putting our grouping variable inside the as.numeric() function, which will return the group 
codes. Therefore, we can conduct a Jonckheere test by executing:

jonckheere.test(soyaData$Sperm, as.numeric(soyaData$Soya))

The results are shown in Output 15.14, which tells us the value of the test statistic, JT, 
which is 912. In large samples (more than about eight per group) this test statistic has a 
sampling distribution that is normal, and a mean and standard deviation that are easily 
defined and calculated (the mean is 1200 and the standard deviation is 116.33). R has 
calculated the p-value for us, which is .013; because this value is less than .05 we have a 
statistically significant trend in the data. We can use the mean ranks (Output 15.11) to see 
that it is a decreasing trend: sperm counts go down as more soya is eaten. 

	 Jonckheere-Terpstra test
data:  
JT = 912, p-value = 0.0133
alternative hypothesis: two.sided

Output 15.14

‘I want to know how the Jonckheere–Terpstra test actually works’, com-
plains Oliver. Of course you do, Oliver, sleep is hard to come by these 
days. I am only too happy to oblige, my little syphilitic friend. The addi-
tional material for this chapter on the companion website has a complete 
explanation of the test and how it works. I bet you’re glad you asked.

OLIVER TWISTED

Please Sir, can I have 
some more … Jonck?

15.6.8.    Calculating an effect size 2

Unfortunately there isn’t an easy way to convert a chi-square statistic that has more than 
one degree of freedom to an effect size r. You could use the significance value of the 
Kruskal–Wallis test statistic to find an associated value of z from a table of probability 
values for the normal distribution (like that in the Appendix). From this you could use the 
conversion to r that we used in section 15.4.6. However, this kind of effect size is rarely 
that useful (because it’s summarizing a general effect). 
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15.6.9.    Writing and interpreting the results 1

For the Kruskal–Wallis test, we need only report the test statistic (which, as we saw earlier, 
is denoted by H), its degrees of freedom and its significance. So, we could report something 
like:

✓	 Sperm counts were significantly affected by eating soya meals, H(3) = 8.66, p = .034.

However, we need to report the follow-up tests as well (including their effect sizes): 

✓	 Sperm counts were significantly affected by eating soya meals, H(3) = 8.66, p = .034. 
Focused comparisons of the mean ranks between groups showed that sperm counts 
were not significantly different when one soya meal (difference = 2.2 ) or four soya 
meals (difference = 2.2) were eaten per week compared to none. However, when 
seven soya meals were eaten per week sperm counts were significantly lower than 
when no soya was eaten (difference = 19). In all cases, the critical difference (α = .05 
corrected for the number of tests) was 15.64. We can conclude that if soya is eaten 
every day it significantly reduces sperm counts compared to eating none; however, 
eating soya less frequently than every day has no significant effect on sperm counts 
(‘phew!’ says the vegetarian man!).

We might also want to report our trend:

✓	 Jonckheere’s test revealed a significant trend in the data: as more soya was eaten, the 
median sperm count decreased, J = 912, p = .013.

             CRAMMING SAM’S TIPS    The Kruskal–Wallis test

•	 The Kruskal–Wallis test compares several conditions when different participants take part in each condition and the resulting 
data violate an assumption of one-way independent ANOVA.

•	 Look at the p-value. If the value is less than .05 then the groups are significantly different.
•	 You can follow up the main analysis with post hoc tests (ideally, focused ones). If the column labelled difference in the output 

says ‘true’ then the groups differ significantly.
•	 If you predict that the means will increase or decrease across your groups in a certain order then do Jonckheere’s trend test.
•	 Report the H-statistic, the degrees of freedom and the significance value for the main analysis. Also report the medians and 

their corresponding ranges (or draw a boxplot).

15.7.  Differences between several  
related groups: Friedman’s ANOVA 1

In Chapter 13 we discovered a technique called one-way related ANOVA that could be used 
to test for differences between several related groups. Although, as we’ve seen, robust versions 
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          Labcoat  Len i ’s  Real  Research 15 .2   Eggs-traordinary! 1

Çetinkaya, H., & Domjan, M. (2006). Journal of Comparative Psychology, 120(4), 427–432.

There seems to be a lot of sperm in this book (not literally, I hope) – it’s possible that I have a mild obsession. We 
saw in Labcoat Leni’s Real Research 15.1 that male quail fertilized more eggs if they had been trained to be able 
to predict when a mating opportunity would arise. However, some quail develop fetishes. Really. In the previous 
example the type of compartment acted as a predictor of an opportunity to mate, but in studies where a terrycloth 
object acts as a sign that a mate will shortly become available, some quail start to direct their sexual behaviour 
towards the terrycloth object. (I may regret this anology, but, in human terms, if you imagine that every time you 
were going to have sex with your boyfriend you gave him a green towel a few moments before seducing him, then 
after enough seductions he would start rubbing his crotch against any green towel he saw. If you’ve ever won-
dered why you boyfriend rubs his crotch on green towels, then I hope this explanation has been enlightening.) 
In evolutionary terms, this fetishistic behaviour seems counterproductive because sexual behaviour becomes 
directed towards something that cannot provide reproductive success. However, perhaps this behaviour serves 
to prepare the organism for the ‘real’ mating behaviour.

Hakan Çetinkaya and Mike Domjan conducted a brilliant study in which they sexually conditioned male quail 
(Çetinkaya & Domjan, 2006). All quail experienced the terrycloth stimulus and an opportunity to mate, but for 
some the terrycloth stimulus immediately preceded the mating opportunity (paired group) whereas others expe-
rienced it 2 hours after the mating opportunity (this was the control group because the terrycloth stimulus did not 
predict a mating opportunity). In the paired group, quail were classified as fetishistic or not depending on whether 
they engaged in sexual behaviour with the terrycloth object.

During a test trial the quail mated with a female and the researchers measured the percentage of eggs ferti-
lized, the time spent near the terrycloth object, the latency to initiate copulation, and copulatory efficiency. If this 
fetishistic behaviour provides an evolutionary advantage then we would expect the fetishistic quail to fertilize more 
eggs, initiate copulation faster and be more efficient in their copulations. 

The data from this study are in the file Cetinkaya & Domjan (2006).dat. Labcoat Leni wants you to carry out 
a Kruskal–Wallis test to see whether fetishist quail produced a higher percentage of fertilized eggs and 
initiated sex more quickly.

Answers are in the additional material on the companion website (or look at pages 429–430 in the 
original article).

of ANOVA exist, there is another alternative to the repeated-measures case: Friedman’s ANOVA 
(Friedman, 1937). As such, it is used for testing differences between conditions when there 
are more than two conditions and the same participants have been used in all conditions (each 
case contributes several scores to the data). If you have violated some assumption of paramet-
ric tests then this test can be a useful way around the problem.

Young people (women especially) can become obsessed with body weight and diets, and, 
because the media are insistent on ramming ridiculous images of stick-thin celebrities down 
our throats (should that be ‘into our eyes’?) and brainwashing us into believing that these ema-
ciated corpses are actually attractive, we all end up terribly depressed that we’re not perfect 
(because we don’t have a couple of slugs stuck to our faces instead of lips). Then corporate 
parasites jump on our vulnerability by making loads of money on diets that will help us attain 
the body beautiful. Well, not wishing to miss out on this great opportunity to exploit people’s 
insecurities, I came up with my own diet called the Andikins diet.12 The principle is that you 
follow my lifestyle: you eat no meat, drink lots of Darjeeling tea, eat shedloads of lovely 
European cheese, lots of fresh crusty bread, pasta, chocolate at every available opportunity 

12  Not to be confused with the Atkins diet, obviously.
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(especially when writing books), then enjoy a few beers at the weekend, play football twice 
a week and play your drum kit for an hour a day or until your neighbour threatens to saw 
your arms off and beat you around the head with them for making so much noise. To test 
the efficacy of my wonderful new diet, I took 10 women who considered themselves to be in 
need of losing weight and put them on this diet for two months. Their weight was measured 
in kilograms at the start of the diet and then after one month and two months.

15.7.1.    Theory of Friedman’s ANOVA 2

The theory for Friedman’s ANOVA is much the same as the other tests we’ve seen in this 
chapter: it is based on ranked data. To begin with, you simply place your data for differ-
ent conditions into different columns (in this case there were three conditions, so we have 
three columns). The data for the diet example are in Table 15.5; note that the data are in 
different columns, and so each row represents the weight of a different person. The next 
thing we have to do is rank the data for each person. So, we start with person 1, we look at 
their scores (in this case person 1 weighed 63.75 kg at the start, 65.38 kg after one month 
on the diet, and 81.34 kg after two months on the diet), and then we give the lowest one a 
rank of 1, the next highest a rank of 2 and so on (see section 15.4.1 for more detail). When 
you’ve ranked the data for the first person, you move onto the next person, and starting 
at 1 again, rank their lowest score, then rank the next highest as 2 and so on. You do this 
for all people from whom you’ve collected data. You then simply add up the ranks for each 
condition (Ri, where i is used to denote the particular group).

SELF-TEST

ü	 Have a go at ranking the data and see if you get the 
same results as in Table 15.5.

Table 15.5  Data for the diet example with ranks

Weight Weight

Start Month 1 Month 2
Start 

(Ranks)
Month 1 
(Ranks)

Month 2 
(Ranks)

Person 1 63.75 65.38 81.34 1 2 3

Person 2 62.98 66.24 69.31 1 2 3

Person 3 65.98 67.70 77.89 1 2 3

Person 4 107.27 102.72 91.33 3 2 1

Person 5 66.58 69.45 72.87 1 2 3

Person 6 120.46 119.96 114.26 3 2 1

Person 7 62.01 66.09 68.01 1 2 3

Person 8 71.87 73.62 55.43 2 3 1

Person 9 83.01 75.81 71.63 3 2 1

Person 10 76.62 67.66 68.60 3 1 2

Ri 19 20 21
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Once the sum of ranks has been calculated for each group, the test statistic, Fr, is calcu-
lated as:

F
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In this equation, Ri is the sum of ranks for each group, N is the total sample size (in this 
case 10) and k is the number of conditions (in this case 3). This equation is very similar to 
that for the Kruskal–Wallis test (compare equations (15.1) and (15.3)). All we need to do 
for each condition is square the sum of ranks and then add up these values. That deals with 
the middle part of the equation; the rest of it involves calculating various values based on 
the total sample size and the number of conditions. For these data we get:
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When the number of people tested is large (bigger than about 10) this test statistic, like 
the Kruskal–Wallis test in the previous section, has a chi-square distribution (see Chapter 
18) and for this distribution there is one value for the degrees of freedom, which is one less 
than the number of groups (k − 1), in this case 2. 

15.7.2.    Inputting data and provisional analysis 1

SELF-TEST

ü	 Using what you know about inputting data, try to 
enter these data into R and run some exploratory 
analyses (see Chapter 5).

When the data are collected using the same participants in each condition, the data are 
entered using different columns. So, the data editor will have three columns of data. The 
first column is for the data from the start of the diet (called something like Start), the 
second column will have values for the weights after one month (called Month1) and
the final column will have the weights at the end of the diet (called Month2). The data can 
be found in the file Diet.dat.

Output 15.15 shows the results of some exploratory analysis (using the stat.desc func-
tion from Chapter 5). With a bit of luck you’ll get the same results, which shows that the 
Friedman’s ANOVA is significant for the baseline data (Start), W(10) = 0.78, p = .009, 
and one month into the diet, W(10) = 0.68, p < .001. Therefore the variables Start and 
Month1 deviate significantly from normal. The data at the end of the diet do not appear 
to differ from normal, though, W(10) = 0.87, p = .121.
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                     Start       Month1       Month2
median        69.225000000 6.857500e+01  72.25000000
mean          78.053000000 7.746300e+01  77.06700000
SE.mean        6.397375860 5.886269e+00   5.09347536
CI.mean.0.95  14.471869624 1.331567e+01  11.52224176
var          409.264178889 3.464817e+02 259.43491222
std.dev       20.230278764 1.861402e+01  16.10698334
coef.var       0.259186434 2.402956e-01   0.20899974
skewness       1.054846022 1.329796e+00   1.01105333
skew.2SE       0.767671126 9.677677e-01   0.73580071
kurtosis      -0.514513976 1.196569e-01   0.25546331
kurt.2SE      -0.192810362 4.484056e-02   0.09573301
normtest.W     0.784370035 6.849797e-01   0.87721476
normtest.p     0.009357858 5.796060e-04   0.12120786

Output 15.15

15.7.3.    Doing Friedman’s ANOVA in R Commander 1

As always, import the data, using Data⇒Import data⇒from text file, clipboard, or URL… 
(see section 3.7.3), click on  and choose the file Diet.dat. To run Friedman’s ANOVA, 
select Statistics⇒Nonparametric tests⇒Friedman rank-sum test… to activate the dialog box 
in Figure 15.10. Once the dialog box is activated, select the three variables that represent 
the dependent variable at the different levels of the independent variable from the list. This 
is very straightforward: we have only three variables, so select them all and click on .

FIGURE 15.10
Dialog box for 
Friedman’s ANOVA 

15.7.4.    Friedman’s ANOVA using R 1

We can do Friedman’s ANOVA using the friedman.test() function. This function is a bit of 
a prima donna because, in order to work, it demands that (1) you give it a matrix rather 
than a dataframe, because it thinks dataframes smell of rotting brains, and (2) it wants all 
of the variables of interest in one data set, and there mustn’t be any additional variables. To 
combat the first issue we need to convert our dataframe into a matrix by putting it into the 
as.matrix() function (see section 3.9.3). As for the second, in the current example our data-
frame does contain only the variables of interest. However, for other analyses you can use 
what you learnt in section 3.9 to extract only the data that you need for the Friedman test.

The other complication is that the function gets confused by missing data. Again, we 
have a complete data set in this example so we don’t need to do anything, but if you have 
missing data you need to delete any cases that don’t have a complete set of scores. We can 
do this easily using the na.omit() function. If we put our dataframe name into that function 
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and execute we’ll get back the same dataframe but with cases that have any missing data 
deleted. Therefore, we could execute:

dietCompleteCases <- na.omit(dietData)

This would create a dataframe called dietCompleteCases, which is the same as the dietData 
dataframe except that it will have deleted any case (row) for which there is missing data in 
any column.

To run the Friedman test we simply input the name of our dataframe, but within the 
as.matrix() function, which converts it to a matrix. In this example, we would execute:

friedman.test(as.matrix(dietData))

15.7.5.    Output from Friedman’s ANOVA 1

Output 15.16 shows the result of the Friedman test: the main part is the test statistic, which 
R calls chi-squared rather that Fr because Fr has a chi-square distribution). The value of this 
statistic is 0.2, the same value that we calculated earlier. We’re also told the test statistic’s 
degrees of freedom (in this case we had three groups so the degrees of freedom are 3−1, or 
2), and the significance. The significance value is .905, which is well above .05, therefore 
we could conclude that the there is no evidence that the Andikins diet has any effect: the 
weights didn’t significantly change over the course of the diet.

Friedman rank sum test

data:  just.diet 
Friedman chi-squared = 0.2, df = 2, p-value = 0.9048

Output 15.16

15.7.6.    Post hoc tests for Friedman’s ANOVA 2

In normal circumstances we wouldn’t do any follow-up tests because the overall effect from 
Friedman’s ANOVA was not significant. However, in case you get a result that is significant 
we will have a look at what options you have. As with the Kruskal–Wallis test, there is a func-
tion that enables us to compare all groups, or to compare groups to a baseline. This function, 
friedmanmc(), requires the data to be in exactly the same format as the friedman.test() func-
tion and we use it in exactly the same way. Therefore, for the current data we would execute:

friedmanmc(as.matrix(dietData)) 

The results are in Output 15.17. As with the Kruskal–Wallis test, you need to look at the 
column labelled differences; if this says TRUE then the groups differ significantly, but if 
it says FALSE, they don’t. In this case, we have a clean sweep of non-significant results 
(which, given the main test was ragingly non-significant, isn’t a surprise).

Multiple comparisons between groups after Friedman test 
p.value: 0.05 
Comparisons
    obs.dif critical.dif difference
1-2       1      10.7062      FALSE
1-3       2      10.7062      FALSE
2-3       1      10.7062      FALSE

Output 15.17
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15.7.7.    Calculating an effect size 2

As I mentioned before, there isn’t an easy way to convert a chi-square statistic that has 
more than one degree of freedom to an effect size r and, in any case, it’s not always that 
helpful to have an effect size for a general effect like that tested by Friedman’s ANOVA.13 
Therefore, it’s more sensible (in my opinion at least) to calculate effect sizes for any com-
parisons you’ve done after the ANOVA. As we saw in section 15.5.5, it’s straightforward to 
get an effect size r from the Wilcoxon signed-rank test. Therefore, you could conduct some 
Wilcoxon tests and get the effect sizes using the rFromWilcox() function. 

15.7.8.    Writing and interpreting the results 1

For Friedman’s ANOVA we need only report the test statistic (which we saw earlier is 
denoted by χ2),14 its degrees of freedom and its significance. So, we could report something 
like:

✓	 The weight of participants did not significantly change over the two months of the 
diet, χ2(2) = 0.20, p > .05.

Although with no significant initial analysis we wouldn’t report post hoc tests for these 
data, in case you need to, you should say something like this:

✓	 The weight of participants did not significantly change over the two months of the 
diet, χ2(2) = 0.20, p > .05. Post hoc tests were used with Bonferroni correction applied. 
It appeared that weight didn’t significantly change from the start of the diet to one 
month, (difference = 1), from the start of the diet to two months, (difference = 2),
or from one month to two months, (difference = 1). In all cases, the critical difference
(α = .05 corrected for the number of tests) was 10.71. We can conclude that the 
Andikins diet, like its creator, is a complete failure. 

             CRAMMING SAM’S TIPS    Friedman’s ANOVA

•	 Friedman’s ANOVA compares several conditions when the same participants take part in each condition and the resulting 
data violate an assumption of one-way repeated-measures ANOVA.

•	 Look at the row labelled p-value. If the value is less than .05 then the conditions are significantly different.
•	 You can follow up the main analysis with post hoc tests using the friedmanmc() function. Look at the column labelled differ-

ences: if it says TRUE then the groups differ significantly.
•	 Report the χ2 statistic, its degrees of freedom and significance. 
•	 Report the medians and their ranges (or draw a boxplot).

13 If you really want to, though, you can (as with the Kruskal–Wallis test) use the significance value of the chi-
square test statistic to find an associated value of z from a table of probability values for the normal distribution 
(see Appendix) and then use the conversion to r that we’ve seen throughout this chapter.

14 You might also see it denoted as χ2
F.
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R packages used in this chapter
clinfun
ggplot2
pastecs

pgirmess
Rcmdr

R functions used in this chapter
as.matrix()
as.numeric()
by()
data.frame()
friedmanmc()
friedman.test()
gl()
kruskalmc()
kruskal.test()
length()
leveneTest()
jonckheere.test()

mean()
min()
na.omit()
qnorm()
rank()
rFromWilcox()
sqrt()
stat.desc()
subset()
sum()
wilcox.test()

What have I discovered about statistics? 1

This chapter has dealt with an alternative approach to violations of parametric assump-
tions, which is to use tests based on ranking the data. We started with the Wilcoxon 
rank-sum test, which is used for comparing two independent groups. This test allowed 
us to look in some detail at the process of ranking data. We then moved on to look at the 
Wilcoxon signed-rank test, which is used to compare two related conditions. We moved 
onto more complex situations in which there are several conditions (the Kruskal–Wallis 
test for independent conditions and Friedman’s ANOVA for related conditions). For 
each of these tests we looked at the theory of the test (although these sections could 
be ignored) and then focused on how to conduct them using R, how to interpret the 
results and how to report the results of the test. In the process we discovered that drugs 
make you depressed, soya reduces your sperm count, and my lifestyle is not conducive 
to losing weight.

We also discovered that my teaching career got off to an inauspicious start. As it 
turned out, one of the reasons why the class did not have a clue what I was talking 
about was that I hadn’t been shown their course handouts and I was trying to teach them 
ANOVA using completely different equations than their lecturer (there are many ways 
to compute an ANOVA). The other reason was that I was a rubbish teacher. This event 
did change my life, though, because the experience was so awful that I did everything in 
my power to make sure that it didn’t happen again. After years of experimentation I can 
now pass on the secret of avoiding students telling you how awful your ANOVA classes 
are: the more penis jokes you tell, the less likely you are to be emotionally crushed by 
dissatisfied students.
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Key terms that I’ve discovered
Friedman’s ANOVA
Jonckheere–Terpstra test
Kruskal–Wallis test
Mann–Whitney test
Monte Carlo method

Non-parametric tests
Ranking
Wilcoxon rank-sum test
Wilcoxon signed-rank test

Smart Alex’s tasks

MM Task 1: A psychologist was interested in the cross-species differences between men 
and dogs. She observed a group of dogs and a group of men in a naturalistic setting 
(20 of each). She classified several behaviours as being dog-like (urinating against 
trees and lampposts, attempts to copulate with anything that moved, and attempts to 
lick their own genitals). For each man and dog she counted the number of dog-like 
behaviours displayed in a 24-hour period. It was hypothesized that dogs would dis-
play more dog-like behaviours than men. The data are in the file MenLikeDogs.dat. 
Analyse them with a Wilcoxon rank-sum test. 1

MM Task 2: There’s been much speculation over the years about the influence of sublimi-
nal messages on records. To name a few cases, both Ozzy Osbourne and Judas Priest 
have been accused of putting backward masked messages on their albums that sub-
liminally influence poor unsuspecting teenagers into doing things like blowing their 
heads off with shotguns. A psychologist was interested in whether backward masked 
messages really did have an effect. He took the master tapes of Britney Spears’ ‘Baby 
One More Time’ and created a second version that had the masked message ‘deliver 
your soul to the dark lord’ repeated in the chorus. He took this version, and the origi-
nal, and played one version (randomly) to a group of 32 people. He took the same 
group six months later and played them whatever version they hadn’t heard the time 
before. So each person heard both the original, and the version with the masked mes-
sage, but at different points in time. The psychologist measured the number of goats 
that were sacrificed in the week after listening to each version. It was hypothesized 
that the backward message would lead to more goats being sacrificed. The data are in 
the file DarkLord.dat. Analyse them with a Wilcoxon signed-rank test. 1

MM Task 3: A psychologist was interested in the effects of television programmes on 
domestic life. She hypothesized that through ‘learning by watching’, certain pro-
grammes might actually encourage people to behave like the characters within them. 
This in turn could affect the viewer’s own relationships (depending on whether the 
programme depicted harmonious or dysfunctional relationships). She took episodes 
of three popular TV shows and showed them to 54 couples, after which the couple 
were left alone in the room for an hour. The experimenter measured the number 
of times the couple argued. Each couple viewed all three of the TV programmes 
at different points in time (a week apart) and the order in which the programmes 
were viewed was counterbalanced over couples. The TV programmes selected were 
EastEnders (which typically portrays the lives of extremely miserable, argumentative, 
London folk who like nothing more than to beat each other up, lie to each other, 
sleep with each other’s wives and generally show no evidence of any consideration to 
their fellow humans!), Friends (which portrays a group of unrealistically considerate 
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and nice people who love each other oh so very much – but for some reason I love it 
anyway!), and a National Geographic programme about whales (this was supposed to 
act as a control). The data are in the file Eastenders.dat. Access the file and conduct 
Friedman’s ANOVA on the data. 1

MM Task 4: A researcher was interested in trying to prevent coulrophobia (fear of clowns) 
in children. She decided to do an experiment in which different groups of children 
(15 in each) were exposed to different forms of positive information about clowns. 
The first group watched some adverts for McDonald’s in which their mascot Ronald 
McDonald is seen cavorting about with children going on about how they should 
love their mums. A second group was told a story about a clown who helped some 
children when they got lost in a forest (although what on earth a clown was doing 
in a forest remains a mystery). A third group was entertained by a real clown, who 
came into the classroom and made balloon animals for the children.15 A final group 
acted as a control condition and they had nothing done to them at all. The researcher 
took self-report ratings of how much the children liked clowns, resulting in a score 
for each child that could range from 0 (not scared of clowns at all) to 5 (very scared 
of clowns). The data are in the file coulrophobia.dat. Access them and conduct a 
Kruskal–Wallis test. 1

Answers can be found on the companion website and, because these examples are used in 
Field and Hole (2003), you could steal this book or photocopy Chapter 7 to get some very 
detailed answers.

Further reading
Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). 

New York: McGraw-Hill. (This has become the definitive text on non-parametric statistics, and is 
the only book seriously worth recommending as ‘further’ reading. It is probably not a good book 
for anyone with a statistics phobia, but if you’ve coped with my chapter then this book will be an 
excellent next step.)

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington, 
MA: Elsevier. (Wilcox’s book is quite technical compared to this one, but really is a wonderful 
resource. Wilcox describes how to use an astonishing range of robust tests, many of which we 
discuss throughout this book.)

Interesting real research
Çetinkaya, H., & Domjan, M. (2006). Sexual fetishism in a quail (Coturnix japonica) model system: 

Test of reproductive success. Journal of Comparative Psychology, 120(4), 427–432.
Matthews, R. C., Domjan, M., Ramsey, M., & Crews, D. (2007). Learning effects on sperm competi-

tion and reproductive fitness. Psychological Science, 18(9), 758–762.

15 Unfortunately, the first time they attempted the study the clown accidentally burst one of the balloons. 
The noise frightened the children and they associated that fear response with the clown. All 15 children are 
currently in therapy for coulrophobia!
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16
Multivariate analysis of 
variance (MANOVA)

FIGURE 16.1
Fuzzy doing some 
light reading

16.1.  What will this chapter tell me? 2

Having had what little confidence I had squeezed out of me by my formative teaching expe-
riences, I decided that I could either kill myself, or get a cat. I’d wanted to do both for years, 
but when I was introduced to a little 4-week-old bundle of gingerness the choice was made. 
Fuzzy (as I named him) was born on 8 April 1996 and has been my right-hand feline ever 
since. He is like the Cheshire cat in Lewis Carroll’s Alice’s Adventures in Wonderland1 in that 

1 This is one of my favourite books from my childhood. For those that haven’t read it, the Cheshire cat is a big 
fat cat mainly remembered for vanishing and reappearing out of nowhere; on one occasion it vanished leaving 
only its smile behind.
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he seemingly vanishes and reappears at will: I go to find clothes in my wardrobe and notice 
a ginger face peering out at me, I put my pants in the laundry basket and he looks up at me 
from a pile of smelly socks, I go to have a bath and he’s sitting in it, and I shut the bedroom 
door yet wake up to find him asleep next to me. His best vanishing act was a few years 
ago when I moved house. He’d been locked up in his travel basket (which he hates) during 
the move, so once we were in our new house I thought I’d let him out as soon as possible. 
I found a quiet room, checked the doors and windows to make sure he couldn’t escape, 
opened the basket, gave him a cuddle and left him to get to know his new house. When I 
returned five minutes later, he was gone. The door had been shut, the windows closed and 
the walls were solid (I checked). He had literally vanished into thin air and he didn’t even 
leave behind his smile. Before his dramatic disappearance, Fuzzy had stopped my suicidal 
tendencies, and there is lots of research showing that having a pet is good for your mental 
health. If you wanted to test this you could compare people with pets against those without 
to see if they had better mental health. However, the term mental health covers a wide range 
of concepts, including (to name a few) anxiety, depression, general distress and psychosis. 
As such, we have four outcome measures and all the tests we have encountered allow us to 
look at one. Fear not, when we want to compare groups on several outcome variables we 
can extend ANOVA to become MANOVA. That’s what this chapter is all about.

16.2.  When to use MANOVA 2

Over Chapters 9–14, we have seen how the general linear model (GLM) can be 
used to detect group differences on a single dependent variable. However, there 
may be circumstances in which we are interested in several dependent variables, 
and in these cases the simple ANOVA model is inadequate. Instead, we can use an 
extension of this technique known as multivariate analysis of variance (or MANOVA). 
MANOVA can be thought of as ANOVA for situations in which there are several 
dependent variables. The principles of ANOVA extend to MANOVA in that we 
can use MANOVA when there is only one independent variable or when there are 
several, we can look at interactions between independent variables, and we can 
even do contrasts to see which groups differ from each other. ANOVA can be used 
only in situations in which there is one dependent variable (or outcome) and so is known as 
a univariate test (univariate quite obviously means ‘one variable’); MANOVA is designed to 
look at several dependent variables (outcomes) simultaneously and so is a multivariate test 
(multivariate means ‘many variables’). This chapter will explain some basics about MANOVA 
for those of you who want to skip the fairly tedious theory sections and just get on with the 
test. However, for those who want to know more there is a fairly lengthy theory section to 
try to explain the workings of MANOVA. We then look at an example using R and see how 
the output from MANOVA can be interpreted. This leads us to look at another statistical test 
known as discriminant function analysis.

16.3.  Introduction: similarities to  
and differences from ANOVA 2

If we have collected data about several dependent variables then we could simply conduct a 
separate ANOVA for each dependent variable (and if you read research articles you’ll find 
that it is not unusual for researchers to do this). Think back to Chapter 10, and you should 
remember that a similar question was posed regarding why ANOVA was used in prefer-
ence to multiple t-tests. The reason why MANOVA is used instead of multiple ANOVAs is 

What is MANOVA?
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the same: the more tests we conduct on the same data, the more we inflate the 
familywise error rate (see section 10.2.1). The more dependent variables we 
have measured, the more ANOVAs we would need to conduct and the greater 
the chance of making a Type I error.

However, there are other reasons for preferring MANOVA to several 
ANOVAs. For one thing, there is important additional information that is 
gained from a MANOVA. If separate ANOVAs are conducted on each depen-
dent variable, then any relationship between dependent variables is ignored. 
As such, we lose information about any correlations that might exist between 

the dependent variables. MANOVA, by including all dependent variables in the same 
analysis, takes account of the relationship between outcome variables. Related to this 
point, ANOVA can tell us only whether groups differ along a single dimension, whereas 
MANOVA has the power to detect whether groups differ along a combination of dimen-
sions. For example, ANOVA tells us how scores on a single dependent variable distinguish 
groups of participants (so, for example, we might be able to distinguish people who are 
married, living together or single by their happiness). MANOVA incorporates information 
about several outcome measures and, therefore, informs us of whether groups of partici-
pants can be distinguished by a combination of scores on several dependent measures. For 
example, ‘happiness’ is a complex construct, so we might want to measure participants’ 
happiness with work, socially, sexually and within themselves (self-esteem). It may not be 
possible to distinguish people who are married, living together or single only by their hap-
piness at work, but they might be distinguished by a combination of their happiness across 
all four domains: work, social, sexual, and the self. So, in this sense MANOVA has greater 

Why not do lots
of ANOVAs?

high intercorrelations is in most cases greater than that 
for moderate intercorrelations, and in some cases it is 
dramatically higher’ (p. 736). These findings are slightly 
contradictory, which leaves us with the puzzling conun-
drum of what, exactly, the relationship is between power 
and intercorrelation of the dependent variables. Luckily, 
Cole, Maxwell, Arvey, and Salas (1994) have done a great 
deal to illuminate this relationship. They found that the 
power of MANOVA depends on a combination of the 
correlation between dependent variables and the effect 
size to be detected. In short, if you are expecting to find 
a large effect, then MANOVA will have greater power if 
the measures are somewhat different (even negatively 
correlated) and if the group differences are in the same 
direction for each measure. If you have two dependent 
variables, one of which exhibits a large group difference, 
and one of which exhibits a small or no group differ-
ence, then power will be increased if these variables are 
highly correlated. The take-home message from Cole et 
al.’s work is that if you are interested in how powerful the 
MANOVA is likely to be you should consider not just the 
intercorrelation of dependent variables but also the size 
and pattern of group differences that you expect to get. 
However, it should be noted that Cole et al.’s work is lim-
ited to the case where two groups are being compared, 
and power considerations are more complex in multiple-
group situations.

I mentioned in the previous section that MANOVA had 
greater power than ANOVA to detect effects because it 
could take account of the correlations between depend-
ent variables (Huberty & Morris, 1989). However, the 
issue of power is more complex than alluded to by my 
simple statement. Ramsey (1982) found that as the 
correlation between dependent variables increased, 
the power of MANOVA decreased. This led Tabachnick 
and Fidell (2007) to recommend that MANOVA ‘works 
best with highly negatively correlated DVs, and accept-
ably well with moderately correlated DVs in either direc-
tion’ and that ‘MANOVA also is wasteful when DVs are 
uncorrelated’ (p. 268). In contrast, Stevens’s (1980) 
investigation of the effect of dependent variable cor-
relations on test power revealed that ‘the power with 

JANE SUPERBRAIN 16.1

The power of MANOVA 3
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power to detect an effect, because it can detect whether groups differ along a combina-
tion of variables, whereas ANOVA can detect only if groups differ along a single variable 
(see Jane Superbrain Box 16.1). For these reasons, MANOVA is preferable to conducting 
several ANOVAs.

16.3.1.    Words of warning 2

From my description of MANOVA it is probably looking like a pretty groovy little test that 
allows you to measure hundreds of dependent variables and then just sling them into the 
analysis. This is not the case. It is not a good idea to lump all of your dependent variables 
together in a MANOVA unless you have a good theoretical or empirical basis for doing so. 
I mentioned way back at the beginning of this book that statistical procedures are just a 
way of number crunching and so even if you put rubbish into an analysis you will still reach 
conclusions that are statistically meaningful, but are unlikely to be empirically meaningful. 
In circumstances where there is a good theoretical basis for including some but not all of 
your dependent variables, you should run separate analyses: one for the variables being 
tested on a heuristic basis and one for the theoretically meaningful variables. The point to 
take on board here is not to include lots of dependent variables in a MANOVA just because 
you have measured them.

16.3.2.    The example for this chapter 2

Throughout the rest of this chapter we’re going to use a single example to look at how 
MANOVA works and then how to conduct one using R. Imagine that we were interested in 
the effects of cognitive behaviour therapy (CBT) on obsessive compulsive disorder (OCD). 
OCD is a disorder characterized by intrusive images or thoughts that the sufferer finds 
abhorrent (in my case this might be the thought of someone carrying out a t-test on data 
that are not normally distributed, but in normal people it could be something like imagin-
ing your parents have died). These thoughts lead the sufferer to engage in activities to neu-
tralize the unpleasantness of these thoughts (these activities can be mental, such as doing 
a MANOVA in my head to make me feel better about the t-test thought, or physical, such 
as touching the floor 23 times so that your parents won’t die). Now, we could compare a 
group of OCD sufferers after CBT and after behaviour therapy (BT) with a group of OCD 
sufferers who are still awaiting treatment (a no-treatment condition, NT).2 There are both 
behavioural and cognitive elements to most psychopathologies. For example, in OCD if 
someone had an obsession with germs and contamination, this disorder might manifest 
itself in obsessive hand-washing and would influence not just how many times they actu-
ally wash their hands (behaviour), but also the number of times they think about washing 
their hands (cognitions). If we are interested in seeing how successful a therapy is, it is not 
enough to look only at behavioural outcomes (such as whether obsessive behaviours are 
reduced); it is important to establish whether cognitions are being changed also. Hence, 
in this example two dependent measures were taken: the occurrence of obsession-related 
behaviours (Actions) and the occurrence of obsession-related cognitions (Thoughts).
These dependent variables were measured on a single day and so represent the number of 
obsession-related behaviours/thoughts in a normal day.

2 The non-psychologists out there should note that behaviour therapy works on the basis that if you stop the 
maladaptive behaviours the disorder will go away, whereas cognitive therapy is based on the idea that treating the 
maladaptive cognitions will stop the disorder.
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Table 16.1  Data from OCD.dat

DV 1: Actions DV 2: Thoughts

Group: CBT (1) BT (2) NT (3) CBT (1) BT (2) NT (3)

5 4 4 14 14 13

5 4 5 11 15 15

4 1 5 16 13 14

4 1 4 13 14 14

5 4 6 12 15 13

3 6 4 14 19 20

7 5 7 12 13 13

6 5 4 15 18 16

6 2 6 16 14 14

4 5 5 11 17 18

X 4.90 3.70 5.00 13.40 15.20 15.00

s 1.20 1.77 1.05 1.90 2.10 2.36

s2 1.43 3.12 1.11 3.60 4.40 5.56

X grand(Actions)

grand(Actions)
2

= 4.53

= 2.1195s

X grand(Thoughts)

grand(Thoughts)
2

= 14.53

= 4.8780s

The data are in Table 16.1 and can be found in the file OCD.dat. Participants belonged 
to group 1 (CBT), group 2 (BT) or group 3 (NT), and within these groups all participants 
had both actions and thoughts measured.

16.4.  Theory of MANOVA 3

The theory of MANOVA is very complex to understand without knowing matrix algebra, 
and frankly matrix algebra is way beyond the scope of this book (those with maths brains 
can consult Namboodiri, 1984; Stevens, 2002). However, I intend to give a flavour of the 
conceptual basis of MANOVA, using matrices, without requiring you to understand exactly 
how those matrices are used. Those interested in the exact underlying theory of MANOVA 
should read Bray and Maxwell’s (1985) superb monograph.

16.4.1.    Introduction to matrices 3

A matrix is simply a collection of numbers arranged in columns and rows. In fact, through-
out this book you have been using matrices: every dataframe you have created is a matrix 
but with names for each column. In dataframes we have numbers arranged in columns and 
rows and this is a matrix. A matrix can have many columns and many rows and we usually 
specify the dimensions of the matrix using numbers. So, a 2 × 3 matrix is a matrix with 
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two rows and three columns, and a 5 × 4 matrix is one with five rows and four columns 
(examples below):

2 5 6
3 5 8

2 4 6 8
3 4 6 7
4 3 5 8
2 5 7 9
4 6 6 9

2 3 5



























× matrix ×× 4matrix

In many of our dataframes we have thought of each row as representing the data from a 
single participant and each column as representing data relating to a particular variable. So, 
for the 5 × 4 matrix, we can imagine a situation where five participants were tested on four 
variables: the first participant scored 2 on the first variable and 8 on the fourth variable. 
The values within a matrix are typically referred to as components or elements.

A square matrix is one in which there are equal numbers of columns and rows. In this 
type of matrix it is sometimes useful to distinguish between the diagonal components (i.e., 
the values that lie on the diagonal line from the top left component to the bottom right 
component) and the off-diagonal components (the values that do not lie on the diagonal). 
In the matrix below, the diagonal components are 5, 12, 2 and 6 because they lie along the 
diagonal line. The off-diagonal components are all of the other values. A square matrix in 
which the diagonal elements are equal to 1 and the off-diagonal elements are equal to 0 is 
known as an identity matrix:

















100
010
001



















67610
7246
64123

10635

Square matrix Identity matrix

Diagonal Component

Hopefully, the concept of a matrix should now be slightly less scary than it was previously: 
it is not some magical mathematical entity, merely a way of representing a data set – just 
like a spreadsheet.

Now, there is a special case of a matrix where there are data from only one entity, and 
this is known as a row vector. Likewise, if there is only one column in a matrix this is 
known as a column vector. In the examples below, the row vector can be thought of as a 
single person’s score on four different variables, whereas the column vector can be thought 
of as five participants’ scores on one variable:

2 6 4 8

8
6

10
15
6

( )





















Row vector Column vector
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Armed with this knowledge of what vectors are, we can have a brief look at how they 
are used to conduct MANOVA.

16.4.2.    Some important matrices and their functions 3

As with ANOVA, we are primarily interested in how much variance can be explained by the 
experimental manipulation (which in real terms means how much variance is explained by 
the fact that certain scores appear in certain groups). Therefore, we need to know the sum 
of squares due to the grouping variable (the systematic variation, SSM), the sum of squares 
due to natural differences between participants (the residual variation, SSR) and of course 
the total amount of variation that needs to be explained (SST); for more details about these 
sources of variation reread Chapters 7 and 10. However, I mentioned that MANOVA also 
takes into account several dependent variables simultaneously and it does this by using 
a matrix that contains information about the variance accounted for by each dependent 
variable. For the univariate F-test (e.g., ANOVA) we calculated the ratio of systematic 
variance to unsystematic variance for a single dependent variable. In MANOVA, the test 
statistic is derived by comparing the ratio of systematic to unsystematic variance for several 
dependent variables. This comparison is made by using the ratio of a matrix representing 
the systematic variance of all dependent variables to a matrix representing the unsystem-
atic variance of all dependent variables. To sum up, the test statistic in both ANOVA and 
MANOVA represents the ratio of the effect of the systematic variance to the unsystematic 
variance; in ANOVA these variances are single values, but in MANOVA each is a matrix 
containing many variances and covariances.

The matrix that represents the systematic variance (or the model sum of squares for all 
variables) is denoted by the letter H and is called the hypothesis sum of squares and cross-
products matrix (or hypothesis SSCP). The matrix that represents the unsystematic variance 
(the residual sums of squares for all variables) is denoted by the letter E and is called the 
error sum of squares and cross-products matrix (or error SSCP). Finally, there is a matrix that 
represents the total amount of variance present for each dependent variable (the total sums 
of squares for each dependent variable) and this is denoted by T and is called the total sum 
of squares and cross-products matrix (or total SSCP).

Later, I will show how these matrices are used in exactly the same way as the simple sums 
of squares (SSM, SSR and SST) in ANOVA to derive a test statistic representing the ratio of 
systematic to unsystematic variance in the model. The observant among you may have 
noticed that the matrices I have described are all called sum of squares and cross-products 
(SSCP) matrices. It should be obvious why these matrices are referred to as sum of squares 
matrices, but why is there a reference to cross-products in their name?

SELF-TEST

ü	 Can you remember (from Chapter 6) what a cross-
product is?

Cross-products represent a total value for the combined error between two variables (so in 
some sense they represent an unstandardized estimate of the total correlation between two 
variables). As such, whereas the sum of squares of a variable is the total squared difference 
between the observed values and the mean value, the cross-product is the total combined 
error between two variables. I mentioned earlier that MANOVA had the power to account for 
any correlation between dependent variables, and it does this by using these cross-products.
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16.4.3.    Calculating MANOVA by hand: a worked example 3

To begin with, let’s carry out univariate ANOVAs on each of the two dependent variables 
in our OCD example (see Table 16.1). A description of the ANOVA model can be found 
in Chapter 10, and I will draw heavily on the assumption that you have read this chapter; 
if you are hazy on the details of Chapter 10 then now would be a good time to (re)read 
sections 10.2.5–10.2.9. 

16.4.3.1.  Univariate ANOVA for DV 1 (Actions) 2

There are three sums of squares that need to be calculated. First, we need to assess how 
much variability there is to be explained within the data (SST). Next, we need to see
how much of this variability can be explained by the model (SSM). Finally, we have to assess 
how much error there is in the model (SSR). From Chapter 10 we can calculate each of 
these values:

MM SST(Actions): The total sum of squares is obtained by calculating the difference between 
each of the 20 scores and the mean of those scores, then squaring these differences 
and adding these squared values up. Alternatively, you can get R to calculate the 
variance for the action data (regardless of which group the score falls into) and then 
multiplying this value by the number of scores minus 1:

SST grand= −

= −
= ×
=

s2 1

2 1195 30 1
2 1195 29
61 47

( )

. ( )

.
.

n

MM SSM(Actions): This value is calculated by taking the difference between each group mean 
and the grand mean and then squaring them. Multiply these values by the number of 
scores in the group and then add them together:

SSM = − + − + −

=

10 4 90 4 53 10 3 70 4 53 10 5 00 4 53

10 0 37

2 2 2

2

( . . ) ( . . ) ( . . )

( . ) ++ − +
= + +
=

10 0 83 10 0 47
1 37 6 89 2 21
10 47

2 2( . ) ( . )
. . .

.

MM SSR(Actions): This value is calculated by taking the difference between each score and 
the mean of the group from which it came. These differences are then squared and 
then added together. Alternatively we can get R to calculate the variance within each 
group, multiply each group variance by the number of scores minus 1 and then add 
them together:

SSR CBT CBT BT BT NT NT= − + − + −
= − +

s s s2 2 21 1 1

1 433 10 1 3

( ) ( ) ( )

( . )( ) (

n n n

.. )( ) ( . )( )
( . ) ( . ) ( . )

122 10 1 1 111 10 1
1 433 9 3 122 9 1 111 9

1

− + −
= × + × + ×
= 22 9 28 1 10 0

51 00
. . .
.

+ +
=
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The next step is to calculate the average sums of squares (the mean square) of each by 
dividing by the degrees of freedom (see section 10.2.8):

SS df MS

SSM(Actions) = 10.47   2 5.235

SSR(Actions) = 51.00 27 1.889

The final stage is calculate F by dividing the mean squares for the model by the mean 
squares for the error in the model:

F = = =
MS
MS

M

R

5 235
1 889

2 771
.
.

.

This value can then be evaluated against critical values of F. The point to take home here is 
the calculation of the various sums of squares and to what each one relates. 

16.4.3.2.  Univariate ANOVA for DV 2 (Thoughts) 2

As with the data for dependent variable 1, there are three sums of squares that need to be 
calculated:

MM SST(Thoughts):

SST grand= −

= −
= ×
=

s2 1

4 878 30 1

4 878 29

141 46

( )

. ( )

.

.

n

MM SSM(Thoughts):

SSM = − + − + −

= −

10 13 40 14 53 10 15 2 14 53 10 15 0 14 53

10 1

2 2 2( . . ) ( . . ) ( . . )

( .. ) ( . ) ( . )

. . .

.

13 10 0 67 10 0 47

12 77 4 49 2 21

19 47

2 2 2+ +
= + +
=

MM SSR(Thoughts):

SSR CBT CBT BT BT NT NT= − + − + −
= − +

s s s2 2 21 1 1

3 6 10 1 4 4

( ) ( ) ( )

( . )( ) ( .

n n n

))( ) ( . )( )
( . ) ( . ) ( . )

. .

10 1 5 56 10 1
3 6 9 4 4 9 5 56 9

32 4 39 6 5

− + −
= × + × + ×
= + + 00 0

122
.

=
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The next step is to calculate the average sums of squares (the mean square) of each by 
dividing by the degrees of freedom (see section 10.2.8):

SS df MS

SSM(Thoughts) = 19.47   2 9.735

SSR(Thoughts) = 122.00 27 4.519

The final stage is to calculate F by dividing the mean squares for the model by the mean 
squares for the error in the model:

F = = =
MS
MS

M

R

9 735
4 519

2 154
.
.

.

This value can then be evaluated against critical values of F. Again, the point to take home 
here is the calculation of the various sums of squares and to what each one relates.

16.4.3.3.  The relationship between DVs: cross-products 2

We know already that MANOVA uses the same sums of squares as ANOVA, and in the 
next section we will see exactly how it uses these values. However, I have also mentioned 
that MANOVA takes account of the relationship between dependent variables by using 
the cross-products. There are three different cross-products that are of interest, and these 
three cross-products relate to the three sums of squares that we calculated for the univari-
ate ANOVAs: that is, there is a total cross-product, a cross-product due to the model and a 
residual cross-product. Let’s look at the total cross-product (CPT) first.

I mentioned in Chapter 6 that the cross-product was the difference between the scores 
and the mean in one group multiplied by the difference between the scores and the mean 
in the other group. In the case of the total cross-product, the mean of interest is the grand 
mean for each dependent variable (see Table 16.2). Hence, we can adapt the cross-product 
equation described in Chapter 6 using the two dependent variables. The resulting equation 
for the total cross-product is as follows: 

CPT Actions grand (Actions) Thoughts grand (= −( ) −
=
Σ
i

n

i ix X x X
1 ( ) ( ) TThoughts)( ) 	 (16.1)

Therefore, for each dependent variable you take each score and subtract from it the grand 
mean for that variable. This leaves you with two values per participant (one for each 
dependent variable), which should be multiplied together to get the cross-product for each 
participant. The total can then be found by adding the cross-products of all participants. 
Table 16.2 illustrates this process.

The total cross-product is a gauge of the overall relationship between the two variables. 
However, we are also interested in how the relationship between the dependent variables 
is influenced by our experimental manipulation, and this relationship is measured by the 
model cross-product (CPM). The CPM is calculated in a similar way to the model sum of 
squares. First, the difference between each group mean and the grand mean is calculated 
for each dependent variable. The cross-product is calculated by multiplying the differences 
found for each group. Each product is then multiplied by the number of scores within the 
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Table 16.2  Calculation of the total cross-product

Group Actions Thoughts
 

Actions

-X grand(Actions)

(D1)

Thoughts

-X grand(Thoughts)  
(D2) D1 × D2

CBT 5 14 0.47 -0.53 -0.25

5 11 0.47 -3.53 -1.66

4 16 -0.53 1.47 -0.78

4 13 -0.53 -1.53 0.81

5 12 0.47 -2.53 -1.19

3 14 -1.53 -0.53 0.81

7 12 2.47 -2.53 -6.25

6 15 1.47 0.47 0.69

6 16 1.47 1.47 2.16

4 11 -0.53 -3.53 1.87

BT 4 14 -0.53 -0.53 0.28

4 15 -0.53 0.47 -0.25

1 13 -3.53 -1.53 5.40

1 14 -3.53 -0.53 1.87

4 15 -0.53 0.47 -0.25

6 19 1.47 4.47 6.57

5 13 0.47 -1.53 -0.72

5 18 0.47 3.47 1.63

2 14 -2.53 -0.53 1.34

5 17 0.47 2.47 1.16

NT 4 13 −0.53 -1.53 0.81

5 15 0.47 0.47 0.22

5 14 0.47 −0.53 −0.25

4 14 -0.53 -0.53 0.28

6 13 1.47 −1.53 -2.25

4 20 -0.53 5.47 -2.90

7 13 2.47 -1.53 -3.78

4 16 -0.53 1.47 −0.78

6 14 1.47 -0.53 -0.78

5 18 0.47 3.47 1.63

X grand 4.53 14.53 CP =  ( ) = 5.47T 1 2N D D× −∑

group (as was done with the sum of squares). This principle is illustrated in the following 
equation and Table 16.3:

CPM grp (Actions) grand (Actions) grp (Thoughts)= −( ) −
=

Σ
grp

k
n x X x

1
XX grand (Thoughts)( )



 	 (16.2)

16-Field_R-4368-Ch-16.indd   706 29/02/2012   6:33:28 PM



707CHAPTER 16   MULT IVAR IATE  ANALYS IS  OF  VAR IANCE (MANOVA)

Finally, we also need to know how the relationship between the two dependent vari-
ables is influenced by individual differences in participants’ performances. The residual 
cross-product (CPR) tells us about how the relationship between the dependent vari-
ables is affected by individual differences, or error in the model. CPR is calculated in 
a similar way to the total cross-product, except that the group means are used rather 
than the grand mean (see equation (16.3)). So, to calculate each of the difference 
scores, we take each score and subtract from it the mean of the group to which it 
belongs (see Table 16.4):

CPR Actions group (Actions) Thoughts group (= −( ) −
=
Σ
i

n

i ix x x x
1

( ) ( ) TThoughts)( ) 	 (16.3)

The observant among you may notice that the residual cross-product can also be calcu-
lated by subtracting the model cross-product from the total cross-product:

CP CP CPR T M= −
= − − =5 47 7 53 13. ( . )  

However, it is useful to calculate the residual cross-product manually in case of mistakes 
in the calculation of the other two cross-products. The fact that the residual and model 
cross-products should sum to the value of the total cross-product can be used as a useful 
double-check.

Each of the different cross-products tells us something important about the relationship 
between the two dependent variables. Although I have used a simple scenario to keep the 
maths relatively simple, these principles can be easily extended to more complex scenar-
ios. For example, if we had measured three dependent variables then the cross-products 
between pairs of dependent variables are calculated (as they were in this example) and 
entered into the appropriate SSCP matrix (see next section). As the complexity of the situ-
ation increases, so does the amount of calculation that needs to be done. At times such as 
these the benefit of software like R becomes ever more apparent.

16.4.3.4.  The total SSCP matrix (T) 3

In this example we have only two dependent variables, and so all of the SSCP matrices will 
be 2 × 2 matrices. If there had been three dependent variables then the resulting matrices 
would all be 3 × 3 matrices. The total SSCP matrix, T, contains the total sums of squares for 
each dependent variable and the total cross-product between the two dependent variables. 

Table 16.3  Calculating the model cross-product

Xgroup

Actions

X Xgroup grand-
(D1)

Xgroup

Thoughts

X Xgroup grand-
(D2)

 
D1 × D2

 
N(D1 × D)2

CBT 4.9 0.37 13.4 -1.13 -0.418 −4.18

BT 3.7 -0.83 15.2 0.67 -0.556 −5.56

NT 5.0 0.47 15.0 0.47 0.221 2.21

Xgrand
4.53 14.53 CP =  ( ) = 7.53M 1 2N D D× −∑
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Table 16.4  Calculation of CPR 

Group Actions

Actions

-X group(Actions)

(D1) Thoughts

Thoughts

-X group(Thoughts)

(D2) D1 × D2

CBT 5 0.10 14 0.60 0.06

5 0.10 11 −2.40 −0.24

4 −0.90 16 2.60 −2.34

4 −0.90 13 −0.40 0.36

5 0.10 12 −1.40 −0.14

3 −1.90 14 0.60 −1.14

7 2.10 12 −1.40 −2.94

6 1.10 15 1.60 1.76

6 1.10 16 2.60 2.86

4 −0.90 11 −2.40 2.16

X CBT
4.9 13.4 Σ = 0.40

BT 4 0.30 14 −1.20 −0.36

4 0.30 15 −0.20 −0.06

1 −2.70 13 −2.20 5.94

1 −2.70 14 −1.20 3.24

4 0.30 15 −0.20 −0.06

6 2.30 19 3.80 8.74

5 1.30 13 −2.20 −2.86

5 1.30 18 2.80 3.64

2 −1.70 14 −1.20 2.04

5 1.30 17 1.80 2.34

X BT
3.7 15.2 Σ = 22.60

NT 4 −1.00 13 −2.00 2.00

5 0.00 15 0 0.00

5 0.00 14 −1.00 0.00

4 −1.00 14 −1.00 1.00

6 1.00 13 −2.00 −2.00

4 −1.00 20 5.00 −5.00

7 2.00 13 −2.00 −4.00

4 −1.00 16 1.00 −1.00

6 1.00 14 −1.00 −1.00

5 0.00 18 3.00 0.00

X NT
5 15             Σ = −10.00

           CP = ( ) = 13R 1 2D D×∑
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You can think of the first column and first row as representing one dependent variable and 
the second column and row as representing the second dependent variable:

Column 1 Actions Column 2 Thoughts

Row 1 Actions SST(Actions) CPT

Row 2 Thoughts CPT SST(Thoughts)

We calculated these values in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix:

T =






61 47 5 47
5 47 141 47

. .

. .

From the values in the matrix (and what they represent) it should be clear that the total 
SSCP represents both the total amount of variation that exists within the data and the total 
co-dependence that exists between the dependent variables. You should also note that the 
off-diagonal elements are the same (they are both the total cross-product) because this 
value is equally important for both of the dependent variables.

16.4.3.5.  The residual SSCP matrix (E) 3

The residual (or error) sum of squares and cross-product matrix, E, contains the residual 
sums of squares for each dependent variable and the residual cross-product between the 
two dependent variables. This SSCP matrix is similar to the total SSCP, except that the 
information relates to the error in the model:

Column 1 Actions Column 2 Thoughts

Row 1 Actions SSR(Actions) CPR

Row 2 Thoughts CPR SSR(Thoughts)

We calculated these values in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix:

E =






51 13
13 122

From the values in the matrix (and what they represent) it should be clear that the residual 
SSCP represents both the unsystematic variation that exists for each dependent variable and 
the co-dependence between the dependent variables that is due to chance factors alone. As 
before, the off-diagonal elements are the same (they are both the residual cross-product).

16.4.3.6.  The model SSCP matrix (H) 3

The model (or hypothesis) sum of squares and cross-product matrix, H, contains the model 
sums of squares for each dependent variable and the model cross-product between the two 
dependent variables:
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Column 1 Actions Column 2 Thoughts

Row 1 Actions SSM(Actions) CPM

Row 2 Thoughts CPM SSM(Thoughts)

We calculated these values in the previous sections and so we can simply place the appro-
priate values in the appropriate cell of the matrix: 

H =
−

−






10 47 7 53
7 53 19 47
. .
. .

From the values in the matrix (and what they represent) it should be clear that the model 
SSCP represents both the systematic variation that exists for each dependent variable and 
the co-dependence between the dependent variables that is due to the model (i.e., is due 
to the experimental manipulation). As before, the off-diagonal elements are the same (they 
are both the model cross-product).

Matrices are additive, which means that you can add (or subtract) two matrices together 
by adding (or subtracting) corresponding elements. Now, when we calculated univariate 
ANOVA we saw that the total sum of squares was the sum of the model sum of squares and 
the residual sum of squares (i.e., SST = SSM + SSR). The same is true in MANOVA except 
that we are adding matrices rather than single values:

T H E

T

= +

=
−

−






+






=
+

10 47 7 53
7 53 19 47

51 13
13 122

10 47 51

. .
. .

. −− +
− + +







=






7 53 13
7 53 13 19 47 122

61 47 5 47
5 47 141 47

.
. .

. .
. .

The demonstration that these matrices add up should (hopefully) help you to understand 
that the MANOVA calculations are conceptually the same as for univariate ANOVA – the 
difference is that matrices are used rather than single values.

16.4.4.  Principle of the MANOVA test statistic 4

In univariate ANOVA we calculate the ratio of the systematic variance to the unsystematic 
variance (i.e., we divide SSM by SSR).3 The conceptual equivalent would therefore be to 
divide the matrix H by the matrix E. There is, however, a problem in that matrices are not 
divisible by other matrices. However, there is a matrix equivalent to division, which is to 
multiply by what’s known as the inverse of a matrix. So, if we want to divide H by E we 
have to multiply H by the inverse of E (denoted as E−1). So, therefore, the test statistic is 
based upon the matrix that results from multiplying the model SSCP with the inverse of the 
residual SSCP. This matrix is called HE−1.

3 In reality we use the mean squares, but these values are merely the sums of squares corrected for the degrees of 
freedom.
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Calculating the inverse of a matrix is incredibly difficult, and there is no need for you 
to understand how it is done because R will do it for you. However, the interested reader 
should consult either Stevens (2002) or Namboodiri (1984) – these texts provide very 
accessible accounts of how to derive an inverse matrix. For readers who do consult these 
sources, see Oliver Twisted. For the uninterested reader, you’ll have to trust me on the 
following:

E

HE

−

−

=
−

−






=
−

−

1

1

0 0202 0 0021
0 0021 0 0084

0 2273 0 0852
0 1

. .

. .

. .

. 9930 0 1794.






Remember that HE−1 represents the ratio of systematic variance in the model to the 
unsystematic variance in the model, and so the resulting matrix is conceptually the same 
as the F-ratio in univariate ANOVA. There is another problem, though. In ANOVA, when 
we divide the systematic variance by the unsystematic variance we get a single figure: the 
F-ratio. In MANOVA, when we divide the systematic variance by the unsystematic variance 
we get a matrix containing several values. In this example, the matrix contains four values, 
but had there been three dependent variables the matrix would have had nine values. In 
fact, the resulting matrix will always contain p2 values, where p is the number of depend-
ent variables. The problem is how to convert these matrix values into a meaningful single 
value. This is the point at which we have to abandon any hope of understanding the maths 
behind the test and talk conceptually instead. 

16.4.4.1.  Discriminant function variates 4

The problem of having several values with which to assess statistical significance can be 
simplified considerably by converting the dependent variables into underlying dimensions 
or factors (this process will be discussed in more detail in Chapter 17). In Chapter 7, we 
saw how multiple regression worked on the principle of fitting a linear model to a set of 
data to predict an outcome variable (the dependent variable in ANOVA terminology). 
This linear model was made up of a combination of predictor variables (or independ-
ent variables) each of which had a unique contribution to this linear model. We can do a 
similar thing here, except that we are interested in the opposite problem (i.e., predicting 
an independent variable from a set of dependent variables). So, it is possible to calculate 
underlying linear dimensions of the dependent variables. These linear combinations of 
the dependent variables are known as variates (or sometimes called latent variables or 
factors). In this context we wish to use these linear variates to predict which group a per-
son belongs to (i.e., whether they were given CBT, BT or no treatment), so we are using 
them to discriminate groups of people. Therefore, these variates are called discriminant 
functions or discriminant function variates. Although I have drawn a parallel between these 
discriminant functions and the model in multiple regression, there is a difference in that 
we can extract several discriminant functions from a set of dependent variables, whereas in 
multiple regression all independent variables are included in a single model.

That’s the theory in simplistic terms, but how do we discover these discriminant func-
tions? Well, without going into too much detail, we use a mathematical procedure of 
maximization, such that the first discriminant function (V1) is the linear combination of 
dependent variables that maximizes the differences between groups. 

It follows from this that the ratio of systematic to unsystematic variance (SSM/SSR) 
will be maximized for this first variate, but subsequent variates will have smaller values 
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of this ratio. Remember that this ratio is an analogue of what the F-ratio represents 
in univariate ANOVA, and so in effect we obtain the maximum possible value of the 
F-ratio when we look at the first discriminant function. This variate can be described in 
terms of a linear regression equation (because it is a linear combination of the depend-
ent variables):

y b b b X

V b b b

b b b

i = + +
= + +
= + +

0 1 1 2 2

0 1 1 2 2

0 1 2

X

DV DV

Actions Thou
1

i i

i i i

i gghtsi
	 (16.4)

Equation (16.4) shows the multiple regression equation for two predictors and then 
extends this to show how a comparable form of this equation can describe discriminant 
functions. The b-values in the equation are weights (just as in regression) that tell us some-
thing about the contribution of each dependent variable to the variate in question. In 
regression, the values of b are obtained by the method of least squares; in discriminant 
function analysis the values of b are obtained from the eigenvectors (see Jane Superbrain 
Box 16.2) of the matrix HE−1. We can actually ignore b0 because this serves only to locate 
the variate in geometric space, which isn’t necessary when we’re using it to discriminate 
groups.

In a situation in which there are only two dependent variables and two groups for the 
independent variable, there will be only one variate. This makes the scenario very simple: 
by looking at the discriminant function of the dependent variables, rather than looking at 
the dependent variables themselves, we can obtain a single value of SSM/SSR for the discri-
minant function, and then assess this value for significance. However, in more complex 
cases where there are more than two dependent variables or more than three levels of the 
independent variable (as is the case in our example), there will be more than one variate. 
The number of variates obtained will be the smaller of p (the number of dependent vari-
ables) and k−1 (where k is the number of levels of the independent variable). In our example, 
both p and k−1 are 2, so we should be able to find two variates. I mentioned earlier that 
the b-values that describe the variates are obtained by calculating the eigenvectors of the 
matrix HE−1, and in fact there will be two eigenvectors derived from this matrix: one 
with the b-values for the first variate, and one with the b-values of the second variate. 
Conceptually speaking, eigenvectors are the vectors associated with a given matrix that are 
unchanged by transformation of that matrix to a diagonal matrix (look at Jane Superbrain 
Box 16.2 for a visual explanation of eigenvectors and eigenvalues). A diagonal matrix is 
simply a matrix in which the off-diagonal elements are zero and by changing HE−1to a 
diagonal matrix we eliminate all of the off-diagonal elements (thus reducing the number of 
values that we must consider for significance testing). Therefore, by calculating the eigen-
vectors and eigenvalues, we still end up with values that represent the ratio of systematic 
to unsystematic variance (because they are unchanged by the transformation), but there are 
considerably less of them. The calculation of eigenvectors is extremely complex (insane 
students can consider reading Namboodiri, 1984), so you can trust me that for the matrix 
HE−1 the eigenvectors obtained are:

eigenvector

eigenvector

1

2

0 603
0 335

0 425
0 339

=
−







=






.

.

.

. 
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The definitions and mathematics of eigenvalues and 
eigenvectors are very complicated and most of us 
need not worry about them (although they do crop up 
again in this chapter and the next). However, although 
the mathematics is hard, they are quite easy to visu-
alize! Imagine we have two variables: the salary a 
supermodel earns in a year, and how attractive she is. 
Also imagine these two variables are normally distrib-
uted and so can be considered together as a bivariate 

at 90 degrees, which means that they are independent 
of one another). So, with two variables, eigenvectors 
are just lines measuring the length and height of the 
ellipse that surrounds the scatterplot of data for those 
variables. If we add a third variable (e.g., experience of 
the supermodel) then all that happens is our scatterplot 
gets a third dimension, the ellipse turns into something 
shaped like a rugby ball (or American football), and 
because we now have a third dimension (height, width 
and depth) we get an extra eigenvector to measure this 
extra dimension. If we add a fourth variable, a similar 
logic applies (although it’s harder to visualize): we get 
an extra dimension, and an eigenvector to measure that 
dimension. Now, each eigenvector has an eigenvalue 
that tells us its length (i.e., the distance from one end of 
the eigenvector to the other). So, by looking at all of the 
eigenvalues for a data set, we know the dimensions of 
the ellipse or rugby ball: put more generally, we know 
the dimensions of the data. Therefore, the eigenvalues 
show how evenly (or otherwise) the variances of the 
matrix are distributed.

JANE SUPERBRAIN 16.2

What are eigenvectors and eigenvalues? 4

(Continued)

normal distribution. If these variables are correlated, 
then their scatterplot forms an ellipse. This is shown in 
the scatterplots above: if we draw a dashed line around 
the outer values of the scatterplot we get something 
oval shaped. Now, we can draw two lines to measure 
the length and height of this ellipse. These lines are the 
eigenvectors of the original correlation matrix for these 
two variables (a vector is just a set of numbers that tells 
us the location of a line in geometric space). Note that 
the two lines we’ve drawn (one for height and one for 
width of the oval) are perpendicular; that is, they are 

In the case of two variables, the condition of the 
data is related to the ratio of the larger eigenvalue to the 
smaller. Let’s look at the two extremes: when there is no 
relationship at all between variables, and when there is 
a perfect relationship. When there is no relationship, the 
scatterplot will, more or less, be contained within a circle 
(or a sphere if we had three variables). If we again draw 
lines that measure the height and width of this circle we’ll 
find that these lines are the same length. The eigenvalues 
measure the length, therefore the eigenvalues will also 
be the same. So, when we divide the largest eigenvalue 
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by the smallest we’ll get a value of 1 (because the eigen-
values are the same). When the variables are perfectly 
correlated (i.e., there is perfect collinearity) then the scat-
terplot forms a straight line and the ellipse surrounding it 
will also collapse to a straight line. Therefore, the height of 

the ellipse will be very small indeed (it will approach zero). 
Therefore, when we divide the largest eigenvalue by the 
smallest we’ll get a value that tends to infinity (because 
the smallest eigenvalue is close to zero). Therefore, an 
infinite condition index is a sign of deep trouble.

(Continued)

Replacing these values into the two equations for the variates and bearing in mind we 
can ignore b0, we obtain the models described in the following equation:

V b

V b
i i i

i i

1 0

2 0

0 603 0 335

0 425 0

= + −
= + +

. .

. .

Actions Thoughts

Actions 3339Thoughtsi
	 (16.5)

It is possible to use the equations for each variate to calculate a score for each person 
on the variate. For example, the first participant in the CBT group carried out 5 obsessive 
actions, and had 14 obsessive thoughts. Therefore, this participant’s score on variate 1 
would be −1.675:

V1 0 603 5 0 335 14 1 675= × − × = −( . ) ( . ) .

The score for variate 2 would be 6.87:

V2 0 425 5 0 339 14 6 871= × + × =( . ) ( . ) .

If we calculated these variate scores for each participant and then calculated the SSCP 
matrices (e.g., H, E, T and HE−1) that we used previously, we would find that all of them 
have cross-products of zero. The reason for this is that the variates extracted from the data 
are orthogonal, which means that they are uncorrelated. In short, the variates extracted are 
independent dimensions constructed from a linear combination of the dependent variables 
that were measured. 

This data reduction has a very useful property in that if we look at the matrix HE−1 cal-
culated from the variate scores (rather than the dependent variables) we find that all of the 
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off-diagonal elements (the cross-products) are zero. The diagonal elements of this matrix 
represent the ratio of the systematic variance to the unsystematic variance (i.e., SSM/SSR) 
for each of the underlying variates. So, for the data in this example, this means that instead 
of having four values representing the ratio of systematic to unsystematic variance, we 
now have only two. This reduction may not seem a lot. However, in general if we have p 
dependent variables, then ordinarily we would end up with p2 values representing the ratio 
of systematic to unsystematic variance; by looking at discriminant functions, we reduce 
this number to p. If there were four dependent variables we would end up with four values 
rather than 16 (which highlights the benefit of this process).

For the data in our example, the matrix HE−1calculated from the variate scores is:

HEvariates
− =







1 0 335 0 000
0 000 0 073

. .

. .

It is clear from this matrix that we have two values to consider when assessing the sig-
nificance of the group differences. It probably seems like a complex procedure to reduce 
the data down in this way: however, it transpires that the values along the diagonal of the 
matrix for the variates (namely 0.335 and 0.073) are the eigenvalues of the original HE−1 

matrix. Therefore, these values can be calculated directly from the data collected without 
first forming the eigenvectors. If you have lost all sense of rationality and want to see how 
these eigenvalues are calculated then see Oliver Twisted. These eigenvalues are conceptu-
ally equivalent to the F-ratio in ANOVA and so the final step is to assess how large these 
values are compared to what we would expect by chance alone. There are four ways in 
which the values are assessed.

‘You are a bit stupid. I think it would be fun to check your maths so that 
we can see exactly how much of a village idiot you are’, mocks Oliver. 
Luckily you can. Never one to shy from public humiliation on a mass 
scale, I have provided the matrix calculations for this example on the 
companion website. Find a mistake, go on, you know that you can …

OLIVER TWISTED

Please Sir, can I have some 
more … maths?

16.4.4.2.  Pillai–Bartlett trace (V ) 4

The Pillai–Bartlett trace (also known as Pillai’s trace) is given by 

V
i

s
i

i
=

+=
Σ

1 1
λ

λ
	 (16.6)

in which λ represents the eigenvalues for each of the discriminant variates and s represents 
the number of variates. Pillai’s trace is the sum of the proportion of explained variance 
on the discriminant functions. As such, it is similar to the ratio of SSM/SST, which is known 
as R2.

For our data, Pillai’s trace turns out to be 0.319, which can be transformed to a value 
that has an approximate F-distribution:

V =
+

+
+

=
0 335

1 0 335
0 073

1 0 073
0 319

.
.

.
.

.
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16.4.4.3.  Hotelling’s T2 4

The Hotelling–Lawley trace (also known as Hotelling’s T2; Figure 16.2) is simply the sum of 
the eigenvalues for each variate:

T
i

s

i=
=
Σ

1
λ 	 (16.7)

So for these data its value is 0.408 (0.335 + 0.073). This test statistic is the sum of SSM/SSR 
for each of the variates and so it compares directly to the F-ratio in ANOVA.

FIGURE 16.2
Harold Hotelling 
enjoying my 
favourite activity of 
drinking tea

16.4.4.4.  Wilks’s lambda (Λ) 4

Wilks’s lambda is the product of the unexplained variance on each of the variates:

�=
1

11 +
∏
= λi

s

i  
	 (16.8)

The ∏ symbol is similar to the summation symbol (∑) that we have encountered already 
except that it means multiply rather than add up. So, Wilks’s lambda represents the ratio 
of error variance to total variance (SSR/SST) for each variate.

For the data in this example the value is 

=
+





 +







=
1

1 0 335
1

1 0 073
0 698

. .
.

and it should be clear that large eigenvalues (which in themselves represent a large experi-
mental effect) lead to small values of Wilks’s lambda – hence statistical significance is found 
when Wilks’s lambda is small.
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16.4.4.5.  Roy’s largest root 4

Roy’s largest root always makes me think of some bearded statistician with a garden spade 
digging up an enormous parsnip (or similar root vegetable); however, it isn’t a parsnip but, 
as the name suggests, is the eigenvalue for the first variate. So, in a sense it is the same as 
the Hotelling–Lawley trace but for the first variate only, that is:

θ = λlargest  	 (16.9)

As such, Roy’s largest root represents the proportion of explained variance to unexplained 
variance (SSM/SSR) for the first discriminant function.4 For the data in this example, the 
value of Roy’s largest root is simply 0.335 (the eigenvalue for the first variate). So, this 
value is conceptually the same as the F-ratio in univariate ANOVA. It should be apparent, 
from what we have learnt about the maximizing properties of these discriminant variates, 
that Roy’s root represents the maximum possible between-group difference given the data 
collected. Therefore, this statistic should in many cases be the most powerful. 

16.5.  Practical issues when conducting MANOVA 3

There are three main practical issues to be considered before running MANOVA. First of 
all, as always, we have to consider the assumptions of the test. Next, for the main analysis 
there are four commonly used ways of assessing the overall significance of a MANOVA, and 
debate exists about which method is best in terms of power and sample size considerations. 
Finally, we also need to think about what analysis to do after the MANOVA: like ANOVA, 
MANOVA is a two-stage test in which an overall (or omnibus) test is first performed before 
more specific procedures are applied to tease apart group differences. As you will see, there 
is substantial debate over how best to further analyse and interpret group differences when 
the overall MANOVA is significant. We will look at these issues in turn.

16.5.1.    Assumptions and how to check them 3

MANOVA has similar assumptions to ANOVA but extended to the multivariate case:

MM Independence: Observations should be statistically independent.
MM Random sampling: Data should be randomly sampled from the population of interest 

and measured at an interval level.
MM Multivariate normality: In ANOVA, we assume that our dependent variable is normally 

distributed within each group. In the case of MANOVA, we assume that the depen-
dent variables (collectively) have multivariate normality within groups.

MM Homogeneity of covariance matrices: In ANOVA, it is assumed that the variances in 
each group are roughly equal (homogeneity of variance). In MANOVA we must 
assume that this is true for each dependent variable, but also that the correlation 
between any two dependent variables is the same in all groups. This assumption is 
examined by testing whether the population variance–covariance matrices of the dif-
ferent groups in the analysis are equal.5

4 This statistic is sometimes characterized as λ λlargest largest/( )1 +  but this is not the statistic reported by R.

5 For those of you who read about SSCP matrices, if you think about the relationship between sums of squares 
and variance, and cross-products and correlations, it should be clear that a variance–covariance matrix is basically 
a standardized form of an SSCP matrix.
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Most of the assumptions can be checked in the same way as for univariate tests (see 
Chapter 10); the additional assumptions of multivariate normality and equality of covari-
ance matrices require different procedures. The assumption of multivariate normality can 
be tested using R with a test known as the Shapiro test that we used to test for univariate 
normality; however, this version of the test looks for multivariate normality. We can also 
look at some graphical displays of multivariate outliers produced by the aq.plot() function 
of the mvoutlier package.

The assumption of equality of covariance matrices is often tested using Box’s test. This 
test should be non-significant if the matrices are the same. The effect of violating this 
assumption is unclear, except that Hotelling’s T2 is robust in the two-group situation when 
sample sizes are equal (Hakstian, Roed, & Lind, 1979). Box’s test is notoriously susceptible 
to deviations from multivariate normality and so can be non-significant not because the 
matrices are similar, but because the assumption of multivariate normality is not tenable. 
Also, as with any significance test, in large samples Box’s test could be significant even 
when covariance matrices are relatively similar. As a general rule, if sample sizes are equal 
then people tend to disregard Box’s test, because (1) it is unstable, and (2) in this situation 
we can assume that Hotelling’s and Pillai’s statistics are robust (see section 16.5.2). For 
these reasons Box’s test has yet to be implemented in R because it is of questionable use 
given its inaccuracy.

However, if group sizes are different, then robustness of the MANOVA cannot be 
assumed. The more dependent variables you have measured, and the greater the differ-
ences in sample sizes, the more distorted the probability values become. Tabachnick and 
Fidell (2007) suggest that if the larger samples produce greater variances and covariances 
then the probability values will be conservative (and so significant findings can be trusted). 
However, if it is the smaller samples that produce the larger variances and covariances 
then the probability values will be liberal and so significant differences should be treated 
with caution (although non-significant effects can be trusted). Therefore, the variance–
covariance matrices for samples should be inspected to assess whether the printed prob-
abilities for the multivariate test statistics are likely to be conservative or liberal. In the 
event that you cannot trust the printed probabilities, there is little you can do except equal-
ize the samples by randomly deleting cases in the larger groups (although with this loss of 
information comes a loss of power). Of course, if you like a belt and braces approach, you 
can always check your results by using a robust MANOVA too.

16.5.2.    Choosing a test statistic 3

Only when there is one underlying variate will the four test statistics necessar-
ily be the same. Therefore, it is important to know which test statistic is best 
in terms of test power and robustness. A lot of research has investigated the 
power of the four MANOVA test statistics (Olson, 1974, 1976, 1979; Stevens, 
1980). Olson (1974) observed that for small and moderate sample sizes the 
four statistics differ little in terms of power. If group differences are concen-
trated on the first variate (as will often be the case in social science research) 
Roy’s statistic should prove most powerful (because it takes account of only 
that first variate), followed by Hotelling’s trace, Wilks’s lambda and Pillai’s 
trace. However, when groups differ along more than one variate, the power 

ordering is the reverse (i.e., Pillai’s trace is most powerful and Roy’s root is least). One 
final issue pertinent to test power is that of sample size and the number of dependent 
variables. Stevens (1980) recommends using fewer than 10 dependent variables unless 
sample sizes are large. 

Which test statistic
should I use?
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In terms of robustness, all four test statistics are relatively robust to violations of multi-
variate normality (although Roy’s root is affected by platykurtic distributions – see Olson, 
1976). Roy’s root is also not robust when the homogeneity of covariance matrix assumption 
is untenable (Stevens, 1979). The work of Olson and Stevens led Bray and Maxwell (1985) 
to conclude that when sample sizes are equal the Pillai–Bartlett trace is the most robust to 
violations of assumptions. However, when sample sizes are unequal this statistic is affected 
by violations of the assumption of equal covariance matrices. As a rule, with unequal group 
sizes, check the homogeneity of covariance matrices; if they seem homogeneous and if the 
assumption of multivariate normality is tenable, then assume that Pillai’s trace is accurate.

16.5.3.    Follow-up analysis 3

There is some controversy over how best to follow up the main MANOVA. The traditional 
approach is to follow a significant MANOVA with separate ANOVAs on each of the depen-
dent variables. If this approach is taken, you might well wonder why we bother with the 
MANOVA in the first place (earlier on I said that multiple ANOVAs were a bad thing to do). 
Well, the ANOVAs that follow a significant MANOVA are said to be ‘protected’ by the initial 
MANOVA (Bock, 1975). The idea is that the overall multivariate test protects against inflated 
Type I error rates because if that initial test is non-significant (i.e., the null hypothesis is true) 
then any subsequent tests are ignored (any significance must be a Type I error because the null 
hypothesis is true). However, the notion of protection is somewhat fallacious because a sig-
nificant MANOVA, more often than not, reflects a significant difference for one, but not all, 
of the dependent variables. Subsequent ANOVAs are then carried out on all of the dependent 
variables, but the MANOVA protects only the dependent variable for which group differ-
ences genuinely exist (see Bray and Maxwell, 1985, pp. 40–41). Therefore, you might want 
to consider applying a Bonferroni correction to the subsequent ANOVAs (Harris, 1975).

By following up a MANOVA with ANOVAs you assume that the significant MANOVA is 
not due to the dependent variables representing a set of underlying dimensions that differ-
entiate the groups. Therefore, some researchers advocate the use of discriminant analysis, 
which finds the linear combination(s) of the dependent variables that best separates (or 
discriminates) the groups. This procedure is more in keeping with the ethos of MANOVA 
because it embraces the relationships that exist between dependent variables and it is cer-
tainly useful for illuminating the relationship between the dependent variables and group 
membership. The major advantage of this approach over multiple ANOVAs is that it 
reduces and explains the dependent variables in terms of a set of underlying dimensions 
thought to reflect substantive theoretical dimensions. We will consider both approaches.

16.6.  MANOVA using R 2

In the remainder of this chapter we will use the OCD data to illustrate how MANOVA is 
done (those of you who skipped the theory section should refer to Table 16.1).

16.6.1.    Packages for factorial ANOVA in R 1

You will need the packages car (for looking at Type III sums of squares), ggplot2 (for graphs), 
MASS (for discriminant function analysis), mvoutlier (for plots to look for multivariate 
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outliers), mvnormtest (to test for multivariate normality), pastecs (for descriptive statistics), 
reshape (for reshaping the data) and WRS (for robust tests). The MASS package is automati-
cally installed, but you can install any of the others that you don’t already have by execut-
ing the following commands:

install.packages("car"); install.packages("ggplot2"); install.
packages("mvoutlier"); install.packages("mvnormtest");  install.
packages("pastecs"); install.packages("reshape"); install. 
packages("WRS", repos="http://R-Forge.R-project.org")

You then need to load these packages by executing these commands:

library(car); library(ggplot2); library(MASS); library(mvoutlier); 
library(mvnormtest); library(pastecs); library(reshape); library(WRS)

16.6.2.    General procedure for MANOVA 1

To conduct factorial MANOVA you should follow this general procedure:

1	 Enter data.

2	 Explore your data: begin by graphing the data and computing descriptive statistics. 
You should check multivariate normality and take a look at the variance–covariance 
matrices for each group.

3	 Set contrasts for all predictor variables: you need to decide what contrasts to do and 
to specify them appropriately for all of the independent variables in your analysis.

4	 Compute the MANOVA: you can then run the main multivariate analysis of variance. 
Depending on what you found in the previous step, you might need to run a robust 
version of the test.

5	 Run univariate ANOVAs: having conducted the MANOVA, you can follow it up with 
separate ANOVAs for each dependent variable.

6	 Discriminant function analysis: better than the option above, consider running a 
discriminant function analysis.

We will work through these steps in turn.

16.6.3.    MANOVA using R Commander 2

You cannot directly do a MANOVA using R Commander. It’s not all bad news, though, 
because if you’ve reached this point in the book without giving up or hurling yourself 
or the book out of the window, then MANOVA will be easy: the commands are pretty 
straightforward compared to some of the things we’ve covered. 

16.6.4.    Entering the data 2

The data for the example can be found in the file OCD.dat. You can load this data file by 
setting your working directory and executing:

ocdData<-read.delim("OCD.dat", header = TRUE)
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If we look at the data (by executing ocdData) we will see that it has been entered in ‘wide’ 
format; that is, levels of a between-group variable go in a single column. 

                  Group Actions Thoughts
1                   CBT       5       14
2                   CBT       5       11
3                   CBT       4       16
4                   CBT       4       13
5                   CBT       5       12
6                   CBT       3       14
7                   CBT       7       12
8                   CBT       6       15
9                   CBT       6       16
10                  CBT       4       11
11                   BT       4       14
12                   BT       4       15
13                   BT       1       13
14                   BT       1       14
15                   BT       4       15
16                   BT       6       19
17                   BT       5       13
18                   BT       5       18
19                   BT       2       14
20                   BT       5       17
21 No Treatment Control       4       13
22 No Treatment Control       5       15
23 No Treatment Control       5       14
24 No Treatment Control       4       14
25 No Treatment Control       6       13
26 No Treatment Control       4       20
27 No Treatment Control       7       13
28 No Treatment Control       4       16
29 No Treatment Control       6       14
30 No Treatment Control       5       18

These data were originally entered in Excel, and, as you can see, we have a coding vari-
able to represent the treatment condition. Therefore, in Excel, I created a variable called 
Group into which I typed ‘CBT’, ‘BT’ or ‘No Treatment Control’; because I have used 
words rather than numbers, when R imports the data it guesses that this variable is a factor 
(i.e., we don’t need to explicitly convert it to a factor). It will treat the order of categories 
as alphabetic; in other words the factor levels are treated as BT, CBT and No Treatment 
Control rather than the order they were entered into Excel (which was CBT, BT, No 
Treatment Condition). Let’s reorder the levels so that the order matches the original data 
using the levels option of the factor() function. While we’re at it, I want to rename ‘No 
Treatment Control’ as ‘NT’ for various reasons. We can do this using the labels option of 
the factor() function.

ocdData$Group<-factor(ocdData$Group, levels = c("CBT", "BT", "No Treatment 
Control"), labels = c("CBT", "BT", "NT"))

By executing the above command we take the Group variable from the ocdData dataframe 
and reorder the levels as ‘CBT’, ‘BT’ and ‘No Treatment Control’ (levels = c(“CBT”, “BT”, 
“No Treatment Control”)). We then relabel these levels as ‘CBT’, ‘BT’ and ‘NT’ (labels = 
c(“CBT”, “BT”, “NT”)).

The scores for each outcome measure are stored in two columns labelled Actions and 
Thoughts. From this, we can tell, for example, that participant 15 had behaviour therapy 
(BT) and had four obsession-related actions and 15 obsession-related thoughts.
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If we wanted to enter the data directly into R, we would create a coding variable called 
Group using the gl() function (Chapter 3). This function creates a coding variable based 
on the number of groups you want and how many cases are in each group. You can use 
the labels option to list names for each group. For Group, we want three treatment groups 
each containing 10 participants, so we can specify it as: 

Group<-gl(3, 10, labels = c("CBT", "BT", "NT"))

The numbers in the function tell R that we want three groups of 10 cases, and the labels 
option then specifies the names to attach to these three groups. 

We can create numeric variables containing the number of obsession-related Actions and 
Thoughts in the usual way:

Actions<-c(5, 5, 4, 4, 5, 3, 7, 6, 6, 4, 4, 4, 1, 1, 4, 6, 5, 5, 2, 5, 4, 5, 
5, 4, 6, 4, 7, 4, 6, 5)
Thoughts<-c(14, 11, 16, 13, 12, 14, 12, 15, 16, 11, 14, 15, 13, 14, 15, 19, 
13, 18, 14, 17, 13, 15, 14, 14, 13, 20, 13, 16, 14, 18)

Finally, we can merge these variables into a dataframe called ocdData by executing:

ocdData<-data.frame(Group, Actions, Thoughts)

16.6.5.    Exploring the data 2

Let’s start by looking at the relationship between thoughts and actions for the different 
conditions. The resulting plot (Figure 16.3) shows no relationship between obsession-
related thoughts and behaviours in the CBT group, a positive relationship in the BT group 
and a negative relationship in the NT group.

SELF-TEST

ü	 Use ggplot2 to plot a scatterplot of the number of 
obsession-related actions (x-axis) against obsession-
related thoughts (y-axis) for each treatment group 
(as separate panels).

FIGURE 16.3
Scatterplot of 
the relationship 
between 
obsession-
related thoughts 
and actions in 
different treatment 
conditions

1

10

12

14

16

18

20

2 3 4 5 6 7 1 2 3

Number of Obsession-Related Behaviours

N
u

m
b

er
 o

f 
O

b
se

ss
io

n
-R

el
at

ed
 T

h
o

u
g

h
ts

4 5 6 7 1 2 3 4 5 6 7

CBT NTBT

16-Field_R-4368-Ch-16.indd   722 29/02/2012   6:33:37 PM



723CHAPTER 16   MULT IVAR IATE  ANALYS IS  OF  VAR IANCE (MANOVA)

Let’s look now at the mean number of obsession-related thoughts and behaviours across 
the three groups.

SELF-TEST

ü	 Use ggplot2 to plot a bar graph (with error bars) 
of the treatment group on the x-axis and different-
coloured bars to represent the mean number of 
obsession-related thoughts and behaviours.

Figure 16.4 shows the resulting plot. For actions, BT appears to reduce the number of 
obsessive behaviours compared to CBT and NT. For thoughts, CBT reduces the number of 
obsessive thoughts compared to BT and NT.

FIGURE 16.4
Error bar chart 
showing the 
mean numbers of 
obsession-related 
thoughts and 
actions across the 
different treatment 
conditions
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Finally, we can also look at boxplots to see the distribution of scores for the number of 
obsession-related thoughts and actions across the different treatment groups.

SELF-TEST

ü	 Use ggplot2 to plot boxplots of treatment group 
on the x-axis and obsession-related thoughts and 
actions displayed on the y-axis (in different colours).

Figure 16.5 shows the resulting graph. It is fairly clear that the range and distribution 
of scores are reasonably similar across groups and across measures (all of the boxes and 
whiskers are a similar vertical length. The only noteworthy point really is that there is some 
evidence of an outlier in the no-treatment group (for Thoughts) and, in the same group, 
scores for Actions seem like they might be a little skewed (there is no lower tail).
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Next, we can use the by() function and the stat.desc() function in the pastecs package to 
get descriptive statistics for separate groups (see Chapter 5 for more detail). We execute 
separate commands for Thoughts and Actions:

by(ocdData$Actions, ocdData$Group, stat.desc, basic = FALSE)
by(ocdData$Thoughts, ocdData$Group, stat.desc, basic = FALSE)

The resulting output for Actions (Output 16.1) and Thoughts (Output 16.2) corresponds 
to the values calculated by hand in Table 16.1 and shows much the same as Figure 16.4: 
that BT seemed to lower behaviours compared to the other groups whereas CBT resulted 
in lower numbers of thoughts than the other groups.

ocdData$Group: CBT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var       
5.000   4.900   0.379   0.856       1.433   1.197      0.244 
------------------------------------------------------------------- 
ocdData$Group: BT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var       
4.000   3.700   0.559   1.264       3.122   1.767      0.478 
------------------------------------------------------------------- 
ocdData$Group: NT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var       
5.000   5.000   0.333   0.754       1.111   1.054      0.211 

Output 16.1

ocdData$Group: CBT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var      
13.500  13.400  0.600   1.357       3.600   1.897      0.142 
------------------------------------------------------------------- 
ocdData$Group: BT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var      
14.500  15.200  0.663   1.501       4.400   2.098      0.138 
------------------------------------------------------------------- 
ocdData$Group: NT
median  mean   SE.mean CI.mean.0.95  var  std.dev   coef.var      
14.000  15.000  0.745   1.686       5.556   2.357      0.157 

Output 16.2

Having looked at the data in summary form, we can start to look at assumptions. To 
check the homogeneity of covariance matrices we don’t do a formal test, but simply 

FIGURE 16.5
Boxplots of the 
OCD data
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compare the values within them. To get the variance–covariance matrices for each group 
we can again use the by() function but in combination with the cov() function, which can 
be used to print the covariance matrix to the console.

by(ocdData[, 2:3], ocdData$Group, cov)

The above command takes columns 2 and 3 of the ocdData dataframe (ocdData[, 2:3]), 
which means that we’re selecting the columns that contain the variables Actions and 
Thoughts. The command then applies the function cov() to these columns, but splits the 
output by the variable Group (ocdData$Group).

Output 16.3 shows the variance–covariances matrices for each group. The diagonal 
elements represent the variances for each outcome measure and the off-diagonals are 
the covariances (i.e., the relationship between thoughts and actions). The variances for 
actions are a little different across groups (1.43, 3.12 and 1.11), with the largest variance 
being nearly three times as big as the smallest. The variances for thoughts are really quite 
similar (3.60, 4.40, and 5.56), with a variance ratio (the largest variance relative to small-
est) of about 1.5, which is below the threshold of 2. Looking at the covariances, these 
are also reasonably different (0.04, 2.51, and −1.11) reflecting the different relationships 
between thoughts and actions across the groups that we saw in Figure 16.3. On balance, 
there is evidence to suggest that the matrices are different across groups; however, given 
the group sizes are equal we probably don’t need to worry too much about these dif-
ferences. However, if we had different group sizes then remember that: (1) if the larger 
samples produce greater variances and covariances then the probability values will be 
conservative (and so significant findings can be trusted); and (2) if it is the smaller sam-
ples that produce the larger variances and covariances then the probability values will be 
liberal and so significant differences in the MANOVA should be treated with caution. In 
any case, for the current data it would be sensible to carry out a robust analysis as well 
as the normal one.

ocdData$Group: CBT
            Actions   Thoughts
Actions  1.43333333 0.04444444
Thoughts 0.04444444 3.60000000
------------------------------------------------------------------- 
ocdData$Group: BT
          Actions Thoughts
Actions  3.122222 2.511111
Thoughts 2.511111 4.400000
------------------------------------------------------------------- 
ocdData$Group: NT
           Actions  Thoughts
Actions   1.111111 -1.111111
Thoughts -1.111111  5.555556

Output 16.3

The final assumption that we need to test is multivariate normality. We can do this using 
the mshapiro.test() function in the mvnormtest package. We need to apply this test to the 
groups individually, so the first thing to do is to extract the data for each group. We learnt 
how to do this in section 3.9.1. For example, to get the CBT group data we could execute:

cbt<-ocdData[1:10, 2:3]

This command creates a variable called cbt that is a subset of the ocdData dataframe. The 
square brackets indicate that we want a selection of the data, the 1:10 indicates the rows 
that we want to select (i.e., rows 1 to 10 inclusive), and 2:3 indicates the columns that we 
want to select (i.e., columns 2 and 3). This gives us the following data:
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  Actions Thoughts
1        5       14
2        5       11
3        4       16
4        4       13
5        5       12
6        3       14
7        7       12
8        6       15
9        6       16
10       4       11

The mshapiro.test() function needs these data in a format such that actions and thoughts 
appear in rows rather than columns, and the participants appear in columns rather than 
rows. Fortunately this can be done easily using the transpose function t(). This function 
simply transposes the rows and columns; so, by executing:

cbt<-t(cbt)

we change the variable cbt so that it is a transposed version of the original variable:

          1  2  3  4  5  6  7  8  9 10
Actions   5  5  4  4  5  3  7  6  6  4
Thoughts 14 11 16 13 12 14 12 15 16 11

We can do the same for the BT and NT groups. However, it is quicker if we do the trans-
pose at the same time as creating the variable (for cbt I split the process into two stages only 
so you could see what was happening). Therefore, executing:

bt<-t(ocdData[11:20, 2:3])
nt<-t(ocdData[21:30, 2:3])

creates a variable bt, which is rows 11 to 20 and columns 2 and 3 of the original dataframe, 
and nt, which is rows 21 to 30 and columns 2 and 3 of the original dataframe. In both 
cases we apply the transform function, t(), to get the extracted data in the correct format 
for mshapiro.test(). To apply the test, we simply execute the function on each of the three 
variables that we have just created:

mshapiro.test(cbt)
mshapiro.test(bt)
mshapiro.test(nt)

Output 16.4 shows the results of the three tests: if the p value is less than .05 then our 
data deviate from multivariate normality. It’s clear that for the CBT (p = .777) and BT (p = 
.175) groups there is no problem because both results are non-significant; however, for the 
NT group (p = .03) the data deviate significantly from multivariate normality.

> mshapiro.test(cbt)
	 Shapiro-Wilk normality test
data:  Z 
W = 0.9592, p-value = 0.7767
> mshapiro.test(bt)
	 Shapiro-Wilk normality test
data:  Z 
W = 0.8912, p-value = 0.175
> mshapiro.test(nt)
	 Shapiro-Wilk normality test
data:  Z 
W = 0.826, p-value = 0.02998

Output 16.4
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We can also look for multivariate outliers using the aq.plot() function from the mvoutlier 
package. All we need to do is enter the columns of the dataframe containing the outcome 
measures into the function. For example, executing:
aq.plot(ocdData[, 2:3])

will produce the plot for the current data; remember that ocdData[, 2:3] means ‘select all of the 
rows (because there is nothing before the comma) but only columns 2 to 3 (because we have 
specified 2:3 after the comma)’. In other words, we’re selecting only the variables Actions (col-
umn 2) and Thoughts (column 3). The resulting plot is shown in Figure 16.6. These plots show 
the case numbers (i.e., the row number in the dataframe) and you need to look for values in red 
(or, because this book isn’t in colour, blue in Figure 16.6) in all but the top right graph. You can 
see that row 26 might be an outlier. In the top right plot, you are looking for any cases that fall 
to the right of the vertical line labelled 97.5% Quantile. Again, row 26 of the dataframe has been 
identified. These plots, therefore, suggest that row 26 might be an outlier. You could consider 
deleting this case to see if it makes the data multivariate normal, or leave the case in and conduct 
a robust MANOVA to combat the effects of the outlier.

SELF-TEST

ü	 Delete case 26 from the dataframe and redo the 
Shapiro test of multivariate normality.
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16.6.6.    Setting contrasts 2

One way to follow up a MANOVA is to look at individual univariate ANOVAs for each 
dependent variable. For these tests, you can specify contrasts just as we have in several 
other chapters (see, for example, section 10.6.7). For this example it makes sense to com-
pare each of the treatment groups to the no-treatment control group. This is the treatment 
contrast described in Table 10.6. The no-treatment control group was coded as the last 
category, so we could set this contrast by executing:

contrasts(ocdData$Group)<-contr.treatment(3, base = 3)

The contrasts(ocdData$Group) just tells R that we want to set the contrast for the Group 
variable, then contr.treatment sets the contrast to be a treatment contrast. The 3 indicates 
that Group has three levels, and base = 3 sets level 3 (i.e., NT) as the baseline category.

I like to set the contrasts manually so that I can give them names that will help me to 
interpret the output, so alternatively, we could set the contrasts by executing:

CBT_vs_NT<-c(1, 0, 0)
BT_vs_NT <-c(0, 1, 0)
contrasts(ocdData$Group)<-cbind(CBT_vs_NT, BT_vs_NT)

One important point here is that we’re using a non-orthogonal contrast, which means that 
we can’t look at Type III sums of squares because their computation requires orthogonal 
contrasts. However, we have only one predictor (Group) so this doesn’t matter, because 
the Type I sums of squares produced by R will be the same as the Type III when there is 
only one variable in the model (refer back to Jane Superbrain Box 11.1 for an explanation 
of why).

16.6.7.    The MANOVA model 2

To create a MANOVA model we use the manova() function, which is just the lm() function 
in disguise. Therefore, we can use what we learnt in Chapter 7 to understand how the func-
tion works. The function takes exactly the same form as aov(), which we used in Chapter 
10. It has the general form:

newModel<-manova(outcome ~ predictor(s), data = dataFrame, na.action = an 
action))

in which:

MM newModel is an object created that contains information about the model. We can 
get summary statistics for this model by executing summary(newModel) for the main 
MANOVA summary.

MM outcome is a single object containing the variables that you’re trying to predict (i.e., 
the dependent variables). In this example it will be Actions and Thoughts.

MM predictor(s) lists the variable or variables from which you’re trying to predict the 
outcome variables (i.e., the independent variable(s)). In this example it will be the 
variable Group. In more complex designs we can specify several predictors or inde-
pendent variables, just as we have in previous chapters.

MM dataFrame is the name of the dataframe from which your outcome and predictor 
variables come.
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MM na.action is an optional command. If you have complete data (as we have here) you 
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can be 
useful to use na.action = na.exclude, which will exclude all cases with missing values).

As with most of the models in this book, we specify a model in the function of the 
form ‘outcome ~ predictor(s)’. In the case of MANOVA there are several outcomes, so 
the model becomes ‘outcomes ~ predictor(s)’. To put multiple outcomes into the model, 
we have to bind the variables together into a single entity using the cbind() function that 
we have encountered many times before. In the current example, we want to combine 
Thoughts and Actions, so we can create a single outcome object by executing:

outcome<-cbind(ocdData$Actions, ocdData$Thoughts)

This command creates an object called outcome, which contains the Actions and Thoughts 
variables of the ocdData dataframe pasted together in columns. We use this new object 
as the outcome in our model, and specify any predictors as we have in previous chapters. 
Therefore, for this example, we could estimate the model by executing:

ocdModel<-manova(outcome ~ Group, data = ocdData)

This command creates a model called ocdModel, which predicts the object called outcome 
(which, remember, includes the variables Thoughts and Actions) from the independent 
variable Group. If you had several independent variables you could add them in by using 
a plus symbol (remember to also add in the interaction), for example, ‘outcome ~ Group 
+ IV2 + Group:IV2’, or by using an asterisk to automatically include all main effects and 
interactions, for example, ‘outcome ~ Group*IV2’.

To see the output of the model we use the summary command; by default, R pro-
duces Pillai’s trace (which is a sensible choice), but we can see the other test statistics 
by including the test = option. For example, to see all four test statistics we would need 
to execute:

summary(ocdModel, intercept = TRUE)
summary(ocdModel, intercept = TRUE, test = "Wilks")
summary(ocdModel, intercept = TRUE, test = "Hotelling")
summary(ocdModel, intercept = TRUE, test = "Roy")

The first command produces Pillai’s trace (because test = is omitted), and the rest produce 
the others by overriding the default. Output 16.5 shows the main table of results. Test 
statistics are quoted for the intercept of the model (even MANOVA can be characterized 
as a regression model, although how this is done is beyond the scope of my brain) and 
for the Group variable. For our purposes, the group effects are of interest because they 
tell us whether or not the therapies had an effect on the OCD clients. You’ll see that the 
four multivariate test statistics and their values correspond to those calculated in sections 
16.4.4.2–16.4.4.5. In the next column these values are transformed into an F-ratio with 
2 degrees of freedom. The column of real interest, however, is the one containing the sig-
nificance values of these F-ratios. For these data, Pillai’s trace (p = .049), Wilks’s lambda 
(p = .050) and Roy’s largest root (p = .020) all reach the criterion for significance of .05. 
However, Hotelling’s trace (p = .051) is non-significant by this criterion. This scenario is 
interesting, because the test statistic we choose determines whether or not we reject the 
null hypothesis that there are no between-group differences. However, given what we 
know about the robustness of Pillai’s trace when sample sizes are equal, we might be well 
advised to trust the result of that test statistic, which indicates a significant difference. This 
example highlights the additional power associated with Roy’s root (you should note how 
this statistic is considerably more significant than all others) when the test assumptions 
have been met and when the group differences are focused on one variate (which they are 
in this example, as we will see later).
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Pillai’s trace:
           Df  Pillai approx F num Df den Df  Pr(>F)    
(Intercept)  1 0.98285   745.23      2     26 < 2e-16 ***
Group        2 0.31845     2.56      4     54 0.04904 *  
Residuals   27                                           
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Wilk’s lambda:
            Df   Wilks approx F num Df den Df  Pr(>F)    
(Intercept)  1 0.01715   745.23      2     26 < 2e-16 ***
Group        2 0.69851     2.55      4     52 0.04966 *  
Residuals   27                                           
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Hotelling’s trace:

            Df Hotelling-Lawley approx F num Df den Df Pr(>F)    
(Intercept)  1           57.325   745.23      2     26 <2e-16 ***
Group        2            0.407     2.55      4     50 0.0508 .  
Residuals   27                                                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Roy’s largest root:
            Df    Roy approx F num Df den Df  Pr(>F)    
(Intercept)  1 57.325   745.23      2     26 < 2e-16 ***
Group        2  0.335     4.52      2     27 0.02027 *  
Residuals   27                                          
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 16.5

          R ’s  Souls ’  T ip  16 .1   Type II and III sums of squares 3

As with other times we have used the lm() function, or some variant of it, R will, by default, produce Type I sums 
of squares but it is usually preferable in (M)ANOVA to look at Type II (or even Type III) sums of squares. The differ-
ences are explained in Jane Superbrain Box 11.1. When you have one predictor in the model, as we have in the 
current example, Type I, II and III sums of squares will give the same results so it doesn’t matter. However, with 
two or more predictors in the model you might prefer Type II or III sums of squares because they do not depend 
upon the order in which you enter variables into the model. In which case we can use the Anova() function from 
the car package, as we have in previous chapters, to obtain these sums of squares. In the current example, hav-
ing created a model, ocdModel, we could display the Type II or III sums of squares by executing:

Anova(ocdModel, type = "II")

Anova(ocdModel, type = "III")

It’s also worth bearing in mind that Type I, II and III sums of squares yield the same results when you have a 
balanced design (i.e., equal numbers of cases in all combinations of your predictor variables).
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From this result we should probably conclude that the type of therapy employed had a 
significant effect on OCD. The nature of this effect is not clear from the multivariate test 
statistic: first, it tells us nothing about which groups differed from which; and second it 
tells us nothing about whether the effect of therapy was on the obsession-related thoughts, 
the obsession-related behaviours, or a combination of both. To determine the nature of the 
effect, we can look at univariate tests.

16.6.8.    Follow-up analysis: univariate test statistics 2

If we want to follow up the analysis with univariate analyses of the individual outcome 
measures, then we can simply execute:

summary.aov(ocdModel)

This produces Output 16.6, which shows the ANOVA summary table for the dependent 
variables. The table labelled Response 1 is for the Actions variable and Response 2 is for 
the Thoughts variable. The rows labelled Group show the values of the sums of squares for 
both actions and thoughts (these values correspond to the values of SSM calculated in sec-
tions 16.4.3.1 and 16.4.3.2, respectively). The row labelled Residuals contains information 
about the residual sums of squares and mean squares for each of the dependent variables: 
these values of SSR were calculated in sections 16.4.3.1 and 16.4.3.2, and I urge you to 
look back to these sections to consolidate what these values mean.

Response 1 :
            Df Sum Sq Mean Sq F value  Pr(>F)  
Group        2 10.467  5.2333  2.7706 0.08046 .
Residuals   27 51.000  1.8889                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Response 2 :
            Df  Sum Sq Mean Sq F value Pr(>F)
Group        2  19.467  9.7333  2.1541 0.1355
Residuals   27 122.000  4.5185  

Output 16.6  

The important parts of this table are the columns labelled F value and Pr(>F) in which 
the F-ratios for each univariate ANOVA and their significance values are listed. What 
should be clear from Output 16.6, and the calculations made in sections 16.4.3.1 and 
16.4.3.2, is that the values associated with the univariate ANOVAs conducted after the 
MANOVA are identical to those obtained if one-way ANOVA was conducted on each 
dependent variable. This fact illustrates that MANOVA offers only hypothetical protec-
tion of inflated Type I error rates: there is no real-life adjustment made to the values 
obtained.

The values of p in Output 16.6 indicate that there was a non-significant difference 
between therapy groups in terms of both obsession-related thoughts (p = .136) and obses-
sion-related behaviours (p = .080). These two results should lead us to conclude that the 
type of therapy has had no significant effect on the levels of OCD experienced by clients. 
Those of you who are still awake may have noticed something odd about this example: the 
multivariate test statistics led us to conclude that therapy had a significant impact on OCD, 
yet the univariate results indicate that therapy has not been successful.
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SELF-TEST

ü	 Why might the univariate tests be non-significant 
when the multivariate tests were significant?

The reason for the anomaly in these data is simple: the multivariate test takes account 
of the correlation between dependent variables, and so for these data it has more power 
to detect group differences. With this knowledge in mind, the univariate tests are not par-
ticularly useful for interpretation, because the groups differ along a combination of the 
dependent variables. To see how the dependent variables interact we need to carry out a 
discriminant function analysis, which will be described in due course.

16.6.9.    Contrasts 3

I need to begin this section by reminding you that because the univariate ANOVAs were 
both non-significant we should not interpret these contrasts. However, purely to give you 
an example to follow for when your main analysis is significant, we’ll look at the contrasts. 
The contrasts are not part of the MANOVA model, and so to generate the output for them 
you have to create separate linear models for each outcome measure. This is basically the 
same as doing a one-way ANOVA on each outcome measure. So, for Thoughts and Actions 
we could create the following models using the aov() function (see Chapter 10):

actionModel<-lm(Actions ~ Group, data = ocdData)
thoughtsModel<-lm(Thoughts ~ Group, data = ocdData)

The first command creates a model, actionModel, based on predicting the variable Actions 
from Group (Actions ~ Group) and the second command does much the same but predict-
ing Thoughts. We can get the contrast parameters by using summary.lm(), just as we did 
in Chapter 10:

summary.lm(actionModel)
summary.lm(thoughtsModel)

In section 16.6.6 I suggested carrying out a contrast that compares each of the therapy groups 
to the no-treatment control group. The results of these contrasts are shown in Output 16.7 
(for Actions) and Output 16.8 (for Thoughts). The contrasts will be labelled helpfully if, 
like I did, you set the contrasts manually and give them sensible names. The main thing to 
notice (from the values of Pr(>|t|)) is that when we compare CBT to NT there are no sig-
nificant differences in thoughts (p = .104) or behaviours (p = .872), because both values are 
above the .05 threshold. However, comparing BT to NT, there is no significant difference in 
thoughts (p = .835) but there is a significant difference in behaviours between the groups (p 
= .044, which is less than .05). This is a little unexpected because the univariate ANOVA for 
behaviours was non-significant and so we would not expect there to be group differences.

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      5.0000     0.4346  11.504 6.47e-12 ***
GroupCBT_vs_NT  -0.1000     0.6146  -0.163   0.8720    
GroupBT_vs_NT   -1.3000     0.6146  -2.115   0.0438 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 16.7
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Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     15.0000     0.6722  22.315   <2e-16 ***
GroupCBT_vs_NT  -1.6000     0.9506  -1.683    0.104    
GroupBT_vs_NT    0.2000     0.9506   0.210    0.835    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 16.8

             CRAMMING SAM’S TIPS    MANOVA

•	 MANOVA is used to test the difference between groups across several dependent variables simultaneously.
•	 The test assumed multivariate normality and homogeneity of covariance matrices. This latter assumption can be ignored 

when sample sizes are equal because some MANOVA test statistics are robust to violations of this assumption. Multivariate 
normality can be tested with a multivariate version of the Shapiro–Wilk test: if it is significant (p < .05) then the assumption 
is violated.

•	 There are four test statistics that can be used in MANOVA (Pillai’s trace, Wilks’s lambda, Hotelling’s trace and Roy’s 
largest root). I recommend using Pillai’s trace. If the p-value of this statistic is less than .05 then the groups differ signifi-
cantly with respect to the dependent variables.

•	 ANOVAs can be used to follow up the MANOVA (a different ANOVA for each dependent variable). These ANOVAs can in turn 
be followed up using contrasts (see Chapters 10–14). Personally I don’t recommend this approach and suggest conducting 
a discriminant function analysis.

16.7.  Robust MANOVA 3

Wilcox provides functions for two robust methods for MANOVA (Wilcox, 2005), both of 
which are based on ranking the data (see Chapter 15). To access these tests we need to load 
the WRS package (see section 5.8.4.). There are two functions that we will look at: 

MM mulrank(): This performs a MANOVA on the ranked data using Munzel and Brunner’s 
method (Munzel & Brunner, 2000).

MM cmanova(): This performs Choi and Marden’s (1997) robust test based on the ranked 
data. It is an extension of the Kruskal–Wallis test that was described in the Chapter 15.

Both of these functions can be used only when you have one predictor (i.e., one independ-
ent variable). For more complex designs you should accept defeat. Remember that our data 
are currently in this format (I’ve edited out some cases):

   Group Actions Thoughts
1    CBT       5       14
…     …        …       …
10   CBT       4       11
11    BT       4       14
…     …        …       …
20    BT       5       17
21    NT       4       13
…     …        …       …
30    NT       5       18
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The robust functions need the data to be in wide format rather than long (see Chapter 3). 
Figure 16.7 shows the existing data format and how we need it to look (wide). Essentially we 
want levels of the independent variable (Group) and outcome measures (Thoughts and Actions) 
to be represented in different columns. The outcome measures are already spread across dif-
ferent columns (Thoughts and Actions), but the treatment group is differentiated by different 
rows of data (rows 1–10 are those in a CBT group, rows 11–20 are the BT group, and so on). 
Therefore, we need to take the rows representing people who were in the BT and NT groups 
and shift them into columns alongside the columns currently labelled Thoughts and Actions.

We can do this restructuring using the melt() and cast() functions from the reshape pack-
age. To get the restructuring to work, we need to add a variable to our dataframe that 
identifies the rows in the wide format. Notice in Figure 16.7 that the data are made up of 
six chunks that represent the three treatment groups and the two outcome measures. We 
want to move the chunks that are currently stacked on top of each other so that they are 
beside each other (Figure 16.7). To do this, R needs to know what row a particular score 
will end up in when we move each block of scores from the stacks into the columns. The 
easiest approach is simply to create a variable (called row) that identifies within each chunk 
the row number of a given score. In other words, it will be a value telling us whether the 
score is the first, second, third, etc. score within the chunk. At the moment, the chunks are 
stacked on top of each other, so we want a variable that is the sequence of numbers 1 to 
10 repeated for the three different treatment groups (because they all contain 10 rows of 
data). We can add this variable to the dataframe by executing:

ocdData$row<-rep(1:10, 3)

Executing this command creates a variable row in the dataframe ocdData, that is the numbers 
1 to 10 repeated three times. The structure of the data will be the same as before – it’s just 
that we have a new variable called row that identifies the scores within each treatment group.

BTC BT

Factor A: Treatment Group

NT

Actions Actions ThoughtsThoughts ThoughtsActions
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4
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FIGURE 16.7
Restructuring 
the OCD data for 
robust MANOVA
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Next we need to make the data molten so that we can cast them into the wide format. To 
do this we use the melt() function (see section 3.9.4). Remember that in this function we 
differentiate variables that identify attributes of the scores (in this example, Group and row 
tell us about a given score, for example, that it was the fifth score in the CBT group) from 
the scores themselves (in this case the columns labelled Actions and Thoughts both contain 
scores). Attributes are specified with the id option, and scores with the measured option. 
Therefore, we can create a molten dataframe called ocdMelt by executing:

ocdMelt<-melt(ocdData, id = c("Group", "row"), measured = c("Actions", 
"Thoughts"))

The data now look like this (I have edited out many cases to save space):

   Group row        variable      value
1    CBT   1         Actions         5
…      …   …           …             …
10   CBT  10         Actions         4
11    BT   1         Actions         4
…      …   …           …             …
19    BT   9         Actions         2
…      …   …           …             …
26    NT   6         Actions         4
27    NT   7         Actions         7
…      …   …           …             …
33   CBT   3        Thoughts        16
34   CBT   4        Thoughts        13
…      …   …           …             …
41    BT   1        Thoughts        14
42    BT   2        Thoughts        15
…      …   …           …             …
51    NT   1        Thoughts        13
…      …   …           …             …
60    NT  10        Thoughts        18

The variable that differentiates whether the outcome measure was thoughts or actions 
has been labelled variable and the variable that contains the frequencies of thoughts/
behaviours is called value. These labels are not that informative, so let’s rename them as 
Outcome_Measure and Frequency using the names() function.

names(ocdMelt)<-c("Group", "row", "Outcome_Measure", "Frequency")

Executing this command takes the dataframe ocdMelt and assigns the names in c() to each 
column. As such, our variables all now have names that relate to what they represent.

Finally, we want to cast our data into the wide format using cast(). To do this we use a 
formula in the form: variables specifying the rows ~ variables specifying the columns. In 
this case, row tells us which row to place a score, and we want the Group and Outcome_
Measures variables split across different columns, so we’d use the formula:6 row ~ Group 
+ Outcome_Measures. Therefore, we can make a wide dataframe called ocdRobust by 
executing:

ocdRobust<-cast(ocdMelt, row ~ Group + Outcome_Measure, value = 
"Frequency")

Note that we have applied this command to the molten data set (ocdMelt). The value = 
“Frequency” explicitly tells the function in which column to find the outcome variable 
(without this command the function will take an educated guess, but it’s good practice to 
be specific).

6 It’s important that you specify Group and Outcome_Measure in this order becaue this arranges the data correctly 
for Wilcox’s functions. If you use row ~  Outcome_Measures + Group then the resulting data would be structured 
as CBT_Action, BT_Action,  NT_Action, CBT_Thoughts, BT_Thoughts, NT_Thoughts.
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The result is that the data have been transformed to the wide format. However, because 
we added the variable row to the dataframe, our new dataframe also contains this variable, 
and for the analysis we don’t want it. We can remove this variable by executing:

ocdRobust$row<-NULL

You should find that you now have a wide format set of data:

ocdRobust

CBT_Action CBT_Thoughts BT_Action BT_Thoughts NT_Action NT_Thoughts
5           14          4          14          4          13
5           11          4          15          5          15
4           16          1          13          5          14
4           13          1          14          4          14
5           12          4          15          6          13
3           14          6          19          4          20
7           12          5          13          7          13
6           15          5          18          4          16
6           16          2          14          6          14
4           11          5          17          5          18

It’s important to note the order of the columns: the hierarchy of the independent vari-
ables is Group followed by Outcome_Measures. In other words, we have taken the six 
groups of scores and first divided them into CBT, BT and NT, then within these groups we 
have subdivided according to which outcome measure was used.

The functions mulrank() and cmanova() both take the same general form:

mulrank(number of groups, number of outcome measures, data)
cmanova(number of groups, number of outcome measures, data)

We need only specify the dataframe (ocdRobust) and then the number of groups (three in 
this case) and the number of outcome measures (two in this case). Therefore, we can do a 
robust MANOVA based on ranks by executing:

mulrank(3, 2, ocdRobust)
cmanova(3, 2, ocdRobust)

mulrank() cmanova()

$test.stat
[1] 1.637357

$nu1
[1] 3.643484

$p.value
          [,1]
[1,] 0.1675409

$N
[1] 30

$q.hat
          [,1]      [,2]
[1,] 0.5533333 0.3666667
[2,] 0.3750000 0.5900000
[3,] 0.5716667 0.5433333

$test.stat
[1] 9.057746

$df
[1] 4

$p.value
          [,1]
[1,] 0.0596722

Output 16.9
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The output of both of these commands is shown in Output 16.9. For mulrank() (left-hand 
side of Output 16.9) we are given a test statistic for the type of treatment ($test.stat) as well 
as the corresponding p-value ($p.value). We could conclude that there was no significant 
main effect of the type of treatment on outcomes of OCD, F = 1.64, p = .168. The numbers 
under $q.hat tell us the relative effects (i.e., the typical ranks across the combinations of 
groups in the rows and outcome measures in the columns). We could relabel this grid as:

      [Actions] [Thoughts]
[CBT] 0.5533333 0.3666667
[ BT] 0.3750000 0.5900000
[ NT] 0.5716667 0.5433333

This shows that in the NT groups the ranks were fairly similar for thoughts and actions 
(0.57 and 0.54). For BT the ranks were lower for actions (0.38) than thoughts (0.59), and 
for CBT the reverse was true: ranks were lower for thoughts (0.37) than actions (0.55). In 
other words, CBT affected thoughts more than actions, and BT affected actions more than 
thoughts. However, the overall effect was not significant.

The output of cmanova() (right-hand side of Output 16.9) tells us much the same things: 
we get a test statistic ($test.stat), the degrees of freedom ($df) and an associated p-value 
($p.value). We could conclude that there was no significant main effect of the type of treat-
ment on outcomes of OCD, H(4) = 9.06, p = .060. 

16.8.  Reporting results from MANOVA 2

Reporting a MANOVA is much like reporting an ANOVA. As you can see in Output 16.5, 
the multivariate tests are converted into approximate Fs, and people often just report these 
Fs just as they would for ANOVA (i.e., they give details of the F-ratio and the degrees 
of freedom from which it was calculated). For our effect of group, we would report the 
hypothesis df and the error df. Therefore, we could report these analyses as:

	 There was a significant effect of therapy on the number of obsessive thoughts and 
behaviours, F(4, 54) = 2.56, p < .05.

However, in my opinion, the multivariate test statistic should be quoted as well. There 
are four different multivariate tests reported in Output 16.5; I’ll report each one in turn 
(note that the degrees of freedom and value of F change), but in reality you would just 
report one of the four:

	 Using Pillai’s trace, there was a significant effect of therapy on the number of obses-
sive thoughts and behaviours, V = 0.32, F(4, 54) = 2.56, p < .05.

	 Using Wilks’s lambda statistic, there was a significant effect of therapy on the number 
of obsessive thoughts and behaviours, Λ = 0.70, F(4, 52) = 2.56, p < .05.

	 Using Hotelling’s trace statistic, there was not a significant effect of therapy on the 
number of obsessive thoughts and behaviours, T = 0.41, F(4, 50) = 2.55, p > .05.

	 Using Roy’s largest root, there was a significant effect of therapy on the number of 
obsessive thoughts and behaviours, Θ = 0.35, F(2, 27) = 4.52, p < .05.

We can also report the follow-up ANOVAs in the usual way (see Output 16.6):

	 Using Pillai’s trace, there was a significant effect of therapy on the number of obsessive 
thoughts and behaviours, V = 0.32, F(4, 54) = 2.56, p < .05. However, separate uni-
variate ANOVAs on the outcome variables revealed non-significant treatment effects on 
obsessive thoughts, F(2, 27) = 2.15, p > .05, and behaviours, F(2, 27) = 2.77, p > .05.
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If you have used a robust MANOVA (Output 16.9) then you might report this as follows:

	 A MANOVA was conducted on the ranked data using Munzel and Brunner’s (2000) 
method, implemented in R using the mulrank() function (Wilcox, 2005). There was no 
significant main effect of the type of treatment on outcomes of OCD, F = 1.64, p = .168.

	 A MANOVA was conducted on the ranked data using Choi and Marden’s (1997) 
method, implemented in R using the cmanova() function (Wilcox, 2005). There was 
no significant main effect of the type of treatment on outcomes of OCD, H(4) = 9.06, 
p = .060. 

16.9.  Following up MANOVA with 
discriminant analysis 3

I mentioned earlier on that a significant MANOVA could be followed up using either uni-
variate ANOVA or discriminant analysis (sometimes called discriminant function analysis or 
DFA for short). In the example in this chapter, the univariate ANOVAs were not a useful 
way of looking at what the multivariate tests showed because the relationship between 
dependent variables is obviously having an effect. However, these data were designed espe-
cially to illustrate how the univariate ANOVAs should be treated cautiously and in real life 
a significant MANOVA is likely to be accompanied by at least one significant ANOVA. 
However, this does not mean that the relationship between dependent variables is not 
important, and it is still vital to investigate the nature of this relationship. Discriminant 
analysis is the best way to achieve this, and I strongly recommend that you follow up a 
MANOVA with both univariate tests and discriminant analysis if you want to fully under-
stand your data.

In discriminant analysis we look to see how we can best separate (or discriminate) a set 
of groups using several predictors (so it is a little like logistic regression but where there 
are several groups rather than two).7 In some senses it might seem as though we’re doing 
the reverse of the MANOVA: in MANOVA we predicted a set of outcome measures from 
a grouping variable, whereas in DFA we predict a grouping variable from a set of outcome 
measures. However, the basic underlying principles of these tests are the same: remember 
that when we looked at the theory of MANOVA we saw that it works by identifying linear 
variates that best differentiate the groups, and these ‘linear variates’ are the ‘functions’ in 
discriminant function analysis.

Discriminant analysis is quite straightforward in R: you use the lda() function from the 
MASS package. The basic format of this function is:

newModel<-lda(Group ~ Predictor(s), data = dataFrame, prior = prior probabilities, 
na.action = "na.omit")

There are a host of other options that you can use (execute ?lda for more information), 
but within the context of MANOVA this is all we really need. Within the function, Group 
is the name of the variable in your dataframe that contains the groups that you’re trying 
to discriminate, and Predictor(s) is a list of continuous variables from which you are trying 
to make the discrimination. This creates a formula for a linear model (just as we have seen 
many times in this book). So, if you’re using a single predictor your model might be speci-
fied as Group ~ Predictor, but with two or more predictors you simply add each predictor 

7 In fact, I could have just as easily described discriminant analysis rather than logistic regression in 
Chapter 8 because they are different ways of achieving the same end result. However, logistic regres-
sion has far fewer restrictive assumptions and is generally more robust, which is why I have limited 
the coverage of discriminant analysis to this chapter.
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in using the ‘+’ symbol; for example, Group ~ Predictor1 + Predictor2 + Predictor3. In our 
case we want to predict the variable Group from the variables Thoughts and Actions so our 
model is Group ~ Actions + Thoughts. The data option just lets you specify the name of 
your dataframe (in this case ocdData). The na.action option determines how missing data 
are handled. By default the function will simply fail, but you can set the option to na.omit 
(as shown above) to delete missing cases instead (R’s Souls’ Tip 7.1). We can ignore this 
option altogether because we have no missing data. There is also an option to set the prior 
probabilities but when our groups have equal sample sizes we can omit this option (R’s 
Souls’ Tip 16.2). For the current data, we could, therefore, execute:

ocdDFA<-lda(Group ~ Actions + Thoughts, data = ocdData)

This creates a model called ocdDFA. To see this model execute the name of the model:

ocdDFA

          R ’s  Souls ’  T ip  16 .2   Prior probabilities 3

To do a DFA, you should set the prior probabilities, that is, the probability of belonging to a particular group. This 
value is simply the ‘chance’ of a case being in a particular group. In our OCD example there are 30 cases. If we 
wanted to know the probability that a case was in the CBT group, then we can look at the number of cases in that 
group. There were 10 cases, and 30 in total, therefore the probability of being in the CBT group is 10/30 = .33. 
In other words, a third of the whole sample was in the CBT group. Therefore, in general, the prior probability is:

 =prior probability of group groupn

N

When group sizes are equal (as they are in our OCD example) then the prior probability is the same for every 
group. The lda() function assumes this scenario and so when you have equal sized groups you don’t need to 
worry or think about prior probabilities unless you have a good theoretical reason not to base them on the sample 
size of the group.

However, when you have unequal group sizes it is a good idea to base the prior probabilities on the sample 
size of the group. We can do this using the prior option of lda(). If you’re basing prior probabilities on sample 
sizes, then you can set this option, in general, as:

prior = c(n1, n2, n3)/N

in which the ns refer to group sample sizes, and N is the total sample size. Imagine, in our OCD example, that 
the CBT group contained 20 people, the BT group 18, and the NT group 12. This is 40 cases in total. Therefore, 
we would write:

prior = c(20, 18, 12)/40

Note that you must be careful to put the sample sizes in the correct order (i.e., 20 will be assumed to be the 
sample size of level 1 of the grouping variable, and 18 the sample size for level 2 and so on). In the context of the 
lda() function, we would execute:

ocdDFA<-lda(Group ~ Actions + Thoughts, data = ocdData, prior = c(20, 18, 12)/40)

You can extend this idea to more than three groups. For example, with five groups with sample sizes of 5, 10, 
5, 20, 10 (and, therefore, a total of 50) the prior option would be:

prior = c(5, 10, 5, 20, 10)/50
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Call:
lda(Group ~ Actions + Thoughts, data = ocdData, na.action = "na.omit")

Prior probabilities of groups:
      CBT        BT        NT 
0.3333333 0.3333333 0.3333333 

Group means:
    Actions Thoughts
CBT     4.9     13.4
BT      3.7     15.2
NT      5.0     15.0

Coefficients of linear discriminants:
                LD1        LD2
Actions   0.6030047 -0.4249451
Thoughts -0.3352478 -0.3392631

Proportion of trace:
   LD1    LD2 
0.8219 0.1781

Output 16.10

Output 16.10 shows us first the prior probabilities, which are .33 for each group; these 
are the group sample size divided by the total sample size (i.e., 10/30 = .33), and because 
the sample sizes of the three groups are equal, the prior probabilities are the same for each 
group too (R’s Souls’ Tip 16.2). Next we are given the group means, which we have already 
computed before running the main analysis so are not particularly interesting to revisit.

The main part of the output tells us the coefficients of the linear discriminants, which 
in plain English are the values of b in equation (16.4). You’ll notice that these values cor-
respond to the values in the eigenvectors derived in section 16.4.4.1 and used in equation 
(16.5). Given that the variates can be expressed in terms of a linear regression equation (see 
equation (16.4)), the coefficients of the linear discriminants are equivalent to the unstand-
ardized betas in regression. Hence, the coefficients tell us the relative contribution of each 
variable to the variates. If we look at variate 1 first, thoughts and behaviours have the 
opposite effect (behaviour has a positive relationship with this variate, whereas thoughts 
have a negative relationship). The first variate, then, could be seen as one that differenti-
ates thoughts and behaviours (it affects thoughts and behaviours in the opposite way). Both 
thoughts and behaviours have a strong relationship with the second variate. This tells us 
that this variate represents something that affects thoughts and behaviours in a similar way. 
Remembering that ultimately these variates are used to differentiate groups, we could say 
that the first variate differentiates groups by some factor that affects thoughts and behav-
iours differently, whereas the second variate differentiates groups on some dimension that 
affects thoughts and behaviours in the same way.

Finally the proportion of trace shows us that the first variate accounts for 82.2% of vari-
ance compared to the second variate, which accounts for only 17.8%. These proportions 
are the eigenvalues for each variate (i.e., the values of the diagonal elements of the matrix 
HE−1) expressed as a proportion.

$x
          LD1         LD2
1   0.4602010 -0.01736741
2   1.4659443  1.00042182
3  -0.8132992 -0.27094845
4   0.1924441  0.74684078
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5   1.1306965  0.66115874
6  -0.7458083  0.83252282
7   2.3367058 -0.18873149
8   0.7279579 -0.78157561
9   0.3927101 -1.12083868
10  0.8629396  1.42536694
11 -0.1428037  0.40757770
12 -0.4780514  0.06831463
13 -1.6165699  2.02167613
14 -1.9518176  1.68241305
15 -0.4780514  0.06831463
16 -0.6130332 -2.13862792
17  0.7954487  0.32189566
18 -0.8807901 -1.37441972
19 -1.3488130  1.25746794
20 -0.5455423 -1.03515665
21  0.1924441  0.74684078
22  0.1249532 -0.35663049
23  0.4602010 -0.01736741
24 -0.1428037  0.40757770
25  1.3984534 -0.10304945
26 -2.1542903 -1.62800076
27  2.0014580 -0.52799457
28 -0.8132992 -0.27094845
29  1.0632056 -0.44231253
30 -0.8807901 -1.37441972

Output 16.11

It is sometimes useful to look at the discriminant scores. These are the scores for each 
person, on each variate, obtained from equation (16.5). These scores can be useful because 
the variates that the analysis identifies may represent underlying social or psychological 
constructs. If these constructs are identifiable, then it is useful for interpretation to know 
what a participant scores on each dimension. To obtain these scores execute:

predict(ocdDFA)

The resulting Output 16.11 shows each participant’s score on the first (LD1) and second 
(LD2) variate.

Perhaps more useful than the scores themselves is a plot of the scores broken down by 
group membership. This can be obtained by using the plot() function on our model:

plot(ocdDFA)

By executing this command you will produce the plot at the top of Figure 16.8. This graph 
plots the variate scores for each person, grouped according to the experimental condition 
to which that person belonged. To interpret this plot, I have broken it down to look at the 
first variate (bottom left of Figure 16.8) separate from the second variate (bottom right of 
Figure 16.8). To discover which groups variate 1 discriminates we need to try to ignore 
variate 2 (that’s why I have blanked out the axis for LD2) and look at how the groups 
change as we move along variate 1. In other words, we ignore the vertical position of each 
point on the plot, and look at how the groups are distributed along the horizontal axis 
(LD1). A crude, but simple, way to do this is to split the vertical axis down the middle (as I 
have done with a vertical blue line at 0 on the scale) and ask yourself which groups cluster 
on either side of the line. I have circled the BT groups in light blue and the CBT groups in 
black. Hopefully, this will make clear that to the left of the blue vertical line there are a lot 
of cases from the BT group, but to the right of the blue vertical line there are lots of cases 
from the CBT group. In other words, the blue vertical line seems to separate the BT group 
from the CBT group. This tells us that variate 1 discriminates the BT group from the CBT.
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Moving on to the second variate (bottom right of Figure 16.8), we now need to focus on 
LD2 and try to ignore LD1 (I have blanked out the axis to help). In other words, we ignore 
the horizontal position of each point on the plot, and look at how the groups are distributed 
along the vertical axis (LD2). Again, you can get a rough idea of what’s happening by split-
ting the vertical axis down the middle (as I have done with a horizontal blue line at 0, the 
midpoint of the scale) and ask yourself which groups cluster on either side of the line. The 
picture is not as clear as for variate 1, but it seems to me that there are a lot of cases from 
the NT group below the line, but hardly any above. I have highlighted these cases with dark 
blue circles to help you to see. Looking at the BT and CBT cases they tend to fall above the 
line (although not always). This pattern suggests that the second variate differentiates the 
no-treatment group (cases are below the blue horizontal line) from the two interventions 
(the cases are typically above the blue horizontal line), but this difference is not as dramatic 
as for the first variate. Remember that the variates significantly discriminate the groups in 
combination (i.e., when both are considered).
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16.10.  Reporting results from  
discriminant analysis 2

The guiding principle in presenting data is to give the readers enough information to be 
able to judge for themselves what your data mean. Personally, I would suggest reporting 
the percentage of variance explained (which gives the reader the same information as the 
eigenvalue but in a more palatable form) and the coefficients of linear discriminants. All of 
these values can be found in Output 16.10. Finally, although I won’t reproduce it below, 
you could consider including a copy of the discriminant scores plot (Figure 16.8), which 
will help readers to determine how the variates contribute to distinguishing your groups. 
We could, therefore, write something like this:

	 The MANOVA was followed up with discriminant analysis, which revealed two dis-
criminant functions. The first explained 82.2% of the variance, whereas the second 
explained only 17.8%. The coefficients of the discriminant functions revealed that 
function 1 differentiated obsessive behaviours (b = 0.603) and thoughts (b = −0.335). 
The second variate produced similar coefficients for actions (−0.425) and thoughts 
(−0.339). The discriminant function plot showed that the first function discriminated 
the BT group from the CBT group, and the second function differentiated the no- 
treatment group from the two interventions.

16.11.  Some final remarks 4

16.11.1.    The final interpretation 4

So far we have gathered an awful lot of information about our data, but how can we bring 
all of it together to answer our research question: can therapy improve OCD and, if so, 
which therapy is best? Well, the MANOVA tells us that therapy can have a significant 
effect on OCD symptoms, but the non-significant univariate ANOVAs suggested that this 
improvement is not simply in terms of either thoughts or behaviours. The discriminant 

             CRAMMING SAM’S TIPS    Discriminant function analysis

•	 Discriminant function analysis can be used after MANOVA to see how the dependent variables discriminate the 
groups.

•	 DFA identifies variates (combinations of the dependent variables) that discriminate groups of cases.
•	 Look at the Coefficients of linear discriminants to find out how the dependent variables contribute to the variates. High 

scores indicate that a dependent variable is important for a variate, and variables with positive and negative coefficients are 
contributing to the variate in opposite ways.

•	 Finally, to find out which groups are discriminated by a variate, look at the plot of discriminant scores. Split the vertical and 
horizontal axes at the midpoint and look at which groups tend to fall on either side of the line. The variate plotted on a given 
axis is discriminating between groups that fall on different sides of the line (i.e., the midpoint).
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          Labcoat  Len i ’s  Real  Research 16 .1   A lot of hot air! 4

Marzillier, S. L., & Davey, G. C. L. (2005). Cognition and Emotion, 19, 729–750.

Have you ever wondered what researchers do in their spare time? Well, some of them spend it tracking down the 
sounds of people burping and farting! It has long been established that anxiety and disgust are linked. Anxious 
people are, typically, easily disgusted. Throughout this book I have talked about how you cannot infer causality 
from relationships between variables. This has been a bit of a conundrum for anxiety researchers: does anxiety 
cause feelings of digust or does a low threshold for being disgusted cause anxiety? Two colleagues of mine 
at Sussex addressed this in an unusual study in which they induced feelings of anxiety, feelings of disgust, or 
a neutral mood, and they looked at the effect that these induced moods had on feelings of anxiety, sadness, 
happiness, anger, disgust and contempt. To induce these moods, they used three different types of manipula-
tion: vignettes (e.g., ‘You’re swimming in a dark lake and something brushes your leg’ for anxiety, and ‘You go 
into a public toilet and find it has not been flushed. The bowl of the toilet is full of diarrhoea’ for disgust), music 
(e.g., some scary music for anxiety, and a tape of burps, farts and vomitting for disgust), videos (e.g., a clip from 
Silence of the Lambs for anxiety and a scene from Pink Flamingos in which Divine eats dog faeces for disgust) 
and memory (remembering events from the past that had made the person anxious, disgusted or neutral).

Different people underwent anxious, disgust and neutral mood inductions. Within these groups, the induction 
was done using either vignettes and music, videos, or memory recall and music for different people. The outcome 
variables were the change (from before to after the induction) in six moods: anxiety, sadness, happiness, anger, 
disgust and contempt.

The data are in the file Marzillier and Davey (2005).dat. Draw an error bar graph of the changes in moods 
in the different conditions, then conduct a 3 (Mood: anxiety, disgust, neutral) × 3 (Induction: vignettes + music, 

videos, memory recall + music) MANOVA on these data. Whatever you do, don’t imagine what their fart 
tape sounded like while you do the analysis!

Answers are in the additional material on the companion website (or look at page 738 of the original 
article).

analysis suggests that the group separation can be best explained in terms of one underlying 
dimension. In this context the dimension is likely to be OCD itself (which we can realisti-
cally presume is made up of both thoughts and behaviours). So, therapy doesn’t necessarily 
change behaviours or thoughts per se, but it does influence the underlying dimension of 
OCD. So, the answer to the first question seems to be: yes, therapy can influence OCD, but 
the nature of this influence is unclear.

The next question is more complex: which therapy is best? Figures 16.3 and 16.4 show 
the relationships between the dependent variables and the group means of the original 
data. The graph of the means (Figure 16.4) shows that for actions, BT reduces the number 
of obsessive behaviours, whereas CBT and NT do not. For thoughts, CBT reduces the 
number of obsessive thoughts, whereas BT and NT do not (check the pattern of the bars). 
Looking now at the relationships between thoughts and actions (Figure 16.3), in the BT 
group there is a positive relationship between thoughts and actions, so the more obsessive 
thoughts a person has, the more obsessive behaviours they carry out. In the CBT group 
there is no relationship at all (thoughts and actions vary quite independently). In the no-
treatment group there is a negative (and non-significant incidentally) relationship between 
thoughts and actions.

What we have discovered from the discriminant analysis is that BT and CBT can be dif-
ferentiated from the control group based on variate 2, a variate that has a similar effect on 
both thoughts and behaviours. We could say then that BT and CBT are both better than 
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a no-treatment group at changing obsessive thoughts and behaviours. We also discovered 
that BT and CBT could be distinguished by variate 1, a variate that had the opposite effects 
on thoughts and behaviours.

We could conclude that BT is better at changing behaviours and CBT is better at chang-
ing thoughts. So, the NT group can be distinguished from the CBT and BT graphs using 
a variable that affects both thoughts and behaviours. Also, the CBT and BT groups can be 
distinguished by a variate that has opposite effects on thoughts and behaviours. So, some 
therapy is better than none, but the choice of CBT or BT depends on whether you think 
it’s more important to target thoughts (CBT) or behaviours (BT).

16.11.2.    Univariate ANOVA or discriminant analysis? 2

This example should have made clear that univariate ANOVA and discriminant analysis are 
ways of answering different questions arising from a significant MANOVA. If univariate 
ANOVAs are chosen, Bonferroni corrections should be applied to the level at which you 
accept significance. The truth is that you should run both analyses to get a full picture of 
what is happening in your data. The advantage of discriminant analysis is that it tells you 
something about the underlying dimensions within your data (which is especially useful 
if you have employed several dependent measures in an attempt to capture some social 
or psychological construct). Even if univariate ANOVAs are significant, the discriminant 
analysis provides useful insight into your data and should be used. I hope that this chapter 
will convince you of this recommendation.

What have I discovered about statistics? 2

In this chapter we’ve cackled maniacally in the ear of MANOVA, force-fed discriminant 
function analysis cod-liver oil, and discovered to our horror that Roy has a large root. 
There are sometimes situations in which several outcomes have been measured in dif-
ferent groups, and we discovered that in these situations the ANOVA technique can be 
extended and is called MANOVA (multivariate analysis of variance). The reasons for 
using this technique rather than running lots of ANOVAs are that we retain control over 
the Type I error rate, and we can incorporate the relationships between outcome vari-
ables into the analysis. Some of you will have then discovered that MANOVA works in 
very similar ways to ANOVA, but just with matrices rather than single values. Others 
will have discovered that it’s best to ignore the theory sections of this book. We had a 
look at an example of MANOVA and discovered that, just to make life as confusing 
as possible, you get four test statistics relating to the same effect! Of these, I tried to 
convince you that Pillai’s trace was the safest option. Finally, we had a look at the two 
options for following up MANOVA: running lots of ANOVAs, or doing a discriminant 
function analysis. Of these, discriminant function analysis gives us the most information, 
but can be a bit of a nightmare to interpret.

We also discovered that pets can be therapeutic. I left the whereabouts of Fuzzy a mys-
tery. Now admit it, how many of you thought he was dead? He’s not: he is lying next to 
me as I type this sentence. After frantically searching the house I went back to the room 
that he had vanished from to check again whether there was a hole that he could have 
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R packages used in this chapter
car
ggplot2
mvnormtest
mvoutlier

pastecs
reshape
WRS

R functions used in this chapter
aov()
aq.plot()
by()
c()
cast()
cbind()
cmanova()
contrasts()
cov()
factor()
ggplot()
gl()
lda()

lm()
manova()
melt()
mshapiro.test()
mulrank()
names()
plot()
predict()
stat.desc()
summary()
summary.aov()
summary.lm()
t()

wriggled through. As I scuttled around on my hands and knees tapping the walls, a little 
ginger (and sooty) face popped out from the fireplace with a look as if to say ‘have you 
lost something?’ (see Figure 16.9). Yep, freaked out by the whole moving experience, he 
had done the only sensible thing and hidden up the chimney! Cats, you gotta love ’em.

FIGURE 16.9
Fuzzy hiding up a 
fireplace
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Key terms that I’ve discovered
Box’s test
Discriminant function analysis (DFA)
Discriminant function variates
Discriminant scores
Error SSCP (E)
HE−1

Homogeneity of covariance matrices
Hotelling–Lawley trace (T2)
Hypothesis SSCP (H)
Identity matrix
Independence
Multivariate

Multivariate analysis of variance (MANOVA)
Multivariate normality
Pillai–Bartlett trace (V)
Random sampling
Roy’s largest root
Square matrix
Sum of squares and cross-products  
matrix (SSCP)
Total SSCP (T)
Univariate
Variance–covariance matrix
Wilks’s lambda (Λ)

Smart Alex’s tasks

MM Task 1: A clinical psychologist noticed that several of his manic psychotic patients 
did chicken impersonations in public. He wondered whether this behaviour could 
be used to diagnose this disorder and so compared 10 of his patients against 10 of 
the most normal people he could find: naturally he chose to observe lecturers at the 
University of Sussex. He measured how many chicken impersonations they did over 
the course of a day, and how good their impersonations were (as scored out of 10 
by an independent farmyard noise expert). The data are in the file chicken.dat. Use 
MANOVA and DFA to find out whether these variables could be used to distinguish 
manic psychotic patients from those without the disorder. 3

MM Task 2: I was intrigued by a news story claiming that children who lie would become 
successful citizens (http://bit.ly/ammQNT). I was particularly intrigued because 
although the article cited a lot of well-conducted work by Dr Khang Lee that shows 
that children lie, I couldn’t find anything at all in that well-conducted work that 
supported the journalist’s claim that children who lie become successful citizens. 
However, let’s imagine a Huxleyesque parallel universe in which the government is 
stupid enough to believe the contents of this newspaper story and decides to imple-
ment a systematic programme of infant conditioning. Some infants were trained not 
to lie, others were bought up as normal, and a final group was trained in the art of 
lying. Thirty years later, they collected data on how successful these children were as 
adults. They measured their salary, and two indices of how successful they were in 
their family and work life, on a 0–10 scale (10 = as successful as could possibly be, 
0 = better luck in your next life). The data are in lying.dat. Use MANOVA and DFA 
to find out whether, in this completely fabricated parallel universe, lying really does 
make you a better citizen. 3

MM Task 3: I was interested in whether students’ knowledge of different aspects of psy-
chology improved throughout their degree. I took a sample of first years, second 
years and third years and gave them five tests (scored out of 15) representing dif-
ferent aspects of psychology: exper (experimental psychology, such as cognitive and 
neuropsychology); stats (statistics); social (social psychology); develop (developmen-
tal psychology); person (personality). Your task is to: (1) carry out an appropriate 
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general analysis to determine whether there are overall group differences along these 
five measures; (2) look at the scale-by-scale analyses of group differences produced 
in the output and interpret the results accordingly; (3) select contrasts that test the 
hypothesis that second and third years will score higher than first years on all scales; 
(4) select tests that compare all groups to each other and briefly compare these results 
with the contrasts; and (5) carry out a separate analysis in which you test whether a 
combination of the measures can successfully discriminate the groups (comment only 
briefly on this analysis). Include only those scales that revealed group differences 
for the contrasts. How do the results help you to explain the findings of your initial 
analysis? The data are in the file psychology.dat. 4

Answers can be found on the companion website.

Further reading
Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage University Paper Series 

on Quantitative Applications in the social Sciences, 07-054. Newbury Park, CA: Sage. (This 
monograph on MANOVA is superb: I cannot recommend anything better.)

Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analysis. 
Psychological Bulletin, 105(2), 302–308.

Interesting real research
Marzillier, S. L., & Davey, G. C. L. (2005). ��������������������������������������������������������Anxiety and disgust: Evidence for a unidirectional rela-

tionship. Cognition and Emotion, 19(5), 729–750.
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17
Exploratory factor analysis

FIGURE 17.1
Me at Niagara 
Falls in 1998. I 
was in the middle 
of writing the first 
edition of the SPSS 
version of this 
book at the time. 
Note how fresh-
faced I look

17.1.  What will this chapter tell me? 1

I was a year or so into my Ph.D., and, thanks to my initial terrible teaching experiences, I 
had developed a bit of an obsession with over-preparing for classes. I wrote detailed hand-
outs and started using funny examples. Through my girlfriend at the time I met Dan Wright 
(a psychologist, who was in my department but sadly moved to Florida). He had published 
a statistics book of his own and was helping his publishers to sign up new authors. On the 
basis that my handouts were quirky and that I was too young to realize that writing a text-
book at the age of 23 was academic suicide (really, textbooks take a long time to write and 
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they are not at all valued compared to research articles), I was duly signed up. The com-
missioning editor was a man constantly on the verge of spontaneously combusting with 
intellectual energy. He can start a philosophical debate about literally anything: should he 
ever be trapped in a elevator he will be compelled to attempt to penetrate the occupants’ 
minds with probing arguments that the elevator doesn’t exist, that they don’t exist, and 
that their entrapment is an illusory construct generated by their erroneous beliefs in the 
physical world. Ultimately, though, he’d still be a man trapped in an elevator (with several 
exhausted corpses). A combination of his unfaltering self-confidence, my fear of social 
interactions with people I don’t know, and my utter bemusement that anyone would want 
me to write a book made me incapable of saying anything sensible to him. Ever. He must 
have thought that he had signed up an imbecile. He was probably right. (I find him less 
intimidating since thinking up the elevator scenario.) The trouble with agreeing to write 
books is that you then have to write them. For the next two years or so I found myself try-
ing to juggle my research, a lectureship at the University of London, and writing a book. 
Had I been writing a book on heavy metal it would have been fine because all of the infor-
mation was moshing away in my memory waiting to stage-dive out. Sadly, however, I had 
agreed to write a book on something that I new nothing about: statistics. I soon discovered 
that writing the book was like doing a factor analysis: in factor analysis we take a lot of 
information (variables) and the R program effortlessly reduces this mass of confusion into 
a simple message (fewer variables) that is easier to digest. The program does this (sort of) 
by filtering out the bits of the information overload that we don’t need to know about. It 
takes a few seconds. Similarly, my younger self took a mass of information about statistics 
that I didn’t understand and filtered it down into a simple message that I could understand: 
I became a living, breathing factor analysis … except that, unlike R, it took me two years 
and some considerable effort.

17.2.  When to use factor analysis 2

In the social sciences we are often trying to measure things that cannot directly be meas-
ured (so-called latent variables). For example, management researchers (or psychologists 
even) might be interested in measuring ‘burnout’, which is when someone who has been 
working very hard on a project (a book, for example) for a prolonged period of time sud-
denly finds themselves devoid of motivation, inspiration, and wants to repeatedly head-
butt their computer screaming ‘please Mike, unlock the door, let me out of the basement, I 
need to feel the soft warmth of sunlight on my skin!’. You can’t measure burnout directly: 
it has many facets. However, you can measure different aspects of burnout: you could 
get some idea of motivation, stress levels, whether the person has any new ideas and so 
on. Having done this, it would be helpful to know whether these differences really do 
reflect a single variable. Put another way, are these different variables driven by the same 
underlying variable? This chapter will look at factor analysis (and principal components 
analysis) – a technique for identifying groups or clusters of variables. This technique has 
three main uses: (1) to understand the structure of a set of variables (e.g., pioneers of 
intelligence such as Spearman and Thurstone used factor analysis to try to understand the 
structure of the latent variable ‘intelligence’); (2) to construct a questionnaire to measure 
an underlying variable (e.g., you might design a questionnaire to measure burnout); and 
(3) to reduce a data set to a more manageable size while retaining as much of the original 
information as possible (e.g., we saw in Chapter 7 that multicollinearity can be a problem 
in multiple regression, and factor analysis can be used to solve this problem by combining 
variables that are collinear). Through this chapter we’ll discover what factors are, how we 
find them, and what they tell us (if anything) about the relationship between the variables 
we’ve measured.
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17.3.  Factors 2

If we measure several variables, or ask someone several questions about 
themselves, the correlation between each pair of variables (or questions) can 
be arranged in what’s known as an R-matrix. An R-matrix is just a correla-
tion matrix: a table of correlation coefficients between variables (in fact, we 
saw small versions of these matrices in Chapter 6). The diagonal elements of 
an R-matrix are all ones because each variable will correlate perfectly with 
itself. The off-diagonal elements are the correlation coefficients between 
pairs of variables, or questions.1 The existence of clusters of large correlation 
coefficients between subsets of variables suggests that those variables could 
be measuring aspects of the same underlying dimension. These underlying 
dimensions are known as factors (or latent variables). By reducing a data set from a group 
of interrelated variables into a smaller set of factors, factor analysis achieves parsimony by 
explaining the maximum amount of common variance in a correlation matrix using the 
smallest number of explanatory constructs.

There are numerous examples of the use of factor analysis in the social sciences. The 
trait theorists in psychology used factor analysis endlessly to assess personality traits. Most 
readers will be familiar with the extroversion−introversion and neuroticism traits meas-
ured by Eysenck (1953). Most other personality questionnaires are based on factor analysis 
– notably Cattell’s (1966a) 16 personality factors questionnaire – and these inventories are 
frequently used for recruiting purposes in industry (and even by some religious groups). 
However, although factor analysis is probably most famous for being adopted by psycholo-
gists, its use is by no means restricted to measuring dimensions of personality. Economists, 
for example, might use factor analysis to see whether productivity, profits and workforce 
can be reduced down to an underlying dimension of company growth.

Let’s put some of these ideas into practice by imagining that we wanted to measure dif-
ferent aspects of what might make a person popular. We could administer several measures 
that we believe tap different aspects of popularity. So, we might measure a person’s social 
skills (Social Skills), their selfishness (Selfish), how interesting others find them (Interest), 
the proportion of time they spend talking about the other person during a conversation 
(Talk1), the proportion of time they spend talking about themselves (Talk2), and their 
propensity to lie to people (the Liar scale). We can then calculate the correlation coef-
ficients for each pair of variables and create an R-matrix. Figure 17.2 shows this matrix. 
Any significant correlation coefficients are shown in bold type. It is clear that there are 
two clusters of interrelating variables. Therefore, these variables might be measuring some 
common underlying dimension. The amount that someone talks about the other person 
during a conversation seems to correlate highly with both the level of social skills and how 
interesting the other finds that person. Also, social skills correlate well with how interest-
ing others perceive a person to be. These relationships indicate that the better your social 
skills, the more interesting and talkative you are likely to be. However, there is a second 
cluster of variables. The amount that people talk about themselves within a conversation 
correlates with how selfish they are and how much they lie. Being selfish also correlates 
with the degree to which a person tells lies. In short, selfish people are likely to lie and talk 
about themselves.

In factor analysis we strive to reduce this R-matrix down into its underlying dimensions 
by looking at which variables seem to cluster together in a meaningful way. This data 

1 This matrix is called an R-matrix, or just R, because it contains correlation coefficients and r usually denotes 
Pearson’s correlation (see Chapter 6) – the r turns into a capital letter when it denotes a matrix. Given that this 
book is about some software called R, this is slightly confusing, so be careful – it should be obvious when we are 
talking about the program, and when I’m talking about the correlation matrix, and when it’s not, I’ll tell you.

What is a factor?
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reduction is achieved by looking for variables that correlate highly with a group of other 
variables, but do not correlate with variables outside of that group. In this example, there 
appear to be two clusters that fit the bill. The first factor seems to relate to general sociabil-
ity, whereas the second factor seems to relate to the way in which a person treats others 
socially (we might call it ‘consideration’). It might, therefore, be assumed that popularity 
depends not only on your ability to socialize, but also on whether you are genuine towards 
others.

17.3.1.    Graphical representation of factors 2

Factors (not to be confused with independent variables in factorial ANOVA) are statistical 
entities that can be visualized as classification axes along which measurement variables can 
be plotted. In plain English, this statement means that if you imagine factors as being the 
axis of a graph, then we can plot variables along these axes. The coordinates of variables 
along each axis represent the strength of relationship between that variable and each factor. 
Figure 17.3 shows such a plot for the popularity data (in which there were only two factors). 
The first thing to notice is that for both factors, the axis line ranges from −1 to 1, which 
are the outer limits of a correlation coefficient. Therefore, the position of a given variable 
depends on its correlation with the two factors. The circles represent the three variables 
that correlate highly with factor 1 (Sociability: horizontal axis) but have a low correlation 
with factor 2 (Consideration: vertical axis). Conversely, the triangles represent variables that 
correlate highly with consideration to others but have a low correlation with sociability. 
From this plot, we can tell that selfishness, the amount a person talks about themselves and 
their propensity to lie all contribute to a factor that could be called consideration of others. 
Conversely, how much a person takes an interest in other people, how interesting they are 
and their level of social skills contribute to a second factor, sociability. This diagram there-
fore supports the structure that was apparent in the R-matrix. Of course, if a third factor 
existed within these data it could be represented by a third axis (creating a 3-D graph). It 
should also be apparent that if more than three factors exist in a data set, then a 2-D drawing 
cannot represent them all.

If each axis on the graph represents a factor, then the variables that go to make up a fac-
tor can be plotted according to the extent to which they relate to a given factor. The coor-
dinates of a variable, therefore, represent its relationship to the factors. In an ideal world 
a variable should have a large coordinate for one of the axes, and low coordinates for any 
other factors. This scenario would indicate that this particular variable related to only one 

Talk 1 Social Skills Interest Talk 2 Selfish

Selfish

Liar

Talk 1 1.000

Social Skills .772 1.000

Interest .646 .879 1.000

Talk 2 .074 −.120 .054 1.000

−.131 .031 −.101 .441 1.000

Liar .068 .012 .110 .361 .277 1.000

Factor 1

Factor 2

FIGURE 17.2
An R-matrix
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factor. Variables that have large coordinates on the same axis are assumed to measure dif-
ferent aspects of some common underlying dimension. The coordinate of a variable along 
a classification axis is known as a factor loading. The factor loading can be thought of as the 
Pearson correlation between a factor and a variable (see Jane Superbrain Box 17.1). From 
what we know about interpreting correlation coefficients (see section 6.5.4.3) it should be 
clear that if we square the factor loading we obtain a measure of the substantive impor-
tance of a particular variable to a factor.

17.3.2.    Mathematical representation of factors 2

The axes drawn in Figure 17.3 are straight lines and so can be described mathematically 
by the equation of a straight line. Therefore, factors can also be described in terms of this 
equation.

SELF-TEST

ü	 What is the equation of a straight line?

The following equation reminds us of the equation describing a linear model and then 
applies this to the scenario of describing a factor:

Y b X b X b Xi i i n ni i= + + + +1 1 2 2 … ε

Factori = b1 Variable1i + b2 Variable2i +…+ bn Variableni + εi	 (17.1)

Liar

Talk 1 Interest

Social Skills

0.00

Sociability

0.25−0.25 0.50−0.50 0.75−0.75 1.00−1.00
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Selfish
Talk 2

FIGURE 17.3
Example of a 
factor plot
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You’ll notice that there is no intercept in the equation, the reason being that the lines intersect 
at zero (hence the intercept is also zero). The bs in the equation represent the factor loadings.

Sticking with our example of popularity, we found that there were two factors underly-
ing this construct: general sociability and consideration. We can, therefore, construct an 
equation that describes each factor in terms of the variables that have been measured. The 
equations are as follows:

Y b X b X b X

b b
i i i n ni i

i i

= + + + +
= +

1 1 2 2

1 2
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= + +
+ +

1 2 3

4 5 iish Liari i ib+ +6 ε

	 (17.2)

Notice that the equations are identical in form: they both include all of the variables that 
were measured. However, the values of b in the two equations will be different (depend-
ing on the relative importance of each variable to the particular factor). In fact, we can 
replace each value of b with the coordinate of that variable on the graph in Figure 17.3 
(i.e., replace the values of b with the factor loading). The resulting equations are as follows:

Y b X b X b Xi i i n ni i

i i

= + + + +
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	 (17.3)

Observe that, for the sociability factor, the values of b are high for Talk1, Social Skills and 
Interest. For the remaining variables (Talk2, Selfish and Liar) the values of b are very low 
(close to 0). This tells us that three of the variables are very important for that factor (the 
ones with high values of b) and three are very unimportant (the ones with low values of b). 
We saw that this point is true because of the way that three variables clustered highly on the 
factor plot. The point to take on board here is that the factor plot and these equations rep-
resent the same thing: the factor loadings in the plot are simply the b-values in these equa-
tions (but see Jane Superbrain Box 17.1). For the second factor, inconsideration to others, 
the opposite pattern can be seen in that Talk2, Selfish and Liar all have high values of b 
whereas the remaining three variables have b-values close to 0. In an ideal world, variables 
would have very high b-values for one factor and very low b-values for all other factors.

These factor loadings can be placed in a matrix in which the columns represent each fac-
tor and the rows represent the loadings of each variable on each factor. For the popularity 
data this matrix would have two columns (one for each factor) and six rows (one for each 
variable). This matrix, usually denoted A, is given by:

A =

−

−
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To understand what the matrix means, try relating the elements to the loadings in equa-
tion (17.3). For example, the top row represents the first variable, Talk1, which had a 
loading of .87 for the first factor (Sociability) and a loading of .01 for the second factor 
(Consideration). This matrix is called the factor matrix or component matrix (if doing prin-
cipal components analysis) – see Jane Superbrain Box 17.1 to find out about the different 
forms of this matrix.

The major assumption in factor analysis is that these algebraic factors represent real-
world dimensions, the nature of which must be guessed at by inspecting which variables 
have high loads on the same factor. So, psychologists might believe that factors represent 
dimensions of the psyche, education researchers might believe they represent abilities, and 
sociologists might believe they represent races or social classes. However, it is an extremely 
contentious point whether this assumption is tenable, and some believe that the dimensions 
derived from factor analysis are real only in the statistical sense – and are real-world fictions.

factor loadings tell us about the relative contribution that 
a variable makes to a factor. As long as you understand 
that much, you have no problems.

However, the factor loadings in a given analysis can 
be both correlation coefficients and regression coeffi-
cients. Soon we’ll discover that the interpretation of fac-
tor analysis is helped greatly by a technique known as 
rotation. Without going into details, there are two types: 
orthogonal and oblique rotation (see section 17.3.9). 
When orthogonal rotation is used, any underlying factors 
are assumed to be independent, and the factor loading 
is the correlation between the factor and the variable, but 
is also the regression coefficient. Put another way, the 
values of the correlation coefficients are the same as the 
values of the regression coefficients. However, there are 
situations in which the underlying factors are assumed to 
be related or correlated to each other. In these situations, 
oblique rotation is used and the resulting correlations 
between variables and factors will differ from the corre-
sponding regression coefficients. In this case, there are, 
in effect, two different sets of factor loadings: the correla-
tion coefficients between each variable and factor (which 
are put in the factor structure matrix) and the regression 
coefficients for each variable on each factor (which are 
put in the factor pattern matrix). These coefficients can 
have quite different interpretations (see Graham, Guthrie, 
& Thompson, 2003).

Throughout my discussion of factor loadings I’ve been 
quite vague. Sometimes I’ve said that these loadings can 
be thought of as the correlation between a variable and 
a given factor, then at other times I’ve described these 
loadings in terms of regression coefficients (b). Now, it 
should be obvious from what we discovered in Chapters 
6 and 7 that correlation coefficients and regression coef-
ficients are quite different things, so what the hell am I 
going on about: shouldn’t I make up my mind what the 
factor loadings actually are?

Well, in vague terms (the best terms for my brain) both 
correlation coefficients and regression coefficients repre-
sent the relationship between a variable and linear model 
in a broad sense, so the key take-home message is that 

JANE SUPERBRAIN 17.1

What’s the difference between a pattern matrix 
and a structure matrix? 3

17.3.3.    Factor scores 2

A factor can be described in terms of the variables measured and the relative importance 
of them for that factor (represented by the value of b). Therefore, having discovered which 
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factors exist, and estimated the equation that describes them, it should be possible to also 
estimate a person’s score on a factor, based on their scores for the constituent variables. 
These scores are known as factor scores. As such, if we wanted to derive a score of socia-
bility for a particular person, we could place their scores on the various measures into 
equation (17.3). This method is known as a weighted average. In fact, this method is overly 
simplistic and rarely used, but it is probably the easiest way to explain the principle. For 
example, imagine the six scales all range from 1 to 10 and that someone scored the follow-
ing: Talk1 (4), Social Skills (9), Interest (8), Talk2 (6), Selfish (8), and Liar (6). We could 
put these values into equation (17.3) to get a score for this person’s sociability and their 
consideration to others: 

Sociability = 0.87Talk1 0.96SocialSkills 0.92Interest
0.00Ta

+ +
+ llk2 Selfish Liar

=(0.87 4)
− 0.10 +

+ (0.96 9) + (0.92
0 09
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.

) ( .× × × + ××
− × + ×
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−

6
0 10 8 0 09 6

19 22

)
( . ) ( . )

.
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Talk Selfish Liar+ + +
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0 82 2 0 75 0 70
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( .. ) ( . ) ( . ) ( . )
( . ) ( . )
.

01 4 0 03 9 0 04 8 0 82 6
0 75 8 0 70 6

15 21

× − × + × + ×
+ × + ×

=

	 (17.4)

The resulting scores of 19.22 and 15.21 reflect the degree to which this person is sociable 
and their inconsideration to others, respectively. This person scores higher on sociability 
than inconsideration. However, the scales of measurement used will influence the resulting 
scores, and if different variables use different measurement scales, then factor scores for 
different factors cannot be compared. As such, this method of calculating factor scores is 
poor and more sophisticated methods are usually used.

17.3.3.1.  The regression method 4

There are several sophisticated techniques for calculating factor scores that use factor score 
coefficients as weights in equation (17.1) rather than using the factor loadings. The form 
of the equation remains the same, but the bs in the equation are replaced with these factor 
score coefficients. Factor score coefficients can be calculated in several ways. The simplest 
way is the regression method. In this method the factor loadings are adjusted to take 
account of the initial correlations between variables; in doing so, differences in units of 
measurement and variable variances are stabilized.

To obtain the matrix of factor score coefficients (B) we multiply the matrix of factor load-
ings by the inverse (R−1) of the original correlation or R-matrix. You might remember from 
the previous chapter that matrices cannot be divided (see section 16.4.4.1). Therefore, 
if we want to divide by a matrix it cannot be done directly and instead we multiply by 
its inverse. Therefore, by multiplying the matrix of factor loadings by the inverse of the 
correlation matrix we are, conceptually speaking, dividing the factor loadings by the cor-
relation coefficients. The resulting factor score matrix, therefore, represents the relation-
ship between each variable and each factor, taking into account the original relationships 
between pairs of variables. As such, this matrix represents a purer measure of the unique 
relationship between variables and factors.

The matrices for the popularity data are shown below. The resulting matrix of factor score 
coefficients, B, comes from the R (the program) output. The matrices R−1 and A can be multiplied 
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by hand to get the matrix B, and those familiar with matrix algebra – or who have consulted 
Namboodiri, (1984) or Stevens (2002) – might like to verify the result (see Oliver Twisted). To 
get the same degree of accuracy as R you should work to at least five decimal places:

B R A

B

=

=

− − −
− − −

−1

4 76 7 46 3 91 2 35 2 42 0 49
7 46 18 49 12 42 5 45 5
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The pattern of the loadings is the same for the factor score coefficients: that is, the first 
three variables have high loadings for the first factor and low loadings for the second, 
whereas the pattern is reversed for the last three variables. The difference is only in the 
actual value of the weightings, which are smaller because the correlations between vari-
ables are now accounted for. These factor score coefficients can be used to replace the 
b-values in equation (17.2):
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0.0

+ +
+ 000Talk2 Selfish Liar
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	 (17.5)

Equation (17.5) shows how these coefficient scores are used to produce two factor scores 
for each person. In this case, the participant had the same scores on each variable as were used 
in equation (17.4). The resulting scores are much more similar than when the factor loadings 
were used as weights because the different variances among the six variables have now been 
controlled for. The fact that the values are very similar reflects the fact that this person not 
only scores highly on variables relating to sociability, but is also inconsiderate (i.e., they score 
equally highly on both factors). This technique for producing factor scores ensures that the 
resulting scores have a mean of 0 and a variance equal to the squared multiple correlation 
between the estimated factor scores and the true factor values. However, the downside of the 
regression method is that the scores can correlate not only with factors other than the one 
on which they are based, but also with other factor scores from a different orthogonal factor.
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‘The Matrix …’, enthuses Oliver, ‘… that was a good film. I want to 
dress in black and glide through the air as though time has stood 
still. Maybe the matrix of factor scores is as cool as the film.’ I think 
you might be disappointed, Oliver, but we’ll give it a shot. The matrix 
calculations of factor scores are detailed in the additional material for 
this chapter on the companion website. Be afraid, be very afraid …

OLIVER TWISTED

Please Sir, can I have  
some more … matrix 
algebra?

17.3.3.2.  Uses of factor scores 2

There are several uses of factor scores. First, if the purpose of the factor analysis is to 
reduce a large set of data into a smaller subset of measurement variables, then the factor 
scores tell us an individual’s score on this subset of measures. Therefore, any further ana
lysis can be carried out on the factor scores rather than the original data. For example, we 
could carry out a t-test to see whether females are significantly more sociable than males 
using the factor scores for sociability. A second use is in overcoming collinearity problems 
in regression. If, following a multiple regression analysis, we have identified sources of 
multicollinearity then the interpretation of the analysis is questioned (see section 7.7.2.3). 
In this situation, we can carry out a principal components analysis on the predictor vari-
ables to reduce them down to a subset of uncorrelated factors. The variables causing the 
multicollinearity will combine to form a factor. If we then rerun the regression but using 
the factor scores as predictor variables then the problem of multicollinearity should vanish 
(because the variables are now combined into a single factor). 

By now, you should have some grasp of the concept of what a factor is, how it is repre-
sented graphically, how it is represented algebraically, and how we can calculate composite 
scores representing an individual’s ‘performance’ on a single factor. I have deliberately 
restricted the discussion to a conceptual level, without delving into how we actually find 
these mythical beasts known as factors. This section will look at how we find factors. 
Specifically, we will examine different types of method, look at the maths behind one 
method (principal components), investigate the criteria for determining whether factors 
are important, and discover how to improve the interpretation of a given solution.

17.3.4.    Choosing a method 2

The first thing you need to know is that there are several methods for unearthing fac-
tors in your data. The method you chose will depend on what you hope to do with the 
analysis. Tinsley and Tinsley (1987) give an excellent account of the different methods 
available. There are two things to consider: whether you want to generalize the findings 
from your sample to a population and whether you are exploring your data or testing 
a specific hypothesis. This chapter describes techniques for exploring data using factor 
analysis. Testing hypotheses about the structures of latent variables and their relationships 
to each other requires considerable complexity and can be done with packages such as sem 
or Lavaan in R.2 Those interested in hypothesis testing techniques (known as confirmatory 

2 The sem package is the more straightforward, but is slightly less capable of handling unusual situations than 
Lavaan (sem was written by John Fox, who also wrote R Commander).
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factor analysis) are advised to read Pedhazur and Schmelkin (1991, Chapter 23) for an 
introduction. 

Assuming we want to explore our data, we then need to consider whether we want to 
apply our findings to the sample collected (descriptive method) or to generalize our find-
ings to a population (inferential methods). When factor analysis was originally developed it 
was assumed that it would be used to explore data to generate future hypotheses. As such, 
it was assumed that the technique would be applied to the entire population of interest. 
Therefore, certain techniques assume that the sample used is the population, and so results 
cannot be extrapolated beyond that particular sample. Principal components analysis is an 
example of one of these techniques, as is principal factors analysis (principal axis factoring). 
Principal components analysis and principal factors analysis are the preferred methods 
and usually result in similar solutions (see section 17.3.6). When these methods are used, 
conclusions are restricted to the sample collected and generalization of the results can be 
achieved only if analysis using different samples reveals the same factor structure.

Another approach has been to assume that participants are randomly selected and that 
the variables measured constitute the population of variables in which we’re interested. By 
assuming this, it is possible to develop techniques from which the results can be general-
ized from the sample participants to a larger population. However, a constraint is that any 
findings hold true only for the set of variables measured (because we’ve assumed this set 
constitutes the entire population of variables). Techniques in this category include the max-
imum-likelihood method (see Harman, 1976) and Kaiser’s alpha factoring. The choice of 
method depends largely on what generalizations, if any, you want to make from your data.3

17.3.5.    Communality 2

Before continuing, it is important that you understand some basic things about the variance 
within an R-matrix. It is possible to calculate the variability in scores (the variance) for any 
given measure (or variable). You should be familiar with the idea of variance by now and 
comfortable with how it can be calculated (if not, see Chapter 2). The total variance for 
a particular variable will have two components: some of it will be shared with other vari-
ables or measures (common variance) and some of it will be specific to that measure (unique 
variance). We tend to use the term unique variance to refer to variance that can be reliably 
attributed to only one measure. However, there is also variance that is specific to one meas-
ure but not reliably so; this variance is called error or random variance. The proportion of 
common variance present in a variable is known as the communality. As such, a variable that 
has no specific variance (or random variance) would have a communality of 1; a variable 
that shares none of its variance with any other variable would have a communality of 0.

In factor analysis we are interested in finding common underlying dimensions within 
the data and so we are primarily interested only in the common variance. Therefore, when 
we run a factor analysis it is fundamental that we know how much of the variance present 
in our data is common variance. This presents us with a logical impasse: to do the factor 
analysis we need to know the proportion of common variance present in the data, yet the 
only way to find out the extent of the common variance is by carrying out a factor analysis. 
There are two ways to approach this problem. The first is to assume that all of the variance 
is common variance. As such, we assume that the communality of every variable is 1. By 
making this assumption we merely transpose our original data into constituent linear com-
ponents (known as principal components analysis). The second approach is to estimate the 

3 It’s worth noting at this point that principal component analysis is not in fact the same as factor analysis. This 
doesn’t stop idiots like me from discussing them as though they are, but more on that later.
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amount of common variance by estimating communality values for each variable. There 
are various methods of estimating communalities, but the most widely used (including 
alpha factoring) is to use the squared multiple correlation (SMC) of each variable with all 
others. So, for the popularity data, imagine you ran a multiple regression using one meas-
ure (Selfish) as the outcome and the other five measures as predictors: the resulting multi-
ple R2 (see section 7.6.2) would be used as an estimate of the communality for the variable 
Selfish. This second approach is used in factor analysis. These estimates allow the factor 
analysis to be done. Once the underlying factors have been extracted, new communalities 
can be calculated that represent the multiple correlation between each variable and the 
factors extracted. Therefore, the communality is a measure of the proportion of variance 
explained by the extracted factors.

17.3.6.    Factor analysis vs. principal components analysis 2

I have just explained that there are two approaches to locating underlying dimensions 
of a data set: factor analysis and principal components analysis. These techniques differ 
in the communality estimates that are used. Simplistically, though, factor analysis derives 
a mathematical model from which factors are estimated, whereas principal components 
analysis merely decomposes the original data into a set of linear variates – see Dunteman, 
(1989) and Widaman (2007) for more detail on the differences between the procedures. 
As such, only factor analysis can estimate the underlying factors, and it relies on various 
assumptions for these estimates to be accurate. Principal components analysis is concerned 
only with establishing which linear components exist within the data and how a particular 
variable might contribute to that component. In terms of theory, this chapter is dedicated 
to principal components analysis rather than factor analysis. The reasons are that principal 
components analysis is a psychometrically sound procedure, is conceptually less complex 
than factor analysis, and bears numerous similarities to discriminant analysis (described in 
the previous chapter).

However, we should consider whether the techniques provide different solutions to the 
same problem. Based on an extensive literature review, Guadagnoli and Velicer (1988) 
concluded that the solutions generated from principal components analysis differ little 
from those derived from factor analysis techniques. In reality, there are some circumstances 
for which this statement is untrue. Stevens (2002) summarizes the evidence and concludes 
that, with 30 or more variables and communalities greater than .7 for all variables, differ-
ent solutions are unlikely; however, with fewer than 20 variables and any low communali-
ties (< .4), differences can occur.

The flip-side of this argument is eloquently described by Cliff (1987) who observed that 
proponents of factor analysis ‘insist that components analysis is at best a common factor 
analysis with some error added and at worst an unrecognizable hodgepodge of things from 
which nothing can be determined’ (p. 349). Indeed, feeling is strong on this issue, with 
some arguing that when principal components analysis is used it should not be described 
as a factor analysis and that you should not impute substantive meaning to the resulting 
components. However, to non-statisticians the difference between a principal component 
and a factor may be difficult to conceptualize (they are both linear models), and the differ-
ences arise largely from the calculation.4

4 For this reason I have used the terms components and factors interchangeably throughout this chapter. Although 
this use of terms will reduce some statisticians (and psychologists) to tears, I’m banking on these people not 
needing to read this book. I acknowledge the methodological differences, but I think it’s easier for students if I 
dwell on the similarities between the techniques and not the differences.
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17.3.7.    Theory behind principal components analysis 3

Principal components analysis works in a very similar way to MANOVA and discrimi-
nant function analysis (see previous chapter). Although it isn’t necessary to understand the 
mathematical principles in any detail, readers of the previous chapter may benefit from 
some comparisons between the two techniques. For those who haven’t read that chapter, I 
suggest you flick through it before moving ahead!

In MANOVA, various sum of squares and cross-product matrices were calculated that 
contained information about the relationships between dependent variables. I mentioned 
before that these SSCP matrices could be easily converted to variance–covariance matrices, 
which represent the same information but in averaged form (i.e., taking account of the 
number of observations). I also said that by dividing each element by the relevant standard 
deviation the variance–covariance matrices become standardized. The result is a correla-
tion matrix. In principal components analysis we usually deal with correlation matrices 
(although it is possible to analyse a variance–covariance matrix too), and the point to 
note is that this matrix pretty much represents the same information as an SSCP matrix in 
MANOVA. The difference is just that the correlation matrix is an averaged version of the 
SSCP that has been standardized.

In MANOVA, we used several SSCP matrices that represented different components 
of experimental variation (the model variation and the residual variation). In principal 
components analysis the covariance (or correlation) matrix cannot be broken down in this 
way (because all data come from the same group of participants). In MANOVA, we ended 
up looking at the variates or components of the SSCP matrix that represented the ratio 
of the model variance to the error variance. These variates were linear dimensions that 
separated the groups tested, and we saw that the dependent variables mapped onto these 
underlying components. In short, we looked at whether the groups could be separated by 
some linear combination of the dependent variables. These variates were found by calcu-
lating the eigenvectors of the SSCP. The number of variates obtained was the smaller of 
p (the number of dependent variables) and k − 1 (where k is the number of groups). In 
component analysis we do something similar (I’m simplifying things a little, but it will give 
you the basic idea). That is, we take a correlation matrix and calculate the variates. There 
are no groups of observations, and so the number of variates calculated will always equal 
the number of variables measured (p). The variates are described, as for MANOVA, by the 
eigenvectors associated with the correlation matrix. The elements of the eigenvectors are 
the weights of each variable on the variate (see equation (16.5)). These values are the factor 
loadings described earlier. The largest eigenvalue associated with each of the eigenvectors 
provides a single indicator of the substantive importance of each variate (or component). 
The basic idea is that we retain factors with relatively large eigenvalues and ignore those 
with relatively small eigenvalues.

The eigenvalue for a factor can also be calculated by summing the square of the loadings 
for that factor.  This isn’t much use if you’re calculating factor analysis, because you need 
to calculate the eigenvalues to calculate the loadings.  But it can be a useful way to help 
understand the eigenvalues – the higher the loadings on a factor, the more of the variance 
in the variables that the factor explains.

In summary, component analysis works in a similar way to MANOVA. We begin with 
a matrix representing the relationships between variables. The linear components (also 
called variates, or factors) of that matrix are then calculated by determining the eigenvalues 
of the matrix. These eigenvalues are used to calculate eigenvectors, the elements of which 
provide the loading of a particular variable on a particular factor (i.e., they are the b-values 
in equation (17.1)). The eigenvalue is also a measure of the substantive importance of the 
eigenvector with which it is associated.
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17.3.8.    Factor extraction: eigenvalues and the scree plot 2

Not all factors are retained in an analysis, and there is debate over the 
criterion used to decide whether a factor is statistically important. I 
mentioned above that the eigenvalues associated with a variate indicate 
the substantive importance of that factor. Therefore, it seems logical 
that we should retain only factors with large eigenvalues. Retaining fac-
tors is known as factor extraction. How do we decide whether or not an 
eigenvalue is large enough to represent a meaningful factor? Well, one 
technique advocated by Cattell (1966b) is to plot a graph of each eigen-
value (Y-axis) against the factor with which it is associated (X-axis). 
This graph is known as a scree plot (because it looks like a rock face 
with a pile of debris, or scree, at the bottom). I mentioned earlier that 

it is possible to obtain as many factors as there are variables and that each has an 
associated eigenvalue. By graphing the eigenvalues, the relative importance of each 
factor becomes apparent. Typically there will be a few factors with quite high eigen-
values, and many factors with relatively low eigenvalues, and so this graph has a very 
characteristic shape: there is a sharp descent in the curve followed by a tailing off 
(see Figure 17.4). Cattell (1966b) argued that the cut-off point for selecting factors 
should be at the point of inflexion of this curve. The point of inflexion is where the 
slope of the line changes dramatically: so, in Figure 17.4, imagine drawing a straight 
line that summarizes the vertical part of the plot and another that summarizes the 
horizontal part (the blue dashed lines); then the point of inflexion is the data point 
at which these two lines meet. In both examples in Figure 17.4 the point of inflex-
ion occurs at the third data point (factor); therefore, we would extract two factors. 
Thus, you retain (or extract) only factors to the left of the point of inflexion (and do 
not include the factor at the point of inflexion itself).5 With a sample of more than 
200 participants, the scree plot provides a fairly reliable criterion for factor selection 
(Stevens, 2002).

Although scree plots are very useful, factor selection should not be based on this cri-
terion alone. Kaiser (1960) recommended retaining all factors with eigenvalues greater 
than 1. This criterion is based on the idea that the eigenvalues represent the amount of 
variation explained by a factor and that an eigenvalue of 1 represents a substantial amount 
of variation. Jolliffe (1972, 1986) reports that Kaiser’s criterion is too strict and suggests 
the third option of retaining all factors with eigenvalues greater than .7. The difference 
between how many factors are retained using Kaiser’s methods compared to Jolliffe’s can 
be dramatic.

You might well wonder how the methods compare. Generally speaking, Kaiser’s cri-
terion overestimates the number of factors to retain (see Jane Superbrain Box 17.2) 
but there is some evidence that it is accurate when the number of variables is less than 
30 and the resulting communalities (after extraction) are all greater than .7. Kaiser’s 
criterion can also be accurate when the sample size exceeds 250 and the average com-
munality is greater than or equal to .6. In any other circumstances you are best advised 
to use a scree plot provided the sample size is greater than 200 (see Stevens, 2002, for 
more detail).

5 Actually, in his original paper, Cattell advised including the factor at the point of inflexion as well because it is 
‘desirable to include at least one common error factor as a “garbage can”’. The idea is that the point of inflexion 
represents an error factor. However, in practice this garbage can factor is rarely retained; also Thurstone argued 
that it is better to retain too few than too many factors, so most people do not retain the factor at the point of 
inflexion.

How many factors
should I extract?
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FIGURE 17.4
Examples of scree plots for data that probably have two underlying factors

However, as is often the case in statistics, the three criteria often provide different 
solutions. In these situations the communalities of the factors need to be considered. In 
principal components analysis we begin with communalities of 1 with all factors retained 
(because we assume that all variance is common variance). At this stage all we have done 
is to find the linear variates that exist in the data – so we have just transformed the data 
without discarding any information. However, to discover what common variance really 
exists between variables we must decide which factors are meaningful and discard any that 
are too trivial to consider. Therefore, we discard some information. The factors we retain 
will not explain all of the variance in the data (because we have discarded some informa-
tion) and so the communalities after extraction will always be less than 1. The factors 
retained do not map perfectly onto the original variables – they merely reflect the common 
variance present in the data. If the communalities represent a loss of information then they 
are important statistics. The closer the communalities are to 1, the better our factors are 
at explaining the original data. It is logical that the greater the number of factors retained, 
the greater the communalities will be (because less information is discarded); therefore, the 
communalities are good indices of whether too few factors have been retained. In fact, with 
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generalized least-squares factor analysis and maximum-likelihood factor analysis you can 
get a statistical measure of the goodness of fit of the factor solution (see the next chapter 
for more on goodness-of-fit tests). This basically measures the proportion of variance that 
the factor solution explains (so can be thought of as comparing communalities before and 
after extraction).

As a final word of advice, your decision on how many factors to extract will depend 
also on why you’re doing the analysis; for example, if you’re trying to overcome multicol-
linearity problems in regression, then it might be better to extract too many factors than 
too few.

explains as much variance as a variable, which rather 
defeats the original intention of the analysis to reduce 
variables down to ‘more substantive’ underlying factors 
(Nunnally & Bernstein, 1994). Consequently, Kaiser’s cri-
terion often overestimates the number of factors. On this 
basis Jolliffe’s criterion is even worse (a factor explains 
less variance than a variable!).

There are other ways to determine how many fac-
tors to retain, but they are more complex (which is why 
I’m discussing them outside of the main text). The best is 
probably parallel analysis (Horn, 1965). Essentially each 
eigenvalue (which represents the size of the factor) is com-
pared against an eigenvalue for the corresponding factor 
in many randomly generated data sets that have the same 
characteristics as the data being analysed. In doing so, 
each eigenvalue is being compared to an eigenvalue from 
a data set that has no underlying factors. This is a bit like 
asking whether our observed factor is bigger than a non-
existing factor. Factors that are bigger than their ‘random’ 
counterparts are retained. Of parallel analysis, the scree 
plot and Kaiser’s criterion, Kaiser’s criterion is, in general, 
worst and parallel analysis best (Zwick & Velicer, 1986).

The discussion of factor extraction in the text is somewhat 
simplified. In fact, there are fundamental problems with 
Kaiser’s criterion (Nunnally & Bernstein, 1994; Preacher 
& MacCallum, 2003). For one thing an eigenvalue of 1 
means different things in different analyses: with 100 vari-
ables it means that a factor explains 1% of the variance, 
but with 10 variables it means that a factor explains 10% 
of the variance. Clearly, these two situations are very dif-
ferent and a single rule that covers both is inappropri-
ate. An eigenvalue of 1 also means only that the factor 

JANE SUPERBRAIN 17.2

How many factors do I retain? 3

17.3.9.    Improving interpretation: factor rotation 3

Once factors have been extracted, it is possible to calculate to what degree variables load 
on these factors (i.e., calculate the loading of the variable on each factor). Generally, you 
will find that most variables have high loadings on the most important factor and small 
loadings on all other factors. This characteristic makes interpretation difficult, and so a 
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technique called factor rotation is used to discriminate between factors. If a factor is a 
classification axis along which variables can be plotted, then factor rotation effectively 
rotates these factor axes such that variables are loaded maximally on only one factor. 
Figure 17.5 demonstrates how this process works using an example in which there are 
only two factors.

Imagine that a sociologist was interested in classifying university lecturers as a demo-
graphic group. She discovered that two underlying dimensions best describe this group: 
alcoholism and achievement (go to any academic conference and you’ll see that academics 
drink heavily). The first factor, alcoholism, has a cluster of variables associated with it (dark 
blue circles), and these could be measures such as the number of units drunk in a week, 
dependency and obsessive personality. The second factor, achievement, also has a cluster of 
variables associated with it (light blue circles), and these could be measures relating to salary, 
job status and number of research publications. Initially, the full lines represent the factors, 
and by looking at the coordinates it should be clear that the light blue circles have high 
loadings for factor 2 (they are a long way up this axis) and medium loadings for 
factor 1 (they are not very far up this axis). Conversely, the dark blue circles have 
high loadings for factor 1 and medium loadings for factor 2. By rotating the axes 
(dashed lines), we ensure that both clusters of variables are intersected by the fac-
tor to which they relate most. So, after rotation, the loadings of the variables are 
maximized on one factor (the factor that intersects the cluster) and minimized 
on the remaining factor(s). If an axis passes through a cluster of variables, then 
these variables will have a loading of approximately zero on the opposite axis. If 
this idea is confusing, then look at Figure 17.5 and think about the values of the 
coordinates before and after rotation (this is best achieved by turning the book 
when you look at the rotated axes).

There are two types of rotation that can be done. The first is orthogonal rotation, and 
the left-hand side of Figure 17.5 represents this method. In Chapter 10 we saw that the 
term orthogonal means unrelated, and in this context it means that we rotate factors while 
keeping them independent, or unrelated. Before rotation, all factors are independent (i.e., 
they do not correlate at all) and orthogonal rotation ensures that the factors remain uncor-
related. That is why in Figure 17.5 the axes are turned while remaining perpendicular.6 The 
other form of rotation is oblique rotation. The difference with oblique rotation is that the 
factors are allowed to correlate (hence, the axes of the right-hand diagram of Figure 17.5 
do not remain perpendicular).

The choice of rotation depends on whether there is a good theoretical reason to sup-
pose that the factors should be related or independent (but see my later comments on this), 
and also how the variables cluster on the factors before rotation. On the first point, we 
might not expect alcoholism to be completely independent of achievement (after all, high 
achievement leads to high stress, which can lead to the drinks cabinet!). Therefore, on 
theoretical grounds, we might choose oblique rotation. On the second point, Figure 17.5 
demonstrates how the positioning of clusters is important in determining how successful 
the rotation will be (note the position of the light blue  circles). Specifically, if an orthogonal 
rotation was carried out on the right-hand diagram it would be considerably less successful 
in maximizing loadings than the oblique rotation that is displayed. One approach is to run 
the analysis using both types of rotation. Pedhazur and Schmelkin (1991) suggest that if the 
oblique rotation demonstrates a negligible correlation between the extracted factors then 
it is reasonable to use the orthogonally rotated solution. If the oblique rotation reveals a 
correlated factor structure, then the orthogonally rotated solution should be discarded. In 

6 This term means that the axes are at right angles to one another.

Do we have to
rotate?
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any case, an oblique rotation should be used only if there are good reasons to suppose that 
the underlying factors could be related in theoretical terms.

The mathematics behind factor rotation is complex (especially oblique rota-
tion). However, in oblique rotation, because each factor can be rotated by different 
amounts, a factor transformation matrix, Λ is needed. The factor transformation matrix 
is a square matrix and its size depends on how many factors were extracted from the 
data. If two factors are extracted then it will be a 2 × 2 matrix, but if four factors 
are extracted then it becomes a 4 × 4 matrix. The values in the factor transformation 
matrix consist of sines and cosines of the angle of axis rotation (θ). This matrix is 
multiplied by the matrix of unrotated factor loadings, A, to obtain a matrix of rotated 
factor loadings.

For the case of two factors the factor transformation matrix would be:

�
θ θ

θ θ
=

−





cos sin
sin cos

Therefore, you should think of this matrix as representing the angle through which the 
axes have been rotated, or the degree to which factors have been rotated. The angle of 
rotation necessary to optimize the factor solution is found in an iterative way (see R’s Souls’ 
Tip 8.1) and different methods can be used.

17.3.9.1.  Choosing a method of factor rotation 3

The R function that we will use has four methods of orthogonal rotation (varimax, quarti-
max, BentlerT and geominT) and five methods of oblique rotation (oblimin, promax, sim-
plimax, BentlerQ and geominQ). These methods differ in how they rotate the factors and, 
therefore, the resulting output depends on which method you select. 

The most important orthogonal rotations are quartimax and varimax. Quartimax rota-
tion attempts to maximize the spread of factor loadings for a variable across all factors. 
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FIGURE 17.5
Schematic 
representations of 
factor rotation. The 
left graph displays 
orthogonal 
rotation whereas 
the right graph 
displays oblique 
rotation (see text 
for more details). 
θ is the angle 
through which the 
axes are rotated
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Therefore, interpreting variables becomes easier. However, this often results in lots of vari-
ables loading highly on a single factor. Varimax is the opposite in that it attempts to maxi-
mize the dispersion of loadings within factors. Therefore, it tries to load a smaller number 
of variables highly on each factor, resulting in more interpretable clusters of factors. For a 
first analysis, you should probably select varimax because it is a good general approach that 
simplifies the interpretation of factors. 

The two important oblique rotations are promax and oblimin. Promax is a faster 
procedure designed for very large data sets. (If you are interested in adjustments that can 
be made to these rotations, other rotations, and even hand rotations, you can consult the 
GPARotate() function, found in the psych package.) 

In theory, the exact choice of rotation will depend largely on whether or not you think 
that the underlying factors should be related. If you expect the factors to be independ-
ent then you should choose one of the orthogonal rotations (I recommend varimax). If, 
however, there are theoretical grounds for supposing that your factors might correlate, 
then direct oblimin should be selected. In practice, there are strong grounds to believe that 
orthogonal rotations are a complete nonsense for naturalistic data, and certainly for any 
data involving humans (can you think of any psychological construct that is not in any way 
correlated with some other psychological construct?). As such, some argue that orthogonal 
rotations should never be used.

17.3.9.2.  Substantive importance of factor loadings 2

Once a factor structure has been found, it is important to decide which variables make 
up which factors. Earlier I said that the factor loadings were a gauge of the substantive 
importance of a given variable to a given factor. Therefore, it makes sense that we use these 
values to place variables with factors. It is possible to assess the statistical significance of 
a factor loading (after all, it is simply a correlation coefficient or regression coefficient); 
however, there are various reasons why this option is not as easy as it seems (see Stevens, 
2002, p. 393). Typically, researchers take a loading of an absolute value of more than 0.3 
to be important. However, the significance of a factor loading will depend on the sam-
ple size. Stevens (2002) produced a table of critical values against which loadings can be 
compared. To summarize, he recommends that for a sample size of 50 a loading of 0.722 
can be considered significant, for 100 the loading should be greater than 0.512, for 200 
it should be greater than 0.364, for 300 it should be greater than 0.298, for 600 it should 
be greater than 0.21, and for 1000 it should be greater than 0.162. These values are based 
on an alpha level of .01 (two-tailed), which allows for the fact that several loadings will 
need to be tested (see Stevens, 2002, for further detail). Therefore, in very large samples, 
small loadings can be considered statistically meaningful. (R can provide significance tests 
of factor loadings, but these get rather complex and are rarely used. By applying Stevens’s 
guidelines you should gain some insight into the structure of variables and factors.)

The significance of a loading gives little indication of the substantive importance of 
a variable to a factor. This value can be found by squaring the factor loading to give an 
estimate of the amount of variance in a factor accounted for by a variable (like R2). In this 
respect Stevens (2002) recommends interpreting only factor loadings with an absolute 
value greater than 0.4 (which explain around 16% of the variance in the variable).

17.4.  Research example 2

One of the uses of factor analysis is to develop questionnaires: after all, if you want to meas-
ure an ability or trait, you need to ensure that the questions asked relate to the construct 
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FIGURE 17.6
The R anxiety 
questionnaire 
(RAQ)

SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree

SD D N A SA

  1 Statistics make me cry     

  2
My friends will think I’m stupid for not being able to  
cope with R

    

  3 Standard deviations excite me     

  4
I dream that Pearson is attacking me with correlation 
coefficients

    

  5 I don’t understand statistics     

  6 I have little experience of computers     

  7 All computers hate me     

  8 I have never been good at mathematics     

  9 My friends are better at statistics than me     

10 Computers are useful only for playing games     

11 I did badly at mathematics at school     

12
People try to tell you that R makes statistics easier to 
understand but it doesn’t

    

13
I worry that I will cause irreparable damage because of my 
incompetence with computers

    

14
Computers have minds of their own and deliberately go 
wrong whenever I use them

    

15 Computers are out to get me     

16 I weep openly at the mention of central tendency     

17 I slip into a coma whenever I see an equation     

18 R always crashes when I try to use it     

19 Everybody looks at me when I use R     

20 I can’t sleep for thoughts of eigenvectors     

21
I wake up under my duvet thinking that I am trapped under a 
normal distribution

    

22 My friends are better at R than I am     

23 If I am good at statistics people will think I am a nerd     

that you intend to measure. I have noticed that a lot of students become very stressed 
about R. Therefore I wanted to design a questionnaire to measure a trait that I termed ‘R 
anxiety’. I decided to devise a questionnaire to measure various aspects of students’ anxi-
ety towards learning R. I generated questions based on interviews with anxious and non-
anxious students and came up with 23 possible questions to include. Each question was a 
statement followed by a five-point Likert scale ranging from ‘strongly disagree’ through 
‘neither agree nor disagree’ to ‘strongly agree’. The questionnaire is printed in Figure 17.6.

The questionnaire was designed to predict how anxious a given individual would be 
about learning how to use R. What’s more, I wanted to know whether anxiety about R 
could be broken down into specific forms of anxiety. In other words, what latent variables 
contribute to anxiety about R? With a little help from a few lecturer friends I collected 
2571 completed questionnaires (at this point it should become apparent that this example 
is fictitious). The data are stored in the file RAQ.dat. Load this file into R and have a look 
at the data. We know that in R, cases (or people’s data) are typically stored in rows and 
variables are stored in columns and so this layout is consistent with past chapters. The sec-
ond thing to notice is that there are 23 variables labelled Q01 to Q23.
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17.4.1.    Sample size 2

Correlation coefficients fluctuate from sample to sample, much more so in small samples 
than in large. Therefore, the reliability of factor analysis is also dependent on sample size. 
Much has been written about the necessary sample size for factor analysis, resulting in 
many ‘rules of thumb’. The common rule is to suggest that a researcher has at least 10–15 
participants per variable. Although I’ve heard this rule bandied about on numerous occa-
sions, its empirical basis is unclear (although Nunnally, 1978, did recommend having 10 
times as many participants as variables). Kass and Tinsley (1979) recommended having 
between 5 and 10 participants per variable up to a total of 300 (beyond which test param-
eters tend to be stable regardless of the participant to variable ratio). Indeed, Tabachnick 
and Fidell (2007) agree that ‘it is comforting to have at least 300 cases for factor analysis’ 
(p. 613), and Comrey and Lee (1992) class 300 as a good sample size, 100 as poor and 
1000 as excellent.

Fortunately, recent years have seen empirical research done in the form of experiments 
using simulated data (so-called Monte Carlo studies). Arrindell and van der Ende (1985) 
used real-life data to investigate the effect of different participant to variable ratios. They 
concluded that changes in this ratio made little difference to the stability of factor solu-
tions. Guadagnoli and Velicer (1988) found that the most important factors in determining 
reliable factor solutions were the absolute sample size and the absolute magnitude of fac-
tor loadings. In short, they argue that if a factor has four or more loadings greater than .6 
then it is reliable regardless of sample size. Furthermore, factors with 10 or more loadings 
greater than .40 are reliable if the sample size is greater than 150. Finally, factors with a few 
low loadings should not be interpreted unless the sample size is 300 or more. MacCallum, 
Widaman, Zhang, and Hong (1999) have shown that the minimum sample size or sample 
to variable ratio depends on other aspects of the design of the study. In short, their study 
indicated that as communalities become lower the importance of sample size increases. 
With all communalities above .6, relatively small samples (less than 100) may be perfectly 
adequate. With communalities in the .5 range, samples between 100 and 200 can be good 
enough provided there are relatively few factors each with only a small number of indi-
cator variables. In the worst scenario of low communalities (well below .5) and a larger 
number of underlying factors they recommend samples above 500.

What’s clear from this work is that a sample of 300 or more will probably provide a  
stable factor solution, but that a wise researcher will measure enough variables to  
adequately measure all of the factors that theoretically they would expect to find.

Another alternative is to use the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy 
(Kaiser, 1970). The KMO can be calculated for individual and multiple variables and rep-
resents the ratio of the squared correlation between variables to the squared partial correla-
tion between variables. The KMO statistic varies between 0 and 1. A value of 0 indicates 
that the sum of partial correlations is large relative to the sum of correlations, indicating 

‘I’m going to design a questionnaire to measure one’s propensity 
to pick a pocket or two’, says Oliver, ‘but how would I go about 
doing it?’ You’d read the useful information about the dos and 
don’ts of questionnaire design in the additional material for this 
chapter on the companion website, that’s how. Rate how useful it 
is on a Likert scale from 1 = not useful at all, to 5 = very useful.

OLIVER TWISTED

Please Sir, can I have  
some more … 
questionnaires?
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diffusion in the pattern of correlations (hence, factor analysis is likely to be inappropriate). 
A value close to 1 indicates that patterns of correlations are relatively compact and so fac-
tor analysis should yield distinct and reliable factors. Kaiser (1974) recommends accepting 
values greater than .5 as barely acceptable (values below this should lead you to either col-
lect more data or rethink which variables to include). Furthermore, values between .5 and 
.7 are mediocre, values between .7 and .8 are good, values between .8 and .9 are great and 
values above .9 are superb (Hutcheson & Sofroniou, 1999).

17.4.2.    Correlations between variables 3

When I was an undergraduate, my statistics lecturer always used to say ‘if you put garbage in, 
you get garbage out’. This saying applies particularly to factor analysis, because R will usually 
find a factor solution for a set of variables. However, the solution is unlikely to have any real 
meaning if the variables analysed are not sensible. The first thing to do when conducting a 
factor analysis or principal components analysis is to look at the correlations of the variables. 
There are essentially two potential problems: (1) correlations that are not high enough; and 
(2) correlations that are too high. The correlations between variables can be checked using 
the cor() function (see Chapter 6) to create a correlation matrix of all variables. In both cases 
the remedy is to remove variables from the analysis. We will look at each problem in turn.

If our test questions measure the same underlying dimension (or dimensions) then we 
would expect them to correlate with each other (because they are measuring the same thing). 
Even if questions measure different aspects of the same things (e.g., we could measure over-
all anxiety in terms of sub-components such as worry, intrusive thoughts and physiological 
arousal), there should still be high correlations between the variables relating to these sub-
traits. We can test for this problem first by visually scanning the correlation matrix and look-
ing for correlations below about .3: if any variables have lots of correlations below this value 
then consider excluding them. It should be immediately clear that this approach is very 
subjective: I’ve used fuzzy terms such as ‘about .3’ and ‘lots of ’, but I have to because every 
data set is different. Analysing data really is a skill, not a matter of following a recipe book.

If you want an objective test of whether correlations (overall) are too small then you 
can test for a very extreme scenario. If the variables in our correlation matrix did not cor-
relate at all, then our correlation matrix would be an identity matrix (i.e., the off-diagonal 
components are zero – see section 16.4.2). Bartlett’s test examines whether the popula-
tion correlation matrix resembles an identity matrix. If the population correlation matrix 
resembles an identity matrix then it means that every variable correlates very badly with 
all other variables (i.e., all correlation coefficients are close to zero). If it were an identity 
matrix then it would mean that all variables are perfectly independent of one another (all 
correlation coefficients are zero). Given that we are looking for clusters of variables that 
measure similar things, it should be obvious why this scenario is problematic: if no vari-
ables correlate then there are no clusters to find. Bartlett’s test tells us whether our correla-
tion matrix is significantly different from an identity matrix. Therefore, if it is significant 
then it means that the correlations between variables are (overall) significantly different 
from zero. So, if Bartlett’s test is significant then it is good news. However, as with any sig-
nificance test, it depends on sample sizes and in factor analysis we typically use very large 
samples. Therefore, although a non-significant Bartlett’s test is certainly cause for concern, 
a significant test does not necessarily mean that correlations are big enough to make the 
analysis meaningful. If you do identify any variables that seem to have very low correla-
tions with lots of other variables, then exclude them from the factor analysis.

The opposite problem is when variables correlate too highly. Although mild multicol-
linearity is not a problem for factor analysis it is important to avoid extreme multicollinear-
ity (i.e., variables that are very highly correlated) and singularity (variables that are perfectly 
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The way that I think of the determinant is as describing 
the ‘area’ of the data. In Jane Superbrain Box 16.2 we 
saw the two diagrams below.

At the time I used these to describe eigenvectors and 
eigenvalues (which describe the shape of the data). The 
determinant is related to eigenvalues and eigenvectors, but 
instead of describing the height and width of the data it 
describes the overall area. So, in the left diagram below, the 
determinant of those data would represent the area inside 
the dashed elipse. These variables have a low correlation 
so the determinant (area) is big; the biggest value it can be 
is 1. In the right diagram, the variables are perfectly cor-
related or singular, and the elipse (dashed line) has been 
squashed down to basically a straight line. In other words, 
the opposite sides of the ellipse have actually met each 
other and there is no distance between them at all. Put 
another way, the area, or determinant, is zero. Therefore, 
the determinant tells us whether the correlation matrix is 
singular (determinant is 0), or if all variables are completely 
unrelated (determinant is 1), or somewhere in between.

The determinant of a matrix is an important diagnostic 
tool in factor analysis, but the question of what it is is not 
easy to answer because it has a mathematical definition 
and I’m not a mathematician. Rather than pretending that 
I understand the maths, all I’ll say is that a good explana-
tion of how the determinant is derived can be found at 
http://mathworld.wolfram.com. However, we can bypass 
the maths and think about the determinant conceptually. 

JANE SUPERBRAIN 17.3

What is the determinant? 3
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correlated). As with regression, multicollinearity causes problems in factor analysis because 
it becomes impossible to determine the unique contribution to a factor of the variables that 
are highly correlated (as was the case for multiple regression). Multicollinearity does not 
cause a problem for principal components analysis. Therefore, as well as scanning the cor-
relation matrix for low correlations, we could also look out for very high correlations (r > 
.8). The problem with a heuristic such as this is that the effect of two variables correlating 
with r = .9 might be less than the effect of, say, three variables that all correlate at r = .6. In 
other words, eliminating such highly correlating variables might not be getting at the cause 
of the multicollinearity (Rockwell, 1975).

Multicollinearity can be detected by looking at the determinant of the R-matrix, denoted 
|R| (see Jane Superbrain Box 17.3). One simple heuristic is that the determinant of the 
R-matrix should be greater than 0.00001. 

If you have reason to believe that the correlation matrix has multicollinearity then you 
could look through the correlation matrix for variables that correlate very highly (R > .8) 
and consider eliminating one of the variables (or more, depending on the extent of the 
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problem) before proceeding. You may have to try some trial and error to work out which 
variables are creating the problem (it’s not always the two with the highest correlation, it 
could be a larger number of variables with correlations that are not obviously too large).

17.4.3.    The distribution of data 2

As well as looking for interrelations, you should ensure that variables have roughly normal 
distributions and are measured at an interval level (which Likert scales are, perhaps wrongly, 
assumed to be). The assumption of normality is most important if you wish to generalize 
the results of your analysis beyond the sample collected. You can do factor analysis on non-
continuous data; for example, if you had dichotomous variables you should construct the 
correlation matrix from polychoric correlation coefficients (these can be calculated using 
the polychor() function, found in the polycor package, which we used in Chapter 6).7

17.5.  Running the analysis with R Commander 1

If you look through the menus, you’ll find ‘factor analysis’. The factor analysis that’s avail-
able in R Commander is a little limited: it does only one kind of extraction (maximum 
likelihood) and, although this is a good method when it works, if often doesn’t work. 
Understanding why it didn’t work and what to do about it is difficult (and the solution is 
often to just use a different sort of extraction). For this reason, we don’t recommend factor 
analysis with R Commander.

17.6.  Running the analysis with R 2

17.6.1.    Packages used in this chapter 1

There are several packages we will use in this chapter. You will need the packages corpcor, 
GPArotation (for rotating) and psych (for the factor analysis). If you don’t have these pack-
ages installed you’ll need to install them and load them. 

install.packages("corpcor"); install.packages("GPArotation"); install.
packages("psych")

Then you need to load the packages by executing these commands:

library(corpcor); library(GPArotation); library(psych)

17.6.2.    Initial preparation and analysis 2

To run a factor analysis or a principal components analysis you can either use the raw data, 
or you can calculate a correlation matrix, and use that. If you have a massive number of 

7 Note that there is an h in the polychor function, that’s because we’re calculating polychoric correlations, using a 
package that calculates polychoric and polyserial correlations. (Also note that it’s written by John Fox, author of 
several other packages we use in this book.)
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cases (and by massive, I mean at least 100,000, and probably closer to 1,000,000) you’re 
better off calculating a correlation matrix first, and then factor-analysing that. If you don’t 
have a massive number of cases, it doesn’t matter which you do. It’s also worth noting at 
this stage that sometimes the analysis doesn’t work, usually because the correlation matrix 
that you’re trying to analyse is weird (R’s Souls’ Tip 17.1).

First, we’ll load the data into a dataframe called raqData. Set your working directory to 
the location of the file (see section 3.4.4) and execute:

raqData<-read.delim("raq.dat", header = TRUE)

We want to include all of the variables in our data set in our factor analysis. We can cal-
culate the correlation matrix, using the cor() function (see Chapter 6):

raqMatrix<-cor(raqData)

          R ’s  Souls ’  T ip  17 .1   �Warning messages about non-positive 
definite matrix 4

On rare occasions, you might have a non-positive definite matrix. When you have this, R will give unhelpful warn-
ings, such as:

Warning messages:
1: In log(det(m.inv.r)) : NaNs produced
2: In log(det(r)) : NaNs produced

What R is trying to tell you, in it’s own friendly way, is that the determinant of the R (correlation) matrix is nega-
tive, and hence it cannot find the log of the determinant (‘NaN’ is R’s way of saying “not a number”). This problem 
is usually described as a non-positive definite matrix.

What is a non-positive definite matrix? As we have seen, factor analysis works by looking at your correla-
tion matrix. This matrix has to be ‘positive definite’ for the analysis to work. What does that mean in plain English? 
It means lots of horrible things mathematically (e.g., the eigenvalues and determinant of the matrix have to be 
positive) and about the best explanation I’ve seen is at http://www2.gsu.edu/~mkteer/npdmatri.html. In more 
basic terms, factors are like lines floating in space, and eigenvalues measure the length of those lines. If your 
eigenvalue is negative then it means that the length of your line/factor is negative too. It’s a bit like me asking you 
how tall you are, and you responding ‘I’m minus 175 cm tall’. That would be nonsense. By analogy, if a factor 
has negative length, then that too is nonsense. When R decomposes the correlation matrix to look for factors, if 
it comes across a negative eigenvalue it starts thinking ‘oh dear, I’ve entered some weird parallel universe where 
the usual rules of maths no longer apply and things can have negative lengths, and this probably means that time 
runs backwards, my mum is my dad, my sister is a dog, my head is a fish, and my toe is a frog called Gerald’. It 
still has a go at producing results, but those results probably won’t make much sense. (We’d like it if it said ‘these 
results are probably nonsense’, rather than being a bit subtle about it, so you have to be really careful.)

Things like the KMO test and the determinant rely on a positive definite matrix; if you don’t have one they can’t 
be computed.

Why have I got a non-positive definite matrix? The most likely answer is that you have too many variables 
and too few cases of data, which makes the correlation matrix a bit unstable. It could also be that you have 
too many highly correlated items in your matrix (singularity, for example, tends to mess things up). In any case 
it means that your data are bad, naughty data, and not to be trusted; if you let them loose then you have only 
yourself to blame for the consequences.

What can I do? Other than cry, there‘s not that much you can do. You could try to limit your items, or selec-
tively remove items (especially highly correlated ones) to see if that helps. Collecting more data can help too. 
There are some mathematical fudges you can do, but they’re not as tasty as vanilla fudge and they are hard to 
implement easily.
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Executing this command creates a matrix of correlation coefficients called raqMatrix. We 
can use this matrix in the analysis (although we don’t have to). It’s a good idea to have a 
look at the correlation matrix, for the reasons we discussed earlier. To make our eyes hurt 
a little less, let’s use the round() function to display only 2 decimal places of the correlation 
matrix that we have just created:

round(raqMatrix, 2)

The R-matrix (or correlation matrix) produced using the cor() function is displayed in 
Output 17.1. You should be comfortable with the idea that to do a factor analysis we need 
to have variables that correlate fairly well, but not perfectly. Also, any variables that cor-
relate with no others should be eliminated. Therefore, we can use this correlation matrix 
to check the pattern of relationships. First, scan the matrix for correlations greater than 
.3, then look for variables that only have a small number of correlations greater than this 
value. Then scan the correlation coefficients themselves and look for any greater than .9. 
If any are found then you should be aware that a problem could arise because of multicol-
linearity in the data.

      Q01   Q02   Q03   Q04   Q05   Q06   Q07   Q08
Q01  1.00 -0.10 -0.34  0.44  0.40  0.22  0.31  0.33
Q02 -0.10  1.00  0.32 -0.11 -0.12 -0.07 -0.16 -0.05
Q03 -0.34  0.32  1.00 -0.38 -0.31 -0.23 -0.38 -0.26
Q04  0.44 -0.11 -0.38  1.00  0.40  0.28  0.41  0.35
Q05  0.40 -0.12 -0.31  0.40  1.00  0.26  0.34  0.27
Q06  0.22 -0.07 -0.23  0.28  0.26  1.00  0.51  0.22
Q07  0.31 -0.16 -0.38  0.41  0.34  0.51  1.00  0.30
Q08  0.33 -0.05 -0.26  0.35  0.27  0.22  0.30  1.00
Q09 -0.09  0.31  0.30 -0.12 -0.10 -0.11 -0.13  0.02
Q10  0.21 -0.08 -0.19  0.22  0.26  0.32  0.28  0.16
Q11  0.36 -0.14 -0.35  0.37  0.30  0.33  0.34  0.63
Q12  0.35 -0.19 -0.41  0.44  0.35  0.31  0.42  0.25
Q13  0.35 -0.14 -0.32  0.34  0.30  0.47  0.44  0.31
Q14  0.34 -0.16 -0.37  0.35  0.32  0.40  0.44  0.28
Q15  0.25 -0.16 -0.31  0.33  0.26  0.36  0.39  0.30
Q16  0.50 -0.17 -0.42  0.42  0.39  0.24  0.39  0.32
Q17  0.37 -0.09 -0.33  0.38  0.31  0.28  0.39  0.59
Q18  0.35 -0.16 -0.38  0.38  0.32  0.51  0.50  0.28
Q19 -0.19  0.20  0.34 -0.19 -0.17 -0.17 -0.27 -0.16
Q20  0.21 -0.20 -0.32  0.24  0.20  0.10  0.22  0.18
Q21  0.33 -0.20 -0.42  0.41  0.33  0.27  0.48  0.30
Q22 -0.10  0.23  0.20 -0.10 -0.13 -0.17 -0.17 -0.08
Q23  0.00  0.10  0.15 -0.03 -0.04 -0.07 -0.07 -0.05

      Q09   Q10   Q11   Q12   Q13   Q14   Q15   Q16
Q01 -0.09  0.21  0.36  0.35  0.35  0.34  0.25  0.50
Q02  0.31 -0.08 -0.14 -0.19 -0.14 -0.16 -0.16 -0.17
Q03  0.30 -0.19 -0.35 -0.41 -0.32 -0.37 -0.31 -0.42
Q04 -0.12  0.22  0.37  0.44  0.34  0.35  0.33  0.42
Q05 -0.10  0.26  0.30  0.35  0.30  0.32  0.26  0.39
Q06 -0.11  0.32  0.33  0.31  0.47  0.40  0.36  0.24
Q07 -0.13  0.28  0.34  0.42  0.44  0.44  0.39  0.39
Q08  0.02  0.16  0.63  0.25  0.31  0.28  0.30  0.32
Q09  1.00 -0.13 -0.12 -0.17 -0.17 -0.12 -0.19 -0.19
Q10 -0.13  1.00  0.27  0.25  0.30  0.25  0.30  0.29
Q11 -0.12  0.27  1.00  0.34  0.42  0.33  0.36  0.37
Q12 -0.17  0.25  0.34  1.00  0.49  0.43  0.33  0.41
Q13 -0.17  0.30  0.42  0.49  1.00  0.45  0.34  0.36

17-Field_R-4368-Ch-17.indd   774 29/02/2012   5:58:59 PM



775CHAPTER 17   EXPLORATORY FACTOR ANALYS IS

Q14 -0.12  0.25  0.33  0.43  0.45  1.00  0.38  0.42
Q15 -0.19  0.30  0.36  0.33  0.34  0.38  1.00  0.45
Q16 -0.19  0.29  0.37  0.41  0.36  0.42  0.45  1.00
Q17 -0.04  0.22  0.59  0.33  0.41  0.35  0.37  0.41
Q18 -0.15  0.29  0.37  0.49  0.53  0.50  0.34  0.42
Q19  0.25 -0.13 -0.20 -0.27 -0.23 -0.25 -0.21 -0.27
Q20 -0.16  0.08  0.26  0.30  0.20  0.23  0.21  0.27

      Q17   Q18   Q19   Q20   Q21   Q22   Q23
Q01  0.37  0.35 -0.19  0.21  0.33 -0.10  0.00
Q02 -0.09 -0.16  0.20 -0.20 -0.20  0.23  0.10
Q03 -0.33 -0.38  0.34 -0.32 -0.42  0.20  0.15
Q04  0.38  0.38 -0.19  0.24  0.41 -0.10 -0.03
Q05  0.31  0.32 -0.17  0.20  0.33 -0.13 -0.04
Q06  0.28  0.51 -0.17  0.10  0.27 -0.17 -0.07
Q07  0.39  0.50 -0.27  0.22  0.48 -0.17 -0.07
Q08  0.59  0.28 -0.16  0.18  0.30 -0.08 -0.05
Q09 -0.04 -0.15  0.25 -0.16 -0.14  0.26  0.17
Q10  0.22  0.29 -0.13  0.08  0.19 -0.13 -0.06
Q11  0.59  0.37 -0.20  0.26  0.35 -0.16 -0.09
Q12  0.33  0.49 -0.27  0.30  0.44 -0.17 -0.05
Q13  0.41  0.53 -0.23  0.20  0.37 -0.20 -0.05
Q14  0.35  0.50 -0.25  0.23  0.40 -0.17 -0.05
Q15  0.37  0.34 -0.21  0.21  0.30 -0.17 -0.06
Q16  0.41  0.42 -0.27  0.27  0.42 -0.16 -0.08
Q17  1.00  0.38 -0.16  0.21  0.36 -0.13 -0.09
Q18  0.38  1.00 -0.26  0.24  0.43 -0.16 -0.08
Q19 -0.16 -0.26  1.00 -0.25 -0.27  0.23  0.12
Q20  0.21  0.24 -0.25  1.00  0.47 -0.10 -0.03
Q21  0.36  0.43 -0.27  0.47  1.00 -0.13 -0.07
Q22 -0.13 -0.16  0.23 -0.10 -0.13  1.00  0.23
Q23 -0.09 -0.08  0.12 -0.03 -0.07  0.23  1.00

Output 17.1

As well as looking at the correlation matrix, we should run Bartlett’s test and the 
KMO on the correlation matrix. Bartlett’s test is run using the cortest.bartlett() function 
from the psych package. We can run this test either on the raw data or on the correlation 
matrix. To run it from the raw data simply input the dataframe (in this case raqData) 
into the function:

cortest.bartlett(raqData)

To run it from the correlation matrix (in this case raqMatrix), input the name of the cor-
relation matrix but also provide the sample size (in this case 2751):

cortest.bartlett(raqMatrix, n = 2571)

Both methods will give you the results in Output 17.2. If you ran the test from the raw 
data, you’ll get the warning R was not square, finding R from data, which is nothing to 
worry about it just means that because we didn’t give the function a correlation matrix, it’s 
calculating it from the raw data (that’s what we expect it to do). For factor analysis to work 
we need some relationships between variables and if the R-matrix were an identity matrix 
then all correlation coefficients would be zero. Therefore, we want this test to be signifi-
cant (i.e., have a significance value less than .05). A significant test tells us that the R-matrix 
is not an identity matrix; therefore, there are some relationships between the variables we 
hope to include in the analysis. For these data, Bartlett’s test is highly significant, χ2(253) = 
19,334, p < .001, and therefore factor analysis is appropriate.
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R was not square, finding R from data
$chisq
[1] 19334.49

$p.value
[1] 0

$df
[1] 253

Output 17.2

Next we’d also like the KMO. None of the packages in R currently have a straight-
forward way to calculate the KMO. However, one of the nice things about R is that 
people can write programs to do anything that R doesn’t currently do, and G. Jay 
Kerns, from Youngstown State University (see http://tolstoy.newcastle.edu.au/R/e2/
help/07/08/22816.html) has written one called kmo(), which calculates the KMO and a 
variety of other things. The function itself is easy to use manually (see Oliver Twisted), 
but because it is not part of a package we have included it in our DSUR package so that 
you can use it directly (assuming you have loaded the DSUR package). You can use the 
function by simply entering the name of your dataframe into it and executing. 

kmo(raqData)

The results of the KMO test are shown in Output 17.3. We came across the KMO 
statistic in section 17.4.1 and saw that Kaiser (1974) recommends a bare minimum of .5 
and that values between .5 and .7 are mediocre, values between .7 and .8 are good, val-
ues between .8 and .9 are great and values above .9 are superb (Hutcheson & Sofroniou, 
1999). For these data the overall value is .93, which falls into the range of being superb (or 
‘marvellous’ as the report puts it), so we should be confident that the sample size and the 
data are adequate for factor analysis.

‘Stop spanking my monkey!’, cries an hysterical Oliver, ‘it’s never done 
you any harm, and it’s orange.’ I was talking about the Kaiser–Meyer–
Olkin test, Oliver. ‘Oh, sorry’, he says with a sigh of relief, ‘I thought 
KMO stood for Kill My Orang-utan’. Erm, OK, Oliver has finally lost 
the plot, which I’m fairly sure is what you’ll do if you inspect the kmo() 
function on the companion website. Although we have included it in 
our DSUR package, you can also copy it and execute it manually. 

OLIVER TWISTED

Please Sir, can I have  
some more … kmo?

KMO can be calculated for multiple and individual variables. The value of KMO should 
be above the bare minimum of .5 for all variables (and preferably higher) as well as overall. 
The KMO values for individual variables are produced by the kmo() function too. For these 
data all values are well above .5, which is good news. If you find any variables with values 
below .5 then you should consider excluding them from the analysis (or run the analysis 
with and without that variable and note the difference). Removal of a variable affects the 
KMO statistics, so if you do remove a variable be sure to rerun the kmo() function on the 
new data.
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$overall
[1] 0.9302245

$report
[1] "The KMO test yields a degree of common variance marvelous."

$individual

Q01       Q02       Q03       Q04       Q05       Q06       Q07 
0.9297  0.8748    0.9510     0.9553    0.9601    0.8913  0.9417

Q08       Q09       Q10       Q11       Q12       Q13       Q14       
0.8713  0.8337    0.9487     0.9059    0.9548    0.9482  0.9672 

Q15       Q16	     Q17       Q18       Q19       Q20       Q21       
0.9404  0.9336    0.9306     0.9479    0.9407    0.8891  0.9293

Q22       Q23 
0.8784  0.7664

Output 17.3

Finally, we’d like the determinant of the correlation matrix. To find the determinant, 
we use the det() function, into which we place the name of a correlation matrix. We have 
computed this matrix already for the current data (raqMatrix) so we can execute:

det(raqMatrix)

If we hadn’t already created the matrix, we could get the determinant by putting the cor() 
function for the raw data into the det() function:

det(cor(raqData))

Either method produces the same value:

[1] 0.0005271037

This value is greater than the necessary value of 0.00001 (see section 17.5). As such, our 
determinant does not seem problematic. After checking the determinant, you can, if neces-
sary, eliminate variables that you think are causing the problem. In summary, all questions 
in the RAQ correlate reasonably well with all others and none of the correlation coeffi-
cients are excessively large; therefore, we won’t eliminate any questions at this stage.

             CRAMMING SAM’S TIPS    Preliminary analysis

•	 Scan the correlation matrix; look for variables that don’t correlate with any other variables, or correlate very highly (r = .9) 
with one or more other variables. In factor analysis, check that the determinant of this matrix is bigger than 0.00001; if it is 
then multicollinearity isn’t a problem.

•	 Check the KMO and Bartlett’s test; the KMO statistic should be greater than .5 as a bare minimum; if it isn’t collect more 
data. Bartlett’s test of sphericity should be significant (the significance value should be less than .05).
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17.6.3.    Factor extraction using R 2

For our present purposes we will use principal components analysis, which���������������� strictly speak-
ing isn’t factor analysis; however, the two procedures may often yield similar results (see 
section 17.3.6). Principal component analysis is carried out using the principal() function, 
in the psych package. This function takes the general form:

pcModel<-principal(dataframe/R-matrix, nfactors = number of factors, rotate = 
"method of rotation", scores = TRUE/FALSE)

This command creates a principal components model called pcModel, by specifying either 
a dataframe of raw data or a correlation matrix. There are three main options:

MM nfactors allows you to specify how many factors/components you want to extract (see sec-
tion 17.3.8) as a number. If you don’t specify nfactors, then one component is extracted.

MM rotate allows you to specify a method of factor rotation (see section 17.3.9) using a text 
string. If you don’t declare a method of rotation, the default of varimax rotation is used.

MM scores allows you to obtain factor scores (TRUE) or not (FALSE). The default is FALSE.

I mentioned earlier that when conducting principal components analysis we begin by 
establishing the linear variates within the data and then decide how many of these variates 
to retain (or ‘extract’). Therefore, our starting point is to create a principal components 
model that has the same number of factors as there are variables in the data: by doing this 
we are just reducing the data set down to its underlying factors. By extracting as many fac-
tors as there are variables we can inspect their eigenvalues and make decisions about which 
factors to extract. (Note that if you use factor analysis, rather than principal components 
analysis, you need to extract fewer factors than you have variables – so if you have 23 vari-
ables, extracting 18, or so, factors should be OK.)

To create this model we execute one of these commands:

pc1 <-  principal(raqData, nfactors = 23, rotate = "none")
pc1 <- principal(raqMatrix, nfactors = 23, rotate = "none")

The first command creates the model from the raw data and the second from the correla-
tion matrix: both methods will give you identical results, but we will show both through-
out. These commands create a model called pc1, which extracts 23 factors – the same as 

          R ’s  Souls ’  T ip  17 .2   A cure for lazy-itis 2

Sometimes, I’m too lazy to count the variables in my data set, in which case I can ask R to count them for me, 
using the length() function, which counts the number of items in an object. Therefore, we can obtain the number 
of variables in a dataframe using:

length(dataFrame)

Similarly, we can apply this function to a matrix to find out the number of rows in a column of a matrix:

length(matrix[,1])

Therefore, we can use these commands within the principal() function to automatically specify the number of 
factors as the number of variables in the dataframe/matrix by executing:

pc2 <-  principal(raq, nfactors=length(raqData), rotate="none")
pc2 <- principal(raqmatrix, nfactors=length(raqMatrix[,1]), rotate="none")
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the number of variables. If you have a large data set or are just too lazy to remember how 
many variables you have then you can change the command slightly to get R to calculate 
the number of variables in the dataframe or correlation matrix automatically (see R’s Souls’ 
Tip 17.2). A final thing to note is that we have set the rotation method to “none”, which 
means that we won’t carry out factor rotation because we don’t need to at this stage.

We can look at the results of the principal components analysis by executing its name:

pc1

Output 17.4 shows the results of the first principal components model. The first part of 
this is the unrotated loadings. Currently these are not interesting, but they represent the 
loading from each factor or component to each variable. 

Principal Components Analysis
Call: principal(r = raq, nfactors = 23, rotate = "none")
Standardized loadings based upon correlation matrix
           PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8
Q01        0.59  0.18 -0.22  0.12 -0.40 -0.11 -0.22 -0.08
Q02       -0.30  0.55  0.15  0.01 -0.03 -0.38  0.19 -0.39
Q03       -0.63  0.29  0.21 -0.07  0.02  0.00  0.01 -0.05
Q04        0.63  0.14 -0.15  0.15 -0.20 -0.12 -0.06  0.11
Q05        0.56  0.10 -0.07  0.14 -0.42 -0.17 -0.06  0.11
Q06        0.56  0.10  0.57 -0.05  0.17  0.01  0.00  0.05
Q07        0.69  0.04  0.25  0.10  0.17 -0.08  0.05  0.03
Q08        0.55  0.40 -0.32 -0.42  0.15  0.10 -0.07 -0.04
Q09       -0.28  0.63 -0.01  0.10  0.17 -0.27 -0.01 -0.03
Q10        0.44  0.03  0.36 -0.10 -0.34  0.22  0.44 -0.03
Q11        0.65  0.25 -0.21 -0.40  0.13  0.18 -0.01  0.03
Q12        0.67 -0.05  0.05  0.25  0.04 -0.08 -0.14  0.08
Q13        0.67  0.08  0.28 -0.01  0.13  0.03 -0.21  0.05
Q14        0.66  0.02  0.20  0.14  0.08 -0.03 -0.10 -0.06
Q15        0.59  0.01  0.12 -0.11 -0.07  0.29  0.32 -0.12
Q16        0.68  0.01 -0.14  0.08 -0.32  0.00  0.12 -0.14
Q17        0.64  0.33 -0.21 -0.34  0.10  0.05 -0.02  0.03
Q18        0.70  0.03  0.30  0.13  0.15 -0.09 -0.10  0.06
Q19       -0.43  0.39  0.10 -0.01 -0.15  0.07  0.05  0.68
Q20        0.44 -0.21 -0.40  0.30  0.33 -0.01  0.34  0.03
Q21        0.66 -0.06 -0.19  0.28  0.24 -0.15  0.18  0.10
Q22       -0.30  0.47 -0.12  0.38  0.07  0.12  0.31  0.12
Q23       -0.14  0.37 -0.02  0.51  0.02  0.62 -0.28 -0.22

…

             PC17  PC18  PC19  PC20  PC21  PC22  PC23 h2       u2
Q01         -0.05 -0.17  0.16 -0.01 -0.21  0.05  0.01  1  0.0e+00
Q02         -0.08  0.00  0.01 -0.02 -0.02  0.03  0.02  1 -3.1e-15
Q03          0.43  0.08  0.09  0.05  0.01  0.00  0.05  1 -1.6e-15
Q04          0.19  0.05 -0.21  0.04  0.09 -0.02  0.02  1 -1.1e-15
Q05         -0.04  0.01 -0.04  0.00 -0.02  0.02  0.01  1 -2.0e-15
Q06         -0.14  0.05  0.09 -0.07  0.04 -0.32 -0.11  1  0.0e+00
Q07          0.03 -0.15  0.20  0.16  0.14  0.24  0.09  1  1.1e-16
Q08          0.10  0.07  0.12 -0.15  0.06  0.16 -0.36  1 -2.2e-16
Q09         -0.19 -0.02 -0.08 -0.03  0.04 -0.01  0.03  1 -4.4e-16
Q10          0.07 -0.01  0.00  0.04 -0.03  0.02 -0.04  1 -4.4e-16
Q11         -0.05  0.07  0.07 -0.18  0.06  0.00  0.41  1 -8.9e-16
Q12         -0.08  0.04  0.36  0.00 -0.04 -0.10 -0.02  1 -2.2e-16
Q13         -0.06 -0.32 -0.30 -0.06  0.16  0.08 -0.05  1  0.0e+00
Q14          0.34 -0.09  0.06  0.02  0.03 -0.01  0.05  1 -4.4e-16
Q15         -0.12 -0.10 -0.04 -0.07 -0.19  0.10  0.00  1 -4.4e-16
Q16         -0.03  0.22 -0.02 -0.04  0.35 -0.12 -0.01  1 -2.0e-15
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Q17          0.04 -0.04 -0.10  0.42 -0.15 -0.23 -0.01  1 -4.4e-16
Q18         -0.06  0.45 -0.15  0.08 -0.18  0.23  0.01  1 -8.9e-16
Q19         -0.06  0.01  0.05 -0.02  0.02  0.04 -0.02  1 -6.7e-16
Q20         -0.09  0.00  0.04  0.18  0.10  0.06 -0.04  1 -8.9e-16
Q21          0.20 -0.03 -0.11 -0.31 -0.20 -0.13 -0.01  1 -2.0e-15
Q22          0.04 -0.06  0.02  0.00  0.01 -0.01  0.01  1  0.0e+00
Q23         -0.03  0.05 -0.03  0.01 -0.01 -0.02  0.00  1  0.0e+00

                PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8  PC9
SS loadings    7.29 1.74 1.32 1.23 0.99 0.90 0.81 0.78 0.75
Proportion Var 0.32 0.08 0.06 0.05 0.04 0.04 0.04 0.03 0.03
Cumulative Var 0.32 0.39 0.45 0.50 0.55 0.59 0.62 0.65 0.69

               PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18
SS loadings    0.72 0.68 0.67 0.61 0.58 0.55 0.52 0.51 0.46
Proportion Var 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
Cumulative Var 0.72 0.75 0.78 0.80 0.83 0.85 0.88 0.90 0.92

               PC19 PC20 PC21 PC22 PC23
SS loadings    0.42 0.41 0.38 0.36 0.33
Proportion Var 0.02 0.02 0.02 0.02 0.01
Cumulative Var 0.94 0.95 0.97 0.99 1.00

Test of the hypothesis that 23 factors are sufficient.

The degrees of freedom for the null model are 253 and the objective 
function was 7.55
The degrees of freedom for the model are -23  and the objective 
function was 0 
The number of observations was 2571 with Chi Square =  0 with prob < NA 

Fit based upon off diagonal values = 1

Output 17.4

On the far right of the factor loading matrix are two columns, labelled h2 and u2.  h2 is 
the communalities (which are sometimes called h2). These communalities are all equal to 1 
because we have extracted 23 items, the same as the number of variables: we’ve explained 
all of the variance in every variable. When we extract fewer factors (or components) we’ll 
have lower communalities. Next to the communality column is the uniqueness column, 
labelled u2. This is the amount of unique variance for each variable, and it’s 1 minus the 
communality; because all of the communalities are 1, all of the uniquenesses are 0.8  

The next thing to look at after the factor loading matrix is the eigenvalues. The eigen-
values associated with each factor represent the variance explained by that particular linear 
component. R calls these SS loadings (sums of squared loadings), because they are the sum 
of the squared loadings. (You can also find them in a variable associated with the model 
called values, so in our case we could access this variable using pc1$values). 

R also displays the eigenvalues in terms of the proportion of variance explained. Factor 1 
explains 7.29 units of variance out of a possible 23 (the number of factors) so as a propor-
tion this is 7.29/23 = 0.32; this is the value that R reports. We can convert these propor-
tions to percentages by multiplying by 100; so, factor 1 explains 32% of the total variance. 

8 Some of them are very, very slightly different from zero; for example, question 2 has a uniqueness, which is 
reported as −3.1e-15, which means .0000000000000031. This is caused by a rounding error (because R stores 
variables to only 15 decimal places).  
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It should be clear that the first few factors explain relatively large amounts of variance 
(especially factor 1) whereas subsequent factors explain only small amounts of variance. 

The eigenvalues show us that four components (or factors) have eigenvalues greater than 
1, suggesting that we extract four components if we use Kaiser’s criterion. By Jolliffe’s 
criterion (retain factors with eigenvalues greater than 0.7) we should retain 10 factors, but 
there is little to recommend this criterion over Kaiser’s. We should also consider the scree 
plot. As mentioned above, the eigenvalues are stored in a variable called pc1$values, and 
we can draw a quick scree plot using the plot() function, by executing:

plot(pc1$values, type = "b") 

This command simply plots the eigenvalues (y) against the factor number (x). By default, 
the plot() function will plot points (type= “p”). We want to see a line so that we can look at 
the trend (we could ask for this by specifying type=“l”), but ideally we want to look at both 
a line and points on the same graph, which is why we specify type=“b”.
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FIGURE 17.7
Scree plot 
from principal 
components 
analysis of RAQ 
data. The second 
plot shows the 
point of inflexion 
at the fourth 
component.

Figure 17.7 shows the scree plot; I show it once as R produces it and then again with 
lines showing a plateau and (what I consider to be) the point of inflexion. This curve is dif-
ficult to interpret because it begins to tail off after three factors, but there is another drop 
after four factors before a stable plateau is reached. Therefore, we could probably justify 
retaining either two or four factors. Given the large sample, it is probably safe to assume 
Kaiser’s criterion. The evidence from the scree plot and from the eigenvalues suggests a 
four-component solution may be the best. 

Now that we know how many components we want to extract, we can rerun the ana
lysis, specifying that number.  To do this, we use an identical command to the previous 
model but we change nfactors = 23 to be nfactors = 4 because we now want only four fac-
tors. (We should also change the name of the resulting model so that we don’t overwrite 
the previous one):

pc2 <-  principal(raqData, nfactors = 4, rotate = "none")
pc2 <- principal(raqMatrix, nfactors = 4, rotate = "none")

Again, the first command is to run the analysis from the raw data and the second is if you’re 
using the correlation matrix. In both cases the commands create a model called pc2 that is 
the same as before except that we’ve extracted only 4 factors (not 23). We can look at this 
model by executing its name:

pc2
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Output 17.5 shows the second principal components model. Again, the output con-
tains the unrotated factor loadings, but only for the first four factors. Notice that these 
are unchanged from the previous factor loading matrix. Also notice that the eigenvalues 
(SS loadings), proportions of variance explained and cumulative proportion of variance 
explained are also unchanged (except now there are only four of them, because we only 
have four components). However, the communalities (the h2 column) and uniquenesses 
(the u2 column) are changed. Remember that the communality is the proportion of com-
mon variance within a variable (see section 17.3.4). Principal components analysis works 
on the initial assumption that all variance is common; therefore, before extraction the 
communalities are all 1. In effect, all of the variance associated with a variable is assumed 
to be common variance. Once factors have been extracted, we have a better idea of how 
much variance is, in reality, common. The communalities in the output reflect this common 
variance. So, for example, we can say that 43% of the variance associated with question 
1 is common, or shared, variance. Another way to look at these communalities is in terms 
of the proportion of variance explained by the underlying factors. Before extraction, there 
were as many factors as there are variables, so all variance is explained by the factors and 
communalities are all 1. However, after extraction some of the factors are discarded and 
so some information is lost. The retained factors cannot explain all of the variance present 
in the data, but they can explain some. The amount of variance in each variable that can 
be explained by the retained factors is represented by the communalities after extraction.

Now that we have the communalities, we can go back to Kaiser’s criterion to see whether 
we still think that four factors should have been extracted. In section 17.3.8 we saw that 
Kaiser’s criterion is accurate when there are fewer than 30 variables and communalities 
after extraction are greater than .7 or when the sample size exceeds 250 and the average 
communality is greater than .6. Of the communalities in Output 17.5, only one exceeds 
.7. The average of these communalities can be found by adding them up and dividing by 
the number of communalities (11.573/23 = .503). So, on both grounds Kaiser’s rule may 
not be accurate. However, in this instance we should consider the huge sample that we 
have, because the research into Kaiser’s criterion gives recommendations for much smaller 
samples. It’s also worth remembering that we have already inspected the scree plot, which 
should be a good guide in a sample as large as ours. However, given the ambiguity in the 
scree plot (there was also a case for retaining only two factors) you might like to rerun the 
analysis specifying that R extract only two factors and compare the results.

Principal Components Analysis
Call: principal(r = raq, nfactors = 4, rotate = "none")
Standardized loadings based upon correlation matrix
     PC1   PC2   PC3   PC4   h2   u2
Q01  0.59  0.18 -0.22  0.12 0.43 0.57
Q02 -0.30  0.55  0.15  0.01 0.41 0.59
Q03 -0.63  0.29  0.21 -0.07 0.53 0.47
Q04  0.63  0.14 -0.15  0.15 0.47 0.53
Q05  0.56  0.10 -0.07  0.14 0.34 0.66
Q06  0.56  0.10  0.57 -0.05 0.65 0.35
Q07  0.69  0.04  0.25  0.10 0.55 0.45
Q08  0.55  0.40 -0.32 -0.42 0.74 0.26
Q09 -0.28  0.63 -0.01  0.10 0.48 0.52
Q10  0.44  0.03  0.36 -0.10 0.33 0.67
Q11  0.65  0.25 -0.21 -0.40 0.69 0.31
Q12  0.67 -0.05  0.05  0.25 0.51 0.49
Q13  0.67  0.08  0.28 -0.01 0.54 0.46
Q14  0.66  0.02  0.20  0.14 0.49 0.51
Q15  0.59  0.01  0.12 -0.11 0.38 0.62
Q16  0.68  0.01 -0.14  0.08 0.49 0.51
Q17  0.64  0.33 -0.21 -0.34 0.68 0.32
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Q18  0.70  0.03  0.30  0.13 0.60 0.40
Q19 -0.43  0.39  0.10 -0.01 0.34 0.66
Q20  0.44 -0.21 -0.40  0.30 0.48 0.52
Q21  0.66 -0.06 -0.19  0.28 0.55 0.45
Q22 -0.30  0.47 -0.12  0.38 0.46 0.54
Q23 -0.14  0.37 -0.02  0.51 0.41 0.59

                PC1  PC2  PC3  PC4
SS loadings    7.29 1.74 1.32 1.23
Proportion Var 0.32 0.08 0.06 0.05
Cumulative Var 0.32 0.39 0.45 0.50

Test of the hypothesis that 4 factors are sufficient.

The degrees of freedom for the null model are 253 and the objective 
function was 7.55
The degrees of freedom for the model are 167  and the objective 
function was 1.03 
The number of observations was 2571 with Chi Square = 2634.37 with prob 
< 0 

Fit based upon off diagonal values = 0.96

Output 17.5

There’s another thing that we can look at to see if we’ve extracted the correct number 
of factors: this is the reproduced correlation matrix and the difference between the repro-
duced correlation matrix and the correlation matrix in the data.

The reproduced correlations are obtained with the factor.model() function. The factor.
model() function, needs to know the factor loading matrix. The factor loading matrix is 
labelled as an object called loadings in the principal components model; therefore we can 
access it by specifying pc2$loadings (which translates as ‘the loadings object associated with 
the pc2 model). Therefore, we can get the reproduced correlations by executing:

factor.model(pc2$loadings)

The difference between the reproduced and actual correlation matrices is referred to as 
the residuals, and these are obtained with the factor.residuals() function. You again need 
to provide the factor loading matrix but also the correlation matrix to which you want 
to compare it (in this case the original correlation matrix, raqMatrix). We can, therefore, 
obtain the residuals by executing:

factor.residuals(raqMatrix, pc2$loadings)
       Q01    Q02    Q03    Q04    Q05    Q06    Q07    Q08    Q09
Q01  0.435 -0.112 -0.372  0.447  0.376  0.218  0.366  0.412 -0.042
Q02 -0.112  0.414  0.380 -0.134 -0.122 -0.033 -0.148  0.002  0.430
Q03 -0.372  0.380  0.530 -0.399 -0.345 -0.200 -0.373 -0.270  0.352
Q04  0.447 -0.134 -0.399  0.469  0.399  0.278  0.419  0.390 -0.073
Q05  0.376 -0.122 -0.345  0.399  0.343  0.273  0.380  0.312 -0.080
Q06  0.218 -0.033 -0.200  0.278  0.273  0.654  0.528  0.183 -0.108
Q07  0.366 -0.148 -0.373  0.419  0.380  0.528  0.545  0.267 -0.161
Q08  0.412  0.002 -0.270  0.390  0.312  0.183  0.267  0.739  0.055
Q09 -0.042  0.430  0.352 -0.073 -0.080 -0.108 -0.161  0.055  0.484
Q10  0.172 -0.061 -0.181  0.212  0.205  0.461  0.382  0.180 -0.116
Q11  0.423 -0.097 -0.357  0.419  0.348  0.290  0.363  0.691 -0.071
Q12  0.402 -0.219 -0.440  0.448  0.397  0.388  0.495  0.228 -0.195
Q13  0.347 -0.122 -0.342  0.395  0.360  0.545  0.533  0.313 -0.147
Q14  0.362 -0.155 -0.373  0.411  0.370  0.477  0.514  0.249 -0.159
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Q15  0.311 -0.158 -0.337  0.343  0.306  0.406  0.425  0.339 -0.174
Q16  0.440 -0.217 -0.458  0.466  0.400  0.300  0.439  0.390 -0.175
Q17  0.439 -0.048 -0.331  0.434  0.359  0.290  0.365  0.695 -0.009
Q18  0.368 -0.149 -0.376  0.424  0.388  0.562  0.570  0.250 -0.168
Q19 -0.204  0.357  0.403 -0.231 -0.207 -0.147 -0.254 -0.104  0.363
Q20  0.342 -0.301 -0.440  0.353  0.292 -0.021  0.219  0.164 -0.218
Q21  0.449 -0.254 -0.488  0.480  0.412  0.244  0.430  0.282 -0.191
Q22 -0.025  0.333  0.275 -0.050 -0.060 -0.209 -0.179 -0.099  0.417
Q23  0.045  0.246  0.158  0.042  0.028 -0.082 -0.037 -0.136  0.323

Output 17.6

Output 17.6 shows an edited version of the reproduced correlation matrix that was 
requested using the factor.model() function in the first table. The diagonal of this matrix con-
tains the communalities after extraction for each variable (you can check the values against 
Output 17.5). Output 17.7 contains an extract from the matrix of residuals: the difference 
between the fitted model and the real data. The diagonal of this matrix is the uniquenesses.

       Q01    Q02    Q03    Q04    Q05    Q06    Q07    Q08    Q09
Q01  0.565  0.013  0.035 -0.011  0.027 -0.001 -0.061 -0.081 -0.050
Q02  0.013  0.586 -0.062  0.022  0.003 -0.041 -0.011 -0.052 -0.115
Q03  0.035 -0.062  0.470  0.019  0.035 -0.027 -0.009  0.011 -0.052
Q04 -0.011  0.022  0.019  0.531  0.002  0.000 -0.010 -0.041 -0.051
Q05  0.027  0.003  0.035  0.002  0.657 -0.016 -0.041 -0.044 -0.016
Q06 -0.001 -0.041 -0.027  0.000 -0.016  0.346 -0.014  0.040 -0.005
Q07 -0.061 -0.011 -0.009 -0.010 -0.041 -0.014  0.455  0.030  0.033
Q08 -0.081 -0.052  0.011 -0.041 -0.044  0.040  0.030  0.261 -0.039
Q09 -0.050 -0.115 -0.052 -0.051 -0.016 -0.005  0.033 -0.039  0.516
Q10  0.042 -0.023 -0.013  0.003  0.053 -0.139 -0.098 -0.021 -0.018
Q11 -0.066 -0.046  0.006 -0.051 -0.050  0.038 -0.018 -0.061 -0.045
Q12 -0.057  0.024  0.030 -0.006 -0.050 -0.076 -0.072  0.024  0.027
Q13  0.008 -0.021  0.024 -0.051 -0.058 -0.078 -0.091  0.001 -0.021
Q14 -0.024 -0.009  0.002 -0.060 -0.055 -0.075 -0.074  0.032  0.038
Q15 -0.065 -0.007  0.025 -0.009 -0.045 -0.047 -0.033 -0.039 -0.012
Q16  0.059  0.050  0.039 -0.050 -0.005 -0.056 -0.051 -0.068 -0.014
Q17 -0.069 -0.039  0.003 -0.052 -0.049 -0.008  0.025 -0.105 -0.027
Q18 -0.020 -0.015  0.001 -0.042 -0.066 -0.048 -0.069  0.030  0.018
Q19  0.015 -0.153 -0.061  0.045  0.041 -0.020 -0.015 -0.056 -0.114
Q20 -0.128  0.099  0.115 -0.110 -0.092  0.122  0.002  0.011  0.060
Q21 -0.120  0.049  0.071 -0.070 -0.078  0.029  0.053  0.014  0.055
Q22 -0.079 -0.102 -0.071 -0.049 -0.072  0.043  0.010  0.020 -0.161
Q23 -0.049 -0.147 -0.008 -0.076 -0.070  0.013 -0.033  0.086 -0.152

Output 17.7

The correlations in the reproduced matrix differ from those in the R-matrix because they 
stem from the model rather than the observed data. If the model were a perfect fit to the 
data then we would expect the reproduced correlation coefficients to be the same as the 
original correlation coefficients. Therefore, to assess the fit of the model we can look at 
the differences between the observed correlations and the correlations based on the model. 
For example, if we take the correlation between questions 1 and 2, the correlation based on 
the observed data is −.099 (taken from Output 17.1). The correlation based on the model 
is −.112, which is slightly higher. We can calculate the difference as follows :

residual

residual
observed from model= r r−

= − − −Q Q1 2
0 099 0 112( . ) ( . ))

.= 0 013
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You should notice that this difference is the value quoted in Output 17.7 for questions 1 
and 2. Therefore, Output 17.7 contains the differences between the observed correlation 
coefficients and the ones predicted from the model. For a good model these values will 
all be small. There are several ways we can define how small we want the residuals to be.

One approach is to see how large the residuals are, compared to the original correlations.  
The very worst the model could be (if we extracted no factors at all) would be the size of the 
correlations in the original data. Thus one approach is to compare the size of the residuals 
with the size of the correlations. If the correlations were small to start with, we’d expect 
very small residuals. If the correlations were large to start with, we wouldn’t mind if the 
residuals were relatively larger. So one measure of the residuals is to compare the residuals 
with the original correlations – because residuals are positive and negative, they should be 
squared before doing that. A measure of the fit of the model is therefore the sum of the 
squared residuals divided by the sum of the squared correlations. As this is considered a 
measure of fit and sometimes people like measures of fit to go from 0 to 1, we subtract 
the value from 1. This statistic is given at the bottom of the main output (Output 17.5) as:

Fit based upon off diagonal values = 0.96

Values over 0.95 are often considered indicators of good fit, and as our value is 0.96, this 
indicates that four factors are sufficient.

There are many other ways of looking at residuals, which we’ll now explore. We couldn’t find 
an R function to do these other things, but we will write one as we go along.9 A simple approach 
to residuals is just to say that we want the residuals to be small. In fact, we want most values to 
be less than 0.05. We can work out how many residuals are large by this criterion fairly easily 
in R. First, we need to extract the residuals into a new object. We need to do this because at the 
moment the matrix of residuals is symmetrical (so the residuals are repeated above and below 
the diagonal of the matrix), and also the diagonal of the matrix does not contain residuals. First 
let’s create an object called residuals that contains the factor residuals by executing:

residuals<-factor.residuals(raqMatrix, pc2$loadings)

We can then extract the upper triangle of this matrix using the upper.tri() function. This has 
the effect of extracting only the elements above the diagonal (so we discard the diagonal 
elements and the elements below the diagonal):

residuals<-as.matrix(residuals[upper.tri(residuals)])

This command re-creates the object residuals by using only the upper triangle of the origi-
nal matrix. The as.matrix() function just makes sure that the residuals are stored as a matrix 
(they’re actually stored as a single column of data). We now have an object called residuals 
that contains the residuals stored in a column. This is handy because it makes it easy to 
calculate various things. For example, if we want to know how many large residuals there 
are (i.e., residuals with absolute values greater than 0.05) then we can execute:

large.resid<-abs(residuals) > 0.05

which uses the abs() function to first compute the absolute value of the column of residuals 
(this is so we ignore whether the residual is positive or negative). The > 0.05 in the com-
mand means that large.resid will be TRUE (or 1) if the residual is greater than 0.05, and 
false (or 0) if the residual is less than or equal to 0.05. We end up with a column the same 
length as the matrix of factor residuals but containing values of TRUE (if the residual is 
large) or FALSE (if it is small). We can then use the sum() function to add up the number 
of TRUE responses in the matrix:

sum(large.resid)

9 R has over 3000 packages. For relatively simple things, it’s often easier to write a small function yourself than 
try to find whether a function already exists. Or, you can find a friend that can write a function for you. We will 
show you how, because we’re your friends.
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The result is 91. If we want to know this as a proportion of the total number of residuals 
we can simply execute:

sum(large.resid)/nrow(residuals)

Executing this command will return the number of large residuals (sum(large.resid)) divided 
by the total number of residuals: nrows() tells us how many items (i.e., residuals) there are 
in total. This will return a value of 0.3596, or 36%. There are no hard and fast rules about 
what proportion of residuals should be below 0.05; however, if more than 50% are greater 
than 0.05 you probably have grounds for concern. For our data, we have 36% so we need 
not worry.

Another way to look at the residuals is to look at their mean. Rather than looking at the 
mean, we should square the residuals, find the mean, and then find the square root. This 
is the root-mean-square residual. Again, this is easy to calculate from our residuals object. 
We can execute:

sqrt(mean(residuals^2))

This command squares each item in the residuals object (residuals^2), then uses the mean() 
function to compute the mean of these squared residuals. The sqrt() function is then used 
to compute the square root of that mean. The resulting value is 0.055, that’s our mean 
residual. A little lower would have been nice, but this is not dreadful. If this were much 
higher (say 0.08) we might want to consider extracting more factors.

Finally, it’s worth looking at the distributions of the residuals – we expect the residuals 
to be approximately normally distributed – if there are any serious outliers, even if the 
other values are all good, we should probably look further into that. We can again use our 
residuals object to plot a quick histogram using the hist() function:

hist(residuals)

Figure 17.8 shows the histogram of the residuals. They do seem approximately normal and 
there are no outliers. We could wrap these commands up in a nice function called residual.
stats () so that we can use it again in other factor analyses (R’s Souls’ Tip 17.3).

Histogram of residuals
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FIGURE 17.8
Histogram of the 
model residuals
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          R ’s  Souls ’  T ip  17 .3   Creating a residual.stats() function 2

We saw (in R’s Souls’ Tip 6.2) that you can write your own functions in R. If we wanted to wrap all of the factor 
analysis residual commands into a function we can do this fairly easily by executing: 

residual.stats<-function(matrix){
	 residuals<-as.matrix(matrix[upper.tri(matrix)])
	 large.resid<-abs(residuals) > 0.05
	 numberLargeResids<-sum(large.resid)
	 propLargeResid<-numberLargeResids/nrow(residuals)
	 rmsr<-sqrt(mean(residuals^2))
	
	 cat("Root means squared residual = ", rmsr, "\n")
	 cat("Number of absolute residuals > 0.05 = ", numberLargeResids, "\n")
	 cat("Proportion of absolute residuals > 0.05 = ", propLargeResid, "\n")
	 hist(residuals)
}

The first line creates the function by naming it residual.stats and telling it to expect a matrix as input. The com-
mands within { } are explained within the main text: they extract the residuals from the matrix entered into the 
function, compute the number (numberLargeResids) and proportion (propLargeResid) of absolute values greater 
than 0.05, compute the root mean squared residual (rmsr), and plot a histogram. The commands using the cat() 
function simply specify the text and values to appear in the output.

Having executed the function, we could use it on our residual matrix in one of two ways. First, we could cal-
culate the residual matrix using the factor.residuals() function, and label the resulting matrix resids. Then pop this 
matrix into the residual.stats() function:

resids <- factor.residuals(raqMatrix, pc2$loadings)
residual.stats(resids)

The second way is to combine these steps and calculate the residuals matrix directly inside the residual.stats() 
function:

residual.stats(factor.residuals(raqMatrix, pc2$loadings))

The output would be as follows (and the histogram in Figure 17.8):

Root means squared residual =  0.05549286 
Number of absolute residuals > 0.05 =  91 
Proportion of absolute residuals > 0.05 =  0.3596838  

             CRAMMING SAM’S TIPS    Factor extraction

•	 To decide how many factors to extract, look at the eigenvalues and the scree plot.  
•	 If you have fewer than 30 variables then using eigenvalues greater than 1 is OK (Kaiser’s criterion) as long as your commu-

nalities are all over .7. Likewise, if your sample size exceeds 250 and the average of the communalities is .6 or greater then 
this is also fine. Alternatively, with 200 or more participants the scree plot can be used.

•	 Check the residuals and make sure that fewer than 50% have absolute values greater than 0.05, and that the model fit is 
greater than 0.90.
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17.6.4.    Rotation 2

We have already seen that the interpretability of factors can be improved through rotation. 
Rotation maximizes the loading of each variable on one of the extracted factors while mini-
mizing the loading on all other factors. This process makes it much clearer which variables 
relate to which factors. Rotation works through changing the absolute values of the variables 
while keeping their differential values constant. I’ve discussed the various rotation options in 
section 17.3.9.1, but, to summarize, the exact choice of rotation will depend on whether or 
not you think that the underlying factors should be related. If there are theoretical grounds 
to think that the factors are independent (unrelated) then you should choose one of the 
orthogonal rotations (I recommend varimax). However, if theory suggests that your factors 
might correlate then one of the oblique rotations (oblimin or promax) should be selected.

17.6.4.1.  Orthogonal rotation (varimax) 2

To carry out a varimax rotation, we change the rotate option in the principal() function 
from “none” to “varimax” (we could also exclude it altogether because varimax is the 
default if the option is not specified):

pc3 <-  principal(raqData, nfactors = 4, rotate = "varimax")
pc3 <-  principal(raqMatrix, nfactors = 4, rotate = "varimax")

The first command is to run the analysis from the raw data and the second is if you’re using 
the correlation matrix. In both cases the commands create a model called pc3 that is the 
same as the previous model (pc2) except that we have used varimax rotation on the model. 
We can look at this model by executing its name:

pc2

Output 17.8 shows the first part of the rotated component matrix (also called the 
rotated factor matrix), which is a matrix of the factor loadings for each variable on each 
factor. This matrix contains the same information as the component matrix in Output 
17.5, except that it is calculated after rotation. Notice that the loadings have changed, but 
the h2 (communality) and u2 (uniqueness) columns have not. Rotation changes factors to 
distribute the variance differently, but it cannot account for more or less variance in the 
variables than it could before rotation. Also notice that the eigenvalues (SS loadings) have 
changed. One of the aims of rotation is to even up the eigenvalues; however, the sum of the 
eigenvalues (and the proportion of variance accounted for) cannot change during rotation.

Interpreting the factor loading matrix is a little complex, and we can make it easier by 
using the print.psych() function. This does two things: first, it removes loadings that are 
below a certain value that we specify (by using the cut option); and second, it reorders 
the items to try to put them into their factors, which we request using the sort option.  
Generally you should be very careful with the cut-off value – if you think that a loading of 
.4 will be interesting, you should use a lower cut-off (say, .3), because you don’t want to 
miss a loading that was .39. Execute this command: 

print.psych(pc3, cut = 0.3, sort = TRUE)

This command prints the factor loading matrix associated with the model pc3, but display-
ing only loadings above .3 (cut = 0.3) and sorting items by the size of their loadings (sort 
= TRUE). 

Principal Components Analysis
Call: principal(r = raqData, nfactors = 4, residuals = TRUE, rotate = 
"varimax")
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Standardized loadings based upon correlation matrix
      RC3   RC1   RC4   RC2   h2   u2
Q01  0.24  0.50  0.36  0.06 0.43 0.57
Q02 -0.01 -0.34  0.07  0.54 0.41 0.59
Q03 -0.20 -0.57 -0.18  0.37 0.53 0.47
Q04  0.32  0.52  0.31  0.04 0.47 0.53
Q05  0.32  0.43  0.24  0.01 0.34 0.66
Q06  0.80 -0.01  0.10 -0.07 0.65 0.35
Q07  0.64  0.33  0.16 -0.08 0.55 0.45
…
                RC3  RC1  RC4  RC2
SS loadings    3.73 3.34 2.55 1.95

Output 17.8

The resulting matrix is in Output 17.9. Compare this matrix to the unrotated solution 
(Output 17.5). Before rotation, most variables loaded highly on the first factor and the 
remaining factors didn’t really get a look in. However, the rotation of the factor struc-
ture has clarified things considerably: there are four factors and variables load very highly 
onto only one factor (with the exception of one question). The suppression of loadings less 
than .3 and ordering variables by loading size also make interpretation considerably easier 
(because you don’t have to scan the matrix to identify substantive loadings).

The next step is to look at the content of questions that load onto the same factor to try 
to identify common themes. If the mathematical factor produced by the analysis represents 
some real-world construct then common themes among highly loading questions can help 
us identify what the construct might be. The questions that load highly on factor 1 are 
Q6 (I have little experience of computers) with the highest loading of .80, Q18 (R always 
crashes when I try to use it), Q13 (I worry I will cause irreparable damage …), Q7 (All 
computers hate me), Q14 (Computers have minds of their own …), Q10 (Computers are 
only for games), and Q15 (Computers are out to get me) with the lowest loading of .46. 
All these items seem to relate to using computers or R. Therefore we might label this factor 
fear of computers. 

Looking at factor 2, we have Q20 (Everybody looks at me when I use R), with a loading 
of .68, Q21 (I wake up under my duvet …), Q3 (Standard deviations excite me),10 Q12 
(People try to tell you that R makes statistics easier …), Q4 (I dream that Pearson is attack-
ing me), Q16 (I weep openly at the mention of central tendency), Q1 (Statistics makes me 
cry) and Q5 (I don’t understand statistics), with the lowest loading of .52 – this item also 
loads moderately on some of the other factors. The questions that load highly on factor 2 
all seem to relate to different aspects of statistics; therefore, we might label this factor fear 
of statistics. 

Principal Components Analysis
Call: principal(r = raqData, nfactors = 4, rotate = "varimax")
Standardized loadings based upon correlation matrix
    item   RC3   RC1   RC4   RC2   h2   u2
Q06    6  0.80                   0.65 0.35
Q18   18  0.68  0.33             0.60 0.40
Q13   13  0.65                   0.54 0.46
Q07    7  0.64  0.33             0.55 0.45
Q14   14  0.58  0.36             0.49 0.51
Q10   10  0.55                   0.33 0.67
Q15   15  0.46                   0.38 0.62
Q20   20        0.68             0.48 0.52
Q21   21        0.66             0.55 0.45

10 Note that this variable has a negative loading – this means that a high score on the factor is associated with a 
lower score on this item.
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Q03    3       -0.57        0.37 0.53 0.47
Q12   12  0.47  0.52             0.51 0.49
Q04    4  0.32  0.52  0.31       0.47 0.53
Q16   16  0.33  0.51  0.31       0.49 0.51
Q01    1        0.50  0.36       0.43 0.57
Q05    5  0.32  0.43             0.34 0.66
Q08    8              0.83       0.74 0.26
Q17   17              0.75       0.68 0.32
Q11   11              0.75       0.69 0.31
Q09    9                    0.65 0.48 0.52
Q22   22                    0.65 0.46 0.54
Q23   23                    0.59 0.41 0.59
Q02    2       -0.34        0.54 0.41 0.59
Q19   19       -0.37        0.43 0.34 0.66

                RC3  RC1  RC4  RC2
SS loadings    3.73 3.34 2.55 1.95
Proportion Var 0.16 0.15 0.11 0.08
Cumulative Var 0.16 0.31 0.42 0.50

Test of the hypothesis that 4 factors are sufficient.

The degrees of freedom for the null model are 253 and the  
objective function was  7.55
The degrees of freedom for the model are 167 and the objective  
function was 1.03 
The number of observations was 2571 with Chi Square = 2634.37  
with prob < 0 

Fit based upon off diagonal values = 0.96

Output 17.9

Factor 3 has only three items loading on it. Q8 (I have never been good at mathematics), 
Q17 (I slip into a coma when I see an equation), and Q11 (I did badly at mathematics at 
school). The three questions that load highly on factor 3 all seem to relate to mathematics; 
therefore, we might label this factor fear of mathematics. 

Finally, the questions that load highly on factor 4 are Q9 (My friends are better at statis-
tics than me), Q22 (My friends are better at R), Q2 (My friends will think I’m stupid) and 
Q19 (Everybody looks at me). All these items contain some component of social evaluation 
from friends; therefore, we might label this factor peer evaluation.

This analysis seems to reveal that the initial questionnaire, in reality, is composed of four 
subscales: fear of computers, fear of statistics, fear of maths and fear of negative peer evalu-
ation. There are two possibilities here. The first is that the RAQ failed to measure what it 
set out to (namely, R anxiety) but does measure some related constructs. The second is that 
these four constructs are sub-components of R anxiety; however, the factor analysis does 
not indicate which of these possibilities is true.

17.6.4.2.  Oblique rotation 2

When we did the orthogonal rotation, we told R that we expected the components that 
we extracted to be uncorrelated. This was a bit of a strange thing to say. All of our factors 
related to fear: fear of computers, fear of statistics, fear of negative peer evaluation and 
feed of mathematics. It’s likely that these will be correlated: people with fear of one thing 
might have fear of other things. If this is the case an oblique rotation is called for. 

17-Field_R-4368-Ch-17.indd   790 29/02/2012   5:59:03 PM



791CHAPTER 17   EXPLORATORY FACTOR ANALYS IS

The command for an oblique rotation is very similar to that for an orthogonal rotation, 
we just change the rotate option, from “varimax” to “oblimin”:

pc4 <- principal(raqData, nfactors = 4, rotate = "oblimin")
pc4 <- principal(raqMatrix, nfactors = 4, rotate = "oblimin")

The first command is to run the analysis from the raw data and the second is if you’re using 
the correlation matrix. In both cases the commands create a model called pc4 that is the 
same as the model pc2 except that we have used oblimin rotation on the model. As with the 
previous model, we can look at the factor loadings from this model in a nice easy-to-digest 
format by executing:

print.psych(pc4, cut = 0.3, sort = TRUE)

The output from this analysis is shown in Output 17.10. The same four factors seem to 
have emerged although they are in a different order. Factor 1 seems to represent fear of 
computers, factor 2 represents fear of peer evaluation, factor 3 represents fear of statistics 
and factor 4 represents fear of mathematics.  

Principal Components Analysis
Call: principal(r = raqData, nfactors = 4, rotate = "oblimin")
Standardized loadings based upon correlation matrix
    item   TC1   TC4   TC3   TC2   h2   u2
Q06    6  0.87                   0.65 0.35
Q18   18  0.70                   0.60 0.40
Q07    7  0.64                   0.55 0.45
Q13   13  0.64                   0.54 0.46
Q10   10  0.57                   0.33 0.67
Q14   14  0.57                   0.49 0.51
Q12   12  0.45        0.43       0.51 0.49
Q15   15  0.40                   0.38 0.62
Q08    8        0.90             0.74 0.26
Q11   11        0.78             0.69 0.31
Q17   17        0.78             0.68 0.32
Q20   20              0.71       0.48 0.52
Q21   21              0.60       0.55 0.45
Q03    3             -0.51       0.53 0.47
Q04    4              0.41       0.47 0.53
Q16   16              0.41       0.49 0.51
Q01    1        0.33  0.40       0.43 0.57
Q05    5              0.34       0.34 0.66
Q22   22                    0.65 0.46 0.54
Q09    9                    0.63 0.48 0.52
Q23   23                    0.61 0.41 0.59
Q02    2             -0.36  0.51 0.41 0.59
Q19   19             -0.35  0.38 0.34 0.66

                TC1  TC4  TC3  TC2
SS loadings    3.90 2.88 2.94 1.85
Proportion Var 0.17 0.13 0.13 0.08
Cumulative Var 0.17 0.29 0.42 0.50

 With factor correlations of 
      TC1   TC4   TC3   TC2
TC1  1.00  0.44  0.36 -0.18
TC4  0.44  1.00  0.31 -0.10
TC3  0.36  0.31  1.00 -0.17
TC2 -0.18 -0.10 -0.17  1.00
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Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the null model are  253 and the  
objective function was 7.55
The degrees of freedom for the model are 167 and the objective  
function was 1.03 
The number of observations was 2571 with Chi Square = 2634.37  
with prob < 0 

Fit based upon off diagonal values = 0.96

Output 17.10

Also in this output you’ll find a correlation matrix between the factors. This matrix 
contains the correlation coefficients between factors – R didn’t bother to show this to us 
when it did an orthogonal rotation, because the correlations were all zero. Factor 2 (TC2) 
has little relationship with any other factors (the correlation coefficients are low), but all 
other factors are interrelated to some degree (notably TC3 with both TC1 and TC4, and 
TC4 with TC1). The fact that these correlations exist tell us that the constructs measured 
can be interrelated. If the constructs were independent then we would expect oblique 
rotation to provide an identical solution to an orthogonal rotation and the component 
correlation matrix should be an identity matrix (i.e., all factors have correlation coef-
ficients of 0). Therefore, this final matrix gives us a guide to whether it is reasonable to 
assume independence between factors: for these data it appears that we cannot assume 
independence. Therefore, the results of the orthogonal rotation should not be trusted: the 
obliquely rotated solution is probably more meaningful.

When an oblique rotation is conducted the factor matrix is split into two matrices: the 
pattern matrix and the structure matrix (see Jane Superbrain Box 17.1). For orthogonal rota-
tion these matrices are the same. The pattern matrix contains the factor loadings and is 
comparable to the factor matrix that we interpreted for the orthogonal rotation. The struc-
ture matrix takes into account the relationship between factors (in fact it is a product of the 
pattern matrix and the matrix containing the correlation coefficients between factors). Most 
researchers interpret the pattern matrix, because it is usually simpler; however, there are situ-
ations in which values in the pattern matrix are suppressed because of relationships between 
the factors. Therefore, the structure matrix is a useful double-check and Graham et al. (2003) 
recommend reporting both (with some useful examples of why this can be important).

Getting the structure matrix out of R is a little bit more complex than getting the pattern 
matrix. You need to multiply the factor loading matrix by the correlation matrix of the 
factors. We’ve come across the loadings, these are called pc4$loadings. The correlations of 
the factors are called the Phi (Greek letter φ, which rhymes with pie) and so are stored in 
pc4$Phi. Given that we have these two matrices, we can get the structure matrix by multi-
plying them; however, this is not a regular multiplication, this is a matrix multiplication, so 
instead of writing * we write %*%. The structure matrix is therefore given by executing:

pc4$loadings %*% pc4$Phi

The kind of people that write R think that this is straightforward, but we realize it’s 
not, especially when you’re starting out. Also, doing this calculation produces a rather 
unfriendly looking structure matrix that isn’t sorted by the size of factor loadings. So, 
we’ve  written a function for you, called factor.structure(); you can source it from our DSUR 
package. The function takes this general form:

factor.structure(pcModel, cut = 0.2, decimals = 2)

All you need to do is enter the name of the principal components model into the function 
and execute. Just like the print.psych() function we have included an option (cut) so you 
can specify a value below which you don’t want to see the loading (the default is .2), and 
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also an option, decimals, that allows you to change the number of decimal places you see 
(the default is 2). For our current model we could execute:

factor.structure(pc4, cut = 0.3)

Output 17.11 shows the structure matrix. The picture becomes more complicated in the 
structure matrix because with the exception of factor 2, several variables load quite highly 
onto more than one factor. This has occurred because of the relationship between factors 1 
and 3 and between factors 3 and 4. This example should highlight why the pattern matrix 
is preferable for interpretative reasons: because it contains information about the unique 
contribution of a variable to a factor.

      TC1   TC4   TC3  TC2
Q06  0.78                 
Q18  0.76  0.36  0.42     
Q13  0.72  0.43  0.33     
Q07  0.72  0.38  0.42     
Q14  0.67  0.35  0.44     
Q12   0.6  0.33  0.59     
Q10  0.56                 
Q15  0.55  0.44  0.31     
Q08        0.85           
Q17  0.44  0.82   0.3     
Q11  0.43  0.82           
Q21  0.46  0.37   0.7     
Q20              0.68     
Q03 -0.39 -0.36 -0.64 0.41
Q16   0.5   0.5  0.58     
Q04  0.47  0.49  0.56     
Q01   0.4   0.5  0.53     
Q05  0.44   0.4  0.47     
Q22                   0.66
Q09                   0.66
Q23                   0.58
Q02             -0.39 0.55
Q19             -0.44 0.45

Output 17.11

On a theoretical level the dependence between our factors does not cause concern; we 
might expect a fairly strong relationship between fear of maths, fear of statistics and fear 
of computers. Generally, the less mathematically and technically minded people struggle 
with statistics. However, we would not expect these constructs to correlate with fear of 
peer evaluation (because this construct is more socially based). In fact, this factor is the one 
that correlates fairly badly with all others – so on a theoretical level, things have turned 
out rather well!

17.6.5.    Factor scores 2

Having reached a suitable solution and rotated that solution, we can look at the factor 
scores. Factor scores are obtained by adding scores = TRUE to the principal() function. 
Therefore, to get factor scores for our model pc4, we would rerun the analysis using by 
executing:

pc5 <- principal(raqData, nfactors = 4, rotate = "oblimin", scores = TRUE)

17-Field_R-4368-Ch-17.indd   793 29/02/2012   5:59:03 PM



794 D ISCOVER ING STAT IST ICS  US ING R

By setting the scores option to TRUE the factor scores are added to the principal com-
ponent model in an object called scores; therefore, we can access these scores by using 
pc5$scores (which translates as the scores object attached to the model pc5 that we just 
created). To view the factor scores, you could execute:

pc5$scores

However, there are rather a lot of them (2571 actually), so let’s look at the first 10 rows, 
by using the head() function and executing:

head(pc5$scores, 10)

SELF-TEST

ü	 Using what you learnt in Chapter 6, or Section 
17.6.2, calculate the correlation matrix for the factor 
scores. Compare this to the correlations of the 
factors in Output 17.10.

             TC1        TC4         TC3        TC2
 [1,]  0.37296709  1.8808424  0.95979596  0.3910711
 [2,]  0.63334164  0.2374679  0.29090777 -0.3504080
 [3,]  0.39712768 -0.1056263 -0.09333769  0.9249353
 [4,] -0.78741595  0.2956628 -0.77703307  0.2605666
 [5,]  0.04425942  0.6815179  0.59786611 -0.6912687
 [6,] -1.70018648  0.2091685  0.02784164  0.6653081
 [7,]  0.66139239  0.4224096  1.52552021 -0.9805434
 [8,]  0.59491329  0.4060248  1.06465956 -1.0932598
 [9,] -2.34971189 -3.6134797 -1.42999472 -0.5443773
[10,]  0.93504597  0.2285419  0.96735727 -1.5712753

Output 17.12

Output 17.12 shows the factor scores for the first 10 participants. Factor scores can be used 
in this way to assess the relative fear of one person compared to another. We can also use factor 
scores in regression when groups of predictors correlate so highly that there is multicollinearity.

Before we can do any analysis with our factor scores, we need to add the factor scores 
into our dataframe.  To do this, we use the cbind() function, which we have used numerous 
times before:

raqData <- cbind(raqData, pc5$scores)

             CRAMMING SAM’S TIPS    Interpretation

•	 If you’ve conducted orthogonal rotation then look at the table labelled rotated component matrix. For each variable, note 
the component for which the variable has the highest loading. Also, for each component, note the variables that load highly 
onto it (by ‘high’ I mean loadings should be above .4 when you ignore the plus or minus sign). Try to make sense of what 
the factors represent by looking for common themes in the items that load onto them.

•	 If you’ve conducted oblique rotation then calculate and look  at the pattern matrix. For each variable, note the component for 
which the variable has the highest loading. Also, for each component, note the variables that load highly onto it (by ‘high’ I 
mean loadings should be above .4 when you ignore the plus or minus sign). Double-check what you find by doing the same 
thing for the structure matrix. Try to make sense of what the factors represents by looking for common themes in the items 
that load onto them.
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SELF-TEST

ü	 Can you think of another way of obtaining the 
structure matrix (the correlations between factors 
and items) now you’ve learned about factor scores?

17.6.6.    Summary 2

To sum up, the analyses revealed four underlying scales in our questionnaire that may, 
or may not, relate to genuine sub-components of R anxiety. It also seems as though an 
obliquely rotated solution was preferred due to the interrelationships between factors. The 
use of factor analysis is purely exploratory; it should be used only to guide future hypothe-
ses, or to inform researchers about patterns within data sets. A great many decisions are left 
to the researcher using factor analysis, and I urge you to make informed decisions, rather 
than basing decisions on the outcomes you would like to get. In section 17.9 we consider 
whether or not our scale is reliable.

17.7.  How to report factor analysis 1

As with any analysis, when reporting factor analysis we need to provide our readers with 
enough information to make an informed opinion about our data. As a bare minimum we 
should be very clear about our criteria for extracting factors and the method of rotation 
used. We must also produce a table of the rotated factor loadings of all items and flag (in 
bold) values above a criterion level (I would personally choose .40, but I discussed the 
various criteria you could use in section 17.3.9.2). You should also report the percentage 
of variance that each factor explains and possibly the eigenvalue too. Table 17.1 shows an 
example of such a table for the RAQ data; note that I have also reported the sample size 
in the title. 

In my opinion, a table of factor loadings and a description of the analysis are a bare mini-
mum, though. You could consider (if it’s not too large) including the table of correlations 
from which someone could reproduce your analysis (should they want to). You could also 
consider including some information on sample size adequacy. 

For this example we might write something like this:

	A principal components analysis (PCA) was conducted on the 23 items with orthog-
onal rotation (varimax). The Kaiser–Meyer–Olkin measure verified the sampling 
adequacy for the analysis KMO = .93 (‘superb’ according to Kaiser, 1974), and all 
KMO values for individual items were > .77, which is well above the acceptable 
limit of .5. Bartlett’s test of sphericity, χ² (253) = 19,334, p < .001, indicated that 
correlations between items were sufficiently large for PCA. An initial analysis was 
run to obtain eigenvalues for each component in the data. Four components had 
eigenvalues over Kaiser’s criterion of 1 and in combination explained 50.32% of the 
variance. The scree plot was slightly ambiguous and showed inflexions that would 
justify retaining both two and four components. Given the large sample size, and 
the convergence of the scree plot and Kaiser’s criterion on four components, four 
components were retained in the final analysis. Table 17.1 shows the factor loadings 
after rotation. The items that cluster on the same components suggest that compo-
nent 1 represents a fear of computers, component 2 a fear of statistics, component 
3 a fear of maths and component 4 peer evaluation concerns.
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Table 17.1  Summary of exploratory factor analysis results for the R anxiety questionnaire 
(N = 2571)

Varimax rotated factor loadings

Item
Fear of 

computers
Fear of 

statistics
Peer 

evaluation
Fear of 
maths

I have little experience of computers .80 -.01 -.07 .10

R always crashes when I try to use it .68 .33 -.08 .13

I worry that I will cause irreparable damage 
because of my incompetence with 
computers

.65 .23 -.10 .23

All computers hate me .64 .33 -.08 .16

Computers have minds of their own and 
deliberately go wrong whenever I use them

.58 .36 -.07 .14

Computers are useful only for playing 
games 

.55 .00 -.12 .13

Computers are out to get me .46 .22 -.19 .29

I can’t sleep for thoughts of eigen vectors -.04 .68 -.14 .08

I wake up under my duvet thinking that I 
am trapped under a normal distribution

.29 .66 -.07 .16

Standard deviations excite me -.20 -.57 .37 -.18

People try to tell you that R makes statistics 
easier to understand but it doesn’t

.47 .52 -.08 .10

I dream that Pearson is attacking me with 
correlation coefficients

.32 .52 .04 .31

I weep openly at the mention of central 
tendency

.33 .51 -.12 .31

Statistics makes me cry .24 .50 .06 .36

I don’t understand statistics .32 .43 .02 .24

I have never been good at mathematics .13 .17 .01 .83

I slip into a coma whenever I see an 
equation

.27 .22 -.04 .75

I did badly at mathematics at school .26 .21 -.14 .75

My friends are better at statistics than me -.09 -.20 .65 .12

My friends are better at R than I am -.19 .03 .65 -.10

If I’m good at statistics my friends will think 
I’m a nerd

-.02 .17 .59 -.20

My friends will think I’m stupid for not being 
able to cope with R

-.01 -.34 .54 .07

Everybody looks at me when I use R -.15 -.37 .43 -.03

Eigenvalues 3.73 3.34 1.95 2.55

% of variance 16.22 14.52 8.48 11.10

α .82 .82 .57 .82

Note: Factor loadings over .40 appear in bold.
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Finally, if you have used oblique rotation you should consider reporting a table of both the 
structure and pattern matrix because the loadings in these tables have different interpreta-
tions (see Jane Superbrain Box 17.1).

          Labcoat  Len i ’s  Real  Research 17 .1   World wide addiction? 2

Nichols, L. A., & Nicki, R. (2004). Psychology of Addictive Behaviors, 18(4), 381–384.

The Internet is now a houshold tool. In 2007 it was estimated that around 179 million people worldwide used the 
Internet (over 100 million of those were in the USA and Canada). From the increasing popularity (and usefulness) 
of the Internet has emerged a new phenomenon: Internet addiction. This is now a serious and recognized problem, 
but until very recently it was very difficult to research this topic because there was not a psychometrically sound 
measure of Internet addition. That is, until Laura Nichols and Richard Nicki developed the Internet Addiction Scale, 
IAS (Nichols & Nicki, 2004). (Incidentally, while doing some research on this topic I encountered an Internet addic-
tion recovery website that I won’t name but that offered a whole host of resources that would keep you online for 
ages, such as questionnaires, an online support group, videos, articles, a recovery blog and podcasts. It struck 
me that this was a bit like having a recovery centre for heroin addiction where the addict arrives to be greeted by a 
nice-looking counsellor who says ‘there’s a huge pile of heroin in the corner over there, just help yourself’.)

Anyway, Nichols and Nicki developed a 36-item questionnaire to measure internet addiction. It contained items 
such as ‘I have stayed on the Internet longer than I intended to’ and ‘My grades/work have suffered because of 
my Internet use’, which could be responded to on a 5-point scale (Never, Rarely, Sometimes, Frequently, Always). 
They collected data from 207 people to validate this measure.

The data from this study are in the file Nichols & Nicki (2004).dat. The authors dropped two items because 
they had low means and variances, and dropped three others because of relatively low correlations with other 
items. They performed a principal components analysis on the remaining 31 items. Labcoat Leni wants you to run 

some descriptive statistics to work out which two items were dropped for having low means/variances, 
then inspect a correlation matrix to find the three items that were dropped for having low correlations. 
Finally, he wants you to run a principal components analysis on the data.

Answers are in the additional material on the companion website (or look at the original article).

17.8.  Reliability analysis 2

17.8.1.    Measures of reliability 3

If you’re using factor analysis to validate a questionnaire, it is useful to check the reliability 
of your scale.

SELF-TEST

ü	 Thinking back to Chapter 1, what are reliability and 
test–retest reliability?
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Reliability means that a measure (or in this case questionnaire) should con-
sistently reflect the construct that it is measuring. One way to think of this is 
that, other things being equal, a person should get the same score on a ques-
tionnaire if they complete it at two different points in time (we have already 
discovered that this is called test–retest reliability). So, someone who is terrified 
of statistics and who scores highly on our RAQ should score similarly highly 
if we tested them a month later (assuming they hadn’t gone into some kind of 
statistics-anxiety therapy in that month). Another way to look at reliability is to 
say that two people who are the same in terms of the construct being measured 

should get the same score. So, if we took two people who were equally statistics-phobic, 
then they should get more or less identical scores on the RAQ. Likewise, if we took two 
people who loved statistics, they should both get equally low scores. It should be appar-
ent that if we took someone who loved statistics and someone who was terrified of it, and 
they got the same score on our questionnaire, then it wouldn’t be an accurate measure of 
statistical anxiety. In statistical terms, the usual way to look at reliability is based on the idea 
that individual items (or sets of items) should produce results consistent with the overall 
questionnaire. So, if we take someone scared of statistics, then their overall score on the 
RAQ will be high; if the RAQ is reliable then if we randomly select some items from it the 
person’s score on those items should also be high.

The simplest way to do this in practice is to use split-half reliability. This method ran-
domly splits the data set into two. A score for each participant is then calculated based on 
each half of the scale. If a scale is very reliable a person’s score on one half of the scale 
should be the same (or similar) to their score on the other half: therefore, across several 
participants, scores from the two halves of the questionnaire should correlate perfectly 
(well, very highly). The correlation between the two halves is the statistic computed in the 
split-half method, with large correlations being a sign of reliability. The problem with this 
method is that there are several ways in which a set of data can be split into two and so 
the results could be a product of the way in which the data were split. To overcome this 
problem, Cronbach (1951) came up with a measure that is loosely equivalent to splitting 
data in two in every possible way and computing the correlation coefficient for each split. 
The average of these values is equivalent to Cronbach’s alpha, α, which is the most common 
measure of scale reliability.11

Cronbach’s α is:

α =
N

s

2

item
2

item

Cov

Cov+ ∑∑ 	 (17.6)

which may look complicated, but actually isn’t. The first thing to note is that for each item 
on our scale we can calculate two things: the variance within the item, and the covari-
ance between a particular item and any other item on the scale. Put another way, we can 
construct a variance–covariance matrix of all items. In this matrix the diagonal elements 
will be the variance within a particular item, and the off-diagonal elements will be covari-
ances between pairs of items. The top half of the equation is simply the number of items 
(N) squared multiplied by the average covariance between items (the average of the off-
diagonal elements in the aforementioned variance–covariance matrix). The bottom half is 

11 Although this is the easiest way to conceptualize Cronbach’s α, whether or not it is exactly equal to the average 
of all possible split-half reliabilities depends on exactly how you calculate the split-half reliability (see the glossary 
for computational details). If you use the Spearman–Brown formula, which takes no account of item standard 
deviations, then Cronbach’s α will be equal to the average split-half reliability only when the item standard devia-
tions are equal; otherwise α will be smaller than the average. However, if you use a formula for split-half reli-
ability that does account for item standard deviations (such as Flanagan, 1937; Rulon, 1939) then α will always 
equal the average split-half reliability (see Cortina, 1993).

How do I tell if my
questionnaire is reliable?
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just the sum of all the item variances and item covariances (i.e., the sum of everything in 
the variance–covariance matrix).

There is a standardized version of the coefficient too, which essentially uses the same 
equation except that correlations are used rather than covariances, and the bottom half of 
the equation uses the sum of the elements in the correlation matrix of items (including the 
ones that appear on the diagonal of that matrix). The normal alpha is appropriate when 
items on a scale are summed to produce a single score for that scale (the standardized alpha 
is not appropriate in these cases). The standardized alpha is useful, though, when items on 
a scale are standardized before being summed. 

17.8.2.  �  Interpreting Cronbach’s α (some cautionary tales …) 2

You’ll often see in books, journal articles, or be told by people that a value of .7 to .8 is an 
acceptable value for Cronbach’s α; values substantially lower indicate an unreliable scale. 
Kline (1999) notes that although the generally accepted value of .8 is appropriate for cog-
nitive tests such as intelligence tests, for ability tests a cut-off point of .7 is more suitable. 
He goes on to say that when dealing with psychological constructs values below even .7 
can, realistically, be expected because of the diversity of the constructs being measured.

However, Cortina (1993) notes that such general guidelines need to be used with cau-
tion because the value of α depends on the number of items on the scale. You’ll notice that 
the top half of the equation for α includes the number of items squared. Therefore, as the 
number of items on the scale increases, α will increase. Therefore, it’s possible to get a large 
value of α because you have a lot of items on the scale! For example, Cortina reports data 
from two scales, both of which have α = .8. The first scale has only three items, and the 
average correlation between items was a respectable .57; however, the second scale had 10 
items, with an average correlation between these items of a less respectable .28. Clearly the 
internal consistency of these scales differs enormously, yet they are both equally reliable

A second common interpretation of alpha is that it measures ‘unidimensionality’, or the 
extent to which the scale measures one underlying factor or construct. This interpretation 
stems from the fact that when there is one factor underlying the data, α is a measure of the 
strength of that factor (see Cortina, 1993). However, Grayson (2004) demonstrates that 
data sets with the same α can have very different structures. He showed that α = .8 can 
be achieved in a scale with one underlying factor, with two moderately correlated factors 
and with two uncorrelated factors. Cortina (1993) has also shown that with more than 
12 items, and fairly high correlations between items (r > .5), α can reach values around 
and above .7 (.65 to .84). These results compellingly show that α should not be used as a 
measure of ‘unidimensionality’. Indeed, Cronbach (1951) suggested that if several factors 
exist then the formula should be applied separately to items relating to different factors. 
In other words, if your questionnaire has subscales, α should be applied separately to these 
subscales.

The final warning is about items that have a reverse phrasing. For example, in our RAQ 
that we used in the factor analysis part of this chapter, we had one item (question 3) that 
was phrased the opposite way around to all other items. The item was ‘standard deviations 
excite me’. Compare this to any other item and you’ll see it requires the opposite response. 
For example, item 1 is ‘statistics make me cry’. Now, if you don’t like statistics then you’ll 
strongly agree with this statement and so will get a score of 5 on our scale. For item 3, if 
you hate statistics then standard deviations are unlikely to excite you so you’ll strongly 
disagree and get a score of 1 on the scale. These reverse-phrased items are important for 
reducing response bias; participants will actually have to read the items in case they are 
phrased the other way around. For factor analysis, this reverse phrasing doesn’t matter, 
all that happens is you get a negative factor loading for any reversed items (in fact, look 
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at Output 17.10 and you’ll see that item 3 has a negative factor loading). 
However, in reliability analysis these reverse-scored items do make a differ-
ence. To see why, think about the equation for Cronbach’s α. In this equa-
tion, the top half incorporates the average covariance between items. If an 
item is reverse-phrased then it will have a negative relationship with other 
items, hence the covariances between this item and other items will be nega-
tive. The average covariance is obviously the sum of covariances divided 
by the number of covariances, and by including a bunch of negative values 
we reduce the sum of covariances, and hence we also reduce Cronbach’s α, 
because the top half of the equation gets smaller. In extreme cases, it is even 
possible to get a negative value for Cronbach’s α, simply because the magni-
tude of negative covariances is bigger than the magnitude of positive ones. 

A negative Cronbach’s α doesn’t make much sense, but it does happen, and if it does, ask 
yourself whether you included any reverse-phrased items. 

17.8.3.    Reliability analysis with R Commander 1

As with factor analysis, it’s possible to use R Commander to obtain reliability estimates. 
However, the procedure is not as flexible as the alpha() function in the psych package, so 
that’s the one we use.

17.8.4.    Reliability analysis using R 2

Let’s test the reliability of the RAQ using the data in RAQ.dat. Remember also that I said 
we should conduct reliability analysis on any subscales individually. If we use the results 
from our orthogonal rotation (look back at), then we have four subscales:

1	 Subscale 1 (Fear of computers): items 6, 7, 10, 13, 14, 15, 18

2	 Subscale 2 (Fear of statistics): items 1, 3, 4, 5, 12, 16, 20, 21

3	 Subscale 3 (Fear of mathematics): items 8, 11, 17

4	 Subscale 4 (Peer evaluation): items 2, 9, 19, 22, 23

(Don’t forget that question 3 has a negative sign; we’ll need to remember to deal with that.) 
First, we’ll create four new data sets, containing the subscales for the items. We don’t need 
to do that, but it saves a lot of typing later on. We can create these data sets by simply select-
ing the appropriate columns of the full dataframe (raqData) as described in section 3.9.1.

computerFear<-raqData[, c(6, 7, 10, 13, 14, 15, 18)]
statisticsFear <- raqData[, c(1, 3, 4, 5, 12, 16, 20, 21)]
mathFear <- raqData[, c(8, 11, 17)]
peerEvaluation <- raqData[, c(2, 9, 19, 22, 23)]

This command takes the raqData dataframe and retains all of the rows (hence no com-
mand before the comma), and any columns specified in the c() function after the comma. 
For example, the first command creates an object called computerFear that contains only 
columns 6, 7, 10, 13, 14, 15, and 18 of the dataframe raqData.

Reliability analysis is done with the alpha() function, which is found in the psych pack-
age. You might have a problem here, because there is also a function in ggplot2 called alpha, 

Eek! My alpha is
negative: is
that correct?
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and if you’ve loaded ggplot2 first, that version will have priority. This was covered in R’s 
Souls’ Tip 3.4, but to remind you, if you get the wrong alpha() function, you can specify 
the package, using:

psych::alpha()

An additional complication that we need to deal with is that pesky item 3, which is 
negatively scored. We can do one of two things with this item. We can reverse the variable 
in the data set, or we can tell alpha() that it is negative, using the keys option. This latter 
option is better because we leave the initial data unchanged (which is useful because we 
don’t get into awkward situations in which we save the data and then can’t recall at a  later 
date whether or not the data contains the reverse scored or original scores).

To use the keys option we give alpha() a vector of 1s and –1s, which matches the number 
of variables in the data set, using a 1 for a positively score item and a –1 for a negatively 
scored item. So for computerFear, which has only positively scored items, we would use:

keys = c(1, 1, 1, 1, 1, 1, 1)

but for statisticsFear, which has item 3 (the negatively scored item) as its second item, we 
would use:

keys = c(1, -1, 1, 1, 1, 1, 1, 1)

For three of our four subscales we don’t need to use the keys option because all items are 
positively scored, but for statisticsFear we need to. To use the alpha() function we simply 
input the name of the dataframe for each subscale, and, where necessary, include the keys 
option. Therefore, we could run the reliability analysis for our four subscales by executing:

alpha(computerFear)
alpha(statisticsFear, keys = c(1, -1, 1, 1, 1, 1, 1, 1))
alpha(mathFear)
alpha(peerEvaluation)

17.8.5.    Interpreting the output 2

Output 17.13 shows the results of this basic reliability analysis for the fear of computing 
subscale. First, and perhaps most important, the value of alpha at the very top is Cronbach’s 
α: the overall reliability of the scale (you should look at the raw alpha, they’re usually very 
similar though). To reiterate, we’re looking for values in the range of .7 to .8 (or therea-
bouts) bearing in mind what we’ve already noted about effects from the number of items. 
In this case α is slightly above .8, and is certainly in the region indicated by Kline (1999), 
so this probably indicates good reliability. 

Along with alpha, there is a measure labelled G6, short for Guttman’s lambda 6; this can 
be calculated from the squared multiple correlation (hence it’s labelled smc).12 The average_r 
is the average inter-item correlation (from which we can calculate standardized alpha).

Also in this top section are some scale characteristics. If we calculated someone’s score 
by taking the average of all of their items (which is the same as adding up the score and 
dividing by the number of items), we would have a variable with an overall mean of 3.4 
and standard deviation of 0.71.13

12 Fact fiends might be interested to know that Guttman came up with Cronbach’s alpha before Cronbach, and 
called it lambda 3.

13 You can test this by running: 

describe(apply((raq[c(6, 7, 10, 13, 14, 15, 18)]), 1, mean))
which gives you a mean of 3.42 and sd = 0.71. 
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Next, we get a table giving the statistics for the scale if we deleted each item in turn. 
The values in the column labelled raw_alpha are the values of the overall α if that item 
isn’t included in the calculation. As such, they reflect the change in Cronbach’s α that 
would be seen if a particular item were deleted. The overall α is .82, and so all values in 
this column should be around that same value. What we’re actually looking for is values of 
alpha greater than the overall α. If you think about it, if the deletion of an item increases 
Cronbach’s α then this means that the deletion of that item improves reliability (remember-
ing that scales with more items are more reliable, so removing an item should always lower 
alpha). Therefore, any items that have values of α in this column greater than the overall 
α may need to be deleted from the scale to improve its reliability. None of the items here 
would substantially affect reliability if they were deleted. None of the items increase alpha 
by being deleted. This table also contains the standardized alpha if the item is removed, the 
G6 if the item is removed and the mean correlation if the item is removed.  

The next table in the output is labelled item statistics. The values in the first column 
labelled r are the correlations between each item and the total score from the question-
naire – sometimes called item–total correlations. There’s a problem with this statistic, and 
that is that the item is included in the total. That is, if we correlate item 6 with the mean 
of all items, we’re correlating the item with itself, so of course it will correlate. We can 
correct this by correlating each item with all of the other items. Two versions of this are 
presented, r.cor and r.drop:  r.cor is a little complex, so we won’t go into it (but the help file 
for alpha explains it), r.drop is the correlation of that item with the scale total if that item 
isn’t included in the scale total.  Sometimes this is called the item–rest correlation (because 
it’s how the item correlates with the rest of the items) and sometimes it’s called the cor-
rected item–total correlation.

Reliability analysis   
Call: alpha(x = computerFear)

  raw_alpha std.alpha G6(smc) average_r mean   sd
      0.82      0.82    0.81       0.4  3.4 0.71

 Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r
Q06      0.79      0.79    0.77      0.38
Q07      0.79      0.79    0.77      0.38
Q10      0.82      0.82    0.80      0.44
Q13      0.79      0.79    0.77      0.39
Q14      0.80      0.80    0.77      0.39
Q15      0.81      0.81    0.79      0.41
Q18      0.79      0.78    0.76      0.38

 Item statistics 
       n    r r.cor r.drop mean   sd
Q06 2571 0.74  0.68   0.62  3.8 1.12
Q07 2571 0.73  0.68   0.62  3.1 1.10
Q10 2571 0.57  0.44   0.40  3.7 0.88
Q13 2571 0.73  0.67   0.61  3.6 0.95
Q14 2571 0.70  0.64   0.58  3.1 1.00
Q15 2571 0.64  0.54   0.49  3.2 1.01
Q18 2571 0.76  0.72   0.65  3.4 1.05

Non missing response frequency for each item
       1    2    3    4    5 miss
Q06 0.06 0.10 0.13 0.44 0.27    0
Q07 0.09 0.24 0.26 0.34 0.07    0
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Q10 0.02 0.10 0.18 0.57 0.14    0
Q13 0.03 0.12 0.25 0.48 0.12    0
Q14 0.07 0.18 0.38 0.31 0.06    0
Q15 0.06 0.18 0.30 0.39 0.07    0
Q18 0.06 0.12 0.31 0.37 0.14    0

Output 17.13

In a reliable scale all items should correlate with the total. So, we’re looking for items 
that don’t correlate with the overall score from the scale: if any of these values of r.drop 
are less than about .3 then we’ve got problems, because it means that a particular item does 
not correlate very well with the scale overall. Items with low correlations may have to be 
dropped. For these data, all data have corrected item–total correlations above .3, which is 
encouraging. The table also shows the mean and standard deviation of the scale if the item 
is omitted.

The final table in the alpha output is a table of frequencies. It tells us what percentage of 
people gave each response to each of the items. This is useful to make sure that everyone 
in your sample is not giving the same response. It is usually the case that an item where 
everyone (or almost everyone) gives the same response will almost certainly have poor 
reliability statistics.

As a final point, it’s worth noting that if items do need to be removed at this stage then 
you should rerun your factor analysis as well to make sure that the deletion of the item has 
not affected the factor structure.

Reliability analysis   
Call: alpha(x = statisticsFear, keys = c(1, -1, 1, 1, 1, 1, 1, 1))

  raw_alpha std.alpha G6(smc) average_r mean  sd
      0.82      0.82    0.81      0.37  3.1 0.5

 Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r
Q01      0.80      0.80    0.79      0.37
Q03      0.80      0.80    0.79      0.37
Q04      0.80      0.80    0.78      0.36
Q05      0.81      0.81    0.80      0.38
Q12      0.80      0.80    0.79      0.36
Q16      0.79      0.80    0.78      0.36
Q20      0.82      0.82    0.80      0.40
Q21      0.79      0.80    0.78      0.36

 Item statistics 
       n    r r.cor r.drop mean   sd
Q01 2571 0.67  0.60   0.54  3.6 0.83
Q03 2571 0.67  0.60   0.55  3.4 1.08
Q04 2571 0.70  0.64   0.58  3.2 0.95
Q05 2571 0.63  0.55   0.49  3.3 0.96
Q12 2571 0.69  0.63   0.57  2.8 0.92
Q16 2571 0.71  0.67   0.60  3.1 0.92
Q20 2571 0.56  0.47   0.42  2.4 1.04
Q21 2571 0.71  0.67   0.61  2.8 0.98

Non missing response frequency for each item
       1    2    3    4    5 miss
Q01 0.02 0.07 0.29 0.52 0.11    0
Q03 0.03 0.17 0.34 0.26 0.19    0
Q04 0.05 0.17 0.36 0.37 0.05    0
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Q05 0.04 0.18 0.29 0.43 0.06    0
Q12 0.09 0.23 0.46 0.20 0.02    0
Q16 0.06 0.16 0.42 0.33 0.04    0
Q20 0.22 0.37 0.25 0.15 0.02    0
Q21 0.09 0.29 0.34 0.26 0.02    0

Output 17.14

OK, let’s move on to the fear of statistics subscale (items 1, 3, 4, 5, 12, 16, 20 and 21). I 
won’t go through the R output in detail again, but it is shown in Output 17.14. The over-
all α is .82, and none of the items here would increase the reliability if they were deleted. 
The values in the column labelled r.drop are again all above .3, which is good. In all, this 
indicates that all items are positively contributing to the overall reliability. The overall α is 
also excellent (.82) because it is above .8, and indicates good reliability. 

Reliability analysis   
Call: alpha(x = statisticsFear)

  raw_alpha std.alpha G6(smc) average_r mean  sd
      0.61      0.64    0.71      0.18  3.1 0.5

 Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r
Q01      0.52      0.56    0.64      0.15
Q03      0.80      0.80    0.79      0.37
Q04      0.50      0.55    0.64      0.15
Q05      0.52      0.57    0.66      0.16
Q12      0.52      0.56    0.65      0.15
Q16      0.51      0.55    0.63      0.15
Q20      0.56      0.60    0.68      0.18
Q21      0.50      0.55    0.63      0.15

 Item statistics 
       n     r r.cor r.drop mean   sd
Q01 2571  0.68  0.62   0.51  3.6 0.83
Q03 2571 -0.37 -0.64  -0.55  3.4 1.08
Q04 2571  0.69  0.65   0.53  3.2 0.95
Q05 2571  0.65  0.57   0.47  3.3 0.96
Q12 2571  0.67  0.62   0.50  2.8 0.92
Q16 2571  0.70  0.66   0.53  3.1 0.92
Q20 2571  0.55  0.45   0.35  2.4 1.04
Q21 2571  0.70  0.66   0.54  2.8 0.98

Non missing response frequency for each item
       1    2    3    4    5 miss
Q01 0.02 0.07 0.29 0.52 0.11    0
Q03 0.03 0.17 0.34 0.26 0.19    0
Q04 0.05 0.17 0.36 0.37 0.05    0
Q05 0.04 0.18 0.29 0.43 0.06    0
Q12 0.09 0.23 0.46 0.20 0.02    0
Q16 0.06 0.16 0.42 0.33 0.04    0
Q20 0.22 0.37 0.25 0.15 0.02    0
Q21 0.09 0.29 0.34 0.26 0.02    0

Output 17.15

Just to illustrate the importance of reverse-scoring items before running reliability ana
lysis, Output 17.15 shows the reliability analysis for the fear of statistics subscale but done 
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on the original data (i.e., without item 3 being reverse scored by using the keys option). 
Note that the overall α is considerably lower (.61 rather than .82). Also, note that this item 
has a negative item–total correlation (which is a good way to spot if you have a potential 
reverse-scored item in the data that hasn’t been reverse scored). Finally, note that for item 
3, the α if item deleted is .8. That is, if this item were deleted then the reliability would 
improve from about .6 to about .8. This, I hope, illustrates that failing to reverse-score 
items that have been phrased oppositely to other items on the scale will mess up your reli-
ability analysis.

Moving swiftly on to the fear of maths subscale (items 8, 11 and 17), Output 17.16 
shows the output from the analysis. As with the previous two subscales, the overall 
α is around .8, which indicates good reliability. The values of alpha if the item were 
deleted indicate that none of the items here would increase the reliability if they were 
deleted because all values in this column are less than the overall reliability of .82. The 
values of the corrected item–total correlations (r.drop) are again all above .3, which 
is good, 

Reliability analysis   
Call: alpha(x = mathFear)

  raw_alpha std.alpha G6(smc) average_r mean   sd
      0.82      0.82    0.75       0.6  3.7 0.75

 Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r
Q08      0.74      0.74    0.59      0.59
Q11      0.74      0.74    0.59      0.59
Q17      0.77      0.77    0.63      0.63

 Item statistics 
       n    r r.cor r.drop mean   sd
Q08 2571 0.86  0.76   0.68  3.8 0.87
Q11 2571 0.86  0.75   0.68  3.7 0.88
Q17 2571 0.85  0.72   0.65  3.5 0.88

Non missing response frequency for each item
       1    2    3    4    5 miss
Q08 0.03 0.06 0.19 0.58 0.15    0
Q11 0.02 0.06 0.22 0.53 0.16    0
Q17 0.03 0.10 0.27 0.52 0.08    0

Output 17.16

Finally, if you run the analysis for the final subscale of peer evaluation, you should get 
Output 17.17. Unlike the previous subscales, the overall α is quite low at .57 and although 
this is in keeping with what Kline says we should expect for this kind of social science 
data, it is well below the other scales. The values of alpha if the item is dropped indicate 
that none of the items here would increase the reliability if they were deleted because all 
values in this column are less than the overall reliability of .57. The values of r.drop are all 
around .3, and in fact for item 23 the value is below .3. This indicates fairly bad internal 
consistency and identifies item 23 as a potential problem. The scale has five items, com-
pared to seven, eight and three on the other scales, so its reduced reliability is not going to 
be dramatically affected by the number of items (in fact, it has more items than the fear of 
maths subscale). If you look at the items on this subscale, they cover quite diverse themes 
of peer evaluation, and this might explain the relative lack of consistency. This might lead 
us to rethink this subscale.
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Reliability analysis   
Call: alpha(x = peerEvaluation)
  raw_alpha std.alpha G6(smc) average_r mean   sd
      0.57      0.57    0.53      0.21  3.4 0.65

 Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r
Q02      0.52      0.52    0.45      0.21
Q09      0.48      0.48    0.41      0.19
Q19      0.52      0.53    0.46      0.22
Q22      0.49      0.49    0.43      0.19
Q23      0.56      0.57    0.50      0.25

 Item statistics 
       n    r r.cor r.drop mean   sd
Q02 2571 0.61  0.45   0.34  4.4 0.85
Q09 2571 0.66  0.53   0.39  3.2 1.26
Q19 2571 0.60  0.42   0.32  3.7 1.10
Q22 2571 0.64  0.50   0.38  3.1 1.04
Q23 2571 0.53  0.31   0.24  2.6 1.04

Non missing response frequency for each item
       1    2    3    4    5 miss
Q02 0.01 0.04 0.08 0.31 0.56    0
Q09 0.08 0.28 0.23 0.20 0.20    0
Q19 0.02 0.15 0.22 0.33 0.29    0
Q22 0.05 0.26 0.34 0.26 0.10    0
Q23 0.12 0.42 0.27 0.12 0.06    0

Output 17.17

             CRAMMING SAM’S TIPS    Reliability

•	 Reliability is really the consistency of a measure.
•	 Reliability analysis can be used to measure the consistency of a questionnaire.
•	 Remember to deal with reverse-scored items. Use the keys option when you run the analysis.
•	 Run separate reliability analyses for all subscales of your questionnaire.
•	 Cronbach’s α indicates the overall reliability of a questionnaire and values around .8 are good (or .7 for ability tests and such 

like). 
•	 The raw alpha when an item is dropped tells you whether removing an item will improve the overall reliability: values greater 

than the overall reliability indicate that removing that item will improve the overall reliability of the scale. Look for items that 
dramatically increase the value of α.

•	 If you do remove items, rerun your factor analysis to check that the factor structure still holds!

17.9.  Reporting reliability analysis 2

You can report the reliabilities in the text using the symbol α and remembering that because 
Cronbach’s α can’t be larger than 1 then we drop the zero before the decimal place (if we 
are following APA format): 
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MM The fear of computers, fear of statistics and fear of maths subscales of the RAQ all 
had high reliabilities, all Cronbach’s α = .82. However, the fear of negative peer 
evaluation subscale had relatively low reliability, Cronbach’s α = .57.

However, the most common way to report reliability analysis when it follows a factor 
analysis is to report the values of Cronbach’s α as part of the table of factor loadings. For 
example, in Table 17.1 notice that in the last row of the table I have quoted the value of 
Cronbach’s α for each subscale in turn.

What have I discovered about statistics? 2

This chapter has made us tiptoe along the craggy rock face that is factor analysis. This is a 
technique for identifying clusters of variables that relate to each other. One of the difficult 
things with statistics is realizing that they are subjective: many books (this one included, 
I suspect) create the impression that statistics are like a cook book and if you follow the 
instructions you’ll get a nice tasty chocolate cake (yum!). Factor analysis perhaps more 
than any other test in this book illustrates how incorrect this is. The world of statistics is 
full of arbitrary rules that we probably shouldn’t follow (.05 being the classic example) 
and nearly all of the time, whether you realize it or not, we should act upon our own 
discretion. So, if nothing else, I hope you’ve discovered enough to give you sufficient dis-
cretion about factor analysis to act upon! We saw that the first stage of factor analysis is 
to scan your variables to check that they relate to each other to some degree but not too 
strongly. The factor analysis itself has several stages: check some initial issues (e.g., sample 
size adequacy), decide how many factors to retain, and finally decide which items load on 
which factors (and try to make sense of the meaning of the factors). Having done all that, 
you can consider whether the items you have are reliable measures of what you’re trying 
to measure.

We also discovered that at the age of 23 I took it upon myself to become a living 
homage to the digestive system. I furiously devoured articles and books on statistics 
(some of them I even understood), I mentally chewed over them, I broke them down 
with the stomach acid of my intellect, I stripped them of their goodness and nutrients, I 
compacted them down, and after about two years I forced the smelly brown remnants of 
those intellectual meals out of me in the form of a book. I was mentally exhausted at the 
end of it; ‘It’s a good job I’ll never have to do that again’, I thought.

R packages used in this chapter
corpcor
GPArotation

psych
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R functions used in this chapter
abs()
alpha()
as.matrix()
c()
cat()
cbind()
cor()
cortest.bartlett()
det()
factor.model()
factor.residuals()
factor.structure()
ggplot2()

hist()
kmo()
mean()
nrow()
plot()
polychor()
principal()
print.psych()
residual.stats()
round()
sqrt()
sum()
upper.tri()

Key terms that I’ve discovered
Alpha factoring
Bartlett’s test of sphericity
Common variance
Communality
Component matrix
Confirmatory factor analysis (CFA)
Cronbach’s α
Direct oblimin
Extraction
Factor
Factor analysis
Factor loading
Factor matrix
Factor scores
Factor transformation matrix, 
Kaiser’s criterion

Kaiser–Meyer–Olkin (KMO) measure of 
sampling adequacy

Latent variable
Oblique rotation
Orthogonal rotation
Pattern matrix
Principal components analysis (PCA)
Promax
Quartimax
Random variance
Rotation
Scree plot
Singularity
Split-half reliability
Structure matrix
Unique variance
Varimax

Smart Alex’s tasks

MM Task 1: The University of Sussex is constantly seeking to employ the best people 
possible as lecturers (no, really, it is). Anyway, they wanted to revise a questionnaire 
based on Bland’s theory of research methods lecturers. This theory predicts that good 
research methods lecturers should have four characteristics: (1) a profound love 
of statistics; (2) an enthusiasm for experimental design; (3) a love of teaching; and 
(4) a complete absence of normal interpersonal skills. These characteristics should 
be related (i.e., correlated). The ‘Teaching of Statistics for Scientific Experiments’ 
(TOSSE) already existed, but the university revised this questionnaire and it became 
the ‘Teaching of Statistics for Scientific Experiments – Revised’ (TOSSE–R). They 
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FIGURE 17.9
The Teaching 
of Statistics 
for Scientific 
Experiments 
– Revised 
(TOSSE–R)

SD = Strongly Disagree, D = Disagree, N = Neither, A = Agree, SA = Strongly Agree

SD D N A SA

  1 I once woke up in the middle of a vegetable patch hugging a turnip that 
I’d mistakenly dug up thinking it was Roy’s largest root

    

  2 If I had a big gun I’d shoot all the students I have to teach     

  3 I memorize probability values for the F-distribution     

  4 I worship at the shrine of Pearson     

  5 I still live with my mother and have little personal hygiene     

  6 Teaching others makes me want to swallow a large bottle of bleach 
because the pain of my burning oesophagus would be light relief in 
comparison

    

  7 Helping others to understand sums of squares is a great feeling     

  8 I like control conditions     

  9 I calculate three ANOVAs in my head before getting out of bed every 
morning

    

10 I could spend all day explaining statistics to people     

11 I like it when people tell me I’ve helped them to understand factor 
rotation

    

12 People fall asleep as soon as I open my mouth to speak     

13 Designing experiments is fun     

14 I’d rather think about appropriate dependent variables than go to the 
pub

    

15 I soil my pants with excitement at the mere mention of factor analysis     

16 Thinking about whether to use repeated or independent measures 
thrills me

    

17 I enjoy sitting in the park contemplating whether to use participant 
observation in my next experiment

    

18 Standing in front of 300 people in no way makes me lose control of my 
bowels

    

19 I like to help students     

20 Passing on knowledge is the greatest gift you can bestow on an 
individual

    

21 Thinking about Bonferroni corrections gives me a tingly feeling in my 
groin

    

22 I quiver with excitement when thinking about designing my next 
experiment

    

23 I often spend my spare time talking to the pigeons ... and even they die 
of boredom

    

24 I tried to build myself a time machine so that I could go back to the 
1930s and follow Fisher around on my hands and knees licking the 
floor on which he’d just trodden

    

25 I love teaching     

26 I spend lots of time helping students     

27 I love teaching because students have to pretend to like me or they’ll 
get bad marks

    

28 My cat is my only friend     

gave this questionnaire to 239 research methods lecturers around the world to see if 
it supported Bland’s theory. The questionnaire is in Figure 17.9, and the data are in 
TOSSE.R.dat. Conduct a factor analysis (with appropriate rotation) to see the factor 
structure of the data. 2
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MM Task 2: Dr Sian Williams (University of Brighton) devised a questionnaire to measure 
organizational ability. She predicted five factors to do with organizational ability: 
(1) preference for organization; (2) goal achievement; (3) planning approach; (4) 
acceptance of delays; and (5) preference for routine. These dimensions are theoreti-
cally independent. Williams’s questionnaire (Figure 17.10) contains 28 items using a 
7-point Likert scale (1 = strongly disagree, 4 = neither, 7 = strongly agree). She gave 
it to 239 people. Run a principal components analysis on the data in Williams.dat. 2

Answers can be found on the companion website.

  1 I like to have a plan to work to in everyday life

  2 I feel frustrated when things don’t go to plan

  3 I get most things done in a day that I want to

  4 I stick to a plan once I have made it

  5 I enjoy spontaneity and uncertainty

  6 I feel frustrated if I can’t find something I need

  7 I find it difficult to follow a plan through

  8 I am an organized person

  9 I like to know what I have to do in a day

10 Disorganized people annoy me

11 I leave things to the last minute

12 I have many different plans relating to the same goal

13 I like to have my documents filed and in order

14 I find it easy to work in a disorganized environment

15 I make ‘to do’ lists and achieve most of the things on it

16 My workspace is messy and disorganized

17 I like to be organized

18 Interruptions to my daily routine annoy me

19 I feel that I am wasting my time

20 I forget the plans I have made

21 I prioritize the things I have to do

22 I like to work in an organized environment

23 I feel relaxed when I don’t have a routine

24 I set deadlines for myself and achieve them

25 I change rather aimlessly from one activity to another during the day

26 I have trouble organizing the things I have to do

27 I put tasks off to another day

28 I feel restricted by schedules and plans

FIGURE 17.10
Williams’s 
organizational 
ability 
questionnaire

Further reading
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal 

of Applied Psychology, 78, 98–104. (A very readable paper on Cronbach’s α.)
Dunteman, G. E. (1989). Principal components analysis. Sage University Paper Series on Quantitative 

Applications in the Social Sciences, 07-069. Newbury Park, CA: Sage. (This monograph is quite 
high level but comprehensive.)
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Pedhazur, E., & Schmelkin, L. (1991). Measurement, design and analysis. Hillsdale, NJ: Erlbaum. 
(Chapter 22 is an excellent introduction to the theory of factor analysis.)

Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn & 
Bacon. (Chapter 13 is a technical but wonderful overview of factor analysis.)

Interesting real research
Nichols, L. A., & Nicki, R. (2004). Development of a psychometrically sound internet addiction 

scale: A preliminary step. Psychology of Addictive Behaviors, 18(4), 381–384.

17-Field_R-4368-Ch-17.indd   811 29/02/2012   5:59:13 PM



812

18
Categorical data

FIGURE 18.1
Midway through 
writing the second 
edition of my 
SPSS book, things 
had gone a little 
strange

18.1.  What will this chapter tell me? 1

We discovered in the previous chapter that I wrote a book. An earlier edition of this book, 
which focused on SPSS. There are a lot of good things about writing books. The main ben-
efit is that your parents are impressed. Well, they’re not that impressed actually, because 
they think that a good book sells as many copies as Harry Potter and that people should 
queue outside bookshops for the latest enthralling instalment of Discovering Statistics …. 
My parents are, consequently, quite baffled about how this book is seen as reasonably suc-
cessful, yet I don’t get invited to dinner by the Queen. Nevertheless, given that my family 
don’t really understand what I do, books are tangible proof that I do something. The size 
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of this book and the fact it has equations in it is an added bonus because it makes me look 
cleverer than I actually am. However, there is a price to pay, which is immeasurable mental 
anguish. In England we don’t talk about our emotions, because we fear that if they get out 
into the open, civilization as we know it will collapse, so I definitely will not mention that 
the writing process for the second edition of my SPSS book was so stressful that I came 
within one of Fuzzy’s whiskers of a total meltdown. It took me two years to recover, just in 
time to start thinking about the third edition and an adaptation for R. Still, it was worth it 
because the feedback suggests that some people find the books vaguely useful. Of course, 
the publishers don’t care about helping people, they care only about raking in as much 
cash as possible to feed their cocaine habits and champagne addictions. Therefore, they 
are obsessed with sales figures and comparisons with other books. They have databases 
that have sales figures of this book and its competitors in different ‘markets’ (you are not 
a person, you are a ‘consumer’, and you don’t live in a country, you live in a ‘market’) and 
they gibber and twitch at their consoles creating frequency distributions (with 3-D effects) 
of these values. The data they get are frequency data (the number of books sold in a certain 
timeframe). Therefore, if they wanted to compare sales of this book to its competitors, in 
different countries, they would need to read this chapter because it’s all about analysing 
data, for which we know only the frequency with which events occur. Of course, they 
won’t read this chapter, but they should …

18.2.  Packages used in this chapter 1

We’ll use the gmodels package in this chapter to do chi-square, and MASS for loglinear 
analysis. MASS should be installed by default in R so you should only need to install 
gmodels by executing: 

install.packages("gmodels")

However, you will need to load both packages by executing:

library(gmodels); library(MASS)

18.3.  Analysing categorical data 1

Sometimes, we are interested not in test scores, or continuous measures, but in categori-
cal variables. These are not variables involving cats (although the examples in this chapter 
might convince you otherwise), but are what we have mainly used as grouping variables. 
They are variables that describe categories of entities (see section 1.5.1.2). We’ve come 
across these types of variables in virtually every chapter of this book. There are different 
types of categorical variable (see section 6.5.7), but in theory a person, or case, should 
fall into only one category. Good examples of categorical variables are gender (with few 
exceptions, people can be only biologically male or biologically female),1 pregnancy (a 
woman can be only pregnant or not pregnant) and voting in an election (as a general rule 
you are allowed to vote for only one candidate). In all cases (except logistic regression) so 
far, we’ve used such categorical variables to predict some kind of continuous outcome, but 
there are times when we want to look at relationships between lots of categorical variables. 

1 Before anyone rips my arms from their sockets and beats me around the head with them, I am aware that 
numerous chromosomal and hormonal conditions exist that complicate the matter. Also, people can have a 
different gender identity than their biological gender.
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18.4.1.    Pearson’s chi-square test 1

If we want to see whether there’s a relationship between two categorical variables (i.e., 
does the number of cats that line-dance relate to the type of training used?) we can use the 
Pearson’s chi-square test (Fisher, 1922; Pearson, 1900). This is an extremely elegant statis-
tic based on the simple idea of comparing the frequencies you observe in certain categories 
to the frequencies you might expect to get in those categories by chance. All the way back 
in Chapters 2, 7 and 10 we saw that if we fit a model to any set of data we can evaluate 
that model using a very simple equation (or some variant of it):

Deviation = observed model)( −∑ 2

This chapter looks at two techniques for doing this. We begin with the simple case of two 
categorical variables and discover the chi-square statistic (which we’re not really discover-
ing because we’ve unwittingly come across it countless times before). We then extend this 
model to look at relationships between several categorical variables.

18.4.  Theory of analysing categorical data 1

We will begin by looking at the simplest situation that you could encounter; that is, analys-
ing two categorical variables. If we want to look at the relationship between two categori-
cal variables then we can’t use the mean or any similar statistic because we don’t have any 
variables that have been measured continuously. Trying to calculate the mean of a categori-
cal variable is completely meaningless because the numeric values you attach to different 
categories are arbitrary, and the mean of those numeric values will depend on how many 
members each category has. Therefore, when we’ve measured only categorical variables, 
we analyse frequencies. That is, we analyse the number of things that fall into each combi-
nation of categories. If we take an example, a researcher was interested in whether animals 
could be trained to line-dance. He took 200 cats and tried to train them to line-dance by 
giving them either food or affection as a reward for dance-like behaviour. At the end of the 
week he counted how many animals could line-dance and how many could not. There are 
two categorical variables here: Training (the animal was trained using either food or affec-
tion, not both) and Dance (the animal either learnt to line-dance or it did not). By combin-
ing categories, we end up with four different categories. All we then need to do is to count 
how many cats fall into each category. We can tabulate these frequencies as in Table 18.1 
(which shows the data for this example), and this is known as a contingency table.

Table 18.1  Contingency table showing how many cats will line-dance after being trained with 
different rewards

Training

Food as reward Affection as reward Total

Could they dance? Yes 28 48 76

No 10 114 124

Total 38 162 200
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This equation was the basis of our sums of squares in regression and ANOVA. Now, 
when we have categorical data we can use the same equation. There is a slight variation 
in that we divide by the model scores as well, which is actually much the same process as 
dividing the sum of squares by the degrees of freedom in ANOVA. So, basically, what we’re 
doing is standardizing the deviation for each observation. If we add all of these standard-
ized deviations together the resulting statistic is Pearson’s chi-square (χ2) given by:

χ
2 =

−( )Σ
observed model

model
ij ij

ij

2

	 (18.1)

in which i represents the rows in the contingency table and j represents the columns. The 
observed data are, obviously, the frequencies in Table 18.1, but we need to work out what 
the model is. In ANOVA the model we use is group means, but as I’ve mentioned we 
can’t work with means when we have only categorical variables so we work with frequen-
cies instead. Therefore, we use ‘expected frequencies’. One way to estimate the expected 
frequencies would be to say ‘well, we’ve got 200 cats in total, and four categories, so the 
expected value is simply 200/4 = 50’. This would be fine if, for example, we had the same 
number of cats that had affection as a reward and food as a reward; however, we didn’t: 
38 got food and 162 got affection as a reward. Likewise there are not equal numbers that 
could and couldn’t dance. To take account of this, we calculate expected frequencies for 
each of the cells in the table (in this case there are four cells) and we use the column and 
row totals for a particular cell to calculate the expected value:

Model E
nij ij

i j= =
×row total column total

where n is simply the total number of observations (in this case 200). We can calculate 
these expected frequencies for the four cells within our table (row total and column total 
are abbreviated to RT and CT respectively):

Model
RT CT

Model
RT

Food, Yes
Yes Food

Food,No
N

=
×

=
×

=

=

n
76 38

200
14 44.

oo Food

Affection, Yes
Yes Affec

CT

Model
RT CT

×
=

×
=

=
×
n

124 38
200

23 56.

ttion

Affection, No
No AffectionModel

RT CT
n

n

=
×

=

=
×

=

76 162
200

61 56.

1124 162
200

100 44
×

= .

Given that we now have these model values, all we need to do is take each value in each 
cell of our data table, subtract from it the corresponding model value, square the result, 
and then divide by the corresponding model value. Once we’ve done this for each cell in 
the table, we just add them up!

χ
2

2 2 228 14 44
14 44

10 23 56
23 56

48 61 56
61 56

114
=

−
+

−
+

−
+

( . )
.

( . )
.

( . )
.

( −−

= +
−

+
−

100 44
100 44

13 56
14 44

13 56
23 56

13 568
61

2

2 2 2

. )
.

( . )
.

( . )
.

( . )
..

( . )
.

. . . .

.

56
13 56
100 44

12 73 7 80 2 99 1 83

25 35

2

+

= + + +
=
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This statistic can then be checked against a distribution with known properties. All we 
need to know is the degrees of freedom and these are calculated as (r − 1)(c − 1) in which 
r is the number of rows and c is the number of columns. Another way to think of it is the 
number of levels of each variable minus one multiplied. In this case we get df = (2 − 1)
(2 − 1) = 1. If you were doing the test by hand, you would find a critical value for the chi-
square distribution with df = 1 and if the observed value was bigger than this critical value 
you would say that there was a significant relationship between the two variables. These 
critical values are produced in the Appendix, and for df = 1 the critical values are 3.84 (p = 
.05) and 6.63 (p = .01), and so because the observed chi-square is bigger than these values 
it is significant at p < .01. However, if you use R, it will simply produce an estimate of the 
precise probability of obtaining a chi-square statistic at least as big as (in this case) 25.35 if 
there were no association in the population between the variables.

18.4.2.    Fisher’s exact test 1

There is one problem with the chi-square test, which is that the sampling distribution of 
the test statistic has an approximate chi-square distribution. The larger the sample is, the 
better this approximation becomes, and in large samples the approximation is good enough 
to not worry about the fact that it is an approximation. However, in small samples the 
approximation is not good enough, making significance tests of the chi-square distribution 
inaccurate. This is why you often read that to use the chi-square test the expected frequen-
cies in each cell must be greater than 5 (see section 18.5). When the expected frequencies 
are greater than 5, the sampling distribution is probably close enough to a perfect chi-
square distribution for us not to worry. However, when the expected frequencies are too 
low, it probably means that the sample size is too small and that the sampling distribution 
of the test statistic is too deviant from a chi-square distribution to be of any use.

Fisher came up with a method for computing the exact probability of the chi-square sta-
tistic that is accurate when sample sizes are small. This method is called Fisher’s exact test 
(Fisher, 1922) even though it’s not so much a test as a way of computing the exact probabil-
ity of the chi-square statistic. This procedure is normally used on 2 × 2 contingency tables 
(i.e., two variables each with two options) and with small samples. However, it can be used 
on larger contingency tables and with large samples, but on larger contingency tables it 
becomes computationally intensive and you might find R taking a long time to give you an 
answer. In large samples there is really no point because it was designed to overcome the 
problem of small samples, so you don’t need to use it when samples are large.

18.4.3.    The likelihood ratio 2

An alternative to Pearson’s chi-square is the likelihood ratio statistic, which is based on 
maximum-likelihood theory. The general idea behind this theory is that you collect some 
data and create a model for which the probability of obtaining the observed set of data is 
maximized, then you compare this model to the probability of obtaining those data under 
the null hypothesis. The resulting statistic is, therefore, based on comparing observed fre-
quencies with those predicted by the model:

L ij

ij

χ
2 2=









∑observed ln

observed

modelij 	 (18.2)
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in which i and j are the rows and columns of the contingency table and ln is the natural 
logarithm (this is the standard mathematical function that we came across in Chapter 8, 
and you can find it on your calculator, usually labelled as ln or loge). Using the same model 
and observed values as in the previous section, this would give us:

Lχ
2 2 28

28
14 44

10
10

23 56
48

48
61 56

= × 





+ × 





+ × 


ln
.

ln
.

ln
.




+ × 















= × ×

114
114

100 44

2 28

ln
.

× 0.662 + 10 −0.857 + 48 −0..249 + 114 0.127×[ ]
= − − +[ ]
=

2 18 54 8 57 11 94 14 44

24 94

. . . .

.

As with Pearson’s chi-square, this statistic has a chi-square distribution with the same 
degrees of freedom (in this case 1). As such, it is tested in the same way: we could look 
up the critical value of chi-square for the number of degrees of freedom that we have. As 
before, the value we have here will be significant because it is bigger than the critical values 
of 3.84 (p = .05) and 6.63 (p = .01). For large samples this statistic will be roughly the same 
as Pearson’s chi-square, but is preferred when samples are small.

18.4.4.    Yates’s correction 2

When you have a 2 × 2 contingency table (i.e., two categorical variables each with two 
categories) then Pearson’s chi-square tends to produce significance values that are too 
small (in other words, it tends to make a Type I error). Therefore, Yates suggested a cor-
rection to the Pearson formula (usually referred to as Yates’s continuity correction). The 
basic idea is that when you calculate the deviation from the model (the observedij − mod-
elij in equation (18.1)) you subtract 0.5 from the absolute value of this deviation before 
you square it. In plain English, this means you calculate the deviation, ignore whether it 
is positive or negative, subtract 0.5 from the value and then square it. Pearson’s equation 
then becomes:

χ
2

2

=
− −(|observed model | 0.5)

model
ij ij

ij
∑

For the data in our example this just translates into :

χ
2

2 2 213 56 0 5
14 44

13 56 0 5
23 56

13 56 0 5
61 56

=
−

+
−

+
−

+
( . . )

.
( . . )

.
( . . )

.
(113 56 0 5

100 44
11 81 7 24 2 77 1 70
23 52

2. . )
.

. . . .
.

−

= + + +
=

The key thing to note is that it lowers the value of the chi-square statistic and, therefore, 
makes it less significant. Although this seems like a nice solution to the problem there is a 
fair bit of evidence that this overcorrects and produces chi-square values that are too small! 
Howell (2006) provides an excellent discussion of the problem with Yates’s correction for 
continuity, if you’re interested; all I will say is that, although it’s worth knowing about, it’s 
probably best ignored.
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18.5.  Assumptions of the chi-square test 1

It should be obvious that the chi-square test does not rely on assumptions such as having 
continuous normally distributed data like most of the other tests in this book (categorical 
data cannot be normally distributed because they aren’t continuous). However, the chi-
square test still has two important assumptions:

MM Pretty much all of the tests we have encountered in this book have made an assump-
tion about the independence of data and the chi-square test is no exception. For 
the chi-square test to be meaningful it is imperative that each person, item or entity 
contributes to only one cell of the contingency table. Therefore, you cannot use a chi-
square test on a repeated-measures design (e.g., if we had trained some cats with food 
to see if they would dance and then trained the same cats with affection to see if they 
would dance, we couldn’t analyse the resulting data with Pearson’s chi-square test).

MM The expected frequencies should be greater than 5. Although it is acceptable in larger 
contingency tables to have up to 20% of expected frequencies below 5, the result is a 
loss of statistical power (so the test may fail to detect a genuine effect). Even in larger 
contingency tables no expected frequencies should be below 1. Howell (2006) gives 
a nice explanation of why violating this assumption creates problems. If you find 
yourself in this situation consider using Fisher’s exact test (section 18.4.2).

Finally, although it’s not an assumption, it seems fitting to mention in a section in which 
a gloomy and foreboding tone is being used that proportionately small differences in cell 
frequencies can result in statistically significant associations between variables if the sample 
is large enough (although it might need to be very large indeed). Therefore, we must look 
at row and column percentages to interpret any effects we get. These percentages will 
reflect the patterns of data far better than the frequencies themselves (because these fre-
quencies will be dependent on the sample sizes in different categories.

18.6.  Doing the chi-square test using R 1

There are two ways in which categorical data can be entered: enter the raw scores, or enter 
weighted cases. We’ll look at both in turn.

18.6.1.    Entering data: raw scores 1

If we input the raw scores, it means that every row of the data editor represents each entity 
about which we have data (in this example, each row represents a cat). So, you would  
create two codings (Training and Dance). Training would contain two values – one to indi-
cate food was a reward, and one to indicate affection was a reward. Dance would contain 
Yes, or No, depending on whether the cat danced. There were 200 cats in all and so there are 
200 rows of data. This is how the data are stored in cats.dat. You can load this data file by 
setting your working directory to the location of the file (see section 3.4.4) and executing:

catData<-read.delim("cats.dat", header = TRUE)

The resulting data look like this (heavily edited because you don’t need to see all 200 rows 
to get the idea):
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              Training Dance
1        Food as Reward   Yes
2        Food as Reward   Yes
3        Food as Reward   Yes
4        Food as Reward   Yes
5        Food as Reward   Yes
…               …          …
29       Food as Reward    No
30       Food as Reward    No
31       Food as Reward    No
32       Food as Reward    No
33       Food as Reward    No
…               …          …
39  Affection as Reward   Yes
40  Affection as Reward   Yes
41  Affection as Reward   Yes
42  Affection as Reward   Yes
43  Affection as Reward   Yes
…               …          …
87  Affection as Reward    No
88  Affection as Reward    No
89  Affection as Reward    No
90  Affection as Reward    No
91  Affection as Reward    No

SELF-TEST

ü	 Using what you have learnt about data entry in R, 
can you work out how you would enter these data 
directly into R?

18.6.2.    Entering data: the contingency table 1

An alternative method of data entry is to enter the contingency table directly. This is much 
easier if someone tells you that there were 38 cats that were given food as a reward, and 28 
of them danced, and 162 cats given affection as a reward, and 48 of them danced. There 
are several ways to enter frequency data in this way, one of which is to create two variables, 
one of which contains the two values for those given food, and one of which contains the 
two values for those given affection, and then combine them together, using the cbind() 
function. For example, for the current data we would execute:

food <- c(10, 28)
affection <- c(114, 48)
catsTable <- cbind(food, affection)

The resulting data look like this:

     food affection
[1,]   10       114
[2,]   28        48
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The columns represent whether the training was done using food or affection, and the 
rows show whether the animal danced (the second row) or not (the first row). As you can 
see, this method of data entry is a fair bit easier than entering the raw data.

18.6.3.    Running the analysis with R Commander 1

As always, import the data, using Data⇒Import data⇒from text file, clipboard, or URL… 
(see section 3.7.3) click on  and choose the file cats.dat. To do a chi-square test, select 
Statistics⇒Proportions⇒Two-sample proportions test… to open the dialog box in Figure 
18.2. Pick the variable in the list labelled Groups (pick one) that defines the difference 
between the groups (in our case, that’s Training), and the outcome variable from the list 
labelled Response Variable (pick one) (in our case, that’s whether or not the cat danced, 
Dance).

You should probably leave the default option of a two-sided test as it is (although if you 
have predicted a direction of the effect you could choose to test whether or not the differ-
ence will be bigger (Difference > 0) or smaller (Difference < 0) than zero. You can choose 
the type of test: Normal approximation produces the Pearson chi-square test whereas 
Normal approximation with continuity correction produces the Yates correction to the 
chi-square test. 

When you click on  Output 18.1 is produced. The first part of the output shows 
a table that gives the percentages for each of the types of training; so when affection was 
used as a reward, 29.6% of the cats danced, but when food was used as a reward, 73.7% 
of the cats danced. 

The second part of the output shows the chi-squared test. The chi-square value of 25.36, 
with 1 degree of freedom, is highly significant because the p-value is less than .05 (in fact, 
it is .000000477). You can rerun the analysis with Yates’s correction. 

FIGURE 18.2
The chi-square 
test using R 
Commander
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                     Dance
Training                No  Yes Total Count
  Affection as Reward 70.4 29.6   100   162
  Food as Reward      26.3 73.7   100    38

	 2-sample test for equality of proportions without  
continuity 
	 correction

data:  .Table 
X-squared = 25.3557, df = 1, p-value = 4.767e-07
alternative hypothesis: two.sided 
95 percent confidence interval:
 0.2838731 0.5972186 
sample estimates:
   prop 1    prop 2 
0.7037037 0.2631579 

Output 18.1

18.6.4.    Running the analysis using R 1

To run a chi-square analysis we can use the CrossTable() function (note the capital letters), 
in the gmodels package. This function takes two general forms depending on whether or 
not we’re inputting the raw data or a contingency table. For raw data, the function takes 
the basic form:

CrossTable(predictor, outcome, fisher = TRUE, chisq = TRUE, expected = TRUE, 
sresid = TRUE, format = "SAS"/"SPSS")

and for a contingency table:

CrossTable(contingencyTable, fisher = TRUE, chisq = TRUE, expected = TRUE, 
sresid = TRUE, format = "SAS"/"SPSS")

These commands are identical except for how the variables are specified. In the first case we 
enter the name of the predictor (in this case Training) and the outcome (in this case Dance) 
variables and in the second case we enter the name of the contingency table dataframe (in 
this case catsTable). There are several other options we can ask for: we obtain the chi-square 
test by adding chisq = TRUE, and the Fisher exact test by adding fisher = TRUE. We can 
also add expected = TRUE to see the expected values of each cell of the contingency table, 
which is useful to ensure that the related assumption has been satisfied. We use the sresidu-
als option to obtain standardized residuals, which are useful for breaking down a significant 
effect if we get one, and for these residuals to be displayed we need to include the option 
format = “SPSS”. These options and some others are described in R’s Souls’ Tip 17.2.

Therefore, to run the chi-square test on our cat data, we could execute:

CrossTable(catsData$Training, catsData$Dance, fisher = TRUE, chisq = TRUE, 
expected = TRUE, sresid = TRUE, format = "SPSS")

on the raw scores (i.e., the catsData dataframe), or:

CrossTable(catsTable, fisher = TRUE, chisq = TRUE, expected = TRUE, sresid = 
TRUE, format = "SPSS")

on the contingency table data (i.e., the catsTable dataframe). These options will give us the 
basic chi-square test (chisq = TRUE), Fisher’s exact test (fisher = TRUE), expected values 

18-Field_R-4368-Ch-18.indd   821 29/02/2012   6:39:45 PM



822 D ISCOVER ING STAT IST ICS  US ING R

          R ’s  Souls ’  T ip  18 .1   Other CrossTable() options 2

The CrossTable() function has several other options that you might find useful (execute ?CrossTable to investigate 
further):

•	 digits = x: You can specify the number of digits after the decimal point for cell proportions in the output.
•	 mcnemar = TRUE: This option will produce the results of McNemar’s test. This tests differences between 

two related groups when nominal data have been collected. It’s typically used when we’re looking for 
changes in people’s scores and it compares the proportion of people who changed their response in one 
direction (i.e., scores increased) to those who changed in the opposite direction (scores decreased). So, 
this test needs to be used when we’ve got two related dichotomous variables.

•	 prop.c = FALSE: This stops the column proportions being displayed in the output.
•	 prop.t = FALSE: This stops the total proportions being displayed in the output.
•	 prop.chisq = FALSE: This stops the chi-square proportions being displayed in the output.
•	 resid  = TRUE: This produces Pearson residuals in the resulting contingency table.
•	 sresid  = TRUE: This produces standardized residuals in the resulting contingency table.
•	 asresid  = TRUE: This produces adjusted standardized residuals in the resulting contingency table.
•	 Format = “SAS”/“SPSS”: This sets the output to mimic that of SAS (default) or SPSS. To see residuals you 

need to set the format to SPSS.

(expected = TRUE) and standardized residuals (sresid = TRUE in combination with format 
= “SPSS”).

18.6.5.    Output from the CrossTable() function 1

The output produced by R first shows the contingency table (Output 18.2). For each com-
bination of training (food or affection) we are given (in this order) the number of cats, 
the expected frequency, the chi-square contribution of the cell, the row proportion, the 
column proportion, the total proportion, and the standardized residual. You can adapt the 
command you execute to produce a slightly simpler version of this table if you prefer – see 
R’s Souls’ Tip 18.2.

          R ’s  Souls ’  T ip  18 .2   Simplifying the contingency table 2

The table in Output 18.2 has rather more information than we want: we probably need only the numbers, and the 
proportion of cats that danced for each type of training. That is, we probably don’t need the column proportion, 
total proportion and chi-square contribution. We can remove these by adding prop.c=FALSE, prop.t=FALSE, prop.
chisq=FALSE to the command (R’s Souls’ Tip 18.1), so if you find the table confusing execute:

CrossTable(catsData$Training, catsData$Dance, fisher = TRUE, chisq = TRUE, expected 
= TRUE, prop.c = FALSE, prop.t = FALSE, prop.chisq = FALSE  sresid = TRUE, format = 
"SPSS")

This version of the command will result in a simpler table in the output.

18-Field_R-4368-Ch-18.indd   822 29/02/2012   6:39:45 PM



823CHAPTER 18   CATEGOR ICAL  DATA

   Cell Contents
|-------------------------|
|                   Count |
|         Expected Values |
| Chi-square contribution |
|             Row Percent |
|          Column Percent |
|           Total Percent |
|            Std Residual |
|-------------------------|

Total Observations in Table:  200 

                    | catsData$Dance 
  catsData$Training |      Yes  |       No  | Row Total | 
--------------------|-----------|-----------|-----------|
     Food as Reward |       28  |       10  |       38  | 
                    |   14.440  |   23.560  |           | 
                    |   12.734  |    7.804  |           | 
                    |   73.684% |   26.316% |   19.000% | 
                    |   36.842% |    8.065% |           | 
                    |   14.000% |    5.000% |           | 
                    |    3.568  |   -2.794  |           | 
--------------------|-----------|-----------|-----------|
Affection as Reward |       48  |      114  |      162  | 
                    |   61.560  |  100.440  |           | 
                    |    2.987  |    1.831  |           | 
                    |   29.630% |   70.370% |   81.000% | 
                    |   63.158% |   91.935% |           | 
                    |   24.000% |   57.000% |           | 
                    |   -1.728  |    1.353  |           | 
--------------------|-----------|-----------|-----------|
       Column Total |       76  |      124  |      200  | 
                    |   38.000% |   62.000% |           | 
--------------------|-----------|-----------|-----------|

Output 18.2

The column totals contain the number of cases that fall into each combination of cat-
egories and are rather like our original contingency table. We can see that in total 76 cats 
danced (38% of the total) and of these 28 were trained using food (36.8% of the total that 
danced) and 48 were trained with affection (63.2% of the total that danced). Further, 124 
cats didn’t dance at all (62% of the total) and of those that didn’t dance, 10 were trained 
using food as a reward (8.1% of the total that didn’t dance) and a massive 114 were trained 
using affection (91.9% of the total that didn’t dance). The proportion of cats within the 
Dance variable (i.e., the column proportions) can be read from the fifth row in each cell. We 
can also look at the percentages within the training categories by looking at the fourth rows 
within each cell of the table. These values tell us, for example, that of those trained with 
food as a reward, 73.7% danced and 26.3% did not. Similarly, for those trained with affec-
tion only 29.6% danced compared to 70.4% that didn’t. In summary, when food was used 
as a reward most cats would dance, but when affection was used most cats refused to dance.

Before moving on to look at the test statistics itself it is vital that we check that the 
assumption for chi-square has been met. The assumption is that in 2 × 2 tables (which is 
what we have here), all expected frequencies should be greater than 5. The second row of 
each cell shows the expected frequencies, which incidentally are the same as we calculated 
earlier; it should be clear that the smallest expected count is 14.44 (for cats that were 
trained with food and did dance). This value exceeds 5 and so the assumption has been 

18-Field_R-4368-Ch-18.indd   823 29/02/2012   6:39:45 PM



824 D ISCOVER ING STAT IST ICS  US ING R

met. If you found an expected count lower than 5 the best remedy is to collect more data 
to try to boost the proportion of cases falling into each category.
Statistics for All Table Factors

Pearson’s Chi-squared test 
------------------------------------------------------------
Chi^2 =  25.35569     d.f. =  1     p =  4.767434e-07 

Pearson’s Chi-squared test with Yates’ continuity correction 
------------------------------------------------------------
Chi^2 =  23.52028     d.f. =  1     p =  1.236041e-06 
 
Fisher’s Exact Test for Count Data
------------------------------------------------------------
Sample estimate odds ratio:  6.579265 

Alternative hypothesis: true odds ratio is not equal to 1
p =  1.311709e-06 
95% confidence interval:  2.837773 16.42969 

Alternative hypothesis: true odds ratio is less than 1
p =  0.9999999 
95% confidence interval:  0 14.25436 

Alternative hypothesis: true odds ratio is greater than 1
p =  7.7122e-07 
95% confidence interval:  3.193221 Inf 

 
       Minimum expected frequency: 14.44 

Output 18.3

As we saw earlier, Pearson’s chi-square test examines whether there is an association 
between two categorical variables (in this case the type of training and whether the animal 
danced or not). The next part of the output produced by the CrossTable() function is the 
chi-square statistic and its significance value (Output 18.3). The Pearson chi-square statistic 
tests whether the two variables are independent. If the p-value is small enough (conven-
tionally less than .05) then we reject the null hypothesis that the variables are independent 
and gain confidence in the hypothesis that they are in some way related. The value of the 
chi-square statistic is given in the output (and the degrees of freedom) as is the significance 
value. The value of the chi-square statistic is 25.356, which is within rounding error of 
what we calculated in section 18.4.1. This value is highly significant (p < .001), indicating 

that the type of training used had a significant effect on whether an animal 
would dance. The table included the chi-square contribution for each cell. If 
we were to add these up, we would find that they would sum to the total for 
chi-square, so: 1.831 + 2.987 + 7.804 + 12.734 = 25.356.

A series of other statistics are also included in the output. The next part is 
the chi-square with Yates’s correction (see section 18.4.4) and its value is the 
same as the value we calculated earlier (23.52). As I mentioned earlier, this test 
is probably best ignored anyway, but it does confirm the result from the main 
chi-square test. 

The final test is the Fisher’s exact test. You only need to look at the first ver-
sion of this, labelled Alternative hypothesis: true odds ratio is not equal to 1, 
where it gets a p-value of .0000013, which is less than < .001, and therefore 
the Fisher’s exact test also shows that we should reject the null hypothesis. 

How do I interpret
chi-square?
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(You might notice that the p-value for the Fisher’s exact test is in between the Pearson chi-
square and Yates’s corrected chi-square – this is usually the case.)

The highly significant result indicates that there is an association between the type of 
training and whether the cat danced or not. What we mean by an association is that the 
pattern of responses (i.e., the proportion of cats that danced to the proportion that did not) 
in the two training conditions is significantly different. This significant finding reflects the 
fact that when food is used as a reward, about 74% of cats learn to dance and 26% do not, 
whereas when affection is used, the opposite is true (about 70% refuse to dance and 30% 
do dance). Therefore, we can conclude that the type of training used significantly influ-
ences the cats: they will dance for food but not for love! Having lived with a lovely cat for 
many years now, this supports my cynical view that they will do nothing unless there is a 
bowl of cat-food waiting for them at the end of it!

18.6.6.  �  Breaking down a significant chi-square 
test with standardized residuals 2

Although in a 2 × 2 contingency table like the one we have in this example, where the 
nature of the association can be quite clear from just the cell percentages or counts, in larger 
contingency tables it can be useful to do a finer-grained investigation of the table. In a way, 
you can think of a significant chi-square test in much the same way as a significant interac-
tion in ANOVA: it is an effect that needs to be broken down further. One very easy way to 
break down a significant chi-square test is to use data that we already have – the standard-
ized residual.

Just like regression, the residual is simply the error between what the model predicts (the 
expected frequency) and the data actually observed (the observed frequency):

residual observed elij ij ij= − mod

in which i and j represent the two variables (i.e., the rows and columns in the contingency 
table). This is the same as every other residual or deviation that we have encountered in 
this book (compare this equation to, for example, equation (2.4)). To standardize this 
equation, we simply divide by the square root of the expected frequency:

standardizedresidual
observed model

model
=

−ij ij

ij

Does this equation look familiar? Well, it’s basically part of equation (18.1). The only 
difference is that rather than looking at squared deviations, we’re looking at the pure 
deviation. Remember that the rationale for squaring deviations in the first place is simply 
to make them positive so that they don’t cancel out when we add them. The chi-square sta-
tistic is based on adding together values, so it is important that the deviations are squared 
so that they don’t cancel out. However, if we’re not planning to add up the deviations 
or residuals then we can inspect them in their unsquared form. There are two important 
things about these standardized residuals:

1	 Given that the chi-square statistic is the sum of these standardized residuals (sort of), 
then if we want to decompose what contributes to the overall association that the 
chi-square statistic measures, then looking at the individual standardized residuals is 
a good idea because they have a direct relationship with the test statistic.
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2	 These standardized residuals behave like any other (see section 7.7.1.1) in the sense 
that each one is a z-score. This is very useful because it means that just by looking at 
a standardized residual we can assess its significance (see section 1.7.4). As we have 
learnt many times before, if the value lies outside of ±1.96 then it is significant at p < 
.05, if it lies outside ±2.58 then it is significant at p < .01 and if it lies outside ±3.29 
then it is significant at p < .001.

If you included the sresid = TRUE option in the CrossTable() function (which we encour-
aged you do to) you will find these standardized residuals in each cell in the contingency 
table. In Output 18.2 these residuals are the bottom value within each cell. As such, there 
are four residuals: one for each combination of the type of training and whether the cats 
danced. When food was used as a reward the standardized residual was significant for both 
those that danced (z = 3.57) and those that didn’t dance (z = -2.79) because both values 
are bigger than 1.96 (when you ignore the minus sign). The plus or minus sign tells us 
something about the direction of the effect, as do the counts and expected counts within 
the cells. We can interpret these standardized residuals as follows: when food was used as 
a reward significantly more cats than expected danced, and significantly fewer cats than 
expected did not dance. When affection was used as a reward the standardized residual was 
not significant for both those that danced (z = -1.73) and those that didn’t dance (z = 1.35) 
because they are both smaller than 1.96 (when you ignore the minus sign). This tells us that 
when affection was used as a reward as many cats as expected danced and did not dance. 
In a nutshell, the cells for when food was used as a reward both significantly contribute to 
the overall chi-square statistic. Put another way, the association between the type of reward 
and dancing is mainly driven by when food is a reward.

18.6.7.    Calculating an effect size 2

The most common and possibly most useful measure of effect size for categorical data is 
the odds ratio, which we encountered in Chapter 8. Odds ratios are most interpretable 
in 2 × 2 contingency tables and are probably not useful for larger contingency tables. 
However, this isn’t as restrictive as you might think because, as I’ve said more times than I 
care to recall in the GLM chapters, effect sizes are only ever useful when they summarize 
a focused comparison. A 2 × 2 contingency table is the categorical data equivalent of a 
focused comparison!

The odds ratio in its basic form is simple enough to calculate. If we look at our example, 
we can first calculate the odds that a cat danced given that they had food as a reward. This 
is simply the number of cats that were given food and danced, divided by the number of 
cats given food that didn’t dance:

odds
number that had foodanddanced

number that hdancing after food =
aad foodbutdidn’tdance

=

=

28
10
2 8.

Next we calculate the odds that a cat danced given that they had affection as a reward. 
This is simply the number of cats that were given affection and danced, divided by the 
number of cats given affection that didn’t dance:
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odds
number that had affection and danced

ndancing after affection =
uumber that had affection but didn’t dance

=

=

48
114
0 421.

The odds ratio is simply the odds of dancing after food divided by the odds of dancing 
after affection:

odds ratio
odds

odds
dancing after food

dancing after affection
=

=
2..
.
.

8
0 421
6 65=

What this tells us is that if a cat was trained with food the odds of their dancing were 
6.65 times higher than if they had been trained with affection. As you can see, this is an 
extremely elegant and easily understood metric for expressing the effect you’ve got.

The above description shows the basic odds ratio, which is particularly useful for get-
ting a sense of what the measure represents; however, there are other more sophisticated 
ways to estimate the odds ratio and its associated confidence interval. Luckily, if we include 
fisher = TRUE in our CrossTable() function then the output will include one such method. 
In Output 18.3 we are told that the odds ratio is 6.58 (note that this is slightly smaller 
than our calculation), and that it has a confidence interval of 2.84 to 16.43. Remember 
from Chapter 8 that the important thing is that the confidence interval does not cross 1. 
Remember that a value of 1 means that the odds of dancing after food would be exactly 
the same as dancing after affection, a value less than 1 means that the odds of dancing are 
smaller after food than after affection, and a value greater than 1 means that the odds of 
dancing are greater after food than after affection. Therefore, a 1 is the point at which 
the direction of the effect changes. Therefore, if the confidence interval crosses 1 it means 
that the population value of the observed effect might be in the same direction as in your 
sample, but it could also be in the opposite direction. 

18.6.8.    Reporting the results of chi-square 1

When reporting Pearson’s chi-square we simply state the value of the test statistic with its 
associated degrees of freedom and the significance value. The test statistic, as we’ve seen, 
is denoted by χ2. The output tells us that the value of χ2 was 25.36, that the degrees of 
freedom on which this was based were 1, and that it was significant at p < .001. It’s also 
useful to reproduce the contingency table, and my vote would go to quoting the odds ratio 
and its confidence interval too. As such, we could report:

	 There was a significant association between the type of training and whether or not 
cats would dance χ2(1) = 25.36, p < .001. This seems to represent the fact that, based 
on the odds ratio, the odds of cats dancing were 6.58 (2.84, 16.43) times higher if 
they were trained with food than if trained with affection.

18-Field_R-4368-Ch-18.indd   827 29/02/2012   6:39:46 PM



828 D ISCOVER ING STAT IST ICS  US ING R

             CRAMMING SAM’S TIPS    The chi-square test

•	 If you want to test the relationship between two categorical variables you can do this with the chi-square test.
•	 Look at the value of the chi-squared test; if the p-value is less than .05 then there is a significant relationship between your 

two variables. 
•	 Check to make sure that no expected frequencies are less than 5.
•	 Look at the crosstabulation table to work out what the relationship between the variables is. Better still, look out for significant 

standardized residuals (values outside of ±1.96), and calculate the odds ratio.
•	 Report the χ2 statistic, the degrees of freedom and the significance value. Also report the contingency table.

          Labcoat  Len i ’s  Real  Research 18 .1   �Is the black American 
happy? 1

Beckham, A. S. (1929). Journal of Abnormal and Social Psychology, 24, 186–190.

When I was doing my psychology degree I spent a lot of time reading about the civil rights movement in the 
USA. Although I was supposed to be reading psychology, I became more interested in Malcolm X and Martin 
Luther King Jr. This is why I find Beckham’s 1929 study of black Americans such an interesting piece of research. 
Beckham was a black American academic who founded the psychology laboratory at Howard University, 
Washington, DC, and his wife Ruth was the first black woman ever to be awarded a Ph.D. (also in psychology) 
at the University of Minnesota. The article needs to be placed within the era in which it was published. To put 
some context on the study, it was published 36 years before the Jim Crow laws were finally overthrown by the 
Civil Rights Act of 1964, and in a time when black Americans were segregated, openly discriminated against and 
were victims of the most abominable violations of civil liberties and human rights. For a richer context I suggest 
reading James Baldwin’s superb novel The Fire Next Time. Even the language of the study and the data from it 
are an uncomfortable reminder of the era in which it was conducted.

Beckham sought to measure the psychological state of black Americans with three questions put to 3443 
black Americans from different walks of life. He asked them whether they thought black Americans were happy, 
whether they personally were happy as a black American, and whether black Americans should be happy. They 
could answer only yes or no to each question. By today’s standards the study is quite simple, and he did no 
formal statistical analysis of his data (Fisher’s article containing the popularized version of the chi-square test 
was published only 7 years earlier in a statistics journal that would not have been read by psychologists). I love 
this study, though, because it demonstrates that you do not need elaborate methods to answer important and 
far-reaching questions; with just three questions, Beckham told the world an enormous amount about very real 
and important psychological and sociological phenomena.

The frequency data (number of yes and no responses within each employment category) from this 
study are in the file Beckham1929.dat. Labcoat Leni wants you to carry out three chi-square tests 
(one for each question that was asked). What conclusions can you draw?

Answers are in the additional material on the companion website.
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18.7.  Several categorical variables: 
loglinear analysis 3

So far we’ve looked at situations in which there are only two categorical variables. However, 
often we want to analyse more complex contingency tables in which there are three or more 
variables. For example, what about if we took the example we’ve just used but also collected 
data from a sample of 70 dogs? We might want to compare the behaviour in dogs to that in 
cats. We would now have three variables: Animal (dog or cat), Training (food as reward or 
affection as reward) and Dance (did they dance or not?). This couldn’t be analysed with the 
Pearson chi-square and instead has to be analysed with a technique called loglinear analysis.

18.7.1.    Chi-square as regression 4

To begin with, let’s have a look at how our simple chi-square example can be expressed 
as a regression model. Although we already know about as much as we need to about the 
chi-square test, if we want to understand more complex situations life becomes consider-
ably easier if we consider our model as a general linear model (i.e., regression). All of the 
general linear models we’ve considered in this book take the general form of:

outcome el errori i= +(mod )

For example, when we encountered multiple regression in Chapter 7 we saw that this 
model was written as (see equation (7.9)):

Y b b X b X b Xi i i n ni i= + + + + +( )0 1 1 2 2 … ε

Also, when we came across one-way ANOVA, we adapted this regression model to concep-
tualize our Viagra example, as (see equation (10.2)):

libido high lowi i i ib b b= + + +0 2 1 ε

The t-test was conceptualized in a similar way. In all cases the same basic equation is used; 
it’s just the complexity of the model that changes. With categorical data we can use the same 
model in much the same way as with regression to produce a linear model. In our current 
example we have two categorical variables: Training (food or affection) and Dance (yes 
they did dance or no they didn’t dance). Both variables have two categories and so we can 
represent each one with a single dummy variable (see section 7.12.1) in which one category 
is coded as 0 and the other as 1. So for training, we could code ‘food’ as 0 and ‘affection’ 
as 1, and we could code the dancing variable as 0 for ‘yes’ and 1 for ‘no’ (see Table 18.2). 

Table 18.2  Coding scheme for dancing cats

Training Dance
Dummy 

(Training)
Dummy 
(Dance) Interaction Frequency

Food Yes 0 0 0 28

Food No 0 1 0 10

Affection Yes 1 0 0 48

Affection No 1 1 1 114
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This situation might be familiar if you think back to factorial ANOVA (section 12.3) in 
which we also had two variables as predictors. In that situation we saw that when there are 
two variables the general linear model became (think back to equation (12.1)):

outcomei i i i ib b A b B b AB= + + + +( )0 1 2 3 ε

in which A represents the first variable, B represents the second and AB represents the 
interaction between the two variables. Therefore, we can construct a linear model using 
these dummy variables that is exactly the same as the one we used for factorial ANOVA 
(above). The interaction term will simply be the training variable multiplied by the Dance 
variable (look at Table 18.2, and if it doesn’t make sense look back to section 12.3 because 
the coding is exactly the same as this example):

outcome Model error

outcome Training Dance

i i

ij i jb b b

= +

= + + +

( )

( 0 1 2 bb ij ij3Interaction ) + ε
	 (18.3)

However, because we’re using categorical data, to make this model linear we have to actu-
ally use log values (see Chapter 8) and so the actual model becomes:2

ln( ) ln( ) ln( )

ln( ) (

O

O b b b b

i i

ij i j

= +

= + + +

model

Training Dance

ε

0 1 2 3IInteractionij ij) ln( )+ ε
	 (18.4)

Training, Dance and Interaction can take the values 0 and 1, depending on which com-
bination of categories we’re looking at (Table 18.2). Therefore, to work out what the 
b-values represent in this model we can do the same as we did for the t-test and ANOVA 
and look at what happens when we replace Training and Dance with values of 0 and 1. 
To begin with, let’s see what happens when we look at when Training and Dance are both 
zero. This represents the category of cats that got food reward and did line-dance. When 
we used this sort of model for the t-test and ANOVA the outcomes we used were taken 
from the observed data: we used the group means (e.g., see sections 9.4.2 and 10.2.3). 
However, with categorical variables, means are rather meaningless because we haven’t 
measured anything on an ordinal or interval scale, instead we merely have frequency data. 
Therefore, we use the observed frequencies (rather than observed means) as our outcome 
instead. In Table 18.1 we saw that there were 28 cats that had food for a reward and did 
line-dance. If we use this as the observed outcome then the model can be written as (if we 
ignore the error term for the time being):

ln( )O b b b bij i j ij= + + +0 1 2 3Training Dance Interaction

For cats that had food reward and did dance, the Training and Dance variables and the 
interaction will all be 0 and so the equation reduces down to:

ln ( ) ( ) ( )

ln

ln(

( )

( )
Food,Yes

Food,Yes

O b

O b

= + × + × + ×

=
0 1 2 3

0

0 0 0

28

b b b

))

.

=
=

b

b
0

0 3 332

2 Actually, the convention is to denote b0 as θ and the b-values as λ, but I think these notational changes serve only 
to confuse people so I’m sticking with b because I want to emphasize the similarities to regression and ANOVA.
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Therefore, b0 in the model represents the log of the observed value when all of the catego-
ries are zero. As such it’s the log of the observed value of the base category (in this case cats 
that got food and danced). 

Now, let’s see what happens when we look at cats that had affection as a reward and 
danced. In this case, the Training variable is 1 and the Dance variable and the interaction are 
still 0. Also, our outcome now changes to be the observed value for cats that received affection 
and danced (from Table 18.1 we can see the value is 48). Therefore, the equation becomes:

ln( ) (  1) ( 0) ( 0)

ln(
Affection,Yes 0 1 2 3

Affection,Y

O b b b b

O

= + × + × + ×

ees 0 1

1 Affection,Yes 0

)

ln( )

= +

= −

b b

b O b

Remembering that b0 is the expected value for cats that had food and danced, we get:

b1 = −ln ln( ) ( )

= ln(48) ln(28)
= 3.871 3.

Affection,Yes Food,YesO O

−
− 3332

= 0 539.

The important thing is that b1 is the difference between the log of the observed frequency 
for cats that received affection and danced, and the log of the observed values for cats that 
received food and danced. Put another way, within the group of cats that danced it rep-
resents the difference between those trained using food and those trained using affection.

Now, let’s see what happens when we look at cats that had food as a reward and did not 
dance. In this case, the Training variable is 0, the Dance variable is 1 and the interaction is again 
0. Our outcome now changes to be the observed frequency for cats that received food but did 
not dance (from Table 18.1 we can see the value is 10). Therefore, the equation becomes:

ln ( ) ( ) ( )

ln

l

( )=

( )=
Food,No

Food,No

O b

O b
0 1 2 3

0 2

2

0 1 0+ × + × + ×

+

=

b b b

b

b nn( )Food,NoO b− 0

Remembering that b0 is the expected value for cats that had food and danced, we get:

b2

1

=

= −

ln ln( ) ( )

= ln(10) ln(28)

= 2.303 3.332

Food,No Food,YesO O−

−
−

..029

The important thing is that b2 is the difference between the log of the observed frequency 
for cats that received food and danced, and the log of the observed frequency for cats that 
received food and didn’t dance. Put another way, within the group of cats that received food 
as a reward it represents the difference between cats that didn’t dance and those that did. 

Finally, we can look at cats that had affection and danced. In this case, the Training and 
Dance variables are both 1 and the interaction (which is the value of Training multiplied by 
the value of Dance) is also 1. We can also replace b0, b1, and b2, with what we now know 
they represent. The outcome is the log of the observed frequency for cats that received 
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affection but didn’t dance (this expected value is 114 – see Table 18.1). Therefore, the equa-
tion becomes (I’ve used the shorthand of A for affection, F for food, Y for yes, and N for no):

ln( ) ( ) ( ) ( )

ln( )

ln(

O b b b b

O b b b b

O

A,N

A,N

A,

= + × + × + ×

= + + +
0 1 2 3

0 1 2 3

1 1 1

NN F,Y A,Y F,Y F,N F,Y) ln( ) (ln( ) ln( )) (ln( ) ln( ))

ln(

= + − + − +O O O O O b3

OO O O O b

b O O
A,N A,Y F,N F,Y

A,N F,N

) ln( ) ln( ) ln( )

ln( ) ln( ) l

= + − +

= − +
3

3 nn( ) ln( )

ln( ) ln( ) ln( ) ln( )
.

O OF,Y A,Y−

= − + −
=

114 10 28 48
1 895

So, b3 in the model really compares the difference between affection and food when the 
cats didn’t dance to the difference between food and affection when the cats did dance. 
Put another way, it compares the effect of Training when cats didn’t dance to the effect of 
Training when they did dance. 

The final model is therefore:

ln( ) . . . . lnOij = + − + +3 332 0 539 1 029 1 895Training Dance Interaction (( )εij

The important thing to note here is that everything is exactly the same as factorial ANOVA 
except that we dealt with log-transformed values (in fact compare this section to section 
12.3 to see just how similar everything is). In case you still don’t believe me that this works 
as a general linear model, I’ve prepared a file called CatRegression.dat, which contains the 
two variables Dance (0 = no, 1 = yes) and Training (0 = food, 1 = affection) and the inter-
action (Interaction). There is also a variable called Observed that contains the observed 
frequencies in Table 18.1 for each combination of Dance and Training. Finally, there is a 
variable called LnObserved, which is the natural logarithm of these observed frequencies 
(remember that throughout this section we’ve dealt with the log observed values).

SELF-TEST

ü	 Run a multiple regression analysis using 
CatRegression.dat with LnObserved as the 
outcome, and Training, Dance and Interaction as 
your three predictors.

Output 18.4 shows the resulting coefficients table from this regression. The important 
thing to note is that the constant, b0, is 3.332 as calculated above, the beta value for type 
of training, b1, is 0.539 and for dance, b2, is -1.030, both of which are within rounding 
error of what was calculated above. Also the coefficient for the interaction, b3, is 1.895 as 
predicted. There is one interesting point, though: all of the standard errors are zero (or 
very, very close to zero), or, put differently, there is no error at all in this model (which is 
also why there are no significance tests). This is because the various combinations of coding 
variables completely explain the observed values. This is known as a saturated model, and I 
will return to this point later, so bear it in mind. For the time being, I hope this convinces 
you that chi-square can be conceptualized as a linear model.
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Coefficients:
              Estimate Std. Error    t value Pr(>|t|)    
(Intercept)  3.332e+00  1.289e-15  2.585e+15   <2e-16 ***
Training     5.390e-01  1.622e-15  3.322e+14   <2e-16 ***
Dance       -1.030e+00  2.513e-15 -4.097e+14   <2e-16 ***
Interaction  1.895e+00  2.774e-15  6.830e+14   <2e-16 ***

Output 18.4

OK, this is all very well, but the heading of this section did rather imply that I would 
show you how the chi-square test can be conceptualized as a linear model. Well, basically, 
the chi-square test looks at whether two variables are independent; therefore, it has no 
interest in the combined effect of the two variables, only their unique effect. Thus, we can 
conceptualize chi-square in much the same way as the saturated model, except that we 
don’t include the interaction term. If we remove the interaction term, our model becomes:

ln( )Model Training Danceij jb b b= + +0 1 2

With this new model, we cannot predict the observed values like we did for the saturated 
model because we’ve lost some information (namely, the interaction term). Therefore, the 
outcome from the model changes, and therefore the beta-values change too. We saw earlier 
that the chi-square test is based on ‘expected frequencies’. Therefore, if we’re conceptualiz-
ing the chi-square test as a linear model, our outcomes will be these expected values. If you 
look back to the beginning of this chapter you’ll see we already have the expected frequen-
cies based on this model. We can recalculate the beta values based on these expected values:

ln( )E b b bij j= + +0 1 2Training Dance

For cats that had food reward and did dance, the Training and Dance variables will be 0 
and so the equation reduces down to:

ln( ) ( ) ( )

ln( )

ln( . )

E b b b

E b

b

Food,Yes

Food,Yes

= + × + ×

=

=

0 1 2

0

0

0 0

14 44

== 2 67.

Therefore, b0 in the model represents the log of the expected value when all of the catego-
ries are zero.

When we look at cats that had affection as a reward and danced, the Training variable is 
1 and the Dance variable is still 0. Also, our outcome now changes to be the expected value 
for cats that received affection and danced:

ln( ) ( ) ( )

ln( )

E b b b

E b b
Affection,Yes

Affection,Yes

= + × + ×

= +
0 1 2

0

1 0

11

1 0b E b

E E

= −

= −

ln( )

ln( ) ln(
Affection,Yes

Affection,Yes Food,Yes ))

ln( . ) ln( . )
.

= −
=

61 56 14 44
1 45
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The important thing is that b1 is the difference between the log of the expected frequency 
for cats that received affection and did dance and the log of the expected values for cats 
that received food and danced. In fact, the value is the same as the column marginal, that 
is the difference between the total number of cats getting affection and the total number of 
cats getting food: ln(162) - ln(38) = 1.45. Put simply, it represents the main effect of the 
type of Training.

When we look at cats that had food as a reward and did not dance, the Training variable 
is 0 and the Dance variable is 1. Our outcome now changes to be the expected frequency 
for cats that received food but did not dance:

ln( ) ( ) ( )

ln( )

ln(

E b b b

E b b

b O

Food,No

Food,No

Food

= + × + ×

= +

=

0 1 2

0 2

2

0 1

,,No

Food,No Food,Yes

)

ln( ) ln( )

ln( . ) ln( . )
.

−

= −

= −
=

b

O O
0

23 56 14 44
0 449

Therefore, b2 is the difference between the log of the expected frequencies for cats that 
received food and didn’t or did dance. In fact, the value is the same as the row marginal, 
that is the difference between the total number of cats that did and didn’t dance: ln(124) - 
ln(76) = 0.49. In simpler terms, it is the main effect of whether or not the cat danced.

We can double-check all of this by looking at the final cell:

ln( ) ( ) ( )

ln( )

E b b b

E b b
Affection,No

Affection,No

= + × + ×

= + +
0 1 2

0 1

1 1

bb2

100 44 2 67 1 45 0 49
4 61 4 61

ln( . ) . . .
. .

= + +
=

The final chi-square model is therefore:

ln( ) ln( ) ln( )

ln( ) . . .

O

O

i i

i

= +

= + + +

model

Training Dance

ε

2 67 1 45 0 49 lln( )εi

We can rearrange this to get some residuals (the error term):

ln( ) ln( ) ln( )si i= −O model

In this case, the model is merely the expected frequencies that were calculated for the chi-
square test, so the residuals are the differences between the observed and expected frequencies.

SELF-TEST

ü	 To show that this all actually works, run another 
multiple regression analysis using CatRegression.
dat. This time the outcome is the log of expected 
frequencies (LnExpected) and Training and Dance 
are the predictors (the interaction is not included).
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This demonstrates how chi-square can work as a linear model, just like regression and 
ANOVA, in which the beta values tell us something about the relative differences in fre-
quencies across categories of our two variables. If nothing else made sense, I want you to 
leave this section aware that chi-square (and analysis of categorical data generally) can be 
expressed as a linear model (although we have to use log values). We can express catego-
ries of a variable using dummy variables, just as we did with regression and ANOVA, and 
the resulting beta values can be calculated in exactly the same way as for regression and 
ANOVA. In ANOVA, these beta values represented differences between the means of a 
particular category compared against a baseline category. With categorical data, the beta 
values represent the same thing, the only difference being that rather than dealing with 
means, we’re dealing with expected values. Grasping this idea (that regression, t-tests, 
ANOVAs and categorical data analysis are basically the same) will help (me) considerably 
in the next section.

18.7.2.    Loglinear analysis 3

In the previous section, after nearly reducing my brain to even more of a rotting vegetable 
than it already is trying to explain how categorical data analysis is just another form of 
regression, I ran the data through an ordinary regression in R to prove that I wasn’t talking 
complete gibberish. At the time I rather glibly said ‘oh, by the way, there’s no error in the 
model, that’s odd isn’t it?’ and sort of passed this off by telling you that it was a ‘saturated’ 
model and not to worry too much about it because I’d explain it all later just as soon as I’d 
worked out what the hell was going on. That seemed like a good avoidance tactic at the 
time, but unfortunately I now have to explain what I was going on about.

To begin with, I hope you’re now happy with the idea that categorical data can be 
expressed in the form of a linear model provided that we use log values (this, incidentally, 
is why the technique we’re discussing is called loglinear analysis). From what you hopefully 
already know about ANOVA and linear models generally, you should also be cosily tucked 
up in bed with the idea that we can extend any linear model to include any amount of pre-
dictors and any resulting interaction terms between predictors. Therefore, if we can repre-
sent a simple two-variable categorical analysis in terms of a linear model, then it shouldn’t 
amaze you to discover that if we have more than two variables this is no problem: we 
can extend the simple model by adding whatever variables and the resulting interaction 
terms. This is all you really need to know. So, just as in multiple regression and ANOVA, 
if we think of things in terms of a linear model, then conceptually it becomes very easy to 
understand how the model expands to incorporate new variables. So, for example, if we 
have three predictors (A, B and C) in ANOVA (think back to section 14.4) we end up with 
three two-way interactions (AB, AC, BC) and one three-way interaction (ABC). Therefore, 
the resulting linear model of this is just:

outcomeijk i j k ij ik jk ijb b A b B b C b AB b AC b BC b ABC= + + + + + + +( 0 1 2 3 4 5 6 7 kk ij) +ε

In exactly the same way, if we have three variables in a categorical data analysis we get 
an identical model, but with an outcome in terms of logs :

ln(Oijk i j k ij ik jk ijkb b A b B b C b AB b AC b BC b ABC) ( )= + + + + + + +0 1 2 3 4 5 6 7 ++ ln( )εij

Obviously the calculation of beta values and expected values from the model becomes con-
siderably more cumbersome and confusing, but that’s why we invented computers – so that 
we don’t have to worry about it. Loglinear analysis works on these principles. However, as 
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we’ve seen in the two-variable case, when our data are categorical and we include all of the 
available terms (main effects and interactions) we get no error: our predictors can perfectly 
predict our outcome (the expected values). So, if we start with the most complex model 
possible, we will get no error. The job of loglinear analysis is to try to fit a simpler model 
to the data without any substantial loss of predictive power. Therefore, loglinear analysis 
typically works on a principle of backward elimination (yes, the same kind of backward 
elimination that we can use in multiple regression – see section 7.6.4.3). So we begin with 
the saturated model, and then we remove a predictor from the model and, using this new 
model, we predict our data (calculate expected frequencies, just like the chi-square test) 
and then see how well the model fits the data (i.e., are the expected frequencies close to the 
observed frequencies?). If the fit of the new model is not very different from the more com-
plex model, then we abandon the complex model in favour of the new one. Put another 
way, we assume the term we removed was not having a significant impact on the ability of 
our model to predict the observed data.

However, we don’t just remove terms randomly, we do it hierarchically. So, we start with 
the saturated model and then remove the highest-order interaction, and assess the effect 
that this has. If removing the interaction term has no effect on the model then it’s obvi-
ously not having much of an effect; therefore, we get rid of it and move on to remove any 
lower-order interactions. If removing these interactions has no effect then we carry on to 
any main effects until we find an effect that does affect the fit of the model if it is removed.

To put this in more concrete terms, at the beginning of the section on loglinear analysis I 
asked you to imagine we’d extended our training and line-dancing example to incorporate 
a sample of dogs. So, we now have three variables: Animal (dog or cat), Training (food or 
affection) and Dance (did they dance or not?). Just as in ANOVA this results in three main 
effects:

MM Animal

MM Training

MM Dance

three interactions involving two variables:

MM Animal × Training

MM Animal × Dance

MM Training × Dance

and one interaction involving all three variables:

MM Animal × Training × Dance

When I talk about backward elimination, all I mean is that loglinear analysis starts by 
including all of these effects; we then take the highest-order interaction (in this case the 
three-way interaction of Animal × Training × Dance) and remove it. We construct a new 
model without this interaction, and from the model calculate expected frequencies. We 
(well, the computer) then compares these expected frequencies (or model frequencies) to 
the observed frequencies using the standard equation for the likelihood ratio statistic (see 
section 18.4.3). If the new model significantly changes the likelihood ratio statistic, then 
removing this interaction term has a significant effect on the fit of the model and we know 
that this effect is statistically important. If this is the case then we will stop there and say 
that we have a significant three-way interaction! We won’t test any other effects because 
with categorical data all lower-order effects are consumed within higher-order effects. 
If, however, removing the three-way interaction doesn’t significantly affect the fit of the 
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model then we move on to lower-order interactions. Therefore, we look at the Animal × 
Training, Animal × Dance and Training × Dance interactions in turn and construct models 
in which these terms are not present. For each model we again calculate expected values 
and compare them to the observed data using a likelihood ratio statistic.3 Again, if any one 
of these models does result in a significant change in the likelihood ratio then the term is 
retained and we won’t move on to look at any main effects involved in that interaction 
(so if the Animal × Training interaction is significant it won’t look at the main effects 
of Animal or Training). However, if the likelihood ratio is unchanged then the analysis 
removes the offending interaction term and moves on to look at main effects.

I mentioned that the likelihood ratio statistic (see section 18.4.3) is used to assess each 
model. From the equation it should be clear how this equation can be adapted to fit any 
model: the observed values are the same throughout, and the model frequencies are sim-
ply the expected frequencies from the model being tested. For the saturated model, this 
statistic will always be 0 (because the observed and model frequencies are the same so the 
ratio of observed to model frequencies will be 1, and ln(1) = 0), but as we’ve seen, in other 
cases it will provide a measure of how well the model fits the observed frequencies. To test 
whether a new model has changed the likelihood ratio, all we need do is to take the likeli-
hood ratio for a model and subtract from it the likelihood statistic for the previous model 
(provided the models are hierarchically structured):

L L Lχ χ χchange current model previous model
2 2 2= − 	 (18.5)

I’ve tried in this section to give you a flavour of how loglinear analysis works, without 
actually getting too much into the nitty-gritty of the calculations. I’ve tried to show you 
how we can conceptualize a chi-square analysis as a linear model and then relied on what 
I’ve previously told you about ANOVA to hope that you can extrapolate these conceptual 
ideas to understand roughly what’s going on. The curious among you might want to know 
exactly how everything is calculated and to these people I have two things to say: ‘I don’t 
know’ and ‘I know a really good place where you can buy a straitjacket’. If you’re that 
interested then Tabachnick and Fidell (2007) have, as ever, written a wonderfully detailed 
and lucid chapter on the subject, which frankly puts this feeble attempt to shame. Still, 
assuming you’re happy to live in relative ignorance, we’ll now have a look at how to do a 
loglinear analysis.

18.8.  Assumptions in loglinear analysis 2

Loglinear analysis is an extension of the chi-square test and so has similar assumptions; 
that is, an entity should fall into only one cell of the contingency table (i.e., cells of the 
table must be independent) and the expected frequencies should be large enough for a reli-
able analysis. In loglinear analysis with more than two variables it’s all right to have up to 
20% of cells with expected frequencies less than 5; however, all cells must have expected 
frequencies greater than 1. If this assumption is broken the result is a radical reduction in 
test power – so dramatic in fact that it may not be worth bothering with the analysis at all. 
Remedies for problems with expected frequencies are: (1) collapse the data across one of 
the variables (preferably the one you least expect to have an effect!); (2) collapse levels of 
one of the variables; (3) collect more data; or (4) accept the loss of power.

3 It’s worth mentioning that for every model, the computation of expected values differs, and as the designs get 
more complex, the computation gets increasingly tedious and incomprehensible (at least to me); however, you 
don’t need to know the calculations to get a feel for what is going on.
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If you want to collapse data across one of the variables then certain things have to be 
considered:

1	 The highest-order interaction should be non-significant.

2	 At least one of the lower-order interaction terms involving the variable to be deleted 
should be non-significant.

Let’s take the example we’ve been using. Say we wanted to delete the Animal variable. 
Then for this to be valid, the Animal × Training × Dance variable should be non-significant, 
and either the Animal × Training or the Animal × Dance interaction should also be non-
significant. You can also collapse categories within a variable. So, if you had a variable of 
‘season’ relating to spring, summer, autumn and winter, and you had very few observations 
in winter, you could consider reducing the variable to three categories: spring, summer, 
autumn/winter perhaps. However, you should really only combine categories that it makes 
theoretical sense to combine. Finally, some people overcome the problem by simply adding 
a constant to all cells of the table, but there really is no point in doing this because it doesn’t 
address the issue of power.

18.9.  Loglinear analysis using R 2

18.9.1.    Initial considerations 2

Data are entered for loglinear analysis in the same way as for the chi-square test (see sec-
tions 18.6.1 and 18.6.2). The data for the cat and dog example are in the file CatsandDogs.
dat; load and open this file by setting your working directory to the location of the file and 
executing:

catsDogs<-read.delim("CatsandDogs.dat", header = TRUE)
catsDogs

Notice that the data set has three variables (Animal, Training and Dance) and each one 
contains text representing the different categories of these variables. To begin with, we 
should produce a contingency table of the data.

The CrossTable() function cannot cope with three variables in a table. There are a couple 
of ways to deal with this limitation. One way is to use a subset function (section 3.9.2) to 
create two dataframes, and run CrossTable() on each. This is the most useful thing to do if 
you want row and/or column percentages and so we’ll cover that here. However, you can 
also use the table() and xtabs() functions (see Oliver Twisted).

‘Fagin has challenged me to steal a gold-coated table from 
under a rich gent’s nose while he eats roast goose from it. I won-
der how I can do it?’ ponders Oliver. ‘Perhaps the table() func-
tion will help me, or maybe xtabs() although that’s probably best 
for tables with adult content.’ OK, Oliver, I’ll explain them to you 
on the companion website, but I think you’ll be disappointed with 
them as aids to your criminal activities. If you ever need to cross-
tabulate some frequencies though, you’ll be glad you asked.

OLIVER TWISTED

Please Sir, can I have  
some more … tables?

18-Field_R-4368-Ch-18.indd   838 29/02/2012   6:39:57 PM



839CHAPTER 18   CATEGOR ICAL  DATA

To create the separate dataframes for cats and dogs, we execute:

justCats = subset(catsDogs, Animal=="Cat")
justDogs = subset(catsDogs, Animal=="Dog")

The first command creates a dataframe called justCats which is based on the whole 
dataframe (catsDogs) but includes only cases for which the variable Animal is exactly equal 
to the word ‘Cat’. The second command does much the same but selects only dogs.

Having created these two new dataframes, we can use the CrossTable() command to 
generate contingency tables for each of them by executing:

CrossTable(justCats$Training, justCats$Dance, sresid = TRUE, prop.t = FALSE, 
prop.c = FALSE, prop.chisq = FALSE, format = "SPSS")
CrossTable(justDogs$Training, justDogs$Dance, sresid = TRUE, prop.t = FALSE, 
prop.c = FALSE, prop.chisq = FALSE, format = "SPSS")

These commands produce a contingency table of the variables Training and Dance for cats 
(first command) and dogs (second command). These commands probably look quite long, 
but this is only because we have asked to suppress the total proportions (prop.t = FALSE), 
the column proportions (prop.c = FALSE) and chi-square proportions (prop.chisq = FALSE), 
so that they don’t appear in the output (see R’s Souls’ Tip 18.2). We have also asked for 
standardized residuals (sresid = TRUE in combination with format = “SPSS”) because these 
might come in handy for interpretation.

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|            Std Residual |
|-------------------------|

Total Observations in Table:  200 

                    | justCats$Dance 
  justCats$Training |       No  |      Yes  | Row Total | 
--------------------|-----------|-----------|-----------|
Affection as Reward |      114  |       48  |      162  | 
                    |   70.370% |   29.630% |   81.000% | 
                    |    1.353  |   -1.728  |           | 
--------------------|-----------|-----------|-----------|
     Food as Reward |       10  |       28  |       38  | 
                    |   26.316% |   73.684% |   19.000% | 
                    |   -2.794  |    3.568  |           | 
--------------------|-----------|-----------|-----------|
       Column Total |      124  |       76  |      200  | 
--------------------|-----------|-----------|-----------|

Output 18.5

The crosstabulation table produced by the CrossTable() function contains the number of 
cases that fall into each combination of categories. The first table (Output 18.5) contains 
the information for cats and is the same information as in Output 18.3, because the data 
are the same (we just added some dogs to the data). Output 18.6 shows the frequencies 
for the dogs; we can summarize the data in a similar way as we did for the cats. In total 49 
dogs danced and of these 20 were trained using food and 29 were trained with affection. 
Further, 21 dogs didn’t dance at all. In summary, a lot more dogs danced than didn’t. Of 
those that had affection as a reward, 80.56% danced compared to 19.44% that didn’t, but 
for those rewarded with food only 58.82% danced compared to 41.18% that didn’t. In 
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short, dogs seem more willing to dance than cats (70% compared to 38%), and seem more 
motivated by affection than cats (81% danced compared to 30% of cats).

   Cell Contents
|-------------------------|
|                   Count |
|             Row Percent |
|            Std Residual |
|-------------------------|

Total Observations in Table:  70 

                    | justDogs$Dance 
  justDogs$Training |       No  |      Yes  | Row Total | 
--------------------|-----------|-----------|-----------|
Affection as Reward |        7  |       29  |       36  | 
                    |   19.444% |   80.556% |   51.429% | 
                    |   -1.156  |    0.757  |           | 
--------------------|-----------|-----------|-----------|
     Food as Reward |       14  |       20  |       34  | 
                    |   41.176% |   58.824% |   48.571% | 
                    |    1.190  |   -0.779  |           | 
--------------------|-----------|-----------|-----------|
       Column Total |       21  |       49  |       70  | 
--------------------|-----------|-----------|-----------|

Output 18.6

18.9.2.    Loglinear analysis as a chi-square test 2

First we’ll do a loglinear analysis that involves only the cats, and we’ll ignore the dogs. 
We’ll see that loglinear analysis gives the same results as the chi-square test, then we’ll 
generalize the model to dogs and cats, and show how you can do things with the loglinear 
analysis that you can’t do with the chi-square test. 

To do the loglinear analysis, we can use the loglm() function. The easiest way to use this 
function is by entering a contingency table into it; in which case it takes the general form:

newModel<-loglm( ~ predictors, data = contingencyTable, fit = TRUE)

In other words, it creates a model object called newModel based on a contingency table 
(contingencyTable), with a specified list of variables and/or interactions (predictors). In 
other words, the format is very much like the lm() function that we have used throughout 
the book.

The first stage, therefore, is to create a contingency table to put into the loglm() func-
tion; we can do this using the xtabs() function. This function takes the general form:

newTable<-xtabs(~ classifying variables, data = dataFrame)

In other words, we create a new dataframe called newTable, which is based on an existing 
dataframe, and we simply list the variables by which we want to classify cases. In this case, 
we want to look at only the cats, so we’ll use the justCats dataframe that we generated in 
the previous section, and we want to classify cases based on Training and whether they 
danced or not (Dance). Therefore, we could execute:

catTable<-xtabs(~ Training + Dance, data = justCats)
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This command will create an object called catTable, which takes the justCats dataframe 
and classifies cases based on levels of the variables Training and Dance. If you look at 
catTable by executing its name, you’ll see that it is a very simple table of counts:

                     Dance
Training               No Yes
  Affection as Reward 114  48
  Food as Reward       10  28

We input this object into loglm(). We are going to run two loglinear analyses. First, we’ll 
run the saturated model. As explained earlier in this chapter, this model will be able to 
reproduce the proportions exactly and hence the chi-square test will be zero, with a p-value 
equal to 1. In the second model, we will remove the interaction effect leaving only the 
effects of Dance and Training.

When creating loglinear models, we use a formula, in the same way that we have 
throughout this book when using functions like lm() and glm(). We have seen that usually 
we write models as ‘outcome ~ predictor(s)’; however, in loglinear analysis there is no 
outcome (dependent) variable because we’re predicting the frequency of cases in different 
combinations of the predictors. Therefore, we don’t include anything on the left of the 
tilde. In general, we’d write something like ‘~ a + b’ in which a and b are predictor vari-
ables; because we want all of the effects in the saturated model, our model will be ~Dance 
+ Training + Training:Dance. We can, therefore create this model by executing:4

catSaturated<-loglm(~ Training + Dance + Training:Dance, data = catTable, 
fit = TRUE)

In the second model, we remove the interaction effect and have only Training and Dance 
as predictors. In doing so we should be able to predict the proportion of individuals in each 
category by knowing the proportion of cats who were trained each way, and the propor-
tion of cats who danced. So if 19% of the cats were trained with food, and 38% of the cats 
danced, we would expect to know how many cats had food as training and danced, how 
many had food as training and did not dance, how many had affection and danced, and 
how many had affection and did not dance. In fact, we’d expect 38% of the cats that had 
food as training to have danced, and 38% of the cats that had affection as training to have 
danced. We can obtain these expected values by adding fit = TRUE to the loglm() function, 
which tells the command to also calculate the fitted (expected) values. We’ll compare these 
values with the proportions that we have, and we’ll do a significance test to see if they 
differ. (That’s exactly what we do in the chi-square test.) We create this new model in the 
same way as the saturated model, except that we change the name of the model, and we 
omit the interaction term:

catNoInteraction<-loglm(~ Training + Dance, data = catTable, fit = TRUE)

Finally, we can create a mosaic plot. A mosaic plot is a graphical representation of fre-
quency data. Essentially, a square is divided up into portions, where the size of each portion 
represents the number of cases (or expected frequencies) relative to the total. Figure 18.3 
shows some examples of mosaic plots. In the top left the big square has been divided up 
into four shaded squares of equal size: the fact the squares are equal size tells us that there 
are an equal number of cats who danced and didn’t dance and were trained with food and 
affection. In the top right, the two squares under ‘affection’ are wider than those under 
‘food’, but the height of the squares on the dance/no dance dimension are equal. This tells 
us that there were more cats trained with affection than food (because on this dimension 

4 Given what you have already learnt about specifying models it should be clear that you could specify the full 
model as follows (because Training*Dance will include the main effects automatically):

catSaturated<-loglm(~Training*Dance, data = catTable, fit = TRUE)
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the squares are wider for affection than food), but the same number of cats danced and 
didn’t dance (because the squares are the same height). In the bottom left we can see that an 
equal number of cats were trained with food and affection (because the boxes are equally 
wide), but more cats danced than didn’t (the boxes are longer for the ‘yes’ category than 
the ‘no’). Finally, the bottom right shows a situation in which more cats were trained with 
affection than food (we can tell because the boxes under ‘affection’ are wider than for 
‘food’), but also for food training more cats danced than not (the box is longer for ‘yes’) 
and for affection training equal numbers of cats danced and did not (the boxes for this 
category are of equal size). Therefore, by looking at mosaic plots we can get an idea of the 
relative frequency of different categories. To do a mosaic plot in R, we can use the mosaic-
plot() function, which takes the general form:

mosaicplot(contingencyTable, shade = TRUE, main = "Title")

Therefore, we need only input a contingency table, then we can optionally provide a title 
by using the main = option, and ask for shading to show which areas of the plot are signifi-
cant by including the shade = option.

We can create plots of the expected values from our two models: these are stored in a 
variable called fit that is attached to each model, so we can access them using model$fit 
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Examples of 
mosaic plots
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(in which model is the name of the model). For the saturated model, the expected values 
will be the same as the raw data (because the model is a perfect fit of the data), but for the 
second model these expected values will be the same as the expected cell values for the 
chi-square test that we computed at the beginning of the chapter (i.e., 14.44, 23.56, 61.56, 
and 100.44).

To create a mosaic plot for the saturated model we can simply execute:

mosaicplot(catSaturated$fit, shade = TRUE, main = "Cats: Saturated Model")

This command will create a plot of the expected values from the catSaturated model, 
it gives it a title of ‘Cats: Saturated Model’, and shades it to highlight significant areas. 
Similarly, the expected values for the second model can be plotted by executing:

mosaicplot(catNoInteraction$fit, shade = TRUE, main = "Cats: Expected Values")

18.9.3.    Output from loglinear analysis as a chi-square test 2

Output 18.7 shows the output of the saturated model and Output 18.8 the model without 
the interaction term – I’ve cut out some of the boring details that you don’t need to worry 
about. The summary of the saturated model shows that the model is not significant. In fact, 
the chi-square is zero, and the p-value is 1. Remember that these are goodness-of-fit tests, 
which means that they test whether the expected values from the model deviate from the 
observed data. A non-significant result therefore means a good fit. In fact, the statistic is 
0 (and p-value is 1) because this model fits the data perfectly: the expected values are the 
same as the actual data.

Formula:
~Training + Dance + Training:Dance

Statistics:
                 X^2 df P(> X^2)
Likelihood Ratio   0  0        1
Pearson            0  0        1 

Output 18.7

In the second model, we drop the interaction term. This term allowed the proportion of 
cats that danced to vary across conditions. In other words, it allowed an association between 
the Dance and Training variables. When this association is removed from the model, the 
model does not fit the data well any more: likelihood ratio and Pearson chi-square test are 
very similar, and both are highly significant, which means that the model deviates signifi-
cantly from the data. In other words, when we remove the association between Dance and 
Training, the model becomes a poor fit to the data. This is what the chi-square test that 
we did at the beginning of the chapter measures: what is the effect of the association or 
interaction between Dance and Training on cell frequencies. Note that the values of the 
likelihood ratio and chi-square test in Output 18.8 are the same as those we computed at 
the start of the chapter.

Formula:
~Training + Dance

Statistics:
                      X^2 df     P(> X^2)
Likelihood Ratio 24.93159  1 5.940113e-07
Pearson          25.35569  1 4.767434e-07

Output 18.8
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Ultimately, we’re trying to find the most parsimonious model that does not deviate sig-
nificantly from the data; in this case this is the saturated model, because the other model is 
significant (and hence a poor fit of the data). Therefore, we interpret the saturated model.

Figure 18.4 shows the mosaic plot, which summarizes the saturated model for us. The size 
of each rectangle represents the number of cats. The colour and the boundary of each rect-
angle tells us about the residuals. A blue residual with a solid boundary means the residual is 
positive, a red rectangle (on your screen, but dark grey in Figure 18.4) or a dashed boundary 
means the residual is negative. A rectangle gets coloured only if the standardized residual 
is higher than 2, or lower than −2. Recall that a standardized residual is significant if it is 
(approximately) higher than 2, or lower than −2, so the coloured rectangles are significant.

What the graph shows is that more cats than we would have expected (given the null 
hypothesis) failed to dance when given affection, as shown by the large rectangle on the 
top left with the solid boundary, but that the residual (i.e., the difference between the num-
ber we found and the number we expect, given the null hypothesis) was not significant: 
because the rectangle is white. Similarly, fewer cats than we expected danced, when given 
affection as a reward, as shown by the rectangle on the bottom left. We know it’s fewer, 
because it has a dashed boundary, and we know it’s not significant, because it’s white.

When it comes to those cats that were rewarded with food, a different story emerges. 
Fewer cats failed to dance when rewarded with food than we would have expected. We can 
see this from the light grey rectangle (pink on your screen) on the top right. We know that 
it’s fewer, because of the dashed boundary, and it is coloured, so it is significant. 

Similarly, more cats danced when rewarded with food than we would have expected, 
given the null hypothesis. We can see this, because the lower right rectangle has a solid 
boundary, and because it is shaded blue, we know that the residual is positive.

Figure 18.5 shows the mosaic plot of the fitted values for the model without the interac-
tion term: here all the residuals are zero (they are all white boxes with solid boundaries). 
The plot shows that it doesn’t matter what sort of training the cat had, the same proportion 
danced in both groups. 
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18.9.4.    Loglinear analysis 2

Usually when we do a loglinear analysis we have more than two variables – we can do it 
with two (as we’ve seen), but there’s no point, because a chi-square test does the job for us 
and it’s easier and less confusing. When we have more than two variables, we have more 
possible effects than before. Recall that if we have two variables, then we have the main 
effects: Training + Dance, and the interaction effect (Training × Dance). With three vari-
ables, we have:

1	 Main effects: Training + Dance + Animal

2	 Two-way interactions: Because we have three variables, there are three two-way 
interactions: 
a	 Training × Dance
b	 Dance × Animal
c	 Training × Animal

3	 Three-way interaction: Training × Dance × Animal

You can see that as the number of variables increases, the number of effects increases 
even more. With four variables (which I’ll call a, b, c and d because I have no imagination 
whatsoever), we have:

1	 Main effects:
a	 a + b + c + d

2	 Two-way interactions:
a	 a × b
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b	 a × c
c	 a × d
d	 b × c
e	 b × d
f	 c × d

3	 Three-way interactions:
a	 a × b × c
b	 a × b × d
c	 a × c × d
d	 b × c × d

4	 Four-way interaction:
a	 a × b × c × d 

The principle is the same however many effects you have: you start with the saturated 
model, and remove effects until the model becomes significant (i.e., significantly deviates 
from the original data). When the model is significant, you go back to the last model that 
was not significant and interpret it (because it will be the best fit you can achieve given the 
available predictor variables).

First of all we need to generate our contingency table using xtabs(), and we can do this 
by executing:

CatDogContingencyTable<-xtabs(~ Animal + Training + Dance, data = catsDogs)

This takes the original dataframe (catsDogs) and creates a contingency table based on 
the variables Animal, Training and Dance. The resulting contingency table is stored as 
CatDogContingencyTable, which is what we’ll use in the loglinear analysis; it looks like 
this:

, , Dance = No

      Training
Animal Affection as Reward Food as Reward
   Cat                 114             10
   Dog                   7             14

, , Dance = Yes

      Training
Animal Affection as Reward Food as Reward
   Cat                  48             28
   Dog                  29             20

We start by estimating the saturated model, which we know will fit the data perfectly 
with a chi-square equal to zero. We’ll call the model caturated because I feel the need for a 
rubbish cat-related pun. We can create this model in the same way as before:5

caturated<-loglm(~ Animal*Training*Dance, data = CatDogContingencyTable)
summary(caturated)

The first command creates the model called caturated based on all main effects and inter-
actions in the contingency table called CatDogContingencyTable. The second command 

5 I’ve chosen to specify the model as ~Animal*Training*Dance because this will automatically include all of the main 
effects and lower-order interactions, and is less typing than ~ Animal + Training + Dance + Animal:Training + 
Animal:Dance + Dance:Training + Dance:Training:Animal
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summarizes this model; Output 18.9 shows the main statistics, and as we expect it has a 
likelihood ratio of 0, and a p-value of 1, because it is a perfect fit of the data.

Formula:
~Animal * Training * Dance

Statistics:
                 X^2 df P(> X^2)
Likelihood Ratio   0  0        1
Pearson            0  0        1

Output 18.9

Next we’ll fit the model with all of the main effects and two-way interactions. In other 
words, we’ll remove the three-way interaction; because this model tells us the effect of 
removing the three-way interaction we’ll call it threeWay. We could create this model by 
respecifying the model with all terms except the three-way interaction:

threeWay <- loglm(~ Animal + Training + Dance + Animal:Training + Animal:Dance 
+ Dance:Training, data = CatDogContingencyTable)

This command uses the same format as before to create a model called threeWay. The only 
difference (apart from that we have changed the name of the model) is that the three-way 
interaction isn’t included. This is a lot of typing, so you could also consider using the 
update() function (see R’s Souls’ Tip 7.2). Remember that this function allows us to take 
an existing model and ‘update’ it. In the past we have updated models by adding in new 
variables, but we can also remove them using this function. For example, to remove the 
three-way interaction from the saturated model we would execute:

threeWay<-update(caturated, .~. -Animal:Training:Dance)

Remember that the .~. simply means ‘keep the same outcome variable and predictor as 
before’; so, we’ve specified that we want to take the model called caturated, we want to keep 
the same outcomes and predictors as before, but by including ‘−Animal:Training:Dance’ we 
ask to remove the three-way interaction (the minus sign means ‘remove’). We can summa-
rize this model by executing:

summary(threeWay)

The pertinent parts of the resulting output are in Output 18.10. The model has a likeli-
hood ratio of 20.30, with 1 df and p < .001. It seems as though this model is a poor fit 
to the data.

Formula:
. ~ Animal + Training + Dance + Animal:Training + Animal:Dance + 
    Training:Dance

Statistics:
                      X^2 df     P(> X^2)
Likelihood Ratio 20.30491  1 6.603088e-06
Pearson          20.77759  1 5.158318e-06

Output 18.10

To compare models is very easy, we just subtract the likelihood ratios, and the degrees of 
freedom. But we’re kind of lazy, and so we’ll use the anova() function, which will do this 
for us (see section 7.8.4). We can compare the saturated model to the one without the 
three-way interaction by executing:

anova(caturated, threeWay)
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The resulting Output 18.11 shows the difference between these models. We’re interested 
in the part called Delta: delta is Greek letter ∆, which is the equivalent of D, and is often 
used in statistics to mean ‘difference’.6 The anova() function calculates the difference in the 
likelihoods for the two models, which is 20.30 – 0 = 20.30, and the difference in df, which 
is 1 – 0 = 1. You can see that this is a useful function, because it has done some literally 
brain-melting sums for us: I did warn you we were being lazy.

In the column labelled P(> Delta(Dev) we see the p-value of the difference between the 
models. This value is less than .001 and, therefore, highly significant. This significant result 
tells us that removing the three-way interaction has made the model a significantly worse 
fit to the data. In other words, the three-way interaction is a significant factor in making 
the model a good fit. It also means that for interpretation purposes we need to stick with 
the saturated model. We should now stop and conclude that the three-way interaction is 
significant, and interpret the effect.

LR tests for hierarchical log-linear models

Model 1:
 . ~ Training + Animal + Dance 
Model 2:
 ~Animal * Training * Dance 

          Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   20.30491  1                                    
Model 2    0.00000  0   20.30491         1          1e-05
Saturated  0.00000  0    0.00000         0          1e+00

Output 18.11

For illustrative purposes let’s pretend that we don’t need to stop, and carry on. Let’s 
create models that systematically remove the two-way interactions:

trainingDance<-update(threeWay, .~. -Training:Dance)
animalDance<-update(threeWay, .~. -Animal:Dance)
animalTraining<-update(threeWay, .~. -Animal:Training)

The first command creates a model called trainingDance that takes that threeWay model 
and removes the Training × Dance interaction (i.e., it does not include either this inter-
action or the three-way interaction). The second does the same but removes the Animal 
× Dance interaction. The final command again takes the threeWay model but this time 
removes the Training × Animal interaction. We can compare all of these models to the 
model without the three-way interaction using the anova() function:

anova(threeWay, trainingDance)
anova(threeWay, animalDance)
anova(threeWay, animalTraining)

Output 18.12 shows the result of the first comparison, which shows us the effect of 
removing the Training × Dance interaction: the likelihood ratio difference (or delta) is 8.6 
(28.9 − 20.3) with 2 – 1 = 1 degrees of freedom. This difference is significant, at p = .003, 
and therefore we cannot remove the Training × Dance interaction from the model without 
the fit getting worse (in other words, this interaction is significant too).

          Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   28.91551  2                                    
Model 2   20.30491  1   8.610596         1        0.00334
Saturated  0.00000  0  20.304911         1        0.00001

Output 18.12

6 Sometimes people say ‘What’s the delta?’ when they mean ‘What’s the difference?’ If you ever meet anyone who 
says this, you’ll know what they mean (and you’ll know that they are a pretentious prig).
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Output 18.13 shows the effect of removing the Animal × Dance effect. Now we get a 
likelihood ratio difference of 13.75, with 1 df. The p-value is < .001, and therefore we can-
not remove the Animal × Dance effect without making the fit of the model worse.

          Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   34.05329  2                                    
Model 2   20.30491  1   13.74838         1        0.00021
Saturated  0.00000  0   20.30491         1        0.00001

Output 18.13

Output 18.14 shows the effect of removing the Animal × Training interaction. The dif-
ference here is 13.76, with 1 df. Again this is highly significant, and therefore this effect 
cannot be removed from the model without making the fit worse.

         Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   34.06486  2                                    
Model 2   20.30491  1   13.75995         1        0.00021
Saturated  0.00000  0   20.30491         1        0.00001

Output 18.14

The next step is to try to interpret the three-way interaction (remember 
we looked at the two-way interactions only for illustrative purposes). The 
first useful thing we can do is to plot the frequencies across all of the differ-
ent categories. You should plot the frequencies in terms of the percentages. 
You should also look at the mosaic plot. We can obtain this plot by using the 
mosaicplot() function and applying it to our contingency table:

mosaicplot(CatDogContingencyTable, shade = TRUE, main = "Cats and Dogs")

I don’t need a loglinear
analysis to tell me that cats are

vastly superior to dogs!
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Executing this command creates the mosaic plot in Figure 18.6. This plot shows what we 
already know about cats: they will dance (or do anything else for that matter) when there 
is food involved but if you train them with affection they’re not interested. Dogs on the 
other hand will dance when there’s affection involved (actually more dogs danced than 
didn’t dance regardless of the type of reward, but the effect is more pronounced when 
affection was the training method). In fact, both animals show similar responses to food 
training, it’s just that cats won’t do anything for affection. So cats are sensible creatures 
that only do stupid stuff when there’s something in it for them (i.e., food), whereas dogs 
are just plain stupid. 

18.10.  Following up loglinear analysis 2

An alternative way to interpret a three-way interaction is to conduct chi-square analysis at 
different levels of one of your variables. For example, to interpret our Animal × Training 
× Dance interaction, we could perform a chi-square test on Training and Dance but do this 
separately for dogs and cats (in fact the analysis for cats will be the same as the example we 
used for chi-square). You can then compare the results in the different animals.

SELF-TEST

ü	 Use the subset() function to run a chi-square test on 
Dance and Training for dogs and cats separately.

Pearson’s Chi-squared test 
------------------------------------------------------------
Chi^2 =  3.932462     d.f. =  1     p =  0.04736256 

Pearson’s Chi-squared test with Yates’ continuity correction 
------------------------------------------------------------
Chi^2 =  2.965686     d.f. =  1     p =  0.08504836 

 
Fisher’s Exact Test for Count Data
------------------------------------------------------------
Sample estimate odds ratio:  0.3502677 

Alternative hypothesis: true odds ratio is not equal to 1
p =  0.06797422 
95% confidence interval:  0.1001861 1.127025 

Alternative hypothesis: true odds ratio is less than 1
p =  0.04208209 
95% confidence interval:  0 0.9586623 

Alternative hypothesis: true odds ratio is greater than 1
p =  0.9880647 
95% confidence interval:  0.1208492 Inf

Output 18.15
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The results and interpretation for cats are in Output 18.3 and for dogs the output is 
shown in Output 18.15. For dogs there is still a significant relationship between the types 
of training and whether they danced but it is weaker (the chi-square is 3.93 compared to 
25.4 in the cats).7 This reflects the fact that dogs are more likely to dance if given affection 
than if given food, the opposite of cats.

18.11.  Effect sizes in loglinear analysis 2

As with Pearson’s chi-square, one of the most elegant ways to report your effects is in terms 
of odds ratios. Odds ratios are easiest to understand for 2 × 2 contingency tables and so if 
you have significant higher-order interactions, or your variables have more than two cat-
egories, it is worth trying to break these effects down into logical 2 × 2 tables and calculat-
ing odds ratios that reflect the nature of the interaction. So, for example, in this example 
we could calculate odds ratios for dogs and cats separately. We have the odds ratios for 
cats already (section 18.6.7), and for dogs we would get 0.35 as reported in Output 18.15.

SELF-TEST

ü	 Calculate the odds ratio for dogs by hand.

This tells us that if a dog was trained with food the odds of their dancing were 0.35 
times the odds if they were rewarded with affection (i.e., they were less likely to dance). 
Another way to say this is that the odds of their dancing were 1/0.35 = 2.90 times lower if 
they were trained with food instead of affection. Compare this to cats where the odds of 
dancing were 6.58 higher if they were trained with food rather than affection. As you can 
see, comparing the odds ratios for dogs and cats is an extremely elegant way to present the 
three-way interaction term in the model.

18.12.  Reporting the results  
of loglinear analysis 2

When reporting loglinear analysis you need to report the likelihood ratio statistic for the 
final model, usually denoted just by χ2. For any terms that are significant you should report 
the chi-square change. For this example we could report:

	 The three-way loglinear analysis produced a final model that retained all effects. The 
likelihood ratio of this model was χ2 (0) = 0, p = 1. This indicated that the highest 
order interaction (the Animal × Training × Dance interaction) was significant, χ2 (1) = 
20.31, p < .001. To break down this effect, separate chi-square tests on the Training 
and Dance variables were performed separately for dogs and cats. For cats, there was 

7 The chi-square statistic depends on the sample size, so really you need to calculate effect sizes and compare them 
to make this kind of statement (unless you had equal numbers of dogs and cats).

18-Field_R-4368-Ch-18.indd   851 29/02/2012   6:40:02 PM



852 D ISCOVER ING STAT IST ICS  US ING R

a significant association between the type of training and whether or not cats would 
dance, χ2 (1) = 25.36, p < .001; this was true in dogs also, χ2 (1) = 3.93, p < .05. Odds 
ratios indicated that the odds of dancing were 6.58 higher after food than affection in 
cats, but only 0.35 in dogs (i.e., in dogs, the odds of dancing were 2.90 times lower 
if trained with food compared to affection). Therefore, the analysis seems to reveal a 
fundamental difference between dogs and cats: cats are more likely to dance for food 
rather than affection, whereas dogs are more likely to dance for affection than food.

             CRAMMING SAM’S TIPS    Loglinear analysis

•	 If you want to test the relationship between more than two categorical variables you can do this with loglinear analysis.
•	 Loglinear analysis is hierarchical: start with a model containing all main effects and interactions. Starting with the highest-

order interaction, remove terms to see whether their removal significantly affects the fit of the model. If it does then this term 
is not removed, it is interpreted and all lower-order effects are ignored.

•	 Look at the crosstabulation table to interpret any significant effects (the percentage of total for cells is the best thing to look at).

What have I discovered about statistics? 1

When I wrote the first edition of the SPSS version of this book I had always intended 
to do a chapter on loglinear analysis, but by the time I got to that chapter I had already 
written 300 pages more than I was contracted to do, and had put so much effort into the 
rest of it that, well, the thought of that extra chapter was making me think of large cliffs 
and jumping. When the second edition needed to be written, I wanted to make sure that 
at the very least I did a loglinear chapter. However, when I came to it, I’d already written 
200 pages more than I was supposed to for this new edition, and with deadlines fading 
into the distance, history was repeating itself. It won’t surprise you to know then that 
I was really happy to have written the damn thing! This chapter has taken a very brief 
look at analysing categorical data. What I’ve tried to do is to show you how we approach 
categorical data in much the same way as any other kind of data: we fit a model, we 
calculate the deviation between our model and the observed data, and we use that to 
evaluate the model we’ve fitted. I’ve also tried to show that the model we fit is the same 
one that we’ve come across throughout this book: it’s a linear model (regression). When 
we have only two variables we can use Pearson’s chi-square test or the likelihood ratio 
test to look at whether those two variables are associated. In more complex situations, 
we simply extend these models into something known as a loglinear model. This is a bit 
like ANOVA for categorical data: for every variable we have, we get a main effect but we 
also get interactions between variables. Loglinear analysis simply evaluates all of these 
effects hierarchically to tell us which ones best predict our outcome.

Fortunately the experience of this loglinear chapter taught me a valuable lesson, which is 
never to agree to write a chapter about something that you know very little about, and if you 
do then definitely don’t leave it until the very end of the writing process when you’re under 
pressure and mentally exhausted. It’s lucky that we learn from our mistakes, isn’t it …?
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R packages used in this chapter
gmodels MASS

R functions used in this chapter
anova()
c()
cbind()
CrossTable()
factor()
glm()
loglm()
lm()

mosaicplot()
rep()
subset()
summary()
table()
update()
xtabs()

Key terms that I’ve discovered
Chi-square test
Contingency table
Fisher’s exact test
Loglinear analysis
McNemar’s test

Mosaic plot
Odds ratio
Phi
Saturated model
Yates’s continuity correction

Smart Alex’s tasks 3

MM Task 1: Certain editors at Sage like to think they’re a bit of a whiz at football (soccer 
if you prefer). To see whether they are better than Sussex lecturers and postgradu-
ates we invited various employees of Sage to join in our football matches (oh, sorry, I 
mean we invited them down for important meetings about books). Every player was 
allowed to play in only one match. Over many matches, we counted the number of 
players who scored goals. The data are in the file SageEditorsCan’tPlayFootball.dat. 
Do a chi-square test to see whether more publishers or academics scored goals. We 
predict that Sussex people will score more than Sage people. 3

MM Task 2: In 2008 I had a sabbatical in the Netherlands (I have a real soft spot for 
Holland). However, living there for three months did enable me to notice certain 
cultural differences between Holland and England. The Dutch are famous for travel-
ling by bike; they do it much more than the English. However, I noticed that many 
more Dutch people cycle while steering with only one hand. I pointed this out to one 
of my friends, Birgit Mayer, and she said that I was being a crazy English fool and 
that Dutch people did not cycle one-handed. Several weeks of me pointing at one-
handed cyclists and her pointing at two-handed cyclists ensued. To put it to the test 
I counted the number of Dutch and English cyclists who ride with one or two hands 
on the handlebars (Handlebars.dat). Can you work out which one of us is right? 1

MM Task 3: I was interested in whether horoscopes are just a figment of people’s minds. 
Therefore, I got 2201 people, made a note of their star sign (this variable, obviously, 
has 12 categories: Capricorn, Aquarius, Pisces, Aries, Taurus, Gemini, Cancer, Leo, 
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Virgo, Libra, Scorpio and Sagittarius) and whether they believed in horoscopes (this 
variable has two categories: believer or unbeliever). I then sent them a horoscope in 
the post of what would happen over the next month: everybody, regardless of their 
star sign, received the same horoscope, which read ‘August is an exciting month for 
you. You will make friends with a tramp in the first week of the month and cook him 
a cheese omelette. Curiosity is your greatest virtue, and in the second week, you’ll 
discover knowledge of a subject that you previously thought was boring, statistics 
perhaps. You might purchase a book around this time that guides you towards this 
knowledge. Your new wisdom leads to a change in career around the third week, when 
you ditch your current job and become an accountant. By the final week you find 
yourself free from the constraints of having friends, your boy/girlfriend has left you 
for a Russian ballet dancer with a glass eye, and you now spend your weekends doing 
loglinear analysis by hand with a pigeon called Hephzibah for company.’ At the end of 
August I interviewed all of these people and I classified the horoscope as having come 
true, or not, based on how closely their lives had matched the fictitious horoscope. 
The data are in the file Horoscope.dat. Conduct a loglinear analysis to see whether 
there is a relationship between the person’s star sign, whether they believe in horo-
scopes and whether the horoscope came true. 3

MM Task 4: On my statistics course students have weekly classes in a computer labora-
tory. Postgraduate tutors run these classes but I often pop in to help out. I’ve noticed 
in these sessions that many students are studying Facebook rather more than they are 
studying the very interesting statistics assignments that I have set them. I wanted to 
see the impact that this behaviour had on their exam performance. I collected data 
from all 260 students on my course. First I checked their Attendance and classified 
them as having attended either more or less than 50% of their lab classes. Next, I clas-
sified them as being either someone who looked at Facebook during their lab class, 
or someone who never did. Lastly, after the Research Methods in Psychology exam, 
I classified them as having either passed or failed (Exam). The data are in Facebook.
dat. Do a loglinear analysis on the data to see if there is an association between study-
ing Facebook and failing your exam. 3

Answers can be found on the companion website.

Further reading
Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist. London: Sage.
Tabachnick, B. G. & Fidell, L. S. (2007). Using multivariate statistics (4th ed.). Boston: Allyn & 

Bacon. (Chapter 16 is a fantastic account of loglinear analysis.)

Interesting real research
Beckham, A. S. (1929). Is the Negro happy? A psychological analysis. Journal of Abnormal and Social 

Psychology, 24, 186–190.
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Multilevel linear models

FIGURE 19.1
Having a therapy 
session in 2007

19.1.  What will this chapter tell me? 1

Over the last couple of chapters we saw that I had gone from a child having dreams and 
aspirations of being a rock star, to becoming a living (barely) statistical test. A more dra-
matic demonstration of my complete failure to achieve my life’s ambitions I can scarcely 
imagine. Having devoted far too much of my life to statistics, it was time to unlock the 
latent rock star once more. The second edition of the SPSS version of this book had left 
me in desperate need for some therapy and, therefore, at the age of 29 I decided to start 
playing the drums (there’s a joke in there somewhere about it being the perfect instrument 
for a failed musician, but really they’re much harder to play than people think). A couple 
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of years later I had a call from an old friend of mine, Doug, who used to be in a band that 
my old band Scansion used to play with a lot: ‘Remember the last time I saw you we talked 
about you coming and having a jam with us?’ I had absolutely no recollection whatsoever 
of him saying this, so I responded ‘Yes’. ‘Well, how about it then?’ he said. ‘OK,’ I said, 
‘you arrange it and I’ll bring my guitar.’ ‘No, you whelk,’ he said, ‘we want you to drum 
and maybe you could learn some of the songs on the CD I gave you last year?’ I’d played 
his band’s CD and I liked it, but there was no way on this earth that I could play the drums 
as well as their drummer. ‘Sure, no problem’, I lied. I spent the next two weeks playing 
along to this CD as if my life depended on it and when the rehearsal came, much as I’d love 
to report that I drummed like a lord, I didn’t. I did, however, nearly have a heart attack 
and herniate everything in my body that it’s possible to herniate (really, the music is pretty 
fast!). Still, we had another rehearsal, and then another and, well, many years down the 
line we’re still having them. The only difference is that now I can play the songs at a speed 
that makes their old recordings seem as though a sedated snail was on the drums (www.
myspace.com/fracturepattern). The point is that it’s never too late to learn something new. 
This is just as well because, as a man who clearly doesn’t learn from his mistakes, I agreed 
to write a chapter on multilevel linear models, a subject about which I know absolutely 
nothing. I’m writing it last, when I feel mentally exhausted and stressed. Hopefully at some 
point between now and the end of writing the chapter I will learn something. With a bit 
of luck you will too.

19.2.  Hierarchical data 2

In all of the analyses in this book so far we have treated data as though they 
are organized at a single level. However, in the real world, data are often 
hierarchical. This just means that some variables are clustered or nested within 
other variables. For example, when I’m not writing statistics books I spend 
most of my time researching how anxiety develops in children below the age 
of 10. This typically involves my running experiments in schools. When I run 
research in a school, I test children who have been assigned to different classes, 
and who are taught by different teachers. The classroom that a child is in could 
conceivably affect my results. Let’s imagine I test in two different classrooms. 
The first class is taught by Mr. Nervous. Mr. Nervous is very anxious and often 

when he supervises children he tells them to be careful, or that things that they do are 
dangerous, or that they might hurt themselves. The second class is taught by Little Miss 
Daredevil.1 She is very carefree and she believes that children in her class should have 
the freedom to explore new experiences. Therefore, she is always telling them not to be 
scared of things and to explore new situations. One day I go into the school to test the 
children. I take in a big animal carrier, which I tell them has an animal inside. I measure 
whether they will put their hand in the carrier to stroke the animal. Children taught by 
Mr. Nervous have grown up in an environment where their teacher reinforces caution, 
whereas children taught by Miss Daredevil have been encouraged to embrace new experi-
ences. Therefore, we might expect Mr. Nervous’s children to be more reluctant to put 
their hand in the box because of the classroom experiences that they have had. The class-
room is, therefore, known as a contextual variable. In reality, as an experimenter I would 
be interested in a much more complicated situation. For example, I might tell some of 
the children that the animal is a bloodthirsty beast, whereas I tell others that the animal is 

1 Those of you who don’t spot the Mr. Men references here, check out http://www.mrmen.com. Mr. Nervous 
used to be called Mr. Jelly and was a pink jelly-shaped blob, which in my humble opinion was better than his 
current incarnation.

What are
hierarchical data?
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friendly. Now obviously I’m expecting the information I give the children to affect their 
enthusiasm for stroking the animal. However, it’s also possible that their classroom has 
an effect. Therefore, my manipulation of the information that I give the children also has 
to be placed within the context of the classroom to which the child belongs. My threat 
information is likely to have more impact on Mr. Nervous’s children than it will on Miss 
Daredevil’s children. One consequence of this is that children within Mr. Nervous’s class 
will be more similar to each other than they are to children in Miss Daredevil’s class and 
vice versa.

Figure 19.2 illustrates this scenario more generally. In a big data set, we might have col-
lected data from lots of children. This is the bottom of the hierarchy and is known as a 
level 1 variable. So, children (or cases) are our level 1 variable. However, these children are 
organized by classroom (children are said to be nested within classes). The class to which 
a child belongs is a level up from the participant in the hierarchy and is said to be a level 
2 variable.

The situation that I have just described is the simplest hierarchy that you can have 
because there are just two levels. However, you can have other layers to your hierarchy. 
The easiest way to explain this is to stick with our example of my testing children in dif-
ferent classes and then to point out the obvious fact that classrooms are themselves nested 
within schools. Therefore, if I ran a study incorporating lots of different schools, as well 
as different classrooms within those schools, then I would have to add another level to the 
hierarchy. We can apply the same logic as before, in that children in particular schools will 
be more similar to each other than to children in different schools. This is because schools 
tend to reflect their social demographic (which can differ from school to school) and they 
may differ in their policies also. Figure 19.3 shows this scenario. There are now three lev-
els in the hierarchy: the child (level 1), the class to which the child belongs (level 2) and 
the school within which that class exists (level 3). In this situation we have two contextual 
variables: school and classroom.

Hierarchical data structures need not apply only to between-participant situations. We 
can also think of data as being nested within people. In this situation the case, or person, is 
not at the bottom of the hierarchy (level 1), but is further up. A good example is memory. 
Imagine that after giving children threat information about my caged animal I asked them a 
week later to recall everything they could about the animal. For each child there are many 
facts that they could recall. Let’s say that I originally gave them 15 pieces of information; 
some children might recall all 15 pieces of information, but others might remember only 
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FIGURE 19.2
An example 
of a two-level 
hierarchical data 
structure: children 
(level 1) are 
organized within 
classrooms 
(level 2)
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two or three bits of information. The bits of information, or memories, are nested within 
the person and their recall depends on the person. The probability of a given memory 
being recalled depends on what other memories are available, and the recall of one mem-
ory may have knock-on effects for what other memories are recalled. Therefore, memories 
are not independent units. As such, the person acts as a context within which memories are 
recalled (Wright, 1998).

Figure 19.4 shows the structure of the situation that I have just described. The child is 
our level 2 variable, and within each child there are several memories (our level 1 vari-
able). Of course we can also have levels of the hierarchy above the child. So, we could 
still, for example, factor in the context of the class from which they came (as I have done 
in Figure 19.4) as a level 3 variable. Indeed, we could even include the school again as a 
level 4 variable.

School 1 School 2 School n

Class 1 Class 3Class 2 Class 4 Class 5 Class x Class y Class z
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FIGURE 19.3
An example of 
a three-level 
hierarchical data 
structure

FIGURE 19.4
An example of 
a three-level 
hierarchical 
data structure, 
where the level 
1 variable is a 
repeated measure 
(memories 
recalled)
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19.2.1.    The intraclass correlation 2

You might well wonder why it matters that data are hierarchical (or not). The main prob-
lem is that the contextual variables in the hierarchy introduce dependency in the data. 
In plain English, this means that residuals will be correlated. I have alluded to this fact 
already when I noted that children in Mr. Nervous’s class would be more similar to each 
other than to children in Miss Daredevil’s class. In some sense, having the same teacher 
makes children more similar to each other. This similarity is a problem because in nearly 
every test we have covered in this book we assume that cases are independent. In other 
words, there is absolutely no correlation between residual scores of one child and another. 
However, when entities are sampled from similar contexts, this independence is unlikely 
to be true. For example, Charlotte and Emily’s responses to the animal in the carrier have 
both been influenced by Mr. Nervous’s cautious manner, so their behaviour will be similar. 
Likewise, Kiki and Jip’s responses to the animal in the box have both been influenced by 
Miss Daredevil’s carefree manner, so their behaviour will be similar too. We have seen 
before that in ANOVA, for example, a lack of independence between cases is a huge prob-
lem that really affects the resulting test statistic – and not in a good way! (See section 10.3.)

By thinking about contextual variables and factoring them into the analysis we can over-
come this problem of non-independent observations. One way that we can do this is to use 
the intraclass correlation (ICC). We came across this measure in section 17.9.3 as a meas-
ure of inter-rater reliability, but it can also be used as a measure of dependency between 
scores. We’ll skip the formalities of calculating the ICC (but see Oliver Twisted if you’re 
keen to know), and we’ll just give a conceptual grasp of what it represents. In our two-
level example of children within classes, the ICC represents the proportion of the total 
variability in the outcome that is attributable to the classes. It follows that if a class has had 
a big effect on the children within it then the variability within the class will be small (the 
children will behave similarly). As such, variability in the outcome within classes is mini-
mized, and variability in the outcome between classes is maximized; therefore, the ICC is 
large. Conversely, if the class has little effect on the children then the outcome will vary a 
lot within classes, which will make differences between classes relatively small. Therefore, 
the ICC is small too. Thus, the ICC tells us that variability within levels of a contextual 
variable (in this case the class to which a child belongs) is small, but between levels of a con-
textual variable (comparing classes) is large. As such, the ICC is a good gauge of whether a 
contextual variable has an effect on the outcome.

‘I have a dependency on gruel’, whines Oliver. ‘Maybe I could measure 
this dependency if I knew more about the ICC.’ Well, you’re so high 
on gruel, Oliver, that you have rather missed the point. Still, I did write 
an article on the ICC once upon a time (Field, 2005a) and it’s repro-
duced in the additional web material for your delight and amusement.

OLIVER TWISTED

Please Sir, can I have  
some more … ICC?

19.2.2.    Benefits of multilevel models 2

Multilevel linear models have numerous uses. To convince you that trawling through this 
chapter is going to reward you with statistical possibilities beyond your wildest dreams, 
here are just a few (slightly overstated) benefits of multilevel models:
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MM Cast aside the assumption of homogeneity of regression slopes. We saw in Chapter 
11 that when we use analysis of covariance we have to assume that the relationship 
between our covariate and our outcome is the same across the different groups that 
make up our predictor variable. However, this doesn’t always happen. Luckily, in 
multilevel models we can explicitly model this variability in regression slopes, thus 
overcoming this inconvenient problem.

MM Say ‘bye bye’ to the assumption of independence. We saw in Chapter 10 that when 
we use independent ANOVA we have to assume that the different cases of data are 
independent. If this is not true, little lizards climb out of your mattress while you’re 
asleep and eat you. Again, multilevel models are specifically designed to allow you 
to model these relationships between cases. Also, in Chapter 7 we saw that multiple 
regression relies on having independent observations. However, there are situations 
in which you might want to measure someone on more than one occasion (i.e., over 
time). Ordinary regression turns itself into cheese and hides in the fridge at the pros-
pect of cases of data that are related. Multilevel models eat these data for breakfast, 
with a piece of regression-flavoured cheese.

MM Laugh in the face of missing data. I’ve spent a lot of this book extolling the virtues 
of balanced designs and not having missing data. Regression, ANOVA, ANCOVA 
and most of the other tests we have covered do strange things when data are missing 
or the design is not balanced. This can be a real pain. Missing data are a particular 
problem within clinical trials because it is common to attempt to collect follow-up 
data, often many months after treatment has ended when patients might be difficult 
to track down. Of course, there are ways to correct for and impute missing data, but 
these techniques are often quite complicated (Yang, Li, & Shoptaw, 2008), there-
fore, often when using repeated-measures designs if a single time point is missing the 
whole case usually needs to be deleted; missing data leads to more data being deleted. 
Multilevel models do not require complete data sets and so when data are missing 
for one time point they do not need to be imputed, nor does the whole case need 
to be deleted. Instead parameters can be estimated successfully with the available 
data, which offers a relatively easy solution to dealing with missing data. It is impor-
tant to stress that no statistical procedure can overcome data that are missing. Good 
methods, designs and research execution should be used to minimize missing values, 
and reasons for missing values should always be explored. It is just that when using 
traditional statistical procedures for repeated-measures data additional procedures to 
account for missing data are usually necessary and can be problematic.

I think you’ll agree that multilevel models are pretty funky. ‘Is there anything they can’t 
do?’ I hear you cry. Well, no, not really.

19.3.  Theory of multilevel linear models 3

The underlying theory of multilevel models is very complicated indeed – far too compli-
cated for my little peanut of a brain to comprehend. Fortunately, the advent of computers 
and software like R makes it possible for feeble-minded individuals such as myself to take 
advantage of this wonderful tool without actually needing to know the maths. Better still, 
this means I can get away with not explaining the maths (and really, I’m not kidding, I don’t 
understand any of it). What I will do, though, is try to give you a flavour of what multi-
level models are and what they do by describing the key concepts within the framework of 
linear models that has permeated this whole book. I also want to remind you that if you 
have worked through Chapters 13 and 14 then you have already done a multilevel model 
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and used the lme() function that we discuss in this chapter, because we used it to analyse 
repeated-measures designs. In these repeated-measures designs can be thought of as a two-
level hierarchy in which scores (level 1) are nested within participants (level 2).

19.3.1.    An example 2

Throughout the first part of the chapter we will use an example to illustrate some of the 
concepts in multilevel models. Cosmetic surgery is on the increase at the moment. In the 
USA, there was a 1600% increase in cosmetic surgical and non-surgical treatments between 
1992 and 2002, and in 2004, 65,000 people in the UK underwent privately and publicly 
funded operations (Kellett, Clarke, & McGill, 2008). With the increasing popularity of this 
surgery, many people are starting to question the motives of those who want to go under 
the knife. There are two main reasons to have cosmetic surgery: (1) to help a physical prob-
lem such as having breast reduction surgery to relieve backache; and (2) to change your 
external appearance, for example by having a face lift. Related to this second point, there 
is even some case for arguing that cosmetic surgery could be performed as a psychological 
intervention: to improve self-esteem (Cook, Rosser, & Salmon, 2006; Kellett et al., 2008). 
The main example for this chapter looks at the effects of cosmetic surgery on quality of life. 
The variables in the data file are (Cosmetic Surgery.dat):

MM Post_QoL: This is a measure of quality of life after the cosmetic surgery. This is our 
outcome variable.

MM Base_QoL: We need to adjust our outcome for quality of life before the surgery.

MM Surgery: This variable is a dummy variable that specifies whether the person has 
undergone cosmetic surgery (1) or whether they are on the waiting list (0), which 
acts as our control group.

MM Surgery_Text: This variable is the same as above but specifies group membership as 
text (we will use this variable when we create graphs but not for the main analysis).

MM Clinic: This variable specifies which of 10 clinics the person attended to have their 
surgery.

MM Age: This variable tells us the person’s age in years.

MM BDI: It is becoming increasingly apparent that people volunteering for cosmetic sur-
gery (especially when the surgery is purely for vanity) might have very different per-
sonality profiles than the general public (Cook, Rossera, Toone, James, & Salmon, 
2006). In particular, these people might have low self-esteem or be depressed. When 
looking at quality of life it is important to assess natural levels of depression, and this 
variable used the Beck Depression Inventory (BDI) to do just that.

MM Reason: This dummy variable specifies whether the person had/is waiting to have 
surgery purely to change their appearance (0), or because of a physical reason (1).

MM Reason_Text: This variable is the same as above but contains text to define each 
group rather than a number.

MM Gender: This variable simply specifies whether the person was a man (1) or a woman (0).

When conducting hierarchical models we generally work up from a very simple model 
to more complicated models, and we will take that approach in this chapter. In doing so 
I hope to illustrate multilevel modelling by attaching it to frameworks that you already 
understand, such as ANOVA and ANCOVA.
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Figure 19.5 shows the hierarchical structure of the data. Essentially, people being treated 
in the same surgeries are not independent of each other because they will have had surgery 
from the same surgeon. Surgeons will vary in how good they are, and quality of life will to 
some extent depend on how well the surgery went (if they did a nice neat job then qual-
ity of life should be higher than if they left you with unpleasant scars). Therefore, people 
within clinics will be more similar to each other than people in different clinics. As such, 
the person undergoing surgery is the level 1 variable, but there is a level 2 variable, a vari-
able higher in the hierarchy, which is the clinic attended.

19.3.2.    Fixed and random coefficients 3

Throughout this book we have discussed effects and variables, and these concepts should 
be very familiar to you by now. However, we have viewed these effects and variables in a 
relatively simple way: we have not distinguished between whether something is fixed or 
random.

What we mean by ‘fixed’ and ‘random’ can be a bit confusing because the terms are used 
in a variety of contexts. You hear people talk about fixed effects and random effects. An 
effect in an experiment is said to be a fixed effect if all possible treatment conditions that 
a researcher is interested in are present in the experiment. An effect is said to be random if 
the experiment contains only a random sample of possible treatment conditions. This dis-
tinction is important because fixed effects can be generalized only to the situations in your 
experiment, whereas random effects can be generalized beyond the treatment conditions in 
the experiment (provided that the treatment conditions are representative). For example, in 
our Viagra example from Chapter 10, the effect is fixed if we say that we are interested only 
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in the three conditions that we had (placebo, low dose and high dose) and we can generalize 
our findings only to the situation of a placebo, low dose and high dose. However, if we were 
to say that the three doses were only a sample of possible doses (maybe we could have tried 
a very high dose), then it is a random effect and we can generalize beyond just placebos, low 
doses and high doses. All of the effects in this book so far we have treated as fixed effects. 
The vast majority of academic research that you read will treat variables as fixed effects. 

People also talk about fixed variables and random variables. A fixed variable is one that is 
not supposed to change over time (e.g., for most people their gender is a fixed variable – it 
never changes), whereas a random one varies over time (e.g., your weight is likely to fluctu-
ate over time).

In the context of multilevel models we need to make a distinction between fixed coeffi-
cients and random coefficients. In the regressions, ANOVAs and ANCOVAs throughout this 
book we have assumed that the regression parameters are fixed. We have seen numerous 
times that a linear model is characterized by two things: the intercept, b0, and the slope, b1:

Y b b Xi i i= + +0 1 1 ε

Note that the outcome (Y), the predictor (X) and the error (ε) all vary as a function of i, 
which normally represents a particular case of data. In other words, it represents the level 
1 variable. If, for example, we wanted to predict Sam’s score, we could replace the is with 
her name:

Y b b XSam Sam Sam= + +0 1 1, ε

This is just some basic revision. Now, when we do a regression like this we assume that 
the bs are fixed and we estimate them from the data. In other words, we’re assuming that 
the model holds true across the entire sample and that for every case of data in the sample 
we can predict a score using the same values of the gradient and intercept. However, we 
can also conceptualize these parameters as being random.2 If we say that a parameter is 
random then we assume not that it is a fixed value, but that its value can vary. Up until 
now we have thought of regression models as having fixed intercepts and fixed slopes, but 
this opens up three new possibilities for us that are shown in Figure 19.6. This figure uses 
the data from our ANCOVA example in Chapter 11 and shows the relationship between 
a person’s libido and that of their partner overall (the dashed line) and separately for the 
three groups in the study (a placebo group, a group that had a low dose of Viagra and a 
group that had a high dose).

19.3.2.1.  The random intercept model 3

The simplest way to introduce random parameters into the model is to assume that the 
intercepts vary across contexts (or groups) – because the intercepts vary, we call them ran-
dom intercepts. For our libido data this is like assuming that the relationship between libido 
and partner’s libido is the same in the placebo, low- and high-dose groups (i.e., the slope is 
the same), but that the models for each group are in different locations (i.e., the intercepts 
are different). This is shown in the top panel of Figure 19.6, in which the models within 
the different contexts (colours) have the same shape (slope) but are located in different 
geometric space (they have different intercepts). 

2 In a sense ‘random’ isn’t an intuitive term for us non-statisticians because it implies that values are plucked out 
of thin air (randomly selected). However, this is not the case – they are carefully estimated just as fixed parameters 
are.
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(dashed line) and 
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within the data 
(i.e., groups of 
cases)
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19.3.2.2.  Random slope model 3

We can also assume that the slopes vary across contexts – i.e., we assume random slopes. 
For our libido data this is like assuming that the relationship between libido and partner’s 
libido is different in the placebo, low- and high-dose groups (i.e., the slopes are different), 
but that the models for each group are fixed at the same geometric location (i.e., the inter-
cepts are the same). This is what happens when we violate the assumption of homogeneity 
of regression slopes in ANCOVA. Homogeneity of regression slopes is the assumption that 
regression slopes are the same across contexts. If this assumption is not tenable then we 
can use a multilevel model to explicitly estimate that variability in slopes. This is shown in 
the middle panel of Figure 19.6 in which the models within the different contexts (colours) 
converge on a single intercept but have different slopes. It’s worth noting that it would 
be unusual in reality to assume random slopes without also assuming random intercepts 
because variability in the nature of the relationship (slopes) would normally create variabil-
ity in the overall level of the outcome variable (intercepts). Therefore, if you assume that 
slopes are random you would normally also assume that intercepts are random.

19.3.2.3.  The random intercept and slope model 3

The most realistic situation is to assume that both intercepts and slopes vary around the 
overall model. This is shown in the bottom panel of Figure 19.6 in which the models 
within the different contexts (colours) have different slopes but are also located in different 
geometric space and so have different intercepts. 

19.4.  The multilevel model 4

We have seen conceptually what a random intercept, random slope and random intercept 
and slope model looks like. Now let’s look at how we actually represent the models. To 
keep things concrete, let’s use our example. For the sake of simplicity, let’s imagine first 
that we wanted to predict someone’s quality of life (QoL) after cosmetic surgery. We can 
represent this as a linear model as follows:

QoL After Surgery Surgeryi i ib b= + +0 1 ε 	 (19.1)

We have seen equations like this many times and it represents a linear model: regression, 
a t-test (in this case) and ANOVA. In this example, we had a contextual variable, which 
was the clinic in which the cosmetic surgery was conducted. We might expect the effect of 
surgery on quality of life to vary as a function of which clinic the surgery was conducted at 
because surgeons will differ in their skill. This variable is a level 2 variable. As such we could 
allow the model that represents the effect of surgery on quality of life to vary across the 
different contexts (clinics). We can do this by allowing the intercepts to vary across clinics, 
or by allowing the slopes to vary across clinics or by allowing both to vary across clinics.

To begin with, let’s say we want to include a random intercept for quality of life. All 
we do is add a component to the intercept that measures the variability in intercepts, u0j. 
Therefore, the intercept changes from b0 to become (b0+ u0j)��������������������������������. This term estimates the inter-
cept of the overall model fitted to the data, b0, and the variability of intercepts around that 
overall model, u0j. The overall model becomes:3

Y b u b Xij j ij ij= + + +( )0 0 1 ε 	 (19.2)

3 Some people use gamma (γ), not b, to represent the parameters, but I prefer b because it makes the link to the 
other linear models that we have used in this book clearer.
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The js in the equation reflect levels of the variable over which the intercept varies (in 
this case the clinic) – the level 2 variable. Another way that we could write this is to take 
out the error terms so that it looks like an ordinary regression equation except that the 
intercept has changed from a fixed, b0, to a random one, b0j, which is defined in a separate 
equation:

Y b b X

b b u
ij j ij ij

j j

= + +

= +
0 1

0 0 0

ε

	 (19.3)

Therefore, if we want to know the estimated intercept for clinic 7, we simply replace the j 
with ‘clinic 7’ in the second equation:

b b u0Clinic 7 0Clinic 7= +0

If we want to include random slopes for the effect of surgery on quality of life, then all we 
do is add a component to the slope of the overall model that measures the variability in 
slopes, u1j. Therefore, the gradient changes from b1 to become ( b u j1 1+ ). This term estimates 
the slope of the overall model fitted to the data, b1, and the variability of slopes in different 
contexts around that overall model, u1j. The overall model becomes (compare to the random 
intercept model above):

Y b b u Xij j ij ij= + + +0 1 1( ) ε 	 (19.4)

Again we can take the error terms out into a separate equation to make the link to a famil-
iar linear model even clearer. It now looks like an ordinary regression equation except that 
the slope has changed from a fixed, b1, to a random one, b1j, which is defined in a separate 
equation:

Y b b X

b b u
ij i j ij ij

j j

= + +

= +
0 1

1 1 1

ε

	 (19.5)

If we want to model a situation with random slopes and intercepts, then we combine the 
two models above. We still estimate the intercept and slope of the overall model (b0 and b1) 
but we also include the two terms that estimate the variability in intercepts, u0j, and slopes, 
u1j. The overall model becomes (compare to the two models above):

Y b u b u Xij j j ij ij= + + + +( ) ( )0 0 1 1 ε 	 (19.6)

We can link this more directly to a simple linear model if we take some of these extra terms 
out into separate equations. We could write this model as a basic linear model, except 
we’ve replaced our fixed intercept and slope ( )b b0 1and  with their random counterparts 
( )b bj j0 1and :

Y b b X

b b u

b b u

ij j j ij ij

j j

j j

= + +

= +

= +

0 1

0 0 0

1 1 1

ε

	 (19.7)

The take-home point is that we’re not doing anything terribly different from the rest of the 
book: it’s basically just a posh regression.
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Now imagine we wanted to add in another predictor, for example quality of life before 
surgery. Knowing what we do about multiple regression, we shouldn’t be invading the 
personal space of the idea that we can simply add this variable in with an associated beta:

QoL After Surgery Surgery QoL Before Surgeryi i i ib b b= + + +0 1 2 ε 	 (19.8)

This is all just revision of ideas from earlier in the book. Remember also that the i repre-
sents the level 1 variable, in this case the people we tested. Therefore, we can predict a 
given person’s quality of life after surgery by replacing the i with their name:

QoL After Surgery QoL BeforeSam Sam Sam Sam= + + +b b b0 1 2 ε

Now, if we want to allow the intercept of the effect of surgery on quality of life after 
surgery to vary across contexts then we simply replace b0 with b0j. If we want to allow the 
slope of the effect of surgery on quality of life after surgery to vary across contexts then 
we replace b1 with b1j. So, even with a random intercept and slope, our model stays much 
the same:

QoL After Surgery QoL Beforeij j j ij ij ij

j j

j

b b b

b b u

b

= + + +

= +
0 1 2

0 0 0

1

ε

== +b u j1 1

	 (19.9)

Remember that the j in the equation relates to the level 2 contextual variable (clinic in this 
case). So, if we wanted to predict someone’s score we wouldn’t just do it from their name, 
but also from the clinic they attended. Imagine our guinea pig Sam had her surgery done at 
clinic 7, then we could replace the is and js as follows:

QoL After Surgery

Surgery
Sam, Clinic 7

0Clinic 7 Clinic7 Sam, C= +b b1 llinic7

Sam, Clinic7 Sam, Clinic7QoL Before Surgery+ +b2 ε

I want to sum up by just reiterating that all we’re really doing in a multilevel model is a 
fancy regression in which we allow either the intercepts or slopes, or both, to vary across 
different contexts. All that really changes is that for every parameter that we allow to be 
random, we get an estimate of the variability of that parameter as well as the parameter 
itself. So, there isn’t anything terribly complicated; we can add new predictors to the model 
and for each one decide whether its regression parameter is fixed or random. 

19.4.1.    Assessing the fit and comparing multilevel models 4

As in logistic regression (Chapter 8) the overall fit of a multilevel model is tested using a 
chi-square likelihood ratio test (see section 18.4.3) and R reports the −2log-likelihood 
(–2LL, see section 8.3.1). Essentially, the smaller the value of the log-likelihood, the bet-
ter. R also produces two adjusted versions of the log-likelihood value, both of which were 
described briefly in section 7.6.3. Both of these can be interpreted in the same way as the 
log-likelihood, but they have been corrected for various things:
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MM Akaike’s information criterion (AIC): This is basically a goodness-of-fit measure that is 
corrected for model complexity. That just means that it takes into account how many 
parameters have been estimated. 

MM Schwarz’s Bayesian criterion (BIC): This statistic is comparable to the AIC, although it 
is slightly more conservative (it corrects more harshly for the number of parameters 
being estimated). It should be used when sample sizes are large and the number of 
parameters is small.

Neither the AIC or BIC are intrinsically interpretable (it’s not meaningful to talk about 
their values being large or small per se); however, they are useful as a way of comparing 
models. The value of AIC and BIC can be compared to their equivalent values in other 
models. In all cases smaller values mean better-fitting models.

Many writers recommend building up multilevel models starting with a ‘basic’ model in 
which all parameters are fixed and then adding in random coefficients as appropriate and 
exploring confounding variables (Raudenbush & Bryk, 2002; Twisk, 2006). One advan-
tage of doing this is that you can compare the fit of the model as you make parameters ran-
dom, or as you add in variables. To compare models we simply subtract the log-likelihood 
of the new model from the value for the old:

χChange Old New

Chan

Log-Likelihood Log-Likelihood2 2 2= − − −( ) ( )

df gge Old NewNumberof Parameters Numberof Parameters= − 	 (19.10)

This equation is the same as equations (18.5) and (8.6). There are two caveats to this equation: 
(1) it works only if full maximum-likelihood estimation is used (and not restricted maximal 
likelihood – see R’s Souls’ Tip 19.1); and (2) the new model must contain all of the effects 
of the older model.

19.4.2.    Types of covariance structures 4

If you have any random effects or repeated measures in your multilevel model then you 
have to decide upon the covariance structure of your data. If you have random effects 
and repeated measures then you can specify different covariance structures for each. 
The covariance structure simply specifies the form of the variance–covariance matrix 
(a matrix in which the diagonal elements are variances and the off-diagonal elements 
are covariances). There are various forms that this matrix could take and we have to 
tell R what form we think it does take. Of course we might not know what form it 
takes (most of the time we’ll be taking an educated guess), so it is sometimes useful to 
run the model with different covariance structures defined and use the goodness-of-fit 
indices (the AIC and BIC) to see whether changing the covariance structure improves 
the fit of the model (remember that a smaller value of these statistics means a better-
fitting model).

The covariance structure is important because R uses it as a starting point to estimate the 
model parameters. As such, you will get different results depending on which covariance 
structure you choose. If you specify a covariance structure that is too simple then you are 
more likely to make a Type I error (finding a parameter is significant when in reality it is 
not), but if you specify one that is too complex then you run the risk of a Type II error 
(finding parameters to be non-significant when in reality they are). R can implement many 
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different covariance structures. We will look at four of the commonest covariance struc-
tures to give you a feel for what they are and when they should be used. In each case I use 
a representation of the variance–covariance matrix to illustrate. With all of these matrices 
you could imagine that the rows and columns represents four different clinics in our cos-
metic surgery data:

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0

















Variance components: This covariance structure is very simple 
and assumes that all random effects are independent (this is 
why all of the covariances in the matrix are 0). Variances of 
random effects are assumed to be the same (hence why they are 
1 in the matrix) and sum to the variance of the outcome vari-
able. This covariance structure is sometimes called the inde-
pendence model.

σ

σ

σ

σ

1
2

2
2

3
2

4
2

0 0 0

0 0 0

0 0 0

0 0 0





















Diagonal: This variance structure is like variance components 
except that variances are assumed to be heterogeneous (this is 
why the diagonal of the matrix is made up of different vari-
ance terms). This structure again assumes that variances are 
independent and, therefore, that all of the covariances are 0.

1

1

1

1

2 3

2

2

3 2

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ





















AR(1): This stands for first-order autoregressive structure. In 
layman’s terms this means that the relationship between vari-
ances changes in a systematic way. If you imagine the rows and 
columns of the matrix to be points in time, then it assumes 
that the correlation between repeated measurements is highest 
at adjacent time points. So, in the first column, the correlation 
between time points 1 and 2 is ρ; let’s assume that this value is 
.3. As we move to time point 3, the correlation between time 
point 1 and 3 is ρ2, or .09. In other words, it has decreased: 
scores at time point 1 are more related to scores at time 2 
than they are to scores at time 3. At time 4, the correlation 
goes down again to ρ3 or .027. So, the correlations between 
time points next to each other are assumed to be ρ, scores 
two intervals apart are assumed to have correlations of ρ2, and 
scores three intervals apart are assumed to have correlations of 
ρ3. So the correlation between scores gets smaller over time. 
Variances are assumed to be homogeneous, but there is a ver-
sion of this covariance structure where variance can be het-
erogeneous. This structure is often used for repeated-measures 
data (especially when measurements are taken over time such 
as in growth models).

σ σ σ σ

σ σ σ σ

σ σ σ σ
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









Unstructured: This covariance structure is completely general. 
Covariances are assumed to be completely unpredictable: they 
do not conform to a systematic pattern. 
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             CRAMMING SAM’S TIPS    Multilevel models

•	 Multilevel models should be used to analyse data that have a hierarchical structure. For example, you might measure depres-
sion after psychotherapy. In your sample, patients will see different therapists within different clinics. This is a three-level 
hierarchy with depression scores from patients (level 1), nested within therapists (level 2) who are themselves nested within 
clinics (level 3).

•	 Hierarchical models are just like regression, except that you can allow parameters to vary (this is called a random effect). In 
ordinary regression, parameters generally are a fixed value estimated from the sample (a fixed effect).

•	 If we estimate a linear model within each context (the therapist or clinic, to use the example above) rather than the sample as 
whole, then we can assume that the intercepts of these models vary (a random intercepts model), or that the slopes of these 
models differ (a random slopes model) or that both vary.

•	 We can compare different models (assuming that they differ in only one additional parameter) by looking at the difference in 
the -2LL. Usually we would do this when we have changed only one parameter (added one new thing to the model).

•	 For any model we have to assume a covariance structure. For random intercepts models the default of variance components 
is fine, but when slopes are random an unstructured covariance structure is often assumed. When data are measured over 
time an autoregressive structure (AR(1)) is often assumed.

19.5.  Some practical issues 3

19.5.1.    Assumptions 3

Multilevel linear models are an extension of regression, so all of the assumptions for regres-
sion apply to multilevel models (see section 7.7.2). There is a caveat, though, which is that 
the assumptions of independence and independent errors can sometimes be solved by a 
multilevel model because the purpose of this model is to factor in the correlations between 
cases caused by higher-level variables. As such, if a lack of independence is being caused 
by a level 2 or level 3 variable then a multilevel model should make this problem go away 
(although not always). As such, try to check the usual assumptions in the usual way.

There are two additional assumptions in multilevel models that relate to the random 
coefficients. These coefficients are assumed to be normally distributed around the overall 
model. So, in a random intercepts model the intercepts in the different contexts are assumed 
to be normally distributed around the overall model. Similarly, in a random slopes model, 
the slopes of the models in different contexts are assumed to be normally distributed.

Also it’s worth mentioning that multicollinearity can be a particular problem in mul-
tilevel models if you have interactions that cross levels in the data hierarchy (cross-level 
interactions). However, centring predictors can help matters enormously (Kreft & de 
Leeuw, 1998), and we will see how to centre predictors in section 19.5.3.

19.5.2.    Sample size and power 3

As you might well imagine, the situation with power and sample size is very complex 
indeed. One complexity is that we are trying to make decisions about our power to detect 
both fixed and random effects coefficients. Kreft and de Leeuw (1998) do a tremendous 
job of making sense of things for us. Essentially, the take-home message is the more data, 

19-Field_R-4368-Ch-19.indd   870 29/02/2012   6:00:30 PM



871CHAPTER 19   MULT I LEVEL  L INEAR MODELS

the better. As more levels are introduced into the model, more parameters need to be esti-
mated and the larger the sample sizes need to be. Kreft and de Leeuw conclude that if you 
are looking for cross-level interactions then you should aim to have more than 20 contexts 
(groups) in the higher-level variable, and that group sizes ‘should not be too small’. They 
conclude by saying that there are so many factors involved in multilevel analysis that it is 
impossible to produce any meaningful rules of thumb.

Twisk (2006) agrees that the number of contexts relative to individuals within those 
contexts is important. He also points out that standard sample size and power calculations 
can be used but then ‘corrected’ for the multilevel component of the analysis (by factoring, 
among other things, the intraclass correlation). However, there are two corrections that he 
discusses that yield very different sample sizes! He recommends using sample size calcula-
tions with caution.

19.5.3.    Centring variables 4

Centring refers to the process of transforming a variable into deviations 
around a fixed point. This fixed point can be any value that you choose, 
but typically we use the grand mean. We have already come across a form 
of centring way back in Chapter 1, when we discovered how to compute 
z-scores. When we calculate a z-score we take each score and subtract from 
it the mean of all scores (this centres the values at 0), and then divide by the 
standard deviation (this changes the units of measurement to standard devia-
tions). When we centre a variable around the mean we simply subtract the 
mean from all of the scores: this centres the variables around 0.

There are two forms of centring that are typically used in multilevel modelling: grand 
mean centring and group mean centring. Grand mean centring means that for a given vari-
able we take each score and subtract from it the mean of all scores (for that variable). 
Group mean centring means that for a given variable we take each score and subtract 
from it the mean of the scores (for that variable) within a given group. In both cases it 
is usually only level 1 predictors that are centred (in our cosmetic surgery example this 
would be predictors such as age, BDI and pre-surgery quality of life). If group mean 
centring is used then a level 1 variable is typically centred around means of a level 2 
variable (in our cosmetic surgery data this would mean that, for example, the age of a 
person would be centred around the mean age for the clinic at which the person had 
their surgery).

Centring can be used in ordinary multiple regression too, and because this form of 
regression is already familiar to you I’d like to begin by looking at the effects of centring in 
regression. In multiple regression the intercept represents the value of the outcome when 
all of the predictors take a value of 0. There are some predictors for which a value of 0 
makes little sense. For example, if you were using heart rate as a predictor variable then a 
value of 0 would be meaningless (no one will have a heart rate of 0 unless they are dead). 
As such, the intercept in this case has no real-world use: why would you want to know the 
value of the outcome when heart rate was 0 given than no alive person would even have 
a heart rate that low? Centring heart rate around its mean changes the meaning of the 
intercept. The intercept becomes the value of the outcome when heart rate is its average 
value. In more general terms, if all predictors are centred around their mean then the inter-
cept is the value of the outcome when all predictors are the value of their mean. Centring 
can, therefore, be a useful tool for interpretation when a value of 0 for the predictor is 
meaningless.

The effect of centring in multilevel models, however, is much more complicated. There 
are some excellent reviews that look in detail at the effects of centring on multilevel models 

What is centring
and do I need to do it?
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(Enders & Tofighi, 2007; Kreft & de Leeuw, 1998; Kreft, de Leeuw, & Aiken, 1995), and 
here I will just give a very basic précis of what they say. Essentially if you fit a multilevel 
model using the raw score predictors and then fit the same model but with grand mean 
centred predictors then the resulting models are equivalent. By this, I mean that they will 
fit the data equally well, have the same predicted values, and the residuals will be the same. 
The parameters themselves (the bs) will, of course, be different but there will be a direct 
relationship between the parameters from the two models (i.e., they can be directly trans-
formed into each other). Therefore, grand mean centring doesn’t change the model, but it 
would change your interpretation of the parameters (you can’t interpret them as though 
they are raw scores). When group mean centring is used the picture is much more compli-
cated. In this situation the raw score model is not equivalent to the centred model in either 
the fixed part or the random part. One exception is when only the intercept is random 
(which arguably is an unusual situation), and the group means are reintroduced into the 
model as level 2 variables (Kreft & de Leeuw, 1998).

The decision about whether to centre or not is quite complicated and you really need 
to make the decision yourself in a given analysis. Centring can be a useful way to combat 
multicollinearity between predictor variables. It’s also helpful when predictors do not have 
a meaningful zero point. Finally, multilevel models with centred predictors tend to be 
more stable, and estimates from these models can be treated as more or less independent 
of each other, which might be desirable. If group mean centring is used then the group 
means should be reintroduced as a level 2 variable unless you want to look at the effect 
of your ‘group’ or level 2 variable uncorrected for the mean effect of the centred level 1 
predictor, such as when fitting a model when time is your main explanatory variable (Kreft 
& de Leeuw, 1998).

The question arises of whether grand mean or group mean centring is ‘better’. People 
doing statistics often fixate on their being a ‘best’ way to do things, but the ‘best’ method 
often depends on what it is that you’re actually trying to do. Centring is a good example. 
Some people make a decision about whether to use group or grand mean centring based on 
some statistical criterion; however, there is no statistically correct choice between not cen-
tring, group mean centring and grand mean centring (Kreft et al., 1995). Instead, Enders 
and Tofighi (2007) recommend making decisions based on the substantive research ques-
tion. In short, they make four recommendations when analysing data with a two-level 
hierarchy: (1) group mean clustering should be used if the primary interest is in an associa-
tion between variables measured at level 1 (i.e., the aforementioned relationship between 
surgery and quality of life after surgery); (2) grand mean centring is appropriate when the 
primary interest is in the level 2 variable but you want to control for the level 1 covariate 
(i.e., you want to look at the effect of clinic on quality of life after surgery while controlling 
for the type of surgery); (3) both types of centring can be used to look at the differential 
influence of a variable at level 1 and 2 (i.e., is the effect of surgery on quality of life post-
surgery different at the clinic level to the client level?); and (4) group mean centring is 
preferable for examining cross-level interactions (e.g., the interactive effect of clinic and 
surgery on quality of life after surgery).

‘Recentgin’, babbles Oliver as he stumbles drunk out of Mrs 
Moonshine’s alcohol emporium. ‘I’ve had some recent gin.’ I 
think you mean centring, Oliver, not recentgin. If you want to 
know how to centre your variables using R, then the additional 
material for this chapter on the companion website will tell you.

OLIVER TWISTED

Please Sir, can I have  
some more … centring?
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19.6.  Multilevel modelling in R 4

Multilevel modelling can be done with specialist software such as MLwiN and HLM. 
There are several excellent books that compare R with various other packages (Tabachnick 
& Fidell, 2001; Twisk, 2006). R is more versatile than packages such as SPSS in that it can 
do multilevel modelling when the outcome variable is categorical. However, the packages 
that do multilevel models in R do not currently produce bootstrap estimates of the model 
parameters, and these can be a very useful way to circumvent pesky distributional assump-
tions (see section 5.8.4). 

We saw in section 19.4.1 that it is useful to build up models starting with a ‘basic’ model 
in which all parameters are fixed and then add random coefficients as appropriate before 
exploring confounding variables. We will take this approach in our example.

19.6.1.    Packages for multilevel modelling in R 1

There are several packages that can be used for multilevel models. Two of the most used 
are: nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Development Core Team, 2010) and lme4 
(Bates & Maechler, 2010). I am going to focus on the package nlme (non linear mixed 
effect) because, unlike lme4, it enables you to model the covariance structure, which will be 
useful when we come to look at growth models towards the end of the chapter.

For the examples in this chapter you will need the packages car (to recode variables), nlme 
(for the multilevel analysis), ggplot2 (for graphs), and reshape (to restructure the data). If you do 
not have these packages installed, you can install them by executing the following commands:

install.packages("car"); install.packages("ggplot2"); install.
packages("nlme"); install.packages("reshape")

You then need to load these packages by executing the commands:

library(car); library(ggplot2); library(nlme); library(reshape)

19.6.2.    Entering the data 2

Data entry depends a bit on the type of multilevel model that you wish to run: the data 
layout is slightly different when the same variables are measured at several points in time. 
However, we will look at the case of repeated-measures data in a second example. In this 
first example, the situation we have is very much like multiple regression in that data from 
each person who had surgery are not measured over multiple time points. Figure 19.7 
shows the data layout. Each row represents a case of data (in this case a person who had 
surgery). Their scores on the various variables are simply entered in different columns. So, 
for example, the first person was 31 years old, had a BDI score of 12, was in the waiting 
list control group (Surgery = 0) at clinic 1, was female (Gender = 0) and was waiting for 
surgery to change her appearance (Reason = 0).

To access these data we need to create a dataframe, which I have called surgeryData, 
that contains the data from the file CosmeticSurgery.dat. This file stores the data as tab-
delimited text, so we can import it into the dataframe using the following command (I’m 
assuming as always that you have set the working directory to be where the file is stored):

surgeryData = read.delim("Cosmetic Surgery.dat",  header = TRUE)
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19.6.3.    Picturing the data 2

Before we begin the analysis it’s a good idea to have a look at the data. Our main example looks 
at Surgery and baseline quality of life (Base_QoL) as a predictors of quality of life after surgery 
(Post_QoL). Remember that the surgery was conducted at one of 10 clinics. Therefore, to begin 
with we could simply look at the relationship between baseline quality of life and post-surgery 
quality of life separately for the two surgery conditions (cosmetic surgery vs. waiting list). We 
might also want to graph this separately for the 10 clinics. We can use what we learnt about 
ggplot2 in Chapter 4 to produce this plot; the resulting graph is shown in Figure 19.8.

SELF-TEST

ü	 Using what you know about ggplot2, produce 
the graph described above. Display the levels of 
Surgery_Text in colours, and use Clinic to produce 
different graphs within a grid.

19.6.4.    Ignoring the data structure: ANOVA 2

First of all, let’s ground the example in something very familiar to us: ANOVA. Let’s say for 
the time being that we were interested only in the effect that surgery has on post-operative 
quality of life. We could analyse this with a simple one-way independent ANOVA (or 
indeed a t-test), and the model is described by equation (19.1).

FIGURE 19.7
Data layout 
for multilevel 
modelling with no 
repeated measure
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FIGURE 19.8
Graph of the relationship between baseline and post-surgery quality of life for people who had cosmetic surgery 
compared to those on the waiting list at 10 different clinics.

SELF-TEST

ü	 Using what you know about ANOVA, conduct a one-
way ANOVA using Surgery as the predictor and 
Post_QoL as the outcome.

In reality we wouldn’t do an ANOVA, I’m just using it as a way of showing you that mul-
tilevel models are not big and scary, but are simply extensions of what we have done before. 
Output 19.1 shows the results of the ANOVA that you should get if you did the self-test. We 
find a non-significant effect of surgery on quality of life, F(1, 274) = 0.33, p > .05.

             Df  Sum Sq Mean Sq F value Pr(>F)
Surgery       1    28.6  28.620  0.3302  0.566
Residuals   274 23747.9  86.671   

Output 19.1

We have also seen that we can think of ANOVA as a general linear model in which 
an outcome (in this case Post_QoL) is predicted from group membership (in this case 
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Surgery). Therefore, we could fit the same model but using the lm() function that we first 
encountered in Chapter 7. 

surgeryLinearModel<-lm(Post_QoL ~ Surgery, data = surgeryData)
summary(surgeryLinearModel)

We have used the function lm (linear model) to create an object called surgeryLinear­
Model. The commands in brackets tell lm() what model we want to fit; as we have seen 
elsewhere in this book, the ‘~’ means ‘predicted from’. So, we have specified that we 
want Post_QoL predicted from Surgery. In other words, we have simply written out the 
linear model in equation (19.1) but without the bs. The rest of the options simply tell 
lm() to fit the model on the dataframe that we just created (data = surgeryData). Finally 
summary(surgeryLinearModel) prints the model parameters to the R console.

Output 19.2 shows the main table for the model. Compare this table with Output 19.1 
and you’ll see that there is basically no difference: we get a non-significant effect of surgery 
with an F of 0.33, and a p of .56. The point I want you to absorb here is that if we ignore 
the hierarchical structure of the data then what we are left with is something very familiar: 
an ANOVA/regression. The numbers are more or less exactly the same; all that has changed 
is that we have used different commands to get to the same end point. 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)              59.2710     0.8134  72.869   <2e-16 ***
Surgery[T.Waiting List]   0.6449     1.1222   0.575    0.566    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 9.31 on 274 degrees of freedom
Multiple R-squared: 0.001204,	 Adjusted R-squared: -0.002442 
F-statistic: 0.3302 on 1 and 274 DF,  p-value: 0.566

Output 19.2

19.6.5.    Ignoring the data structure: ANCOVA 2

We have seen that there is no effect of cosmetic surgery on quality of life, but we did not 
take into account the quality of life before surgery. Let’s, therefore, extend the example 
a little to look at the effect of the surgery on quality of life while taking into account the 
quality of life scores before surgery. Our model is now described by equation (19.8). You 
could do this analysis with an ANCOVA, using the aov() function or as a linear model using 
the lm() function. As in the previous section we’ll run the analysis both ways, just to illus-
trate that we’re doing the same thing when we run a hierarchical model.

SELF-TEST

ü	 Using what you know about ANCOVA, conduct a 
one-way ANCOVA using Surgery as the predictor, 
Post_QoL as the outcome and Base_QoL as the 
covariate.
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Output 19.3 shows the results of the ANCOVA that you should get if you did the self-
test. The top output shows the Type I sums of squares, whereas the bottom is the same 
model but with Type III sums of squares (they differ slightly for baseline quality of life 
because we have an unbalanced design). With baseline quality of life included we find a 
significant effect of surgery on quality of life, F(1, 273) = 4.04, p < .05. Baseline quality of 
life also predicted quality of life after surgery, F(1, 273) = 214.89, p < .001.

             Df  Sum Sq Mean Sq  F value  Pr(>F)    
Base_QoL      1 10291.4 10291.4 211.4321 < 2e-16 ***
Surgery       1   196.8   196.8   4.0435 0.04533 *  
Residuals   273 13288.3    48.7                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model:
Post_QoL ~ Base_QoL + Surgery
         Df Sum of Sq   RSS    AIC  F value   Pr(F)    
<none>                13288 1075.3                     
Base_QoL  1   10459.6 23748 1233.5 214.8876 < 2e-16 ***
Surgery   1     196.8 13485 1077.3   4.0435 0.04533 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 19.3

We can also think of ANCOVA within the general linear model framework: the outcome 
(in this case Post_QoL) is predicted from group membership (in this case Surgery) and the 
covariate (Base_QoL). As with before the covariate was added, we can fit the model but 
using the lm() function by simply adding the baseline quality of life variable to the equation. 

surgeryLinearModel<-lm(Post_QoL ~ Surgery + Base_QoL, data = surgeryData)
summary(surgeryLinearModel)

As before, the lm() function creates an object called surgeryLinearModel. We have speci-
fied that Post_QoL is the outcome variable and that it is predicted from (the ~ symbol) 
Surgery and baseline quality of life (Base_QoL). Again, notice how the Post_QoL~Surgery 
+ Base_QoL is basically just equation (19.8) without the bs. The rest of the function 
specifies the data (data = surgeryData) and prints a summary of the model (summary
(surgeryLinearModel)).

Output 19.4 shows the main table for the model. Compare this table with Output 19.3 
and you’ll see that again there is no difference: we get a significant effect of surgery with 
a t of –2.011, p < .05, and a significant effect of baseline quality of life with a t of 14.66,
p < .001. We can also see that the regression coefficient for surgery is −1.70.

Hopefully this exercise, as well as being good revision, has convinced you that we’re just 
doing a regression here, something you have been doing throughout this book. Multilevel 
models are not radically different, and if you think about it as just an extension of what you 
already know, then it’s really relatively easy to understand. So, having shown you that we 
can do basic analyses through the linear models function, let’s now use its power to factor 
in the hierarchical structure of the data.

Call:
lm(formula = Post_QoL ~ Surgery + Base_QoL, data = surgeryData)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.4142  -5.1326  -0.6495   4.0540  23.5005 
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Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 18.14702    2.90767   6.241 1.65e-09 ***
Surgery     -1.69723    0.84404  -2.011   0.0453 *  
Base_QoL     0.66504    0.04537  14.659  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 6.977 on 273 degrees of freedom
Multiple R-squared: 0.4411,	 Adjusted R-squared: 0.437 
F-statistic: 107.7 on 2 and 273 DF,  p-value: < 2.2e-16 

Output 19.4

To sum up, we have seen that when we factor in the pre-surgery quality of life scores, 
which themselves significantly predict post-surgery quality of life scores, surgery seems to 
positively affect quality of life. However, at this stage we have ignored the fact that our 
data have a hierarchical structure. Essentially we have violated the independence assump-
tion because scores from people who had their surgery at the same clinic are likely to be 
related to each other (and certainly more related than with people at different clinics). We 
have seen that violating the assumption of independence can have some quite drastic con-
sequences (see section 10.3). However, rather than just panic and gibber about our F-ratio 
being inaccurate, we can model this covariation within clinics explicitly by including the 
hierarchical data structure in our analysis.

19.6.6.    Assessing the need for a multilevel model 3

The first step in a multilevel analysis such as this is to assess the need to do it in the first 
place. If there is not significant variation across contexts in the first place then doing a mul-
tilevel model is simply a perverse exercise in mental flagellation. If there is little evidence of 
variation across contexts then save yourself a lot of pain and just do a regression/ANOVA/
whatever variant of the general linear model that you feel like doing.

Ascertaining whether there is variation over your contexts is fairly straightforward. First, 
we need to fit a baseline model in which we include only the intercept; next, we fit a model 
that allows intercepts to vary over contexts; finally we compare these two models to see 
whether the fit has improved as a result of allowing intercepts to vary. If it has, we jump 
on the runaway train to multilevel insanity; if it has not, we do a little dance of joy into the 
loving arms of a simpler life.

In our surgery example then, we first need to get R to fit a baseline model that includes 
only the intercept. This is done using the gls() function (generalized least squares).4

interceptOnly <-gls(Post_QoL ~ 1, data = surgeryData, method = "ML")
summary(interceptOnly)

The format of the gls() function is very much like the lm() function that we have encoun-
tered before. In this example, we have asked R to create an object called interceptOnly, and 
we have specified that Post_QoL is the outcome variable and that it is predicted from (~) 

4 You might wonder why we don’t simply use the lm() command. To compare models we need them to be 
computed in the same way. Multilevel models are estimated using maximum likelihood methods and generalized 
least squares use this method too, so we can compare these models. However, lm() used ordinary least squares 
methods and so can’t be compared to a model estimated using maximum likelihood.
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only the intercept (the ‘1’ in the function translates as ‘intercept’). The rest of the function 
specifies the data (data = surgeryData) and how to estimate the model (method = “ML”). 
The method option is very important. If you do not include it (i.e., use the default option), 
then R will use restricted maximum-likelihood methods (these can also be applied expli
citly by writing method = “REML”). However, we have chosen to use maximum-likelihood 
estimation (method = “ML”). There are pros and cons to both (see R’s Souls’ Tip 19.1) but 
if you want to compare models as you build them up, you should use maximum-likelihood 
estimation. The final option (summary(interceptOnly)) is optional and prints the summary 
of the model shown in Output 19.5. 

          R ’s  Souls ’  T ip  19 .1   Estimation 3

R gives you the choice of two methods for estimating the parameters in the analysis: maximum likelihood (ML), 
which we have encountered before, and restricted maximum likelihood (REML). The conventional wisdom seems 
to be that ML produces more accurate estimates of fixed regression parameters, whereas REML produces more 
accurate estimates of random variances (Twisk, 2006). As such, the choice of estimation procedure depends 
on whether your hypotheses are focused on the fixed regression parameters or on estimating variances of the 
random effects. However, in many situations the choice of ML or REML will make only small differences to the 
parameter estimates. Also, if you want to compare models you must use ML.

Generalized least squares fit by maximum likelihood
  Model: Post_QoL ~ 1 
  Data: surgeryData 
       AIC      BIC    logLik
  2017.124 2024.365 -1006.562

Coefficients:
               Value Std.Error  t-value p-value
(Intercept) 59.60978 0.5596972 106.5036       0

Standardized residuals:
       Min         Q1        Med         Q3        Max 
-2.1127754 -0.7875625 -0.1734394  0.7962286  3.0803354 

Residual standard error: 9.281527 
Degrees of freedom: 276 total; 275 residual

Output 19.5

Next, we need to fit the same model, but this time allowing the intercepts to vary across 
contexts, in this case we want them to vary across clinics. We do this by using the lme 
(linear mixed effect) function. In fact, this is the function that you’ll use throughout the 
rest of the chapter. The format of this function is much the same as lm() and gls(); the 
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only difference is that we need to specify the random part of the model using the option 
random = x|y, in which x is an equation specifying the random parts of the model and y is 
the contextual variable or variables across which we want to model variance. In the current 
example, we are trying to model intercepts that vary across clinics; therefore, we could add 
the instruction random = ~1|Clinic. Remember that we use ‘1’ to denote the intercept, 
and that Clinic is the variable that contains information about the clinic that a given person 
attended. The resulting command is:

randomInterceptOnly <-lme(Post_QoL ~ 1, data = surgeryData, random = 
~1|Clinic, method = "ML")
summary(randomInterceptOnly)

As before, executing this command creates a model (this time I’ve called it random­
InterceptOnly), that predicts post-surgery quality of life from only the intercept (Post_
QoL~1), but also allows intercepts to vary across clinics (random = ~1|Clinic). We 
have again asked for maximum-likelihood estimation (method = “ML”). You can use 
summary(randomInterceptOnly) to view the model summary (Output 19.6).

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
       AIC      BIC    logLik
  1911.473 1922.334 -952.7364

Random effects:
 Formula: ~1 | Clinic
        (Intercept) Residual
StdDev:    5.909691 7.238677

Fixed effects: Post_QoL ~ 1 
               Value Std.Error  DF  t-value p-value
(Intercept) 60.08377  1.923283 266 31.24022       0

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-1.8828507 -0.7606631 -0.1378732  0.7075242  2.8607949 

Number of Observations: 276
Number of Groups: 10 

Output 19.6

To see whether allowing the intercepts to vary improves the model we can do several 
things. First, we can compare the fit of the model using indices such as AIC and BIC. If you 
compare Output 19.5 with Output 19.6 you’ll see that the BIC when only the intercept 
was included is 2024.37 but decreases to 1922.33 when intercepts are allowed to vary. 
Remember that smaller values of BIC indicate a better fit of the data, so this gives us an indi-
cation that by allowing intercepts to vary the model fit has improved (BIC has decreased). 
This is all very well, but it does not give us an objective answer to whether the improvement 
in fit is ‘significant’ or big enough for us to continue down the multilevel path.

The second thing we can do is test the change in the −2LL (equation (19.10)). We saw 
earlier that to be able to do this (1) full maximum-likelihood estimation must be used (and 
we have used this method); and (2) the new model contains all of the effects of the older 
model (this is true also, the models are identical except that we added a parameter reflect-
ing the variability in intercepts across clinics). The log-liklihood is given in the outputs for 
each model and we could simply multiply these values by −2 to get the −2LL. We can 
also get R to do this for us for each model, and this has an advantage in that it will also tell 
us the degrees of freedom on which each log-liklihood is based. We can use the function 
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logLik() for each model and then type ‘*−2’ to multiply by −2. To obtain the −2LL for 
our two models, we would therefore type:

logLik(interceptOnly)*-2
logLik(randomInterceptOnly)*-2

The resulting output should reveal that the model with random intercepts has a −2LL of 
2013.12 based on three degrees of freedom, whereas the model with only the intercept had 
a −2LL of 19.05.47, based on two degrees of freedom. Therefore:

χchange

change

2 2013 12 1905 47 107 65

3 2 1

= − =

= − =

. . .

df

If we look at the critical values for the chi-square statistic with 1 degree of freedom in 
the Appendix, they are 3.84 (p < .05) and 6.63 (p < .01); therefore, this change is highly 
significant.

A simpler way to do much the same thing is to use the anova() function (section 7.8.4). 
For these types of models, this function compares the change in −2LL without you hav-
ing to compute it and produces an exact significance for this change. The same caveats 
as before apply: you should have used maximum likelihood and the models should be 
nested (that is, models higher up the chain need to contain all of the effects that were 
in models earlier in the chain). We can use this function as follows to compare our two 
models:

anova(interceptOnly, randomInterceptOnly)

The resulting Output 19.7 shows the fit indices for each model, but most important 
shows the value of change in the −2LL, the likelihood ratio, that we computed above (we 
can feel fairly smug that the value of 107.65 matches our earlier calculations). It also shows 
the degrees of freedom for each model (so that we can verify that the change in degrees of 
freedom is 1 as we previously calculated). Finally, it shows a p-value, which is highly signifi-
cant and verifies our earlier conclusion that it is important that we model the variability in 
intercepts because when we do the fit of our model is significantly improved. The change 
in the −2LL has a chi-square distribution, so we can report this statistic in the normal way, 
χ2(1) = 107.65, p < .0001. We can conclude then that the intercepts vary significantly 
across the different clinics. Multilevel madness must ensue.

Model df  AIC    BIC   logLik   Test  L.Ratio p-value
   1  2 2017.12 2024.36 -1006.56                        
   2  3 1911.47 1922.33  -952.73 1 vs 2 107.6517  <.0001

Output 19.7

19.6.7.    Adding in fixed effects 3

We have seen that intercepts vary significantly across clinics. The model that we currently 
have is this:

QoL AfterSurgery 0

0

ij j ij

j j

b

b b u

= +

= +

ε

0 0
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However, we originally had hypotheses about how surgery and baseline quality of life will 
affect quality of life after surgery. Now that we have a baseline model with random inter-
cepts, we can start to build up the final model by adding these predictors. Let’s first add 
in the Surgery variable, which defines whether a person had surgery or was on the waiting 
list. Our model now becomes:

QoL After Surgery Surgery0

0 0 0

ij j ij

j j

b b

b b u

= + +

= +
1 ij ε

To add this predictor we again create a new object in R (which I have called random­
InterceptSurgery) using the lme() function. This function is exactly the same as before 
except that we have replaced Post_QoL~1 with Post_QoL~Surgery. As such, the model 
now predicts quality of life after surgery from the variable Surgery and the intercept.5

randomInterceptSurgery <-lme(Post_QoL ~ Surgery, data = surgeryData, random 
= ~1|Clinic, method = "ML")
summary(randomInterceptSurgery)

The resulting Output 19.8 shows this model. Note that the BIC has actually increased 
from 1922.33 in the previous model to 1924.62 in this one, which suggests that adding 
Surgery has not improved the fit of the model (consistent with this interpretation the log-
likelihood has increased also). This interpretation is also borne out by the fixed effect of 
Surgery, which is not significant, b = 1.66, t(265) = −1.83, p = .068.

Although Surgery does not appear to be a significant predictor, we had a final model that 
also included baseline quality of life, so we should add that fixed effect too. Our model is 
now described by:

QoL After Surgery Surgery QoL Before Surgeryij j ij ij ijb b b= + + +0 1 2 ε

bb b uj j0 0 0= +

To add this predictor we again use lme() to create a new object (which I have called ran­
domInterceptSurgeryQoL). This function is exactly the same as before except that we have 
replaced Post_QoL~Surgery with Post_QoL~Surgery + Base_QoL. Hopefully, you can see 
that each time we specify a model we simply write out the equation that describes the 
model, but without the bs. As such, the model now predicts quality of life after surgery 
from the variables Surgery, Base_QoL and the intercept, with intercepts varying across 
clinics.

randomInterceptSurgeryQoL <-lme(Post_QoL ~ Surgery + Base_QoL, data = sur-
geryData, random = ~1|Clinic, method = "ML")
summary(randomInterceptSurgeryQoL)

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
       AIC      BIC    logLik
  1910.137 1924.619 -951.0686

Random effects:
 Formula: ~1 | Clinic

5 You might wonder where the ‘1’ representing the intercept has gone. The intercept is implied within the model 
so we don’t need to specify it, although we could be explicit and write Post_QoL ~ 1 + Surgery. The end result 
would be the same. Similarly, we could write Post_QoL ~ 0 + Surgery if we wanted to remove the intercept from 
the model.
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        (Intercept) Residual
StdDev:    6.099513  7.18542

Fixed effects: Post_QoL ~ Surgery 
               Value Std.Error  DF  t-value p-value
(Intercept) 59.30517 2.0299632 265 29.21490   0.000
Surgery      1.66583 0.9091314 265  1.83233   0.068
 Correlation: 
        (Intr)
Surgery -0.21 

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-1.8904290 -0.7191399 -0.1420998  0.7177762  2.8644538 

Number of Observations: 276
Number of Groups: 10 

Output 19.8

          R ’s  Souls ’  T ip  19 .2   Missing data 3

We saw in R’s Souls’ Tip 7.1 that missing data create problems for linear models (i.e., regression). Unlike ordinary 
regresison, multilevel models do not require balanced data sets, so you can have missing data, but you still need 
to tell R what to do with missing cases: just like ordinary regression, if you try to do a multilevel model with missing 
values in the dataframe you will get an error because lme() does not know what to do with these values. As with 
ordinary regression, you should add na.action = na.exclude to the lme() function to let it know that it can ignore 
any NAs it finds in the dataframe. In the surgery data we don’t have missing values so we haven’t had to use this 
instruction, but we could easily insert it. For example, the command for our model with Surgery and Base_QoL 
would become:

randomInterceptSurgeryQoL <-lme(Post_QoL ~ Surgery + Base_QoL, data = surgeryData, 
random = ~1|Clinic, method = "ML", na.action = na.exclude)

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
      AIC      BIC   logLik
  1847.49 1865.592 -918.745

Random effects:
 Formula: ~1 | Clinic
        (Intercept) Residual
StdDev:    3.039264 6.518986

Fixed effects: Post_QoL ~ Surgery + Base_QoL 
                Value Std.Error  DF   t-value p-value
(Intercept) 29.563601  3.471879 264  8.515160  0.0000
Surgery     -0.312999  0.843145 264 -0.371228  0.7108
Base_QoL     0.478630  0.052774 264  9.069465  0.0000
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 Correlation: 
         (Intr) Surgry
Surgery   0.102       
Base_QoL -0.947 -0.222

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-1.8872666 -0.7537675 -0.0954987  0.5657241  3.0020852 

Number of Observations: 276
Number of Groups: 10

Output 19.9

Output 19.9 shows the summary of the final model. Note that the BIC and AIC have 
both decreased since the previous model (Output 19.8); for example, the BIC has reduced 
from 1924.62 to 1865.59. This implies a better fitting model. We can have a look at how 
the fit of the models has improved using the anova() function that we used before; the fol-
lowing will compare all three models that we have so far fitted):

anova(randomInterceptOnly, randomInterceptSurgery, 
randomInterceptSurgeryQoL)

Output 19.10 shows the resulting analysis. We start with just varying intercepts (model 
1), and we can see that by including surgery as a fixed effect (model 2) we got no significant 
improvement (p > .05). In fact the change in the −2LL is only 3.34, which has a signifi-
cance of p = .068 (note that this is the same significance as for the t that tests the regression 
parameter of the fixed effect of surgery in Output 19.8). In model 3, we added the effect 
of baseline quality of life, and this had a dramatic impact. The −2LL changed by 64.65 and 
this change was highly significant, χ2(1) = 64.65, p < .0001. As we have already noted the 
AIC and BIC also decrease from model 2 to model 3 showing that the fit is improving.

Model df      AIC      BIC    logLik   Test  L.Ratio p-value
1  3 1911.473 1922.334 -952.7364                        
2  4 1910.137 1924.619 -951.0686 1 vs 2  3.33564  0.0678
3  5 1847.490 1865.592 -918.7450 2 vs 3 64.64721  <.0001

Output 19.10

Given that including baseline quality of life has improved the fit of our model so much, 
let’s briefly take stock of the model (shown in Output 19.9). The regression parameter for 
the effect of Surgery is −0.31, which is not significant, t(264) = −0.37, p > .05. However, 
baseline quality of life has a regression parameter of 0.48, which is highly significant t(264) 
= 9.07, p < .001. The standard deviation of the intercepts is 3.04 (we can square this value 
to get the variance of intercepts across clinics, which in this case is 9.24).

19.6.8.    Introducing random slopes 4

We have seen that including a random intercept is important for this model (it changes the 
log-likelihood significantly). Figure 19.9 suggests that different clinics have different slopes; 
therefore, we could now look at whether adding a random slope will benefit the model. The 
model is now described by equation (19.9), which we saw earlier on; it can be specified in R 
with only minor modifications to the lme() function. All we are doing is adding another ran-
dom term to the model, so, whereas before we specified random part of the model as ran­
dom = ~1|Clinic, we now need to change this to random = ~Surgery|Clinic. This change 
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tells R that the model now allows the effect of Surgery (i.e., the slope) to vary across clinics. 
As when we specified the main model, the intercept is implied in this, so the change will give 
us both random intercepts over clinics, but also random slopes for the variable Surgery.6

addRandomSlope<-lme(Post_QoL ~ Surgery + Base_QoL, data = surgeryData, random 
= ~Surgery|Clinic, method = "ML")
summary(addRandomSlope)
anova(randomInterceptSurgeryQoL,addRandomSlope)

The code above creates a new object called addRandomSlope, which is the same model as 
before but with a random slope added for the effect of Surgery. We then ask for a summary 
of this new model as we have done before, we then compare this new model to the previ-
ous one, using the anova() function, which we have used before. Output 19.11 shows the 
results of this model comparison. By allowing the effect of Surgery to vary across clinics we 
have reduced the BIC from 1865.59 to 1837.97, and the −2LL has changed significantly,7 
χ2 (2) = 38.87, p < .0001. In short, adding random slopes to the model has significantly 
improved its fit, which means there is significant variability in the effect of surgery across 
clinics.

Across this model and the previous one, we can conclude from the −2LL as we built up 
the models that the intercepts, χ2 (1) = 64.65, p < .0001, and slopes, χ2 (2) = 38.87, p < 
.0001, for the relationship between surgery and quality of life (when controlling for base-
line quality of life) vary significantly across the different clinics. 

Model df      AIC      BIC    logLik   Test  L.Ratio p-value
1  5 1847.490 1865.592 -918.7450                        
2  7 1812.624 1837.966 -899.3119 1 vs 2 38.86626  <.0001

Output 19.11

Output 19.12 shows the summary of the model that contains both random slopes and 
intercepts. The regression parameter for the effect of Surgery is now b = −0.65, which is 
still not significant, t(264) = −0.31, p > .05. Baseline quality of life is still highly significant, 
b = 0.31, t(264) = 5.80, p < .001. The standard deviation of the intercepts is 6.13, and the 
effect of Surgery has a standard deviation of 6.20 (which we can square to find the vari-
ance, which is 38.41). The slopes and intercepts are highly correlated also (r = −.97).

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
       AIC      BIC    logLik
  1812.624 1837.967 -899.3119

Random effects:
 Formula: ~Surgery | Clinic
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 6.132655 (Intr)
Surgery     6.197489 -0.965
Residual    5.912335       

6 It would be pretty unusual to want random slopes but not intercepts, because variability in the effect of a variable 
across contexts will tend to create variability in the intercepts across contexts too. However, should you want to 
have a model with random slopes but not intercepts you simply change the random effect to ~0 + Surgery|Clinic; 
the 0 gets rid of the intercept.

7 The observant among you will notice that even though we have added only one new term to the model (the 
random slope of surgery across clinics), the degrees of freedom have increased by 2 rather than 1. That’s odd isn’t 
it? Actually, it’s not and it happens because by including random slopes we actually add two parameters to the 
model: the estimate of the variance of the effect of surgery across clinics, and also an estimate of the covariance 
between slopes and intercepts (i.e., the extent to which intercepts and slopes are dependent on each other).

19-Field_R-4368-Ch-19.indd   885 29/02/2012   6:00:39 PM



886 D ISCOVER ING STAT IST ICS  US ING R

Fixed effects: Post_QoL ~ Surgery + Base_QoL 
               Value Std.Error  DF   t-value p-value
(Intercept) 40.10253  3.892945 264 10.301334  0.0000
Surgery     -0.65453  2.110917 264 -0.310069  0.7568
Base_QoL     0.31022  0.053506 264  5.797812  0.0000
 Correlation: 
         (Intr) Surgery
Surgery  -0.430       
Base_QoL -0.855 -0.063

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.4114778 -0.6628574 -0.1138411  0.6833110  2.8334730 

Number of Observations: 276
Number of Groups: 10 

Output 19.12
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19.6.9.    Adding an interaction term to the model 4

We can now build up the model by adding in another variable. One of the variables we 
measured was the reason for the person having cosmetic surgery: was it to resolve a physi-
cal problem or was it purely for vanity? We can add this variable to the model, and also 
look at whether it interacts with surgery in predicting quality of life. Our model will simply 
expand to incorporate these new terms, and each term will have a regression coefficient 
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(which we select to be fixed). Therefore, our final model can be described as in the equa-
tion below (note that all that has changed is that there are two new predictors):

QoL After Surgery QoL Before Surgery asonij j j ij ij ib b b b= + + +0 1 2 3Re jj

ij ij

j j

j j

b

b b u

b b u

+ × +

= +

= +

4

0 0 0

1 1 1

(Re )ason Surgery ε

	 (19.1)

To set up this model in R is very easy; it just requires some minor changes to the code. 
First, we’ll add in the effect of Reason. To do this we create a new model, which I have 
called addReason, and we set it up in exactly the same way as before, except that we add 
Reason to the model. So, our model changes from Post_QoL~Surgery + Base_QoL to 
Post_QoL~Surgery + Base_QoL + Reason. It’s as simple as that. In fact, it can be even sim-
pler if you use the update function (see R’s Souls’ Tip 19.3).

addReason<-lme(Post_QoL ~ Surgery + Base_QoL + Reason, data = surgeryData, 
random = ~Surgery|Clinic, method = "ML")

As we’ve seen before, to add an interaction term we use a colon (i.e., Surgery:Reason). I 
have called this model finalModel and we specify it exactly the same as the previous model 
except that we add in the interaction term. Again, we could simplify this process by using 
the update function (see R’s Souls’ Tip 19.3).

finalModel<-lme(Post_QoL ~ Surgery + Base_QoL + Reason + Surgery:Reason, data = 
surgeryData, random = ~Surgery|Clinic, method = "ML")

          R ’s  Souls ’  T ip  19 .3   The update function 3

Throughout the first example in this chapter I have built the models up piece by piece because I think it’s useful 
to see how the code relates to the equation that describes the model. However, as we have seen before (see R’s 
Souls’ Tip 7.2) the update() function is a quicker way to add new things to old models. Let’s start with the random 
slopes example from the main text. Our model is as follows:

addRandomSlope<-lme(Post_QoL ~ Surgery + Base_QoL, data = surgeryData, random = 
~Surgery|Clinic, method = "ML")

In the text, we added the variable Reason to this model, using the longhand method:

addReason<-lme(Post_QoL ~ Surgery + Base_QoL + Reason, data = surgeryData, random = 
~Surgery|Clinic, method = "ML")

Using the update() function we can do the same thing in much less text:

addReason<-update(addRandomSlope, .~. + Reason)

This function, like the longhand one, creates a new model called addReason, and it does this by updating an existing 
model. The first part of the parenthesis tells R that we want to update the model called addRandomSlope; the .~. + 
Reason tells R to keep the outcome variable and all of the previous predictors and to add Reason as a predictor.

Similarly, having created the model addReason, we can update this model to include the Surgery × Reason 
interaction (as we did in the main text). We can again use the update function as follows:

finalModel<-update(addReason, .~. + Reason:Surgery)

This command creates a new model called finalModel. Note that we have specified addReason in the update() 
function because we want to update the model that includes Reason as a predictor, and have added the interac-
tion term typing + Reason:Surgery.
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We need to see whether adding these new terms has improved the fit of the model and 
again we can simply use the anova() function. We have two new models (addReason and 
finalModel) that we want to compare to our previous model (addRandomSlope). We can do 
this comparison in a single function, remembering to order our models in the same order 
that they were built (so each time we have added only a single parameter):

anova(addRandomSlope, addReason, finalModel)

Output 19.13 presents the resulting output, which shows that adding Reason to the 
model reduces the −2LL by 3.80, which is not quite a significant change, p = .0513; how-
ever, adding the Surgery × Reason interaction reduces the −2LL by 5.78, which is a signifi-
cant change, p < .05.

            Model df   AIC     BIC   logLik  Test  L.Ratio p-value
addRandomSlope 1  7 1812.62 1837.96 -899.31                        
addReason      2  8 1810.82 1839.78 -897.41 1 vs 2 3.7989  0.0513
finalModel     3  9 1807.04 1839.62 -894.52 2 vs 3 5.7795  0.0162

Output 19.13

Output 19.14 shows the summary of the final model. Quality of life before surgery sig-
nificantly predicted quality of life after surgery, t(262) = 5.75, p < .001, surgery still did 
not significantly predict quality of life, t(262) = −1.46, p = .15, but the reason for surgery, 
t(262) = −3.08, p < .01, and the interaction of the reason for surgery and surgery, t(262) 
= 2.48, p < .05, both did significantly predict quality of life. The table of estimates also 
gives us the regression coefficients. However, if we want to get confidence intervals for 
these parameters we need to use the function intervals(), within which we simply specify 
the model for which we would like confidence intervals, and the level of the confidence 
intervals as a proportion (i.e., 0.99 produces 99% confidence intervals). For example:

intervals(finalModel, 0.90)
intervals(finalModel, 0.95)
intervals(finalModel, 0.99)

produce 90%, 95% and 99% intervals. If you insert only the model name into the function 
you will get 95% CIs by default.

Output 19.15 shows the 95% confidence intervals for our final model. We can see, for 
example, that Surgery had a b = −3.19, with a 95% confidence interval of −7.45 (lower) 
and 1.08 (upper). This interval crosses zero and so is not significant at p < .05, which 
of course we knew already from the main summary. These confidence intervals are very 
useful for establishing whether the variance of the intercepts and slopes is significant. For 
example, we can see that the standard deviation for intercepts was 5.48 with a 95% confi-
dence interval from 3.31 to 9.07, for the slope of Surgery we get 5.42 (3.13, 9.37); because 
both confidence intervals do not cross zero we can see that the variability in both slopes 
and intercepts was significant, p < .05.

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
       AIC      BIC    logLik
  1807.045 1839.629 -894.5226

Random effects:
 Formula: ~Surgery | Clinic
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 5.482366 (Intr)
Surgery     5.417501 -0.946
Residual    5.818910       
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Fixed effects: Post_QoL ~ Surgery + Base_QoL + Reason + Reason:Surgery 
                  Value Std.Error  DF   t-value p-value
(Intercept)    42.51782  3.875318 262 10.971440  0.0000
Surgery        -3.18768  2.185369 262 -1.458645  0.1459
Base_QoL        0.30536  0.053125 262  5.747833  0.0000
Reason         -3.51515  1.140934 262 -3.080938  0.0023
Surgery:Reason  4.22129  1.700269 262  2.482717  0.0137
 
Correlation: 
               (Intr) Surgry Bas_QL Reason
Surgery        -0.356                     
Base_QoL       -0.865 -0.078              
Reason         -0.233  0.306  0.065       
Surgery:Reason  0.096 -0.505  0.024 -0.661

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.2331485 -0.6972193 -0.1541074  0.6326387  3.1641797 

Number of Observations: 276
Number of Groups: 10 

Output 19.14

Approximate 95% confidence intervals

 Fixed effects:
                    lower       est.      upper
(Intercept)    34.9565211 42.5178190 50.0791170
Surgery        -7.4516428 -3.1876767  1.0762895
Base_QoL        0.2017008  0.3053561  0.4090114
Reason         -5.7412731 -3.5151479 -1.2890227
Surgery:Reason  0.9038206  4.2212885  7.5387563
attr(,"label")
[1] "Fixed effects:"

 Random Effects:
  Level: Clinic 
                              lower       est.      upper
sd((Intercept))           3.3138275  5.4823658  9.0699757
sd(Surgery)               3.1331192  5.4175011  9.3674439
cor((Intercept),Surgery) -0.9937813 -0.9455545 -0.5986153

 Within-group standard error:
   lower     est.    upper 
5.331222 5.818910 6.351211 

Output 19.15

As this is our final model, let’s now give some thought to interpretation. The effect of the 
reason for surgery is easy to interpret. Given that we coded this predictor as 1 = physical 
reason and 0 = change appearance, the negative coefficient tells us that as reason increases 
(i.e., as a person goes from having surgery to change their appearance to having it for a 
physical reason) quality of life decreases. However, this effect in isolation isn’t that inter-
esting because it includes both people who had surgery and the waiting list controls. More 
interesting is the interaction term, because this takes account of whether or not the person 
had surgery. To break down this interaction we could rerun the analysis separately for the 
two ‘reason groups’. Obviously we would remove the interaction term and the main effect 
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of Reason from this analysis (because we are analysing the physical reason group separately 
from the group who wanted to change their appearance). As such, you need to fit the 
model in the previous section, but separately for those who had cosmetic surgery and those 
who had surgery for a physical reason.

Fortunately, this is fairly easy to do because lme() has a subset option that enables you 
to select a variable that specifies which rows of the data file that you want to use. First we 
need to create a variable that returns ‘True’ if the person had surgery for physical reasons 
and ‘False’ for those who had cosmetic surgery:

physicalSubset<- surgeryData$Reason==1

This function simply creates a variable called physicalSubset that will be set to TRUE only if 
the variable Reason is equal to 1. In our data set people who have a ‘1’ for Reason are those 
who had surgery for a physical reason, so we are asking R to set physicalSubset to TRUE if 
the person had surgery for a physical reason. (Remember that surgeryData$Reason means 
‘the variable called Reason in the data set called surgeryData’, and that in R ‘==’ means 
‘equal to’.) We also create another variable called cosmeticSubset that returns TRUE for 
any people who had cosmetic surgery. We create this variable in much the same way (but 
now we specify that the variable Reason must be equal to 0, because in our data set 0 rep-
resents people who had cosmetic surgery):

cosmeticSubset<-surgeryData$Reason==0

Next, we create two new models that contain Base_QoL and Surgery as predictors and 
have random slopes and intercepts. The first one is for people who had surgery for a 
physical reason, so we set the subset option to be physicalSubset, which specifies all of the 
people who had surgery for this reason:

physicalModel<-lme(Post_QoL ~ Surgery + Base_QoL, data = surgeryData, random = 
~Surgery|Clinic, subset= physicalSubset, method = "ML")

This creates a model (called physicalModel). Note that I have used subset = physicalSubset, 
which uses the variable physicalSubset to determine whether or not to include a particular 
case of data. By doing this our resulting model will include only those who had surgery 
for a physical reason. Similarly, we can use the variable cosmeticSubset to create another 
model that is fit using only those who had cosmetic surgery:

cosmeticModel<-lme(Post_QoL ~ Surgery + Base_QoL, data = surgeryData, random = 
~Surgery|Clinic, subset= cosmeticSubset, method = "ML")

We can get a summary of these models in the usual way:

summary(physicalModel)
summary(cosmeticModel)

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
  Subset: physicalSubset 
       AIC      BIC    logLik
  1172.560 1194.832 -579.2798

Random effects:
 Formula: ~Surgery | Clinic
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 5.773827 (Intr)
Surgery     5.804865 -0.948
Residual    5.798764       
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Fixed effects: Post_QoL ~ Surgery + Base_QoL 
               Value Std.Error  DF  t-value p-value
(Intercept) 38.02079  4.705980 166 8.079250  0.0000
Surgery      1.19655  2.099769 166 0.569848  0.5696
Base_QoL     0.31771  0.069471 166 4.573271  0.0000
 Correlation: 
         (Intr) Surgry
Surgery  -0.306       
Base_QoL -0.908 -0.078

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.2447342 -0.6505340 -0.1264188  0.6111506  2.9472101 

Number of Observations: 178
Number of Groups: 10 

Output 19.16

Linear mixed-effects model fit by maximum likelihood
 Data: surgeryData 
  Subset: cosmeticSubset 
       AIC      BIC    logLik
  650.9469 669.0417 -318.4734

Random effects:
 Formula: ~Surgery | Clinic
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 5.006026 (Intr)
Surgery     5.292027 -0.969
Residual    5.738551       

Fixed effects: Post_QoL ~ Surgery + Base_QoL 
               Value Std.Error DF   t-value p-value
(Intercept) 41.78605  5.573849 87  7.496802  0.0000
Surgery     -4.30702  2.275002 87 -1.893193  0.0617
Base_QoL     0.33849  0.080274 87  4.216720  0.0001
 Correlation: 
         (Intr) Surgry
Surgery  -0.252       
Base_QoL -0.937 -0.058
Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-1.8945645 -0.6616222 -0.1461451  0.6460834  2.6741347 
Number of Observations: 98
Number of Groups: 9 

Output 19.17

The model for those who had surgery for a physical reason is shown in Output 19.16, 
whereas the model for those who had cosmetic surgery is in Output 19.17. It shows that 
for those operated on only to change their appearance, surgery almost significantly pre-
dicted quality of life after surgery, b = −4.31, t(87) = −1.89, p = .06. The negative gradient 
shows that for these people quality of life after surgery was lower compared to the control 
group. However, for those who had surgery to solve a physical problem surgery did not 
significantly predict quality of life, b = 1.20, t(166) = 0.57, p = .57. However, the slope 
was positive, indicating that people who had surgery scored higher on quality of life than 
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those on the waiting list (although not significantly so!). The interaction effect, therefore, 
reflects the difference in slopes for surgery as a predictor of quality of life in those who had 
surgery for physical problems (slight positive slope) and those who had surgery purely for 
vanity (a negative slope).

We could sum up these results by saying that quality of life after surgery, after control-
ling for quality of life before surgery, was lower for those who had surgery to change their 
appearance than those who had surgery for a physical reason. This makes sense because for 
those having surgery to correct a physical problem, the surgery has probably brought relief 
and so their quality of life will improve. However, for those having surgery for vanity they 
might well discover that having a different appearance wasn’t actually at the root of their 
unhappiness, so their quality of life is lower.

             CRAMMING SAM’S TIPS    Multilevel models R output

•	 The -2LL and its significance can be used to compare models that are the same in all but one parameter. The AIC and BIC 
can also be compared across models (but not significance tested).

•	 The fixed effects tell you whether your predictors significantly predict the outcome. If the significance value is less than .05 
then the effect is significant.

•	 Interpret the nature of the effect using the regression coefficient and its confidence interval. The direction of these coefficients 
tells us whether the relationship between each predictor and the outcome is positive or negative. To get the confidence inter-
vals you need to use the intervals() function.

•	 The standard deviation of random effects can tell us how much intercepts and slopes varied over our level 1 variable. The 
significance of these estimates can be ascertained from their confidence intervals, obtained using the intervals() function.

19.7.  Growth models 4

Growth models are extremely important in many areas of science, including psychology, 
medicine, physics, chemistry and economics. In a growth model the aim is to look at the 
rate of change of a variable over time: for example, we could look at white blood cell 
counts, attitudes, radioactive decay or profits. In all cases we’re trying to see which model 
best describes the change over time.

19.7.1.    Growth curves (polynomials) 4

Figure 19.10 gives some examples of possible growth curves. This diagram shows three 
polynomials representing a linear trend (the dark blue line) otherwise known as a first-order 
polynomial, a quadratic trend (the light blue line) otherwise known as a second-order poly-
nomial, and a cubic trend (the black line) otherwise known as a third-order polynomial. 
Notice first that the linear trend is a straight line, but as the polynomials increase they 
get more and more curved, indicating more rapid growth over time. Also, as polynomials 
increase, the change in the curve is quite dramatic (so dramatic that I adjusted the scale of 
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the graph to fit all three curves on the same diagram). This observation highlights the fact 
that any growth curve higher than a quadratic (or possibly cubic) trend is very unrealistic 
in real data. By fitting a growth model to the data we can see which trend best describes 
the growth of an outcome variable over time (though no one will believe that a significant 
fifth-order polynomial is telling us anything meaningful about the real world!).

The growth curves that we have described might seem familiar to you: they 
are the same as the trends that we described for ordered means in section 10.4.5. 
What we are discussing now is really no different. There are just two important 
things to remember when fitting growth curves: (1) you can fit polynomials up 
to one less than the number of time points that you have; and (2) a polynomial 
is defined by a simple power function. On the first point, this means that with 
three time points you can fit a linear and quadratic growth curve (or a first- and 
second-order polynomial), but you cannot fit any higher-order growth curves. 
Similarly, if you have six time points you can fit up to a fifth-order polynomial. 
This is the same basic idea as having one less contrast than the number of groups 
in ANOVA (see section 10.4).

On the second point, we have to define growth curves manually in multilevel models in 
R: there is not a convenient option that we can select to do it for us. However, this is quite 
easy to do. If time is our predictor variable, then a linear trend is tested by including this 
variable alone. A quadratic or second-order polynomial is tested by including a predictor 
that is time2, a cubic or third-order polynomial is tested by including a predictor that is 
time3 and so on. So any polynomial is tested by including a variable that is the predictor to 
the power of the order of polynomial that you want to test: for a fifth-order polynomial we 
need a predictor of time5 and for an n-order polynomial we would have to include timen as 
a predictor. Hopefully you get the general idea.
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19.7.2.    An example: the honeymoon period 2

I once saw a brilliant talk given by Professor Daniel Kahneman, who won the 2002 
Nobel Prize for Economics. In this talk Kahneman brought together an enormous 
amount of research on life satisfaction (he explored questions such as whether peo-
ple are happier if they are richer). There was one graph in this talk that particularly 
grabbed my attention. It showed that leading up to marriage people reported greater 
life satisfaction, but by about two years after marriage this life satisfaction decreased 
back to its baseline level. This graph perfectly illustrated what people talk about as 
the ‘honeymoon period’: a new relationship/marriage is great at first (no matter how 
ill suited you may be) but after six months or so the cracks start to appear and eve-
rything turns to elephant dung. Kahneman argued that people adapt to marriage; it 
does not make them happier in the long run (Kahneman & Krueger, 2006).8 This got 
me thinking about relationships not involving marriage (is it marriage that makes you 
happy, or just being in a long-term relationship?). Therefore, in a completely ficti-
tious parallel world where I don’t research child anxiety, but instead concern myself 
with people’s life satisfaction, I collected some data. I organized a massive speed-
dating event (see Chapter 14). At the start of the night I measured everyone’s life 
satisfaction (Satisfaction_Baseline) on a 10-point scale (0 = completely dissatisfied, 
10 = completely satisfied) and their gender (Gender). After the speed dating I noted 
all of the people who had found dates. If they ended up in a relationship with the 
person that they met on the speed-dating night then I stalked these people over the 
next 18 months of that relationship. As such, I had measures of their life satisfaction 
at 6 months (Satisfaction_6_Months), 12 months (Satisfaction_12_Months) and 18 
months (Satisfaction_18_Months), after they entered the relationship. None of the 
people measured were in the same relationship (i.e., I measured only life satisfaction 
from one of the people in the couple).9 Also, as is often the case with longitudinal 
data, I didn’t have scores for all people at all time points because not everyone was 
available at the follow-up sessions. One of the benefits of a multilevel approach is 
that these missing data do not pose a particular problem. The data are in the file 
Honeymoon Period.dat.

Load these data into R by executing the following command:

satisfactionData = read.delim("Honeymoon Period.dat",  header = TRUE)

Figure 19.11 shows the data. Each dot is a data point and the line shows the average 
life satisfaction over time. Basically, from baseline, life satisfaction rises slightly at time 2 
(6 months) but then starts to decrease over the next 12 months. There are two things to 
note about the data. First, time 0 is before the people enter into their new relationship, yet 
already there is a lot of variability in their responses (reflecting the fact that people will 
vary in their satisfaction due to other reasons such as finances, personality and so on). This 
suggests that intercepts for life satisfaction differ across people. Second, there is also a lot 
of variability in life satisfaction after the relationship has started (time 1) and at all subse-
quent time points, which suggests that the slope of the relationship between time and life 
satisfaction might vary across people also. If we think of the time points as a level 1 vari-
able that is nested with people (a level 2 variable) then we can easily model this variability 
in intercepts and slopes within people. We have a situation similar to Figure 19.4 (except 

8 The romantics among you might be relieved to know that others have used the same data to argue the complete 
opposite: that married people are happier than non-married people in the long term (Easterlin, 2003).

9 However, I could have measured both people in the couple because, using a multilevel model I could have 
treated people as being nested within ‘couples’ to take account of the dependency in their data.
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with two levels instead of three, although we could add in the location of the speed dating 
event as a level three variable if we had that information). 

19.7.3.    Restructuring the data 3

The first problem with having data measured over time is that to do a multilevel model the 
data need to be in a different format than what we are used to. For a repeated-measures 
design we normally set up the data with each row representing a person: in this case, the 
repeated-measures variable of time will be represented by four different columns (see sec-
tion 3.9.4). We saw in Chapter 3 that this is called the ‘wide’ format. If we were going to 
run an ordinary repeated-measures ANOVA, this data layout would be fine; however, for a 
multilevel model we need the variable Time to be represented by a single column. We refer 
to this format as the ‘long’ format. As such we need to restructure the data.

SELF-TEST

ü	 Thinking back to Chapter 3, use the melt() function 
to restructure the data into long format. If you get 
stuck, section 3.9.4 shows you how. Call your new 
dataframe restructuredData.

19.7.4.    Setting up the basic model 4

Now that we have our data set up, we can run the analysis. Essentially, we can set up this 
analysis in a very similar way to the previous example. There is only one important dif-
ference: because we are working with time series data we have to model the covariance 
structure (see section 19.4.2). The most common way to do this is to assume a first-order 
autoregressive covariance structure; to remind you, this means that data points close in 

Time (Six-month Intervals)

L
if

e 
S

at
is

fa
ct

io
n

12

10

8

6

4

2

0 0 1 2 3

FIGURE 19.11
Life satisfaction 
over time

19-Field_R-4368-Ch-19.indd   895 29/02/2012   6:00:44 PM



896 D ISCOVER ING STAT IST ICS  US ING R

time are assumed to be more highly correlated than data points distant in time. In all other 
respects we set up the model in the same way as in the previous example.

First we fit a baseline model in which we include only the intercept. As in the previous 
example, this is done using the gls() function:

intercept <-gls(Life_Satisfaction ~ 1, data = restructuredData, method = 
"ML", na.action = na.exclude)

Note that we have asked R to create an object called intercept, and we have specified that 
Life_Satisfaction is the outcome variable and that it is predicted from only the intercept 
(the ‘~1’ in the function). The rest of the function specifies the data (data = restructured­
Data) and how to estimate the model (method = “ML”). There is one important difference 
compared to the previous example. We have included a new option na.action = na.exclude. 
This is because the current data file (unlike the last example) has missing data and these 
missing values are specified as ‘NA’ in the data file. This option tells R what to do when 
it encounters an ‘NA’, and we have set it to exclude these cases (see R’s Souls’ Tip 19.2). 
Without this option the model would return an error.

Next, we need to fit the same model, but this time allowing the intercepts to vary across 
contexts (in this case we want them to vary across people). As in the previous example, we 
use the lme() function:

randomIntercept <-lme(Life_Satisfaction ~ 1, data = restructuredData, 
random = ~1|Person, method = "ML",  na.action = na.exclude, control = 
list(opt="optim"))

The format of this command is the same as the previous example. We create a model (called 
randomIntercept) that predicts life satisfaction from only the intercept (Life_Satisfaction~1), 
but also allows intercepts to vary across people (random = ~1|Person). Remember that the 
variable Person in the data set is a numeric variable that indicates whether data come from 
the same person. We have again asked for maximum-likelihood estimation (method = “ML”) 
and to exclude data points that are missing (na.action = na.exclude). However, note that 
there is a new option that we have not encountered before: control = list(opt=“optim”). This 
option changes the optimizer that R uses to estimate the model. Normally the default opti-
mizer is fine, but for these data some of the models cannot be computed using the default, 
so I have changed it to one that succeeds (see R’s Souls’ Tip 19.4).

          R ’s  Souls ’  T ip  19 .4  Advanced options for lme() 3

You can use the control option in lme() to change the default options for the estimation procedure. A couple of 
the parameters you might want to change if your models won’t converge are:

•	 maxIter: This sets the maximum number of iterations that R will use to reach a solution. The default is 50, 
but if your model fails to converge then you can increase this value, for example to 100, using control = 
list(maxIter = 100).

•	 opt: This sets the optimizer that is used. The default (from R 2.2.0) is called nlminb, but there is an alterna-
tive optimizer called optim. If your model fails to converge it can be useful to try using a different optimizer. 
For example, some of the models in the honeymoon period example do not converge using the defaults, 
which is why we changed from the default optimizer by using control = list(opt = “optim”).

You can change both parameters using the same option by simply including both in the list() that you specify. For 
example, to increase the number of iterations to 2000 and to change the optimizer from nlminb to opt you would 
use control = list(maxIter = 2000, opt = “optim”). For a full list of advanced options execute ?lmeControl.
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19.7.5.    Adding in time as a fixed effect 3

In a growth curve analysis, we are primarily interested in one fixed effect: time. This vari-
able in our data set is the index variable (Time), which specifies whether the life satisfaction 
score was recorded at baseline (0), 6 months (1), 12 months (2) or 18 months (3). In the 
previous example we built up our models individually using the lme() function; however, 
for this example our models have a lot of options (method = “ML”, na.action = na.exclude, 
control = list(opt=“optim”)), which we must specify in each new model. This typing would 
be tedious, so we will use the update() function to retain everything from a previous model 
(including options such as the method, how to deal with missing cases, and the optimiza-
tion method) but add things to it (R’s Souls’ Tip 19.3). We can quickly update the previous 
model (randomIntercept) to include Time as a predictor by executing:

timeRI<-update(randomIntercept, .~. + Time)

This command creates a new object in R called timeRI. The first part of the parenthesis tells 
R which model to update (in this case we have updated randomIntercept). The remainder 
tells R how to update this model: .~. simply means ‘keep the previous outcome and all of 
the previous predictors’ and + Time means ‘add Time as a predictor’. If you want to have 
a look at the new model you can use summary(timeRI).

19.7.6.    Introducing random slopes 4

We can add a random slope to the model very simply using the update() function and 
respecifying the random part of the model. At the moment, the random part of the model 
is specified as random = ~1|Person, which means that intercepts (~1) vary across people 
(Person). If we want slopes to vary across people as well, then we’re saying that the effect 
of Time is different in different people. This is a standard growth model scenario: the rate 
of development or growth over time differs within entities (in this case people, but it could 
be companies, mice, states, hospitals, schools, geographical areas, etc.). As such, we want 
to update the random part of the model to be random = ~Time|Person, which means that 
intercepts and the effect of time (~Time) vary across people (Person). We use the update() 
function to create a new model (called timeRS) which is identical to the previous model 
(timeRI) but updates the random part of the model to be random = ~Time|Person:

timeRS<-update(timeRI, random = ~Time|Person) 

19.7.7.    Modelling the covariance structure 4

Now we have a basic random effects model, we can introduce a term that models the cov-
ariance structure or errors (see section 19.4.2). We do this by using the option correlation = 
x, in which x is one of several pre-defined covariance structures. The most likely covariance 
structures that’ll you’ll use will be (for a full list execute ?corClasses):

MM corAR1(): This is a first-order autoregressive covariance structure (see Jane Superbrain 
Box 19.1). It should be used when time points are equally spaced (as is the case in the 
current example).

MM corCAR1(): This is similar to the above but for use with a continuous time covariate. 
Basically you should use this covariance structure if your time points are not equally spaced.

MM corARMA(): Another autoregressive error structure, but this one allows the correlation 
structure to involve a moving average of error variance (see Jane Superbrain Box 19.1).  
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We can add a covariance structure to the model using the update() function to create a new 
model (called ARModel) which is identical to the previous model (timeRS) but adds in a 
first-order autoregressive covariance structure:

ARModel<-update(timeRS, correlation = corAR1(0, form = ~Time|Person))

Note that we have used correlation = corAR1(0, form = ~Time|Person). We could have used 
the default setting, which would be to use correlation = corAR1(), but this would include 
only the random intercept (it would be the same as specifying correlation = corAR1(0, form 
= ~1|Person). 

You should be able to extend this basic logic to understand 
third- and fourth-order autoregressive models. In these 
models, residuals are assumed not to correlate; in other 
words, errors at one time point are not believed to correlate 
with errors at another time point. The data themselves cor-
relate at different time points, but the errors don’t. 

However, we might want to assume that the residuals 
also correlate over time. In other words, our data at time 
t can be predicted not just from the data at the previous 
time point but also the error at previous time points. This 
is known as a moving average (MA) model. Like AR mod-
els, a first-order moving average model factors in residu-
als at the current time point (et) and also residuals from 
the previous time point (et−1). A second-order MA model 
would factor in residuals for the current time point, the 
previous time point, and two points back in time (et−2), 
and so on. So, for example, if we had an AR(1) and MA(1) 
our model becomes:

yt = - a1yt–1 + et+ c1et–1

Note that this is the same as the AR(1) model except that 
there is an extra term representing the error from the previ-
ous time point, et−1, which is multiplied by c1, a coefficient 
representing the first-order moving average. Models that 
combine autoregressive and moving average models are 
known as ARMA models. ARMA models have two param-
eters: p defines the order of the autoregressive part of the 
model, q specifies the order of the moving average part 
of the model. In both cases 1 = first-order, 2 = second-
order and so on. Therefore, ARMA(p = 2, q = 1) would be a 
second-order autoregressive model with a first-order mov-
ing average, ARMA(p = 2, q = 2) would be a second-order 
autoregressive model with a second-order moving aver-
age. Hopefully you get the general gist because my brain is 
literally about to explode all over my screen.

Autoregressive models (AR) are very difficult to under-
stand. I do not really understand them, and I doubt I ever 
will. Imagine that we have a time series (Yt) and we adjust 
this by subtracting the mean (yt = Yt-Y

–
). The t in these 

equations just represents different points in time. As far 
as I can gather, if we have a first-order autoregressive 
model, AR(1), then we predict these adjusted values from 
the adjusted values at the previous time point (i.e., t − 1). 
We can use a standard linear model to do this:

yt = - a1yt–1 + et

The −a is known as the lag or autoregressive coefficient, 
and et is the residual or error at time t. You can hopefully 
see that this is a simple linear model in which values at 
one time are predicted from values at a previous time 
(the word autoregressive reflects the fact that values are 
predicted from themselves).

A second-order autoregressive model. AR(2), is much 
the same except that we’re interested not just in the previ-
ous time point, but in the previous two time points. The 
model simply expands to include this extra time point:

yt = - a1yt–1 - a2yt–2+ et 

JANE SUPERBRAIN 19.1

Autoregressive and moving 
average models 4
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19.7.8.    Comparing models 3

So far we have created five models: (1) a baseline model predicting life satisfaction from 
only the intercept (interceptOnly); (2) a model with random intercepts across people (ran­
domIntercept); (3) a model with time as a predictor of life satisfaction and random inter-
cepts across people (timeRI); (4) a model with time as a predictor, a random effect of time 
over people and random intercepts (timeRS); and (5) a model with time as a predictor, 
random effects of time across people, a random effect of intercepts across people, and a 
first-order autoregressive covariance structure (ARModel). Let’s now look at how these 
models fit the data. Each time we have added only one new component to the model so 
we can compare them with the log-likelihood as we did in the previous example. We can 
compare all five models by executing:

anova(intercept, randomIntercept, timeRI, timeRS, ARModel)

          Model df  AIC      BIC     logLik   Test   L.Ratio p-value
intercept   1  2 2064.053 2072.217 -1030.026                         
randomInt   2  3 1991.396 2003.642  -992.698 1 vs 2  74.657  <.0001
timeRI      3  4 1871.728 1888.057  -931.864 2 vs 3 121.667  <.0001
timeRS      4  6 1874.626 1899.120  -931.313 3 vs 4   1.102  0.5763
ARModel     5  7 1872.891 1901.466  -929.445 4 vs 5   3.736  0.0533 

Output 19.18

The resulting output, in Output 19.18, shows that adding a random intercept signifi-
cantly improved the fit of the model, χ2(1) = 74.66, p < .0001. Similarly, adding the fixed 
effect of time to the model significantly improved the fit compared to the previous model, 
χ2 (1) = 121.67, p < .0001. However, adding a random slope for the effect of time across 
participants did not significantly improve the model, χ2 (2) = 1.10, p = .576. Finally, adding 
a first-order autoregressive covariance structure did more or less significantly improve the 
model, χ2 (1) = 3.74, p = .053. Note that for each model the degrees of freedom change by 
1 because we have added only a single parameter;10 this change in degrees of freedom is 
used for the log-likelihood test.

We can take a quick look at the final model, and the confidence intervals for the param-
eter estimates within it by using:

Summary(ARModel); intervals(ARModel)

Output 19.19 shows the resulting model summary and Output 19.20 shows the 95% con-
fidence intervals. The effect of time, b = −0.87 (−1.03, −0.71), t(322) = −10.97, p < .001, 
was highly significant, indicating that life satisfaction significantly changed over the 18 
month period (see Figure 19.11). In addition, the standard deviation of intercepts was 
1.62 (1.31, 2.02), and for the effect of time across people (slopes) was 0.05 (0.00, 41.83). 
Neither of the confidence intervals crosses zero, implying that this variance in slopes and 
intercepts was significant. Note that in the case of the slopes, this finding contradicts the 
results of the log-likelihood statistic, which implied that adding random slopes did not 
significantly improve the model (Output 19.18). The approximate confidence interval for 
slopes is very wide and not symmetrical, which implies that we might be wise to give more 
weight to the log-likelihood.

10 The exception is the model where we add random slopes. See earlier for an explanation of why the change in 
degrees of freedom is 2 in this case.
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Linear mixed-effects model fit by maximum likelihood
 Data: restructuredData 
       AIC      BIC    logLik
  1872.891 1901.466 -929.4453

Random effects:
 Formula: ~Time | Person
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev     Corr  
(Intercept) 1.62767553 (Intr)
Time        0.04782877 -0.062
Residual    1.74812486       

Correlation Structure: AR(1)
 Formula: ~Time | Person 
 Parameter estimate(s):
      Phi 
0.2147812 
Fixed effects: Life_Satisfaction ~ Time 
                Value  Std.Error  DF   t-value p-value
(Intercept)  7.131470 0.21260192 322  33.54377       0
Time        -0.870087 0.07929275 322 -10.97310       0
 Correlation: 
     (Intr)
Time -0.527

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.08400991 -0.62083911  0.06392492  0.59512953  2.49161500 

Number of Observations: 438
Number of Groups: 115

Output 19.19

Approximate 95% confidence intervals

 Fixed effects:
                lower       est.      upper
(Intercept)  6.714162  7.1314700  7.5487782
Time        -1.025728 -0.8700874 -0.7144467
attr(,"label")
[1] "Fixed effects:"

 Random Effects:
  Level: Person 
                              lower        est.      upper
sd((Intercept))        1.314720e+00  1.62767553  2.0151263
sd(Time)               5.468419e-05  0.04782877 41.8327717
cor((Intercept),Time) -6.937502e-01 -0.06192455  0.6237635

 Correlation structure:
          lower      est.    upper
Phi 0.002025179 0.2147812 0.408935
attr(,"label")
[1] "Correlation structure:"
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 Within-group standard error:
   lower     est.    upper 
1.542913 1.748125 1.980630

Output 19.20

19.7.9.    Adding higher-order polynomials 3

We have seen that the main effect of time is significant. This main effect is the lin-
ear trend of time. However, Figure 19.11, seems to show a more curvilinear change 
over time (satisfaction first increases from baseline to 6 months before declining after 6 
months). To capture this trend we would need to add a quadratic or perhaps even cubic 
trend (refer back to Figure 19.10). There are several ways in R to look for trends. One 
way to add quadratic trends is to do it manually. We saw in Figure 19.10 that a quadratic 
trend equates to time2 and that a cubic trend is simply time3. We could, therefore, simply 
create new predictor variables in our dataframe that are time multiplied by itself (time2) 
or time multiplied by itself twice (time3). We could then enter these new variables as 
predictors into the model.

Fortunately, rather than computing new variables, R can create these new predictors 
‘on the fly’. To create the quadratic term we simply specify I(Time^2) as a new predictor. 
‘Time^2’ is R’s way of writing ‘time2’ (the ^ means ‘to the power of ’); because arith-
metic operators such as +, *, − and ^ can be used to define the form of a model (e.g., 
satisfaction~gender + age + age*gender) we need to enclose ‘Time^2’ within the I() func-
tion so that R knows to treat it as an arithmetic operator rather than part of the model 
specification. The last model we looked at was called ARModel, and included the main 
effect of Time as a predctor. We can use update() to create a new model (timeQuadratic) 
that adds the quadratic term to this model:

timeQuadratic<-update(ARModel, .~. + I(Time^2))

We can create a model (timeCubic) that adds a cubic term in exactly the same way as 
for the quadratic trend. This time, we update the quadratic model (timeQuadratic) so that 
it includes time3, which is done the same as for the quadratic trend except that we specify 
time cubed rather than squared, ‘I(Time^3)’. We can compare these two new models with 
the model that included only the linear trend of time (ARModel) using the anova() function 
and ask for a summary of the final model using the summary() and intervals() functions.

timeCubic <-update(timeQuadratic, .~. + I(Time^3))
anova(ARModel, timeQuadratic, timeCubic)
summary(timeCubic)
intervals(timeCubic)

Output 19.21 shows the model comparison. It is clear from this that adding the 
quadratic term to the model significantly improves the fit, χ2(1) = 57.35, p < .0001; how-
ever, adding in the cubic trend does not, χ2(1) = 3.38, p = .066.

           Model df  AIC      BIC    logLik   Test  L.Ratio p-value
ARModel       1  7 1872.89 1901.466 -929.445                        
timeQuadratic 2  8 1817.54 1850.202 -900.772 1 vs 2 57.347  <.0001
timeCubic     3  9 1816.16 1852.901 -899.081 2 vs 3  3.382  0.0659

Output 19.21
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Looking at the summary of the final model, the fixed effects (Output 19.22) and the con-
fidence intervals (Output 19.23) tell us that the linear, b = 1.55 (0.61, 2.48), t(320) = 3.24, 
p < .01, and quadratic, b = −1.33 (−2.15, −0.50), t(320) = −3.15, p < .01, both significantly 
described the pattern of the data over time; however, the cubic trend was not significant, 
b = 0.17 (−0.01, 0.35), t(320) = 1.84, p > .05. This confirms what we already know from 
comparing the fit of successive models. The trend in the data is best described by a second-
order polynomial, or a quadratic trend. This reflects the initial increase in life satisfaction 
6 months after finding a new partner but a subsequent reduction in life satisfaction at 12 
and 18 months after the start of the relationship (Figure 19.11). It’s worth remembering 
that this quadratic trend is only an approximation: if it were completely accurate then we 
would predict from the model that couples who had been together for 10 years would have 
negative life satisfaction, which is impossible given the scale we used to measure it.

Linear mixed-effects model fit by maximum likelihood
 Data: restructuredData 
       AIC      BIC    logLik
  1816.162 1852.902 -899.0808

Random effects:
 Formula: ~Time | Person
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 1.8826725 (Intr)
Time        0.4051351 -0.346
Residual    1.4572374       

Correlation Structure: AR(1)
 Formula: ~Time | Person 
 Parameter estimate(s):
      Phi 
0.1326346 
Fixed effects: Life_Satisfaction ~ Time + I(Time^2) + I(Time^3) 
                Value Std.Error  DF   t-value p-value
(Intercept)  6.634783 0.2230273 320 29.748744  0.0000
Time         1.546635 0.4772221 320  3.240913  0.0013
I(Time^2)   -1.326426 0.4209411 320 -3.151098  0.0018
I(Time^3)    0.171096 0.0929297 320  1.841131  0.0665
 Correlation: 
          (Intr) Time   I(T^2)
Time      -0.278              
I(Time^2)  0.139 -0.951       
I(Time^3) -0.098  0.896 -0.987

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.58597365 -0.54411056 -0.04373592  0.50525444  2.78413461 

Number of Observations: 438
Number of Groups: 115

Output 19.22

The outputs for the final model also tell us about the random parameters in the model. 
First of all, the standard deviation of the random intercepts was 1.88 (1.49, 2.39). The 
fact that the 95% confidence interval doesn’t cross zero suggests that we were correct to 
assume that life satisfaction at baseline varied significantly across people. Also, the variance 
of slope of time varied significantly across people, SD = 0.41 (0.17, 0.96). The confidence 
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interval again does not cross zero, suggesting that the change in life satisfaction over time 
varied significantly across people too. Finally, the correlation between the slopes and 
intercepts, −0.35 (−0.67, 0.10) suggests that as intercepts increased, the slope decreased 
(although the confidence interval crosses zero so this trend is not significant).

Approximate 95% confidence intervals

 Fixed effects:
                  lower       est.      upper
(Intercept)  6.19800573  6.6347826  7.0715595
Time         0.61204293  1.5466350  2.4812271
I(Time^2)   -2.15079781 -1.3264264 -0.5020551
I(Time^3)   -0.01089790  0.1710958  0.3530895
attr(,"label")
[1] "Fixed effects:"

 Random Effects:
  Level: Person 
                           lower       est.      upper
sd((Intercept))        1.4852030  1.8826725 2.38651276
sd(Time)               0.1705194  0.4051351 0.96255585
cor((Intercept),Time) -0.6738687 -0.3461486 0.09538264

 Correlation structure:
         lower      est.     upper
Phi -0.1856231 0.1326346 0.4257069
attr(,"label")
[1] "Correlation structure:"

 Within-group standard error:
   lower     est.    upper 
1.173241 1.457237 1.809978

Output 19.23

Another way to test for trends over time is by converting Time to power polynomials. This 
is achieved with a simple function poly(). Within this function you specify the variable that 
you want to be converted, and the number of polynomials you want (up to the number of 
time points that you measured minus 1). For example, poly(Time, 1) will create a linear trend, 
poly(Time, 2) creates a linear and quadratic and poly(Time, 3) creates a linear, quadratic and 
cubic trend. In our current example we had four time points so a cubic trend is the highest order 
polynomial that we can have; if we, for example, specified poly(Time, 4) we would get an error.

Linear mixed-effects model fit by maximum likelihood
 Data: restructuredData 
       AIC      BIC    logLik
  1816.162 1852.902 -899.0808

Random effects:
 Formula: ~Time | Person
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 1.8826725 (Intr)
Time        0.4051351 -0.346
Residual    1.4572374       

Correlation Structure: AR(1)
 Formula: ~Time | Person 

19-Field_R-4368-Ch-19.indd   903 29/02/2012   6:00:46 PM



904 D ISCOVER ING STAT IST ICS  US ING R

 Parameter estimate(s):
      Phi 
0.1326346 
Fixed effects: Life_Satisfaction ~ poly(Time, 3) 
                    Value Std.Error  DF   t-value p-value
(Intercept)      5.938943  0.182953 320  32.46157  0.0000
poly(Time, 3)1 -20.615766  1.759420 320 -11.71736  0.0000
poly(Time, 3)2 -11.682913  1.418904 320  -8.23376  0.0000
poly(Time, 3)3   2.439191  1.324833 320   1.84113  0.0665
 Correlation: 
               (Intr) p(T,3)1 p(T,3)2
poly(Time, 3)1 -0.009                
poly(Time, 3)2 -0.016  0.027         
poly(Time, 3)3  0.004 -0.035   0.014 

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.58597365 -0.54411056 -0.04373592  0.50525444  2.78413461 

Number of Observations: 438
Number of Groups: 115 

Output 19.24

The advantage of this method of creating polynomials is that the resulting predictors are 
orthogonal (i.e., independent). By using Time, Time2 and Time3 we create predictors that 
are highly correlated, but by using poly() we create predictors that are completely uncor-
related. This means that we can evaluate one trend without it being affected by another. 
If we wanted to add our trends using this method we can again use the update() function 
to respecify the model with AR(1) covariance structure (ARModel). Remember that this 
model already has time as a predictor, and we need to get rid of this predictor and replace 
it with our polynomials. To do this we just respecify the outcome and predictors within the 
update function and this will overwrite the previous predictors:

polyModel<-update(ARModel, .~ poly(Time, 3))

Remember that ‘~’ means ‘predicted from’; the ‘.’ means ‘use the same thing as in the 
existing model’. As such, .~ poly(Time, 3) translates as ‘use the same outcome as in the 
existing model but predict it from poly(Time, 3)’. In other words, the previous predictor 
of Time that was specified for the ARModel will be replaced by the linear, quadratic and 
cubic polynomials for Time that are created by the poly() function. All other parts of the 
ARModel (i.e., the random effects and covariance structure) remain unchanged.

Output 19.24 shows the model summary (summary(polymodel)) for the model includ-
ing the polynomials. We won’t dwell on this output other than to say that if you compare 
it to Output 19.22 it shows the same profile of results: the linear (poly(Time, 3)1) and qua-
dratic (poly(Time, 3)2) trends are significant, whereas the cubic (poly(Time, 3)3) was just 
non-significant (p = .067). The regression coefficients are different (because these contrasts 
are orthogonal), but basically the same pattern or results emerges. 

SELF-TEST

ü	 We have used the update() function in this second 
example. To get some practice at specifying 
multilevel models, try building each of the models in 
this example but specifying each one in full.
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19.7.10.    Further analysis 4

It’s worth pointing out that I’ve kept this growth curve analysis simple to give you the 
basic tools. In the example I allowed only the linear term to have a random intercept and 
slopes, but given that we discovered that a second-order polynomial described the change 
in responses, we could redo the analysis and allow random intercepts and slopes for the 
second-order polynomial also. To do these we would just have to specify these terms in the 
random part of the model. If we were to do this it would make sense to add the random 
components one at a time and test whether they have a significant impact on the model by 
comparing the log-likelihood values or other fit indices.

Also, the polynomials I have described are not the only ones that can be used. You could 
test for a logarithmic trend over time, or even an exponential one. 

          CRAMMING SAM’S TIPS    Growth models

•	 Growth models are multilevel models in which changes in an outcome over time are modelled using potential growth patterns.
•	 These growth patterns can be linear, quadratic, cubic, logarithmic, exponential, or anything you like really.
•	 The hierarchy in the data is that time points are nested within people (or other entities). As such, it’s a way of analysing 

repeated-measures data that have a hierarchical structure.
•	 The anova() function can be used to compare the overall fit of hierarchical models. The resulting change in the log-likelihood 

and the significance of this change can be used to ascertain if the fit has been improved (a significant change equates to a 
significant improvement). The AIC and BIC can also be compared across models (but not significance tested).

•	 The fixed effects tell you whether the growth functions that you have entered into the model significantly predict the outcome. 
If the p-value is less than .05 then the effect is significant.

•	 The intervals() function can be used to get confidence intervals for model parameters. These intervals can tell us how much 
intercepts and slopes varied over our level 1 variable, and whether this variance is significant (if the interval does not cross 
zero, it is significant). 

•	 An autoregressive covariance structure, AR(1), is often assumed in time course data such as that in growth models.

          Labcoat  Len i ’s  Real  Research 19 .1   A fertile gesture 3

Miller, G., Tybur, J. M., & Jordan, D. B. (2007). Evolution and Human Behavior, 28, 375–381.

Most female mammals experience a phase of ‘estrus’ during which they are more sexually receptive, procep-
tive, selective and attractive. As such, the evolutionary benefit to this phase is believed to be to attract mates 
of superior genetic stock. However, some people have argued that this important phase became uniquely lost 
or hidden in human females. Testing these evolutionary ideas is exceptionally difficult, but Geoffrey Miller and 
his colleagues came up with an incredibly elegant piece of research that did just that. They reasoned that if the 
‘hidden-estrus’ theory is incorrect then men should find women most attractive during the fertile phase of their 
menstrual cycle compared to the pre-fertile (menstrual) and post-fertile (luteal) phase.

(Continued)
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19.8.  How to report a multilevel model 3

Specific advice on reporting multilevel models is hard to come by. Also, the models themselves 
can take on so many forms that giving standard advice is hard. If you have built up your model 
from one with only fixed parameters to one with a random intercept, and then random slope, 
it is advisable to report all stages of this process (or at the very least report the fixed-effects-
only model and the final model). For any model you need to say something about the random 
effects. For the final model of the cosmetic surgery example you could write something like:

✓	 The relationship between surgery and quality of life showed significant variance in 
intercepts across participants, SD = 5.48 (95% CI: 3.31, 9.07), χ2(1) = 107.65, p < 
.0001. In addition, the slopes varied across participants, SD = 5.42 (3.13, 9.37), χ2 

(2) = 38.87, p < .0001, and the slopes and intercepts were negatively and significantly 
correlated, cor = −.95 (−.99, −.60).

For the model itself, you have two choices. The first is to report the results in the text, 
with the b-values, ts and degrees of freedom for the fixed effects, and then report the 
parameters for the random effects in the text as well. The second is to produce a table of 
parameters as you would for regression. For example, we might report our cosmetic sur-
gery example as follows:

✓	 Quality of life before surgery significantly predicted quality of life after surgery, b 
= 0.31, t(262) = 5.75, p < .001, surgery did not significantly predict quality of life, 
b = −3.19, t(262) = −1.46, p = .15, but the reason for surgery, b = −3.52, t(262) = −3.08, 
p < .01, and the interaction of the reason for surgery and surgery, b = 4.22, t(262) = 
2.48, p < .05, both did significantly predict quality of life. This interaction was broken 
down by conducting separate multilevel models on the ‘physical reason’ and ‘attrac-
tiveness reason’. The models specified were the same as the main model but excluded 
the main effect and interaction term involving the reason for surgery. These analyses 
showed that for those operated on only to change their appearance, surgery almost 
significantly predicted quality of life after surgery, b = −4.31, t(87) = −1.89, p = .06: 

To measure how attractive men found women in an ecologically valid way, they came up with the ingenious idea 
of collecting data from women working at lap-dancing clubs. These women maximize their tips from male visitors 
by attracting more dances. In effect the men ‘try out’ several dancers before choosing a dancer for a prolonged 
dance. For each dance the male pays a ‘tip’. Therefore, the greater the number of men choosing a particular 
woman, the more her earnings will be. As such, each dancer’s earnings are a good index of how attractive the 
male customers have found her. Miller and his colleagues argued, therefore, that if women do have an estrus 
phase then they will be more attractive during this phase and therefore earn more money. This study is a brilliant 
example of using a real-world phenomenon to address an important scientific question in an ecologically valid way. 

The data for this study are in the file Miller et al. (2007).dat. The researchers collected data via a website 
from several dancers (ID), who provided data for multiple lap-dancing shifts (so for each person there are sev-
eral rows of data). They also measured what phase of the menstrual cycle the women were in at a given shift 
(Cyclephase), and whether they were using hormonal contraceptives (Contraceptive) because this would 
affect their cycle. The outcome was their earnings on a given shift in dollars (Tips).

A multilevel model can be used here because the data are unbalanced: the women differed in the number of 
shifts they provided data for (the range was 9 to 29 shifts); multilevel models can handle this problem.

Labcoat Leni wants you to carry out a multilevel model to see whether Tips can be predicted 
from Cyclephase, Contraceptive and their interaction. Is the ‘estrus-hidden’ hypothesis supported? 
Answers are in the additional material on the companion website (or look at page 378 in the original 
article).

(Continued)
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quality of life was lower after surgery compared to the control group. However, for 
those who had surgery to solve a physical problem, surgery did not significantly pre-
dict quality of life, b = 1.20, t(166) = 0.57, p = .57. The interaction effect, therefore, 
reflects the difference in slopes for surgery as a predictor of quality of life in those who 
had surgery for physical problems (slight positive slope) and those who had surgery 
purely for vanity (a negative slope).

Alternatively we could present parameter information in a table:

b SE b 95% CI

Baseline QoL 0.31 0.05 0.20, 0.41

Surgery -3.19 2.19 -7.45, 1.08

Reason -3.52 1.14 -5.74, -1.29

Surgery × Reason 4.22 1.70 0.90, 7.54

What have I discovered about statistics? 2

Writing this chapter was quite a steep learning curve for me. I’ve been meaning to learn 
about multilevel modelling for ages, and now I finally feel like I know something. This is 
pretty amazing considering that the bulk of the reading and writing was done between 
11pm and 3am over many nights. However, despite now feeling as though I understand 
them, I don’t, and if you feel like you now understand them then you’re wrong. This 
sounds harsh, but sadly multilevel modelling is very complicated and we have scratched 
only the surface of what there is to know. Multilevel models often fail to converge, with no 
apology or explanation, and trying to fathom out what’s happening can feel like hammer-
ing nails into your head. 

Needless to say, I didn’t mention any of this at the start of the chapter because I wanted 
you to read it. Instead, I lulled you into a false sense of security by looking gently at how 
data can be hierarchical and how this hierarchical structure can be important. Most of 
the tests in this book simply ignore the hierarchy. We also saw that hierarchical models 
are just basically a fancy regression in which you can estimate the variability in the slopes 
and intercepts within entities. We saw that you should start with a model that ignores the 
hierarchy and then add in random intercepts and slopes to see if they improve the fit of 
the model. Having submerged ourselves in the warm bath of standard multilevel mod-
els, we moved on to the icy lake of growth curves. We saw that there are ways to model 
trends in the data over time (and that these trends can also have variable intercepts and 
slopes). We also discovered that these trends have long confusing names like fourth-order 
polynomial. We asked ourselves why they couldn’t have a sensible name, like Kate. In 
fact, we decided to ourselves that we’d secretly call a linear trend Kate, a quadratic trend 
Benjamin, a cubic trend Zoë, and a fourth-order trend Doug. ‘That will show the statisti-
cians’ we thought to ourselves, and felt a little bit self-satisfied too.

We also saw that after years of denial, my love of making a racket got the better of me. 
This brings my life story up to date. Admittedly I left out some of the more colourful bits, 
but only because I couldn’t find an extremely tenuous way to link them to statistics. We 
saw that over my life I managed to completely fail to achieve any of my childhood dreams. 
It’s OK, I have other ambitions now (a bit smaller scale than ‘rock star’) and I’m looking 
forward to failing to achieve them too. The question that remains is whether there is life 
after Discovering Statistics. What effect does writing a statistics book have on your life?
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R packages used in this chapter
car
ggplot2

nlme
reshape

R functions used in this chapter
aov()
anova()
ggplot()
gls()
I()
intervals()
lm()

lme()
loglik()
melt()
poly()
summary()
update()

Key terms that I’ve discovered
AIC
AR(1)
BIC
Centring
Diagonal
Fixed coefficient
Fixed effect
Fixed intercept
Fixed slope
Fixed variable
Grand mean centring

Group mean centring
Growth curve
Multilevel linear model
Polynomial
Random coefficient
Random effect
Random intercept
Random slope
Random variable
Unstructured
Variance components

Smart Alex’s tasks

MM Task 1: Using the cosmetic surgery example, run the analysis described in section 
19.6.9 but also including BDI, Age and Gender as fixed effect predictors. What dif-
ferences does including these predictors make? 4

MM Task 2: Using our growth model example in this chapter, analyse the data but include 
Gender as an additional covariate. Does this change your conclusions? 4

MM Task 3: Getting kids to exercise (Hill, Abraham, & Wright, 2007): The purpose of 
this research was to examine whether providing children with a leaflet based on the 
‘theory of planned behaviour’ increases children’s exercise. There were four differ-
ent interventions (Intervention): a control group, a leaflet, a leaflet and quiz, and a 
leaflet and plan. A total of 503 children from 22 different classrooms were sampled 
(Classroom). It was not practical to have children in the same classrooms in different 
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conditions, therefore the 22 classrooms were randomly assigned to the four differ-
ent conditions. Children were asked ‘On average over the last three weeks, I have 
exercised energetically for at least 30 minutes ______ times per week’ after the inter-
vention (Post_Exercise). Run a multilevel model analysis on these data (Hill et al. 
(2007).dat) to see whether the intervention affected the children’s exercise levels (the 
hierarchy in the data is: children within classrooms within interventions). 4

MM Task 4: Repeat the above analysis but include the pre-intervention exercise scores 
(Pre_Exercise) as a covariate. What difference does this make to the results? 4

Answers can be found on the companion website.

Further reading
Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. London: Sage. (This is a fantastic 

book that is easy to get into but has a lot of depth too.)
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn & 

Bacon. (Chapter 15 is a fantastic account of multilevel linear models that goes a bit more in depth 
than I do.)

Twisk, J. W. R. (2006). Applied multilevel analysis: A practical guide. Cambridge: Cambridge 
University Press. (An absolutely superb introduction to multilevel modelling. This book is excep-
tionally clearly written and is aimed at novices. Without question, this is the best beginner’s guide 
that I have read.)

Interesting real research
Cook, S. A., Rosser, R., & Salmon, P. (2006). Is cosmetic surgery an effective psychotherapeutic 

intervention? A systematic review of the evidence. Journal of Plastic, Reconstructive & Aesthetic 
Surgery, 59, 1133–1151.

Miller, G., Tybur, J. M., & Jordan, B. D. (2007). Ovulatory cycle effects on tip earnings by lap dancers: 
Economic evidence for human estrus? Evolution and Human Behavior, 28, 375–381.
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E p i l o g u e :  l i f e  a f t e r 
d i s c o v e r i n g  s t a t i s t i c s

Here’s some questions that the writer sent
Can an observer be a participant?

Have I seen too much?
Does it count if it doesn’t touch?
If the view is all I can ascertain,

Pure understanding is out of range

(Fugazi, ‘Ex Spectator’, The Argument, 2001)

When I wrote the SPSS version of this book my main ambition was to write a statistics book 
that I would enjoy reading. Pretty selfish, I know. I thought that if I had a reference book 
that had a few examples that amused me then it would make life a lot easier when I needed 
to look something up. I honestly didn’t think anyone would buy the thing (well, apart 
from my mum and dad) and I anticipated a glut of feedback along the lines of ‘the whole 
of Chapter X is completely wrong and you’re an arrant fool’, or ‘you should be ashamed 
of how many trees have died in the name of this rubbish, you brainless idiot’. In fact, even 
the publishers didn’t think it would sell (they have only revealed this subsequently, I might 
add). There are several other things that I didn’t expect to happen:

1	 Nice emails: I didn’t expect to receive hundreds of extremely nice emails from people 
who liked the book. To this day it still absolutely amazes me that anyone reads it, let 
alone takes the time to write me a nice email, and knowing that the book has helped 
people always puts a huge smile on my face. When the nice comments are followed 
by four pages of statistics questions the smile fades a bit …

2	 Everybody thinks that I’m a statistician: I should have seen this one coming really, 
but since writing a statistics textbook everyone assumes that I’m a statistician. I’m 
not, I’m a psychologist. Consequently, I constantly disappoint people by not being 
able to answer their statistics questions. In fact, this book is the sum total of my 
knowledge about statistics; there is nothing else (statistics-wise) in my brain that 
isn’t in this book. Actually, that’s a lie: there is more in this book about statistics than 
in my brain. For example, in the logistic regression chapter there is an example on 
multinomial logistic regression. To write this new section I read a lot about multi-
nomial logistic regression because I’d never used it. I wrote that section about three 
years ago, and I’ve now forgotten everything that I wrote. Should I ever need to do 
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a multinomial logistic regression I will read the chapter in this book and think to 
myself ‘wow, it really sounds as though I know what I’m talking about’. 

3	 Craziness on a grand scale: The nicest thing about life after discovering statistics is the 
effort that people go to to demonstrate that they are even stranger than me. All of these 
people have made life after Discovering statistics a profoundly enjoyable experience.

MM Catistics: I’ve had quite a few photographs of people’s cats (and dogs) reading my 
book (check them out, or post some new ones, on my Facebook page at http://www.
facebook.com/ProfAndyField). There has been many a week where one of these in 
my inbox has turned what was going to be a steaming turd of a day into a fragrant 
romp through fields of tulips. How can you not get a big stupid grin on your face 
when you see these?

MM Facebook: Two particularly strange people from Exeter (UK) whom I have never 
met set up an ‘Andy Field appreciation society’ on Facebook. I don’t go there 
much because it scares me a bit. But secretly I think it is quite cool. It’s almost like 
being the rock star that I always wanted to be, except that when people join a rock 
star’s appreciation society they mean it, but people join mine because it’s funny. 
Nevertheless, beggars can’t be choosers and I’m happy to overlook a technicality 
such as the truth if it means that I can believe that I’m popular.

MM Films: Possibly the strangest thing to have happened is Julie-Renée Kabriel and 
her bonkers friends from Washburn University producing a video homage to 
‘Discovering Stats’ (http://www.youtube.com/watch?v=oLsrt594Xxc). I was in 
equal parts crippled with laughter and utterly bemused watching this video. My 
parents liked it too. (Oddly enough, it’s to the tune of ‘Sweet Home Alabama’ by 
Lynyrd Skynyrd; I once gave a talk at Aberdeen University (UK) after which I got 
taken to a bar and ended up (quite unexpectedly) playing drums to that song with a 
makeshift band of complete strangers.)

MM Invitation to an autopsy: I got invited to an autopsy. Really! Some (very nice) foren-
sic scientists in Leicester loved this book so much that they felt that I needed to be 
rewarded for my efforts. They felt that the most appropriate reward would be to offer 
to take me to see a dead body being carved up (or to spend a day visiting crime scenes). 
In a strange way, I can see their logic. I haven’t been because I’m slightly scared that 
it’s a cruel trick and that it will turn out to be my body on the slab. However, in the 
interests of having a good story for the next edition I might just go …

MM Befriended by Satan: I got an email from the then manager of a black metal band, 
Abgott, who, while using my book for her studies, was impressed to see that I 
like black metal bands. My band was playing the next week in 
London and, never one to miss an opportunity, I invited her to 
come along. She not only turned up, but bought some of the 
band and some free CDs. They renamed me ‘The Evil Statistic’. 
Buy their albums, buy their albums, buy their albums …

Life after Discovering statistics never ceases to amuse me. I never 
dreamed for a second that I’d be writing numerous editions and an 
adaptation of it for R. I would recommend writing a statistics book to 
anyone: it changes your life. You get a constant warm fuzzy feeling from 
being told that you’ve helped people, strangers send you photos of their 
pets, they make films about you, they give you CDs, you get an apprecia-
tion society, you can go to see corpses being cut up, join a black metal 
band (well, maybe not, but if my drumming improves and their drum-
mer’s arms and legs fall off, who knows?) and have people constantly 
overestimate your intelligence. Long may the craziness continue. 
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Tr o u b l e s h o o t i n g  R

My data
have loaded

weirdly

I can’t see a
menu in R

commander

Have you set your
working directory

correctly? (Chapter 3)

Are you using the
correct function

for the type of file
(i.e., read.csv() for

a csv file)?

Try using
file.choose()

instead of the
filename

(Chapter 3)

Check your commands are
typed correctly (i.e., you use

lower and upper case letters in
the right places)

Check there are no
spaces in the variable
names in the original

data file

Have you told R what to do
with missing cases (e.g.,

use na.rm = TRUE, or
na.action = na.exclude)?

Check that variables
are set up correctly

(i.e., are your factors
defined as factors?)

Have you installed
and loaded the

necessary package?

Try sourcing the
functions from his

web page (Chapter 5)

Check that missing values
in the data file are

represented by ‘NA’.

My function
doesn’t

work

My model
looks weird

Wilcox’s
functions
don’t work

My data
won’t load
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Glossary

0: the amount of a clue that Sage have 
about how much effort I put into 
writing this book.

−2LL: the log-likelihood multiplied 
by minus 2. This version of the 
likelihood is used in logistic 
regression.

α-level: the probability of making a Type 
I error (usually this value is .05).

A life: what you don’t have when writing 
statistics textbooks.

Adjusted mean: in the context of 
analysis of covariance this is the 
value of the group mean adjusted for 
the effect of the covariate.

Adjusted predicted value: a measure 
of the influence of a particular case 
of data. It is the predicted value of a 
case from a model estimated without 
that case included in the data. The 
value is calculated by re-estimating 
the model without the case in 
question, then using this new model 
to predict the value of the excluded 
case. If a case does not exert a large 
influence over the model then its 
predicted value should be similar 
regardless of whether the model was 
estimated including or excluding that 
case. The difference between the 
predicted value of a case from the 
model when that case was included 
and the predicted value from the 
model when it was excluded is the 
DFFit.

Adjusted R2: a measure of the loss 
of predictive power or shrinkage in 
regression. The adjusted R2 tells us 
how much variance in the outcome 
would be accounted for if the 
model had been derived from the 
population from which the sample 
was taken. 

AIC (Akaike’s information criterion): 
a goodness-of-fit measure that is 
corrected for model complexity. 
That just means that it takes into 
account how many parameters have 
been estimated. It is not intrinsically 
interpretable, but can be compared 
in different models to see how 
changing the model affects the fit. A 
small value represents a better fit of 
the data.

Alpha factoring: a method of factor 
analysis.

Alternative hypothesis: the prediction 
that there will be an effect (i.e., that 
your experimental manipulation will 
have some effect or that certain 
variables will relate to each other).

Analysis of covariance: a statistical 
procedure that uses the F-ratio to 
test the overall fit of a linear model, 
controlling for the effect that one 
or more covariates have on the 
outcome variable. In experimental 
research this linear model tends to 
be defined in terms of group means, 
and the resulting ANOVA is therefore 
an overall test of whether group 
means differ after the variance in the 
outcome variable explained by any 
covariates has been removed.

Analysis of variance: a statistical 
procedure that uses the F-ratio to 
test the overall fit of a linear model. 
In experimental research this linear 
model tends to be defined in terms 
of group means, and the resulting 
ANOVA is therefore an overall test of 
whether group means differ.

ANCOVA: acronym for analysis of 
covariance.

ANOVA: acronym for analysis of 
variance.

AR(1): this stands for first-order 
autoregressive structure. It is 
a covariance structure used in 
multilevel models in which the 
relationship between scores changes 
in a systematic way. It is assumed 
that the correlation between scores 
gets smaller over time and variances 
are assumed to be homogeneous. 
This structure is often used for 
repeated-measures data (especially 
when measurements are taken over 
time such as in growth models).

Autocorrelation: when the residuals 
of two observations in a regression 
model are correlated.

bi: unstandardized regression 
coefficient. Indicates the strength 
of relationship between a given 
predictor, i, and an outcome in 
the units of measurement of the 
predictor. It is the change in the 
outcome associated with a unit 
change in the predictor.

βi: standardized regression coefficient. 
Indicates the strength of relationship 
between a given predictor, i, and 
an outcome in a standardized form. 
It is the change in the outcome (in 
standard deviations) associated with 
a one standard deviation change in 
the predictor.

β-level: the probability of making a Type 
II error (Cohen, 1992, suggests a 
maximum value of .2).

Bar chart: a graph in which a summary 
statistic (usually the mean) is 
plotted on the y-axis against a 
categorical variable on the x-axis 
(this categorical variable could 
represent, for example, groups of 
people, different times or different 
experimental conditions). A bar 
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shows the value of the mean for 
each category. Different-coloured 
bars may be used to represent levels 
of a second categorical variable.

Bartlett’s test of sphericity: 
unsurprisingly this is a test of the 
assumption of sphericity. This test 
examines whether a variance–
covariance matrix is proportional 
to an identity matrix. Therefore, 
it effectively tests whether the 
diagonal elements of the variance–
covariance matrix are equal (i.e., 
group variances are the same), 
and that the off-diagonal elements 
are approximately zero (i.e., the 
dependent variables are not 
correlated). Jeremy Miles, who does 
a lot of multivariate stuff, claims 
he’s never ever seen a matrix that 
reached non-significance using this 
test and, come to think of it, I’ve 
never seen one either (although I do 
less multivariate stuff) so you’ve got 
to wonder about its practical utility.

Beer-goggles effect: the phenomenon 
that people of the opposite gender 
(or the same, depending on your 
sexual orientation) appear much 
more attractive after a few alcoholic 
drinks.

Between-group design: another name 
for independent design.

Between-subject design: another 
name for independent design.

BIC (Schwarz’s Bayesian criterion): 
a goodness-of-fit statistic 
comparable to the AIC, although 
it is slightly more conservative (it 
corrects more harshly for the number 
of parameters being estimated). 
It should be used when sample 
sizes are large and the number 
of parameters is small. It is not 
intrinsically interpretable, but can be 
compared in different models to see 
how changing the model affects the 
fit. A small value represents a better 
fit of the data.

Bimodal: a description of a distribution 
of observations that has two modes.

Binary logistic regression: logistic 
regression in which the outcome 
variable has exactly two categories.

Binary variable: a categorical variable 
that has only two mutually exclusive 
categories (e.g., being dead or 
alive).

Biserial correlation: a standardized 
measure of the strength of 
relationship between two variables 
when one of the two variables is 
dichotomous. The biserial correlation 

coefficient is used when one variable 
is a continuous dichotomy (e.g., has 
an underlying continuum between 
the categories). 

Bivariate correlation: a correlation 
between two variables.

Bonferroni correction: a correction 
applied to the α-level to control the 
overall Type I error rate when multiple 
significance tests are carried out. 
Each test conducted should use a 
criterion of significance of the α-level 
(normally .05) divided by the number 
of tests conducted. This is a simple 
but effective correction, but tends to 
be too strict when lots of tests are 
performed.

Bootstrap: a technique from which the 
sampling distribution of a statistic 
is estimated by taking repeated 
values (with replacement) from the 
data set (so in effect, treating the 
data as a population from which 
smaller samples are taken). The 
statistic of interest (e.g., the mean 
or the b coefficient) is calculated 
for each sample, from which the 
sampling distribution of the statistic 
is estimated. The standard error of  
the statistic is estimated as 
the standard deviation of the 
sampling distribution created 
from the bootstrap samples. From 
this, confidence intervals and 
significance tests can be computed.

Boredom effect: refers to the 
possibility that performance in tasks 
may be influenced (the assumption 
is a negative influence) by boredom 
or lack of concentration if there are 
many tasks or if the task goes on for 
a long period of time. In short, what 
you are experiencing reading this 
glossary is a boredom effect.

Box’s test: a test of the assumption of 
homogeneity of covariance matrices. 
This test should be non-significant if 
the matrices are roughly the same. 
Box’s test is very susceptible to 
deviations from multivariate normality 
and so can be non-significant, not 
because the variance–covariance 
matrices are similar across groups, 
but because the assumption of 
multivariate normality is not tenable. 
Hence, it is vital to have some 
idea of whether the data meet the 
multivariate normality assumption 
(which is extremely difficult) before 
interpreting the result of Box’s test.

Boxplot (a.k.a. box–whisker 
diagram): a graphical 
representation of some important 

characteristics of a set of 
observations. At the centre of 
the plot is the median, which is 
surrounded by a box, the top and 
bottom of which are the limits 
within which the middle 50% of 
observations fall (the interquartile 
range). Sticking out of the top and 
bottom of the box are two whiskers, 
which extend to the most and least 
extreme scores respectively.

Box–whisker plot: see boxplot.
Categorical variable: any variable 

made up of categories of 
objects/entities. The UK degree 
classifications are a good example 
because degrees are classified as 
1, 2:1, 2:2, 3, pass or fail. Therefore, 
graduates form a categorical 
variable because they will fall 
into only one of these categories 
(hopefully the category of students 
receiving a first!).

Central limit theorem: this theorem 
states that when samples are large 
(above about 30) the sampling 
distribution will take the shape of 
a normal distribution regardless of 
the shape of the population from 
which the sample was drawn. For 
small samples the t-distribution 
better approximates the shape of the 
sampling distribution. We also know 
from this theorem that the standard 
deviation of the sampling distribution 
(i.e., the standard error of the sample 
mean) will be equal to the standard 
deviation of the sample (s) divided 
by the square root of the sample 
size (N).

Central tendency: a generic term 
describing the centre of a frequency 
distribution of observations as 
measured by the mean, mode and 
median.

Centring: the process of transforming 
a variable into deviations around a 
fixed point. This fixed point can be 
any value that is chosen, but typically 
a mean is used. To centre a variable 
the mean is subtracted from each 
score. See grand mean centring, 
group mean centring.

Chartjunk: superfluous material 
that distracts from the data being 
displayed on a graph.

Chi-square distribution: a probability 
distribution of the sum of squares 
of several normally distributed 
variables. It tends to be used to 1) 
test hypotheses about categorical 
data, and 2) test the fit of models to 
the observed data. 
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Chi-square test: although this term 
can apply to any test statistic having 
a chi-square distribution, it generally 
refers to Pearson’s chi-square 
test of the independence of two 
categorical variables. Essentially 
it tests whether two categorical 
variables forming a contingency 
table are associated.

Cocaine: the drug of choice at Sage. 
They inject it into their eyeballs, you 
know.

Coefficient of determination: the 
proportion of variance in one variable 
explained by a second variable. It is 
the Pearson correlation coefficient 
squared.

Common variance: variance shared by 
two or more variables.

Communality: the proportion of a 
variable’s variance that is common 
variance. This term is used primarily 
in factor analysis. A variable that 
has no unique variance (or random 
variance) would have a communality 
of 1, whereas a variable that shares 
none of its variance with any other 
variable would have a communality 
of 0.

Complete separation: a situation in 
logistic regression when the outcome 
variable can be perfectly predicted 
by one predictor or a combination 
of predictors. Suffice it to say this 
situation makes your computer 
have the equivalent of a nervous 
breakdown: it’ll start gibbering, 
weeping and saying it doesn’t know 
what to do. 

Component matrix: general term for 
the structure matrix in R principal 
components analysis.

Compound symmetry: a condition that 
holds true when both the variances 
across conditions are equal (this 
is the same as the homogeneity 
of variance assumption) and the 
covariances between pairs of 
conditions are also equal.

Confidence interval: for a given 
statistic calculated for a sample of 

observations (e.g., the mean), the 
confidence interval is a range of 
values around that statistic that are 
believed to contain, with a certain 
probability (e.g., 95%), the true value 
of that statistic (i.e., the population 
value).

Confirmatory factor analysis (CFA): 
a version of factor analysis in which 
specific hypotheses about structure 
and relations between the latent 
variables that underlie the data are 
tested.

Confounding variable: a variable 
(that we may or may not have 
measured) other than the predictor 
variables in which we’re interested 
that potentially affects an outcome 
variable.

Console window: The main window 
in R. This window contains the 
command line, which can be used 
to type and execute commands, but 
it is also the window in which text 
output from executed commands is 
displayed. 

Content validity: evidence that the 
content of a test corresponds to 
the content of the construct it was 
designed to cover.

Contingency table: a table 
representing the cross-classification 
of two or more categorical variables. 
The levels of each variable are 
arranged in a grid, and the number 
of observations falling into each 
category is noted in the cells of the 
table. For example, if we took the 
categorical variables of glossary 
(with two categories: whether an 
author was made to write a glossary 
or not), and mental state (with 
three categories: normal, sobbing 
uncontrollably and utterly psychotic), 
we could construct a table as  
below. This instantly tells us that  
127 authors who were made to  
write a glossary ended up as  
utterly psychotic, compared to  
only 2 who did not write 
a glossary.

Continuous variable: a variable that 
can be measured to any level of 
precision. (Time is a continuous 
variable, because there is in principle 
no limit on how finely it could be 
measured.)

Cook’s distance: a measure of the 
overall influence of a case on a 
model. Cook and Weisberg (1982) 
have suggested that values greater 
than 1 may be cause for concern.

Correlation coefficient: a measure 
of the strength of association or 
relationship between two variables. 
See Pearson’s correlation coefficient, 
Spearman’s correlation coefficient, 
Kendall’s tau.

Correlational research: a form of 
research in which you observe what 
naturally goes on in the world without 
directly interfering with it. This term 
implies that data will be analysed so 
as to look at relationships between 
naturally occurring variables rather 
than making statements about cause 
and effect. Compare with cross-
sectional research and experimental 
research.

Counterbalancing: a process of 
systematically varying the order in 
which experimental conditions are 
conducted. In the simplest case of 
there being two conditions (A and 
B), counterbalancing simply implies 
that half of the participants complete 
condition A followed by condition B, 
whereas the remainder do condition 
B followed by condition A. The aim 
is to remove systematic bias caused 
by practice effects or boredom 
effects.

Covariance: a measure of the ‘average’ 
relationship between two variables. 
It is the average cross-product 
deviation (i.e., the cross-product 
divided by one less than the number 
of observations).

Covariance ratio (CVR): a measure 
of whether a case influences the 
variance of the parameters in a 
regression model. When this ratio 

Glossary

Author made to write 
glossary No glossary Total

Mental state

Normal     5 423 428

Sobbing uncontrollably   23   46   69

Utterly psychotic 127     2 129

Total 155 471 626
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is close to 1 the case is having very 
little influence on the variances of 
the model parameters. Belsey et al. 
(1980) recommend the following: 
if the CVR of a case is greater than 
1 + [3(k + 1)/n] then deleting that 
case will damage the precision of 
some of the model’s parameters, 
but if it is less than 1 - [3(k + 1)/n] 
then deleting the case will improve 
the precision of some of the model’s 
parameters (k is the number of 
predictors and n is the sample size).

Covariate: a variable that has a 
relationship with (in terms of 
covariance), or has the potential to 
be related to, the outcome variable 
we’ve measured.

Cox and Snell’s R2
CS: a version of 

the coefficient of determination 
for logistic regression. It is based 
on the log-likelihood of a model 
(LL(new)) and the log-likelihood of 
the original model (LL(baseline)), 
and the sample size, n. However, 
it is notorious for not reaching 
its maximum value of 1 (see 
Nagelkerke’s R2

N).
CRAN (Comprehensive R Archive 

Network): a virtual warehouse that 
stores the R software, packages 
associated with it, documentation 
and code. 

Criterion validity: evidence that scores 
from an instrument correspond 
with or predict concurrent external 
measures conceptually related to the 
measured construct.

Cronbach’s α: a measure of the 
reliability of a scale defined by  

α =
∑ + ∑

N Cov
s Cov

item item

2

2
 
  
in which the top half of the equation 
is simply the number of items (N) 
squared multiplied by the average 
covariance between items (the 
average of the off-diagonal elements 
in the variance–covariance matrix). 
The bottom half is the sum of all the 
elements in the variance–covariance 
matrix.

Cross-product deviations: a measure 
of the ‘total’ relationship between two 
variables. It is the deviation of one 
variable from its mean multiplied by 
the other variable’s deviation from 
its mean.

Cross-sectional research: a form 
of research in which you observe 
what naturally goes on in the world 

without directly interfering with it. 
This term specifically implies that 
data come from people at different 
age points with different people 
representing each age point. See 
also correlational research.

Cross-validation: assessing the 
accuracy of a model across 
different samples. This is an 
important step in generalization. In 
a regression model there are two 
main methods of cross-validation: 
adjusted R2 or data splitting, in 
which the data are split randomly 
into two halves, and a regression 
model is estimated for each half 
and then compared.

Crying: what you feel like doing after 
writing statistics textbooks.

Cubic trend: if you connected the 
means in ordered conditions with 
a line then a cubic trend is shown 
by two changes in the direction of 
this line. You must have at least four 
ordered conditions.

Dataframe: an object containing 
variables. It differs from a matrix in 
that the variables can be of differing 
types (e.g., you can have string 
variables and numeric variables in 
the same dataframe but not in the 
same matrix).

Date variable: variables made up of 
dates. The data can take forms such 
as dd-mmm-yyyy (e.g., 21-Jun-
1973), dd-mmm-yy (e.g., 21-Jun-73), 
mm/dd/yy (e.g., 06/21/73) or dd.mm.
yyyy (e.g., 21.06.1973).

Degrees of freedom: an impossible 
thing to define in a few pages let 
alone a few lines. Essentially it is 
the number of ‘entities’ that are free 
to vary when estimating some kind 
of statistical parameter. In a more 
practical sense, it has a bearing 
on significance tests for many 
commonly used test statistics (such 
as the F-ratio, t-test, chi-square 
statistic) and determines the exact 
form of the probability distribution for 
these test statistics. The explanation 
involving rugby players in Chapter 2 
is far more interesting…

Deleted residual: a measure of the 
influence of a particular case of 
data. It is the difference between the 
adjusted predicted value for a case 
and the original observed value for 
that case. 

Density plot: similar to a histogram 
except that, rather than having 
a summary bar representing the 

frequency of scores, it shows each 
individual score as a dot. They can 
be useful for looking at the shape of 
a distribution of scores.

Dependent t-test: a test using the 
t-statistic that establishes whether 
two means collected from the same 
sample (or related observations) 
differ significantly.

Dependent variable: another 
name for outcome variable. This 
name is usually associated with 
experimental methodology (which 
is the only time it really makes 
sense) and is so called because 
it is the variable that is not 
manipulated by the experimenter 
and so its value depends on 
the variables that have been 
manipulated. To be honest I just 
use the term outcome variable all 
the time – it makes more sense (to 
me) and is less confusing.

Deviance: the difference between the 
observed value of a variable and the 
value of that variable predicted by a 
statistical model.

DFA: acronym for discriminant function 
analysis (see discriminant analysis).

DFBeta: a measure of the influence 
of a case on the values of bi in a 
regression model. If we estimated 
a regression parameter bi and 
then deleted a particular case and 
re-estimated the same regression 
parameter bi, then the difference 
between these two estimates would 
be the DFBeta for the case that was 
deleted. By looking at the values 
of the DFBetas, it is possible to 
identify cases that have a large 
influence on the parameters of the 
regression model; however, the size 
of DFBeta will depend on the units 
of measurement of the regression 
parameter.

DFFit: a measure of the influence of a 
case. It is the difference between 
the adjusted predicted value and 
the original predicted value of a 
particular case. If a case is not 
influential then its DFFit should be 
zero – hence, we expect non-
influential cases to have small 
DFFit values. However, we have  
the problem that this statistic 
depends on the units of 
measurement of the outcome and 
so a DFFit of 0.5 will be very small 
if the outcome ranges from 1 to 
100, but very large if the outcome 
varies from 0 to 1.
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Diagonal: a covariance structure used 
in multilevel models. In this variance 
structure variances are assumed 
to be heterogeneous and all of the 
covariances are 0. 

Dichotomous: description of a 
variable that consists of only two 
categories (e.g., the variable gender 
is dichotomous because it consists 
of only two categories: male and 
female).

Direct oblimin: a method of oblique 
rotation.

Discrete variable: a variable that can 
only take on certain values (usually 
whole numbers) on the scale.

Discriminant analysis: also known as 
discriminant function analysis. This 
analysis identifies and describes 
the discriminant function variates 
of a set of variables and is useful 
as a follow-up test to MANOVA 
as a means of seeing how these 
variates allow groups of cases to be 
discriminated.

Discriminant function variate: a linear 
combination of variables created 
such that the differences between 
group means on the transformed 
variable are maximized. It takes the 
general form: 

variate1i = b1X1i + b2X2 i + … + bn X ni

Discriminant score: a score for an 
individual case on a particular 
discriminant function variate obtained 
by replacing that case’s scores on 
the measured variables into the 
equation that defines the variate in 
question. 

Dummy variables: a way of recoding 
a categorical variable with more 
than two categories into a series 
of variables all of which are 
dichotomous and can take on values 
of only 0 or 1. There are seven basic 
steps to create such variables: (1) 
count the number of groups you 
want to recode and subtract 1; (2) 
create as many new variables as 
the value you calculated in step 1 
(these are your dummy variables); 
(3) choose one of your groups as 
a baseline (i.e., a group against 
which all other groups should be 
compared, such as a control group); 
(4) assign that baseline group values 
of 0 for all of your dummy variables; 
(5) for your first dummy variable, 
assign the value 1 to the first group 
that you want to compare against 
the baseline group (assign all other 

groups 0 for this variable); (6) for 
the second dummy variable assign 
the value 1 to the second group 
that you want to compare against 
the baseline group (assign all other 
groups 0 for this variable); (7) repeat 
this process until you run out of 
dummy variables.

Durbin–Watson test: tests for serial 
correlations between errors in 
regression models. Specifically, it 
tests whether adjacent residuals 
are correlated, which is useful 
in assessing the assumption 
of independent errors. The test 
statistic can vary between 0 and 
4, with a value of 2 meaning that 
the residuals are uncorrelated. 
A value greater than 2 indicates 
a negative correlation between 
adjacent residuals, whereas a 
value below 2 indicates a positive 
correlation. The size of the Durbin–
Watson statistic depends upon the 
number of predictors in the model 
and the number of observations. 
For accuracy, look up the exact 
acceptable values in Durbin and 
Watson’s (1951) original paper. As 
a very conservative rule of thumb, 
values less than 1 or greater than 
3 are definitely cause for concern; 
however, values closer to 2 may still 
be problematic depending on the 
sample and model.

Ecological validity: evidence that 
the results of a study, experiment 
or test can be applied, and allow 
inferences, to real-world conditions.

Eel: long, snakelike, scaleless fish that 
lacks pelvic fins. From the order 
Anguilliformes or Apodes, they 
should probably not be inserted into 
your anus to cure constipation (or for 
any other reason).

Editor window: The editor window in 
R is a basic text editor that enables 
you to collect together commands 
into a file rather than executing them 
individually through the command 
line in the console window.

Effect size: an objective and (usually) 
standardized measure of the 
magnitude of an observed effect. 
Measures include Cohen’s d, 
Glass’s g and Pearson’s correlations 
coefficient, r.

Error bar chart: a graphical 
representation of the mean of a 
set of observations that includes 
the 95% confidence interval of 
the mean. The mean is usually 

represented as a circle, square or 
rectangle at the value of the mean 
(or a bar extending to the value of 
the mean). The confidence interval is 
represented by a line protruding from 
the mean (upwards, downwards 
or both) to a short horizontal line 
representing the limits of the 
confidence interval. Error bars can 
be drawn using the standard error 
or standard deviation instead of the 
95% confidence interval.

Error SSCP (E): the error sum of 
squares and cross-product matrix. 
This is a sum of squares and 
cross-product matrix for the error 
in a predictive linear model fitted to 
multivariate data. It represents the 
unsystematic variance and is the 
multivariate equivalent of the residual 
sum of squares.

Eta squared (η2): an effect size 
measure that is the ratio of the 
model sum of squares to the total 
sum of squares. So, in essence, 
the coefficient of determination by 
another name. It doesn’t have an 
awful lot going for it: not only is it 
biased, but it typically measures 
the overall effect of an ANOVA 
and effect sizes are more easily 
interpreted when they reflect specific 
comparisons (e.g., the difference 
between two means).

Experimental hypothesis: synonym 
for alternative hypothesis.

Experimental research: a form 
of research in which one or 
more variables is systematically 
manipulated to see their effect 
(alone or in combination) on an 
outcome variable. This term implies 
that data will be able to be used 
to make statements about cause 
and effect. Compare with cross-
sectional research and correlational 
research.

Experimentwise error rate: the 
probability of making a Type I error 
in an experiment involving one or 
more statistical comparisons when 
the null hypothesis is true in each 
case.

Extraction: a term used for the process 
of deciding whether a factor in factor 
analysis is statistically important 
enough to ‘extract’ from the data 
and interpret. The decision is based 
on the magnitude of the eigenvalue 
associated with the factor. See 
Kaiser’s criterion, scree plot.

Fmax: see Hartley’s Fmax.
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F-ratio: a test statistic with a known 
probability distribution (the 
F-distribution). It is the ratio of the 
average variability in the data that 
a given model can explain to the 
average variability unexplained 
by that same model. It is used to 
test the overall fit of the model in 
simple regression and multiple 
regression, and to test for overall 
differences between group means in 
experiments.

Factor: another name for an 
independent variable or predictor 
that’s typically used when describing 
experimental designs. However, to 
add to the confusion, it is also used 
synonymously with latent variable in 
factor analysis.

Factor analysis: a multivariate 
technique for identifying whether 
the correlations between a set of 
observed variables stem from their 
relationship to one or more latent 
variables in the data, each of which 
takes the form of a linear model.

Factor matrix: general term for the 
structure matrix in factor analysis.

Factor loading: the regression 
coefficient of a variable for the linear 
model that describes a latent variable 
or factor in factor analysis. 

Factor scores: a single score from 
an individual entity representing 
their performance on some latent 
variable. The score can be crudely 
conceptualized as follows: take 
an entity’s score on each of the 
variables that make up the factor 
and multiply it by the corresponding 
factor loading for the variable, then 
add these values up (or average 
them).

Factor transformation matrix, Λ: 
a matrix used in factor analysis. It 
can be thought of as containing the 
angles through which factors are 
rotated in factor rotation.

Factorial ANOVA: an analysis of 
variance involving two or more 
independent variables or predictors. 

Falsification: the act of disproving a 
hypothesis or theory.

Familywise error rate: the probability 
of making a Type I error in any family 
of tests when the null hypothesis 
is true in each case. The ‘family of 
tests’ can be loosely defined as a 
set of tests conducted on the same 
data set and addressing the same 
empirical question.

Fisher’s exact test: Fisher’s exact 
test (Fisher, 1922) is not so much 

a test as a way of computing the 
exact probability of a statistic. It was 
designed originally to overcome the 
problem that with small samples 
the sampling distribution of the chi-
square statistic deviates substantially 
from a chi-square distribution. It 
should be used with small samples.

Fit: how sexually attractive you find a 
statistical test. Alternatively, it’s the 
degree to which a statistical model is 
an accurate representation of some 
observed data. (Incidentally, it’s just 
plain wrong to find statistical tests 
sexually attractive.)

Fixed coefficient: a coefficient or 
model parameter that is fixed; that 
is, it cannot vary over situations or 
contexts (cf. random coefficient).

Fixed effect: An effect in an experiment 
is said to be a fixed effect if all 
possible treatment conditions that 
a researcher is interested in are 
present in the experiment. Fixed 
effects can be generalized only to 
the situations in the experiment. 
For example, the effect is fixed if 
we say that we are interested only 
in the conditions that we had in 
our experiment (e.g., placebo, low 
dose and high dose) and we can 
generalize our findings only to the 
situation of a placebo, low dose and 
high dose.

Fixed intercept: A term used in 
multilevel modelling to denote when 
the intercept in the model is fixed. 
That is, it is not free to vary across 
different groups or contexts (cf. 
random intercept).

Fixed slope: A term used in multilevel 
modelling to denote when the slope 
of the model is fixed. That is, it is not 
free to vary across different groups 
or contexts (cf. random slope).

Fixed variable: A fixed variable is one 
that is not supposed to change over 
time (e.g., for most people their 
gender is a fixed variable – it never 
changes).

Frequency distribution: a graph 
plotting values of observations 
on the horizontal axis, and the 
frequency with which each value 
occurs in the data set on the vertical 
axis (a.k.a. histogram).

Friedman’s ANOVA: a non-parametric 
test of whether more than two related 
groups differ. It is the non-parametric 
version of one-way repeated-
measures ANOVA.

Generalization: the ability of a 
statistical model to say something 

beyond the set of observations that 
spawned it. If a model generalizes 
it is assumed that predictions from 
that model can be applied not just to 
the sample on which it is based, but 
to a wider population from which the 
sample came.

Glossary: a collection of grossly 
inaccurate definitions (written late 
at night when you really ought to be 
asleep) of things that you thought 
you understood until some evil book 
publisher forced you to try to define 
them.

Goodness of fit: an index of how well a 
model fits the data from which it was 
generated. It’s usually based on how 
well the data predicted by the model 
correspond to the data that were 
actually collected.

Grand mean: the mean of an entire set 
of observations.

Grand mean centring: grand mean 
centring means the transformation of 
a variable by taking each score and 
subtracting the mean of all scores 
(for that variable) from it (cf. group 
mean centring).

Grand variance: the variance within an 
entire set of observations.

Graphics window: the window in which 
graphics or graphs appear (this 
window is labelled Quartz in MacOS).

Greenhouse–Geisser correction: 
an estimate of the departure from 
sphericity. The maximum value is 
1 (the data completely meet the 
assumption of sphericity) and 
the minimum is the lower bound. 
Values below 1 indicate departures 
from sphericity and are used to 
correct the degrees of freedom 
associated with the corresponding 
F-ratios by multiplying them by 
the value of the estimate. Some 
say the Greenhouse–Geisser 
correction is too conservative (strict) 
and recommend the Huynh–Feld 
correction instead.

Group mean centring: group mean 
centring is to transform a variable by 
taking each score and subtracting 
from it the mean of the scores (for 
that variable) for the group to which 
that score belongs (cf. grand mean 
centring).

Growth curve: a curve that summarizes 
the change in some outcome over 
time. See polynomial.

Harmonic mean: a weighted version 
of the mean that takes account of 
the relationship between variance 
and sample size. It is calculated 
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by summing the reciprocal of all 
observations, then dividing by 
the number of observations. The 
reciprocal of the end product is the 
harmonic mean: 
 
H

n xi

n=

=
∑

1
1 1

1 i

 
 

Hartley’s Fmax: also known as the 
variance ratio, is the ratio of the 
variances between the group with 
the biggest variance and the group 
with the smallest variance. This ratio 
is compared to critical values in a 
table published by Hartley as a test 
of homogeneity of variance. Some 
general rules are that with sample 
sizes (n) of 10 per group, an Fmax less 
than 10 is more or less always going 
to be non-significant, with 15–20 per 
group the ratio needs to be less than 
about 5, and with samples of 30–60 
the ratio should be below about 2 
or 3.

Hat values: another name for leverage.
HE−1: this is a matrix that is functionally 

equivalent to the hypothesis 
SSCP divided by the error SSCP 
in MANOVA. Conceptually it 
represents the ratio of systematic 
to unsystematic variance, so is a 
multivariate analogue of the F-ratio.

Helmert contrast: a non-orthogonal 
planned contrast that compares 
the mean of each condition (except 
the last) to the overall mean of all 
subsequent conditions combined.

Heterogeneity of variance: the 
opposite of homogeneity of variance. 
This term means that the variance of 
one variable varies (i.e., is different) 
across levels of another variable.

Heteroscedasticity: the opposite of 
homoscedasticity. This occurs when 
the residuals at each level of the 
predictor variables(s) have unequal 
variances. Put another way, at each 
point along any predictor variable, 
the spread of residuals is different.

Hierarchical regression: a method of 
multiple regression in which the order 
in which predictors are entered into 
the regression model is determined 
by the researcher based on previous 
research: variables already known to 
be predictors are entered first, new 
variables are entered subsequently.

Histogram: a frequency distribution.
Homogeneity of covariance 

matrices: an assumption of 
some multivariate tests such as 

MANOVA. It is an extension of the 
homogeneity of variance assumption 
in univariate analyses. However, as 
well as assuming that variances for 
each dependent variable are the 
same across groups, it assumes 
that relationships (covariances) 
between these dependent variables 
are roughly equal. It is tested by 
comparing the population variance–
covariance matrices of the different 
groups in the analysis.

Homogeneity of regression slopes: 
an assumption of analysis of 
covariance. This is the assumption 
that the relationship between the 
covariate and outcome variable is 
constant across different treatment 
levels. So, if we had three treatment 
conditions, if there’s a positive 
relationship between the covariate 
and the outcome in one group, we 
assume that there is a similar-sized 
positive relationship between the 
covariate and outcome in the other 
two groups too.

Homogeneity of variance: the 
assumption that the variance of 
one variable is stable (i.e., relatively 
similar) at all levels of another 
variable.

Homoscedasticity: an assumption in 
regression analysis that the residuals 
at each level of the predictor 
variables(s) have similar variances. 
Put another way, at each point along 
any predictor variable, the spread of 
residuals should be fairly constant.

Hosmer and Lemeshow’s R2
L: 

a version of the coefficient of 
determination for logistic regression. 
It is a fairly literal translation in that it 
is the -2LL for the model divided by 
the original -2LL – in other words, 
it’s the ratio of what the model can 
explain compared to what there was 
to explain in the first place!

Hotelling–Lawley trace (T2): a test 
statistic in MANOVA. It is the sum of 
the eigenvalues for each discriminant 
function variate of the data and so 
is conceptually the same as the 
F-ratio in ANOVA: it is the sum of the 
ratio of systematic and unsystematic 
variance (SSM/SSR) for each of the 
variates.

Huynh–Feldt correction: an estimate 
of the departure from sphericity. 
The maximum value is 1 (the data 
completely meet the assumption 
of sphericity). Values below this 
indicate departures from sphericity 
and are used to correct the degrees 

of freedom associated with the 
corresponding F-ratios by multiplying 
them by the value of the estimate. 
It is less conservative than the 
Greenhouse–Geisser estimate, but 
some say it is too liberal.

Hypothesis: a prediction about the 
state of the world (see experimental 
hypothesis and null hypothesis).

Hypothesis SSCP (H): the hypothesis 
sum of squares and cross-product 
matrix. This is a sum of squares and 
cross-product matrix for a predictive 
linear model fitted to multivariate 
data. It represents the systematic 
variance and is the multivariate 
equivalent of the model sum of 
squares.

Identity matrix: a square matrix (i.e., 
with the same number of rows and 
columns) in which the diagonal 
elements are equal to 1, and the 
off-diagonal elements are equal to 0. 
The following are all examples:

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







































Independence: the assumption that 
one data point does not influence 
another. When data come from 
people, it basically means that the 
behaviour of one person does not 
influence the behaviour of another.

Independent ANOVA: analysis of 
variance conducted on any design 
in which all independent variables or 
predictors have been manipulated 
using different participants (i.e., all 
data come from different entities).

Independent design: an experimental 
design in which different treatment 
conditions utilize different organisms 
(e.g., in psychology, this would mean 
using different people in different 
treatment conditions) and so the 
resulting data are independent 
(a.k.a. between-group or between-
subject designs).

Independent errors: for any two 
observations in regression the 
residuals should be uncorrelated (or 
independent). 

Independent factorial design: an 
experimental design incorporating 
two or more predictors (or 
independent variables), all of which 
have been manipulated using 
different participants (or whatever 
entities are being tested).
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Independent t-test: a test using 
the t-statistic that establishes 
whether two means collected 
from independent samples differ 
significantly.

Independent variable: another name 
for a predictor variable. This name is 
usually associated with experimental 
methodology (which is the only time 
it makes sense) and is so called 
because it is the variable that is 
manipulated by the experimenter 
and so its value does not depend 
on any other variables (just on 
the experimenter). I just use the 
term predictor variable all the time 
because the meaning of the term 
is not constrained to a particular 
methodology.

Interaction effect: the combined effect 
of two or more predictor variables on 
an outcome variable.

Interaction graph: a graph showing the 
means of two or more independent 
variables in which means of one 
variable are shown at different levels 
of the other variable. Unusually the 
means are connected with lines, 
or are displayed as bars. These 
graphs are used to help understand 
interaction effects.

Interquartile range: the limits within 
which the middle 50% of an ordered 
set of observations falls. It is the 
difference between the value of the 
upper quartile and lower quartile.

Interval data: data measured on a 
scale along the whole of which 
intervals are equal. For example, 
people’s ratings of this book on 
Amazon.com can range from 1 to 
5; for these data to be interval it 
should be true that the increase 
in appreciation for this book 
represented by a change from 3 
to 4 along the scale should be the 
same as the change in appreciation 
represented by a change from 1 to 
2, or 4 to 5.

Interval variable: a variable consisting 
of interval data.

Intraclass correlation (ICC): a 
correlation coefficient that assesses 
the consistency between measures 
of the same class (i.e., measures 
of the same thing). (Cf. Pearson’s 
correlation coefficient, which 
measures the relationship between 
variables of a different class.) Two 
common uses are in comparing 
paired data (such as twins) on the 
same measure, and assessing the 
consistency between judges’ ratings 

of a set of objects. The calculation 
of these correlations depends on 
whether a measure of consistency 
(in which the order of scores from 
a source is considered, but not 
the actual value around which the 
scores are anchored) or absolute 
agreement (in which both the order 
of scores and the relative values are 
considered) is required, and whether 
the scores represent averages of 
many measures or just a single 
measure. This measure is also 
used in multilevel linear models to 
measure the dependency in data 
within the same context.

Jonckheere–Terpstra test: this 
statistic tests for an ordered pattern 
of medians across independent 
groups. Essentially it does the same 
thing as the Kruskal–Wallis test 
(i.e., test for a difference between 
the medians of the groups), but 
it incorporates information about 
whether the order of the groups is 
meaningful. As such, you should 
use this test when you expect 
the groups you’re comparing to 
produce a meaningful order of 
medians.

Kaiser–Meyer–Olkin (KMO) measure 
of sampling adequacy: the KMO 
can be calculated for individual and 
multiple variables and represents 
the ratio of the squared correlation 
between variables to the squared 
partial correlation between variables. 
It varies between 0 and 1: a value 
of 0 indicates that the sum of partial 
correlations is large relative to the 
sum of correlations, indicating 
diffusion in the pattern of correlations 
(hence, factor analysis is likely to be 
inappropriate); a value close to 1 
indicates that patterns of correlations 
are relatively compact and so factor 
analysis should yield distinct and 
reliable factors. Values between .5 
and .7 are mediocre, values between 
.7 and .8 are good, values between 
.8 and .9 are great and values above 
.9 are superb (see Hutcheson & 
Sofroniou, 1999).

Kaiser’s criterion: a method of 
extraction in factor analysis based 
on the idea of retaining factors with 
associated eigenvalues greater 
than 1. This method appears to 
be accurate when the number of 
variables in the analysis is less than 
30 and the resulting communalities 
(after extraction) are all greater than 
.7, or when the sample size exceeds 

250 and the average communality is 
greater than or equal to .6. 

Kendall’s tau: a non-parametric 
correlation coefficient similar to 
Spearman’s correlation coefficient, 
but which should be used in 
preference for a small data set with a 
large number of tied ranks.

Kruskal–Wallis test: non-parametric 
test of whether more than two 
independent groups differ. It is the 
non-parametric version of one-way 
independent ANOVA.

Kurtosis: this measures the degree to 
which scores cluster in the tails of a 
frequency distribution. A distribution 
with positive kurtosis (leptokurtic, 
kurtosis > 0) has too many scores in 
the tails and is too peaked, whereas 
a distribution with negative kurtosis 
(platykurtic, kurtosis < 0) has too few 
scores in the tails and is quite flat.

Latent variable: a variable that 
cannot be directly measured, but 
is assumed to be related to several 
variables that can be measured.

Leptokurtic: see kurtosis.
Levels of measurement: the 

relationship between what is being 
measured and the numbers obtained 
on a scale.

Levene’s test: tests the hypothesis that 
the variances in different groups are 
equal (i.e., the difference between 
the variances is zero). It basically 
does a one-way ANOVA on the 
deviations (i.e., the absolute value 
of the difference between each 
score and the mean of its group). A 
significant result indicates that the 
variances are significantly different 
– therefore, the assumption of 
homogeneity of variances has been 
violated. When samples sizes are 
large, small differences in group 
variances can produce a significant 
Levene’s test and so the variance 
ratio is a useful double-check. 

Leverage: leverage statistics (or hat 
values) gauge the influence of the 
observed value of the outcome 
variable over the predicted values. 
The average leverage value is 
(k+1)/n in which k is the number of 
predictors in the model and n is the 
number of participants. Leverage 
values can lie between 0 (the case 
has no influence whatsoever) and 
1 (the case has complete influence 
over prediction). If no cases exert 
undue influence over the model then 
we would expect all of the leverage 
value to be close to the average 
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value. Hoaglin and Welsch (1978) 
recommend investigating cases 
with values greater than twice the 
average (2(k + 1)/n) and Stevens 
(2002) recommends using three 
times the average (3(k + 1)/n) as 
a cut-off point for identifying cases 
having undue influence. 

Likelihood: the probability of obtaining 
a set of observations given the 
parameters of a model fitted to those 
observations.

Linear model: a model that is based 
upon a straight line.

Line chart: a graph in which a summary 
statistic (usually the mean) is 
plotted on the y-axis against a 
categorical variable on the x-axis 
(this categorical variable could 
represent, for example, groups of 
people, different times or different 
experimental conditions). The value 
of the mean for each category is 
shown by a symbol, and means 
across categories are connected 
by a line. Different-coloured lines 
may be used to represent levels of a 
second categorical variable.

Logistic regression: a version of 
multiple regression in which the 
outcome is a categorical variable. If 
the categorical variable has exactly 
two categories the analysis is called 
binary logistic regression, and when 
the outcome has more than two 
categories it is called multinomial 
logistic regression.

Log-likelihood: a measure of error, or 
unexplained variation, in categorical 
models. It is based on summing 
the probabilities associated with the 
predicted and actual outcomes and 
is analogous to the residual sum 
of squares in multiple regression in 
that it is an indicator of how much 
unexplained information there is after 
the model has been fitted. Large 
values of the log-likelihood statistic 
indicate poorly fitting statistical 
models, because the larger the 
value of the log-likelihood, the more 
unexplained observations there are. 
The log-likelihood is the logarithm of 
the likelihood.

Loglinear analysis: a procedure used 
as an extension of the chi-square 
test to analyse situations in which 
we have more than two categorical 
variables and we want to test 
for relationships between these 
variables. Essentially, a linear model 
is fitted to the data that predicts 
expected frequencies (i.e., the 

number of cases expected in a given 
category). In this respect it is much 
the same as analysis of variance but 
for entirely categorical data.

Long format data (a.k.a. ‘molten’ 
data): data that are arranged 
such that levels of independent or 
predictor variables are differentiated 
by different rows in a dataframe. As 
such, outcome variable  scores are 
contained in a single column of data 
with rows containing information 
about the attributes of those scores.

Lower bound: the name given to 
the lowest possible value of the 
Greenhouse–Geisser estimate of 
sphericity. Its value is 1/(k-1), in 
which k is the number of treatment 
conditions.

Lower quartile: the value that cuts off 
the lowest 25% of the data. If the 
data are ordered and then divided 
into two halves at the median, then 
the lower quartile is the median of 
the lower half of the scores.

M-estimator: a robust measure of 
location. One example is the median. 
In some cases it is a measure of 
location computed after outliers have 
been removed: unlike the trimmed 
mean, the amount of trimming used 
to remove outliers is determined 
empirically. 

Main effect: the unique effect of a 
predictor variable (or independent 
variable) on an outcome variable. The 
term is usually used in the context of 
ANOVA.

Mann–Whitney test: a non-parametric 
test that looks for differences 
between two independent samples. 
That is, it tests whether the 
populations from which two samples 
are drawn have the same location. 
It is functionally the same as 
Wilcoxon’s rank-sum test, and both 
tests are non-parametric equivalents 
of the independent t-test. 

MANOVA: acronym for multivariate 
analysis of variance.

Matrix: a collection of items (usually 
numbers) arranged in columns and 
rows. The values within a matrix are 
typically referred to as components 
or elements.

Mauchly’s test: a test of the 
assumption of sphericity. If this test 
is significant then the assumption 
of sphericity has not been met 
and an appropriate correction 
must be applied to the degrees of 
freedom of the F-ratio in repeated-
measures ANOVA. The test works by 

comparing the variance–covariance 
matrix of the data to an identity 
matrix; if the variance–covariance 
matrix is a scalar multiple of an 
identity matrix then sphericity is met.

Maximum-likelihood estimation: 
a way of estimating statistical 
parameters by choosing the 
parameters that make the data 
most likely to have happened. 
Imagine for a set of parameters that 
we calculated the probability (or 
likelihood) of getting the observed 
data; if this probability was high then 
these particular parameters yield a 
good fit of the data, but conversely 
if the probability was low, these 
parameters are a bad fit of our data. 
Maximum-likelihood estimation 
chooses the parameters that 
maximize the probability.

McNemar’s test: This tests differences 
between two related groups (see 
Wilcoxon signed-rank test and 
sign test), when nominal data 
have been used. It’s typically used 
when we’re looking for changes in 
people’s scores and it compares the 
proportion of people who changed 
their response in one direction (i.e., 
scores increased) to those who 
changed in the opposite direction 
(scores decreased). So, this test 
needs to be used when we’ve got 
two related dichotomous variables.

Mean: a simple statistical model of the 
centre of a distribution of scores. A 
hypothetical estimate of the ‘typical’ 
score.

Mean squares: a measure of average 
variability. For every sum of squares 
(which measure the total variability) 
it is possible to create mean squares 
by dividing by the number of things 
used to calculate the sum of squares 
(or some function of it).

Measurement error: the discrepancy 
between the numbers used to 
represent the thing that we’re 
measuring and the actual value 
of the thing we’re measuring (i.e., 
the value we would get if we could 
measure it directly).

Median: the middle score of a set of 
ordered observations. When there 
is an even number of observations 
the median is the average of the two 
scores that fall either side of what 
would be the middle value.

Meta-analysis: this is a statistical 
procedure for assimilating research 
findings. It is based on the simple 
idea that we can take effect sizes 
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from individual studies that research 
the same question, quantify the 
observed effect in a standard 
way (using effect sizes) and then 
combine these effects to get a more 
accurate idea of the true effect in the 
population.

Mixed ANOVA: analysis of variance 
used for a mixed design.

Mixed design: an experimental design 
incorporating two or more predictors 
(or independent variables) at least 
one of which has been manipulated 
using different participants (or 
whatever entities are being tested) 
and at least one of which has 
been manipulated using the same 
participants (or entities). Also known 
as a split-plot design because Fisher 
developed ANOVA for analysing 
agricultural data involving ‘plots’ of 
land containing crops.

Mode: the most frequently occurring 
score in a set of data.

Model sum of squares: a measure 
of the total amount of variability for 
which a model can account. It is the 
difference between the total sum 
of squares and the residual sum of 
squares.

Molten data: see long format data.
Monte Carlo method: a term applied 

to the process of using data 
simulations to solve statistical 
problems. Its name comes from the 
use of Monte Carlo roulette tables to 
generate ‘random’ numbers in the 
pre-computer age. Karl Pearson, for 
example, purchased copies of Le 
Monaco, a weekly Paris periodical 
that published data from the Monte 
Carlo casinos’ roulette wheels. He 
used these data as pseudo-random 
numbers in his statistical research.

Mosaic plot: A graphical display 
showing the relationship between 
two or more categorical variables.

Multicollinearity: a situation in which 
two or more variables are very 
closely linearly related.

Multilevel linear model: a linear 
model (just like regression, 
ANCOVA, ANOVA, etc.) in which the 
hierarchical structure of the data is 
explicitly considered. In this analysis 
regression parameters can be fixed 
(as in regression and ANOVA) but 
also random (i.e., free to vary across 
different contexts at a higher level 
of the hierarchy). This means that 
for each regression parameter there 
is a fixed component but also an 
estimate of how much the parameter 

varies across contexts (see fixed 
coefficient, random coefficient).

Multimodal: description of a distribution 
of observations that has more than 
two modes.

Multinomial logistic regression: 
logistic regression in which the 
outcome variable has more than two 
categories.

Multiple R2: the multiple correlation 
coefficient squared. It is the 
proportion of variance shared by the 
observed values of an outcome and 
the values of the outcome predicted 
by a multiple regression model.

Multiple regression: an extension 
of simple regression in which an 
outcome is predicted by a linear 
combination of two or more predictor 
variables. The form of the model is:

Y b b X b X b X
i i i n ni i= + + + + +( )

0 1 1 2 2 

ε

	 in which the outcome is denoted as 
Y, and each predictor is denoted as 
X. Each predictor has a regression 
coefficient b associated with it, and 
b0 is the value of the outcome when 
all predictors are zero.

Multivariate: means ‘many variables’ 
and is usually used when referring 
to analyses in which there is more 
than one outcome variable (e.g., 
MANOVA, principal components 
analysis, etc.). 

Multivariate analysis of variance: 
family of tests that extend the basic 
analysis of variance to situations 
in which more than one outcome 
variable has been measured.

Multivariate normality: an extension 
of a normal distribution to multiple 
variables. It is a probability 
distribution of a set of variables 
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
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	 in which µ is the vector of means of 
the variables, and Σ is the variance–
covariance matrix. If that made any 
sense to you then you’re cleverer 
than I am.

Nagelkerke’s R2
N: a version of the 

coefficient of determination for 
logistic regression. It is a variation 
on Cox and Snell’s R

CS
2 , which 

overcomes the problem that this 
statistic has of not being able to 
reach its maximum value.

Negative skew: see skew.
Nominal variable: where numbers 

merely represent names. For 

example, the numbers on sports 
players shirts: a player with the 
number 1 on her back is not 
necessarily worse than a player with 
a 2 on her back. The numbers have 
no meaning other than denoting the 
type of player (i.e., full back, centre 
forward, etc.). 

Non-parametric tests: a family of 
statistical procedures that do not 
rely on the restrictive assumptions of 
parametric tests. In particular, they 
do not assume that the sampling 
distribution is normally distributed.

Normal distribution: a probability 
distribution of a random variable that 
is known to have certain properties. 
It is perfectly symmetrical (has a 
skew of 0), and has a kurtosis of 0.

Normally distributed data (as an 
assumption): when generalizing 
the findings of parametric tests there 
is typically an assumption made that 
something is normally distributed; 
in some cases it is the sampling 
distribution, in others the errors in 
the model. If this assumption is not 
true then robust tests should be 
applied.

Null hypothesis: the reverse of 
the experimental hypothesis that 
your prediction is wrong and the 
predicted effect doesn’t exist.

Numeric variables: variables involving 
numbers.

Object: anything created in R. It 
could be a variable, a collection of 
variables, a statistical model, etc. 
Objects can be single values (such 
as the mean of a set of scores) 
or collections of information; for 
example, when you run an analysis, 
you create an object that contains 
the output of that analysis, which 
means that this object contains 
many different values and variables.

Oblique rotation: a method of rotation 
in factor analysis that allows the 
underlying factors to be correlated.

Odds: the probability of an event 
occurring divided by the probability 
of that event not occurring.

Odds ratio: the ratio of the odds of 
an event occurring in one group 
compared to another. So, for 
example, if the odds of dying after 
writing a glossary are 4, and the 
odds of dying after not writing a 
glossary are 0.25, then the odds 
ratio is 4/0.25 = 16. This means 
that the odds of dying if you write 
a glossary are 16 times higher 
than if you don’t. An odds ratio of 
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1 would indicate that the odds of 
a particular outcome are equal in 
both groups.

Omega squared: an effect size 
measure associated with ANOVA 
that is less bias than eta squared. It 
is a (sometimes hideous) function 
of the model sum of squares and 
the residual sum of squares and 
isn’t actually much use because it 
measures the overall effect of the 
ANOVA and so can’t be interpreted 
in a meaningful way. In all other 
respects it’s great though.

One-tailed test: a test of a directional 
hypothesis. For example, the 
hypothesis ‘the longer I write this 
glossary, the more I want to place 
my editor’s genitals in a starved 
crocodile’s mouth’ requires a one-
tailed test because I’ve stated the 
direction of the relationship (see also 
two-tailed test).

Ordinal variable: data that tell us not 
only that things have occurred, 
but also the order in which they 
occurred. These data tell us nothing 
about the differences between 
values. For example, gold, silver 
and bronze medals are ordinal: they 
tell us that the gold medallist was 
better than the silver medallist, but 
they don’t tell us how much better 
(was gold a lot better than silver, or 
were gold and silver very closely 
competed?).

Orthogonal: means perpendicular (at 
right angles) to something. It tends 
to be equated to independence in 
statistics because of the connotation 
that perpendicular linear models in 
geometric space are completely 
independent (one is not influenced 
by the other).

Orthogonal rotation: a method of 
rotation in factor analysis that keeps 
the underlying factors independent 
(i.e., not correlated).

Outcome variable: a variable whose 
values we are trying to predict from 
one or more predictor variables.

Outlier: an observation very different 
from most others. Outliers can bias 
statistics such as the mean.

Package: a collection of functions that, 
once the package is installed and 
loaded, can be used in R.

Pairwise comparisons: comparisons 
of pairs of means.

Parametric test: a test that requires 
data from one of the large catalogue 
of distributions that statisticians have 
described. Normally this term is 

used for parametric tests based on 
the normal distribution, which require 
four basic assumptions that must 
be met for the test to be accurate: 
a normally distributed sampling 
distribution (see normal distribution), 
homogeneity of variance, interval or 
ratio data, and independence.

Part correlation: another name for a 
semi-partial correlation. 

Partial correlation: a measure of the 
relationship between two variables 
while ‘controlling’ the effect on both 
of one or more additional variables.

Partial eta squared (partial η2): a 
version of eta squared that is the 
proportion of variance that a variable 
explains when excluding other 
variables in the analysis. Eta squared 
is the proportion of total variance 
explained by a variable, whereas 
partial eta squared is the proportion 
of variance that a variable explains 
that is not explained by other 
variables. 

Partial out: to partial out the effect of 
a variable is to remove the variance 
that the variable shares with other 
variables in the analysis before 
looking at their relationships (see 
partial correlation).

Pattern matrix: a matrix in factor 
analysis containing the regression 
coefficients for each variable on 
each factor in the data. See also 
structure matrix.

Pearson’s correlation coefficient: 
or Pearson’s product-moment 
correlation coefficient to give it its full 
name, is a standardized measure of 
the strength of relationship between 
two variables. It can take any value 
from -1 (as one variable changes, 
the other changes in the opposite 
direction by the same amount), 
through 0 (as one variable changes 
the other doesn’t change at all), to 
+1 (as one variable changes, the 
other changes in the same direction 
by the same amount). 

Perfect collinearity: exists when at 
least one predictor in a regression 
model is a perfect linear combination 
of the others (the simplest example 
being two predictors that are 
perfectly correlated – they have a 
correlation coefficient of 1).

Phi: a measure of the strength of 
association between two categorical 
variables. Phi is used with 2 × 2 
contingency tables (tables which 
have two categorical variables 
and each variable has only two 

categories). Phi is a variant of the 
chi-square test, χ2: it is given by 
φ χ= 2 /n , in which n is the total 
number of observations.

Pillai–Bartlett trace (V): a test statistic 
in MANOVA. It is the sum of the 
proportion of explained variance on 
the discriminant function variates of 
the data. As such, it is similar to the 
ratio of SSM/SST.

Planned comparisons: another name 
for planned contrasts.

Planned contrasts: a set of 
comparisons between group means 
that are constructed before any data 
are collected. These are theory-led 
comparisons and are based on 
the idea of partitioning the variance 
created by the overall effect of group 
differences into gradually smaller 
portions of variance. These tests 
have more power than post hoc 
tests.

Platykurtic: see kurtosis.
Point-biserial correlation: a 

standardized measure of the 
strength of relationship between 
two variables when one of the two 
variables is dichotomous. The point-
biserial correlation coefficient is used 
when the dichotomy is discrete, or 
true, dichotomy (i.e., one for which 
there is no underlying continuum 
between the categories). An example 
of this is pregnancy: you can be 
either pregnant or not, there is no 
in-between state.

Polychotomous logistic regression: 
another name for multinomial logistic 
regression. 

Polynomial: a posh name for a growth 
curve or trend over time. If time is 
our predictor variable, then any 
polynomial is tested by including a 
variable that is the predictor to the 
power of the order of polynomial 
that we want to test: a linear trend is 
tested by time alone, a quadratic or 
second-order polynomial is tested 
by including a predictor that is time2, 
for a fifth-order polynomial we need 
a predictor of time5 and for an nth-
order polynomial we would have to 
include timen as a predictor.

Polynomial contrast: a contrast that 
tests for trends in the data. In its 
most basic form it looks for a linear 
trend (i.e., that the group means 
increase proportionately). 

Population: in statistical terms this 
usually refers to the collection of 
units (be they people, plankton, 
plants, cities, suicidal authors, etc.) 
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to which we want to generalize a set 
of findings or a statistical model.

Positive skew: see skew.
Post hoc tests: a set of comparisons 

between group means that were 
not thought of before data were 
collected. Typically these tests 
involve comparing the means of all 
combinations of pairs of groups. To 
compensate for the number of tests 
conducted, each test uses a strict 
criterion for significance. As such, 
they tend to have less power than 
planned contrasts. They are usually 
used for exploratory work for which 
no firm hypotheses were available on 
which to base planned contrasts. 

Power: the ability of a test to detect an 
effect of a particular size (a value of 
.8 is a good level to aim for).

Practice effect: refers to the possibility 
that participants’ performance in a 
task may be influenced (positively 
or negatively) if they repeat the 
task because of familiarity with the 
experimental situation and/or the 
measures being used.

Predictor variable: a variable that 
is used to try to predict values 
of another variable known as an 
outcome variable.

Principal components analysis 
(PCA): a multivariate technique for 
identifying the linear components of 
a set of variables.

Probability distribution: a curve 
describing an idealized frequency 
distribution of a particular variable 
from which it is possible to ascertain 
the probability with which specific 
values of that variable will occur. For 
categorical variables it is simply a 
formula yielding the probability with 
which each category occurs.

Promax: a method of oblique rotation 
that is computationally faster than 
direct oblimin and so useful for large 
data sets.

Q-Q plot: Short for quantile–quantile 
plot. A graph plotting the quantiles of 
a variable against the quantiles of a 
particular distribution (often a normal 
distribution). If values fall on the 
diagonal of the plot then the variable 
shares the same distribution as the 
one specified. Deviations from the 
diagonal show deviations from the 
distribution of interest.

Quadratic trend: if the means in 
ordered conditions are connected 
with a line then a quadratic trend 
is shown by one change in the 
direction of this line (e.g., the line 

is curved in one place); the line is, 
therefore, U-shaped. There must be 
at least three ordered conditions.

Qualitative methods: extrapolating 
evidence for a theory from what 
people say or write (contrast with 
quantitative methods).

Quantiles: values that split a data 
set into equal portions. Quartiles, 
for example, are a special case of 
quantiles that split the data into four 
equal parts. Similarly, percentiles 
are points that split the data into 100 
equal parts and noniles are points 
that split the data into nine equal 
parts (you get the general idea).

Quantitative methods: inferring 
evidence for a theory through 
measurement of variables that 
produce numeric outcomes (contrast 
with qualitative methods).

Quartic trend: if the means in ordered 
conditions are connected with a 
line then a quartic trend is shown 
by three changes in the direction of 
this line. There must be at least five 
ordered conditions.

Quartiles: a generic term for the three 
values that cut an ordered data 
set into four equal parts. The three 
quartiles are known as the lower 
quartile, the second quartile (or 
median) and the upper quartile.

Quartimax: a method of orthogonal 
rotation. It attempts to maximize 
the spread of factor loadings for a 
variable across all factors. This often 
results in lots of variables loading 
highly on a single factor.

Quartz window: the name of the 
window in which graphics and 
graphs appear if you use MacOS.

Random coefficient: a coefficient or 
model parameter that is free to vary 
over situations or contexts (cf. fixed 
coefficient).

Random effect: an effect is said to be 
random if the experiment contains 
only a sample of possible treatment 
conditions. Random effects can be 
generalized beyond the treatment 
conditions in the experiment. For 
example, the effect is random if 
we say that the conditions in our 
experiment (e.g., placebo, low dose 
and high dose) are only a sample 
of possible conditions (maybe we 
could have tried a very high dose). 
We can generalize this random effect 
beyond just placebos, low doses 
and high doses.

Random intercept: A term used in 
multilevel modelling to denote when 

the intercept in the model is free 
to vary across different groups or 
contexts (cf. fixed intercept).

Random slope: A term used in 
multilevel modelling to denote when 
the slope of the model is free to vary 
across different groups or contexts 
(cf. fixed slope).

Random variable: a random variable is 
one that varies over time (e.g., your 
weight is likely to fluctuate over time).

Random variance: variance that is 
unique to a particular variable but 
not reliably so.

Randomization: the process of doing 
things in an unsystematic or random 
way. In the context of experimental 
research the word usually applies 
to the random assignment of 
participants to different treatment 
conditions.

Range: the range of scores is value of 
the smallest score subtracted from 
the highest score. It is a measure 
of the dispersion of a set of scores. 
See also variance, standard 
deviation, and interquartile range.

Ranking: the process of transforming 
raw scores into numbers that 
represent their position in an ordered 
list of those scores. i.e., the raw 
scores are ordered from lowest 
to highest and the lowest score 
is assigned a rank of 1, the next 
highest score is assigned a rank of 
2, and so on.

Ratio variable: an interval variable but 
with the additional property that 
ratios are meaningful. For example, 
people’s ratings of this book on 
Amazon.com can range from 1 
to 5; for these data to be ratio not 
only must they have the properties 
of interval variables, but in addition 
a rating of 4 should genuinely 
represent someone who enjoyed this 
book twice as much as someone 
who rated it as 2. Likewise, someone 
who rated it as 1 should be half as 
impressed as someone who rated 
it as 2.

Regression coefficient: see bi and βi.
Regression model: see multiple 

regression and simple regression.
Regression line: a line on a scatterplot 

representing the regression model 
of the relationship between the two 
variables plotted.

Related design: another name for a 
repeated-measures design.

Related factorial design: an 
experimental design incorporating 
two or more predictors (or 
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independent variables), all of which 
have been manipulated using the 
same participants (or whatever 
entities are being tested).

Reliability: the ability of a measure to 
produce consistent results when the 
same entities are measured under 
different conditions.

Repeated-measures ANOVA: an 
analysis of variance conducted on 
any design in which the independent 
variable (predictor) or variables 
(predictors) have all been measured 
using the same participants in all 
conditions.

Repeated-measures design: an 
experimental design in which 
different treatment conditions 
utilize the same organisms (i.e., 
in psychology, this would mean 
the same people take part in all 
experimental conditions) and so 
the resulting data are related (a.k.a. 
related design or within-subject 
designs).

Residual: The difference between the 
value a model predicts and the value 
observed in the data on which the 
model is based. When the residual 
is calculated for each observation in 
a data set the resulting collection is 
referred to as the residuals.

Residual sum of squares: a measure 
of the variability that cannot be 
explained by the model fitted to the 
data. It is the total squared deviance 
between the observations, and 
the value of those observations 
predicted by whatever model is fitted 
to the data.

Residuals: see residual.
Robust test: A term applied to a family 

of procedures to estimate statistics 
that are reliable even when the 
normal assumptions of the statistic 
are not met.

Rotation: a process in factor analysis 
for improving the interpretability 
of factors. In essence, an attempt 
is made to transform the factors 
that emerge from the analysis in 
such a way as to maximize factor 
loadings that are already large, and 
minimize factor loadings that are 
already small. There are two general 
approaches: orthogonal rotation and 
oblique rotation.

Roy’s largest root: a test statistic in 
MANOVA. It is the eigenvalue for 
the first discriminant function variate 
of a set of observations. So, it is 
the same as the Hotelling–Lawley 
trace, but for the first variate only. 

It represents the proportion of 
explained variance to unexplained 
variance (SSM/SSR) for the first 
discriminant function.

Sample: a smaller (but hopefully 
representative) collection of units 
from a population used to determine 
truths about that population (e.g., 
how a given population behaves in 
certain conditions).

Sampling distribution: the probability 
distribution of a statistic. We can 
think of this as follows: if we take 
a sample from a population and 
calculate some statistic (e.g., the 
mean), the value of this statistic will 
depend somewhat on the sample 
we took. As such, the statistic will 
vary slightly from sample to sample. 
If, hypothetically, we took lots and 
lots of samples from the population 
and calculated the statistic of 
interest we could create a frequency 
distribution of the values we get. 
The resulting distribution is what the 
sampling distribution represents: the 
distribution of possible values of a 
given statistic that we could expect 
to get from a given population.

Sampling variation: the extent to which 
a statistic (the mean, median, t, F, 
etc.) varies in samples taken from 
the same population.

Saturated model: a model that 
perfectly fits the data and, therefore, 
has no error. It contains all possible 
main effects and interactions 
between variables.

Scatterplot: a graph that plots 
values of one variable against the 
corresponding value of another 
variable (and the corresponding 
value of a third variable can also be 
included on a 3-D scatterplot).

Scree plot: a graph plotting each factor 
in a factor analysis (X-axis) against 
its associated eigenvalue (Y-axis). 
It shows the relative importance of 
each factor. This graph has a very 
characteristic shape (there is a sharp 
descent in the curve followed by a 
tailing off) and the point of inflexion 
of this curve is often used as a 
means of extraction. With a sample 
of more than 200 participants, this 
provides a fairly reliable criterion for 
extraction (Stevens, 2002)

Second quartile: another name for the 
median.

Semi-partial correlation: a measure 
of the relationship between two 
variables while ‘controlling’ the effect 
that one or more additional variables 

has on one of those variables. If we 
call our variables x and y, it gives us 
a measure of the variance in y that x 
alone shares.

Shapiro–Wilk test: a test of whether a 
distribution of scores is significantly 
different from a normal distribution. 
A significant value indicates a 
deviation from normality, but this 
test is notoriously affected by large 
samples in which small deviations 
from normality yield significant 
results.

Shrinkage: the loss of predictive 
power of a regression model if the 
model had been derived from the 
population from which the sample 
was taken, rather than the sample 
itself.

Simple effects analysis: this 
analysis looks at the effect of one 
independent variable (categorical 
predictor variable) at individual levels 
of another independent variable.

Simple regression: a linear model in 
which one variable or outcome is 
predicted from a single predictor 
variable. The model takes the form:

Y b b X
i i i

= + +( )
0 1

ε

	 in which Y is the outcome variable, 
X is the predictor, b1 is the regression 
coefficient associated with the 
predictor and b0 is the value of the 
outcome when the predictor is zero.

Singularity: a term used to describe 
variables that are perfectly correlated 
(i.e., the correlation coefficient is 1 
or -1).

Skew: a measure of the symmetry of a 
frequency distribution. Symmetrical 
distributions have a skew of 0. When 
the frequent scores are clustered at 
the lower end of the distribution and 
the tail points towards the higher or 
more positive scores, the value of 
skew is positive. Conversely, when 
the frequent scores are clustered 
at the higher end of the distribution 
and the tail points towards the lower 
more negative scores, the value of 
skew is negative.

Spearman’s correlation coefficient: 
a standardized measure of the 
strength of relationship between two 
variables that does not rely on the 
assumptions of a parametric test. It 
is Pearson’s correlation coefficient 
performed on data that have been 
converted into ranked scores.

Sphericity: a less restrictive form 
of compound symmetry, which 
assumes that the variances of the 
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differences between data taken 
from the same participant (or other 
entity being tested) are equal. This 
assumption is most commonly 
found in repeated-measures ANOVA 
but applies only where there are 
more than two points of data from 
the same participant (see also 
Greenhouse–Geisser correction, 
Huynh–Feldt correction).

Split-half reliability: a measure of 
reliability obtained by splitting items 
on a measure into two halves (in 
some random fashion) and obtaining 
a score from each half of the scale. 
The correlation between the two 
scores, corrected to take account of 
the fact the correlations are based 
on only half of the items, is used as 
a measure of reliability. There are two 
popular ways to do this. Spearman 
(1910) and Brown (1910) developed 
a formula that takes no account of 
the standard deviation of items: 
 
 r

r

rsh
=

+

2

1
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in which r12 is the correlation between 
the two halves of the scale. Flanagan 
(1937) and Rulon (1939), however, 
proposed a measure that does 
account for item variance: 
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in which s1 and s2 are the standard 
deviations of each half of the scale, 
and S

T
2  is the variance of the whole 

test. See Cortina (1993) for more 
detail.

Square matrix: a matrix that has an 
equal number of columns and rows.

Standard deviation: an estimate of the 
average variability (spread) of a set 
of data measured in the same units 
of measurement as the original data. 
It is the square root of the variance.

Standard error: the standard deviation 
of the sampling distribution of a 
statistic. For a given statistic (e.g., 
the mean) it tells us how much 
variability there is in this statistic 
across samples from the same 
population. Large values, therefore, 
indicate that a statistic from a given 
sample may not be an accurate 
reflection of the population from 
which the sample came.

Standard error of differences: if we 
were to take several pairs of samples 
from a population and calculate 
their means, then we could also 

calculate the difference between 
their means. If we plotted these 
differences between sample means 
as a frequency distribution, we would 
have the sampling distribution of 
differences. The standard deviation 
of this sampling distribution is the 
standard error of differences. As such 
it is a measure of the variability of 
differences between sample means.

Standard error of the mean (SE): the 
full name of the standard error.

Standardization: the process of 
converting a variable into a standard 
unit of measurement. The unit of 
measurement typically used is 
standard deviation units (see also 
z-scores). Standardization allows us 
to compare data when different units 
of measurement have been used (we 
could compare weight measured 
in kilograms to height measured in 
inches).

Standardized: see standardization.
Standardized DFBeta: a standardized 

version of DFBeta. These 
standardized values are easier to 
use than DFBeta because universal 
cut-off points can be applied. 
Stevens (2002) suggests looking at 
cases with absolute values greater 
than 2.

Standardized DFFit: a standardized 
version of DFFit. 

Standardized residuals: the residuals 
of a model expressed in standard 
deviation units. Standardized 
residuals with an absolute value 
greater than 3.29 (actually, we 
usually just use 3) are cause for 
concern because in an average 
sample a value this high is unlikely 
to happen by chance; if more 
than 1% of our observations have 
standardized residuals with an 
absolute value greater than 2.58 
(we usually just say 2.5), there 
is evidence that the level of error 
within our model is unacceptable 
(the model is a fairly poor fit of the 
sample data); and if more than 5% 
of observations have standardized 
residuals with an absolute 
value greater than 1.96 (or 2 for 
convenience), then there is also 
evidence that the model is a poor 
representation of the actual data. 

Stepwise regression: a method 
of multiple regression in which 
variables are entered into the model 
based on a statistical criterion (the 
semi-partial correlation with the 
outcome variable). Once a new 

variable is entered into the model, all 
variables in the model are assessed 
to see whether they should be 
removed.

String variables: variables involving 
words (i.e., letter strings). Such 
variables could include responses to 
open-ended questions such as ‘how 
much do you like writing glossary 
entries?’; the response might be 
‘about as much as I like placing my 
gonads on hot coals’.

Structure matrix: a matrix in factor 
analysis containing the correlation 
coefficients for each variable on 
each factor in the data. When 
orthogonal rotation is used this is 
the same as the pattern matrix, but 
when oblique rotation is used these 
matrices are different.

Studentized deleted residual: a 
measure of the influence of a 
particular case of data. This is a 
standardized version of the deleted 
residual. 

Studentized residuals: a variation on 
standardized residuals. Studentized 
residuals are the unstandardized 
residual divided by an estimate of its 
standard deviation that varies point 
by point. These residuals have the 
same properties as the standardized 
residuals but usually provide a more 
precise estimate of the error variance 
of a specific case.

Sum of squared errors: another name 
for the sum of squares.

Sum of squares (SS): an estimate 
of total variability (spread) of a set 
of data. First the deviance for each 
score is calculated, and then this 
value is squared. The SS is the sum 
of these squared deviances.

Sum of squares and cross-products 
matrix (SSCP matrix): a square 
matrix in which the diagonal 
elements represent the sum of 
squares for a particular variable, and 
the off-diagonal elements represent 
the cross-products between pairs 
of variables. The SSCP matrix is 
basically the same as the variance–
covariance matrix, except the SSCP 
matrix expresses variability and 
between-variable relationships as 
total values, whereas the variance–
covariance matrix expresses them as 
average values.

Suppressor effects: when a predictor 
has a significant effect but only when 
another variable is held constant.

Systematic variation: variation due 
to some genuine effect (be that 
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the effect of an experimenter doing 
something to all of the participants 
in one sample but not in other 
samples, or natural variation 
between sets of variables). We can 
think of this as variation that can be 
explained by the model that we’ve 
fitted to the data.

t-statistic: Student’s t is a test statistic 
with a known probability distribution 
(the t-distribution). In the context 
of regression it is used to test 
whether a regression coefficient b 
is significantly different from zero; in 
the context of experimental work it is 
used to test whether the differences 
between two means are significantly 
different from zero. See also 
dependent t-test and independent 
t-test. 

Tertium quid: the possibility that an 
apparent relationship between two 
variables is actually caused by the 
effect of a third variable on them 
both (often called the third-variable 
problem).

Test–retest reliability: the ability of 
a measure to produce consistent 
results when the same entities are 
tested at two different points in time.

Test statistic: a statistic for which we 
know how frequently different values 
occur. The observed value of such 
a statistic is typically used to test 
hypotheses.

Theory: although it can be defined 
more formally, a theory is a 
hypothesized general principle or 
set of principles that explain known 
findings about a topic and from 
which new hypotheses can be 
generated.

Tolerance: tolerance statistics 
measure multicollinearity and are 
simply the reciprocal of the variance 
inflation factor (1/VIF). Values below 
0.1 indicate serious problems, 
although Menard (1995) suggests 
that values below 0.2 are worthy of 
concern.

Total SSCP (T): the total sum of 
squares and cross-product matrix. 
This is a sum of squares and cross-
product matrix for an entire set of 
observations. It is the multivariate 
equivalent of the total sum of 
squares.

Total sum of squares: a measure 
of the total variability within a set 
of observations. It is the total 
squared deviance between each 
observation and the overall mean of 
all observations. 

Transformation: the process of 
applying a mathematical function 
to all observations in a data set, 
usually to correct some distributional 
abnormality such as skew or 
kurtosis.

Treatment contrast: a contrast in which 
each category is compared to a 
user-defined baseline category.

Trimmed mean: a statistic used in 
many robust tests. Imagine we had 
20 scores representing the annual 
income of students (in thousands, 
rounded to the nearest thousand: 
2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 
4, 4, 4, 4, 6, 35. The mean income 
is 5 (£5000). This value is biased by 
an outlier. A trimmed mean is simply 
a mean based on the distribution 
of scores after some percentage of 
scores has been removed from each 
extreme of the distribution. So, a 
10% trimmed mean will remove 10% 
of scores from the top and bottom of 
ordered scores before the mean is 
calculated. With 20 scores, removing 
10% of scores involves removing the 
top and bottom 2 scores. This gives 
us: 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 
4, 4, 4, the mean of which is 3.44. 
The mean depends on a symmetrical 
distribution to be accurate, but a 
trimmed mean produces accurate 
results even when the distribution 
is not symmetrical. There are 
more complex examples of robust 
methods such as the bootstrap.

Two-tailed test: a test of a non-
directional hypothesis. For 
example, the hypothesis ‘writing 
this glossary has some effect on 
what I want to do with my editor’s 
genitals’ requires a two-tailed test 
because it doesn’t suggest the 
direction of the relationship. See 
also one-tailed test.

Type I error: occurs when we believe 
that there is a genuine effect in our 
population, when in fact there isn’t.

Type II error: occurs when we 
believe that there is no effect in the 
population when, in reality, there is.

Unique variance: variance that is 
specific to a particular variable (i.e., 
is not shared with other variables). 
We tend to use the term ‘unique 
variance’ to refer to variance that 
can be reliably attributed to only 
one measure, otherwise it is called 
random variance.

Univariate: means ‘one variable’ and is 
usually used to refer to situations in 
which only one outcome variable has 

been measured (i.e., ANOVA, t-tests, 
Mann–Whitney tests, etc.).

Unstructured: a covariance structure 
used in multilevel models. This 
covariance structure is completely 
general. Covariances are assumed 
to be completely unpredictable: 
they do not conform to a systematic 
pattern.

Unstandardized residuals: the 
residuals of a model expressed 
in the units in which the original 
outcome variable was measured. 

Unsystematic variation: this is 
variation that isn’t due to the effect in 
which we’re interested (so could be 
due to natural differences between 
people in different samples such 
as differences in intelligence or 
motivation). We can think of this as 
variation that can’t be explained by 
whatever model we’ve fitted to the 
data.

Upper quartile: the value that cuts 
off the highest 25% of ordered 
scores. If the scores are ordered 
and then divided into two halves at 
the median, then the upper quartile 
is the median of the top half of the 
scores.

Validity: evidence that a study allows 
correct inferences about the 
question it was aimed to answer or 
that a test measures what it set out 
to measure conceptually (see also 
content validity, criterion validity).

Variable view: there are two ways to 
view the contents of the data editor 
window. The variable view allows you 
to define properties of the variables 
for which you wish to enter data. See 
also data view.

Variables: anything that can be 
measured and can differ across 
entities or across time.

Variance: an estimate of average 
variability (spread) of a set of data. It 
is the sum of squares divided by the 
number of values on which the sum 
of squares is based minus 1.

Variance components: a covariance 
structure used in multilevel models. 
This covariance structure is very 
simple and assumes that all 
random effects are independent 
and variances of random effects are 
assumed to be the same and sum to 
the variance of the outcome variable. 

Variance–covariance matrix: a square 
matrix (i.e., same number of columns 
and rows) representing the variables 
measured. The diagonals represent 
the variances within each variable, 
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whereas the off-diagonals represent 
the covariances between pairs of 
variables.

Variance inflation factor (VIF): a 
measure of multicollinearity. The 
VIF indicates whether a predictor 
has a strong linear relationship with 
the other predictor(s). Myers (1990) 
suggests that a value of 10 is a good 
value at which to worry. Bowerman 
and O’Connell (1990) suggest that 
if the average VIF is greater than 1, 
then multicollinearity may be biasing 
the regression model. 

Variance ratio: see Hartley’s Fmax.
Variance sum law: states that the 

variance of a difference between two 
independent variables is equal to the 
sum of their variances.

Varimax: a method of orthogonal 
rotation. It attempts to maximize the 
dispersion of factor loadings within 
factors. Therefore, it tries to load a 
smaller number of variables highly 
on each factor, resulting in more 
interpretable clusters of factors.

VIF: see variance inflation factor.
Wald statistic: a test statistic with a 

known probability distribution (a 
chi-square distribution) that is used 
to test whether the b coefficient for 
a predictor in a logistic regression 
model is significantly different from 
zero. It is analogous to the t-statistic 
in a regression model in that it is 
simply the b coefficient divided by 
its standard error. The Wald statistic 
is inaccurate when the regression 
coefficient (b) is large, because the 
standard error tends to become 
inflated, resulting in the Wald statistic 
being underestimated.

Weights: a number by which something 
(usually a variable in statistics) is 
multiplied. The weight assigned 
to a variable determines the 
influence that variable has within 
a mathematical equation: large 

weights give the variable a lot of 
influence. 

Welch’s F: a version of the F-ratio 
designed to be accurate when 
the assumption of homogeneity of 
variance has been violated. Not to 
be confused with the squelch test 
which is where you shake your head 
around after writing statistics books 
to see if you still have a brain.

Welch’s t-test: a modification of the 
independent t-test that does not 
assume equal population variances. 
Therefore, it can be used as an 
adjustment to correct for violation of 
the assumption of homogeneity of 
variance.

Wide format data: data that are 
arranged such that levels of 
independent or predictor variables 
are differentiated by different 
columns in a dataframe. As such, 
outcome variable  scores are 
contained in multiple columns of 
data each column representing a 
level of an independent variable.

Wilcoxon’s rank-sum test: a 
non-parametric test that looks 
for differences between two 
independent samples. That is, it 
tests whether the populations from 
which two samples are drawn have 
the same location. It is functionally 
the same as the Mann–Whitney test, 
and both tests are non-parametric 
equivalents of the independent t-test. 

Wilcoxon signed-rank test: a 
non-parametric test that looks for 
differences between two related 
samples. It is the non-parametric 
equivalent of the related t-test.

Wilks’s lambda (λ): a test statistic in 
MANOVA. It is the product of the 
unexplained variance on each of the 
discriminant function variates, so it 
represents the ratio of error variance 
to total variance (SSR/SST) for each 
variate.

Within-subject design: another name 
for a repeated-measures design.

Workspace: the collection of objects, 
models, dataframes and other things 
that you have created during an R 
session.

Working directory: a directory that R 
uses as the default location to open, 
save and ‘look for’ files. You should 
set the working directory to be the 
folder in which you have stored your 
data files, any scripts associated 
with the analysis or your workspace. 
Basically, anything to do with a 
session.

Writer’s block: something I suffered 
from a lot while writing this 
edition. It’s when you can’t think 
of any decent examples and so 
end up talking about sperm the 
whole time. Seriously, look at this 
book, it’s all sperm this, sperm 
that, quail sperm, human sperm. 
Frankly, I’m amazed donkey sperm 
didn’t get in there somewhere. Oh, 
it just did.

Yates’s continuity correction: an 
adjustment made to the chi-square 
test when the contingency table 
is 2 rows by 2 columns (i.e., there 
are two categorical variables, 
both of which consist of only two 
categories). In large samples the 
adjustment makes little difference 
and is slightly dubious anyway (see 
Howell, 2006).

z-score: the value of an observation 
expressed in standard deviation 
units. It is calculated by taking the 
observation, subtracting from it 
the mean of all observations, and 
dividing the result by the standard 
deviation of all observations. 
By converting a distribution of 
observations into z-scores a new 
distribution is created that has a 
mean of 0 and a standard deviation 
of 1.
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A.1  Table of the standard normal distribution

Smaller
Portion

z

Larger
Portion

Test Stalistic

F
re

qu
en

cy

z
Larger 
Portion

Smaller 
Portion y

.00 .50000 .50000 .3989

.01 .50399 .49601 .3989

.02 .50798 .49202 .3989

.03 .51197 .48803 .3988

.04 .51595 .48405 .3986

.05 .51994 .48006 .3984

z
Larger 
Portion

Smaller 
Portion y

.06 .52392 .47608 .3982

.07 .52790 .47210 .3980

.08 .53188 .46812 .3977

.09 .53586 .46414 .3973

.10 .53983 .46017 .3970

.11 .54380 .45620 .3965

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

.12 .54776 .45224 .3961

.13 .55172 .44828 .3956

.14 .55567 .44433 .3951

.15 .55962 .44038 .3945

.16 .56356 .43644 .3939

.17 .56749 .43251 .3932

.18 .57142 .42858 .3925

.19 .57535 .42465 .3918

.20 .57926 .42074 .3910

.21 .58317 .41683 .3902

.22 .58706 .41294 .3894

.23 .59095 .40905 .3885

.24 .59483 .40517 .3876

.25 .59871 .40129 .3867

.26 .60257 .39743 .3857

.27 .60642 .39358 .3847

.28 .61026 .38974 .3836

.29 .61409 .38591 .3825

.30 .61791 .38209 .3814

.31 .62172 .37828 .3802

.32 .62552 .37448 .3790

.33 .62930 .37070 .3778

.34 .63307 .36693 .3765

.35 .63683 .36317 .3752

.36 .64058 .35942 .3739

.37 .64431 .35569 .3725

.38 .64803 .35197 .3712

.39 .65173 .34827 .3697

.40 .65542 .34458 .3683

.41 .65910 .34090 .3668

.42 .66276 .33724 .3653

.43 .66640 .33360 .3637

z
Larger 
Portion

Smaller 
Portion y

.44 .67003 .32997 .3621

.45 .67364 .32636 .3605

.46 .67724 .32276 .3589

.47 .68082 .31918 .3572

.48 .68439 .31561 .3555

.49 .68793 .31207 .3538

.50 .69146 .30854 .3521

.51 .69497 .30503 .3503

.52 .69847 .30153 .3485

.53 .70194 .29806 .3467

.54 .70540 .29460 .3448

.55 .70884 .29116 .3429

.56 .71226 .28774 .3410

.57 .71566 .28434 .3391

.58 .71904 .28096 .3372

.59 .72240 .27760 .3352

.60 .72575 .27425 .3332

.61 .72907 .27093 .3312

.62 .73237 .26763 .3292

.63 .73565 .26435 .3271

.64 .73891 .26109 .3251

.65 .74215 .25785 .3230

.66 .74537 .25463 .3209

.67 .74857 .25143 .3187

.68 .75175 .24825 .3166

.69 .75490 .24510 .3144

.70 .75804 .24196 .3123

.71 .76115 .23885 .3101

.72 .76424 .23576 .3079

.73 .76730 .23270 .3056

.74 .77035 .22965 .3034

.75 .77337 .22663 .3011

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

  .76 .77637 .22363 .2989

  .77 .77935 .22065 .2966

  .78 .78230 .21770 .2943

  .79 .78524 .21476 .2920

  .80 .78814 .21186 .2897

  .81 .79103 .20897 .2874

  .82 .79389 .20611 .2850

  .83 .79673 .20327 .2827

  .84 .79955 .20045 .2803

  .85 .80234 .19766 .2780

  .86 .80511 .19489 .2756

  .87 .80785 .19215 .2732

  .88 .81057 .18943 .2709

  .89 .81327 .18673 .2685

  .90 .81594 .18406 .2661

  .91 .81859 .18141 .2637

  .92 .82121 .17879 .2613

  .93 .82381 .17619 .2589

  .94 .82639 .17361 .2565

  .95 .82894 .17106 .2541

  .96 .83147 .16853 .2516

  .97 .83398 .16602 .2492

  .98 .83646 .16354 .2468

  .99 .83891 .16109 .2444

1.00 .84134 .15866 .2420

1.01 .84375 .15625 .2396

1.02 .84614 .15386 .2371

1.03 .84849 .15151 .2347

1.04 .85083 .14917 .2323

1.05 .85314 .14686 .2299

1.06 .85543 .14457 .2275

z
Larger 
Portion

Smaller 
Portion y

1.07 .85769 .14231 .2251

1.08 .85993 .14007 .2227

1.09 .86214 .13786 .2203

1.10 .86433 .13567 .2179

1.11 .86650 .13350 .2155

1.12 .86864 .13136 .2131

1.13 .87076 .12924 .2107

1.14 .87286 .12714 .2083

1.15 .87493 .12507 .2059

1.16 .87698 .12302 .2036

1.17 .87900 .12100 .2012

1.18 .88100 .11900 .1989

1.19 .88298 .11702 .1965

1.20 .88493 .11507 .1942

1.21 .88686 .11314 .1919

1.22 .88877 .11123 .1895

1.23 .89065 .10935 .1872

1.24 .89251 .10749 .1849

1.25 .89435 .10565 .1826

1.26 .89617 .10383 .1804

1.27 .89796 .10204 .1781

1.28 .89973 .10027 .1758

1.29 .90147 .09853 .1736

1.30 .90320 .09680 .1714

1.31 .90490 .09510 .1691

1.32 .90658 .09342 .1669

1.33 .90824 .09176 .1647

1.34 .90988 .09012 .1626

1.35 .91149 .08851 .1604

1.36 .91309 .08691 .1582

1.37 .91466 .08534 .1561

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

1.38 .91621 .08379 .1539

1.39 .91774 .08226 .1518

1.40 .91924 .08076 .1497

1.41 .92073 .07927 .1476

1.42 .92220 .07780 .1456

1.43 .92364 .07636 .1435

1.44 .92507 .07493 .1415

1.45 .92647 .07353 .1394

1.46 .92785 .07215 .1374

1.47 .92922 .07078 .1354

1.48 .93056 .06944 .1334

1.49 .93189 .06811 .1315

1.50 .93319 .06681 .1295

1.51 .93448 .06552 .1276

1.52 .93574 .06426 .1257

1.53 .93699 .06301 .1238

1.54 .93822 .06178 .1219

1.55 .93943 .06057 .1200

1.56 .94062 .05938 .1182

1.57 .94179 .05821 .1163

1.58 .94295 .05705 .1145

1.59 .94408 .05592 .1127

1.60 .94520 .05480 .1109

1.61 .94630 .05370 .1092

1.62 .94738 .05262 .1074

1.63 .94845 .05155 .1057

1.64 .94950 .05050 .1040

1.65 .95053 .04947 .1023

1.66 .95154 .04846 .1006

1.67 .95254 .04746 .0989

1.68 .95352 .04648 .0973

z
Larger 
Portion

Smaller 
Portion y

1.69 .95449 .04551 .0957

1.70 .95543 .04457 .0940

1.71 .95637 .04363 .0925

1.72 .95728 .04272 .0909

1.73 .95818 .04182 .0893

1.74 .95907 .04093 .0878

1.75 .95994 .04006 .0863

1.76 .96080 .03920 .0848

1.77 .96164 .03836 .0833

1.78 .96246 .03754 .0818

1.79 .96327 .03673 .0804

1.80 .96407 .03593 .0790

1.81 .96485 .03515 .0775

1.82 .96562 .03438 .0761

1.83 .96638 .03362 .0748

1.84 .96712 .03288 .0734

1.85 .96784 .03216 .0721

1.86 .96856 .03144 .0707

1.87 .96926 .03074 .0694

1.88 .96995 .03005 .0681

1.89 .97062 .02938 .0669

1.90 .97128 .02872 .0656

1.91 .97193 .02807 .0644

1.92 .97257 .02743 .0632

1.93 .97320 .02680 .0620

1.94 .97381 .02619 .0608

1.95 .97441 .02559 .0596

1.96 .97500 .02500 .0584

1.97 .97558 .02442 .0573

1.98 .97615 .02385 .0562

1.99 .97670 .02330 .0551

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

2.00 .97725 .02275 .0540

2.01 .97778 .02222 .0529

2.02 .97831 .02169 .0519

2.03 .97882 .02118 .0508

2.04 .97932 .02068 .0498

2.05 .97982 .02018 .0488

2.06 .98030 .01970 .0478

2.07 .98077 .01923 .0468

2.08 .98124 .01876 .0459

2.09 .98169 .01831 .0449

2.10 .98214 .01786 .0440

2.11 .98257 .01743 .0431

2.12 .98300 .01700 .0422

2.13 .98341 .01659 .0413

2.14 .98382 .01618 .0404

2.15 .98422 .01578 .0396

2.16 .98461 .01539 .0387

2.17 .98500 .01500 .0379

2.18 .98537 .01463 .0371

2.19 .98574 .01426 .0363

2.20 .98610 .01390 .0355

2.21 .98645 .01355 .0347

2.22 .98679 .01321 .0339

2.23 .98713 .01287 .0332

2.24 .98745 .01255  0325

2.25 .98778 .01222 .0317

2.26 .98809 .01191 .0310

2.27 .98840 .01160 .0303

2.28 .98870 .01130 .0297

2.29 .98899 .01101 .0290

z
Larger 
Portion

Smaller 
Portion y

2.30 .98928 .01072 .0283

2.31 .98956 .01044 .0277

2.32 .98983 .01017 .0270

2.33 .99010 .00990 .0264

2.34 .99036 .00964 .0258

2.35 .99061 .00939 .0252

2.36 .99086 .00914 .0246

2.37 .99111 .00889 .0241

2.38 .99134 .00866 .0235

2.39 .99158 .00842 .0229

2.40 .99180 .00820 .0224

2.41 .99202 .00798 .0219

2.42 .99224 .00776 .0213

2.43 .99245 .00755 .0208

2.44 .99266 .00734 .0203

2.45 .99286 .00714 .0198

2.46 .99305 .00695 .0194

2.47 .99324 .00676 .0189

2.48 .99343 .00657 .0184

2.49 .99361 .00639 .0180

2.50 .99379 .00621 .0175

2.51 .99396 .00604 .0171

2.52 .99413 .00587 .0167

2.53 .99430 .00570 .0163

2.54 .99446 .00554 .0158

2.55 .99461 .00539 .0154

2.56 .99477 .00523 .0151

2.57 .99492 .00508 .0147

2.58 .99506 .00494 .0143

2.59 .99520 .00480 .0139

(Continued)
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z
Larger 
Portion

Smaller 
Portion y

2.60 .99534 .00466 .0136

2.61 .99547 .00453 .0132

2.62 .99560 .00440 .0129

2.63 .99573 .00427 .0126

2.64 .99585 .00415 .0122

2.65 .99598 .00402 .0119

2.66 .99609 .00391 .0116

2.67 .99621 .00379 .0113

2.68 .99632 .00368 .0110

2.69 .99643 .00357 .0107

2.70 .99653 .00347 .0104

2.71 .99664 .00336 .0101

2.72 .99674 .00326 .0099

2.73 .99683 .00317 .0096

2.74 .99693 .00307 .0093

2.75 .99702 .00298 .0091

2.76 .99711 .00289 .0088

2.77 .99720 .00280 .0086

2.78 .99728 .00272 .0084

2.79 .99736 .00264 .0081

2.80 .99744 .00256 .0079

2.81 .99752 .00248 .0077

2.82 .99760 .00240 .0075

2.83 .99767 .00233 .0073

z
Larger 
Portion

Smaller 
Portion y

2.84 .99774 .00226 .0071

2.85 .99781 .00219 .0069

2.86 .99788 .00212 .0067

2.87 .99795 .00205 .0065

2.88 .99801 .00199 .0063

2.89 .99807 .00193 .0061

2.90 .99813 .00187 .0060

2.91 .99819 .00181 .0058

2.92 .99825 .00175 .0056

2.93 .99831 .00169 .0055

2.94 .99836 .00164 .0053

2.95 .99841 .00159 .0051

2.96 .99846 .00154 .0050

2.97 .99851 .00149 .0048

2.98 .99856 .00144 .0047

2.99 .99861 .00139 .0046

3.00 .99865 .00135 .0044

… … … …

3.25 .99942 .00058 .0020

… … … …

3.50 .99977 .00023 .0009

… … … …

4.00 .99997 .00003 .0001

(Continued)

All values calculated by author using SPSS.
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A.2    Critical values of the t-distribution

Two-Tailed Test One-Tailed Test
df 0.05 0.01 0.05 0.01

1           12.71           63.66 6.31 31.82
2 4.30 9.92 2.92 6.96
3 3.18 5.84 2.35 4.54
4 2.78 4.60 2.13 3.75
5 2.57 4.03 2.02 3.36
6 2.45 3.71 1.94 3.14
7 2.36 3.50 1.89 3.00
8 2.31 3.36 1.86 2.90
9 2.26 3.25 1.83 2.82

10 2.23 3.17 1.81 2.76
11 2.20 3.11 1.80 2.72
12 2.18 3.05 1.78 2.68
13 2.16 3.01 1.77 2.65
14 2.14 2.98 1.76 2.62
15 2.13 2.95 1.75 2.60
16 2.12 2.92 1.75 2.58
17 2.11 2.90 1.74 2.57
18 2.10 2.88 1.73 2.55
19 2.09 2.86 1.73 2.54
20 2.09 2.85 1.72 2.53
21 2.08 2.83 1.72 2.52
22 2.07 2.82 1.72 2.51
23 2.07 2.81 1.71 2.50
24 2.06 2.80 1.71 2.49
25 2.06 2.79 1.71 2.49
26 2.06 2.78 1.71 2.48
27 2.05 2.77 1.70 2.47
28 2.05 2.76 1.70 2.47
29 2.05 2.76 1.70 2.46
30 2.04 2.75 1.70 2.46
35 2.03 2.72 1.69 2.44
40 2.02 2.70 1.68 2.42
45 2.01 2.69 1.68 2.41
50 2.01 2.68 1.68 2.40
60 2.00 2.66 1.67 2.39
70 1.99 2.65 1.67 2.38
80 1.99 2.64 1.66 2.37
90 1.99 2.63 1.66 2.37

100 1.98 2.63 1.66 2.36
∞ (z) 1.96 2.58 1.64 2.33

All values computed by the author using SPSS.
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A.3  Critical values of the F-distribution

df (Numerator)

p 1 2 3 4 5 6 7 8 9 10

d
f (

D
en

o
m

in
at

o
r)

  1 0.05 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

0.01 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47 6055.85

  2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

0.01 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

  3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

  4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

  5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

  6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

  7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

  8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

  9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85

11 0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54

12 0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

13 0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10

14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

0.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

15 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69

17 0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59

18 0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

0.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
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df (Numerator)

p 1 2 3 4 5 6 7 8 9 10

d
f (

D
en

o
m

in
at

o
r)

19 0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

22 0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26

24 0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

26 0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09

28 0.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03

30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

35 0.05 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11

0.01 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88

40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

45 0.05 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05

0.01 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74

50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

0.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70

60 0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63

80 0.05 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95

0.01 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55

100 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93

0.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50

150 0.05 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 1.89

0.01 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.53 2.44

300 0.05 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86

0.01 6.72 4.68 3.85 3.38 3.08 2.86 2.70 2.57 2.47 2.38

500 0.05 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85

0.01 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36

1000 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84

0.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34

(Continued)
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df (Numerator)

p 15 20 25 30 40 50 1000
d

f (
D

en
o

m
in

at
o

r)
  1 0.05 245.95 248.01 249.26 250.10 251.14 251.77 254.19

0.01 6157.31 6208.74 6239.83 6260.65 6286.79 6302.52 6362.70

  2 0.05 19.43 19.45 19.46 19.46 19.47 19.48 19.49

0.01 99.43 99.45 99.46 99.47 99.47 99.48 99.50

  3 0.05 8.70 8.66 8.63 8.62 8.59 8.58 8.53

0.01 26.87 26.69 26.58 26.50 26.41 26.35 26.14

  4 0.05 5.86 5.80 5.77 5.75 5.72 5.70 5.63

0.01 14.20 14.02 13.91 13.84 13.75 13.69 13.47

  5 0.05 4.62 4.56 4.52 4.50 4.46 4.44 4.37

0.01 9.72 9.55 9.45 9.38 9.29 9.24 9.03

  6 0.05 3.94 3.87 3.83 3.81 3.77 3.75 3.67

0.01 7.56 7.40 7.30 7.23 7.14 7.09 6.89

  7 0.05 3.51 3.44 3.40 3.38 3.34 3.32 3.23

0.01 6.31 6.16 6.06 5.99 5.91 5.86 5.66

  8 0.05 3.22 3.15 3.11 3.08 3.04 3.02 2.93

0.01 5.52 5.36 5.26 5.20 5.12 5.07 4.87

  9 0.05 3.01 2.94 2.89 2.86 2.83 2.80 2.71

0.01 4.96 4.81 4.71 4.65 4.57 4.52 4.32

10 0.05 2.85 2.77 2.73 2.70 2.66 2.64 2.54

0.01 4.56 4.41 4.31 4.25 4.17 4.12 3.92

11 0.05 2.72 2.65 2.60 2.57 2.53 2.51 2.41

0.01 4.25 4.10 4.01 3.94 3.86 3.81 3.61

12 0.05 2.62 2.54 2.50 2.47 2.43 2.40 2.30

0.01 4.01 3.86 3.76 3.70 3.62 3.57 3.37

13 0.05 2.53 2.46 2.41 2.38 2.34 2.31 2.21

0.01 3.82 3.66 3.57 3.51 3.43 3.38 3.18

14 0.05 2.46 2.39 2.34 2.31 2.27 2.24 2.14

0.01 3.66 3.51 3.41 3.35 3.27 3.22 3.02

15 0.05 2.40 2.33 2.28 2.25 2.20 2.18 2.07

0.01 3.52 3.37 3.28 3.21 3.13 3.08 2.88

16 0.05 2.35 2.28 2.23 2.19 2.15 2.12 2.02

0.01 3.41 3.26 3.16 3.10 3.02 2.97 2.76

17 0.05 2.31 2.23 2.18 2.15 2.10 2.08 1.97

0.01 3.31 3.16 3.07 3.00 2.92 2.87 2.66

18 0.05 2.27 2.19 2.14 2.11 2.06 2.04 1.92

0.01 3.23 3.08 2.98 2.92 2.84 2.78 2.58

(Continued)
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df (Numerator)

p 15 20 25 30 40 50 1000

d
f (

D
en

o
m

in
at

o
r)

  1 0.05 245.95 248.01 249.26 250.10 251.14 251.77 254.19

0.01 6157.31 6208.74 6239.83 6260.65 6286.79 6302.52 6362.70

  2 0.05 19.43 19.45 19.46 19.46 19.47 19.48 19.49

0.01 99.43 99.45 99.46 99.47 99.47 99.48 99.50

  3 0.05 8.70 8.66 8.63 8.62 8.59 8.58 8.53

0.01 26.87 26.69 26.58 26.50 26.41 26.35 26.14

  4 0.05 5.86 5.80 5.77 5.75 5.72 5.70 5.63

0.01 14.20 14.02 13.91 13.84 13.75 13.69 13.47

  5 0.05 4.62 4.56 4.52 4.50 4.46 4.44 4.37

0.01 9.72 9.55 9.45 9.38 9.29 9.24 9.03

  6 0.05 3.94 3.87 3.83 3.81 3.77 3.75 3.67

0.01 7.56 7.40 7.30 7.23 7.14 7.09 6.89

  7 0.05 3.51 3.44 3.40 3.38 3.34 3.32 3.23

0.01 6.31 6.16 6.06 5.99 5.91 5.86 5.66

  8 0.05 3.22 3.15 3.11 3.08 3.04 3.02 2.93

0.01 5.52 5.36 5.26 5.20 5.12 5.07 4.87

  9 0.05 3.01 2.94 2.89 2.86 2.83 2.80 2.71

0.01 4.96 4.81 4.71 4.65 4.57 4.52 4.32

10 0.05 2.85 2.77 2.73 2.70 2.66 2.64 2.54

0.01 4.56 4.41 4.31 4.25 4.17 4.12 3.92

11 0.05 2.72 2.65 2.60 2.57 2.53 2.51 2.41

0.01 4.25 4.10 4.01 3.94 3.86 3.81 3.61

12 0.05 2.62 2.54 2.50 2.47 2.43 2.40 2.30

0.01 4.01 3.86 3.76 3.70 3.62 3.57 3.37

13 0.05 2.53 2.46 2.41 2.38 2.34 2.31 2.21

0.01 3.82 3.66 3.57 3.51 3.43 3.38 3.18

14 0.05 2.46 2.39 2.34 2.31 2.27 2.24 2.14

0.01 3.66 3.51 3.41 3.35 3.27 3.22 3.02

15 0.05 2.40 2.33 2.28 2.25 2.20 2.18 2.07

0.01 3.52 3.37 3.28 3.21 3.13 3.08 2.88

16 0.05 2.35 2.28 2.23 2.19 2.15 2.12 2.02

0.01 3.41 3.26 3.16 3.10 3.02 2.97 2.76

17 0.05 2.31 2.23 2.18 2.15 2.10 2.08 1.97

0.01 3.31 3.16 3.07 3.00 2.92 2.87 2.66

18 0.05 2.27 2.19 2.14 2.11 2.06 2.04 1.92

0.01 3.23 3.08 2.98 2.92 2.84 2.78 2.58

df (Numerator)

p 15 20 25 30 40 50 1000

d
f (

D
en

o
m

in
at

o
r)

  19 0.05 2.23 2.16 2.11 2.07 2.03 2.00 1.88

0.01 3.15 3.00 2.91 2.84 2.76 2.71 2.50

  20 0.05 2.20 2.12 2.07 2.04 1.99 1.97 1.85

0.01 3.09 2.94 2.84 2.78 2.69 2.64 2.43

  22 0.05 2.15 2.07 2.02 1.98 1.94 1.91 1.79

0.01 2.98 2.83 2.73 2.67 2.58 2.53 2.32

  24 0.05 2.11 2.03 1.97 1.94 1.89 1.86 1.74

0.01 2.89 2.74 2.64 2.58 2.49 2.44 2.22

  26 0.05 2.07 1.99 1.94 1.90 1.85 1.82 1.70

0.01 2.81 2.66 2.57 2.50 2.42 2.36 2.14

  28 0.05 2.04 1.96 1.91 1.87 1.82 1.79 1.66

0.01 2.75 2.60 2.51 2.44 2.35 2.30 2.08

  30 0.05 2.01 1.93 1.88 1.84 1.79 1.76 1.63

0.01 2.70 2.55 2.45 2.39 2.30 2.25 2.02

  35 0.05 1.96 1.88 1.82 1.79 1.74 1.70 1.57

0.01 2.60 2.44 2.35 2.28 2.19 2.14 1.90

  40 0.05 1.92 1.84 1.78 1.74 1.69 1.66 1.52

0.01 2.52 2.37 2.27 2.20 2.11 2.06 1.82

  45 0.05 1.89 1.81 1.75 1.71 1.66 1.63 1.48

0.01 2.46 2.31 2.21 2.14 2.05 2.00 1.75

  50 0.05 1.87 1.78 1.73 1.69 1.63 1.60 1.45

0.01 2.42 2.27 2.17 2.10 2.01 1.95 1.70

  60 0.05 1.84 1.75 1.69 1.65 1.59 1.56 1.40

0.01 2.35 2.20 2.10 2.03 1.94 1.88 1.62

  80 0.05 1.79 1.70 1.64 1.60 1.54 1.51 1.34

0.01 2.27 2.12 2.01 1.94 1.85 1.79 1.51

100 0.05 1.77 1.68 1.62 1.57 1.52 1.48 1.30

0.01 2.22 2.07 1.97 1.89 1.80 1.74 1.45

150 0.05 1.73 1.64 1.58 1.54 1.48 1.44 1.24

0.01 2.16 2.00 1.90 1.83 1.73 1.66 1.35

300 0.05 1.70 1.61 1.54 1.50 1.43 1.39 1.17

0.01 2.10 1.94 1.84 1.76 1.66 1.59 1.25

500 0.05 1.69 1.59 1.53 1.48 1.42 1.38 1.14

0.01 2.07 1.92 1.81 1.74 1.63 1.57 1.20

1000 0.05 1.68 1.58 1.52 1.47 1.41 1.36 1.11

0.01 2.06 1.90 1.79 1.72 1.61 1.54 1.16

All values computed by author using SPSS.
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A.4  Critical values of the chi-square distribution

p

df 0.05 0.01

  1   3.84   6.63

  2   5.99   9.21

  3   7.81 11.34

  4   9.49 13.28

  5 11.07 15.09

  6 12.59 16.81

  7 14.07 18.48

  8 15.51 20.09

  9 16.92 21.67

10 18.31 23.21

11 19.68 24.72

12 21.03 26.22

13 22.36 27.69

14 23.68 29.14

15 25.00 30.58

16 26.30 32.00

17 27.59 33.41

18 28.87 34.81

19 30.14 36.19

20 31.41 37.57

21 32.67 38.93

22 33.92 40.29

23 35.17 41.64

24 36.42 42.98

p

df 0.05 0.01

25 37.65 44.31

26 38.89 45.64

27 40.11 46.96

28 41.34 48.28

29 42.56 49.59

30 43.77 50.89

35 49.80 57.34

40 55.76 63.69

45 61.66 69.96

50 67.50 76.15

60 79.08 88.38

70 90.53 100.43

80 101.88 112.33

90 113.15 124.12

100 124.34 135.81

200 233.99 249.45

300 341.40 359.91

400 447.63 468.72

500 553.13 576.49

600 658.09 683.52

700 762.66 789.97

800 866.91 895.98

900 970.90 1001.63

1000 1074.68 1106.97

All values computed by author using SPSS.
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Kaiser’s alpha factoring, 759
maximum-likelihood method, 759, 

921
non-positive definite matrices, 773
packages, 772, 807
preparation and analysis, 772–7
and principal components analysis, 

760
in R Commander, 772
reliability, 798–806

Cronbach’s alpha, 798–800
output, 801–6
in R, 800–1
in R Commander, 800
reporting, 806–7
split-half, 798–9, 926

reporting, 795–7
residual.stats() function, 787
and sample size, 769–70
squared multiple correlation  

(SMC), 760
structure and pattern matrices, 755

factor matrices, 755
factorial ANOVA, 498–548, 918

breaking down variance, 506
contrasts, 518–20

output, 524–5
schematic representation, 526

effect sizes, 542–4
entering data, 513–15
exploring data, 516–18
F-ratio, 511
factorial designs, 499–500

independent, 499
mixed, 500
repeated measures, 500

fitting a model, 520
with third variable, 521

interaction graphs, 516, 530–4
interpretation, 520–3

contrasts, 524–5
graphs, 522, 523, 532, 533

model sum of squares, 507–10
names of ANOVAs, 500
packages, 511–12, 546
plots, 530
post hoc analysis, 528–30
in R, 511–12
in R Commander, 512–13
as regression, 501–5
reporting, 544–5
residual sum of squares, 510–11
robust factorial ANOVA, 534–41
simple effects analysis, 525, 527–8
total sum of squares (SST), 506–7
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covariance structure, 869, 898, 913
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fitting statistical models to the data, 28–9
fixed coefficients, 863, 918
fixed effects, 862
fixed intercepts, 863, 918
fixed slopes, 863, 918
fixed variables, 863, 918
forced entry regression, 264
frequency distributions, 19–27, 918
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checking visually, 169–73

and probabilty, 25–7
Friedman’s ANOVA, 686–92, 918

effect size, 692
inputting data, 689–90
output, 691
post hoc tests, 691
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in R Commander, 690
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theory, 688–9
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goodness of fit, 918
grand mean, 364
grand mean centring, 871, 918
grand variance, 918
graphics window, 918
graphs

bar charts, 149–55
boxplots, 144–8
density plots, 148–9
with ggplot2, 121–36

aesthetics, 123, 124–5, 125–6
anatomy of, 123, 127–8
faceting, 130–1
filename, 132
geoms (geometric objects), 121–2, 

123, 124–5
layers, 121–2
legends, 144

graphs cont.
overplotting, 130–1
process using Facebook research 

data, 133–6
saving, 131–2, 133
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themes and options, 161–3

good and bad, 117–20
histograms, 19–27, 142–4
line graphs, 155–61
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760, 769

harmonic means, 918–19
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hat values, 269–70, 919
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of variance, 185–6
heavy metal and suicide risk: logistic 

regression, 345
heterogeneity of regression, 467
hiccups: line graphs, 155–8
hierarchical data, 856–8

three-level, 857–8
two-level, 856–7
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histograms, 19–27, 142–4, 919
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and Q-Q plots, 172
see also normal distributions

Hoaglin, D. and Welsch, R., 270
Hochberg, Y., 429
Holm, S., 429, 430
Hommel, G., 429
homogeneity of regression slopes,  

466–7, 483–4, 919
homogeneity of variance, 168, 185–90, 

412, 413, 919
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null hypotheses, 28

identity matrices, 701, 919
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repeated-measures designs, 556–82
independence: assumption of, 168,  

860, 919
independent design, 16, 17, 361, 914
independent variables, 7, 8, 920
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interaction graphs, 516
Internet addiction: factor analysis, 797
interval variables, 9–10, 11
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is.na(), 196
iterative processes, 322

Japanese quail sperm count
confidence intervals, 43–5, 46, 48
one-way ANOVA, 460–1
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Jonckheere-Tepstra test, 684–6

effect size, 685
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inputting, 677–9
output, 680–1
post hoc tests, 681–4
in R, 679–80
in R Commander, 679
theory, 675–7
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lady tasting tea: testing research 
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latent variables, 750
leptokurtic distributions, 21
levels of measurement, 8–11
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life satisfaction: growth curves, 894–904
likelihood ratio, 816–17, 921
line graphs, 155–61, 921

of one independent variable, 155–8
for several independent variables, 
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linear trend, 427
linear/non-linear models, 35, 272, 921
Lo, S.F. et al, 358
local circularity, 551–2
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log transformation: log(), 192, 196, 

197, 200
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logistic regression, 312–58, 921

assessing the model
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315, 921
R and R2 statistic, 316–18

assumptions
independence of errors, 321
linearity, 321, 344–5
multicollinearity, 322, 343–4
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329–30
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336–8
obtaining residuals, 338–9
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loglinear analysis, 835–52, 921
alternative method, 850–1
assumptions, 837–8
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in R, 838–50

analyis, 845–50
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MacCallum, R.C. et al, 361, 769
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effects of looks, 622–4
effects of personality, 624–5
entering data, 608–10
exploring the data, 610–13
interaction of gender and looks, 625–7

graph, 627
interaction of gender and personality, 

628–30
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interaction of looks and personality, 
630–5

graphs, 631, 632, 633, 635
interaction, three-way (looks, 

personality, gender), 635–9
graphs, 636, 637, 638, 639

model, 619–22
multilevel models, 640
packages, 606–7, 650
procedure, 608
relationships and jealousy research, 643
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robust methods (Facebook friends), 

643–9
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network friends) cont.
data, 644
graph of results, 649
restructured data, 645
wide-format data, 646–7

mobile phones and brain tumours:  
one-way ANOVA, 460

mode, 22
model sum of squares, 409
Monte Carlo method, 659
mosaic plot, 841–3
multicollinearity, 274–6
multilevel linear models

assessing the fit, 867–8
assumptions, 870
autoregressive models, 898
centring variables, 871–2
cosmetic surgery example, 861–2
covariance structures, 868–9
fixed and random coefficients,  

862–7
growth curves, 892–904

adding higher order polynomials, 
901–4

addng time as fixed effect, 897
comparing models, 899–901
covariance structure, 897–8
example: life satisfaction over  

time, 894–5
lm(), 896
random slopes, 897
restructuring data, 895
setting up model, 895–6

in R, 873–92
adding fixed effects, 881–3
adding and interaction term, 

886–92
ANCOVA, 876–8
ANOVA, 874, 876
assessing the need, 878–91
data layout, 874
entering data, 873–4
missing data, 883
output, 888–92
packages, 873
parameters in analysis, 879
picturing data, 874, 875
predicted values, 886
random slopes, 884–6
update function, 887

random intercept model, 863
random intercept and slope  

model, 864
random slope model, 864
reporting, 906–7
representation of, 864–7

data sets, 865
sample size and power, 870–1
theory, 860–4
uses, 859–60

multimodal distribution, 22
multinomial logistic regression, 346–55
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and ANOVA dispute, 400–1
bootstrapping, 298–301
casewise diagnostics, 288–91
centring, 871
comparing models, 284–6
diagnostics, 266–71

influential cases, 269–71, 292
outliers and residuals, 267–9
parameters with one excluded  

case, 270
difference from simple regression, 261
dummy coding, 302–5
with dummy variables, 305–8
example of model, 261–2
generalization, 266, 271–6

assumptions, 271–3
independence, 291–2
residuals, 294–7
violations of, 298

cross-validation, 273
multicollinearity, 274–6, 292–3
sample size, 273–4, 275

methods, 263–6
model parameters, 281–4
model summary, 280–1
parsimony-adjusted measures of fit, 
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in R, 279

comparing models, 285–6
in R Commander, 277–8

comparing models, 285
diagnostic tests, 287–8

reporting, 301
sums of squares, 262–3
see also simple regression

multivariate analysis of variance 
(MANOVA), 554, 696–748, 921

assumptions, 717–18
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independence, 717
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cross-products, 702, 705–7
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error SSCP, 702
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model SSCP matrix (H), 709–10
OCD data, 700
power of, 698
and principal components analysis, 

761
in R

multivariate analysis of variance 
(MANOVA) cont.
contrasts, 732–3
entering data, 720–2
explorign the data, 722–7
MANOVA model, 728–30, 731
packages, 719–20, 746
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robust MANOVA, 733–7
setting contrasts, 728
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univariate test statistics, 731–2
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residual SSCP matrix (E), 709
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choosing, 718–19
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711–12, 714–15
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Pillai-Bartlett trace, 715, 718
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Roy’s largest root, 717, 718
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total SSCP matrix (T), 707–9
univariate ANOVA for DV 1, 703–4
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when to use, 654
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groups of data, 177–82
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Shapiro-Wilk test, 175, 182–5
Table, 929–34

normality, assumption of, 168, 169–84
normally distributed errors, 272
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null hypotheses, 28
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promax and oblimin, 767
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odds ratio, 57, 319–20
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one-and two-tailed tests, 55–6, 923, 

927, 935
one-way ANOVA see analysis of variance 
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Ong, E.Y.L. et al, 131
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ordinal variables, 9, 11, 923
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analysis, 810
orthogonal contrasts, 518, 519, 923
orthogonal rotation, 765, 923

quartimax and varimax, 766–7
outcome variables, 246
outliers, 143–4, 145, 146, 190–1,  

268, 923

pairwise comparisons, 428, 923
parametric tests, 923
part correlation see semi-partial 

correlation
partial correlation, 213–14, 234–7, 923

in R, 235–7
partial eta squared, 923
partitioning variance, 415–16
pattern matrices, 923
Pearson, E.S. and Hartley, H.O., 189
Pearson, K., 209, 210, 219
Pearson’s chi-square test, 814–16, 

818–27, 914
assumptions, 818
breaking down with standardized 

residuals, 825–6
contingency table, 819–20, 822
effect size, 826–7
in R, 821–5

output, 822–5
in R Commander, 820–1
raw scores, 818–19
as regression, 829–35
reporting, 827

Pearson’s correlation coefficient, r, 57, 
209, 212, 219–23, 923

assumptions, 219
in R, 219–23

Pedhazur, E. and Schmelkin, L.,  
759, 766

perfect collinearity, 275
personality disorders and employment: 

t-test, 395
personality and popularity: factor 

analysis, 751–2
phi, 923
Pillai-Bartlett trace, 715, 923
planned contrasts, 414–28, 443–7, 923

defining with weights, 419–24
polynomial, 427–8

platykurtic distributions, 21, 923
polynomial contrasts, 427–8, 923
polynomials, 892, 893, 923

25-Field-4368-Index.indd   953 29/02/2012   6:02:08 PM



954 D ISCOVER ING STAT IST ICS  US ING R

Popper, Karl, 5
population, 923–4
post hoc tests, 924
power, 924
practice effects, 18, 924
predictor and outcome variables, 7, 8
predictor variables, 246, 924
principal components analysis, 755, 

759, 760–1, 924
compared with MANOVA, 761
theory, 761

probability distributions, 924
probability, 25–7
promax, 924

Q-Q plots, 171, 172, 924
quadratic trend, 427, 924
qualitative methods, 2, 924
quantitative methods, 2, 924
quartic trend, 427, 924
quartiles, 24, 924
questionnaire on R anxiety: factor 

analysis, 767–97

R
case sensitivity, 74
cbind(), 83
commands, 71, 72, 73, 74–5, 76

multiple, 73
console window, 67
CRAN, 63–4
data

coding variables, 89–90, 95
combined variables, 83
dataframes, 81–2, 86

selecting parts, 103–5
date variables, 87–8
equals sign, 84
factors, 89–90
importing, 97–102

problems, 102
with R Commander, 101–2
SPSS files, 99–100

inputting, 85–7
long (molten) format, 107, 108, 

110, 921
missing data, 92
naming variables, 85
numeric variables, 81, 91
operators, 83, 84
with R Commander, 92–7, 101–2
saving, 103
string variables, 81, 87
using Excel, 95–7

data manipulation
matrices, 106
reshaping data, 107–12
selecting data with subset(), 105–6
selecting parts of dataframe, 103–6

disambiguating functions, 80
downloading, 65–6
file locations, 99
graphics window, 67

R cont.
help, 80–1
icons

in MacOS, 72
in Windows, 70

keyboard shortcuts, 68
list(), 83
main windows, 67
menus, 67–8

in MacOS, 71
in Windows, 68, 69

open source, 63
packages, 63, 78–80, 923
pros and cons, 64–5
scripts, 75–6
setd(), 77
troubleshooting, 912
versions, 66
wide format, 85
working directory, 77–8
workspace, 76–7
writing functions, 228–9

R-matrix, 751, 752, 759
Ramsey, P.H., 698
random coefficients, 863, 924
random effects, 862, 924
random intercept model, 863, 924
random variables, 863
random variance, 759
randomization, 17–19, 924
ranges, 24–5, 924
ranking data, 654, 656–8, 667, 924
ratio variables, 10, 11, 924
reciprocal transformation, 192,  

197–8, 200
regression see logistic regression; 

multiple regression; simple 
regression

regression coefficients, 247, 924
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designs, 643
reliability, 12, 925
removing a case, 190
repeated-measures designs, 16, 17, 361, 

394–5, 549–603, 925
error bar graphs, 361–6
F-test, 551
factorial, 583–603

contrasts, 588–9
entering data, 584–6
exploring the data, 586–7
as GLM, 594–9
output, 590–4
procedure, 389–94
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robust method, 599–600

one-way, 554–82
between-participant sum of squares, 

561
effect sizes, 580–1
F-ratio, 560–1
mean squares, 560
model sum of squares, 559

repeated-measures designs cont.
partitioning variance, 555–6
reporting, 581–2
residual sum of squares, 560
robust procedures, 576–80
total sum of squares, 557–8
within-participant sum of squares, 

558–9
within-participant variance, 554–5

one-way in R
contrasts, 568
entering data, 563–5
exploring the data, 565–7
graphs, 566, 567
multilevel, 573–6
packages, 561–2
procedure, 562
using ezANOVA(), 569–72

packages, 602
sphericity, 551–4, 570–1

departures from, 552
and F-test, 552–3
measurement of, 551–2
and post hoc tests, 553

research methods lecturers: factor 
analysis, 808–9

research process, 3, 49–50
observation, 4
generating theories, 4–7
data collection, 7–19
analysing data, 19–30

residual sum of squares, 250, 925
residuals, 248, 925

standardized, 268
studentized, 269

residuals and influence statistics,  
267

reverse score transformation, 192
robust tests, 193, 201–2, 925
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rotation, 765–7, 925
Rouanet, H. and Lépine, D., 552
row vectors, 701
rowMeans(), 196
rowSums(), 196
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Roy’s largest root, 717, 925
R², 222, 250–1

Sage editors playing football: chi square 
test, 853

Salsburg, David, 51
sample size

in factor analysis, 769–70
in regression, 273–4

samples, 36, 925
central limit theorem, 43, 169
sampling distribution, 42, 925
sampling variation, 42, 925
and standard error, 42–3, 44
standard error of the mean, 42–3

saturated models, 925
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with regression line, 138–40
simple, 136–8
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models, 898
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Shapiro-Wilk test, 175, 182–5, 660, 925
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shrinkage, 925
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significant results, 54
simple effects analysis, 525, 527–8, 925
simple regression, 246–60

assessing individual predictors, 252–3
goodness of fit, 249–52
interpreting, 257–8
lines, 138–40, 246–7
method of least squares, 247, 248–9
model parameters, 259
overall fit of the object model, 258–9
packages, 253
in R, 255–7

misssing data, 257
in R Commander, 254–5
straight lines, 247–8
using the model, 260
see also mulitple regression

singularity, 770, 925
skew, 174, 176, 925
skewed distributions, 20
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ANCOVA, 496–7
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measurement of, 551–2
and post hoc tests, 553
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square matrices, 701, 926
square root transformation: sqrt(), 192, 
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squared multiple correlation (SMC), 760
stalking: ANCOVA, 496
standard deviation, 39, 40, 209, 926
standard error, 42–3, 44, 253, 926
standard error of differences, 387, 926
standardization, 208–9, 926
standardized residuals, 268, 926
statistical models

assessing fit of the mean, 37–40
building, 33–6
expressing mean as model, 40–1

statistical models cont.
linear, 35
simple models, 36–41
testing research questions, 49–59

statistical power, 58–9, 667
statistical significance, 51, 52
stepwise regression, 264–5, 926
Stevens, J.P., 270, 554, 572, 698, 711, 

760, 767
straight lines, 247–8
string variables, 926
structure matrices, 926
Stuart, E.W. et al, 583
studentized residuals, 269, 926
students’ knowledge of psychology: 

MANOVA, 747–8
Student’s t-distribution, 269
subliminat messages: Wilcoxon signed-

rank test, 694
sum of squared differences, 248, 249
sum of squared errors, 38, 926
sum of squares and cross-products 

(SSCP) matrices, 702, 926
sums of squares, 249–51, 702, 926

Types I, II and III, 475–7
suppressor effects, 265, 321, 926
systematic variation, 16–17, 18, 53, 926–7

t-statistic, 252, 373, 375, 927
t-test, 252, 368–72, 399, 400, 920

assumptions, 372, 373
of homogeneity of variance, 373

dependent
assumptions, 390
effect size, 393
entering data, 389
equation, 387–8
output, 391
in R, 388–94
in R Commander, 389–90
reporting, 394
robust methods, 392–3
standard error, 386–7

dependent and independent, 368–9
independent, 372–86

effect size, 384–5
exploring data, 378–9
from means, SDs and Ns, 376
output, 382
procedure, 376–7
in R, 376, 377, 379–81
in R Commander, 377–8
reporting, 385
robust procedures (Wilcox), 382–4

as linear model, 370–2
output, 371–2
packages, 396
rationale, 369–70
repeated-measures design, 394–5

Tabachnick, B.G. and Fidell, L.,  
718, 769

teaching styles: one-way ANOVA, 459–60
tertium quid, 14, 212, 927
test statistics, 53–5, 927
test-retest reliability, 12, 927

text messaging
line graphs, 159–61
mixed designs, 651–2

theories
defined, 927
generating, 4–7

third-variable problem, 14, 212
three-way ANOVA see mixed designs 

(speed dating/social network 
friends)

Tinsley, H.E.A. and Tinsley, D.J., 758
tolerance statistic, 276, 927
total sum of squares, 250, 407–8, 927
transformations, 927
treatment contrasts, 927
trend analysis, 427–8
trimmed mean, 201, 927
Tufte, E.R., 118, 161
Tukey’s post hoc test, 431, 449–51, 

529, 553
Twisk, J.W.R., 871, 879
two-way ANOVA see factorial ANOVA
Type I and Type II errors, 56–7, 667, 927

Umpierre, S.A. et al, 31
unique variance, 759, 927
univariate tests, 697, 927
unstructured covariance structure,  

869, 927
unsystematic variation, 16–17, 53, 927

validity, 12, 927
variables, 4, 7–11, 927

binary, 8, 11
categorical, 8, 11
continuous, 9, 10, 11
dependent and independent, 7, 8
discrete, 10
interval, 9–10, 11
nominal, 8, 11
ordinal, 9, 11
predictor and outcome, 7, 8
in R

string and numeric, 81
ratio, 10, 11

variance components covariance 
structure, 869, 927

variance inflation factor (VIF), 276, 928
variance ratio, 189, 190, 928
variance sum law, 374, 928
variance-covariance matrices, 927–8
variates, 711, 750
variation

systematic/unsystematic, 16–17, 53
varimax rotation, 788–90, 928
Viagra and libido

ANCOVA, 464–84
fixed and random effects, 862–3
one-way ANOVA, 401–26, 432–58

Wald statistic, 317, 319, 928
Welch’s F, 414, 928
Welch’s t-test, 373, 382, 928
Wickham, Hadley, 121, 126
Widaman, K.F., 760
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wide format data, 928
Wilcox, Rand, 193, 202–3, 382–3, 392, 

413, 534, 643
Wilcoxon, Frank, 656
Wilcoxon rank-sum test, 655–66,  

928
calculating p-value, 658–9
effect size, 664, 665–6
inputting data, 659–61
Monte Carlo method, 659
output, 664
programming, 665
in R, 662–4
in R Commander, 661–2
ranking data, 654, 656–8, 667

Wilcoxon rank-sum test cont.
results, 666
theory, 655–9

Wilcoxon signed-rank test, 667–73, 928
assumption of normality of 

differences, 667–8
effect size, 673
output, 672–3
in R, 671–2
in R Commander, 670–1
ranking data, 669
results, 673
theory, 668–70

Wilks’s lambda, 716, 928
Williams, S., 810

within-group error variance, 463
within-subject design see 

repeated-measures designs
World Cup 1998: logistic regression, 342–5
Wright, D.B., 117
writing functions, 228–9

X Factor: ordinal data, 9

Yates’s continuity correction, 817

z-scores, 174, 175, 928
z-statistic, 318–19
Zabell, S.L., 210
Zimmerman, D.W., 373

Functions in R

abs() 196
alpha() 800, 801
ancboot() 485, 489
ancova() 484, 485, 488, 490
anova() 285, 286, 337, 477, 484, 595, 

620, 640, 730, 847, 848, 881, 884, 
885, 888, 901, 905

aov() 438, 440, 441, 443, 445, 446, 
450, 454, 473, 474, 478, 482, 520, 
530, 562, 573, 574, 728, 876

aq.plot() 718, 727
as.Date() 74, 87, 88
as.factor() 348
as.matrix() 106, 221, 690, 691, 785
as.numeric() 685

binomial() 330, 331, 337, 343, 345
boot() 151, 226, 298, 299
boot.ci() 227, 299
bootdpci() 393
by() 177, 178, 180, 183, 379, 436, 437, 

472, 517, 566, 586, 611, 680, 724, 
725

c() 72, 80, 81, 82, 87, 89, 90, 102, 104, 
109, 217, 236, 364, 444, 646, 678, 
735, 800

cast() 108, 111, 112, 535, 645, 734
cat() 228, 334, 787
cbind() 83, 173, 180, 305, 445, 729, 

794, 819
choose.file() 99
cmanova() 733, 736, 737, 738
coef() 299
confint() 284, 336, 352, 450,  

451, 481
contrasts() 304, 426, 477
contr.helmert() 426
contr.poly() 427, 446
contr.SAS() 426, 444
contr.treatment() 304, 426, 444
cooks.distance() 288
cor() 215, 216, 218, 220, 224, 226, 

770, 773, 774, 777
cor.test() 216, 218, 221

cortest.bartlett() 775
cov() 725
covratio() 288
CrossTable() 821, 822, 824, 826, 827, 

838, 839

data.frame() 74, 81–2, 83, 352
describe() 173, 801
det() 777
dfbeta() 288, 289, 339
dffits() 288, 289, 339
dnorm() 170–1
drop1() 477
durbinWatsonTest() 292
dwt() 292

effect() 478
exp() 335, 336, 352
ezANOVA() 569, 576, 581, 589, 596, 

607, 613, 614, 640

factor() 89–90, 95, 98, 102, 177,  
514–15, 527, 678, 721

factor.model() 783, 784
factor.residuals() 783, 787
factor.structure() 792
file.path() 133
fitted() 338, 339
friedmanmc() 692
friedman.test() 690, 691
function() 80, 228, 229, 288, 334, 367, 

376, 457

geom_bar 123, 124, 127, 128
geom_boxplot() 123, 124, 145
geom_density() 123, 124, 148, 149
geom_errorbar 123, 125
geom_histogram() 123, 124, 128, 143
geom_hline 123, 125
geom_line() 123, 124
geom_point() 123, 124, 127, 134, 137, 

138, 141, 144, 162, 296
geom_smooth() 123, 124, 138, 139, 141
geom_text 123, 124
geom_vline 123, 125

getwd() 78
ggplot() 121, 127–8, 134, 137, 142, 

150, 156
ggsave() 131, 132, 133
gl() 90, 377, 434, 515, 527, 565, 585, 

609, 660, 677, 722
glht() 447, 449, 481, 491, 529, 575
glm() 329, 349, 350, 841
gls() 878, 879, 896

hatvalues() 288
head() 327, 339, 794
help() 80
hist() 294, 296, 786

I() 901
ifelse() 198, 199
install.packages() 79, 80
intervals() 892, 901, 905
is.factor() 348
is.na() 196, 199

jonckheere.test() 685

kmo() 776, 777
kruskalmc() 683
kruskal.test() 679

labs() 143, 145, 158
lda() 738, 739
length() 228, 229, 334, 665, 778
levels() 90, 102, 678
leveneTest() 187–8, 438, 518
library() 79, 80, 81
lincon() 447, 452, 453
list() 83, 517, 586, 611, 896
lm() 256, 257, 279, 296, 299, 306, 329, 

371, 379, 382, 438, 439, 443, 454, 
473, 520, 562, 573, 662, 728, 730, 
840, 841, 876, 877, 878, 879

lm.beta() 283
lme() 562, 573, 576, 607, 861, 882, 

883, 884, 890, 896, 897
log() 196, 344
log10() 196

25-Field-4368-Index.indd   956 29/02/2012   6:02:08 PM



957INDEX

loglik() 881
loglm() 840, 841

manova() 728
mcp2a() 534, 538
mcp2atm() 534, 538
mcppb20() 452
mean() 92, 293, 364, 366, 680, 786
med1way() 442, 443
melt() 108, 111, 112, 535, 563, 584, 

609, 645, 646, 734, 735
mes() 455, 493, 543
min() 665
mlogit() 347, 349
mlogit.data() 348
mosaicplot() 842, 849
mshapiro.test() 725, 726
mulrank() 736, 737, 738

names() 82, 156, 367, 646, 735
na.omit() 690
nrow() 786, 787

oneway.test() 441
opts() 127, 144, 161, 162

pairdepb() 576
pairwise.t.test() 447, 481, 529, 572, 

575, 594
paste() 367
pb2gen() 384
pbad2way() 534, 537, 538
pchisq() 332, 337
pcor() 236, 237
pcor.test() 236
plot() 121, 294, 741, 781
poly() 904
polychor() 772
polyserial() 232
predict() 775
principal() 778, 788, 793

print() 74, 457
print.psych() 788, 792
prop.table() 231

qnorm() 664, 665
qplot() 121, 171

rank() 665, 680
rcontrast() 492, 581, 599, 641
rcorr() 215, 216, 217, 220–1, 224
read.csv() 99, 101, 230, 235, 513
read.delim() 99, 101, 224
read.spss() 99, 101
recode() 80
relevel() 327
rep() 89, 470, 535
reshape() 112
resid() 288, 289, 338
residual.stats() 787
return() 299, 367
rFromWilcox() 0
rmanova() 577, 578
rmanovab() 577, 578
rmmcp() 578
round() 176, 385, 774
rowMeans() 196, 199
rowSums() 196
rstandard() 288, 289, 339
rstudent() 288, 289, 297, 339

sandwich() 382
sd() 170, 181, 296, 376
setwd() 77
shapiro.test() 182–3
source() 202
sppba() 648
sppbb() 648
sppbi() 648
sqrt() 196, 786
stack() 108–9, 110, 111
stat_function() 170–1

stat_summary() 150–1, 152, 153–4, 
157–8, 160

stat.desc() 173, 174, 175, 179, 182, 
183, 379, 437, 472, 517, 566, 586, 
611, 724

subset() 105–6, 177, 180, 488
sum() 228, 229, 290, 665, 785
summary() 280, 284, 287, 330, 345, 

445, 450, 451, 478, 481, 634, 901
summary.aov() 731
summary.lm() 443, 454, 479, 528
Sys.getenv() 133

t() 726
t1way() 443, 452
t1waybt 443
t2way() 534, 537, 538
table() 231, 838
tapply() 307
tsplit() 647, 648, 649
t.test() 377, 379, 380, 382, 390, 391, 

447, 662

unstack() 108, 109, 110, 442
update() 279, 484, 595, 619, 847, 887, 

897, 898, 901, 904
upper.tri() 785

vif() 292, 293, 343

wilcox.test() 662, 663, 665,  
671, 679

write.csv() 103
write.table() 103

xtabs() 838, 840, 846

ydbt() 392, 393
yuen() 384, 392
yuenbt() 384, 393
yuend() 392

Packages in R
boot 169, 187, 214, 226–7,  

253, 298

car 80, 169, 187, 253, 325, 343, 433, 
438, 467, 468, 472, 477, 511–12, 
518, 719, 730, 873

clinfun 655, 685
compute.es 433, 467, 468, 511
corpcor 772

DSUR 78, 79, 133, 457, 492, 
581, 641

effects 467, 468, 478
ez 562, 569, 607

foreign 97, 99

ggm 214, 221, 236, 255

ggplot2 78, 121–3, 125, 127, 128, 129, 
130, 132, 138, 144, 149, 156, 159, 
161, 162, 169, 170, 171, 180, 213, 
214, 294, 360, 378, 433, 467, 468, 
511, 512, 562, 607, 655, 719, 720, 
800, 873, 874

gmodels 813, 821
GPArotation 772

Hmisc 80, 151, 214, 216, 221

MASS 139, 719, 720, 738, 813
mlogit 325
multcomp 433, 447, 449, 468, 501, 

511, 512, 562
mvnormtest 720, 725
mvoutlier 718, 719, 720, 727

nlme 562, 607, 873

pastecs 169, 173, 360, 379, 433,  
437, 467, 468, 472, 512, 562,  
566, 586, 607, 611, 655,  
720, 724

pgirmess 655, 683
polycor 214, 232, 772
psych 169, 173, 767, 772, 775,  

778, 800

QuantPsyc 253, 283

Rcmdr 92–3, 169, 214, 254, 278,  
360, 655

reshape 108, 110–11, 112, 512, 562, 
607, 645, 720, 734, 873

WRS 202, 360, 433, 467, 468, 484, 
512, 534, 562, 576, 607, 643,  
720, 733
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