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PREFACE

Karma Police, arrest this man, he talks in maths, he buzzes like a fridge, he’s like
a detuned radio.

Radiohead, ‘Karma Police’, OK Computer (1997)

Introduction

Many social science students (and researchers for that matter) despise statistics. For one
thing, most of us have a non-mathematical background, which makes understanding com-
plex statistical equations very difficult. Nevertheless, the evil goat-warriors of Satan force our
non-mathematical brains to apply themselves to what is, essentially, the very complex task of
becoming a statistics expert. The end result, as you might expect, can be quite messy. The one
weapon that we have is the computer, which allows us to neatly circumvent the considerable
disability that is not understanding mathematics. The advent of computer programs such as
SAS, SPSS, R and the like provides a unique opportunity to teach statistics at a conceptual
level without getting oo bogged down in equations. The computer to a goat-warrior of Satan
is like catnip to a cat: it makes them rub their heads along the ground and purr and dribble
ceaselessly. The only downside of the computer is that it makes it really easy to make a com-
plete idiot of yourself if you don’t really understand what you’re doing. Using a computer
without any statistical knowledge at all can be a dangerous thing. Hence this book. Well,
actually, hence a book called Discovering Statistics Using SPSS.

I wrote Discovering Statistics Using SPSS just as | was finishing off my Ph.D. in Psychology.
My main aim was to write a book that attempted to strike a good balance between theory and
practice: I wanted to use the computer as a tool for teaching statistical concepts in the hope
that you will gain a better understanding of both theory and practice. If you want theory
and you like equations then there are certainly better books: Howell (2006), Stevens (2002)
and Tabachnick and Fidell (2007) are peerless as far as [ am concerned and have taught me
(and continue to teach me) more about statistics than you could possibly imagine. (I have an
ambition to be cited in one of these books but I don’t think that will ever happen.) However,
if you want a book that incorporates digital rectal stimulation then you have just spent your
money wisely. (I should probably clarify that the stimulation is in the context of an example,
you will not find any devices attached to the inside cover for you to stimulate your rectum
while you read. Please feel free to get your own device if you think it will help you to learn.)

A second, not in any way ridiculously ambitious, aim was to make this the only statistics
textbook that anyone ever needs to buy. As such, it’s a book that I hope will become your
friend from first year right through to your professorship. I’ve tried to write a book that can
be read at several levels (see the next section for more guidance). There are chapters for first-
year undergraduates (1, 2, 3,4, 5, 6, 9 and 15), chapters for second-year undergraduates (5,
7,10, 11, 12, 13 and 14) and chapters on more advanced topics that postgraduates might use
(8, 16, 17, 18 and 19). All of these chapters should be accessible to everyone, and I hope to
achieve this by flagging the level of each section (see the next section).



My third, final and most important aim is make the learning process fun. I have a sticky
history with maths because I used to be terrible at it:
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Above is an extract of my school report at the age of 11. The ‘27="in the report is to say
that I came equal 27th with another student out of a class of 29. That’s almost bottom of
the class. The 43 is my exam mark as a percentage. Oh dear. Four years later (at 15) this
was my school report:
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What led to this remarkable change? It was having a good teacher: my brother, Paul. In
fact I owe my life as an academic to Paul’s ability to do what my maths teachers couldn’t:
teach me stuff in an engaging way. To this day he still pops up in times of need to teach
me things (many tutorials in computer programming spring to mind). Anyway, the reason
he’s a great teacher is because he’s able to make things interesting and relevant to me. He
got the ‘good teaching’ genes in the family, but they’re wasted because he doesn’t teach for
a living; they’re a little less wasted though because his approach inspires my lectures and
books. One thing that I have learnt is that people appreciate the human touch, and so I
tried to inject a lot of my own personality and sense of humour (or lack of) into Discovering
Statistics Using ... books. Many of the examples in this book, although inspired by some of
the craziness that you find in the real world, are designed to reflect topics that play on the
minds of the average student (i.e., sex, drugs, rock and roll, celebrity, people doing crazy
stuff). There are also some examples that are there just because they made me laugh. So,
the examples are light-hearted (some have said ‘smutty’ but I prefer ‘light-hearted’) and by
the end, for better or worse, I think you will have some idea of what goes on in my head
on a daily basis. I apologize to those who think it’s crass, hate it, or think that I’'m under-
mining the seriousness of science, but, come on, what’s not funny about a man putting an
eel up his anus?

Did I succeed in these aims? Maybe I did, maybe I didn’t, but the SPSS book on which
this R book is based has certainly been popular and I enjoy the rare luxury of having many
complete strangers emailing me to tell me how wonderful I am. (Admittedly, occassionally
people email to tell me that they think I’'m a pile of gibbon excrement but you have to take
the rough with the smooth.) It also won the British Psychological Society book award in
2007. I must have done something right. However, Discovering Statistics Using SPSS has
one very large flaw: not everybody uses SPSS. Some people use R. R has one fairly big
advantage over other statistical packages in that it is free. That’s right, it’s free. Completely
and utterly free. People say that there’s no such thing as a free lunch, but they’re wrong:



R is a feast of succulent delights topped off with a baked cheesecake and nothing to pay at
the end of it.

It occurred to me that it would be great to have a version of the book that used all of
the same theory and examples from the SPSS book but written about R. Genius. Genius
except that I knew very little about R. Six months and quite a few late nights later and I
know a lot more about R than I did when I started this insane venture. Along the way I have
been helped by a very nice guy called Jeremy (a man who likes to put eels in his CD player
rather than anywhere else), and an even nicer wife. Both of their contributions have been
concealed somewhat by our desire to keep the voice of the book mine, but they have both
contributed enormously. (Jeremy’s contributions are particularly easy to spot: if it reads
like a statistics genius struggling manfully to coerce the words of a moron into something
approximating factual accuracy, then Jeremy wrote it.)

What are you getting for your money?

This book takes you on a journey (possibly through a very narrow passage lined with
barbed wire) not just of statistics but of the weird and wonderful contents of the world and
my brain. In short, it’s full of stupid examples, bad jokes, smut and filth. Aside from the
smut, I have been forced reluctantly to include some academic content. Over many editions
of the SPSS book many people have emailed me with suggestions, so, in theory, what you
currently have in your hands should answer any question anyone has asked me over the
past ten years. It won’t, but it should, and I’'m sure you can find some new questions to ask.
It has some other unusual features:

® Everything you’ll ever need to know: I want this to be good value for money so the
book guides you from complete ignorance (Chapter 1 tells you the basics of doing
research) to being an expert on multilevel modelling (Chapter 19). Of course no
book that you can actually lift off the floor will contain everything, but I think this
one has a fair crack at taking you from novice to postgraduate level expertise. It’s
pretty good for developing your biceps also.

® Stupid faces: You’ll notice that the book is riddled with stupid faces, some of them
my own. You can find out more about the pedagogic function of these ‘characters’
in the next section, but even without any useful function they’re still nice to look at.

® Data sets: There are about 100 data files associated with this book on the companion
website. Not unusual in itself for a statistics book, but my data sets contain more
sperm (not literally) than other books. I’ll let you judge for yourself whether this is
a good thing.

® My life story: Each chapter is book-ended by a chronological story from my life.
Does this help you to learn about statistics? Probably not, but hopefully it provides
some light relief between chapters.

® R tips: R does weird things sometimes. In each chapter, there are boxes containing
tips, hints and pitfalls related to R.

® Self-test questions: Given how much students hate tests, I thought the best way to
commit commercial suicide was to liberally scatter tests throughout each chapter.
These range from simple questions to test what you have just learned to going back
to a technique that you read about several chapters before and applying it in a new
context. All of these questions have answers to them on the companion website. They
are there so that you can check on your progress.



The book also has some more conventional features:

® Reporting your analysis: Every single chapter has a guide to writing up your
analysis. Obviously, how one writes up an analysis varies a bit from one discipline to
another and, because I’'m a psychologist, these sections are quite psychology-based.
Nevertheless, they should get you heading in the right direction.

® Glossary: Writing the glossary was so horribly painful that it made me stick a vacuum
cleaner into my ear to suck out my own brain. You can find my brain in the bottom
of the vacuum cleaner in my house.

® Real-world data: Students like to have ‘real data’ to play with. The trouble is that real
research can be quite boring. However, just for you, I trawled the world for examples
of research on really fascinating topics (in my opinion). I then stalked the authors of
the research until they gave me their data. Every chapter has a real research example.

Goodbye

The SPSS version of this book has literally consumed the last 13 years or so of my life,
and this R version has consumed the last 6 months. I am literally typing this as a withered
husk. T have no idea whether people use R, and whether this version will sell, but T think
they should (use R, that is, not necessarily buy the book). The more I have learnt about R
through writing this book, the more I like it.

This book in its various forms has been a huge part of my adult life; it began as and con-
tinues to be a labour of love. The book isn’t perfect, and I still love to have feedback (good
or bad) from the people who matter most: you.

Andy
® Contact details: http://www. discoveringstatistics.com/html/email.html
® Twitter: @ProfAndyField
® Blog: http://www.methodspace.com/profile/ProfessorAndyField



HOW TO USE THIS BOOK

When the publishers asked me to write a section on ‘How to use this book’ it was obvi-
ously tempting to write ‘Buy a large bottle of Olay anti-wrinkle cream (which you’ll need
to fend off the effects of ageing while you read), find a comfy chair, sit down, fold back the
front cover, begin reading and stop when you reach the back cover.” However, I think they
wanted something more useful. ©

What background knowledge do | need?

In essence, I assume you know nothing about statistics, but I do assume you have some very
basic grasp of computers (I won’t be telling you how to switch them on, for example) and
maths (although I have included a quick revision of some very basic concepts so I really
don’t assume anything).

Do the chapters get more difficult as | go through
the book?

In a sense they do (Chapter 16 on MANOVA is more difficult than Chapter 1), but in other
ways they don’t (Chapter 15 on non-parametric statistics is arguably less complex than Chapter
14, and Chapter 9 on the #-test is definitely less complex than Chapter 8 on logistic regression).
Why have I done this? Well, I’ve ordered the chapters to make statistical sense (to me, at least).
Many books teach different tests in isolation and never really give you a grip of the similari-
ties between them; this, I think, creates an unnecessary mystery. Most of the tests in this book
are the same thing expressed in slightly different ways. So, I wanted the book to tell this story.
To do this I have to do certain things such as explain regression fairly early on because it’s the
foundation on which nearly everything else is built.

However, to help you through I’ve coded each section with an icon. These icons are
designed to give you an idea of the difficulty of the section. It doesn’t necessarily mean
you can skip the sections (but see Smart Alex in the next section), but it will let you know
whether a section is at about your level, or whether it’s going to push you. I’ve based the
icons on my own teaching so they may not be entirely accurate for everyone (especially as
systems vary in different countries!):

@ This means ‘level 1’ and I equate this to first-year undergraduate in the UK. These are
sections that everyone should be able to understand.

® This is the next level and I equate this to second-year undergraduate in the UK. These
are topics that I teach my second years and so anyone with a bit of background in sta-
tistics should be able to get to grips with them. However, some of these sections will
be quite challenging even for second years. These are intermediate sections.



® This is ‘level 3’ and represents difficult topics. I'd expect third-year (final-year) UK
undergraduates and recent postgraduate students to be able to tackle these sections.

@ This is the highest level and represents very difficult topics. I would expect these sec-
tions to be very challenging to undergraduates and recent postgraduates, but post-
graduates with a reasonable background in research methods shouldn’t find them too
much of a problem.

Why do | keep seeing stupid faces everywhere?

Brian Haemorrhage: Brian’s job is to pop up to ask questions and look permanently
confused. It’s no surprise to note, therefore, that he doesn’t look entirely different from
the author (he has more hair though). As the book progresses he becomes increasingly
despondent. Read into that what you will.

Curious Cat: He also pops up and asks questions (because he’s curious). Actually the only
reason he’s here is because I wanted a cat in the book ... and preferably one that looks like
mine. Of course the educational specialists think he needs a specific role, and so his role is
to look cute and make bad cat-related jokes.

Cramming Sam: Samantha hates statistics. In fact, she thinks it’s all a boring waste of time
and she just wants to pass her exam and forget that she ever had to know anything about
normal distributions. So, she appears and gives you a summary of the key points that you
need to know. If, like Samantha, you’re cramming for an exam, she will tell you the essen-
tial information to save you having to trawl through hundreds of pages of my drivel.

Jane Superbrain: Jane is the cleverest person in the whole universe (she makes Smart Alex
look like a bit of an imbecile). The reason she is so clever is that she steals the brains of
statisticians and eats them. Apparently they taste of sweaty tank tops, but nevertheless she
likes them. As it happens she is also able to absorb the contents of brains while she eats
them. Having devoured some top statistics brains she knows all the really hard stuff and
appears in boxes to tell you really advanced things that are a bit tangential to the main text.
(Readers should note that Jane wasn’t interested in eating my brain. That tells you all that
you need to know about my statistics ability.)

Labcoat Leni: Leni is a budding young scientist and he’s fascinated by real research. He says,
‘Andy, man, I like an example about using an eel as a cure for constipation as much as the
next man, but all of your examples are made up. Real data aren’t like that, we need some real
examples, dude!” So off Leni went; he walked the globe, a lone data warrior in a thankless quest
for real data. He turned up at universities, cornered academics, kidnapped their families and
threatened to put them in a bath of crayfish unless he was given real data. The generous ones
relented, but others? Well, let’s just say their families are sore. So, when you see Leni you know
that you will get some real data, from a real research study to analyse. Keep it real.




Oliver Twisted: With apologies to Charles Dickens, Oliver, like the more famous fictional
London urchin, is always asking ‘Please Sir, can I have some more?’ Unlike Master Twist
though, our young Master Twisted always wants more statistics information. Of course he
does, who wouldn’t? Let us not be the ones to disappoint a young, dirty, slightly smelly
boy who dines on gruel, so when Oliver appears you can be certain of one thing: there is
additional information to be found on the companion website. (Don’t be shy; download it
and bathe in the warm asp’s milk of knowledge.)

R’s Souls: People who love statistics are damned to hell for all eternity, people who like R even
more so. However, R and statistics are secretly so much fun that Satan is inundated with new
lost souls, converted to the evil of statistical methods. Satan needs a helper to collect up all the
souls of those who have been converted to the joy of R. While collecting the souls of the statis-
tical undead, they often cry out useful tips to him. He’s collected these nuggets of information
and spread them through the book like a demonic plague of beetles. When Satan’s busy spank-
ing a goat, his helper pops up in a box to tell you some of R’s Souls’ Tips.

Smart Alex: Alex is a very important character because he appears when things get par-
ticularly difficult. He’s basically a bit of a smart alec and so whenever you see his face you
know that something scary is about to be explained. When the hard stuff is over he reap-
pears to let you know that it’s safe to continue. Now, this is not to say that all of the rest
of the material in the book is easy, he just lets you know the bits of the book that you can
skip if you’ve got better things to do with your life than read all 1000 pages! So, if you
see Smart Alex then you can skip the section entirely and still understand what’s going on.
You’ll also find that Alex pops up at the end of each chapter to give you some tasks to do
to see whether you’re as smart as he is.

In this age of downloading, CD-ROMs are for losers (at least that’s what the ‘kids’ tell me)
so ’'ve put my cornucopia of additional funk on that worldwide interweb thing. This has
two benefits: 1) the book is slightly lighter than it would have been, and 2) rather than
being restricted to the size of a CD-ROM, there is no limit to the amount of fascinating
extra material that I can give you (although Sage have had to purchase a new server to fit
it all on). To enter my world of delights, go to www.sagepub.co.uk/dsur.

How will you know when there are extra goodies on this website? Easy-peasy, Oliver
Twisted appears in the book to indicate that there’s something you need (or something
extra) on the website. The website contains resources for students and lecturers alike:

® Data files: You need data files to work through the examples in the book and they
are all on the companion website. We did this so that you’re forced to go there and
once you’re there Sage will flash up subliminal messages that make you buy more of
their books.

® Rscript files: if you put all of the R commands in this book next to each other and printed
them out you’d have a piece of paper that stretched from here to the Tarantula Nebula
(which actually exists and sounds like a very scary place). If you type all of these com-
mands into R you will wear away your fingers to small stumps. I would never forgive
myself if you all got stumpy fingers so the website has script files containing every single
R command in the book (including within chapter questions and activities).



® Webcasts: My publisher thinks that watching a film of me explaining what this book
is all about will get people flocking to the bookshop. I think it will have people flock-
ing to the medicine cabinet. Either way, if you want to see how truly uncharismatic I
am, watch and cringe. There are also a few webcasts of lectures given by me relevant
to the content of the book.

® Self-Assessment Multiple-Choice Questions: Organized by chapter, these will allow
you to test whether wasting your life reading this book has paid off so that you can
walk confidently into an examination much to the annoyance of your friends. If you
fail said exam, you can employ a good lawyer and sue.

® Additional material: Enough trees have died in the name of this book, but still it
gets longer and still people want to know more. Therefore, we’ve written nearly 300
pages, yes, three hundred, of additional material for the book. So for some more
technical topics and help with tasks in the book the material has been provided elec-
tronically so that (1) the planet suffers a little less, and (2) you won’t die when the
book falls off of your bookshelf onto your head.

® Answers: each chapter ends with a set of tasks for you to test your newly acquired
expertise. The chapters are also littered with self-test questions and Labcoat Leni’s
assignments. How will you know if you get these correct? Well, the companion web-
site contains around 300 pages (that’s a different 300 pages to the 300 above) of
detailed answers. Will we ever stop writing?

® Powerpoint slides: I can’t come and personally teach you all. Instead I rely on a crack
team of highly skilled and super intelligent pan-dimensional beings called ‘lecturers’.
I have personally grown each and every one of them in a greenhouse in my garden.
To assist in their mission to spread the joy of statistics I have provided them with
powerpoint slides for each chapter.

® Links: every website has to have links to other useful websites and the companion
website is no exception.

® Cyberworms of knowledge: I have used nanotechnology to create cyberworms that
crawl down your broadband connection, pop out of the USB port of your computer
then fly through space into your brain. They re-arrange your neurons so that you
understand statistics. You don’t believe me? Well, you’ll never know for sure unless
you visit the companion website ...

Happy reading, and don’t get sidetracked by Facebook and Twitter.
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SYMBOLS

Mathematical operators

This symbol (called sigma) means ‘add everything up’. So, if you see something

p) ) L
like Zx; it just means ‘add up all of the scores you've collected’.

I This symbol means ‘multiply everything’. So, if you see something like ITx; it just
means ‘multiply all of the scores you've collected’.

\x This means ‘take the square root of x’.

Greek symbols

The probability of making a Type | error

The probability of making a Type Il error

Standardized regression coefficient

S}

Chi-square test statistic

< [ |=|= |

Friedman’s ANOVA test statistic

()

Usually stands for ‘error’

=
)

Eta-squared

The mean of a population of scores

The correlation in the population

= |=

The variance in a population of data

Q

The standard deviation in a population of data

The standard error of the mean

Kendall's tau (non-parametric correlation coefficient)

Omega squared (an effect size measure). This symbol also means ‘expel the
contents of your intestine immediately into your trousers’; you will understand why in
due course.




English symbols

b, The regression coefficient (unstandardized)

af Degrees of freedom

e The error associated with the ith person

F F-ratio (test statistic used in ANOVA)

H Kruskal-Wallis test statistic

K The number of levels of a variable (i.e. the number of treatment conditions), or the
number of predictors in a regression model

In Natural logarithm

MS The mean squared error. The average variability in the data

N, n,n, The sample size. N usually denotes the total sample size, whereas n usually
denotes the size of a particular group

P Probability (the probability value, p-value or significance of a test are usually
denoted by p)

r Pearson'’s correlation coefficient

ry Spearman’s rank correlation coefficient

T T Biserial correlation coefficient and point-biserial correlation coefficient respectively

R The multiple correlation coefficient

R? The coefficient of determination (i.e. the proportion of data explained by the model)

s? The variance of a sample of data

S The standard deviation of a sample of data

SS The sum of squares, or sum of squared errors to give it its full title

SS, The sum of squares for variable A

SS,, The model sum of squares (i.e. the variability explained by the model fitted to the data)

SS, The residual sum of squares (i.e. the variability that the model can’'t explain — the
error in the model)

SS, The total sum of squares (i.e. the total variability within the data)

t Test statistic for Student’s t-test

T Test statistic for Wilcoxon’s matched-pairs signed-rank test

u Test statistic for the Mann-Whitney test

W, Test statistic for the Shapiro-Wilk test and the Wilcoxon’s rank-sum test

Xorx The mean of a sample of scores

z A data point expressed in standard deviation units




SOME MATHS REVISION

1 Two negatives make a positive: Although in life two wrongs don’t make a right, in
mathematics they do! When we multiply a negative number by another negative
number, the result is a positive number. For example, -2 x —4 = 8.

2 A negative number multiplied by a positive one make a negative number: If you
multiply a positive number by a negative number then the result is another negative
number. For example, 2 x -4 =-8, or -2 x 6 =—12.

3 BODMAS: This is an acronym for the order in which mathematical operations
are performed. It stands for Brackets, Order, Division, Multiplication, Addition,
Subtraction and this is the order in which you should carry out operations within an
equation. Mostly these operations are self-explanatory (e.g., always calculate things
within brackets first) except for order, which actually refers to power terms such as
squares. Four squared, or 42, used to be called four raised to the order of 2, hence the
reason why these terms are called ‘order’ in BODMAS (also, if we called it power,
we’d end up with BPDMAS, which doesn’t roll off the tongue quite so nicely). Let’s
look at an example of BODMAS: what would be the result of 1+ 3 x 52? The answer
is 76 (not 100 as some of you might have thought). There are no brackets so the
first thing is to deal with the order term: 52 is 25, so the equation becomes 1 + 3 X
25. There is no division, so we can move on to multiplication: 3 x 25, which gives
us 75. BODMAS tells us to deal with addition next: 1 + 75, which gives us 76 and
the equation is solved. If I’d written the original equation as (1 + 3) x 52, then the
answer would have been 100 because we deal with the brackets first: (1 + 3) = 4,
so the equation becomes 4 x 52. We then deal with the order term, so the equation
becomes 4 x 25 = 100!

4 www.bbc.co.uk/schools/gcsebitesize/maths is a good site for revising basic maths.



Why is my evil lecturer
forcing me to learn statistics?

1.1. What will this chapter tell me? ®

I was born on 21 June 1973. Like most people, I don’t remember anything about the first
few years of life and like most children I did go through a phase of driving my parents
mad by asking “Why?’ every five seconds. ‘Dad, why is the sky blue?’, ‘Dad, why doesn’t
mummy have a willy?’, etc. Children are naturally curious about the world. I remember
at the age of 3 being at a party of my friend Obe (this was just before he left England
to return to Nigeria, much to my distress). It was a hot day, and there was an electric
fan blowing cold air around the room. As I said, children are natural scientists and my

1

FIGURE 1.1
When | grow up,
please don’t let
me be a statistics
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little scientific brain was working through what seemed like a particularly pressing ques-
tion: “What happens when you stick your finger in a fan?’ The answer, as it turned out,
was that it hurts — a lot." My point is this: my curiosity to explain the world never went
away, and that’s why I’m a scientist, and that’s also why your evil lecturer is forcing you
to learn statistics. It’s because you have a curious mind too and you want to answer new
and exciting questions. To answer these questions we need statistics. Statistics is a bit like
sticking your finger into a revolving fan blade: sometimes it’s very painful, but it does
give you the power to answer interesting questions. This chapter is going to attempt
to explain why statistics are an important part of doing research. We will overview the
whole research process, from why we conduct research in the first place, through how
theories are generated, to why we need data to test these theories. If that doesn’t con-
vince you to read on then maybe the fact that we discover whether Coca-Cola kills sperm
will. Or perhaps not.

1.2. What the hell am | doing here?
| don’t belong here ®

You’re probably wondering why you have bought this book. Maybe you liked the pic-
tures, maybe you fancied doing some weight training (it is heavy), or perhaps you need
to reach something in a high place (it is thick). The chances are, though, that given the
choice of spending your hard-earned cash on a statistics book or something more enter-
taining (a nice novel, a trip to the cinema, etc.) you’d choose the latter. So, why have you
bought the book (or downloaded an illegal pdf of it from someone who has way too much
time on their hands if they can scan a 1000-page textbook)? It’s likely that you obtained
it because you’re doing a course on statistics, or you’re doing some research, and you
need to know how to analyse data. It’s possible that you didn’t realize when you started
your course or research that you’d have to know this much about statistics but now find
yourself inexplicably wading, neck high, through the Victorian sewer that is data analysis.
The reason you’re in the mess that you find yourself in is because you have a curious
mind. You might have asked yourself questions like why people behave the way they
do (psychology), why behaviours differ across cultures (anthropology), how businesses
maximize their profit (business), how the dinosaurs died (palaeontology), does eating
tomatoes protect you against cancer (medicine, biology), is it possible to build a quantum
computer (physics, chemistry), is the planet hotter than it used to be and in what regions
(geography, environmental studies)? Whatever it is you’re studying or researching, the
reason you’re studying it is probably because you’re interested in answering questions.
Scientists are curious people, and you probably are too. However, you might not have
bargained on the fact that to answer interesting questions, you need two things: data and
an explanation of those data.

The answer to ‘what the hell are you doing here?’ is, therefore, simple: to answer
interesting questions you need data. Therefore, one of the reasons why your evil sta-
tistics lecturer is forcing you to learn about numbers is because they are a form of data
and are vital to the research process. Of course there are forms of data other than
numbers that can be used to test and generate theories. When numbers are involved
the research involves quantitative methods, but you can also generate and test theories
by analysing language (such as conversations, magazine articles, media broadcasts and so on).

!'In the 1970s fans didn’t have helpful protective cages around them to prevent idiotic 3-year-olds sticking their
fingers into the blades.
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This involves qualitative methods and it is a topic for another book not written by me.
People can get quite passionate about which of these methods is best, which is a bit
silly because they are complementary, not competing, approaches and there are much
more important issues in the world to get upset about. Having said that, all qualitative
research is rubbish.?

How do you go about answering an interesting question? The research proc-
ess is broadly summarized in Figure 1.2. You begin with an observation that you
want to understand, and this observation could be anecdotal (you’ve noticed
that your cat watches birds when they’re on TV but not when jellyfish are on)?
or could be based on some data (you’ve got several cat owners to keep diaries
of their cat’s TV habits and have noticed that lots of them watch birds on TV).
From your initial observation you generate explanations, or theories, of those
observations, from which you can make predictions (hypotheses). Here’s where
the data come into the process because to test your predictions you need data.
First you collect some relevant data (and to do that you need to identify things
that can be measured) and then you analyse those data. The analysis of the data
may support your theory or give you cause to modify the theory. As such, the processes of
data collection and analysis and generating theories are intrinsically linked: theories lead to
data collection/analysis and data collection/analysis informs theories! This chapter explains
this research process in more detail.

B - - o Otiservl FIGURE 1.2
earch Quest The research
process
T
| taentiy varables |« [fiGenerate nypomes S}

How do | do
research?

| e variaies 1 «————— [t oea o e T
Boesll— T oer-c o N

* Fit a Model

2 This is a joke. I thought long and hard about whether to include it because, like many of my jokes, there are
people who won’t find it remotely funny. Its inclusion is also making me fear being hunted down and forced to eat
my own entrails by a hoard of rabid qualitative researchers. However, it made me laugh, a lot, and despite being
vegetarian ’'m sure my entrails will taste lovely.

3 My cat does actually climb up and stare at the TV when it’s showing birds flying about.
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1.3. Initial observation: finding something that

The first step in Figure 1.2 was to come up with a question that needs an answer. I spend
rather more time than I should watching reality TV. Every year I swear that I won’t get
hooked on Big Brother, and yet every year I find myself glued to the TV screen waiting
for the next contestant’s meltdown (I am a psychologist, so really this is just research —
honestly). One question I am constantly perplexed by is why every year there are so many
contestants with really unpleasant personalities (my money is on narcissistic personality
disorder*) on the show. A lot of scientific endeavour starts this way: not by watching Big
Brother, but by observing something in the world and wondering why it happens.

Having made a casual observation about the world (Big Brother contestants on the whole
have profound personality defects), I need to collect some data to see whether this obser-
vation is true (and not just a biased observation). To do this, I need to define one or more
variables that I would like to measure. There’s one variable in this example: the personal-
ity of the contestant. I could measure this variable by giving them one of the many well-
established questionnaires that measure personality characteristics. Let’s say that I did this
and T found that 75% of contestants did have narcissistic personality disorder. These data
support my observation: a lot of Big Brother contestants have extreme personalities.

1.4. Generating theories and testing them @

The next logical thing to do is to explain these data (Figure 1.2). One explanation could be
that people with narcissistic personality disorder are more likely to audition for Big Brother
than those without. This is a theory. Another possibility is that the producers of Big Brother
are more likely to select people who have narcissistic personality disorder to be contestants
than those with less extreme personalities. This is another theory. We verified our original
observation by collecting data, and we can collect more data to test our theories. We can
make two predictions from these two theories. The first is that the number of people turn-
ing up for an audition that have narcissistic personality disorder will be higher than the
general level in the population (which is about 1%). A prediction from a theory, like this
one, is known as a hypothesis (see Jane Superbrain Box 1.1). We could test this hypothesis
by getting a team of clinical psychologists to interview each person at the Big Brother audi-
tion and diagnose them as having narcissistic personality disorder or not. The prediction
from our second theory is that if the Big Brother selection panel are more likely to choose
people with narcissistic personality disorder then the rate of this disorder in the final con-
testants will be even higher than the rate in the group of people going for auditions. This is
another hypothesis. Imagine we collected these data; they are in Table 1.1.

In total, 7662 people turned up for the audition. Our first hypothesis is that the percent-
age of people with narcissistic personality disorder will be higher at the audition than the
general level in the population. We can see in the table that of the 7662 people at the audi-
tion, 854 were diagnosed with the disorder; this is about 11% (854/7662 x 100), which is
much higher than the 1% we’d expect. Therefore, hypothesis 1 is supported by the data.
The second hypothesis was that the Big Brother selection panel have a bias to chose people
with narcissistic personality disorder. If we look at the 12 contestants that they selected, 9
of them had the disorder (a massive 75%). If the producers did not have a bias we would

4 This disorder is characterized by (among other things) a grandiose sense of self-importance, arrogance, lack of
empathy for others, envy of others and belief that others envy them, excessive fantasies of brilliance or beauty, the
need for excessive admiration and exploitation of others.
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Table 1.1 A table of the number of people at the Big Brother audition split by whether they
had narcissistic personality disorder and whether they were selected as contestants by the
producers

No Disorder Disorder Total
Selected 8 9 12
Rejected 6805 845 7650
Total 6808 854 7662

have expected only 11% of the contestants to have the disorder. The data again support
our hypothesis. Therefore, my initial observation that contestants have personality disor-
ders was verified by data, then my theory was tested using specific hypotheses that were

also verified using data. Data are very important!

JANE SUPERBRAIN 1.1
When is a hypothesis not a hypothesis? ®

A good theory should allow us to make statements about
the state of the world. Statements about the world are
good things: they allow us to make sense of our world,
and to make decisions that affect our future. One current
example is global warming. Being able to make a defini-
tive statement that global warming is happening, and
that it is caused by certain practices in society, allows
us to change these practices and, hopefully, avert catas-
trophe. However, not all statements are ones that can
be tested using science. Scientific statements are ones
that can be verified with reference to empirical evidence,
whereas non-scientific statements are ones that cannot

be empirically tested. So, statements such as ‘The Led
Zeppelin reunion concert in London in 2007 was the best
gig ever’,® ‘Lindt chocolate is the best food" and ‘This is
the worst statistics book in the world’ are all non-scientific;
they cannot be proved or disproved. Scientific statements

i can be confirmed or disconfirmed empirically. ‘Watching
i Curb Your Enthusiasm makes you happy’, ‘having sex

increases levels of the neurotransmitter dopamine’ and
‘velociraptors ate meat’ are all things that can be tested

: empirically (provided you can quantify and measure the

variables concerned). Non-scientific statements can

sometimes be altered to become scientific statements,
i so0 ‘The Beatles were the most influential band ever’ is

non-scientific (because it is probably impossible to quan-
tify ‘influence’ in any meaningful way) but by changing the
statement to ‘The Beatles were the best-selling band ever’
it becomes testable (we can collect data about worldwide
record sales and establish whether The Beatles have, in
fact, sold more records than any other music artist). Karl
Popper, the famous philosopher of science, believed that
non-scientific statements were nonsense, and had no
place in science. Good theories should, therefore, pro-

¢ duce hypotheses that are scientific statements.

I would now be smugly sitting in my office with a contented grin on my face about how

my theories and observations were well supported by the data. Perhaps I would quit while
I was ahead and retire. It’s more likely, though, that having solved one great mystery, my
excited mind would turn to another. After another few hours (well, days probably) locked
up at home watching Big Brother 1 would emerge triumphant with another profound

5 It was pretty awesome actually.
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contestants odd?
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observation, which is that these personality-disordered contestants, despite their obvious
character flaws, enter the house convinced that the public will love them and that they will
win.® My hypothesis would, therefore, be that if I asked the contestants if they thought that
they would win, the people with a personality disorder would say yes.

Let’s imagine I tested my hypothesis by measuring their expectations of success in the
show, by just asking them, ‘Do you think you will win Big Brother?’. Let’s say that 7 of
9 contestants with personality disorders said that they thought that they will win, which
confirms my observation. Next, I would come up with another theory: these contestants
think that they will win because they don’t realize that they have a personality disorder.
My hypothesis would be that if I asked these people about whether their personalities were
different from other people they would say ‘no’. As before, I would collect some more data
and perhaps ask those who thought that they would win whether they thought that their
personalities were different from the norm. All 7 contestants said that they thought their
personalities were different from the norm. These data seem to contradict my theory. This
is known as falsification, which is the act of disproving a hypothesis or theory.

It’s unlikely that we would be the only people interested in why individuals
who go on Big Brother have extreme personalities and think that they will win.
Imagine these researchers discovered that: (1) people with narcissistic personal-
ity disorder think that they are more interesting than others; (2) they also think
that they deserve success more than others; and (3) they also think that others
like them because they have ‘special’ personalities.

This additional research is even worse news for my theory: if they didn’t real-
ize that they had a personality different from the norm then you wouldn’t expect
them to think that they were more interesting than others, and you certainly
wouldn’t expect them to think that others will like their unusual personalities.
In general, this means that my theory sucks: it cannot explain all of the data,
predictions from the theory are not supported by subsequent data, and it cannot
explain other research findings. At this point I would start to feel intellectually inadequate
and people would find me curled up on my desk in floods of tears wailing and moaning
about my failing career (no change there then).

At this point, a rival scientist, Fester Ingpant-Stain, appears on the scene with a rival
theory to mine. In his new theory, he suggests that the problem is not that personality-dis-
ordered contestants don’t realize that they have a personality disorder (or at least a person-
ality that is unusual), but that they falsely believe that this special personality is perceived
positively by other people (put another way, they believe that their personality makes them
likeable, not dislikeable). One hypothesis from this model is that if personality-disordered
contestants are asked to evaluate what other people think of them, then they will over-
estimate other people’s positive perceptions. To test this hypothesis, Fester Ingpant-Stain
collected yet more data. When each contestant came to the diary room” they had to fill out
a questionnaire evaluating all of the other contestants’ personalities, and also answer each
question as if they were each of the contestants responding about them. (So, for every con-
testant there is a measure of what they thought of every other contestant, and also a meas-
ure of what they believed every other contestant thought of them.) He found out that the
contestants with personality disorders did overestimate their housemates’ view of them; in
comparison the contestants without personality disorders had relatively accurate impres-
sions of what others thought of them. These data, irritating as it would be for me, support
the rival theory that the contestants with personality disorders know they have unusual
personalities but believe that these characteristics are ones that others would feel positive
about. Fester Ingpant-Stain’s theory is quite good: it explains the initial observations and

¢ One of the things I like about Big Brother in the UK is that year upon year the winner tends to be a nice person,
which does give me faith that humanity favours the nice.

7 The diary room is a private room in the house where contestants can talk to ‘big brother’ about whatever is on
their mind.
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brings together a range of research findings. The end result of this whole process (and my
career) is that we should be able to make a general statement about the state of the world.
In this case we could state: ‘Big Brother contestants who have personality disorders overes-
timate how much other people like their personality characteristics’.

SELF-TEST

v" Based on what you have read in this section,
what qualities do you think a scientific theory
should have?

We have seen already that data collection is vital for testing theories. When we collect data
we need to decide on two things: (1) what to measure, (2) how to measure it. This section
looks at the first of these issues.

Variables @

1.5.1.1. Independent and dependent variables ®

To test hypotheses we need to measure variables. Variables are just things that can change
(or vary); they might vary between people (e.g., 1Q, behaviour) or locations (e.g., unem-
ployment) or even time (e.g., mood, profit, number of cancerous cells). Most hypotheses
can be expressed in terms of two variables: a proposed cause and a proposed outcome. For
example, if we take the scientific statement ‘Coca-Cola is an effective spermicide’® then the
proposed cause is Coca-Cola and the proposed effect is dead sperm. Both the cause and the
outcome are variables: for the cause we could vary the type of drink, and for the outcome
these drinks will kill different amounts of sperm. The key to testing such statements is to
measure these two variables.

A variable that we think is a cause is known as an independent variable (because its value
does not depend on any other variables). A variable that we think is an effect is called a
dependent variable because the value of this variable depends on the cause (independent
variable). These terms are very closely tied to experimental methods in which the cause is
actually manipulated by the experimenter (as we will see in section 1.6.2). In cross-sectional
research we don’t manipulate any variables and we cannot make causal statements about the
relationships between variables, so it doesn’t make sense to talk of dependent and independ-
ent variables because all variables are dependent variables in a sense. One possibility is to
abandon the terms dependent and independent variable and use the terms predictor variable
and outcome variable. In experimental work the cause, or independent variable, is a predic-
tor, and the effect, or dependent variable, is simply an outcome. This terminology also suits
cross-sectional work where, statistically at least, we can use one or more variables to make
predictions about the other(s) without needing to imply causality.

$ Actually, there is a long-standing urban myth that a post-coital douche with the contents of a bottle of Coke is
an effective contraceptive. Unbelievably, this hypothesis has been tested and Coke does affect sperm motility, and
different types of Coke are more or less effective — Diet Coke is best apparently (Umpierre, Hill, & Anderson,
1985). Nevertheless, a Coke douche is ineffective at preventing pregnancy.
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BRLVWYIVIINV YNNI Some important terms

When doing research there are some important generic terms for variables that you will encounter:

e Independent variable: A variable thought to be the cause of some effect. This term is usually used in experimental research
to denote a variable that the experimenter has manipulated.

o Dependent variable: A variable thought to be affected by changes in an independent variable. You can think of this variable
as an outcome.

e Predictor variable: A variable thought to predict an outcome variable. This is basically another term for independent vari-
able (although some people won't like me saying that; | think life would be easier if we talked only about predictors and
outcomes).

e Qutcome variable: A variable thought to change as a function of changes in a predictor variable. This term could be synony-
mous with ‘dependent variable’ for the sake of an easy life.

1.5.1.2. Levels of measurement ®

As we have seen in the examples so far, variables can take on many different forms and levels
of sophistication. The relationship between what is being measured and the numbers that
represent what is being measured is known as the level of measurement. Broadly speaking,
variables can be categorical or continuous, and can have different levels of measurement.

A categorical variable is made up of categories. A categorical variable that you should be
familiar with already is your species (e.g., human, domestic cat, fruit bat, etc.). You are a
human or a cat or a fruit bat: you cannot be a bit of a cat and a bit of a bat, and neither a
batman nor (despite many fantasies to the contrary) a catwoman (not even one in a nice
PVC suit) exist. A categorical variable is one that names distinct entities. In its simplest
form it names just two distinct types of things, for example male or female. This is known
as a binary variable. Other examples of binary variables are being alive or dead, pregnant
or not, and responding ‘yes’ or ‘no’ to a question. In all cases there are just two categories
and an entity can be placed into only one of the two categories.

When two things that are equivalent in some sense are given the same name (or number),
but there are more than two possibilities, the variable is said to be a nominal variable. It
should be obvious that if the variable is made up of names it is pointless to do arithmetic
on them (if you multiply a human by a cat, you do not get a hat). However, sometimes
numbers are used to denote categories. For example, the numbers worn by players in a
rugby team. In rugby, the numbers of shirts denote specific field positions, so the number
10 is always worn by the fly-half (e.g., England’s Jonny Wilkinson),” and the number 2 is
always the hooker (the ugly-looking player at the front of the scrum). These numbers do
not tell us anything other than what position the player plays. We could equally have shirts
with FH and H instead of 10 and 1. A number 10 player is not necessarily better than a
number 1 (most managers would not want their fly-half stuck in the front of the scrum!).
It is equally as daft to try to do arithmetic with nominal scales where the categories are
denoted by numbers: the number 10 takes penalty kicks, and if the England coach found
that Jonny Wilkinson (his number 10) was injured he would not get his number 4 to give
number 6 a piggy-back and then take the kick. The only way that nominal data can be used
is to consider frequencies. For example, we could look at how frequently number 10s score
tries compared to number 4s.

° Unlike, for example, NFL American football where a quarterback could wear any number from 1 to 19.
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who gives a rating of 10 found Billie more talented than
one who gave a rating of 2, but can we be certain that
the first judge found her five times more talented than
the second? What about if both judges gave a rating
of 8: could we be sure they found her equally talented?
Probably not: their ratings will depend on their subjec-
tive feelings about what constitutes talent (the quality of

]ANE SUPERBRAIN 1.2 singing? showmanship? dancing?). For these reasons,
) in any situation in which we ask people to rate some-
Self-report data @ i thing subjective (e.g., rate their preference for a product,

¢ their confidence about an answer, how much they have
Alot of self-report data are ordinal. Imagine if two judges understood some medical instructions) we should prob-
on The X Factor were asked to rate Billie’s singing on ably regard these data as ordinal although many scien-
a 10-point scale. We might be confident that a judge i tists do not.

So far the categorical variables we have considered have been unordered (e.g., differ-
ent brands of Coke with which you’re trying to kill sperm), but they can be ordered too
(e.g., increasing concentrations of Coke with which you’re trying to skill sperm). When
categories are ordered, the variable is known as an ordinal variable. Ordinal data tell us
not only that things have occurred, but also the order in which they occurred. However,
these data tell us nothing about the differences between values. The X Factor is a TV
show that is broadcast across the globe in which hopeful singers compete to win a record-
ing contract. It is a hugely popular show, which could (if you take a depressing view)
reflect the fact that Western society values ‘luck’ more than hard work. (This comment
in no way reflects my bitterness at spending years learning musical instruments and try-
ing to create orginal music, only to be beaten to musical fame and fortune by a 15-year-
old who can sing other people’s songs, a bit.) Anyway, imagine the three winners of a
particular X Factor series were Billie, Freema and Elizabeth. The names of the winners
don’t provide any information about where they came in the contest; however, labelling
them according to their performance does — first, second and third. These categories are
ordered. In using ordered categories we now know that the woman who won was better
than the women who came second and third. We still know nothing about the differences
between categories, though. We don’t, for example, know how much better the winner
was than the runners-up: Billie might have been an easy victor, getting many more votes
than Freema and Elizabeth, or it might have been a very close contest that she won by
only a single vote. Ordinal data, therefore, tell us more than nominal data (they tell us
the order in which things happened) but they still do not tell us about the differences
between points on a scale.

The next level of measurement moves us away from categorical variables and into con-
tinuous variables. A continuous variable is one that gives us a score for each entity and can
take on any value on the measurement scale that we are using. The first type of continu-
ous variable that you might encounter is an interval variable. Interval data are consider-
ably more useful than ordinal data and most of the statistical tests in this book rely on
having data measured at this level. To say that data are interval, we must be certain that
equal intervals on the scale represent equal differences in the property being measured. For
example, on www.ratemyprofessors.com students are encouraged to rate their lecturers on
several dimensions (some of the lecturers’ rebuttals of their negative evaluations are worth
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a look). Each dimension (i.e., helpfulness, clarity, etc.) is evaluated using a 5-point scale.
For this scale to be interval it must be the case that the difference between helpfulness rat-
ings of 1 and 2 is the same as the difference between say 3 and 4, or 4 and 5. Similarly, the
difference in helpfulness between ratings of 1 and 3 should be identical to the difference
between ratings of 3 and 5. Variables like this that look interval (and are treated as interval)
are often ordinal — see Jane Superbrain Box 1.2.

Ratio variables go a step further than interval data by requiring that in addition to the
measurement scale meeting the requirements of an interval variable, the ratios of values
along the scale should be meaningful. For this to be true, the scale must have a true and
meaningful zero point. In our lecturer ratings this would mean that a lecturer rated as 4
would be twice as helpful as a lecturer rated with a 2 (who would also be twice as helpful as
a lecturer rated as 1!). The time to respond to something is a good example of a ratio vari-
able. When we measure a reaction time, not only is it true that, say, the difference between
300 and 350 ms (a difference of 50 ms) is the same as the difference between 210 and
260 ms or 422 and 472 ms, but also it is true that distances along the scale are divisible: a
reaction time of 200 ms is twice as long as a reaction time of 100 ms and twice as short as
a reaction time of 400 ms.

can be measured in discrete terms; for example, when we
measure age we rarely use nanoseconds but use years (or
possibly years and months). In doing so we turn a continu-
ous variable into a discrete one (the only acceptable values
are years). Also, we often treat discrete variables as if they
were continuous. For example, the number of boyfriends/
girlfriends that you have had is a discrete variable (it will be,

]AN E SUPERBRAIN 1.3 in all but the very weird cases, a whole number). However,

you might read a magazine that says ‘the average number

Continuous and discrete variables @ i of boyfriends that women in their 20s have has increased

from 4.6 to 8.9, This assumes that the variable is continu-

The distinction between discrete and continuous variables ous, and of course these averages are meaningless: no
can be very blurred. For one thing, continuous variables i one in their sample actually had 8.9 boyfriends.

Continuous variables can be, well, continuous (obviously) but also discrete. This is quite
a tricky distinction (Jane Superbrain Box 1.3). A truly continuous variable can be measured
to any level of precision, whereas a discrete variable can take on only certain values (usu-
ally whole numbers) on the scale. What does this actually mean? Well, our example in the
text of rating lecturers on a 5-point scale is an example of a discrete variable. The range of
the scale is 1-5, but you can enter only values of 1, 2, 3, 4 or 5; you cannot enter a value
of 4.32 or 2.18. Although a continuum exists underneath the scale (i.e., a rating of 3.24
makes sense), the actual values that the variable takes on are limited. A continuous variable
would be something like age, which can be measured at an infinite level of precision (you
could be 34 years, 7 months, 21 days, 10 hours, 55 minutes, 10 seconds, 100 milliseconds,
63 microseconds, 1 nanosecond old).
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(WY IV Y VWIS Levels of measurement

Variables can be split into categorical and continuous, and within these types there are different levels of

measurement:

» (Categorical (entities are divided into distinct categories):

o Binary variable: There are only two categories (e.g., dead or alive).
o Nominal variable: There are more than two categories (e.g., whether someone is an omnivore, vegetarian, vegan, or
fruitarian).

o Ordinal variable: The same as a nominal variable but the categories have a logical order (e.g., whether people got a fail, a
pass, a merit or a distinction in their exam).
e Continuous (entities get a distinct score):

o Interval variable: Equal intervals on the variable represent equal differences in the property being measured (e.g., the
difference between 6 and 8 is equivalent to the difference between 13 and 15).

o Ratio variable: The same as an interval variable, but the ratios of scores on the scale must also make sense (e.g., a score
of 16 on an anxiety scale means that the person is, in reality, twice as anxious as someone scoring 8).

Measurement error @

We have seen that to test hypotheses we need to measure variables. Obviously, it’s also
important that we measure these variables accurately. Ideally we want our measure to be
calibrated such that values have the same meaning over time and across situations. Weight
is one example: we would expect to weigh the same amount regardless of who weighs
us, or where we take the measurement (assuming it’s on Earth and not in an anti-gravity
chamber). Sometimes variables can be directly measured (profit, weight, height) but in
other cases we are forced to use indirect measures such as self-report, questionnaires and
computerized tasks (to name but a few).

Let’s go back to our Coke as a spermicide example. Imagine we took some Coke and
some water and added them to two test tubes of sperm. After several minutes, we measured
the motility (movement) of the sperm in the two samples and discovered no difference. A
few years passed and another scientist, Dr Jack Q. Late, replicated the study but found that
sperm motility was worse in the Coke sample. There are two measurement-related issues
that could explain his success and our failure: (1) Dr Late might have used more Coke in
the test tubes (sperm might need a critical mass of Coke before they are affected); (2) Dr
Late measured the outcome (motility) differently than us.

The former point explains why chemists and physicists have devoted many hours to
developing standard units of measurement. If you had reported that you’d used 100 ml
of Coke and 5 ml of sperm, then Dr Late could have ensured that he had used the same
amount — because millilitres are a standard unit of measurement we would know that Dr
Late used exactly the same amount of Coke that we used. Direct measurements such as the
millilitre provide an objective standard: 100 ml of a liquid is known to be twice as much
as only 50 ml.

The second reason for the difference in results between the studies could have been to
do with how sperm motility was measured. Perhaps in our original study we measured
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motility using absorption spectrophotometry, whereas Dr Late used laser light-scattering
techniques.'® Perhaps his measure is more sensitive than ours.

There will often be a discrepancy between the numbers we use to represent the thing
we’re measuring and the actual value of the thing we’re measuring (i.e., the value we would
get if we could measure it directly). This discrepancy is known as measurement error. For
example, imagine that you know as an absolute truth that you weigh 80 kg. One day
you step on the bathroom scales and it says 83 kg. There is a difference of 3 kg between
your actual weight and the weight given by your measurement tool (the scales): there is a
measurement error of 3 kg. Although properly calibrated bathroom scales should produce
only very small measurement errors (despite what we might want to believe when it says
we have gained 3 kg), self-report measures do produce measurement error because factors
other than the one you’re trying to measure will influence how people respond to our
measures. Imagine you were completing a questionnaire that asked you whether you had
stolen from a shop. If you had, would you admit it, or might you be tempted to conceal
this fact?

Validity and reliability @

One way to try to ensure that measurement error is kept to a minimum is to determine
properties of the measure that give us confidence that it is doing its job properly. The first
property is validity, which is whether an instrument actually measures what it sets out to
measure. The second is reliability, which is whether an instrument can be interpreted con-
sistently across different situations.

Validity refers to whether an instrument measures what it was designed to measure;
a device for measuring sperm motility that actually measures sperm count is not valid.
Things like reaction times and physiological measures are valid in the sense that a reaction
time does in fact measure the time taken to react and skin conductance does measure the
conductivity of your skin. However, if we’re using these things to infer other things (e.g.,
using skin conductance to measure anxiety) then they will be valid only if there are no
other factors other than the one we’re interested in that can influence them.

Criterion validity is whether the instrument is measuring what it claims to measure (does
your lecturer helpfulness rating scale actually measure lecturers’ helpfulness?). In an ideal
world, you could assess this by relating scores on your measure to real-world observations.
For example, we could take an objective measure of how helpful lecturers were and com-
pare these observations to students’ ratings on ratemyprofessor.com. This is often imprac-
tical and, of course, with attitudes you might not be interested in the reality so much as
the person’s perception of reality (you might not care whether they are a psychopath but
whether they think they are a psychopath). With self-report measures/questionnaires we
can also assess the degree to which individual items represent the construct being meas-
ured, and cover the full range of the construct (content validity).

Validity is a necessary but not sufficient condition of a measure. A second consideration
is reliability, which is the ability of the measure to produce the same results under the same
conditions. To be valid the instrument must first be reliable. The easiest way to assess reli-
ability is to test the same group of people twice: a reliable instrument will produce similar
scores at both points in time (test-retest reliability). Sometimes, however, you will want to
measure something that does vary over time (e.g., moods, blood-sugar levels, productiv-
ity). Statistical methods can also be used to determine reliability (we will discover these in
Chapter 17).

10 Tn the course of writing this chapter I have discovered more than I think is healthy about the measurement of
sperm motility.
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SELF-TEST

v' What is the difference between reliability and validity?

Correlational research methods @

So far we’ve learnt that scientists want to answer questions, and that to do this they have
to generate data (be they numbers or words), and to generate good data they need to use
accurate measures. We move on now to look briefly at how the data are collected. If we
simplify things quite a lot then there are two ways to test a hypothesis: either by observing
what naturally happens, or by manipulating some aspect of the environment and observing
the effect it has on the variable that interests us.

The main distinction between what we could call correlational or cross-sectional research
(where we observe what naturally goes on in the world without directly interfering with it)
and experimental research (where we manipulate one variable to see its effect on another)
is that experimentation involves the direct manipulation of variables. In correlational
research we do things like observe natural events or we take a snapshot of many vari-
ables at a single point in time. As some examples, we might measure pollution levels in a
stream and the numbers of certain types of fish living there; lifestyle variables (smoking,
exercise, food intake) and disease (cancer, diabetes); workers’ job satisfaction under differ-
ent managers; or children’s school performance across regions with different demograph-
ics. Correlational research provides a very natural view of the question we’re researching
because we are not influencing what happens and the measures of the variables should not
be biased by the researcher being there (this is an important aspect of ecological validity).

At the risk of sounding like ’'m absolutely obsessed with using Coke as a contraceptive
(Pm not, but my discovery that people in the 1950s and 1960s actually tried this has, T
admit, intrigued me), let’s return to that example. If we wanted to answer the question ‘Is
Coke an effective contraceptive?” we could administer questionnaires about sexual prac-
tices (quantity of sexual activity, use of contraceptives, use of fizzy drinks as contracep-
tives, pregnancy, etc.). By looking at these variables we could see which variables predict
pregnancy, and in particular whether those reliant on Coca-Cola as a form of contraceptive
were more likely to end up pregnant than those using other contraceptives, and less likely
than those using no contraceptives at all. This is the only way to answer a question like this
because we cannot manipulate any of these variables particularly easily. Even if we could,
it would be totally unethical to insist on some people using Coke as a contraceptive (or
indeed to do anything that would make a person likely to produce a child that they didn’t
intend to produce). However, there is a price to pay, which relates to causality.

Experimental research methods ©

Most scientific questions imply a causal link between variables; we have seen already that
dependent and independent variables are named such that a causal connection is implied
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(the dependent variable depends on the independent variable). Sometimes the causal link
is very obvious, as in the research question ‘Does low self-esteem cause dating anxiety?’.
Sometimes the implication might be subtler — for example, in the question ‘Is dating anxi-
ety all in the mind?’ the implication is that a person’s mental outlook causes them to be
anxious when dating. Even when the cause—effect relationship is not explicitly stated, most
research questions can be broken down into a proposed cause (in this case mental outlook)
and a proposed outcome (dating anxiety). Both the cause and the outcome are variables:
for the cause some people will perceive themselves in a negative way (so it is something
that varies); and for the outcome, some people will get anxious on dates and others won’t
(again, this is something that varies). The key to answering the research question is to
uncover how the proposed cause and j14the proposed outcome relate to each other; is it
the case that the people who have a low opinion of themselves are the same people that
get anxious on dates?

David Hume (see Hume, 1739-40, 1748, for more detail),'" an influ-
ential philosopher, said that to infer cause and effect: (1) cause and
effect must occur close together in time (contiguity); (2) the cause must
occur before an effect does; and (3) the effect should never occur with-
out the presence of the cause. These conditions imply that causality can
be inferred through corroborating evidence: cause is equated to high
degrees of correlation between contiguous events. In our dating example,
to infer that low self-esteem caused dating anxiety, it would be sufficient
to find that whenever someone had low self-esteem they would feel anx-
ious when on a date, that the low self-esteem emerged before the dating
anxiety did, and that the person should never have dating anxiety if they
haven’t been suffering from low self-esteem.

In the previous section on correlational research, we saw that variables are often meas-
ured simultaneously. The first problem with doing this is that it provides no information
about the contiguity between different variables: we might find from a questionnaire study
that people with low self-esteem also have dating anxiety but we wouldn’t know whether
the low self-esteem or the dating anxiety came first!

Let’s imagine that we find that there are people who have low self-esteem but do not get
dating anxiety. This finding doesn’t violate Hume’s rules: he doesn’t say anything about
the cause happening without the effect. It could be that both low self-esteem and dating
anxiety are caused by a third variable (e.g., poor social skills which might make you feel
generally worthless but also put pressure on you in dating situations). This illustrates a sec-
ond problem with correlational evidence: the tertium quid (‘a third person or thing of inde-
terminate character’). For example, a correlation has been found between having breast
implants and suicide (Koot, Peeters, Granath, Grobbee, & Nyren, 2003). However, it is
unlikely that having breast implants causes you to commit suicide — presumably, there is an
external factor (or factors) that causes both; for example, low self-esteem might lead you
to have breast implants and also attempt suicide. These extraneous factors are sometimes
called confounding variables or confounds for short.

The shortcomings of Hume’s criteria led John Stuart Mill (1865) to add a further crite-
rion: that all other explanations of the cause—effect relationship be ruled out. Put simply,
Mill proposed that, to rule out confounding variables, an effect should be present when the
cause is present and that when the cause is absent the effect should be absent also. Mill’s
ideas can be summed up by saying that the only way to infer causality is through compari-
son of two controlled situations: one in which the cause is present and one in which the
cause is absent. This is what experimental methods strive to do: to provide a comparison of
situations (usually called treatments or conditions) in which the proposed cause is present
or absent.

11 Both of these can be read online at http://www.utilitarian.net/hume/ or by doing a Google search
for David Hume.
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As a simple case, we might want to see what effect motivators have on learning about
statistics. I might, therefore, randomly split some students into three different groups in
which I change my style of teaching in the seminars on the course:

® Group 1 (positive reinforcement): During seminars I congratulate all students in this
group on their hard work and success. Even when they get things wrong, I am sup-
portive and say things like ‘that was very nearly the right answer, you’re coming
along really well” and then give them a nice piece of chocolate.

® Group 2 (punishment): This group receives seminars in which I give relentless verbal
abuse to all of the students even when they give the correct answer. I demean their
contributions and am patronizing and dismissive of everything they say. I tell students
that they are stupid, worthless and shouldn’t be doing the course at all.

® Group 3 (no motivator): This group receives normal university style seminars (some
might argue that this is the same as group 2!). Students are not praised or punished
and instead I give them no feedback at all.

The thing that I have manipulated is the teaching method (positive reinforcement, pun-
ishment or no motivator). As we have seen earlier in this chapter, this variable is known
as the independent variable and in this situation it is said to have three levels, because it
has been manipulated in three ways (i.e., motivator has been split into three types: positive
reinforcement, punishment and none). Once I have carried out this manipulation I must
have some kind of outcome that I am interested in measuring. In this case it is statistical
ability, and I could measure this variable using a statistics exam after the last seminar. We
have also already discovered that this outcome variable is known as the dependent vari-
able because we assume that these scores will depend upon the type of teaching method
used (the independent variable). The critical thing here is the inclusion of the no-motivator
group because this is a group in which our proposed cause (motivator) is absent, and we
can compare the outcome in this group against the two situations where the proposed
cause is present. If the statistics scores are different in each of the motivation groups (cause
is present) compared to the group for which no motivator was given (cause is absent) then
this difference can be attributed to the type of motivator used. In other words, the motiva-
tor used caused a difference in statistics scores (Jane Superbrain Box 1.4).

effect on an outcome (the effect). In correlational research
we observe the co-occurrence of variables; we do not
manipulate the causal variable first and then measure the
effect, therefore we cannot compare the effect when the
causal variable is present against when it is absent. In
short, we cannot say which variable causes a change in
the other; we can merely say that the variables co-occur

JANE SUPERBRAIN 1.4

Causality and statistics ©

People sometimes get confused and think that certain
statistical procedures allow causal inferences and others
don't. This isn't true, it's the fact that in experiments we
manipulate the causal variable systematically to see its

in a certain way. The reason why some people think that
certain statistical tests allow causal inferences is because
historically certain tests (e.g., ANOVA, t-tests) have been
used to analyse experimental research, whereas others
(e.g., regression, correlation) have been used to ana-
lyse correlational research (Cronbach, 1957). As you'll
discover, these statistical procedures are, in fact, math-
ematically identical.
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1.6.2.1. Two methods of data collection ®

When we collect data in an experiment, we can choose between two methods of data col-
lection. The first is to manipulate the independent variable using different participants.
This method is the one described above, in which different groups of people take part in
each experimental condition (a between-groups, between-subjects, or independent design).
The second method is to manipulate the independent variable using the same participants.
Simplistically, this method means that we give a group of students positive reinforcement
for a few weeks and test their statistical abilities and then begin to give this same group
punishment for a few weeks before testing them again, and then finally giving them no
motivator and testing them for a third time (a within-subject or repeated-measures design).
As you will discover, the way in which the data are collected determines the type of test
that is used to analyse the data.

1.6.2.2. Two types of variation ©

Imagine we were trying to see whether you could train chimpanzees to run the economy.
In one training phase they are sat in front of a chimp-friendly computer and press but-
tons which change various parameters of the economy; once these parameters have been
changed a figure appears on the screen indicating the economic growth resulting from
those parameters. Now, chimps can’t read (I don’t think) so this feedback is meaningless.
A second training phase is the same except that if the economic growth is good, they get a
banana (if growth is bad they do not) — this feedback is valuable to the average chimp. This
is a repeated-measures design with two conditions: the same chimps participate in condi-
tion 1 and in condition 2.

Let’s take a step back and think what would happen if we did 7ot introduce an experi-
mental manipulation (i.e., there were no bananas in the second training phase so condition
1 and condition 2 were identical). If there is no experimental manipulation then we expect
a chimp’s behaviour to be similar in both conditions. We expect this because external fac-
tors such as age, gender, IQ, motivation and arousal will be the same for both conditions
(a chimp’s gender etc. will not change from when they are tested in condition 1 to when
they are tested in condition 2). If the performance measure is reliable (i.e., our test of how
well they run the economy), and the variable or characteristic that we are measuring (in
this case ability to run an economy) remains stable over time, then a participant’s perform-
ance in condition 1 should be very highly related to their performance in condition 2. So,
chimps who score highly in condition 1 will also score highly in condition 2, and those who
have low scores for condition 1 will have low scores in condition 2. However, performance
won’t be identical, there will be small differences in performance created by unknown fac-
tors. This variation in performance is known as unsystematic variation.

If we introduce an experimental manipulation (i.e., provide bananas as feedback in one
of the training sessions), then we do something different to participants in condition 1 than
what we do to them in condition 2. So, the only difference between conditions 1 and 2 is
the manipulation that the experimenter has made (in this case that the chimps get bananas
as a positive reward in one condition but not in the other). Therefore, any differences
between the means of the two conditions is probably due to the experimental manipula-
tion. So, if the chimps perform better in one training phase than the other then this has to
be due to the fact that bananas were used to provide feedback in one training phase but not
the other. Differences in performance created by a specific experimental manipulation are
known as systematic variation.

Now let’s think about what happens when we use different participants — an independ-
ent design. In this design we still have two conditions, but this time different participants
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participate in each condition. Going back to our example, one group of chimps receives
training without feedback, whereas a second group of different chimps does receive feed-
back on their performance via bananas.'? Imagine again that we didn’t have an experimen-
tal manipulation. If we did nothing to the groups, then we would still find some variation
in behaviour between the groups because they contain different chimps who will vary in
their ability, motivation, IQ and other factors. In short, the type of factors that were held
constant in the repeated-measures design are free to vary in the independent-measures
design. So, the unsystematic variation will be bigger than for a repeated-measures design.
As before, if we introduce a manipulation (i.e., bananas) then we will see additional vari-
ation created by this manipulation. As such, in both the repeated-measures design and the
independent-measures design there are always two sources of variation:

® Systematic variation: This variation is due to the experimenter doing something to all
of the participants in one condition but not in the other condition.

® Unsystematic variation: This variation results from random factors that exist between
the experimental conditions (natural differences in ability, the time of day, etc.).

The role of statistics is to discover how much variation there is in performance, and then
to work out how much of this is systematic and how much is unsystematic.

In a repeated-measures design, differences between two conditions can be caused by
only two things: (1) the manipulation that was carried out on the participants, or (2) any
other factor that might affect the way in which a participant performs from one time to
the next. The latter factor is likely to be fairly minor compared to the influence of the
experimental manipulation. In an independent design, differences between the two condi-
tions can also be caused by one of two things: (1) the manipulation that was carried out on
the participants, or (2) differences between the characteristics of the participants allocated
to each of the groups. The latter factor in this instance is likely to create considerable
random variation both within each condition and between them. Therefore, the effect
of our experimental manipulation is likely to be more apparent in a repeated-measures
design than in a between-group design because in the former unsystematic variation can
be caused only by differences in the way in which someone behaves at different times. In
independent designs we have differences in innate ability contributing to the unsystematic
variation. Therefore, this error variation will almost always be much larger than if the same
participants had been used. When we look at the effect of our experimental manipulation,
it is always against a background of ‘noise’ caused by random, uncontrollable differences
between our conditions. In a repeated-measures design this ‘noise’ is kept to a minimum
and so the effect of the experiment is more likely to show up. This means that, other things
being equal, repeated-measures designs have more power to detect effects than independ-
ent designs.

Randomization @

In both repeated-measures and independent-measures designs it is important to try to keep
the unsystematic variation to a minimum. By keeping the unsystematic variation as small
as possible we get a more sensitive measure of the experimental manipulation. Generally,
scientists use the randomization of participants to treatment conditions to achieve this goal.

12 When I say ‘via’ I don’t mean that the bananas developed little banana mouths that opened up and said ‘well
done old chap, the economy grew that time’ in chimp language. I mean that when they got something right they
received a banana as a reward for their correct response.
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Many statistical tests work by identifying the systematic and unsystematic sources of varia-
tion and then comparing them. This comparison allows us to see whether the experiment
has generated considerably more variation than we would have got had we just tested
participants without the experimental manipulation. Randomization is important because
it eliminates most other sources of systematic variation, which allows us to be sure that
any systematic variation between experimental conditions is due to the manipulation of
the independent variable. We can use randomization in two different ways depending on
whether we have an independent- or repeated-measures design.

Let’s look at a repeated-measures design first. When the same people participate in more
than one experimental condition they are naive during the first experimental condition but
they come to the second experimental condition with prior experience of what is expected
of them. At the very least they will be familiar with the dependent measure (e.g., the task
they’re performing). The two most important sources of systematic variation in this type
of design are:

® Practice effects: Participants may perform differently in the second condition because
of familiarity with the experimental situation and/or the measures being used.

® Boredom effects: Participants may perform differently in the second condition because
they are tired or bored from having completed the first condition.

Although these effects are impossible to eliminate completely, we can ensure that they
produce no systematic variation between our conditions by counterbalancing the order in
which a person participates in a condition.

We can use randomization to determine in which order the conditions are completed.
That is, we randomly determine whether a participant completes condition 1 before condi-
tion 2, or condition 2 before condition 1. Let’s look at the teaching method example and
imagine that there were just two conditions: no motivator and punishment. If the same
participants were used in all conditions, then we might find that statistical ability was
higher after the punishment condition. However, if every student experienced the punish-
ment after the no-motivator seminars then they would enter the punishment condition
already having a better knowledge of statistics than when they began the no-motivator
condition. So, the apparent improvement after punishment would not be due to the experi-
mental manipulation (i.e., it’s not because punishment works), but because participants
had attended more statistics seminars by the end of the punishment condition compared
to the no-motivator one. We can use randomization to ensure that the number of statistics
seminars does not introduce a systematic bias by randomly assigning students to have the
punishment seminars first or the no-motivator seminars first.

If we turn our attention to independent designs, a similar argument can be applied. We
know that different participants participate in different experimental conditions and that
these participants will differ in many respects (their IQ, attention span, etc.). Although we
know that these confounding variables contribute to the variation between conditions,
we need to make sure that these variables contribute to the unsystematic variation and
not the systematic variation. The way to ensure that confounding variables are unlikely to
contribute systematically to the variation between experimental conditions is to randomly
allocate participants to a particular experimental condition. This should ensure that these
confounding variables are evenly distributed across conditions.

A good example is the effects of alcohol on personality. You might give one group of
people 5 pints of beer, and keep a second group sober, and then count how many fights
each person gets into. The effect that alcohol has on people can be very variable because
of different tolerance levels: teetotal people can become very drunk on a small amount,
while alcoholics need to consume vast quantities before the alcohol affects them. Now,
if you allocated a bunch of teetotal participants to the condition that consumed alcohol,
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then you might find no difference between them and the sober group (because the teetotal
participants are all unconscious after the first glass and so can’t become involved in any
fights). As such, the person’s prior experiences with alcohol will create systematic variation
that cannot be dissociated from the effect of the experimental manipulation. The best way
to reduce this eventuality is to randomly allocate participants to conditions.

SELF-TEST

v" Why is randomization important?

1.7. Analysing data @

The final stage of the research process is to analyse the data you have collected. When the
data are quantitative this involves both looking at your data graphically to see what the
general trends in the data are, and also fitting statistical models to the data.

Frequency distributions @

Once you’ve collected some data a very useful thing to do is to plot a graph of how many
times each score occurs. This is known as a frequency distribution, or histogram, which is a
graph plotting values of observations on the horizontal axis, with a bar showing how many
times each value occurred in the data set. Frequency distributions can be very useful for
assessing properties of the distribution of scores. We will find out how to create these types
of charts in Chapter 4.

Frequency distributions come in many different shapes and sizes. It is
quite important, therefore, to have some general descriptions for common
types of distributions. In an ideal world our data would be distributed sym-
metrically around the centre of all scores. As such, if we drew a vertical
line through the centre of the distribution then it should look the same on
both sides. This is known as a normal distribution and is characterized by
the bell-shaped curve with which you might already be familiar. This shape
basically implies that the majority of scores lie around the centre of the
distribution (so the largest bars on the histogram are all around the central
value). Also, as we get further away from the centre the bars get smaller,
implying that as scores start to deviate from the centre their frequency
is decreasing. As we move still further away from the centre our scores
become very infrequent (the bars are very short). Many naturally occurring
things have this shape of distribution. For example, most men in the UK are about 175 cm
tall,’® some are a bit taller or shorter but most cluster around this value. There will be very
few men who are really tall (i.e., above 205 cm) or really short (i.e., under 145 cm). An
example of a normal distribution is shown in Figure 1.3.

dis
whe

13T am exactly 180 c¢m tall. In my home country this makes me smugly above average. However, ’'m writing this
in the Netherlands where the average male height is 185 cm (a massive 10 cm higher than the UK), and where I
feel like a bit of a dwarf.

What is a frequency

tribution and
n is it normal?




FIGURE 1.3

A ‘normal’
distribution (the
curve shows the
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There are two main ways in which a distribution can deviate from normal: (1) lack of
symmetry (called skew) and (2) pointyness (called kurtosis). Skewed distributions are not
symmetrical and instead the most frequent scores (the tall bars on the graph) are clustered
at one end of the scale. So, the typical pattern is a cluster of frequent scores at one end
of the scale and the frequency of scores tailing off towards the other end of the scale. A
skewed distribution can be either positively skewed (the frequent scores are clustered at
the lower end and the tail points towards the higher or more positive scores) or negatively
skewed (the frequent scores are clustered at the higher end and the tail points towards the
lower or more negative scores). Figure 1.4 shows examples of these distributions.
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FIGURE 1.4 A positively (left-hand figure) and negatively (right-hand figure) skewed distribution
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Distributions also vary in their kurtosis. Kurtosis, despite sounding like some kind of
exotic disease, refers to the degree to which scores cluster at the ends of the distribution
(known as the tails) and how pointy a distribution is (but there are other factors that can
affect how pointy the distribution looks — see Jane Superbrain Box 2.3). A distribution with
positive kurtosis has many scores in the tails (a so-called heavy-tailed distribution) and is
pointy. This is known as a leptokurtic distribution. In contrast, a distribution with negative
kurtosisis is relatively thin in the tails (has light tails) and tends to be flatter than normal.
This distribution is called platykurtic. Ideally, we want our data to be normally distributed
(i.e., not too skewed, and not too many or too few scores at the extremes!). For everything
there is to know about kurtosis read DeCarlo (1997).

In a normal distribution the values of skew and kurtosis are 0 (i.e., the tails of the dis-
tribution are as they should be). If a distribution has values of skew or kurtosis above or
below 0 then this indicates a deviation from normal: Figure 1.5 shows distributions with
kurtosis values of +4 (left panel) and —1 (right panel).
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FIGURE 1.5 Distributions with positive kurtosis (leptokurtic, left) and negative kurtosis (platykurtic, right)

The centre of a distribution ®

We can also calculate where the centre of a frequency distribution lies (known as the
central tendency). There are three measures commonly used: the mean, the mode and the
median.
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The mode is simply the score that occurs most frequently in the data set. This is easy to spot in
a frequency distribution because it will be the tallest bar! To calculate the mode, simply place
the data in ascending order (to make life easier), count how many times each score occurs,
and the score that occurs the most is the mode! One problem with the mode is that it can
often take on several values. For example, Figure 1.6 shows an example of a distribution with
two modes (there are two bars that are the highest), which is said to be bimodal. It’s also pos-
sible to find data sets with more than two modes (multimodal). Also, if the frequencies of cer-
tain scores are very similar, then the mode can be influenced by only a small number of cases.

FIGURE 1.6
A bimodal
distribution
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What are the mode,
median and mean?

Another way to quantify the centre of a distribution is to look for the middle
score when scores are ranked in order of magnitude. This is called the median.
For example, Facebook is a popular social networking website, in which users
can sign up to be ‘friends’ of other users. Imagine we looked at the number
of friends that a selection (actually, some of my friends) of 11 Facebook users
had. Number of friends: 108, 103, 252, 121, 93, 57, 40, 53, 22, 116, 98.

To calculate the median, we first arrange these scores into ascending order:
22,40, 53,57,93, 98,103, 108, 116, 121, 252.

Next, we find the position of the middle score by counting the number of
scores we have collected (1), adding 1 to this value, and then dividing by 2.
With 11 scores, this gives us (7 + 1)/2 = (11 + 1)/2 = 12/2 = 6. Then, we
find the score that is positioned at the location we have just calculated. So, in

this example we find the sixth score:

22, 40, 53, 57, 93, 103, 108, 116, 121, 252
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This works very nicely when we have an odd number of scores (as in this example) but
when we have an even number of scores there won’t be a middle value. Let’s imagine that
we decided that because the highest score was so big (more than twice as large as the next
biggest number), we would ignore it. (For one thing, this person is far too popular and we
hate them.) We have only 10 scores now. As before, we should rank-order these scores:
22,40, 53, 57,93, 98, 103, 108, 116, 121. We then calculate the position of the middle
score, but this time it is (# + 1)/2 = 11/2 = 5.5. This means that the median is halfway
between the fifth and sixth scores. To get the median we add these two scores and divide
by 2. In this example, the fifth score in the ordered list was 93 and the sixth score was 98.
We add these together (93 + 98 = 191) and then divide this value by 2 (191/2 = 95.5).
The median number of friends was, therefore, 95.5.

The median is relatively unaffected by extreme scores at either end of the distribution:
the median changed only from 98 to 95.5 when we removed the extreme score of 252. The
median is also relatively unaffected by skewed distributions and can be used with ordinal,
interval and ratio data (it cannot, however, be used with nominal data because these data
have no numerical order).

1.7.2.3. The mean @®

The mean is the measure of central tendency that you are most likely to have heard of
because it is simply the average score and the media are full of average scores.'* To calculate
the mean we simply add up all of the scores and then divide by the total number of scores
we have. We can write this in equation form as:

n

XZE (1.1)
n

This may look complicated, but the top half of the equation simply means ‘add up all of
the scores’ (the x, just means ‘the score of a particular person’; we could replace the letter 7
with each person’s name instead), and the bottom bit means divide this total by the number
of scores you have got (n). Let’s calculate the mean for the Facebook data. First, we add
up all of the scores:

in =224+40+53+57+93+98+103+108+116+121+253
i=1

=1063

We then divide by the number of scores (in this case 11):

S
xom 1063 o4
n 11

The mean is 96.64 friends, which is not a value we observed in our actual data (it would
be ridiculous to talk of having 0.64 of a friend). In this sense the mean is a statistical model —
more on this in the next chapter.

4 T’m writing this on 15 February 2008, and to prove my point the BBC website is running a headline about how
PayPal estimates that Britons will spend an average of £71.25 each on Valentine’s Day gifts, but uSwitch.com said
that the average spend would be £22.69!
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SELF-TEST

v" Compute the mean but excluding the score of
252.

If you calculate the mean without our extremely popular person (i.e., excluding the
value 252), the mean drops to 81.1 friends. One disadvantage of the mean is that it can
be influenced by extreme scores. In this case, the person with 252 friends on Facebook
increased the mean by about 15 friends! Compare this difference with that of the median.
Remember that the median hardly changed if we included or excluded 252, which illus-
trates how the median is less affected by extreme scores than the mean. While we’re being
negative about the mean, it is also affected by skewed distributions and can be used only
with interval or ratio data.

If the mean is so lousy then why do we use it all of the time? One very important reason
is that it uses every score (the mode and median ignore most of the scores in a data set).
Also, the mean tends to be stable in different samples.

The dispersion in a distribution ®

It can also be interesting to try to quantify the spread, or dispersion, of scores in the data.
The easiest way to look at dispersion is to take the largest score and subtract from it the
smallest score. This is known as the range of scores. For our Facebook friends data, if we
order these scores we get 22, 40, 53, 57, 93, 98, 103, 108, 116, 121, 252. The highest
score is 252 and the lowest is 22; therefore, the range is 252 — 22 = 230. One problem
with the range is that because it uses only the highest and lowest score it is affected dra-
matically by extreme scores.

SELF-TEST

v Compute the range but excluding the score of
252.

If you have done the self-test task you’ll see that without the extreme score the range
drops dramatically from 230 to 99 — less than half the size!

One way around this problem is to calculate the range when we exclude values at the
extremes of the distribution. One convention is to cut off the top and bottom 25% of
scores and calculate the range of the middle 50% of scores — known as the interquartile
range. Let’s do this with the Facebook data. First we need to calculate what are called quar-
tiles. Quartiles are the three values that split the sorted data into four equal parts. First we
calculate the median, which is also called the second quartile, which splits our data into two
equal parts. We already know that the median for these data is 98. The lower quartile is the
median of the lower half of the data and the upper quartile is the median of the upper half
of the data. One rule of thumb is that the median is not included in the two halves when
they are split (this is convenient if you have an odd number of values), but you can include
it (although which half you put it in is another question). Figure 1.7 shows how we would
calculate these values for the Facebook data. Like the median, the upper and lower quartile
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need not be values that actually appear in the data (like the median, if each half of the data
had an even number of values in it then the upper and lower quartiles would be the aver-
age of two values in the data set). Once we have worked out the values of the quartiles, we
can calculate the interquartile range, which is the difference between the upper and lower
quartile. For the Facebook data this value would be 116 —-53 = 63. The advantage of the
interquartile range is that it isn’t affected by extreme scores at either end of the distribu-
tion. However, the problem with it is that you lose a lot of data (half of it in fact !).

Interquartile Range ~ FIGURE 1.7
i Calculating
quartiles and
22 | 40 57 | 93 103 | 108 121 | 252 the interquartile
range
Lower Quartile Median Upper Quartile

Second Quartile

SELF-TEST

v Twenty-one heavy smokers were put on a
treadmill at the fastest setting. The time in
seconds was measured until they fell off from
exhaustion: 18, 16, 18, 24, 23, 22, 22, 23, 26, 29,
32, 34, 34, 36, 36, 43, 42, 49, 46, 46, 57

Compute the mode, median, mean, upper and lower
quartiles, range and interquartile range

Using a frequency distribution to go beyond the data ®

Another way to think about frequency distributions is not in terms of how often scores
actually occurred, but how likely it is that a score would occur (i.e., probability). The
word ‘probability’ induces suicidal ideation in most people (myself included) so it seems
fitting that we use an example about throwing ourselves off a cliff. Beachy Head is a large,
windy cliff on the Sussex coast (not far from where I live) that has something of a reputa-
tion for attracting suicidal people, who seem to like throwing themselves off it (and after
several months of rewriting this book I find my thoughts drawn towards that peaceful
chalky cliff top more and more often). Figure 1.8 shows a frequency distribution of some
completely made-up data of the number of suicides at Beachy Head in a year by people of
different ages (although I made these data up, they are roughly based on general suicide
statistics such as those in Williams, 2001). There were 172 suicides in total and you can
see that the suicides were most frequently aged between about 30 and 35 (the highest
bar). The graph also tells us that, for example, very few people aged above 70 committed
suicide at Beachy Head.

I said earlier that we could think of frequency distributions in terms of probability. To
explain this, imagine that someone asked you ‘How likely is it that a person who commit-
ted suicide at Beachy Head is 70 years old?” What would your answer be? The chances are
that if you looked at the frequency distribution you might respond ‘not very likely’ because
you can see that only 3 people out of the 172 suicides were aged around 70. What about
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if someone asked you ‘how likely is it that a 30-year-old committed suicide?’ Again, by
looking at the graph, you might say ‘it’s actually quite likely’ because 33 out of the 172
suicides were by people aged around 30 (that’s more than 1 in every 5 people who commit-
ted suicide). So based on the frequencies of different scores it should start to become clear
that we could use this information to estimate the probability that a particular score will
occur. We could ask, based on our data, ‘what’s the probability of a suicide victim being
aged 16-20?" A probability value can range from 0 (there’s no chance whatsoever of the
event happening) to 1 (the event will definitely happen). So, for example, when I talk to my
publishers I tell them there’s a probability of 1 that I will have completed the revisions to
this book by April 2011. However, when I talk to anyone else, I might, more realistically,
tell them that there’s a .10 probability of me finishing the revisions on time (or put another
way, a 10% chance, or 1 in 10 chance that I’ll complete the book in time). In reality, the
probability of my meeting the deadline is 0 (not a chance in hell) because I never manage
to meet publisher’s deadlines! If probabilities don’t make sense to you then just ignore the
decimal point and think of them as percentages instead (i.e., .10 probability that something
will happen = 10% chance that something will happen).

I’ve talked in vague terms about how frequency distributions can be used to get a rough
idea of the probability of a score occurring. However, we can be precise. For any distribu-
tion of scores we could, in theory, calculate the probability of obtaining a score of a certain
size — it would be incredibly tedious and complex to do it, but we could. To spare our
sanity, statisticians have identified several common distributions. For each one they have
worked out mathematical formulae that specify idealized versions of these distributions
(they are specified in terms of a curved line). These idealized distributions are known as
probability distributions and from these distributions it is possible to calculate the prob-
ability of getting particular scores based on the frequencies with which a particular score
occurs in a distribution with these common shapes. One of these ‘common’ distributions is
the normal distribution, which I’ve already mentioned in section 1.7.1. Statisticians have
calculated the probability of certain scores occurring in a normal distribution with a mean
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of 0 and a standard deviation of 1. Therefore, if we have any data that are
shaped like a normal distribution, then if the mean and standard deviation
are 0 and 1 respectively we can use the tables of probabilities for the normal
distribution to see how likely it is that a particular score will occur in the data
(Pve produced such a table in the Appendix to this book).

The obvious problem is that not all of the data we collect will have a mean
of 0 and standard deviation of 1. For example, we might have a data set that
has a mean of 567 and a standard deviation of 52.98. Luckily any data set
can be converted into a data set that has a mean of 0 and a standard deviation
of 1. First, to centre the data around zero, we take each score (X) and sub-
tract from it the mean of all scores (X). Then, we divide the resulting score
by the standard deviation (s) to ensure the data have a standard deviation of
1. The resulting scores are known as z-scores and, in equation form, the conversion that
Pve just described is:

What is the
normal distribution?

X-X
S

(1.2)

g =

The table of probability values that have been calculated for the standard normal dis-
tribution is shown in the Appendix. Why is this table important? Well, if we look at our
suicide data, we can answer the question ‘What’s the probability that someone who threw
themselves off Beachy Head was 70 or older?’ First we convert 70 into a z-score. Suppose
the mean of the suicide scores was 36, and the standard deviation 13; then 70 will become
(70—-36)/13 = 2.62. We then look up this value in the column labelled ‘Smaller Portion’
(i.e., the area above the value 2.62). You should find that the probability is .0044, or, put
another way, only a 0.44% chance that a suicide victim would be 70 years old or more. By
looking at the column labelled ‘Bigger Portion’ we can also see the probability that a suicide
victim was aged 70 or less. This probability is .9956, or, put another way, there’s a 99.56%
chance that a suicide victim was less than 70 years old.

Hopefully you can see from these examples that the normal distribution and z-scores
allow us to go a first step beyond our data in that from a set of scores we can calculate
the probability that a particular score will occur. So, we can see whether scores of a cer-
tain size are likely or unlikely to occur in a distribution of a particular kind. You’ll see
just how useful this is in due course, but it is worth mentioning at this stage that certain
z-scores are particularly important. This is because their value cuts off certain important
percentages of the distribution. The first important value of z is 1.96 because this cuts
off the top 2.5% of the distribution, and its counterpart at the opposite end (—1.96) cuts
off the bottom 2.5% of the distribution. As such, taken together, this value cuts off 5%
of scores, or, put another way, 95% of z-scores lie between —1.96 and 1.96. The other
two important benchmarks are £2.58 and £3.29, which cut off 1% and 0.1% of scores
respectively. Put another way, 99% of z-scores lie between —2.58 and 2.58, and 99.9%
of them lie between —3.29 and 3.29. Remember these values because they’ll crop up
time and time again.

SELF-TEST

v Assuming the same mean and standard
deviation for the Beachy Head example above,
what's the probability that someone who threw
themselves off Beachy Head was 30 or younger?




DISCOVERING STATISTICS USING R

Fitting statistical models to the data ®

Having looked at your data (and there is a lot more information on different ways to do
this in Chapter 4), the next step is to fit a statistical model to the data. I should really just
write ‘insert the rest of the book here’, because most of the remaining chapters discuss the
various models that you can fit to the data. However, I do want to talk here briefly about
two very important types of hypotheses that are used when analysing the data. Scientific
statements, as we have seen, can be split into testable hypotheses. The hypothesis or pre-
diction that comes from your theory is usually saying that an effect will be present. This
hypothesis is called the alternative hypothesis and is denoted by H,. (It is sometimes also
called the experimental hypothesis but because this term relates to a specific type of meth-
odology it’s probably best to use ‘alternative hypothesis’.) There is another type of hypoth-
esis, though, and this is called the null hypothesis and is denoted by H,. This hypothesis is
the opposite of the alternative hypothesis and so would usually state that an effect is absent.
Taking our Big Brother example from earlier in the chapter we might generate the follow-
ing hypotheses:

® Alternative hypothesis: Big Brother contestants will score higher on personality disor-
der questionnaires than members of the public.

® Null hypothesis: Big Brother contestants and members of the public will not differ in
their scores on personality disorder questionnaires.

The reason that we need the null hypothesis is because we cannot prove the experi-
mental hypothesis using statistics, but we can reject the null hypothesis. If our data give us
confidence to reject the null hypothesis then this provides support for our experimental
hypothesis. However, be aware that even if we can reject the null hypothesis, this doesn’t
prove the experimental hypothesis — it merely supports it. So, rather than talking about
accepting or rejecting a hypothesis (which some textbooks tell you to do) we should be
talking about ‘the chances of obtaining the data we’ve collected assuming that the null
hypothesis is true’.

Using our Big Brother example, when we collected data from the auditions about the
contestant’s personalities we found that 75% of them had a disorder. When we analyse our
data, we are really asking, ‘Assuming that contestants are no more likely to have personal-
ity disorders than members of the public, is it likely that 75% or more of the contestants
would have personality disorders?’ Intuitively the answer is that the chances are very low:
if the null hypothesis is true, then most contestants would not have personality disorders
because they are relatively rare. Therefore, we are very unlikely to have got the data that
we did if the null hypothesis were true.

What if we found that only 1 contestant reported having a personality disorder (about
890)? If the null hypothesis is true, and contestants are no different in personality than the
general population, then only a small number of contestants would be expected to have
a personality disorder. The chances of getting these data if the null hypothesis is true are,
therefore, higher than before.

When we collect data to test theories we have to work in these terms: we cannot talk
about the null hypothesis being true or the experimental hypothesis being true, we can
only talk in terms of the probability of obtaining a particular set of data if, hypothetically
speaking, the null hypothesis was true. We will elaborate on this idea in the next chapter.

Finally, hypotheses can also be directional or non-directional. A directional hypothesis
states that an effect will occur, but it also states the direction of the effect. For example,
‘readers will know more about research methods after reading this chapter’ is a one-
tailed hypothesis because it states the direction of the effect (readers will know more). A
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non-directional hypothesis states that an effect will occur, but it doesn’t state the direction
of the effect. For example, ‘readers’ knowledge of research methods will change after they
have read this chapter’ does not tell us whether their knowledge will improve or get worse.

What have | discovered about statistics? @

Actually, not a lot because we haven’t really got to the statistics bit yet. However, we have
discovered some stuff about the process of doing research. We began by looking at how
research questions are formulated through observing phenomena or collecting data about
a ‘hunch’. Once the observation has been confirmed, theories can be generated about why
something happens. From these theories we formulate hypotheses that we can test. To test
hypotheses we need to measure things and this leads us to think about the variables that
we need to measure and how to measure them. Then we can collect some data. The final
stage is to analyse these data. In this chapter we saw that we can begin by just looking at
the shape of the data but that ultimately we should end up fitting some kind of statistical
model to the data (more on that in the rest of the book). In short, the reason that your
evil statistics lecturer is forcing you to learn statistics is because it is an intrinsic part of the
research process and it gives you enormous power to answer questions that are interest-
ing; or it could be that they are a sadist who spends their spare time spanking politicians
while wearing knee-high PVC boots, a diamond-encrusted leather thong and a gimp mask
(that’ll be a nice mental image to keep with you throughout your course). We also discov-
ered that I was a curious child (you can interpret that either way). As I got older I became
more curious, but you will have to read on to discover what I was curious about.

Key terms that I’'ve discovered

Alternative hypothesis
Between-group design
Between-subject design
Bimodal

Binary variable
Boredom effect
Categorical variable
Central tendency
Confounding variable
Content validity
Continuous variable
Correlational research
Counterbalancing
Criterion validity
Cross-sectional research
Dependent variable
Discrete variable
Ecological validity

Experimental hypothesis
Experimental research
Falsification
Frequency distribution
Histogram
Hypothesis
Independent design
Independent variable
Interquartile range
Interval variable
Kurtosis

Leptokurtic

Level of measurement
Lower quartile

Mean

Measurement error
Median

Mode



Multimodal

Negative skew
Nominal variable
Normal distribution
Null hypothesis
Ordinal variable
Outcome variable
Platykurtic

Positive skew
Practice effect
Predictor variable
Probability distribution
Qualitative methods
Quantitative methods
Quartile
Randomization

Smart Alex’s tasks

DISCOVERING STATISTICS USING R

Range

Ratio variable
Reliability
Repeated-measures design
Second quartile

Skew

Systematic variation
Tertium quid
Test-retest reliability
Theory

Unsystematic variation
Upper quartile

Validity

Variables
Within-subject design
z-scores

Smart Alex knows everything there is to know about statistics and R. He also likes nothing
more than to ask people stats questions just so that he can be smug about how much he
knows. So, why not really annoy him and get all of the answers right!

® Task 1: What are (broadly speaking) the five stages of the research process?®

® Task 2: What is the fundamental difference between experimental and correlational
research?®

® Task 3: What is the level of measurement of the following variables?®

. The number of downloads of different bands’ songs on iTunes.
. The names of the bands that were downloaded.
The position in the iTunes download chart.
. The money earned by the bands from the downloads.
. The weight of drugs bought by the bands with their royalties.
The type of drugs bought by the bands with their royalties.
. The phone numbers that the bands obtained because of their fame.
. The gender of the people giving the bands their phone numbers.
The instruments played by the band members.
The time they had spent learning to play their instruments.

= al¢ I S ST SR

® Task 4: Say I own 857 CDs. My friend has written a computer program that uses
a webcam to scan the shelves in my house where I keep my CDs and measure how
many I have. His program says that I have 863 CDs. Define measurement error. What
is the measurement error in my friend’s CD-counting device?®

® Task 5: Sketch the shape of a normal distribution, a positively skewed distribution
and a negatively skewed distribution.®

Answers can be found on the companion website.
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Further reading

Field, A. P, & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather
biased, but I think this is a good overview of basic statistical theory and research methods.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a
very gentle introduction to statistical theory.)

Interesting real research

Umpierre, S. A., Hill, J. A., & Anderson, D. J. (1985). Effect of Coke on sperm motility. New
England Journal of Medicine, 313(21), 1351.
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Everything you ever wanted
to know about statistics
(well, sort of)

2.1. What will this chapter tell me? ®

As a child grows, it becomes important for them to fit models to the world: to be able to
reliably predict what will happen in certain situations. This need to build models that accu-
rately reflect reality is an essential part of survival. According to my parents (conveniently
I have no memory of this at all), while at nursery school one model of the world that I was
particularly enthusiastic to try out was ‘If I get my penis out, it will be really funny’. No
doubt to my considerable disappointment, this model turned out to be a poor predictor
of positive outcomes. Thankfully for all concerned, I soon learnt that the model ‘If I get
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my penis out at nursery school the teachers and mummy and daddy are going to be quite
annoyed’ was a better ‘fit’ of the observed data. Fitting models that accurately reflect the
observed data is important to establish whether a theory is true. You’ll be delighted to
know that this chapter is all about fitting statistical models (and not about my penis). We
edge sneakily away from the frying pan of research methods and trip accidentally into the
fires of statistics hell. We begin by discovering what a statistical model is by using the mean
as a straightforward example. We then see how we can use the properties of data to go
beyond the data we have collected and to draw inferences about the world at large. In a
nutshell, then, this chapter lays the foundation for the whole of the rest of the book, so it’s
quite important that you read it or nothing that comes later will make any sense. Actually,
a lot of what comes later probably won’t make much sense anyway because I've written it,
but there you go.

2.2. Building statistical models ®

We saw in the previous chapter that scientists are interested in discovering something about
a phenomenon that we assume actually exists (a ‘real-world’ phenomenon). These real-
world phenomena can be anything from the behaviour of interest rates in the economic
market to the behaviour of undergraduates at the end-of-exam party. Whatever the phe-
nomenon we desire to explain, we collect data from the real world to test our hypotheses
about the phenomenon. Testing these hypotheses involves building statistical
models of the phenomenon of interest.

The reason for building statistical models of real-world data is best
explained by an analogy. Imagine an engineer wishes to build a bridge across
a river. That engineer would be pretty daft if she just built any old bridge,
because the chances are that it would fall down. Instead, an engineer collects
data from the real world: she looks at bridges in the real world and sees what
materials they are made from, what structures they use and so on (she might
even collect data about whether these bridges are damaged!). She then uses
this information to construct a model. She builds a scaled-down version of
the real-world bridge because it is impractical, not to mention expensive, to
build the actual bridge itself. The model may differ from reality in several
ways — it will be smaller for a start — but the engineer will try to build a model
that best fits the situation of interest based on the data available. Once the
model has been built, it can be used to predict things about the real world: for example,
the engineer might test whether the bridge can withstand strong winds by placing the
model in a wind tunnel. It seems obvious that it is important that the model is an
accurate representation of the real world. Social scientists do much the same thing as
engineers: they build models of real-world processes in an attempt to predict how these
processes operate under certain conditions (see Jane Superbrain Box 2.1 below). We
don’t have direct access to the processes, so we collect data that represent the processes
and then use these data to build statistical models (we reduce the process to a statisti-
cal model). We then use this statistical model to make predictions about the real-world
phenomenon. Just like the engineer, we want our models to be as accurate as possible
so that we can be confident that the predictions we make are also accurate. However,
unlike engineers we don’t have access to the real-world situation and so we can only
ever infer things about psychological, societal, biological or economic processes based
upon the models we build. If we want our inferences to be accurate then the statisti-
cal model we build must represent the data collected (the observed data) as closely as

Why do we build
statistical models?




FIGURE 2.2
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details)
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possible. The degree to which a statistical model represents the data collected is known
as the fit of the model.

Figure 2.2 illustrates the kinds of models that an engineer might build to represent the
real-world bridge that she wants to create. The first model (a) is an excellent representation
of the real-world situation and is said to be a good fit (i.e., there are a few small differ-
ences but the model is basically a very good replica of reality). If this model is used to make
predictions about the real world, then the engineer can be confident that these predictions
will be very accurate, because the model so closely resembles reality. So, if the model col-
lapses in a strong wind, then there is a good chance that the real bridge would collapse also.
The second model (b) has some similarities to the real world: the model includes some of
the basic structural features, but there are some big differences from the real-world bridge
(namely the absence of one of the supporting towers). This is what we might term a moder-
ate fit (i.e., there are some differences between the model and the data but there are also
some great similarities). If the engineer uses this model to make predictions about the real
world then these predictions may be inaccurate and possibly catastrophic (e.g.the model
predicts that the bridge will collapse in a strong wind, causing the real bridge to be closed
down, creating 100-mile tailbacks with everyone stranded in the snow; all of which was
unnecessary because the real bridge was perfectly safe — the model was a bad representa-
tion of reality). We can have some confidence, but not complete confidence, in predictions
from this model. The final model (c) is completely different from the real-world situation;
it bears no structural similarities to the real bridge and is a poor fit (in fact, it might more
accurately be described as an abysmal fit!). As such, any predictions based on this model
are likely to be completely inaccurate. Extending this analogy to science, we can say that
it is important when we fit a statistical model to a set of data that this model fits the data
well. If our model is a poor fit of the observed data then the predictions we make from it
will be equally poor.

A
]

The Real World

| (a) Good Fit | (b) Moderate Fit (c) Poor Fit
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JANE SUPERBRAIN 2.1
Types of statistical models @

As behavioural and social scientists, most of the models
that we use to describe data tend to be linear models.
For example, analysis of variance (ANOVA) and regres-
sion are identical systems based on linear models
(Cohen, 1968), yet they have different names and, in
psychology at least, are used largely in different contexts
due to historical divisions in methodology (Cronbach,
1957).

A linear model is simply a model that is based upon
a straight line; this means that we are usually trying to
summarize our observed data in terms of a straight
line. Suppose we measured how many chapters of this
book a person had read, and then measured their spiri-
tual enrichment. We could represent these hypotheti-
cal data in the form of a scatterplot in which each dot
represents an individual's score on both variables (see
section 4.5). Figure 2.3 shows two versions of such a
graph summarizing the pattern of these data with either

a straight (left) or curved (right) line. These graphs illus-
i trate how we can fit different types of models to the
same data. In this case we can use a straight line to
represent our data and it shows that the more chap-
ters a person reads, the less their spiritual enrichment.
However, we can also use a curved line to summarize
i the data and this shows that when most, or all, of the
chapters have been read, spiritual enrichment seems
to increase slightly (presumably because once the
book is read everything suddenly makes sense — yeah,
as if!). Neither of the two types of model is necessarily
i correct, but it will be the case that one model fits the
data better than another and this is why when we use
statistical models it is important for us to assess how
i well a given model fits the data.

It's possible that many scientific disciplines are pro-

gressing in a biased way because most of the models
that we tend to fit are linear (mainly because books like
this tend to ignore more complex curvilinear models). This
i could create a bias because most published scientific
studies are ones with statistically significant results and
i there may be cases where a linear model has been a
poor fit to the data (and hence the paper was not pub-
lished), yet a non-linear model would have fitted the data
well. This is why it is useful to plot your data first: plots tell
you a great deal about what models should be applied
¢ to data. If your plot seems to suggest a non-linear model
then investigate this possibility (which is easy for me to
say when | don't include such techniques in this book!).

FIGURE 2.3
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2.3. Populations and samples @

As researchers, we are interested in finding results that apply to an entire population of
people or things. For example, psychologists want to discover processes that occur in all
humans, biologists might be interested in processes that occur in all cells, economists want
to build models that apply to all salaries, and so on. A population can be very general (all
human beings) or very narrow (all male ginger cats called Bob). Usually, scientists strive to
infer things about general populations rather than narrow ones. For example, it’s not very
interesting to conclude that psychology students with brown hair who own a pet hamster
named George recover more quickly from sports injuries if the injury is massaged (unless,
like René Koning,' you happen to be a psychology student with brown hair who has a pet
hamster named George). However, if we can conclude that everyone’s sports injuries are
aided by massage this finding has a much wider impact.

Scientists rarely, if ever, have access to every member of a population. Psychologists can-
not collect data from every human being and ecologists cannot observe every male ginger
cat called Bob. Therefore, we collect data from a small subset of the population (known as
a sample) and use these data to infer things about the population as a whole. The bridge-
building engineer cannot make a full-size model of the bridge she wants to build and so
she builds a small-scale model and tests this model under various conditions. From the
results obtained from the small-scale model the engineer infers things about how the full-
sized bridge will respond. The small-scale model may respond differently than a full-sized
version of the bridge, but the larger the model, the more likely it is to behave in the same
way as the full-size bridge. This metaphor can be extended to scientists. We never have
access to the entire population (the real-size bridge) and so we collect smaller samples
(the scaled-down bridge) and use the behaviour within the sample to infer things about
the behaviour in the population. The bigger the sample, the more likely it is to reflect the
whole population. If we take several random samples from the population, each of these
samples will give us slightly different results. However, on average, large samples should
be fairly similar.

2.4. Simple statistical models @

yX: %M The mean: a very simple statistical model @

One of the simplest models used in statistics is the mean, which we encountered in sec-
tion 1.7.2.3. In Chapter 1 we briefly mentioned that the mean was a statistical model of
the data because it is a hypothetical value that doesn’t have to be a value that is actually
observed in the data. For example, if we took five statistics lecturers and measured the
number of friends that they had, we might find the following data: 1, 2, 3, 3 and 4. If we
take the mean number of friends, this can be calculated by adding the values we obtained,
and dividing by the number of values measured: (1 + 2 + 3 + 3 + 4)/5 = 2.6. Now, we
know that it is impossible to have 2.6 friends (unless you chop someone up with a chain-
saw and befriend their arm, which frankly is probably not beyond your average statistics
lecturer) so the mean value is a hypothetical value. As such, the mean is a model created to
summarize our data.

' A brown-haired psychology student with a hamster called Sjors (Dutch for George, apparently) who, after
reading one of my web resources, emailed me to weaken my foolish belief that this is an obscure combination of
possibilities.
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YR WH Assessing the fit of the mean: sums of squares,
variance and standard deviations ©

With any statistical model we have to assess the fit (to return to our bridge analogy we need
to know how closely our model bridge resembles the real bridge that we want to build).
With most statistical models we can determine whether the model is accurate by looking
at how different our real data are from the model that we have created. The easiest way
to do this is to look at the difference between the data we observed and the model fitted.
Figure 2.4 shows the number of friends that each statistics lecturer had, and also the mean
number that we calculated earlier on. The line representing the mean can be thought of as
our model, and the circles are the observed data. The diagram also has a series of vertical
lines that connect each observed value to the mean value. These lines represent the devi-
ance between the observed data and our model and can be thought of as the error in the
model. We can calculate the magnitude of these deviances by simply subtracting the mean
value (x) from each of the observed values (x,).> For example, lecturer 1 had only 1 friend
(a glove puppet of an ostrich called Kevin) and so the difference is x, = x = 1 — 2.6 = —1.6.
You might notice that the deviance is a negative number, and this represents the fact that
our model overestimates this lecturer’s popularity: it predicts that he will have 2.6 friends
yet in reality he has only 1 friend (bless him!). Now, how can we use these deviances to
estimate the accuracy of the model? One possibility is to add up the deviances (this would
give us an estimate of the total error). If we were to do this we would find that (don’t be
scared of the equations, we will work through them step by step — if you need reminding
of what the symbols mean there is a guide at the beginning of the book):

total error = sum of deviances
=3 (%, — %) = (-1.6) + (~0.6)+ (0.4) + (0.4) + (1.4) = 0

FIGURE 2.4
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So, in effect the result tells us that there is no total error between our model and the
observed data, so the mean is a perfect representation of the data. Now, this clearly isn’t
true: there were errors but some of them were positive, some were negative and they have

2 . . . .

The x, simply refers to the observed score for the ith person (so the i can be replaced with a number that rep-
resents a particular individual). For these data: for lecturer 1, x, = x, = 1; for lecturer 3, x, = x, = 3; for lecturer S,
x, =x, =4
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simply cancelled each other out. It is clear that we need to avoid the problem of which
direction the error is in and one mathematical way to do this is to square each error,® that
is multiply each error by itself. So, rather than calculating the sum of errors, we calculate
the sum of squared errors. In this example:

sum of squared errors (SS) = X(x,— X)(x,— X)
= (—1.6)2+ (=0.6)2+ (0.4 + (0.4)2+ (1.4)
=256+0.36+0.16 +0.16 + 1.96
=5.20

The sum of squared errors (SS) is a good measure of the accuracy of our model. However, it
is fairly obvious that the sum of squared errors is dependent upon the amount of data that
has been collected — the more data points, the higher the SS. To overcome this problem
we calculate the average error by dividing the SS by the number of observations (N). If
we are interested only in the average error for the sample, then we can divide by N alone.
However, we are generally interested in using the error in the sample to estimate the error
in the population and so we divide the SS by the number of observations minus 1 (the rea-
son why is explained in Jane Superbrain Box 2.2). This measure is known as the variance

and is a measure that we will come across a great deal:

$S D -% 520

variance (52) = =
N-1 N-1

JANE SUPERBRAIN 2.2

Degrees of freedom ®

Degrees of freedom (df) are a very difficult concept to
explain. I'll begin with an analogy. Imagine you'’re the man-
ager of a rugby team and you have a team sheet with 15
empty slots relating to the positions on the playing field.
There is a standard formation in rugby and so each team
has 15 specific positions that must be held constant for
the game to be played. When the first player arrives, you
have the choice of 15 positions in which to place him. You
place his name in one of the slots and allocate him to a
position (e.g., scrum-half) and, therefore, one position on
the pitch is now occupied. When the next player arrives,
you have the choice of 14 positions but you still have the
freedom to choose which position this player is allocated.
However, as more players arrive, you will reach the point
at which 14 positions have been filled and the final player
arrives. With this player you have no freedom to choose

Z 1.3 (2.1)

where he plays — there is only one position left. Therefore
there are 14 degrees of freedom; that is, for 14 players
you have some degree of choice over where they play, but
for 1 player you have no choice. The degrees of freedom
are one less than the number of players.

In statistical terms the degrees of freedom relate to the
number of observations that are free to vary. If we take
a sample of four observations from a population, then
these four scores are free to vary in any way (they can be
any value). However, if we then use this sample of four
observations to calculate the standard deviation of the
population, we have to use the mean of the sample as
an estimate of the population’s mean. Thus we hold one
parameter constant. Say that the mean of the sample was
10; then we assume that the population mean is 10 also
and we keep this value constant. With this parameter fixed,
can all four scores from our sample vary? The answer is
no, because to keep the mean constant only three values
are free to vary. For example, if the values in the sample
were 8, 9, 11, 12 (mean = 10) and we changed three of
these values to 7, 15 and 8, then the final value must be
10 to keep the mean constant. Therefore, if we hold one
parameter constant then the degrees of freedom must
be one less than the sample size. This fact explains why
when we use a sample to estimate the standard deviation
of a population, we have to divide the sums of squares by
N — 1 rather than N alone.

3When you multiply a negative number by itself it becomes positive.
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The variance is, therefore, the average error between the mean and the observations
made (and so is a measure of how well the model fits the actual data). There is one
problem with the variance as a measure: it gives us a measure in units squared (because
we squared each error in the calculation). In our example we would have to say that the
average error in our data (the variance) was 1.3 friends squared. It makes little enough
sense to talk about 1.3 friends, but it makes even less to talk about friends squared! For
this reason, we often take the square root of the variance (which ensures that the measure
of average error is in the same units as the original measure). This measure is known as
the standard deviation and is simply the square root of the variance. In this example the
standard deviation is:

N-1 (2.2)

The sum of squares, variance and standard deviation are all, therefore, measures of the
fit’ (i.e., how well the mean represents the data). Small standard deviations (relative to the
value of the mean itself) indicate that data points are close to the mean. A large standard
deviation (relative to the mean) indicates that the data points are distant from the mean
(i.e., the mean is not an accurate representation of the data). A standard deviation of 0
would mean that all of the scores were the same. Figure 2.5 shows the overall ratings (on
a 5-point scale) of two lecturers after each of five different lectures. Both lecturers had an
average rating of 2.6 out of 5 across the lectures. However, the first lecturer had a stan-
dard deviation of 0.55 (relatively small compared to the mean). It should be clear from the
graph that ratings for this lecturer were consistently close to the mean rating. There was a
small fluctuation, but generally his lectures did not vary in popularity. As such, the mean
is an accurate representation of his ratings. The mean is a good fit to the data. The second
lecturer, however, had a standard deviation of 1.82 (relatively high compared to the mean).
The ratings for this lecturer are clearly more spread from the mean; that is, for some lec-
tures he received very high ratings, and for others his ratings were appalling. Therefore,
the mean is not such an accurate representation of his performance because there was a
lot of variability in the popularity of his lectures. The mean is a poor fit to the data. This
illustration should hopefully make clear why the standard deviation is a measure of how
well the mean represents the data.
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SELF-TEST

v" In section 1.7.2.2 we came across some data
about the number of friends that 11 people had on
Facebook (22, 40, 53, 57, 93, 98, 103, 108, 116,

121, 252). We calculated the mean for these data as
96.64. Now calculate the sums of squares, variance
and standard deviation.

v" Calculate these values again but excluding the
extreme score (252).

JANE SUPERBRAIN 2.3

The standard deviation and the shape of the
distribution @

As well as telling us about the accuracy of the mean
as a model of our data set, the variance and standard
deviation also tell us about the shape of the distribu-
tion of scores. As such, they are measures of dispersion
like those we encountered in section 1.7.3. If the mean

FIGURE 2.6
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represents the data well then most of the scores will clus-
ter close to the mean and the resulting standard devia-
tion is small relative to the mean. When the mean is a
worse representation of the data, the scores cluster more
widely around the mean (think back to Figure 2.5) and
the standard deviation is larger. Figure 2.6 shows two
distributions that have the same mean (50) but different
standard deviations. One has a large standard deviation
relative to the mean (SD = 25) and this results in a flatter
distribution that is more spread out, whereas the other
has a small standard deviation relative to the mean (SD =
15) resulting in @ more pointy distribution in which scores
close to the mean are very frequent but scores further
from the mean become increasingly infrequent. The main
message is that as the standard deviation gets larger, the
distribution gets fatter. This can make distributions look

¢ platykurtic or leptokurtic when, in fact, they are not.
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Expressing the mean as a model ®

The discussion of means, sums of squares and variance may seem a sidetrack from the ini-
tial point about fitting statistical models, but it’s not: the mean is a simple statistical model
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that can be fitted to data. What do I mean by this? Well, everything in statistics essentially
boils down to one equation:

outcome, = (model) + error, (2.3)

This just means that the data we observe can be predicted from the model we choose to
fit to the data plus some amount of error. When I say that the mean is a simple statistical
model, then all I mean is that we can replace the word ‘model’ with the word ‘mean’ in
that equation. If we return to our example involving the number of friends that statistics
lecturers have and look at lecturer 1, for example, we observed that they had one friend
and the mean of all lecturers was 2.6. So, the equation becomes:

Outcomelecturerl =X+ 81ectur€r1

1 = 2'6 + 8lecturer1

From this we can work out that the error is 1 — 2.6, or —1.6. If we replace this value
in the equation we get 1 = 2.6 — 1.6 or 1 = 1. Although it probably seems like I’'m
stating the obvious, it is worth bearing this general equation in mind throughout this
book because if you do you’ll discover that most things ultimately boil down to this one
simple idea!

Likewise, the variance and standard deviation illustrate another fundamental concept:
how the goodness of fit of a model can be measured. If we’re looking at how well a
model fits the data (in this case our model is the mean) then we generally look at devia-
tion from the model, we look at the sum of squared error, and in general terms we can
write this as:

deviation = Z(observed —model)? (2.4)

Put another way, we assess models by comparing the data we observe to the model we’ve
fitted to the data, and then square these differences. Again, you’ll come across this funda-
mental idea time and time again throughout this book.

2.5. Going beyond the data ®

Using the example of the mean, we have looked at how we can fit a statistical model to
a set of observations to summarize those data. It’s one thing to summarize the data that
you have actually collected, but usually we want to go beyond our data and say something
general about the world (remember in Chapter 1 that I talked about how good theories
should say something about the world). It’s one thing to be able to say that people in our
sample responded well to medication, or that a sample of high-street stores in Brighton
had increased profits leading up to Christmas, but it’s more useful to be able to say, based
on our sample, that all people will respond to medication, or that all high-street stores in
the UK will show increased profits. To begin to understand how we can make these general
inferences from a sample of data we can first look not at whether our model is a good fit to
the sample from which it came, but whether it is a good fit to the population from which
the sample came.
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yR AWM The standard error ®

We’ve seen that the standard deviation tells us something about how well the mean repre-
sents the sample data, but I mentioned earlier on that usually we collect data from samples
because we don’t have access to the entire population. If you take several samples from a
population, then these samples will differ slightly; therefore, it’s also important to know
how well a particular sample represents the population. This is where we use the standard
error. Many students get confused about the difference between the standard deviation and
the standard error (usually because the difference is never explained clearly). However,
the standard error is an important concept to grasp, so I’ll do my best to explain it to you.

We have already learnt that social scientists use samples as a way of estimating the behav-
iour in a population. Imagine that we were interested in the ratings of all lecturers (so lec-
turers in general were the population). We could take a sample from this population. When
someone takes a sample from a population, they are taking one of many possible samples.
If we were to take several samples from the same population, then each sample has its own
mean, and some of these sample means will be different.

Figure 2.7 illustrates the process of taking samples from a population. Imagine that we
could get ratings of all lecturers on the planet and that, on average, the rating is 3 (this is the
population mean, w). Of course, we can’t collect ratings of all lecturers, so we use a sample.
For each of these samples we can calculate the average, or sample mean. Let’s imagine we
took nine different samples (as in the diagram); you can see that some of the samples have
the same mean as the population but some have different means: the first sample of lectur-
ers were rated, on average, as 3, but the second sample were, on average, rated as only 2.
This illustrates sampling variation: that is, samples will vary because they contain different
members of the population; a sample that by chance includes some very good lecturers
will have a higher average than a sample that, by chance, includes some awful lecturers!
We can actually plot the sample means as a frequency distribution, or histogram,* just like
I have done in the diagram. This distribution shows that there were three samples that
had a mean of 3, means of 2 and 4 occurred in two samples each, and means of 1 and 5
occurred in only one sample each. The end result is a nice symmetrical distribution known
as a sampling distribution. A sampling distribution is simply the frequency distribution of
sample means’® from the same population. In theory you need to imagine that we’re taking
hundreds or thousands of samples to construct a sampling distribution, but I’'m just using
nine to keep the diagram simple.® The sampling distribution tells us about the behaviour
of samples from the population, and you’ll notice that it is centred at the same value as the
mean of the population (i.e., 3). This means that if we took the average of all sample means
we’d get the value of the population mean. Now, if the average of the sample means is the
same value as the population mean, then if we knew the accuracy of that average we’d
know something about how likely it is that a given sample is representative of the popula-
tion. So how do we determine the accuracy of the population mean?

Think back to the discussion of the standard deviation. We used the standard deviation
as a measure of how representative the mean was of the observed data. Small standard
deviations represented a scenario in which most data points were close to the mean, a large
standard deviation represented a situation in which data points were widely spread from
the mean. If you were to calculate the standard deviation between sample means then this
too would give you a measure of how much variability there was between the means of

4 This is just a graph of each sample mean plotted against the number of samples that has that mean - see section
1.7.1 for more details.

5 It doesn’t have to be means, it can be any statistic that you’re trying to estimate, but I’'m using the mean to keep
things simple.

¢ It’s worth pointing out that 'm talking hypothetically. We don’t need to actually collect these samples because
clever statisticians have worked out what these sampling distributions would look like and how they behave.
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different samples. The standard deviation of sample means is known as the standard error
of the mean (SE). Therefore, the standard error could be calculated by taking the difference
between each sample mean and the overall mean, squaring these differences, adding them
up, and then dividing by the number of samples. Finally, the square root of this value would
need to be taken to get the standard deviation of sample means, the standard error.

Of course, in reality we cannot collect hundreds of samples and so we rely on approxi-
mations of the standard error. Luckily for us some exceptionally clever statisticians have
demonstrated that as samples get large (usually defined as greater than 30), the sampling
distribution has a normal distribution with a mean equal to the population mean, and a
standard deviation of:

Og=—— (2.5)

This is known as the central limit theorem and it is useful in this context because it means
that if our sample is large we can use the above equation to approximate the standard error
(because, remember, it is the standard deviation of the sampling distribution).” When the
sample is relatively small (fewer than 30) the sampling distribution has a different shape,
known as a ¢-distribution, which we’ll come back to later.

VIV NI The standard error

The standard error is the standard deviation of sample means. As such, it is a measure of how representative a
sample is likely to be of the population. A large standard error (relative to the sample mean) means that there is a
lot of variability between the means of different samples and so the sample we have might not be representative of
the population. A small standard error indicates that most sample means are similar to the population mean and
so our sample is likely to be an accurate reflection of the population.

Confidence intervals ®

2.5.2.1. Calculating confidence intervals @

Remember that usually we’re interested in using the sample mean as an estimate of the
value in the population. We’ve just seen that different samples will give rise to different val-
ues of the mean, and we can use the standard error to get some idea of the extent to which
sample means differ. A different approach to assessing the accuracy of the sample mean
as an estimate of the mean in the population is to calculate boundaries within which we
believe the true value of the mean will fall. Such boundaries are called confidence intervals.
The basic idea behind confidence intervals is to construct a range of values within which
we think the population value falls.

Let’s imagine an example: Domjan, Blesbois, and Williams (1998) examined the learnt
release of sperm in Japanese quail. The basic idea is that if a quail is allowed to copulate
with a female quail in a certain context (an experimental chamber) then this context will
serve as a cue to copulation and this in turn will affect semen release (although during the

7In fact it should be the population standard deviation (o) that is divided by the square root of the sample size;
however, for large samples this is a reasonable approximation.
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test phase the poor quail were tricked into copulating with a terry cloth with an embalmed
female quail head stuck on top).® Anyway, if we look at the mean amount of sperm released
in the experimental chamber, there is a true mean (the mean in the population); let’s
imagine it’s 15 million sperm. Now, in our actual sample, we might find the mean amount
of sperm released was 17 million. Because we don’t know the true mean, we don’t really
know whether our sample value of 17 million is a good or bad estimate of this value. What
we can do instead is use an interval estimate: we use our sample value as the mid-point, but
set a lower and upper limit as well. So, we might say, we think the true value of the mean
sperm release is somewhere between 12 million and 22 million spermatozoa (note that 17
million falls exactly between these values). Of course, in this case the true value (15 million)

8 This may seem a bit sick, but the male quails didn’t appear to mind too much, which probably tells us all we
need to know about male mating behaviour.
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does falls within these limits. However, what if we’d set smaller limits, what if we’d said we
think the true value falls between 16 and 18 million (again, note that 17 million is in the
middle)? In this case the interval does not contain the true value of the mean. Let’s now
imagine that you were particularly fixated with Japanese quail sperm, and you repeated the
experiment 50 times using different samples. Each time you did the experiment again you
constructed an interval around the sample mean as I’ve just described. Figure 2.8 shows
this scenario: the circles represent the mean for each sample with the lines sticking out of
them representing the intervals for these means. The true value of the mean (the mean in
the population) is 15 million and is shown by a vertical line. The first thing to note is that
the sample means are different from the true mean (this is because of sampling variation as
described in the previous section). Second, although most of the intervals do contain the
true mean (they cross the vertical line, meaning that the value of 15 million spermatozoa
falls somewhere between the lower and upper boundaries), a few do not.

Up until now I’ve avoided the issue of how we might calculate the
intervals. The crucial thing with confidence intervals is to construct
them in such a way that they tell us something useful. Therefore, we
calculate them so that they have certain properties: in particular, they
tell us the likelihood that they contain the true value of the thing we’re
trying to estimate (in this case, the mean).

Typically we look at 95% confidence intervals, and sometimes 99%
confidence intervals, but they all have a similar interpretation: they are
limits constructed such that for a certain percentage of the time (be that
95% or 99%) the true value of the population mean will fall within
these limits. So, when you see a 95% confidence interval for a mean,
think of it like this: if we’d collected 100 samples, calculated the mean
and then calculated a confidence interval for that mean (a bit like in Figure 2.8) then for
95 of these samples, the confidence intervals we constructed would contain the true value
of the mean in the population.

To calculate the confidence interval, we need to know the limits within which 95% of
means will fall. How do we calculate these limits? Remember back in section 1.7.4 that I
said that 1.96 was an important value of z (a score from a normal distribution with a mean
of 0 and standard deviation of 1) because 95% of z-scores fall between —1.96 and 1.96.
This means that if our sample means were normally distributed with a mean of 0 and a
standard error of 1, then the limits of our confidence interval would be —1.96 and +1.96.
Luckily we know from the central limit theorem that in large samples (above about 30) the
sampling distribution will be normally distributed (see section 2.5.1). It’s a pity then that
our mean and standard deviation are unlikely to be 0 and 1; except not really because, as
you might remember, we can convert scores so that they do have a mean of 0 and standard
deviation of 1 (z-scores) using equation (1.2):

What is a confidence
interval?

X-X
S

g =

If we know that our limits are —1.96 and 1.96 in z-scores, then to find out the correspond-
ing scores in our raw data we can replace z in the equation (because there are two values,
we get two equations):

X-X ~1.96= X=X
N N

1.96 =

We rearrange these equations to discover the value of X:

1.96 xs =X-X -1.96 xs = X-X
(1.96 x5) +X =X (-1.96 xs) +X =X
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Therefore, the confidence interval can easily be calculated once the standard deviation (s
in the equation above) and mean (X in the equation) are known. However, in fact we use
the standard error and not the standard deviation because we’re interested in the variability
of sample means, not the variability in observations within the sample. The lower bound-
ary of the confidence interval is, therefore, the mean minus 1.96 times the standard error,
and the upper boundary is the mean plus 1.96 standard errors:

lower boundary of confidence interval = )_E —(1.96 x SE)
upper boundary of confidence interval = X+ (1.96 x SE)

As such, the mean is always in the centre of the confidence interval. If the mean rep-
resents the true mean well, then the confidence interval of that mean should be small.
We know that 95% of confidence intervals contain the true mean, so we can assume this
confidence interval contains the true mean; therefore, if the interval is small, the sample
mean must be very close to the true mean. Conversely, if the confidence interval is very
wide then the sample mean could be very different from the true mean, indicating that it is
a bad representation of the population. You’ll find that confidence intervals will come up
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2.5.2.2. Calculating other confidence intervals @

The example above shows how to compute a 95% confidence interval (the most common
type). However, we sometimes want to calculate other types of confidence interval such as
a 99% or 90% interval. The —1.96 and 1.96 in the equations above are the limits within
which 95% of z-scores occur. Therefore, if we wanted a 99% confidence interval we could
use the values within which 99% of z-scores occur (—2.58 and 2.58). In general, then, we
could say that confidence intervals are calculated as:

1
2

lower boundary of confidence interval = X — (z X SE)

upper boundary of confidence interval = X + (zl_p X SE]
2

in which p is the probability value for the confidence interval. So, if you want a 95% con-
fidence interval, then you want the value of z for (1-0.95)/2 = 0.025. Look this up in the
‘smaller portion’ column of the table of the standard normal distribution (see the Appendix)
and you’ll find that z is 1.96. For a 99% confidence interval we want z for (1-0.99)/2 =
0.005, which from the table is 2.58. For a 90% confidence interval we want z for (1-0.90)/2
= 0.05, which from the table is 1.64. These values of z are multiplied by the standard error
(as above) to calculate the confidence interval. Using these general principles, we could
work out a confidence interval for any level of probability that takes our fancy.

2.5.2.3. Calculating confidence intervals in small samples @

The procedure that I have just described is fine when samples are large, but for small
samples, as [ have mentioned before, the sampling distribution is not normal, it has a
t-distribution. The ¢-distribution is a family of probability distributions that change shape
as the sample size gets bigger (when the sample is very big, it has the shape of a normal dis-
tribution). To construct a confidence interval in a small sample we use the same principle
as before but instead of using the value for z we use the value for #:

lower boundary of confidence interval = X — (¢, , x SE)
upper boundary of confidence interval = X + (¢, , x SE)

The 7 — 1 in the equations is the degrees of freedom (see Jane Superbrain Box 2.2) and tells
us which of the ¢-distributions to use. For a 95% confidence interval we find the value of ¢
for a two-tailed test with probability of .05, for the appropriate degrees of freedom.

SELF-TEST

v In section 1.7.2.2 we came across some data
about the number of friends that 11 people had on
Facebook. We calculated the mean for these data as
96.64 and standard deviation as 61.27. Calculate a
95% confidence interval for this mean.

v" Recalculate the confidence interval assuming that
the sample size was 56.




48 DISCOVERING STATISTICS USING R

Confidence intervals provide us with very important information about the
mean, and, therefore, you often see them displayed on graphs. (We will discover
more about how to create these graphs in Chapter 4.) The confidence interval
is usually displayed using something called an error bar, which just looks like
the letter ‘I’. An error bar can represent the standard deviation, or the standard
error, but more often than not it shows the 95% confidence interval of the
mean. So, often when you see a graph showing the mean, perhaps displayed as
a bar or a symbol (section 4.9), it is often accompanied by this funny I-shaped
bar. Why is it useful to see the confidence interval visually?

We have seen that the 95% confidence interval is an interval constructed such
that in 95% of samples the true value of the population mean will fall within its
limits. We know that it is possible that any two samples could have slightly different means
(and the standard error tells us a little about how different we can expect sample means
to be). Now, the confidence interval tells us the limits within which the population mean
is likely to fall (the size of the confidence interval will depend on the size of the standard
error). By comparing the confidence intervals of different means we can start to get some
idea about whether the means came from the same population or different populations.

Taking our previous example of quail sperm, imagine we had a sample of quail and
the mean sperm release had been 9 million sperm with a confidence interval of 2 to 16.
Therefore, we know that the population mean is probably between 2 and 16 million sperm.
What if we now took a second sample of quail and found the confidence interval ranged
from 4 to 15? This interval overlaps a lot with our first sample:

Sample Number

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Sperm (Millions)

The fact that the confidence intervals overlap in this way tells us that these means could
plausibly come from the same population: in both cases the intervals are likely to contain
the true value of the mean (because they are constructed such that in 95% of studies they
will), and both intervals overlap considerably, so they contain many similar values. What if
the confidence interval for our second sample ranges from 18 to 28? If we compared this
to our first sample we’d get:

Sample Number

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Sperm (Millions)
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Now, these confidence intervals don’t overlap at all. So, one confidence interval, which
is likely to contain the population mean, tells us that the population mean is somewhere
between 2 and 16 million, whereas the other confidence interval, which is also likely to
contain the population mean, tells us that the population mean is somewhere between 18
and 28. This suggests that either our confidence intervals both do contain the population
mean, but they come from different populations (and, therefore, so do our samples), or
both samples come from the same population but one of the confidence intervals doesn’t
contain the population mean. If we’ve used 95% confidence intervals then we know that
the second possibility is unlikely (this happens only § times in 100 or 5% of the time), so
the first explanation is more plausible.

OK, I can hear you all thinking ‘so what if the samples come from a different popula-
tion?” Well, it has a very important implication in experimental research. When we do an
experiment, we introduce some form of manipulation between two or more conditions
(see section 1.6.2). If we have taken two random samples of people, and we have tested
them on some measure (e.g., fear of statistics textbooks), then we expect these people to
belong to the same population. If their sample means are so different as to suggest that,
in fact, they come from different populations, why might this be? The answer is that our
experimental manipulation has induced a difference between the samples.

To reiterate, when an experimental manipulation is successful, we expect to find that our
samples have come from different populations. If the manipulation is unsuccessful, then
we expect to find that the samples came from the same population (e.g., the sample means
should be fairly similar). Now, the 95% confidence interval tells us something about the
likely value of the population mean. If we take samples from two populations, then we
expect the confidence intervals to be different (in fact, to be sure that the samples were from
different populations we would not expect the two confidence intervals to overlap). If we
take two samples from the same population, then we expect, if our measure is reliable, the
confidence intervals to be very similar (i.e., they should overlap completely with each other).

This is why error bars showing 95% confidence intervals are so useful on graphs, because
if the bars of any two means do not overlap then we can infer that these means are from
different populations — they are significantly different.

Y IVINCEBY\Y I Confidence intervals

A confidence interval for the mean is a range of scores constructed such that the population mean will fall within
this range in 95% of samples.
The confidence interval is not an interval within which we are 95% confident that the population mean will fall.

2.6. Using statistical models to test
research questions @

In Chapter 1 we saw that research was a five-stage process:

1 Generate a research question through an initial observation (hopefully backed up by
some data).

2 Generate a theory to explain your initial observation.
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Generate hypotheses: break your theory down into a set of testable predictions.

Collect data to test the theory: decide on what variables you need to measure to test
your predictions and how best to measure or manipulate those variables.

5 Analyse the data: fit a statistical model to the data — this model will test your
original predictions. Assess this model to see whether or not it supports your initial
predictions.

This chapter has shown that we can use a sample of data to estimate what’s happening
in a larger population to which we don’t have access. We have also seen (using the mean
as an example) that we can fit a statistical model to a sample of data and assess how well
it fits. However, we have yet to see how fitting models like these can help us to test our
research predictions. How do statistical models help us to test complex hypotheses such as
‘is there a relationship between the amount of gibberish that people speak and the amount
of vodka jelly they’ve eaten?’ or ‘is the mean amount of chocolate I eat higher when I'm
writing statistics books than when ’'m not?’. We’ve seen in section 1.7.5 that hypotheses
can be broken down into a null hypothesis and an alternative hypothesis.

SELF-TEST

v What are the null and alternative hypotheses for the
following questions:

1. ‘Is there a relationship between the amount of
gibberish that people speak and the amount of
vodka jelly they've eaten?’

2. 'ls the mean amount of chocolate eaten higher when
writing statistics books than when not?’

Most of this book deals with inferential statistics, which tell us whether the alternative
hypothesis is likely to be true — they help us to confirm or reject our predictions. Crudely
put, we fit a statistical model to our data that represents the alternative hypothesis and see
how well it fits (in terms of the variance it explains). If it fits the data well (i.e., explains
a lot of the variation in scores) then we assume our initial prediction is true: we gain
confidence in the alternative hypothesis. Of course, we can never be completely sure that
either hypothesis is correct, and so we calculate the probability that our model would fit if
there were no effect in the population (i.e., the null hypothesis is true). As this probability
decreases, we gain greater confidence that the alternative hypothesis is actually correct and
that the null hypothesis can be rejected. This works provided we make our predictions
before we collect the data (see Jane Superbrain Box 2.4).

To illustrate this idea of whether a hypothesis is likely, Fisher (1925/1991) (Figure 2.9)
describes an experiment designed to test a claim by a woman that she could determine, by
tasting a cup of tea, whether the milk or the tea was added first to the cup. Fisher thought
that he should give the woman some cups of tea, some of which had the milk added first
and some of which had the milk added last, and see whether she could correctly identify
them. The woman would know that there are an equal number of cups in which milk was
added first or last but wouldn’t know in which order the cups were placed. If we take the
simplest situation in which there are only two cups then the woman has a 50% chance of
guessing correctly. If she did guess correctly we wouldn’t be that confident in concluding
that she can tell the difference between cups in which the milk was added first from those
in which it was added last, because even by guessing she would be correct half of the time.
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JANE SUPERBRAIN 2.4

Cheating in research @

The process | describe in this chapter works only if you
generate your hypotheses and decide on your criteria for
whether an effect is significant before collecting the data.
Imagine | wanted to place a bet on who would win the
Rugby World Cup. Being an Englishman, | might want
to bet on England to win the tournament. To do this I'd:
(1) place my bet, choosing my team (England) and odds
available at the betting shop (e.g., 6/4); (2) see which
team wins the tournament; (3) collect my winnings (if
England do the decent thing and actually win).

To keep everyone happy, this process needs to be
equitable: the betting shops set their odds such that
they’re not paying out too much money (which keeps
them happy), but so that they do pay out sometimes
(to keep the customers happy). The betting shop can
offer any odds before the tournament has ended, but it
can’t change them once the tournament is over (or the
last game has started). Similarly, | can choose any team

before the tournament, but | can't then change my mind
i half way through, or after the final game!

The situation in research is similar: we can choose any

hypothesis (rugby team) we like before the data are col-
lected, but we can’t change our minds halfway through
i data collection (or after data collection). Likewise we
have to decide on our probability level (or betting odds)
i before we collect data. If we do this, the process works.
i However, researchers sometimes cheat. They don't write
down their hypotheses before they conduct their experi-
¢ ments, sometimes they change them when the data are
collected (like me changing my team after the World Cup
is over), or, worse still, decide on them after the data are
collected! With the exception of some complicated pro-
cedures called post hoc tests, this is cheating. Similarly,
researchers can be guilty of choosing which significance
¢ level to use after the data are collected and analysed, like
a betting shop changing the odds after the tournament.

Every time that you change your hypothesis or the

details of your analysis you appear to increase the chance
of finding a significant result, but in fact you are making
¢ it more and more likely that you will publish results that
other researchers can'’t reproduce (which is very embar-
rassing!). If, however, you follow the rules carefully and
do your significance testing at the 5% level you at least
know that in the long run at most only 1 result out of every
20 will risk this public humiliation.

(With thanks to David Hitchin for this box, and with

i apologies to him for turning it into a rugby example!)

However, what about if we complicated things by having six cups? There are 20 orders
in which these cups can be arranged and the woman would guess the correct order only
1 time in 20 (or 5% of the time). If she got the correct order we would be much more
confident that she could genuinely tell the difference (and bow down in awe of her finely
tuned palette). If you’d like to know more about Fisher and his tea-tasting antics see David
Salsburg’s excellent book The Lady Tasting Tea (Salsburg, 2002). For our purposes the
take-home point is that only when there was a very small probability that the woman could
complete the tea-task by luck alone would we conclude that she had genuine skill in detect-
ing whether milk was poured into a cup before or after the tea.

It’s no coincidence that I chose the example of six cups above (where the tea-taster had
a 5% chance of getting the task right by guessing), because Fisher suggested that 95% is a
useful threshold for confidence: only when we are 95% certain that a result is genuine (i.e.,
not a chance finding) should we accept it as being true.” The opposite way to look at this
is to say that if there is only a 5% chance (a probability of .05) of something occurring by
chance then we can accept that it is a genuine effect: we say it is a statistically significant
finding (see Jane Superbrain Box 2.5 to find out how the criterion of .05 became popular!).

° Of course, in reality, it might not be true — we’re just prepared to believe that it is!
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(p <.0001)

JANE SUPERBRAIN 2.5
Why do we use .05?7 @

This criterion of 95% confidence, or a .05 probability, forms
the basis of modern statistics, and yet there is very little
justification for it. How it arose is a complicated mystery to
unravel. The significance testing that we use today is a blend
of Fisher's idea of using the probability value p as an index of
the weight of evidence against a null hypothesis, and Jerzy
Neyman and Egron Pearson’s idea of testing a null hypoth-
esis against an alternative hypothesis. Fisher objected to
Neyman's use of an alternative hypothesis (among other
things), and Neyman objected to Fisher's exact probability
approach (Berger, 2003; Lehmann, 1993). The confusion
arising from both parties’ hostility to each other’s ideas led
scientists to create a sort of bastard child of both approaches.

This doesn’t answer the question of why we use .05.
Well, it probably comes down to the fact that back in the
days before computers, scientists had to compare their
test statistics against published tables of ‘critical values’
(they did not have R to calculate exact probabilities for
them). These critical values had to be calculated by excep-
tionally clever people like Fisher. In his incredibly influen-
tial textbook Statistical Methods for Research Workers
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(Fisher, 1925)'° Fisher produced tables of these critical

values, but to save space produced tables for particular
i probability values (.05, .02 and .01). The impact of this

book should not be underestimated (to get some idea of
its influence 25 years after publication see Mather, 1951;

i Yates, 1951) and these tables were very frequently used

—even Neyman and Pearson admitted the influence that
these tables had on them (Lehmann, 1993). This disas-
trous combination of researchers confused about the
Fisher and Neyman-Pearson approaches and the avail-

i ability of critical values for only certain levels of probability
¢ led to a trend to report test statistics as being significant

at the now infamous p < .05 and p < .01 (because critical

¢ values were readily available at these probabilities).

However, Fisher acknowledged that the dogmatic

use of a fixed level of significance was silly: ‘no scientific
¢ worker has a fixed level of significance at which from year

to year, and in all circumstances, he rejects hypotheses;

¢ he rather gives his mind to each particular case in the
i light of his evidence and his ideas’(Fisher, 1956).

The use of effect sizes (section 2.6.4) strikes a balance
between using arbitrary cut-off points such as p < .05
and assessing whether an effect is meaningful within the
research context. The fact that we still worship at the shrine

i of p < .05 and that research papers are more likely to be

published if they contain significant results does make
me wonder about a parallel universe where Fisher had

i woken upinap < .10 kind of mood. My filing cabinet full
of research with p just bigger than .05 gets published and |
am Vice-Chancellor of my university (although, if this were
true, the parallel universe version of my university would
¢ bein utter chaos, but it would have a campus full of cats).

19You can read this online at http://psychclassics.yorku.ca/Fisher/Methods/
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Test statistics @

We have seen that we can fit statistical models to data that represent the hypotheses that we
want to test. Also, we have discovered that we can use probability to see whether scores are
likely to have happened by chance (section 1.7.4). If we combine these two ideas then we
can test whether our statistical models (and therefore our hypotheses) are significant fits of
the data we collected. To do this we need to return to the concepts of systematic and unsys-
tematic variation that we encountered in section 1.6.2.2. Systematic variation is variation
that can be explained by the model that we’ve fitted to the data (and, therefore, due to the
hypothesis that we’re testing). Unsystematic variation is variation that cannot be explained
by the model that we’ve fitted. In other words, it is error, or variation not attributable to
the effect we’re investigating. The simplest way, therefore, to test whether the model fits the
data, or whether our hypothesis is a good explanation of the data we have observed, is to
compare the systematic variation against the unsystematic variation. In doing so we compare
how good the model/hypothesis is at explaining the data against how bad it is (the error):

variance explained by the model ~ effect

test statistic = - - =
variance not explained by the model  error

This ratio of systematic to unsystematic variance or effect to error is a test statistic, and
you’ll discover later in the book there are lots of them: ¢, F and x? to name only three. The
exact form of this equation changes depending on which test statistic you’re calculating,
but the important thing to remember is that they all, crudely speaking, represent the same
thing: the amount of variance explained by the model we’ve fitted to the data compared to
the variance that can’t be explained by the model (see Chapters 7 and 9 in particular for a
more detailed explanation). The reason why this ratio is so useful is intuitive really: if our
model is good then we’d expect it to be able to explain more variance than it can’t explain.
In this case, the test statistic will be greater than 1 (but not necessarily significant).

A test statistic is a statistic that has known properties; specifically, we know how frequently
different values of this statistic occur. By knowing this, we can calculate the probability of
obtaining a particular value (just as we could estimate the probability of getting a score of a cer-
tain size from a frequency distribution in section 1.7.4). This allows us to establish how likely it
would be that we would get a test statistic of a certain size if there were no effect (i.e., the null
hypothesis were true). Field and Hole (2003) use the analogy of the age at which people die.
Past data have told us the distribution of the age of death. For example, we know that on aver-
age men die at about 75 years old, and that this distribution is top heavy; that is, most people
die above the age of about 50 and it’s fairly unusual to die in your twenties. So, the frequen-
cies of the age of demise at older ages are very high but are lower at younger ages. From these
data, it would be possible to calculate the probability of someone dying at a certain age. If we
randomly picked someone and asked them their age, and it was 53, we could tell them how
likely it is that they will die before their next birthday (at which point they’d probably punch
us!). Also, if we met a man of 110, we could calculate how probable it was that he would have
lived that long (it would be a very small probability because most people die before they reach
that age). The way we use test statistics is rather similar: we know their distributions and this
allows us, once we’ve calculated the test statistic, to discover the probability of having found a
value as big as we have. So, if we calculated a test statistic and its value was 110 (rather like our
old man) we can then calculate the probability of obtaining a value that large. The more varia-
tion our model explains (compared to the variance it can’t explain), the bigger the test statistic
will be, and the more unlikely it is to occur by chance (like our 110-year-old man). So, as test
statistics get bigger, the probability of them occurring becomes smaller. When this probability
falls below .05 (Fisher’s criterion), we accept this as giving us enough confidence to assume that
the test statistic is as large as it is because our model explains a sufficient amount of variation to
reflect what’s genuinely happening in the real world (the population). The test statistic is said
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What we can and can’t conclude from a
significant test statistic @

The importance of an effect: We've seen already that
the basic idea behind hypothesis testing involves us gen-
erating an experimental hypothesis and a null hypoth-
esis, fitting a statistical model to the data, and assessing
that model with a test statistic. If the probability of obtain-
ing the value of our test statistic by chance is less than
.05 then we generally accept the experimental hypoth-
esis as true: there is an effect in the population. Normally
we say ‘there is a significant effect of ...". However, don'’t
be fooled by that word ‘significant’, because even if the
probability of our effect being a chance result is small
(less than .05) it doesn’t necessarily follow that the effect
is important. Very small and unimportant effects can turn
out to be statistically significant just because huge num-
bers of people have been used in the experiment (see
Field & Hole, 2003: 74).

Non-significant results: Once you've calculated your
test statistic, you calculate the probability of that test sta-
tistic occurring by chance; if this probability is greater than
.05 you reject your alternative hypothesis. However, this
does not mean that the null hypothesis is true. Remember
that the null hypothesis is that there is no effect in the
population. All that a non-significant result tells us is that
the effect is not big enough to be anything other than a
chance finding — it doesn't tell us that the effect is zero. As
Cohen (1990) points out, a non-significant result should
never be interpreted as (despite the fact that it often is) ‘no
difference between means’ or ‘no relationship between
variables’. Cohen also points out that the null hypothesis
is never true because we know from sampling distribu-
tions (see section 2.5.1) that two random samples will
have slightly different means, and even though these dif-
ferences can be very small (e.g., one mean might be 10
and another might be 10.00001) they are nevertheless
different. In fact, even such a small difference would be
deemed as statistically significant if a big enough sample
were used. So, significance testing can never tell us that
the null hypothesis is true, because it never is!
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Significant results: OK, we may not be able to
accept the null hypothesis as being true, but we can at
least conclude that it is false when our results are sig-
nificant, right? Wrong! A significant test statistic is based
on probabilistic reasoning, which severely limits what
we can conclude. Again, Cohen (1994), who was an
incredibly lucid writer on statistics, points out that formal
reasoning relies on an initial statement of fact followed
by a statement about the current state of affairs, and

¢ an inferred conclusion. This syllogism illustrates what |
i mean:

i e Ifaman has no arms then he can't play guitar:

o This man plays guitar.
o Therefore, this man has arms.

i The syllogism starts with a statement of fact that allows
i the end conclusion to be reached because you can deny

the man has no arms (the antecedent) by denying that he

i can't play guitar (the consequent)." A comparable ver-
i sion of the null hypothesis is:

e [f the null hypothesis is correct, then this test statistic
cannot occur:

o This test statistic has occurred.
o Therefore, the null hypothesis is false.

This is all very nice except that the null hypothesis is not

represented in this way because it is based on probabili-
ties. Instead it should be stated as follows:

o |f the null hypothesis is correct, then this test statistic

is highly unlikely:
o This test statistic has occurred.
o Therefore, the null hypothesis is highly unlikely.

If we go back to the guitar example we could get a similar

i statement:

i e If a man plays guitar then he probably doesn't play

for Fugazi (this is true because there are thousands of
people who play guitar but only two who play guitar in
the band Fugazi!):

o Guy Picciotto plays for Fugazi.
o Therefore, Guy Picciotto probably doesn't play
guitar.

This should hopefully seem completely ridiculous — the
conclusion is wrong because Guy Picciotto does play
guitar. This illustrates a common fallacy in hypothesis
testing. In fact significance testing allows us to say very

i little about the null hypothesis.

"' Thanks to Philipp Sury for unearthing footage that disproves my point (http://www.parcival.org/2007/05/22/

when-syllogisms-fail/).
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to be significant (see Jane Superbrain Box 2.6 for a discussion of what statistically significant
actually means). Given that the statistical model that we fit to the data reflects the hypothesis
that we set out to test, then a significant test statistic tells us that the model would be unlikely
to fit this well if the there was no effect in the population (i.e., the null hypothesis was true).
Therefore, we can reject our null hypothesis and gain confidence that the alternative hypothesis
is true (but, remember, we don’t accept it — see section 1.7.5).

One- and two-tailed tests @

We saw in section 1.7.5 that hypotheses can be directional (e.g., ‘the more someone reads
this book, the more they want to kill its author’) or non-directional (i.e., ‘reading more
of this book could increase or decrease the reader’s desire to kill its author’). A statistical
model that tests a directional hypothesis is called a one-tailed test, whereas one testing a
non-directional hypothesis is known as a two-tailed test.

FIGURE 2.10

Mean of group 1 was Mean of group 1 was Diagram to show

g smaller than the mean bigger than the mean the difference
of group 2, or there is of group 2, or there is bEtWGl?n one- and
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1
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-4 -2 0 2 4
Test Statistic

Imagine we wanted to discover whether reading this book increased or decreased the
desire to kill me. We could do this either (experimentally) by taking two groups, one who
had read this book and one who hadn’t, or (correlationally) by measuring the amount of
this book that had been read and the corresponding desire to kill me. If we have no direc-
tional hypothesis then there are three possibilities. (1) People who read this book want to
kill me more than those who don’t so the difference (the mean for those reading the book
minus the mean for non-readers) is positive. Correlationally, the more of the book you
read, the more you want to kill me — a positive relationship. (2) People who read this book
want to kill me less than those who don’t so the difference (the mean for those reading the
book minus the mean for non-readers) is negative. Correlationally, the more of the book
you read, the less you want to kill me — a negative relationship. (3) There is no difference
between readers and non-readers in their desire to kill me — the mean for readers minus
the mean for non-readers is exactly zero. Correlationally, there is no relationship between
reading this book and wanting to kill me. This final option is the null hypothesis. The
direction of the test statistic (i.e., whether it is positive or negative) depends on whether
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the difference is positive or negative. Assuming there is a positive difference or
relationship (reading this book makes you want to kill me), then to detect this
difference we have to take account of the fact that the mean for readers is bigger
than for non-readers (and so derive a positive test statistic). However, if we’ve
predicted incorrectly and actually reading this book makes readers want to kill
me less then the test statistic will actually be negative.

What are the consequences of this? Well, if at the .05 level we needed to get a
test statistic bigger than say 10 and the one we get is actually —12, then we would
reject the hypothesis even though a difference does exist. To avoid this we can
look at both ends (or tails) of the distribution of possible test statistics. This means
we will catch both positive and negative test statistics. However, doing this has a
price because to keep our criterion probability of .05 we have to split this prob-
ability across the two tails: so we have .025 at the positive end of the distribution
and .025 at the negative end. Figure 2.10 shows this situation — the tinted areas are the areas
above the test statistic needed at a .025 level of significance. Combine the probabilities (i.e.,
add the two tinted areas together) at both ends and we get .05, our criterion value. Now if
we have made a prediction, then we put all our eggs in one basket and look only at one end
of the distribution (either the positive or the negative end, depending on the direction of the
prediction we make). So, in Figure 2.10, rather than having two small tinted areas at either
end of the distribution that show the significant values, we have a bigger area (the lined
area) at only one end of the distribution that shows significant values. Consequently, we can
just look for the value of the test statistic that would occur by chance with a probability of
.05. In Figure 2.10, the lined area is the area above the positive test statistic needed at a .05
level of significance. Note on the graph that the value that begins the area for the .05 level
of significance (the lined area) is smaller than the value that begins the area for the .025 level
of significance (the tinted area). This means that if we make a specific prediction then we
need a smaller test statistic to find a significant result (because we are looking in only one
tail of the distribution), but if our prediction happens to be in the wrong direction then we’ll
miss out on detecting the effect that does exist. In this context it’s important to remember
what I said in Jane Superbrain Box 2.4: you can’t place a bet or change your bet when the
tournament is over. If you didn’t make a prediction of direction before you collected the
data, you are too late to predict the direction and claim the advantages of a one-tailed test.

Type | and Type Il errors ©

We have seen that we use test statistics to tell us about the true state of the world (to a cer-
tain degree of confidence). Specifically, we’re trying to see whether there is an effect in our
population. There are two possibilities in the real world: there is, in reality, an effect in the
population, or there is, in reality, no effect in the population. We have no way of knowing
which of these possibilities is true; however, we can look at test statistics and their associated
probability to tell us which of the two is more likely. Obviously, it is important that we’re as
accurate as possible, which is why Fisher originally said that we should be very conservative
and only believe that a result is genuine when we are 95% confident that it is — or when
there is only a 5% chance that the results could occur if there was not an effect (the null
hypothesis is true). However, even if we’re 95% confident there is still a small chance that
we get it wrong. In fact there are two mistakes we can make: a Type I and a Type Il error. A
Type | error occurs when we believe that there is a genuine effect in our population, when in
fact there isn’t. If we use Fisher’s criterion then the probability of this error is .05 (or 5%)
when there is no effect in the population — this value is known as the «-level. Assuming there
is no effect in our population, if we replicated our data collection 100 times we could expect
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that on five occasions we would obtain a test statistic large enough to make us think that
there was a genuine effect in the population even though there isn’t. The opposite is a Type
Il error, which occurs when we believe that there is no effect in the population when, in real-
ity, there is. This would occur when we obtain a small test statistic (perhaps because there is
a lot of natural variation between our samples). In an ideal world, we want the probability
of this error to be very small (if there is an effect in the population then it’s important that
we can detect it). Cohen (1992) suggests that the maximum acceptable probability of a Type
II error would be .2 (or 20%) — this is called the g-level. That would mean that if we took
100 samples of data from a population in which an effect exists, we would fail to detect that
effect in 20 of those samples (so we’d miss 1 in 5 genuine effects).

There is obviously a trade-off between these two errors: if we lower the probability of
accepting an effect as genuine (i.e., make « smaller) then we increase the probability that
we’ll reject an effect that does genuinely exist (because we’ve been so strict about the level
at which we’ll accept that an effect is genuine). The exact relationship between the Type I
and Type II error is not straightforward because they are based on different assumptions:
to make a Type I error there has to be no effect in the population, whereas to make a Type
IT error the opposite is true (there has to be an effect that we’ve missed). So, although we
know that as the probability of making a Type I error decreases, the probability of mak-
ing a Type II error increases, the exact nature of the relationship is usually left for the
researcher to make an educated guess (Howell, 2006, gives a great explanation of the
trade-off between errors).

Effect sizes ®

The framework for testing whether effects are genuine that I’ve just presented has a few
problems, most of which have been briefly explained in Jane Superbrain Box 2.6. The
first problem we encountered was knowing how important an effect is: just because a test
statistic is significant doesn’t mean that the effect it measures is meaningful or important.
The solution to this criticism is to measure the size of the effect that we’re testing in a stan-
dardized way. When we measure the size of an effect (be that an experimental manipula-
tion or the strength of a relationship between variables) it is known as an effect size. An
effect size is simply an objective and (usually) standardized measure of the magnitude of
observed effect. The fact that the measure is standardized just means that we can compare
effect sizes across different studies that have measured different variables, or have used
different scales of measurement (so an effect size based on speed in milliseconds could be
compared to an effect size based on heart rates). Such is the utility of effect size estimates
that the American Psychological Association is now recommending that all psy-
chologists report these effect sizes in the results of any published work. So, it’s a
habit well worth getting into.

Many measures of effect size have been proposed, the most common of which
are Cohen’s d, Pearson’s correlation coefficient 7 (Chapter 6) and the odds ratio
(Chapter 18). Many of you will be familiar with the correlation coefficient as
a measure of the strength of relationship between two variables (see Chapter 6
if you’re not); however, it is also a very versatile measure of the strength of an
experimental effect. It’s a bit difficult to reconcile how the humble correlation
coefficient can also be used in this way; however, this is only because students are
typically taught about it within the context of non-experimental research. I don’t
want to get into it now, but as you read through Chapters 6, 9 and 10 it will (I
hope!) become clear what I mean. Personally, I prefer Pearson’s correlation coef-
ficient, 7, as an effect size measure because it is constrained to lie between 0 (no

Can we measure how
important an effect is?
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effect) and 1 (a perfect effect).'> However, there are situations in which d may be favoured;
for example, when group sizes are very discrepant » can be quite biased compared to d
(McGrath & Meyer, 2006).

Effect sizes are useful because they provide an objective measure of the importance of an
effect. So, it doesn’t matter what effect you’re looking for, what variables have been measured,
or how those variables have been measured — we know that a correlation coefficient of 0 means
there is no effect, and a value of 1 means that there is a perfect effect. Cohen (1988, 1992) has
also made some widely used suggestions about what constitutes a large or small effect:

® r = .10 (small effect): In this case the effect explains 1% of the total variance.
® y = .30 (medium effect): The effect accounts for 9% of the total variance.
® r = .50 (large effect): The effect accounts for 25% of the variance.

It’s worth bearing in mind that 7 is not measured on a linear scale, so an effect with » = .6
isn’t twice as big as one with » = .3. Although these guidelines can be a useful rule of thumb
to assess the importance of an effect (regardless of the significance of the test statistic), it is
worth remembering that these ‘canned’ effect sizes are no substitute for evaluating an effect size
within the context of the research domain where it is being used (Baguley, 2004; Lenth, 2001).

A final thing to mention is that when we calculate effect sizes we calculate them for a
given sample. When we looked at means in a sample we saw that we used them to draw
inferences about the mean of the entire population (which is the value in which we’re actu-
ally interested). The same is true of effect sizes: the size of the effect in the population is the
value in which we’re interested, but because we don’t have access to this value, we use the
effect size in the sample to estimate the likely size of the effect in the population. We can also
combine effect sizes from different studies researching the same question to get better esti-
mates of the population effect sizes. This is called meta-analysis — see Field (2001, 2005b).

Statistical power ®

Effect sizes are an invaluable way to express the importance of a research finding. The effect
size in a population is intrinsically linked to three other statistical properties: (1) the sample
size on which the sample effect size is based; (2) the probability level at which we will accept
an effect as being statistically significant (the a-level); and (3) the ability of a test to detect an
effect of that size (known as the statistical power, not to be confused with statistical powder,
which is an illegal substance that makes you understand statistics better). As such, once we
know three of these properties, then we can always calculate the remaining one. It will also
depend on whether the test is a one- or two-tailed test (see section 2.6.2). Typically, in psychol-
ogy we use an a-level of .05 (see earlier) so we know this value already. The power of a test is
the probability that a given test will find an effect assuming that one exists in the population.
If you think back you might recall that we’ve already come across the probability of failing to
detect an effect when one genuinely exists (8, the probability of a Type II error). It follows that
the probability of detecting an effect if one exists must be the opposite of the probability of not
detecting that effect (i.e., 1 —p). 've also mentioned that Cohen (1988, 1992) suggests that
we would hope to have a .2 probability of failing to detect a genuine effect, and so the cor-
responding level of power that he recommended was 1 — .2, or .8. We should aim to achieve
a power of .8, or an 80% chance of detecting an effect if one genuinely exists. The effect size
in the population can be estimated from the effect size in the sample, and the sample size is

12The correlation coefficient can also be negative (but not below —1), which is useful when we’re measuring a rela-
tionship between two variables because the sign of 7 tells us about the direction of the relationship, but in experi-
mental research the sign of » merely reflects the way in which the experimenter coded their groups (see Chapter 6).
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determined by the experimenter anyway so that value is easy to calculate. Now, there are two
useful things we can do knowing that these four variables are related:

1 Calculate the power of a test: Given that we’ve conducted our experiment, we will
have already selected a value of o, we can estimate the effect size based on our
sample, and we will know how many participants we used. Therefore, we can use
these values to calculate B, the power of our test. If this value turns out to be .8 or
more we can be confident that we achieved sufficient power to detect any effects that
might have existed, but if the resulting value is less, then we might want to replicate
the experiment using more participants to increase the power.

2 Calculate the sample size necessary to achieve a given level of power: Given that we
know the value of o and B, we can use past research to estimate the size of effect that we
would hope to detect in an experiment. Even if no one had previously done the exact
experiment that we intend to do, we can still estimate the likely effect size based on simi-
lar experiments. We can use this estimated effect size to calculate how many participants
we would need to detect that effect (based on the values of « and B that we’ve chosen).

The latter use is the more common: to determine how many participants should be used
to achieve the desired level of power. The actual computations are very cumbersome, but
fortunately there are now computer programs available that will do them for you (one
example is G*Power, which is free and can be downloaded from a link on the companion
website; another is nQuery Adviser, but this has to be bought!). Also, Cohen (1988) pro-
vides extensive tables for calculating the number of participants for a given level of power
(and vice versa). Based on Cohen (1992), we can use the following guidelines: if we take
the standard a-level of .05 and require the recommended power of .8, then we need 783
participants to detect a small effect size (r = .1), 85 participants to detect a medium effect
size (r = .3) and 28 participants to detect a large effect size (r = .5).

What have | discovered about statistics? @

OK, that has been your crash course in statistical theory! Hopefully your brain is still
relatively intact. The key point I want you to understand is that when you carry out
research you’re trying to see whether some effect genuinely exists in your population
(the effect you’re interested in will depend on your research interests and your specific
predictions). You won’t be able to collect data from the entire population (unless you
want to spend your entire life, and probably several after-lives, collecting data) so you
use a sample instead. Using the data from this sample, you fit a statistical model to test
your predictions, or, put another way, detect the effect you’re looking for. Statistics boil
down to one simple idea: observed data can be predicted from some kind of model and
an error associated with that model. You use that model (and usually the error associated
with it) to calculate a test statistic. If that model can explain a lot of the variation in the
data collected (the probability of obtaining that test statistic is less than .05) then you
infer that the effect you’re looking for genuinely exists in the population. If the prob-
ability of obtaining that test statistic is more than .05, then you conclude that the effect
was too small to be detected. Rather than rely on significance, you can also quantify the
effect in your sample in a standard way as an effect size and this can be helpful in gaug-
ing the importance of that effect. We also discovered that I managed to get myself into
trouble at nursery school. It was soon time to move on to primary school and to new
and scary challenges. It was a bit like using R for the first time!
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Key terms that I’'ve discovered

a-level Sample

B-level Sampling distribution
Central limit theorem Sampling variation
Confidence interval Standard deviation
Degrees of freedom Standard error

Deviance Standard error of the mean (SE)
Effect size Sum of squared errors (SS)
Fit Test statistic

Linear model Two-tailed test
Meta-analysis Type | error

One-tailed test Type Il error

Population Variance

Power

Smart Alex’s tasks

® Task 1: Why do we use samples? ©®

® Task 2: What is the mean and how do we tell if it’s representative of our data? @
® Task 3: What’s the difference between the standard deviation and the standard error? ®

® Task 4: In Chapter 1 we used an example of the time taken for 21 heavy smokers to
fall off a treadmill at the fastest setting (18, 16, 18, 24, 23,22, 22,23, 26,29, 32, 34,
34, 36, 36,43, 42, 49, 46, 46, 57). Calculate the sums of squares, variance, standard
deviation, standard error and 95% confidence interval of these data. ®

® Task 5: What do the sum of squares, variance and standard deviation represent? How
do they differ? ®

® Task 6: What is a test statistic and what does it tell us? @
® Task 7: What are Type I and Type II errors? ©®
® Task 8: What is an effect size and how is it measured? ®

® Task 9: What is statistical power? @

Answers can be found on the companion website.

Further reading

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304-1312.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997-1003. (A couple
of beautiful articles by the best modern writer of statistics that we’ve had.)
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Field, A. P, & Hole, G. J. (2003). How to design and report experiments. London: Sage. (I am rather
biased, but I think this is a good overview of basic statistical theory.)

Miles, J. N. V., & Banyard, P. (2007). Understanding and using statistics in psychology: a practical
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B., & London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book has
very clear introductions to sampling, confidence intervals and other important statistical ideas.)

Interesting real research

Domjan, M., Blesbois, E., & Williams, J. (1998). The adaptive significance of sexual conditioning:
Pavlovian control of sperm release. Psychological Science, 9(5), 411-415.



The R environment

FIGURE 3.1
All'l want for
Christmasis ...
some tasteful
wallpaper

3.1. What will this chapter tell me? ®

At about 5 years old I moved from nursery (note that I moved, I was not ‘kicked out’ for
showing my ...) to primary school. Even though my older brother was already there, I
remember being really scared about going. None of my nursery school friends were going
to the same school and I was terrified about meeting lots of new children. I arrived in my
classroom, and as I’d feared, it was full of scary children. In a fairly transparent ploy to
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make me think that I’d be spending the next 6 years building sand castles, the teacher told
me to play in the sand pit. While I was nervously trying to discover whether I could build a
pile of sand high enough to bury my head in, a boy came and joined me. He was Jonathan
Land, and he was really nice. Within an hour he was my new best friend (5-year-olds are
fickle ...) and I loved school. Sometimes new environments seem scarier than they really
are. This chapter introduces you to a scary new environment: R. The R environment is a
generally more unpleasant environment in which to spend time than your normal environ-
ment; nevertheless, we have to spend time there if we are to analyse our data. The purpose
of this chapter is, therefore, to put you in a sand pit with a 5-year-old called Jonathan. I will
orient you in your new home and reassure you that everything will be fine. We will explore
how R works and the key windows in R (the console, editor and graphics/quartz windows).
We will also look at how to create variables, data sets, and import and manipulate data.

R is a free software environment for statistical computing and graphics. It is what’s known
as ‘open source’, which means that unlike commercial software companies that protec-
tively hide away the code on which their software is based, the people who developed R
allow everyone to access their code. This open source philosophy allows anyone, anywhere
to contribute to the software. Consequently, the capabilities of R dynamically expand as
people from all over the world add to it. R very much embodies all that is good about the
World Wide Web.

The R-chitecture @

In essence, R exists as a base package with a reasonable amount of functionality. Once you
have downloaded R and installed it on your own computer, you can start doing some data
analysis and graphs. However, the beauty of R is that it can be expanded by download-
ing packages that add specific functionality to the program. Anyone with a big enough
brain and a bit of time and dedication can write a package for other people to use. These
packages, as well as the software itself, are stored in a central location known as the CRAN
(Comprehensive R Archive Network). Once a package is stored in the CRAN, anyone with
an Internet connection can download it from the CRAN and install it to use within their
own copy of R. R is basically a big global family of fluffy altruistic people contributing to
the goal of producing a versatile data analysis tool that is free for everyone to use. It’s a
statistical embodiment of The Beatles” utopian vision of peace, love and humanity: a sort
of ‘give ps a chance’.

The CRAN is central to using R: it is the place from where you download the software
and any packages that you want to install. It would be a shame, therefore, if the CRAN
were one day to explode or be eaten by cyber-lizards. The statistical world might col-
lapse. Even assuming the cyber-lizards don’t rise up and overthrow the Internet, it is still
a busy place. Therefore, rather than have a single CRAN location that everyone accesses,
the CRAN is ‘mirrored’ at different places across the globe. ‘Mirrored’ simply means that
there are identical versions of the CRAN scattered across the world. As a resident of the
UK, I might access a CRAN location in the UK, whereas if you are in a different country
you would likely access the copy of the CRAN in your own country (or one nearby). Bigger
countries, such as the US, have multiple CRANs to serve them: the basic philosophy is to
choose a CRAN that is geographically close to you.
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Figure 3.2 shows schematically what we have just learnt. At the centre of the diagram is
the CRAN: a repository of the base R software and hundreds of packages. People with big
brains from all over the world write new packages and upload them into the CRAN for
others to use. The CRAN itself is mirrored at different places across the globe (which just
means there are multiple copies of it). As a user of R you download the software, and install
any packages that you want to use via your nearest CRAN.

The idea of needing to install ‘packages’ into a piece of software to get it to do something
for you might seem odd. However, whether you realize it or not many programs work in
this way (just less obviously so). For example, the statistical package SPSS has a base ver-
sion, but also has many modules (for example, the bootstrapping module, advanced sta-
tistics, exact tests and so on). If you have not paid for these modules then certain options
will be unavailable to you. Many students do not realize that SPSS has this modular format
because they use it at a university and the university has paid for all of the modules that
they need. Similarly, in Microsoft Excel you need to load the data analysis add-in before
you can use certain facilities. R is not unusual in having a modular system, and in being
modular it has enormous flexibility: as new statistical techniques are developed, contribu-
tors can react quickly to produce a package for R; a commercial organization would likely
take much longer to include this new technique.

Pros and cons of R®

The main advantages of using R are that it is free, and it is a versatile and dynamic envi-
ronment. Its open source format and the ability of statisticians to contribute packages to
the CRAN mean that there are many things that you can do that cannot be done in com-
mercially available packages. In addition, it is a rapidly expanding tool and can respond
quickly to new developments in data analysis. These advantages make R an extremely
powerful tool.

The downside to R is mainly ease of use. The ethos of R is to work with a command line
rather than a graphical user interface (GUI). In layman’s terms this means typing instructions
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rather than pointing, clicking, and dragging things with a mouse. This might seem weird at
first and a rather ‘retro’ way of working but I believe that once you have mastered a few fairly
simple things, R’s written commands are a much more efficient way to work.

Downloading and installing R @

To install R onto your computer you need to visit the project website (http://www.R-
project.org/). Figure 3.3 shows the process of obtaining the installation files. On the main
project page, on the left-hand side, click on the link labelled ‘CRAN’. Remember from
the previous section that there are various copies (mirrors) of the CRAN across the globe;
therefore, the link to the CRAN will navigate you to a page of links to the various ‘mir-
ror’ sites. Scroll down this list to find a mirror near to you (for example, in the diagram

FIGURE 3.3
Downloading R
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I have highlighted the mirror closest to me, http://www.stats.bris.ac.uk/R/) and click the
link. Once you have been redirected to the CRAN mirror that you selected, you will see
a web page that asks you which platform you use (Linux, MacOS or Windows). Click the
link that applies to you. We’re assuming that most readers use either Windows or MacOS.

If you click on the ‘“Windows’ link, then you’ll be taken to another page with some more
links; click on ‘base’, which will redirect you to the webpage with the link to the setup file,
once there click on the link that says ‘Download R 2.12.2 for Windows’,' which will initi-
ate the download of the R setup file. Once this file has been downloaded, double-click on
it and you will enter a (hopefully) familiar install procedure.

If you click on the ‘MacOS’ link you will be taken directly to a page from where
you can download the install package by clicking on the link labelled ‘R-2.12.2.pkg’
(please read the footnote about version numbers). Clicking this link will download
the install file; once downloaded, double-click on it and you will enter the normal
MacOS install procedure.

Versions of R ®

At the time of writing, the current version of R is 2.12.2; however, the software
updates fairly regularly so we are confident that by the time anyone is actually read-
ing this, there will be a newer release (possibly several). Notice that the
format of the version number is major.minor.patch, which means that we
are currently on major version 2, minor version 12 and patch 2. Changes
in the patch number happen fairly frequently and usually reflect fixes
of minor bugs (so, for example, version 2.12.3 will come along pretty
quickly but won’t really be a substantial change to the software, just
some housekeeping). Minor versions come less regularly (about every 6
months) and still reflect a collection of bug fixes and minor housekeep-
ing that keeps the software running optimally. Major releases are quite
rare (the switch from version 1 to version 2 happened in 2006). As such,
apart from minor fixes, don’t worry if you are using a more recent ver-
sion of R than the one we’re using: it won’t make any difference, or
shouldn’t do. The best advice is to update every so often but other than
that don’t worry too much about which version you’re using; there are
more important things in life to worry about.

3.3. Getting started ®

Once you have installed R you can activate it in the usual way. In windows go to the
start menu (the big windows icon in the bottom left of the screen) select ‘All Programs’,
then scroll down to the folder labelled ‘R’, click on it, and then click on the R icon
(Figure 3.4). In MacOS, go to your ‘Applications’ folder, scroll down to the R icon and
click on it (Figure 3.4).

! At the time of writing the current version of R is 2.12.2, but by the time you read this book there will have been
an update (or possibly several), so don’t be surprised if the <2.12.2” in the link has changed to a different number.
This difference is not cause for panic, the link will simply reflect the version number of R.
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The main windows in R ®

There are three windows that you will use in R. The main window is called the console
(Figure 3.4) and it is where you can both type commands and see the results of executing
these commands (in other words, see the output of your analysis). Rather than writing
commands directly into the console you can also write them in a separate window (known
as the editor window). Working with this window has the advantage that you can save col-
lections of commands as a file that you can reuse at another point in time (perhaps to rerun
the analysis, or to run a similar analysis on a different set of data). I generally tend to work
in this way rather than typing commands into the console because it makes sense to me
to save my work in case I need to replicate it, and as you do more analyses you begin to
have a repository of R commands that you can quickly adapt when running a new analysis.
Ultimately you have to do what works for you. Finally, if you produce any graphics or
graphs they will appear in the graphics window (this window is labelled quartz in MacOS).
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Once R is up and running you’ll notice a menu bar similar to the ones you might have seen
in other programs. Figure 3.4 shows the console window and the menu bar associated with
this window. There are some subtle differences between Windows and MacOS versions of
R and we will look at each version in the following two sections. At this stage, simply note

that there are several menus at the top of the screen (e.g., [ge_ex_ve]) that can be activated
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FIGURE 3.4
Getting R started
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by using the computer mouse to move the on-screen arrow onto the desired menu and
then pressing the left mouse button once (I’ll call pressing this button clicking). When
you have clicked on a menu, a menu box will appear that displays a list of options that
can be activated by moving the on-screen arrow so that it is pointing at the desired
option and then clicking with the mouse. Often, selecting an option from a menu
makes a window appear; these windows are referred to as dialog boxes. When referring
to selecting options in a menu I will use arrows to notate the menu paths; for example,
if I were to say that you should select the Save As ... option in the File menu, you will
see File=Save As ...

Before we look at Windows and MacOS versions of R, it’s worth saying that there are no
substantive differences: all of the commands in the book work equally as well on Windows
or MacOS. Other than pointing out a few differences in the next two sections, we won’t
talk about Windows and MacOS again because it won’t make a difference to how you fol-
low the book. If you happen to use Windows and see a screenshot from MacOS (or vice
versa), this is not cause for a nervous breakdown — I promise.

3.3.2.1. Rin Windows @

In R for Windows, the menus available depend upon which window is active; Table 3.1
provides an overview of the main menus and their contents. The specific content of a
particular menu also changes according to the window that’s active. For example, when
you are in the graphics and editor windows the File menu pretty much only gives you the
option to save, copy or print the graphic or text displayed in the window, but in the console
window you have many more options. Most options in the menus can also be accessed with
keyboard shortcuts (see R’s Souls’ Tip 3.1).

SRR RN Keyboard shortcuts @

Within the menus of software packages on Windows some letters are underlined: these underlined letters rep-
resent the keyboard shortcut for accessing that function. It is possible to select many functions without using
the mouse, and the experienced keyboard user may find these shortcuts faster than manoeuvring the mouse
arrow to the appropriate place on the screen. The letters underlined in the menus indicate that the option can be
obtained by simultaneously pressing Alt on the keyboard and the underlined letter. So, to access the Save As...
option, using only the keyboard, you should press Alt and F on the keyboard simultaneously (which activates the
File menu), then, keeping your finger on the Alt key, press A (which is the underlined letter). If these underlined
letters are not visible, they can be displayed by pressing the Alt key.

As well as the menus there is also a set of icons at the top of the data editor window (see
Figure 3.4) that are shortcuts to specific facilities. All of these facilities can be accessed via
the menu system but using the icons will save you time. Table 3.2 gives a brief overview of
these icons and their functions.
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Table 3.1 Overview of the menus in R for Windows

Menu

File: This menu allows you to do general things such as
saving the workspace (i.e., analysis output — see section
3.4), scripts or graphs. Likewise, you can open previously
saved files and print graphs, data or output. In essence, it
contains all of the options that are customarily found in File
menus.

Edit: This menu contains edit functions such as cut and
paste. From here you can also clear the console (i.e.,
remove all of the text from it), activate a rudimentary data
editor, and change how the GUI looks (for example, by
default the console shows black text on white background,
you can change the colour of both the background and
text).

View: This menu lets you select whether or not to see the
toolbar (the buttons at the top of the window) and whether
to show a status bar at the bottom of the window (which
isn't particularly interesting).

Misc: This menu contains options to stop ongoing
computations (although the ESC key does a quicker job),
to list any objects in your working environment (these
would be objects that you have created in the current
session — see section 3.4), and also to select whether R
autocompletes words and filenames for you (by default it
does).

Packages: This menu is very important because it is where
you load, install and update packages. You can also set
your default CRAN mirror so that you always head to that
location.

Window: If you have multiple windows, this menu allows
you to change how the windows in R are arranged.

Help: This is an invaluable menu because it offers you
online help (links to frequently asked questions, the R
webpage etc.), offline help (pdf manuals, and system help
files).

Resize: This menu is for resizing the image in the graphics
window so that it is a fixed size, it is scaled to fit the window
but retains its aspect ratio (fit to window), or it expands to fit
the window but does not maintain its aspect ratio (R mode).

3.3.2.2. Rin Mac0S @

As with any software package for MacOS, the R menus appear at the top of the screen.

Console Editor

Table 3.3 provides an overview of the main menus and their contents. We will refer back
to these menus at various points so by all means feel free to explore them, but don’t worry
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Table 3.2 Overview of the icons in R for Windows

Icon Description Console Editor Graphics

This icon gives you the option to open a
previously saved file.

4 v

W,

Clicking this button opens a dialog box that
enables you to load a workspace file (see v
section 3.4).

I3

This icon enables you to save files. It will save

the file you are currently working on (be it the

console screen or a script file). If the file hasn'’t v v
already been saved the Save Data As dialog box

will appear.

Clicking this button copies anything selected in
the console window to the clipboard.

iy

Clicking this button pastes the contents of the
Windows clipboard to the console window.

[

Clicking this button copies anything selected
+ in the console window to the clipboard and
automatically pastes it into the command line
(useful for rerunning earlier commands).

Clicking this button stops the R processor from
whatever it is doing (if you have started R on a
task, gone and made the dinner and returned
to find it still chugging away trying to finish, then
you might need to click this button and have a
rethink).

This icon activates a dialog box for printing
whatever you are currently working on (what is v v v
printed depends on which window is active).

y

In the editor window clicking this button will run
a line of code or a block of selected code. It's
quicker to use the keyboard though (see section
3.4).

&)

+

Pt
N

Clicking this button returns the focus to the

D console widow. 4 4
Clicking this button copies the contents of the

ﬁ graphics window to the clipboard as a Windows v

metafile.

too much at this stage about what specific menu options do. As well as the menus there is
a set of icons at the top of both the editor and console windows, which provide shortcuts
to specific facilities. All of these facilities can be accessed via the menu system or by typing
commands, but using the icons can save you time. Table 3.4 overviews of these icons and
their functions.
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Table 3.3 Overview of the menus in R for MacOS

File: This menu allows you to do general things such as saving scripts or graphs. Likewise, you
can open previously saved files and print graphs, data or output. In essence, it contains all of the
options that are customarily found in File menus.

Edit: This menu contains edit functions such as cut and paste. From here you can also clear the
console (i.e., remove all of the text from it), execute commands, find a particular bit of text and so
on.

Format: This menu lets you change the text styles used (colour, font, etc.).

Workspace: This menu enables you to save the workspace (i.e., analysis output — see section
3.4), load an old workspace or browse your recent workspace files.

Packages & Data: This menu is very important because it is where you load, install and update
packages.

Misc: This menu enables you to set or change the working directory. The working directory is the
default location where R will search for and save files (see section 3.4.4).

Window: If you have multiple windows, this menu allows you to change how the windows in R
are arranged.

Help: This is an invaluable menu because it offers you a searchable repository of help and
frequently asked questions.

3.4. UsingR®

Commands, objects and functions ©

I have already said that R uses ‘commands’ that are typed into the console window. As
such, unlike other data analysis packages with which you might be familiar (e.g., SPSS,
SAS), there are no friendly dialog boxes that you can activate to run analyses. Instead,
everything you want to do has to be typed into the console (or executed from a script file).
This might sound like about as much fun as having one of the living dead slowly chewing
on your brain, but there are advantages to working in this way: although there is a steep
initial learning curve, after time it becomes very quick to run analyses.

Commands in R are generally made up of two parts: objects and functions. These are
separated by ‘<-’, which you can think of as meaning ‘is created from’. As such, the general
form of a command is:

Object<-function

Which means ‘object is created from function’. An object is anything created in R. It could
be a variable, a collection of variables, a statistical model, etc. Objects can be single values
(such as the mean of a set of scores) or collections of information; for example, when you
run an analysis, you create an object that contains the output of that analysis, which means
that this object contains many different values and variables. Functions are the things that
you do in R to create your objects. In the console, to execute a command you simply type
it into the console and press the return key. (You can put more than one command on a
single line if you prefer — see R’s Souls’ Tip 3.2)
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Table 3.4 Overview of the icons in R for MacOS

Icon Description Console Editor
Clicking this button stops the R processor from whatever it is
@ doing. v

TE Clicking this button opens a dialog box that enables you to y

select a previously saved script or data file.

z Clicking this button opens a new graphics (quartz) window.

illin 4

Clicking this button opens the X11 window; X11 is a device
X | that some R packages use.

Clicking this button opens a dialog box into which you can

P enter your system password. This will enable R to run system

u commands. Frankly, | have never touched this button and | v
suspect it is to be used only by people who actually know
what they're doing.

Clicking this button activates a sidebar on the console

window that lists all of your recently executed commands. 4
Clicking this button opens the Preferences dialog box, from
which you can change the console colours (amongst other v

things).

(O I

Clicking this button opens a dialog box from which you can
select and open a previously saved script file. This file will v
open in the editor window.

s Clicking this button opens a new editor window in which you
can create a new script file.

This icon activates a dialog box for printing whatever you
are currently working on (what is printed depends on which v v
window is active).

g Clicking this button saves the script file that you're working
on. If you have not already saved the file, clicking this button v
activates a Save As ... dialog box.

Clicking this button quits R.

[=] L2 (D

Figure 3.5 shows a very simple example in which we have created an object called ‘metal-
lica’, which is made up of the four band members’ (pre 2001) names. The function used
is the concatenate function or c(), which groups things together. As such, we have written
each band member’s name (in speech marks and separated by commas), and by enclosing
them in ¢() we bind them into a single entity or object, which we have called ‘metallica’. If
we type this command into the console then when we hit the return key on the keyboard
the object that we have called ‘metallica’ is created. This object is stored in memory so
we can refer back to it in future commands. Throughout this book, we denote commands
entered into the command line in this way:
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YR WA Running multiple commands at once®

The command line format of R tends to make you think that you have to run commands one at a time. Even if you
use the R editor it is tempting to put different commands on a new line. There’s nothing wrong with doing this,
and it can make it easier to decipher your commands if you go back to a long script months after you wrote it.
However, it can be useful to run several commands in a single line. Separating them with a semicolon does this.

For example, the two commands:
metallica<-metallica[metallica != "Jason"]
metallica<-c(metallica, "Rob™)

can be run in a single line by using a semicolon to separate them:

. . . " n . . . n n
metallica<-metallica[metallica != "Jason"]; metallica<-c(metallica, "Rob™)
IR RGui - [R Console] =N E=R )
IR File Edit View Misc Packages Windows Help [-][&]x]
2 || pB) 3
-
R version 2.12.2 (2011-02-25)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i386-pc-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language Support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HIML browser interface to help.
Type 'g()' to quit R.
k metallica<-c("Lars™, "James"™, "Jason", "Kirk")
4 L3
. " " " n " n el "
metallica <-c("Lars", James", "Jason", "Kirk")
hS Y

Object Function

FIGURE 3.5
Using the
command line
inR
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metallica<-c("Lars","James","Jason","Kirk™")

Now we have created an object called ‘metallica’ we can do things with it. First, we can
have a look at its contents by typing ‘metallica’ (or ‘print(metallica)” works too) into the
command line and hitting the return key:

metallica

The contents of the object ‘metallica’ will be displayed in the console window. Throughout
the book we display output as follows:

[1] "Lars" "James" "Jason" "Kirk"

Note that R has printed into the console the contents of the object ‘metallica’, and the
contents are simply the four band members’ names. You need to be very careful when
you type commands and create objects in R, because it is case sensitive (see R’s Souls’
Tip 3.3).

SRR ER] R is case sensitive @

itive, which means that if the same things are written in upper or lower case, R thinks that they
different things. For example, we created a variable called metallica; if we asked to see the con-

tents of Metallica (note the capital M), R would tell us that this object didn’t exist. If we wanted to completely
confuse ourselves we could actually create a variable called Metallica (with a capital M) and put different data
into it than in the variable metallica (with a small m), and R would have no problem with us doing so. As far
as R is concerned, metallica and Metallica are as different to each other as variables called earwax and
doseOfBellendium.

This case sensitivity can create problems if you don’t pay attention. Functions are generally lower case so you
just need to avoid accidentally using capitals, but every so often you find a function that has a capital letter (such
as as.Date() used in this chapter) and you need to make sure you have typed it correctly. For example, if you want
to use the function data.frame() but type data.Frame() or Data.Frame() you will get an error. If you get an error,

check that you

have typed any functions or variable names exactly as they should be.

We can do other things with our newly created object too. The Metallica fans amongst
you will probably be furious at me for listing the pre 2001 line up of the band. In 2001
bassist Jason Newstead left the band and was replaced by Rob Trujillo. Even as I type, there
are hoards of Metallica fans with precognition about the contents of this book queuing
outside my house and they have dubbed me unforgiven. Personally I’'m a big fan of Rob
Trujillo, he’s given the band a solid kick up the backside, and so let’s put him in his rightful
place in the band. We currently have a ‘metallica’ object that contains Jason. First we can
change our object to eject Jason (harsh, I know). To get rid of Jason in R we can use this
command:

metallica<-metallica[metallica != "Jason"]

This just means that we’re re-creating the object ‘metallica’, the ‘<-> means that ‘we’re
creating it from’ and our function is metallicalmetallica != “Jason”] which means ‘use the
object metallica, but get rid of (!=) Jason’. A simple line of text and Jason is gone, which
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was probably a lot less hassle than his actual ousting from the band. If only Lars and James
had come to me for advice. If we have a look at our ‘metallica’ object now we’ll see that
it contains only three names. We can do this by simply typing ‘metallica’ and hitting the
return key. Below shows the command and the output:

metallica
[1] "Lars" "James" "Kirk"

Now let’s add Rob Trujillo to the band. To do this we can again create an object called
‘metallica’ (which will overwrite our previous object), and we can use the concatenate com-
mand to take the old ‘metallica’ object and add “Rob” to it. The command looks like this:

metallica<-c(metallica, "Rob™)

If we execute this command (by pressing return) and again look at the contents of ‘metal-
lica” we will see that Rob has been added to the band:

metallica

[1] "Lars" "James" "Kirk" "Rob"

SELF-TEST

v Create an object that represents your favourite band
(unless it's Metallica, in which case use your second
favourite band) and that contains the names of each
band member. If you don’t have a favourite band,
then create an object called friends that contains the
names of your five best friends.

KR:WH Using scripts @

Although you can execute commands from the console, I think it is better to write com-
mands in the R editor and execute them from there. A document of commands written in
the R editor is known as a script. There are several advantages to this way of working. First,
at the end of your session you can save the script file, which can be reloaded in the future
if you need to re-create your analysis. Rerunning analyses, therefore, becomes a matter of
loading a file and hitting a few buttons — it will take less than 10 seconds. Often in life you
need to run analyses that are quite similar to ones that you have run before; if you have a
repository of scripts then it becomes fairly quick to create new ones by editing an existing
one or cutting and pasting commands from existing scripts and then editing the variable
names. Personally I find that using old scripts to create new ones speeds things up a lot, but
this could be because I’'m pretty hopeless at remembering how to do things in R. Finally,
I often mess things up and run commands that throw error messages back in my face; if
these commands are written directly into the console then you have to rewrite the whole
command (or cut and paste the wrong command and edit it), whereas if you ran the com-
mand from the editor window then you can edit the command directly without having to
cut and paste it (or rewrite it), and execute it. Again, it’s a small saving in time, but these
savings add up until eventually the savings outweigh the actual time you’re spending doing
the task and then time starts to run backwards. I was 56 when [ started writing this book,
but thanks to using the editor window in R I am now 37.
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Figure 3.6 shows how to execute commands from the editor window. Assuming you
have written some commands, all you need to do is to place the cursor in the line contain-
ing the command that you want to execute, or if you want to execute many commands in
one go then highlight a block of commands by dragging over them while holding down the
left mouse button. Once your commands are highlighted, you can execute them in one of
several ways.

In Windows, you have a plethora of choices: you can (1) click on [ (2) click the right
mouse button while in the editor window to activate a menu, then click with the left mouse
button on the top option which is to run the command (see Figure 3.6); (3) go through
the main menus by selecting Edit=Run line or selection; or (4) press and hold down the
Ctrl key, and while holding it down press and release the letter R on the keyboard (this
is by far the quickest option). In the book we notate pressing a key while another is held
down as ‘hold + press’, for example Ct#l + R means press the R key while holding down
the Ctrl key.

In MacOS you can run the highlighted commands, or the current line, through the
menus by selecting Edit=Execute, but as with Windows the keyboard shortcut is much
quicker: press and hold down the ¢md key (88), and while holding it down press and release
the return key (d). In case you skipped the previous paragraph, we will notate pressing a
key while another is held down as ‘hold + press’, for example 8 + . means press the
key while holding down the 8.

You’ll notice that the commands appear in the console window as they are executed,
along with any consequences of those commands (for example, if one of your commands
asks to view an object the contents will be printed in the console just the same as if you had
typed the command directly into the console).

The R workspace @

As you work on a given data set or analysis, you will create many objects, all of which are
stored in memory. The collection of objects and things you have created in a session is
known as your workspace. When you quit R it will ask you if you want to save your current
workspace. If you choose to save the workspace then you are saving the contents of the
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console window and any objects that have been created. The file is known as an R image
and is saved in a file with .RData at the end. You can save the workspace at any time using
the File=Save Workspace ... menu in Windows or in MacOS make sure you are in the
console window and select File=Save As ....

Setting a working directory ®

By default, when you try to do anything (e.g., open a file) from R it will go to the directory
in which the program is stored on your computer. This is fine if you happen to store all of
your data and output in that folder, but it is highly unlikely that you do. If you don’t then
every time you want to load or save a file you will find yourself wasting time using the
menus to navigate around your computer to try to find files, and you will probably lose
track of things you save because they have been dumped in R’s home folder. You will also
end up having to specify the exact file path for every file you save/access. For example,
assuming that you’re using Windows, your user name is ‘Andy F’ (because you’ve stolen my
identity), you have a folder in your main documents folder called ‘Data’ and within that
you have another folder called ‘R Book Examples’, then if you want to access this folder
(to save or load a file) you’d have to use this file path:

C:/Users/Andy F/Documents/Data/R Book Examples

So, to load a file called data.dat from this location you would need to execute the follow-
ing command:

myData = read.delim("C:/Users/Andy F/Documents/Data/R Book Examples/data.
dat")

Don’t worry about what this command means (we’ll get to that in due course), I just
want you to notice that it is going to get pretty tedious to keep typing ‘C:/Users/Andy F/
Documents/Data/R Book Examples’ every time you want to load or save something.

If you use R as much as I do then all this time typing locations has two consequences: (1)
all those seconds have added up and I have probably spent weeks typing file paths when I
could have been doing something useful like playing my drum kit; (2) I have increased my
chances of getting RSI in my wrists, and if I’'m going to get RSI in my wrists I can think
of more enjoyable ways to achieve it than typing file paths (drumming again, obviously).

The best piece of advice I can give you is to establish a working directory at the beginning
of your R session. This is a directory in which you want to store your data files, any scripts
associated with the analysis or your workspace. Basically, anything to do with a session.
To begin with, create this folder (in the usual way in Windows or MacOS) and place the
data files you’ll be using in that folder. Then, when you start your session in R change the
working directory to be the folder that you have just created. Let’s assume again that you’re
me (Andy F), that you have a folder in ‘My Documents’ called ‘Data’ and within that you
have created a folder called ‘R Book Examples’ in which you have placed some data files
that you want to analyse. To set the working directory to be this folder, we use the setwd()
command to specify this newly created folder as the working directory:

setwd("C:/Users/Andy F/Documents/Data/R Book Examples™)

By executing this command, we can now access files in that folder directly without having
to reference the full file path. For example, if we wanted to load our data.dat file again, we
can now execute this command:

myData = read.delim("data.dat™)
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Compare this command with the one we wrote earlier; it is much shorter because we can
now specify only the file name safe in the knowledge that R will automatically try to find
the file in ‘C:/Users/Andy F/Documents/Data/R Book Examples’. If you want to check what
the working directory is then execute this command:

getwd()

Executing this command will display the current working directory in the console
window.?

In MacOS you can do much the same thing except that you won’t have a C drive.
Assuming you are likely to work in your main user directory, the easiest thing to do is to
use the ¢ ~ > symbol, which is a shorthand for your user directory. So, if we use the same
file path as we did for Windows, we can specify this as:

setwd("~/Documents/Data/R Book Examples™)

The ~ specifies the MacOS equivalent of ‘C:/Users/Andy F’. Alternatively, you can navigate
to the directory that you want to use using the Misc=Change Working Directory menu
path (or 8 + D).

Throughout the book I am going to assume that for each chapter you have stored the
data files somewhere that makes sense to you and that you have set this folder to be your
working directory. If you do not do this then you’ll find that commands that load and save
files will not work.

ERMM  Installing packages ©

Earlier on I mentioned that R comes with some base functions ready for you to use.
However, to get the most out of it we need to install packages that enable us to do particu-
lar things. For example, in the next chapter we look at graphs, and to create the graphs
in that chapter we use a package called ggploz2. This package does not come pre-installed
in R so to work through the next chapter we would have to install ggplot2 so that R can
access its functions.

You can install packages in two ways: through the menus or using a command. If you
know the package that you want to install then the simplest way is to execute this command:

install.packages("package.name™)

in which ‘package.name’ is replaced by the name of the package that you’d like installed.
For example, we have (hopefully) written a package containing some functions that are
used in the book. This package is called DSUR, therefore, to install it we would execute:

install.packages("DSUR")

Note that the name of the package must be enclosed in speech marks.

Once a package is installed you need to reference it for R to know that you’re using it.
You need to install the package only once® but you need to reference it each time you start a
new session of R. To reference a package, we simply execute this general command:

library(package.name)

2 In Windows, the filepaths can also be specified using ‘\\’ to indicate directories, so that “C:/Users/Andy F/Docu-
ments/Data/R Book Examples” is exactly the same as “C: \\Users\\Andy F\\Documents\\Data\\R Book Examples”.
R tends to return filepaths in the \V' form, but will accept it if you specify them using °/’. Try not to be confused
by these two different formats. MacOS users don’t have these tribulations.

3 This isn’t strictly true: if you upgrade to a new version of R you will have to reinstall all of your packages again.
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in which ‘package.name’ is replaced by the name of the package that you’d like to use.
Again, if we want to use the DSUR package we would execute:

library(DSUR)

Note that in this command the name of the package is not enclosed in speech marks.

Alternatively you can manage packages through the menu system. Figure 3.7 overviews
the menus for managing packages. In Windows if you select Packages=Install package(s)...
a window will open that first asks you to select a CRAN. Having selected the CRAN near-
est to you from the list and clicked on [ e« ], a new dialog box will open that lists all
of the available packages. Click on the one or ones that you want (you can select several
by holding down the Cirl key as you click) and then click on [_ox . This will have the
same effect as using the install.packages() command. You can load packages by selecting
Packages=Load package..., which opens a dialog box with all of the available packages
that you could load. Select the one(s) you want to load and then click on [_ec . This has
the same effect as the library() command.

In MacOS if you select Packages & Data—Package Installer a window will open. Click
on(__ Gelist ) and a list of all the available packages appears. Click on the one or ones that
you want (you can select several by holding down the 8 key as you click) and then click on
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(__instali selected ) This will have the same effect as using the install.packages() command. You
can load packages by selecting Packages & Data—Package Manager, which opens a dialog box
with all of the available packages that you could load. Click on the tick boxes next to the one(s)
you want to load. This has the same effect as the library() command.

One entertaining (by which I mean annoying) consequence of any Tom, Dick or Harriet
being able to contribute packages to R is that you sometimes encounter useful functions
that have the same name as different functions in different packages. For example, there is
a recode() function that exists in both the Hmisc and car packages. Therefore, if you have
both of these packages loaded you will need to tell R which particular recode function you

want to use (see R’s Souls’ Tip 3.4).

RN ERY Disambiguating functions @

Occasionally you might stumble across two functions in two different packages that have the same name. For
example, there is a recode() function in both the Hmisc and car packages. If you have both packages loaded and
you try to use recode(), R won't know which one to use or will have a guess (perhaps incorrectly). This situation
is easy to rectify: you can specify the package when you use the function as follows:

package: : function()

For example, if we want to use the recode() function in the car package we would write:
car: :recode()

but to use the one in Hmisc we would write:

Hmisc: :recode()

Here is an example where we recode a variable using recode() from the car package:

variableName <-car::recode(variableName, "2=0;0=2")

Getting help @

There is an enormous amount of information on the Internet about using R, and I gener-
ally find that if T get stuck I can find help with a quick Google (or whatever search engine
you use) search. However, there is help built into R as well. If you are using a particular
function and you want to know more about it then you can get help by executing the help()
command:

help(function)
or by executing:
?function

In both cases function is the name of the function about which you need help. For example,
we used the concatenate function earlier on, ¢(), if we wanted help with this function we
could execute either:

help(c)
or

?c
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These commands open a new window with the help documentation for that function. Be
aware that the help files are active only if you have loaded the package to which the func-
tion belongs. Therefore, if you try to use help but the help files are not found, check that
you have loaded the relevant package with the /ibrary() command.

3.5. Getting dataintoR®

You can enter data directly into R. As we saw earlier on, you can use the ¢() function to cre-
ate objects that contain data. The example we used was a collection of names, but you can
do much the same with numbers. Earlier we created an object containing the names of the
four members of metallica. Let’s do this again, but this time call the object metallicaNames.
We can create this object by executing the following command:

metallicaNames<-c("Lars","James","Kirk","Rob™)

We now have an object called metallicaNames containing the band members’ names. When
we create objects it is important to name them in a meaningful way and you should put
some thought into the names that you choose (see R’s Souls’ Tip 3.7).

Let’s say we wanted another object containing the ages of each band member. At the time
of writing, their ages are 47, 47, 48 and 46, respectively. We can create a new object called
metallicaAges in the same way as before, by executing:

metallicaAges<-c(47, 47, 48, 46)

Notice that when we specified names we placed the names in quotes, but when we
entered their ages we did not. The quotes tell R that the data are not numeric. Variables
that consist of data that are text are known as string variables. Variables that contain
data that are numbers are known as numeric variables. R and its associated packages
tend to be able to treat data fairly intelligently. In other words, we don’t need to tell
R that a variable is numeric or not, it sort of works it out for itself — most of the time
at least. However, string values should always be placed in quotes, and numeric val-
ues are never placed in quotes (unless you want them to be treated as text rather than
numbers).

Creating dataframes ®

We currently have two separate objects: metallicaNames and metallicaAges. Wouldn’t it be
nice to combine them into a single object? We can do this by creating a dataframe. You can
think of a dataframe as a spreadsheet (so, like the contents of the data editor in SPSS, or a
worksheet in Excel). It is an object containing variables. There are other ways to combine
variables in R but dataframes are the way we will most commonly use because of their ver-
satility (R’s Souls’ Tip 3.5). If we want to combine metallicaNames and metallicaAges into
a dataframe we can use the data.frame() function:

metallica<-data.frame(Name = metallicaNames, Age = metallicaAges)

In this command we create a new object (called metallica) and we create it from the func-
tion data.frame(). The text within the data.frame() command tells R how to build the
dataframe. First it tells R to create an object called ‘Name’, which is equal to the existing
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object metallicaNames. Then it tells R to create an object called ‘Age’, which is equal to the
existing object metallicaAges. We can look at the contents of the dataframe by executing:

metallica
You will see the following displayed in the console:

Name Age

1 Lars 47
2 James 47
3 Kirk 48
4 Rob 46

As such, our dataframe consists of two variables (Name and Age), the first is the band
member’s name, and the second is their age. Now that the dataframe has been created we
can refer to these variables at any point using the general form:

dataframe$variableName

For example, if we wanted to use the ages of metallica, we could refer to this variable as:
metallica$Age

similarly, if we want the Name variable we could use:

metallica$Name

Let’s add a new variable that contains the age of each member’s eldest child; we will call
this variable childAge. According to an Internet search, James’s (Cali) and Lars’s (Myles)
eldest children were both born in 1998, Kirk’s (Angel) was born in 2006 and Rob’s (Tye-
Orion) in 2004. At the time of writing, this makes them 12, 12, 4 and 6, respectively. We
can add this variable using the ¢() function as follows:

metallica$childAge<-c(12, 12, 4, ©)

This command is fairly straightforward: metallica$childAge simply creates the variable
childAge in the pre-existing dataframe metallica. As always the ‘<-> means ‘create from’,
then the ¢() function allows us to collect together the numbers representing each member’s
eldest child’s age (in the appropriate order).

We can look at the contents of the dataframe by executing:

metallica

You will see the following displayed in the console:

Name Age childAge

1 Lars 47 12
2 James 47 12
3 Kirk 48 4
4 Rob 46 6

Notice that the new variable has been added.

Sometimes, especially with large dataframes, it can be useful to list the variables in the
dataframe. This can be done using the names() function. You simply specify the name
of the dataframe within the brackets; so, if we want to list the variables in the metallica
dataframe, we would execute:

names(metallica)
The output will be a list of the variable names in the dataframe:
[1] "Name" "Age" "childAge"

In this case, R lists the names of the three variables in the dataframe.
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Dataframes are not the only way to combine variables in R: throughout the book you will find us using the /ist()
and cbind() functions to combine variables. The /ist() function creates a list of separate objects; you can imagine
it as though it is your handbag (or manbag) but nicely organized. Your handbag contains lots of different objects:
lipstick, phone, iPod, pen, etc. Those objects can be different, but that doesn’t stop them being collected into the
same bag. The list() function creates a sort of bag into which you can place objects that you have created in R.
However, it's a well-organized bag and so objects that you place in it are given a number to indicate whether they
are the first, second etc. object in the bag. For example, if we executed these commands:

metallica<-list(metallicaNames, metallicaAges)

instead of the data.frame() function from the chapter, we would create a R-like handbag called metallica that looks
like this:

"Lars" "James" "Kirk" "Rob"

47 47 48 46

Obiject [1] in the bag is the list of names, and object [2] in the bag is the list of ages.
The function cbind() is used simply for pasting columns of data together (you can also use rbind() to combine
rows of data together). For example, if we execute:

metallica<-cbind(metallicaNames, metallicaAges)
instead of the data.frame() function from the chapter, we would create a matrix called metallica that looks like this:

metallicaNames metallicaAges

[1,] "Lars" 4"
[2,] "James" 47"
[3,] "Kirk" 48"
[4,] "Rob" 46"

Notice that the end result is that the two variables have been pasted together as different columns in the same
object. However, notice that the numbers are in quotes; this is because the variable containing names is text, so it
causes the ages to be text as well. For this reason, cbind() is most useful for combining variables of the same type.

In general, dataframes are a versatile way to store variables: unlike cbind(), data.frame() stores variables of
different types together (trivia note: cbind() works by using the data.frame() function so they’re basically the same).
Therefore, we tend to work with dataframes; however, we will use /ist() sometimes because some functions like to
work with lists of variables, and we will sometimes use cbind() as a quick method for combining numeric variables.

Calculating new variables from exisiting ones @

Although we’re not going to get into it too much here (but see Chapter 5), we can also
use arithmetic and logical operators to create new variables from existing ones. Table 3.5
overviews some of the basic operators that are used in R. As you can see, there are many
operations with which you will be familiar (but see R’s Souls’ Tip 3.6) that you can use on
variables: you can add them (using +), subtract them (using —), divide them (using /), and
multiply them (using *). We will encounter these and the others in the table as we progress
through the book. For now, though, we will look at a simple example to give you a sense
that dataframes are versatile frameworks for storing and manipulating data.
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Table 3.5 Some of main operators that can be used in R

Operator
+

V. V. A A
Il Il

Ix

x|y

X &y

isTRUE(X)

What it does

Adds things together

Subtracts things

Multiplies things

Divides things

Exponentiation (i.e., to the power of, so, X~ 2 or x**2 is x2, x ~ 3 is x® and so on)
Less than

Less than or equal to

Greater than

Greater than or equal to

Exactly equals to (this might confuse you because you'll be used to using ‘=" as

the symbol for ‘equals’, but in R you usually use ‘==")

Not equal to

Not x

x ORYy (e.g., name == “Lars”|'James” means 'the variable name is equal to either

Lars or James’)

xAND Yy (e.g., age == 47 & name == ‘James” means ‘the variable age is equal to
47 and the variable name is equal to James’)

Test if x is TRUE

SR ITIE N ST W] Equals signs @

A common cause of errors in R is that you will have spent your whole life using the symbol ‘=" when you want
to say ‘equals’. For example, you'll all be familiar with the idea that age = 37 is interpreted as ‘age equals 37'.
However, in a transparent attempt to wilfully confuse us, R uses the symbol ‘==" instead. At first, you might
find that if you get error messages it is because you have used ‘=" when you should have used ‘==". It's worth
checking your command to see whether you have inadvertently let everything you have ever learnt about equals
signs get the better of you.

If we wanted to find out how old (roughly) each band member was when he had their

follows:

first child, then we can subtract his eldest child’s age from his current age. We can store
this information in a new variable (fatherhoodAge). We would create this new variable as

metallica$fatherhoodAge<- metallica$Age - metallica$childAge

This command is again straightforward: metallica$fatherhoodAge simply creates the vari-

able called fatherhoodAge in the existing dataframe (metallica). The ‘<-> means ‘create
from’, then follows the instructions about how to create it; we ask that the new variable
is the child’s age (which is the variable childAge in the metallica data set, referred to as
metallica$childAge) subtracted from (—) the member’s age (metallica$Age). Again, if we
look at the dataframe by executing
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metallica

we see that a new variable has been created containing the age of each band member when
they had their first child. We can see from this that James and Lars were both 35 years old,
Kirk was 44 and Rob was 40.

Name Age childAge fatherhoodAge

1 Lars 47 12 35
2 James 47 12 35
3 Kirk 48 4 44
4 Rob 46 6 40

G MR B Naming variables ©

There are conventions about naming variables and objects in R. Unfortunately these conventions sometimes
contradict each other. For example, the Google style guide for R recommends that ‘Variable names should have
all lower case letters and words separated with dots (.)’. So, for example, if you had a variable representing chil-
dren’s anxiety levels you might name it child.anxiety but should not name it child_anxiety and definitely not
Child_Anxiety. However, Hadley (see the second URL at the end of this tip) recommends ‘Variable names ...
should be lowercase. Use _to separate words within a name. ... Strive for concise but meaningful names’. In
which case, child_anxiety would be fine.

| tend to use an old programming convention of capitalizing all but the first word. So, | would name the variable
childAnxiety, which waves its buttocks at the aforementioned conventions. | also sometimes use underscores
... that’s just the kind of rebellious guy | am.

The one thing that we can all agree on is that variable names should be meaningful and concise. This skill
can take some time and effort to perfect, and | can imagine that you might think that it is a waste of your time.
However, as you go through your course accumulating script files, you will be grateful that you did. Imagine you
had a variable called ‘number of times | wanted to shoot myself during Andy Field’s statistics lecture’; then you
might have called the variable ‘shoot’. All of your analysis and output will simply refer to ‘shoot’. That’s all well and
good, but what happens in three weeks’ time when you look at your analysis again? The chances are that you'll
probably think ‘What did shoot stand for? Number of shots at goal? Number of shots | drank?’ Imagine the chaos
you could get into if you had used an acronym for the variable ‘workers attending news kiosk’. Get into a good
habit and spend a bit of time naming objects in R in a meaningful way. The aforementioned style guides might
also help you to become more consistent than | am in your approach to naming:

e http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
e https://github.com/hadley/devtools/wiki/Style

Organizing your data ®

When inputting a new set of data, you must do so in a logical way. The most logical way
(and consistent with other packages like SPSS and SAS) that we usually use is known as the
wide format. In the wide format each row represents data from one entity while each col-
umn represents a variable. There is no discrimination between independent and dependent
variables: both types should be placed in a separate column. The key point is that each
row represents one entity’s data (be that entity a human, mouse, tulip, business, or water
sample). Therefore, any information about that case should be entered across the data
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editor. For example, imagine you were interested in sex differences in perceptions of pain
created by hot and cold stimuli. You could place some people’s hands in a bucket of very
cold water for a minute and ask them to rate how painful they thought the experience was
on a scale of 1 to 10. You could then ask them to hold a hot potato and again measure their
perception of pain. Imagine I was a participant. You would have a single row representing
my data, so there would be a different column for my name, my gender, my pain percep-
tion for cold water and my pain perception for a hot potato: Andy, male, 7, 10.

The column with the information about my gender is a grouping variable (also known as
a factor): I can belong to either the group of males or the group of females, but not both.
As such, this variable is a between-group variable (different entities belong to different
groups). Rather than representing groups with words, R uses numbers and words. This
involves assigning each group a number, and a label that descibes the group. Therefore,
between-group variables are represented by a single column in which the group to which
the person belonged is defined using a number and label (see section 3.5.4.3). For example,
we might decide that if a person is male then we give them the number 0, and if they’re
female we give them the number 1. We then have to tell R that every time it sees a 1 in a
particular column the person is a female, and every time it sees a 0 the person is a male.
Variables that specify to which of several groups a person belongs can be used to split up
data files (so in the pain example you could run an analysis on the male and female partici-
pants separately — see section 5.5.3).

Finally, the two measures of pain are a repeated measure (all participants were subjected
to hot and cold stimuli). Therefore, levels of this variable (see R’s Souls’ Tip 3.8) can be
entered in separate columns (one for pain perception for a hot stimulus and one for pain
perception for a cold stimulus).

SRR ER:] Entering data @

There is a simple rule for how variables are typically arranged in an R dataframe: data from different things go in
different rows of the dataframe, whereas data from the same things go in different columns of the dataframe. As
such, each person (or mollusc, goat, organization, or whatever you have measured) is represented in a different
row. Data within each person (or mollusc, etc.) go in different columns. So, if you've prodded your mollusc, or
human, several times with a pencil and measured how much it twitches as an outcome, then each prod will be
represented by a column.

In experimental research this means that any variable measured with the same participants (a repeated mea-
sure) should be represented by several columns (each column representing one level of the repeated-measures
variable). However, any variable that defines different groups of things (such as when a between-group design
is used and different participants are assigned to different levels of the independent variable) is defined using
a single column. This idea will become clearer as you learn about how to carry out specific procedures. (This
golden rule is not as golden as it seems at first glance — often data need to be arranged in a different format — but
it's a good place to start and it's reasonable easy to rearrange a dataframe — see section 3.9.)

Imagine we were interested in looking at the differences between lecturers and students.
We took a random sample of five psychology lecturers from the University of Sussex and
five psychology students and then measured how many friends they had, their weekly
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Table 3.6 Some data with which to play

No. of Alcohol

Name Birth Date Job Friends (units) Income (p.a.) Neuroticism
Ben 08-Jul-1977 Lecturer 5 10 20,000 10
Martin 24-May-1969  Lecturer 2 15 40,000 17
Andy 21-Jun-1973  Lecturer 0 20 35,000 14
Paul 16-Jul-1970 Lecturer 4 5 22,000 18
Graham  10-Oct-1949  Lecturer 1 30 50,000 21
Carina 05-Nov-1983  Student 10 25 5,000 7
Karina 08-Oct-1987  Student 12 20 100 1%
Doug 16-Sep-1989  Student 15 16 3,000 9
Mark 20-May-1973  Student 12 17 10,000 14
Z0oé 12-Nov-1984  Student 17 18 10 18

alcohol consumption (in units), their yearly income and how neurotic they were (higher
score is more neurotic). These data are in Table 3.6.

3.5.4.1. Creating a string variable ®

The first variable in our data set is the name of the lecturer/student. This variable consists
of names; therefore, it is a string variable. We have seen how to create string variables
already: we use the ¢() function and list all values in quotations so that R knows that it is
string data. As such, we can create a variable called name as follows:

name<-c("Ben", "Martin", "Andy", "Paul", "Graham", "Carina", "Karina",
llDougll’ llMarkll’ llZoell)

We do not need to specify the level at which this variable was measured (see section
1.5.1.2) because R will automatically treat it as nominal because it is a string variable, and
therefore represents only names of cases and provides no information about the order of
cases, or the magnitude of one case compared to another.

3.5.4.2. Creating a date variable ®

Notice that the second column in our table contains dates (birth dates, to be exact). To
enter date variables into R we use much the same procedure as with a string variable, except
that we need to use a particular format, and we need to tell R that the data are dates if we
want to do any date-related computations. We can convert dates written as text into date
objects using the as.Date() function. This function takes strings of text, and converts them
into dates; this is important if you want to do things like subtract dates from one another.
For example, if you want to work out how old someone was when you tested him or her,
you could take the date on which they were tested and subtract from it the date they were
born. If you have not converted these objects from strings to date objects this subtraction
won’t work (see R’s Souls’ Tip 3.9).
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RN EN] Dates @

If you want to do calculations involving dates then you need to tell R to treat a variable as a date object. Let’s look
at what happens if we don’t. Imagine two variables (husband and wife) that contain the birthdates of four men
and their respective wives. We might create these variables and enter these birthdates as follows:

husband<-c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24")
wife<-c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23")

If we want to now calculate the age gap between these partners, then we could create a new variable, agegap,
which is the difference between the two variables (husband — wife):

agegap <- husband-wife
We'd find this rather disappointing message in the console:
Error in husband - wife : non-numeric argument to binary operator

This message is R’s way of saying ‘What the hell are trying to get me to do? These are words; | can’t subtract
letters from each other.’

However, if we use the as.Date() function when we create the variables then R knows that the strings of text
are dates:

husband<-as.Date(c("1973-06-21", "1970-07-16", "1949-10-08", "1969-05-24"))
wife<-as.Date(c("1984-11-12", "1973-08-02", "1948-11-11", "1983-07-23"))
If we try again to calculate the difference between the two variables:

agegap <- husband-wife

agegap

we get a more sensible output:

Time differences in days
[1] -4162 -1113 331 -5173

This output tells us that in the first couple the wife is 4162 days younger than her husband (about 11 years), for
the third couple the wife is 331 days older (just under a year).

The as.Date() function is placed around the function that we would normally use to enter
a series of strings. Normally if we enter strings we use the form:

variable<-c("string 1", "string 2", "string 3", etc.)

For dates, these strings need to be in the form yyyy-mm-dd. In other words, if we want to
enter the date 21 June 1973, then we would enter it as “1973-06-21”. As such, we could
create a variable called birth_date containing the dates of birth by executing the following
command:

birth_date<-as.Date(c("1977-07-03", "1969-05-24", "1973-06-21", "1970-07-16",
"1949-10-10", "1983-11-05", "1987-10-08", "1989-09-16", "1973-05-20",
"1984-11-12"))

Note that we have entered each date as a text string (in quotations) in the appropriate
format (yyyy-mm-dd). By enclosing these data in the as.Date() function, these strings are
converted to date objects.
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3.5.4.3. Creating coding variables/factors ®

A coding variable (also known as a grouping variable or factor) is a variable that uses num-
bers to represent different groups of data. As such, it is a numeric variable, but these num-
bers represent names (i.e., it is a nominal variable). These groups of data could be levels
of a treatment variable in an experiment, different groups of people (men or women, an
experimental group or a control group, ethnic groups, etc.), different geographic locations,
different organizations, etc.

In experiments, coding variables represent independent variables that have been mea-
sured between groups (i.e., different participants were assigned to different groups). If you
were to run an experiment with one group of participants in an experimental condition
and a different group of participants in a control group, you might assign the experimental
group a code of 1 and the control group a code of 0. When you come to put the data into
R you would create a variable (which you might call group) and type in the value 1 for
any participants in the experimental group, and 0 for any participant in the control group.
These codes tell R that all of the cases that have been assigned the value 1 should be treated
as belonging to the same group, and likewise for the cases assigned the value 0. In situations
other than experiments, you might simply use codes to distinguish naturally occurring
groups of people (e.g., you might give students a code of 1 and lecturers a code of 0). These
codes are completely arbitrary; for the sake of convention people typically use 0, 1, 2, 3,
etc., but in practice you could have a code of 495 if you were feeling particularly arbitrary.

We have a coding variable in our data: the one describing whether a person was a lec-
turer or student. To create this coding variable, we follow the steps for creating a normal
variable, but we also have to tell R that the variable is a coding variable/factor and which
numeric codes have been assigned to which groups.

First, we can enter the data and then worry about turning these data into a coding vari-
able. In our data we have five lecturers (who we will code with 1) and five students (who
we will code with 2). As such, we need to enter a series of 1s and 2s into our new variable,
which we’ll call job. The way the data are laid out in Table 3.6 we have the five lecturers
followed by the five students, so we can enter the data as:

job<-c(1,1,1,1,1,2,2,2,2,2)

In situations like this, in which all cases in the same group are grouped together in the
data file, we could do the same thing more quickly using the rep() function. This function
takes the general form of rep(number to repeat, how many repetitions). As such, rep(1,
5) will repeat the number 1 five times. Therefore, we could generate our job variable as
follows:

job<-c(rep(l, 5),rep(2, 5))

Whichever method you use the end results is the same:
job

[11 1111122222

To turn this variable into a factor, we use the factor() function. This function takes the
general form:

factor(variable, levels = c(x,y, .. z), labels = c("labell", "label2",
"label3™))

This looks a bit scary, but it’s not too bad really. Let’s break it down: factor(variableName)
is all you really need to create the factor — in our case factor(job) would do the trick.
However, we need to tell R which values we have used to denote different groups and
we do this with levels = ¢(1,2,3,4, ...); as usual we use the ¢() function to list the values
we have used. If we have used a regular series such as 1, 2, 3, 4 we can abbreviate this
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as ¢(1:4), where the colon simply means ‘all the values between’; so, ¢(1:4) is the same
as ¢(1,2,3,4) and ¢(0:6) is the same as ¢(0,1,2,3,4,5,6). In our case, we used 1 and 2 to
denote the two groups, so we could specify this as ¢(1:2) or ¢(1,2). The final step is to
assign labels to these levels using labels = c¢(“label”, ...). Again, we use ¢() to list the labels
that we wish to assign. You must list these labels in the same order as your numeric levels,
and you need to make sure you have provided a label for each level. In our case, 1 cor-
responds to lecturers and 2 to students, so we would want to specify labels of “Lecturer”
and “Student”. As such, we could write levels = c(“Lecturers”, “Students”). If we put all
of this together we get this command, which we can execute to transform job into a cod-
ing variable:

job<-factor(job, levels = c(1:2), labels = c("Lecturer", "Student™))

Having converted job to a factor, R will treat it as a nominal variable. A final way to gener-
ate factors is to use the g/() function — the ‘gl’ stands for general (factor) levels. This func-
tion takes the general form:

newFactor<-gl(number of levels, cases in each level, total cases, labels =
c("labell", "label2".))

which creates a factor variable called newFactor; you specify the number of levels or groups
of the factor, how many cases are in each level/group, optionally the total number of cases
(the default is to multiply the number of groups by the number of cases per group), and
you can also use the labels option to list names for each level/group. We could generate the
variable job as follows:

job<-gl(2, 5, labels = c("Lecturer", "Student"))
The end result is a fully-fledged coding variable (or factor):

[1] Lecturer Lecturer Lecturer Lecturer Lecturer Student Student Student
Student Student

With any factor variable you can see the factor levels and their order by using the levels()
function, in which you enter the name of the factor. So, to see the levels of our variable job
we could execute:

levels(job)
which will produce this output:
[1] “Lecturer” “Student”

In other words, we know that the variable job has two levels and they are (in this order)
Lecturer and Student. We can also use this function to set the levels of a variable. For example,
imagine we wanted these levels to be called Medical Lecturer and Medical Student, we
could execute:

levels(job)<-c("Medical Lecturer", "Medical Student™)

This command will rename the levels associated with the variable job (note, the new names
are entered as text with speech marks, and are wrapped up in the ¢() function). You can also
use this function to reorder the levels of a factor — see R’s Souls’ Tip 3.13.

This example should clarify why in experimental research grouping variables are used
for variables that have been measured between participants: because by using a coding
variable it is impossible for a participant to belong to more than one group. This situation
should occur in a between-group design (i.e., a participant should not be tested in both
the experimental and the control group). However, in repeated-measures designs (within
subjects) each participant is tested in every condition and so we would not use this sort of
coding variable (because each participant does take part in every experimental condition)
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Numeric variables are the easiest ones to create and we have already created several of
these already in this chapter. Our next four variables are friends, alcohol, income and neu-
rotic. These are all numeric variables and you can use what you have learnt so far to create
them (I hope!).

SELF-TEST

v" Use what you have learnt about creating variables in
R to create variables called friends, alcohol, income
and neurotic containing the data in Table 3.6.

Hopefully you have tried out the exercise, and if so you should have executed the fol-
lowing commands:

friends<-c(5,2,0,4,1,10,12,15,12,17)
alcohol<-c(10,15,20,5,30,25,20,16,17,18)
income<-c(20000,40000,35000,22000,50000,5000,100,3000,10000,10)
neurotic<-c(10,17,14,13,21,7,13,9,14,13)

SELF-TEST

v" Having created the variables in Table 3.6, construct a
dataframe containing them all called lecturerData.

Having created the individual variables we can bind these together in a dataframe. We
do this by executing this command:

lecturerData<-data.frame(name,birth_date, job,friends,alcohol,income,
neurotic)

If we look at the contents of this dataframe you should hopefully see the same as Table 3.6:

> lecturerData

name birth_date job friends alcohol income neurotic
1 Ben 1977-07-03 Lecturer 5 10 20000 10
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
4 Paul 1970-07-16 Lecturer 4 5 22000 13
5 Graham 1949-10-10 Lecturer 1 30 50000 21
6 Carina 1983-11-05 Student 10 25 5000 7
7 Karina 1987-10-08 Student 12 20 100 13
8 Doug 1989-09-16 Student 15 16 3000 9
9 Mark 1973-05-20 Student 12 17 10000 14
10 Zoe 1984-11-12 Student 17 18 10 13
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KM Missing values ©

Although as researchers we strive to collect complete sets of data, it is often the case that we
have missing data. Missing data can occur for a variety of reasons: in long questionnaires
participants accidentally (or, depending on how paranoid you’re feeling, deliberately just to
annoy you) miss out questions; in experimental procedures mechanical faults can lead to a
datum not being recorded; and in research on delicate topics (e.g., sexual behaviour) partici-
pants may exert their right not to answer a question. However, just because we have missed
out on some data for a participant doesn’t mean that we have to ignore the data we do have
(although it sometimes creates statistical difficulties). Nevertheless, we do need to tell R that
a value is missing for a particular case. The principle behind missing values is quite similar to
that of coding variables in that we use a code to represent the missing data point. In R, the
code we use is NA (in capital letters), which stands for ‘not available’. As such, imagine that
participants 3 and 10 had not completed their neuroticism questionnaire, then we could
have recorded their missing data as follows when we created the variable:

neurotic<-c(10,17,NA,13,21,7,13,9,14,NA)

Note that if you have missing values then you sometimes need to tell functions in R to
ignore them (see R’s Souls’ Tip 3.10).

CERGUIEMR RN Missing values and functions @

Many functions include a command that tells R how to deal with missing values. For example, many functions
include the command na.rm = TRUE, which means remove the NA values before doing the computation. For
example, the function mean() returns the mean of a variable, so that

mean(metallica$childAge)

will give us the mean age of Metallica’s eldest children. However, if we have missing data we can include the
command na.rm = TRUE to tell R to ignore missing values before computing the mean:

mean(metallica$childAge, na.rm = TRUE)

This function is covered in more detail in Chapter 5. For now, just appreciate that individual functions often have
commands for dealing with missing values and that we will try to flag these as we go along.

It is also possible to do some basic data editing (and analysis) using a package called Remdr
(short for R Commander). This package loads a windows style interface for basic data
manipulation and analysis. This tool is very useful for novices or people who are freaked
out by typing commands. It is particularly useful for making minor changes to dataframes.
To install and load Remdr, use the menus (see section 3.4.5) or execute these commands:

install.packages("Rcmdr", dependencies = TRUE)

library(Rcmdr)
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It is important that you remember the capital ‘R’ in ‘Remdr’ (R’s Souls’ Tip 3.3). Note that
when we install it we specify dependencies = TRUE. When a package uses other pack-
ages, these are known as dependencies (because the package depends upon them to work).
Remdr is a windows interface for using lots of different functions, therefore, it relies on
a lot of other packages. If we don’t install all of these packages as well, then much of the
functionality of Remdr will be lost. By setting dependencies = TRUE we install not just
Remdr but also all of the other packages upon which it relies (because it uses a lot, installing
it can take a few minutes).*

74 R Commander o[- )
File Edit Dzta Statistics Graphs Models Disributions Tocls Help
E}L: Data set:| < No active dateset> Edit data set || View data set| Model: ‘ <No active model>
Seript Wirdow
A
< | »
Output Window [ ‘M”
| -
« |
Messages
[?] WARNTNG: The Windnws wverainn nf the R Commander wnrks bhest und=r RGni i
with the single-document incerface (SDI); see ?Commander. ‘E‘
<« | ] »

When you have executed library(Remdr) you will notice that a new window appears
(Figure 3.8). This window has a lot of new menus that you can access to do various things
(such as edit data or run basic analyses). These menus offer a windows-based interface for
running functions within different packages. We think that as you gain experience with R
you will prefer to use commands, but for some commonly used analyses we will show you
how to use R Commander to get you started. The menu structure is basically identical on
Windows and MacOS.

4If you have installed other packages then it’s possible that Remdr has been installed by one of them; nevertheless,
it is worth installing it yourself and including the setting dependencies = TRUE to ensure that all of the packages
upon which Remdr depends are installed also.

FIGURE 3.8
The main

window of R
Commander
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Creating variables and entering data with R
Commander ©

One particularly useful feature of R Commander is that it offers a basic spreadsheet style
interface for entering data (i.e., like Excel). As such, we can enter data in a way that is prob-
ably already familiar to us. To create a new dataframe select Data=New data set..., which
opens a dialog box that enables you to name the dataframe (Figure 3.9). For the lecturer
data let’s stick with the name lecturerData; enter this name into the box labelled Enter
name for data set and then click on [ _|. A spreadsheet style window will open. You can
create variables by clicking at the top of a column, which opens a dialog box into which
you can enter the name of the variable, and whether the variable is numeric or text/string
(labelled character in the dialog box). Each row represents a different entity and, having
named the variables, you can enter the relevant information for each entry — as shown for
the current data in Figure 3.9. To save the data simply close this window. (You cannot cre-
ate a new data set in this way in MacOS; however, you can edit an existing dataframe by
selecting Data=Load data set....)

TS

74 R Commander |
File Edit (Data] Statistics Graphs Models Dist —
R, o BT | | NeDaS [E=2ER
s ‘ e ——
Script Win LR Enter name for data set: lecturerData
——  Merge data sets...
I
’ | OK Cancel H
Dataseg Importdata | | ] [ J [ Hep |
Data in packages 4
Active data set >
Manage variables in active data set »

1 Variable editor (=3 Variable editor (=23

variable name variable name
type ) numeric @ character type @ numeric () character

R Data Editor ==~
File Edit Hel
name birth date|job friends |alcoho income |neurotic
1 |Ben 7/3/1977 I 5 10 20000 10
2 [Martin (5/24/1969 |1 2 A5 40000 17
3 |Andy 6/21/1973 |1 0 20 35000 14
4 | Paul 7/16/1970 (1 4 5 22000 13
5 |Graham [(10/10/1949(1 1 30 30000 21
6 |[Carina (11/5/1983 (2 10 25 5000 7
7 |Karina [10/8/1987 |2 12 20 100 13
8 |Doug 1/23/1989 |2 is5 16 3000 5
9 [Mark 5/20/1873 (2 12 17 10000 14
10 | Zoe 11/12/1984|2 17 18 10 18
s
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Creating coding variables with R Commander @

The variable job represents different groups of people so we need to convert this variable
to a factor or coding variable. We saw how to do this in section 3.5.4.3 using the factor()
function. We can do the same in R Commander by selecting the Data=Manage variables
in active data set=Convert numeric variables to factors... menu. This activates a dialog
box with a list of the variables in your data set on the left (Figure 3.10). Select the variable
that you want to convert (in this case job). If you want to create the coding variable as a
new variable in your dataframe then type a name for this new variable in the space labelled
New variable name or prefix for multiple variables: otherwise leave this space blank (as
I have in the figure) and it will overwrite the existing variable. If you want to type some
labels for the levels of your coding variable (generally I would recommend that you do)
then select suppyieveinsmes @ and click on [ ok ], A new dialog box will open with spaces in
which you can type the labels associated with each level of your coding variables. As you
can see, in Figure 3.10 I have typed in ‘Lecturer’ and ‘Student’ next to the numbers that
represent them in the variable job. When you have added these levels click on and
job will be converted to a factor.

74 R Commander (=&
Fie Ede [Dafa) Statistics Graphs Models Distributions  Tools Help
Rl Datas  New dataset.. set| Modek | <No active modei>
Load data set. et
Script Win Merge data set
viagral postdite mages/Viagra.dat”™, header~IRUVE,

sep=n Data in packages
library  Active data set »
showDa e e O e Recode variables...
EAXW LTI T XTI Compute new vanable,.,

0
- N et o
showm.atviu?umu. placemencem’=2{ o, o ation S o ke ok '
maxwidth=E0, maxheight=30) 2
Standardize variables...

Convert numenc vansbles to factor
Bin numeric variable...
Reorder factor

, strip.white=TRUE)

evels

> viagraDats <- read.table("N:/R w

Delete vanables from data set ..,

sep="\t", na.strings="NA", decy

f.% Level Names for job ’—|@ 74 Convert Numeric Variables to Factors ol @ )

Variables (pick one or more) Factor Levels
Numeric value Level name

1 Lecturer
2 Student

Supply level names @

Use numbers

New variable name or prefix for multiple variables: <same as variables>

D OK ] I Cancel ] ’ Help

OK ] [ Cancel

3.7. Using other software to enter and edit data ®

Although you can enter data directly into R, if you have a large complicated data set then
the chances are that you’ll want to use a different piece of software that has a spreadsheet
style window into which you can enter data. We will assume in this section that you are
going to use Microsoft Excel, because it is widely available and, therefore, it’s more likely
that you have it on your computer than specialist packages such as SPSS and SAS. If you
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want to know how to enter data into SPSS and SAS then please consult my other books
(Field, 2009; Field & Miles, 2010). If you do not have Excel then OpenOffice is an excel-
lent free alternative for both MacOS and Windows (http://www.openoffice.org/).

OLIVER TWISTED

Please, Sir, can |
have some more ... SPSS?

FIGURE 3.11
Laying out wide
format data

in Excel and
exporting to an
R-friendly format

‘Secret Party for Statistics Slaves?’ froths Oliver as he drowns
in a puddle of his own saliva. No, Oliver, it's a statistics package.
‘Bleagehammm’ splutters Oliver as his excitement grows into a rabid
frenzy. If you would like to know how to set up data files in SPSS then
there is an excerpt from my other book on the companion website.

To enter data you will typically use the wide format so you should apply the same rule as
we have already mentioned in this chapter: each row represents data from one entity while
each column represents a variable or levels of a variable. In Figure 3.11 I have entered the
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lecturer data in Excel in this format. Notice that each person is represented by a row in the
spreadsheet, whereas each variable is represented as a column. Notice also that I have entered
the values for job as numbers rather than text. In Excel we could have entered ‘Lecturer’
and ‘Student’ rather than the values of 1 and 2. R will have imported this variable as a string
variable in this case, rather than as a numeric variable. Often R will treat these sorts of string
variables intelligently (i.e., in this case it would realize that this variable is a factor or coding
variable and treat it accordingly), but it can be useful not to assume that R will do what you
think it will and explicitly define variables as factors once the data have been imported.

KWAM Importing data @

Once your data are entered into Excel, OpenOffice, SPSS or whatever, we need a way to
get the data file into a dataframe in R. The usual way to do this is to export the file from
Excel/SPSS etc. in a format that R can import; however, the foreign package can be used to
import directly data files from SPSS (.sav), STATA (.dta), Systat (.sys, .syd), Minitab (.mtp),
and SAS (XPORT files). It is probably the safest (in terms of knowing that what you’re actu-
ally importing is what you think you’re importing), to export from your software of choice
into an R-friendly format.

The two most commonly used R-friendly formats are tab-delimited text (.zx¢ in Excel and
.dat in SPSS) and comma-separated values (.csv). Both are essentially plain text files (see R’s
Souls’ Tip 3.11). It is very easy to export these types of files from Excel and other software
packages. Figure 3.11 shows the process. Once the data are entered in the desired format,
simply use the [fe Save As.. menus to open the Save As... dialog box. Select the location in
which you’d like the file to be saved (a sensible choice is the working directory that you have
set in R). By default, Excel will try to save the file as an Excel file (.xlsx or .xls); however, we
can change the format by clicking on the drop-down list labelled Save as type (Format on
MacOS). The drop-down list contains a variety of file types, but the two that are best for R
are Text (Tab delimited) and CSV (Comma delimited). Select one of these file types, type a
name for your file and click on [ sz | The end result will be either a .zxt file or a.csv file.
The process for exporting data from SPSS (and other packages) is much the same.

If we have saved the data as a CSV file, then we can import these data to a dataframe
using the read.csv function. The general form of this function is:

dataframe.name<-read.csv("filename.extension", header = TRUE)

Let’s imagine we had stored our lecturer data in a CSV file called Lecturer Data.csv (you
can find this file on the companion website). To load these data into a dataframe we could
execute the following command:

lecturerData = read.csv("C:/Users/Andy F/Documents/Data/R Book Examples/Lecturer
Data.csv", header = TRUE)

This command will create a dataframe called lecturerData based on the file called ‘Lecturer
Data.csv’ which is stored in the location ‘C:/Users/Andy F/Documents/Data/R Book
Examples/’.” T urged you in section 3.4.4 to set up a working directory that relates to the
location of your files for the current session. If we executed this command:®

5 For MacOS users the equivalent command would be

lecturerData = read.csv("~/Documents/Data/R Book Examples/Lecturer Data.csv",
header = TRUE)

¢ On a Mac the equivalent command would be

setwd("~/Documents/Data/R Book Examples™)
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CERIEMR T BERAEN CSV and tab-delimited file formats @

Comma-separated values (CSV) and tab-delimited file formats are really common ways to save data. Most soft-
ware that deals with numbers will recognize these formats, and when exporting and importing data it is wise to
chose one of them. The beauty of these formats is that they store the data as plain text, without any additional
nonsense that might confuse a particular piece of software. The formats differ only in which character is used to
separate different values (CSV uses a comma, tab-delimited uses a tab space). If we think back to our Metallica
data, this would be stored in a tab-delimited file as:

Name Age childAge fatherhoodAge
Lars 47 12 35
James 47 12 35
Kirk 48 4 44
Rob 46 6 40

Notice that each piece of data is separated by a tab space. In a CSV file, the data would look like this:

Name, Age, childAge, fatherhoodAge
Lars,47,12,35

James, 47,12, 35

Kirk, 48,4,44

Rob, 46,6,40

The information is exactly the same as the tab-delimited file, except that a comma instead of a tab separates
each value. When a piece of software (R, Excel, SPSS, etc.) reads the file like this into a spreadsheet, it knows
(although sometimes you have to tell it) that when it ‘sees’ a comma or a tab it simply places the next value in a
different column than the previous one.

Setwd("C:/Users/Andy F/Documents/Data/R Book Examples™)
then we could access the file by executing this less cuambersome command:
lecturerData<-read.csv("Lecturer Data.csv", header = TRUE)

The header = TRUE in the command tells R that the data file has variable names in the
first row of the file (if you have saved the file without variable names then you should use
header = FALSE). If you’re really struggling with the concept of file paths, which would be
perfectly understandable, then see R’s Souls’ Tip 3.12.

Let’s look at the data:

> lecturerData

name birth_date job friends alcohol income neurotic
1 Ben 03-Jul-77 1 5 10 20000 10
2 Martin 24-May-69 1 2 15 40000 17
3  Andy 21-Jun-73 1 0 20 35000 14
4 Paul 16-Jul-70 1 4 5 22000 13
5 Graham 10-Oct-49 1 1 30 50000 21
6 Carina 05-Nov-83 2 10 25 5000 7
7 Karina 08-0Oct-87 2 12 20 100 13
8 Doug 23-Jan-89 2 15 16 3000 9
9 Mark 20-May-73 2 12 17 10000 14
10 Zoe 12-Nov-84 2 17 18 10 13

Note that the dates have been imported as strings, and the job variable contains num-
bers. So that R knows that this variable is a factor we would have to convert it using the
factor() function.
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SELF-TEST

v" Using what you have learnt about how to use the
factor() function, see if you can work out how to
convert the job variable to a factor.

Similarly, if you had saved the file as a tab-delimited text file from Excel (Lecturer Data.
txt) or SPSS (Lecturer Data.dat), you could use the read.delim() function to import these
files. This function takes the same form as the read.csv() function, except that you spec-
ify a tab-delimited file. Assuming you had set your working directory correctly, we would
execute:

lecturerData<-read.delim("Lecturer Data.dat", header = TRUE)
lecturerData<-read.delim("Lecturer Data.txt", header = TRUE)

Typically we provide data files for chapters as .dat files, so you will use the read.delim()
function a lot.

CELIEMR I IR P] The file.choose() function @

Some people really struggle with the idea of specifying file locations in R. This confusion isn't a reason to be

ashamed; most of us have spent our lives selecting files through dialog boxes rather than typing horribly long

strings of text. Although if you set your working directory and manage your files | think the process of locating files

becomes manageable, if you really can’t get to grips with that way of working the alternative is to use the choose.

file() function. Executing this function opens a standard dialog box allowing you to navigate to the file you want.
You can incorporate this function into read.csv() and read.delim() as follows:

lecturerData<-read.csv(file.choose(), header = TRUE)
lecturerData<-read.delim(file.choose(), header = TRUE)

The effect that this has is that when you execute the command, a dialog box will appear and you can select the
file that you want to import.

KA Importing SPSS data files directly ©

You can also import directly from SPSS data files (and other popular packages). To give you
some practice, we have provided the data as a .sav file (Lecturer Data.sav). First we need
to install and load the package called foreign either using the menus (see section 3.4.5) or
by executing these commands:

install.packages("foreign")

library(foreign)

The command to read in SPSS data files is read.spss() and it works in a similar way to the
other import functions that we have already seen; however, there are a couple of extra

things that we need to think about. First, let’s just execute the command to import our
SPSS data file:
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lecturerData<-read.spss("Lecturer Data.sav",use.value.labels=TRUE, to.data.
frame=TRUE)

The basic format is the same as before: we have created a dataframe called lecturerData,
and we have done this from the file named Lecturer Data.sav. There are two additional
instructions that we have used, the first is use.value.labels = TRUE. This command tells R
that if a variable is set up as a factor or coding variable in SPSS then it should be imported
as a factor. If you set this value to FALSE, then it is imported as a numeric variable (in
this case you would get a variable containing 1s and 2s). The second command is to.data.
frame=TRUE, which self-evidently tells R to import the file as a dataframe. Without this
command (or if it is set to FALSE), you get lots of horrible junk imported and nobody likes
junk. Let’s have a look at the dataframe:

> lecturerData

name birth_date job friends alcohol income neurotic
1 Ben 12456115200 Lecturer 5 10 20000 10
2 Martin 12200198400 Lecturer 2 15 40000 17
3  Andy 12328848000 Lecturer 0 20 35000 14
4 Paul 12236313600 Lecturer 4 5 22000 13
5 Graham 11581056000 Lecturer 1 30 50000 21
6 Carina 12656217600 Student 10 25 5000 7
7 Karina 12780028800 Student 12 20 100 13
8 Doug 12820896000 Student 15 16 3000 9
9 Mark 12326083200 Student 12 17 10000 14
10 Zoe 12688444800 Student 17 18 10 13

Two things to note: first, unlike when we imported the CSV file, job has been imported
as a factor rather than a numeric variable (this is because we used the use.value.labels =
TRUE command). Importing this variable as a factor saves us having to convert it in a sepa-
rate command as we did for the CSV command. Second, the dates look weird. In fact, they
look very weird. They barely even resemble dates. Unfortunately, the explanation for this
is a little complicated and involves the way in which R stores dates (dates are stored as days
relative to 1 January 1970 — don’t ask me why). What has happened is that R has actually
been clever in noticing that birth_date was set up in SPSS as a date variable. Therefore, it
has converted it into its own time format. To convert it back to a form that we can actually
understand we need to execute this command:

lecturerData$birth_date<-as.Date(as.P0OSIXct(lecturerData$birth_date,
origin="1582-10-14"))

This takes the variable birth_date from the lecturerData dataframe (lecturerData$birth
date) and re-creates it as a date variable. Hours poking around the Internet to work out
the underlying workings of this command have led me to the conclusion that I should just
accept that it works and not question the magic. Anyway, if we execute this command and
have another look at the dataframe we find that the dates now appear as sensible dates:

> lecturerData

name birth_date job friends alcohol income neurotic
1 Ben 1977-07-03 Lecturer 5 10 20000 10
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
4 Paul 1970-07-16 Lecturer 4 5 22000 13
5 Graham 1949-10-10 Lecturer 1 30 50000 21
6 Carina 1983-11-05 Student 10 25 5000 7
7 Karina 1987-10-08 Student 12 20 100 13
8 Doug 1989-01-23 Student 15 16 3000 9
9 Mark 1973-05-20 Student 12 17 10000 14
10 Zoe 1984-11-12 Student 17 18 10 13
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Importing data with R Commander ©

You can access the read.delim(), read.csv() and read.spss() commands through the R
Commander interface too. Select Data=Import data to activate a submenu that enables
you open a text file, SPSS, Minitab, STATA or Excel file (Figure 3.12). If you select a text
file then a dialog box is opened into which you can place a name for the dataframe (in the
box labelled Enter name for data set:), select whether variable names are included in the
file, and what characters you have used to indicate missing values. By default, it assumes
you want to open a file on your computer, and that a white space separates data values. For
CSV and tab-delimited files you need to change this default to Commas or Tabs respec-
tively (you can also specify a non-standard text character). Finally, by default it is assumed
that a full stop denotes a decimal point, but in some locations a comma is used: if you live
in one of these locations you should again choose the default. Having set these options,
click on [[o ] to open a standard ‘open file’ dialog box, choose the file you want to open
and then click on [ e,

Opening an SPSS file is much the same except that there are fewer options (Figure 3.12).
The dialog box for importing an SPSS file again asks for a name for the dataframe, but then
asks only whether variables that you have set up as coding variables should be converted
to factors (see section 3.5.4.3). The default is to say yes (which is the same as specifying
use.value.labels = TRUE, see section 3.7.2). Again, once you have set these options, click
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on [ ok | to open a standard dialog box that enables you to navigate to the file you want to
open, select it, and then click on [ o= |,

Things that can go wrong @

You can come across problems when importing data into R. One common problem is if you
have used spaces in your variable names. Programs like SPSS don’t allow you to do this, but
in Excel there are no such restrictions. One way to save yourself a lot of potential misery
is just never to use variable names with spaces. Notice, for example, that for the variable
birth_date I used an underscore (or ‘hard space’) to denote the space between the words;
other people prefer to use a period (i.e., birth.date). Whatever you choose, avoiding spaces
can prevent many import problems.

Another common problem is if you forget to replace missing values with ‘NA’ in the data
file (see section 3.5.5). If you get an error when trying to import, double-check that you
have put ‘NA’ and not left missing values as blank.

Finally, R imports variables with text in them intelligently: if different rows have the
same text strings in them, R assumes that the variable is a factor and creates a factor
variable with levels corresponding to the text strings. It orders these levels alphabetically.
However, you might want the factor levels in a different order, in which case you need to

reorder them — see R’s Souls’ Tip 3.13.

RGN IERE] Changing the order of groups in a factor variable @

Imagine we imported a variable, job, that contained information about which of three jobs a person had in a
hospital: “Porter”, “Nurse”, “Surgeon”. R will order the levels alphabetically, so the resulting factor levels will be:

1. Nurse
2. Porter
3. Surgeon

However, you might want them to be ordered differently. For example, perhaps you consider a porter to be a
baseline against which you want to compare nurses and surgeons. It might be useful to have porter as the first
level rather than the second.

We can reorder the factor levels by executing:

variableName<-factor(variableName, levels = levels(variableName)[c(2, 1, 3)])
in which variableName is the name of the variable. For our job variable, this command would, therefore, be:
job<-factor(job, levels = levels(job)[c(2, 1, 3)1)

This command uses the factor() function to reorder the levels of the job variable. It re-creates the job variable
based on itself, but then uses the levels() function to reorder the groups. We put the order of the levels that we'd like in
the ¢() function, so in this case we have asked for the levels to be ordered 2, 1, 3, which means that the current sec-
ond group (porter) will become the first group, the current first group (nurse) will become the second group and the
current third group (surgeon) stays as the third group. Having executed this command, our groups will be ordered:

1. Porter
2. Nurse
3. Surgeon
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3.8. Saving data ®

Having spent hours typing in data, you might want to save it. As with importing data,
you can export data from R in a variety of formats. Again, for the sake of flexibility we
recommend exporting to tab-delimited text or CSV (see R’s Souls’ Tip 3.11) because these
formats can be imported easily into a variety of different software packages (Excel, SPSS,
SAS, STATA, etc.). To save data as a tab-delimited file, we use the write.table() command
and for a CSV we can use write.csv().

The write.table() command takes the general form:

write.table(dataframe, "Filename.txt", sep="\t", row.names = FALSE)

We replace dataframe with the name of the dataframe that we would like to save and
“Filename.txt” with the name of the file.” The command sep="" sets the character to be
used to separate data values: whatever you place between the “” will be used to separate
data values. As such, if we want to create a CSV file we could write sep = “,” (which tells
R to separate values with a comma), but to create a tab-delimited text file we would write
sep = “\t” (where we have written \t between quotes, which represents the tab key), and
we could also create a space-delimited text file by using sep = “ ” (note that there is a space
between the quotes). Finally, row.names = FALSE just prevents R from exporting a column
of row numbers (the reason for preventing this is because R does not name this column so
it throws the variable names out of sync). Earlier on we created a dataframe called metal-
lica. To export this dataframe to a tab-delimited text file called Metallica Data.txt, we
would execute this command:

write.table(metallica, "Metallica Data.txt", sep="\t", row.names = FALSE)
The write.csv() command takes the general form:
write.csv(dataframe, "Filename.csv")

As you can see, it is much the same as the write.table() function. In fact, it is the write.
table() function but with sep = “,” as the default.® So, to save the metallica dataframe as a
CSV file we can execute:

write.csv(metallica, "Metallica Data.csv")

3.9. Manipulating data ®

Selecting parts of a dataframe ®

Sometimes (especially with large dataframes) you might want to select only a small portion
of your data. This could mean choosing particular variables, or selecting particular cases.
One way to achieve this goal is to create a new dataframe that contains only the variables
or cases that you want. To select cases, we can execute the general command:

newDataframe <- oldDataframe[rows, columns]

7 Remember that if you have not set a working directory during your session then this filename will need to in-
clude the full location information. For example, “C:/Users/Andy F/Documents/Data/R Book Examples/Filename.
txt” or “~/Documents/Data/R Book Examples/Filename.txt” in MacOS. Hopefully, it is becoming ever clearer
why setting the working directory is a good thing to do.

8 If you live in certain parts of western Europe, you might want to use write.csv2() instead which outputs the file
in the format conventional for that part of the world: it uses ‘;’ to separate values, and *,” instead of “.” to represent
the decimal point.
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This command creates a new dataframe (called newDataframe) that contains the specified
rows and columns from the old dataframe (called oldDataframe). Let’s return to our lec-
turer data (in the dataframe that we created earlier called lecturerData); imagine that we
wanted to look only at the variables that reflect some aspect of their personality (for exam-
ple, alcohol intake, number of friends, and neuroticism). We can create a new dataframe
(lecturerPersonality) that contains only these three variables by executing this command:

lecturerPersonality <- lecturerDatal[, c("friends", "alcohol"”, "neurotic")]

Note first that we have not specified rows (there is nothing before the comma); this means
that all rows will be selected. Note also that we have specified columns as a list of variables
with each variable placed in quotes (be careful to spell them exactly as they are in the
original dataframe); because we want several variables, we put them in a list using the ¢()
function. If you look at the contents of the new dataframe you’ll see that it now contains
only the three variables that we specified:

> lecturerPersonality

friends alcohol neurotic
1 5 10 10
2 2 15 17
3 0 20 14
4 4 5 13
5 1 30 21
6 10 25 7
7 12 20 13
8 15 16 9
9 12 17 14
10 17 18 13

Similarly, we can select specific cases of data by specifying an instruction for rows in
the general function. This is done using a logical argument based on one of the operators
listed in Table 3.5. For example, let’s imagine that we wanted to keep all of the variables,
but look only at the lecturers’ data. We could do this by creating a new dataframe (lecturer
Only) by executing this command:

lecturerOnly <- lecturerData[job=="Lecturer",]

Note that we have not specified columns (there is nothing after the comma); this means
that all variables will be selected. However, we have specified rows using the condition job
== “Lecturer”. Remember that the ‘=="means ‘equal to’, so we have basically asked R
to select any rows for which the variable job is exactly equal to the word ‘Lecturer’ (spelt
exactly as we have). The new dataframe contains only the lecturers’ data:

> lecturerOnly

Name DoB job friends alcohol income neurotic
1 Ben 1977-07-03 Lecturer 5 10 20000 10
2 Martin 1969-05-24 Lecturer 2 15 40000 17
3 Andy 1973-06-21 Lecturer 0 20 35000 14
4 Paul 1970-07-16 Lecturer 4 5 22000 13
5 Graham 1949-10-10 Lecturer 1 30 50000 21

We can be really cunning and specify both rows and columns. Imagine that we wanted
to select the personality variables but only for people who drink more than 10 units of
alcohol. We could do this by executing:

alcoholPersonality <- lecturerDatal[alcohol > 10, c("friends", "alcohol",
"neurotic")]
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Note that we have specified rows using the condition alcohol > 10, which means ‘select
any cases for which the value of the variable alcohol is greater than 10. Also, we have speci-
fied columns as in our original example, c(“friends”, “alcohol”, “neurotic”), which means
we will select only the three listed variables. You’ll see that the new dataframe contains the
same data as the lecturerPersonality dataframe except that cases 1 and 4 have been dropped

because their scores on alcohol were not greater than 10:
> alcoholPersonality

friends alcohol neurotic

2 2 15 17
3 0 20 14
5 1 30 21
6 10 25 7
7 12 20 13
8 15 16 9
9 12 17 14
10 17 18 13

Selecting data with the subset() function @

Another way to select parts of your dataframe is to use the subset() function. This function
takes the general form:

newDataframe<-subset(oldDataframe, cases to retain, select = c(list of
variables))

Therefore, you create a new dataframe (newDataframe) from an exisiting dataframe (old-
Dataframe). As in the previous section, you have to specify a condition that determines
which cases are retained. This is usually some kind of logical argument based on one or
more of the operators listed in Table 3.5; for example in our lecturerData if we wanted to
retain cases who drank a lot we could set a condition of alcohol > 10, if we wanted neu-
rotic alcoholics we could set a condition of alcohol > 10 & neurotic > 15. The select com-
mand is optional, but can be used to select specific variables from the original dataframe.

Let’s re-create a couple of the examples from the previous section but using the subset()
command. By comparing these commands to the ones in the previous section you can get
an idea of the similarity between the methods. First, if we want to select only the lecturers’
data we could do this by executing:

lecturerOnly <- subset(lecturerData, job=="Lecturer™)

Second, if we want to select the personality variables but only for people who drink more
than 10 units of alcohol we could execute this command:

alcoholPersonality <- subset(lecturerData, alcohol > 10, select = c("friends",
"alcohol", "neurotic"))

Note that we have specified rows using the condition alcobol > 10, which means ‘select
any cases for which the value of the variable alcohol is greater than 10°. Also, we have
specified that we want only the variables friends, alcohol, and neurotic by listing them as
part of the select command. The resulting lecturerPersonality dataframe will be the same as
the one in the previous section.

As a final point, it is worth noting that some functions have a subset() command within
them that allows you to select particular cases of data in much the same way as we have
done here (i.e., using logical arguments).
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SELF-TEST

v' Using the lecturerData dataframe, create new
dataframes containing (1) the name, income and job
of anyone earning 10,000 or more; (2) the name, job,
income and number of friends of anyone drinking
12 units per week or less; and (3) all of the variables
for those who drink 20 units or more or have a
neuroticism score greater than 14.

Dataframes and matrices @

So far in this chapter we have looked at storing data within dataframes. Dataframes are a
useful way to store data because they can contain data of different types (i.e., both numeric
and string variables). Sometimes, however, functions in R do not work on dataframes —
they are designed instead to work on a matrix. Frankly, this is a nuisance. Luckily for us we
can convert a dataframe to a matrix using the as.matrix() function. This function takes the
general form:

newMatrix <- as.matrix(dataframe)

in which newMatrix is the matrix that you create, and dataframe is the dataframe from
which you create it.

Despite what Hollywood would have you believe, a matrix does not enable you to
jump acrobatically through the air, Ninja style, as time seemingly slows so that you can
gracefully contort to avoid high-velocity objects. I have worked with matrices many
times, and I have never (to my knowledge) stopped time, and would certainly end up in
a pool of my own innards if I ever tried to dodge a bullet. The sad reality is that a matrix
is just a grid of numbers. In fact, it’s a lot like a dataframe. The main difference between
a dataframe and a matrix is that a matrix can contain only numeric variables (it cannot
contain string variables or dates). As such, we can convert only the numeric bits of a
dataframe to a matrix. If you try to convert any string variables or dates, your ears will
become turnips. Probably.

If we want to create a matrix we have to first select only numeric variables. We did this
in the previous section when we created the alcobolPersonality dataframe. Sticking with
this dataframe then, we could convert it to a matrix (which I’ve called alcoholPersonality-
Matrix) by executing this command:

alcoholPersonalityMatrix <- as.matrix(alcoholPersonality)

This command creates a matrix called alcoholPersonalityMatrix from the alcoholPersonal-
ity dataframe. Remember from the previous section that alcoholPersonality was originally
made up of parts of the lecturerData dataframe; it would be equally valid to create the
matrix directly from this dataframe but selecting the bits that we want in the matrix just as
we did when creating alcoholPersonality:

alcoholPersonalityMatrix <- as.matrix(lecturerData[alcohol > 10,
c("friends", "alcohol", "neurotic")])

Notice that the commands in the brackets are identical to those we used to create alcohol-
Personality in the previous section.
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Reshaping data ®

Once you have typed your data into R, Sod’s law says you’ll discover that it’s in the wrong
format. Throughout this chapter we have taught you to use the wide format of data entry;
however, there is another format known as the long or molten format. Figure 3.13 shows
the difference between wide and long/molten format data. As we have seen, in wide format
each person’s data is contained in a single row of the data. Scores on different variables are
placed in different columns. In Figure 3.13, the first participant has a score of 32 on the first
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FIGURE 3.13
‘Wide’ format
data places
each person’s
scores on
several variables
in different
columns,
whereas ‘long
format’ or
‘molten’ data
places scores for
all variables in a
single column



FIGURE 3.14
The life
satisfaction data
in ‘wide’ format’
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variable, a score of 12 in the second variable and a score of 25 on the third. In long/molten
format, scores on different variables are placed in a single column. It’s as though the columns
representing the different variables have been ‘stacked’ on top of each other to make a single
column. Notice in the figure that the same scores are present but they are now in a single
column. So that we know to what variable a score belongs a new variable has been added
(called an index variable) that indicates whether the score was from the first, second or third
variable. If we look at our first participant again, we can see that his three scores of 32, 12
and 25 are still present, but they are in the same column now; the index variable tells us to
which variable the score relates. These formats are quite different, but fortunately there are
functions that convert between the two. This final section looks at these functions.

Let’s look at an example of people who had their life satisfaction measured at four points
in time (if you want to know more about this example, see section 19.7.2). The data are in
the file Honeymoon Period.dat. Let’s first create a dataframe called satisfactionData based
on this file by executing the following command:

satisfactionData = read.delim("Honeymoon Period.dat", header = TRUE)

Figure 3.14 shows the contents of this dataframe. The data have been inputted in wide
format: each row represents a person. Notice also that four different columns represent
the repeated-measures variable of time. However, there might be a situation (such as in
Chapter 19), where we need the variable Time to be represented by a single column (i.e.,
in long format). This format is shown in Figure 3.15. To put the hypothetical example in
Figure 3.13 into a real context, let’s again compare the two data structures.

80O R Cata Editor =
s -
Person sa.['Sch“m_BﬂSe Slﬂsmc“oﬂ_ﬁ_Mﬂn‘nS Sa:lsfﬂc“on_lz_M')n[rS Sﬂ(ls‘aclbn_ls_moﬂ[ns Gerder
i 6 6 5 2 o
2 7 7 8 < 1
3 4 6 2 e I
4 6 ] 4 1 0
5 6 i 6 6 0
6 5 10 4 2 1
7 6 6 4 2 0
8 2 5 4 NA 0
9 10 9 5 6 0
10 10 10 10 9 0
11 8 8 10 9 ]
12 6 10 9 9 0
13 7 8 9 6 0 §
14 6 7 Q9 L1 0
18 Q9 10 R 6 1
16 10 10 8 6 1
17 i § 2 1 NA i
18 5 6 7 3 0
19 6 10 10 6 1
20 5 6 NA NA 0
21 3 7 5 b 0
22 3 4 & 2 5
23 r4 6 4 2 0 A
24 3 4 2 NA 0 Y
28 a 1n 2 NA 1

In the wide format (Figure 3.14), each person is represented by a single row of data.
Their life satisfaction is represented at four points in time by four columns. In contrast,
the long format (Figure 3.15) replaces the four columns representing different time points
with two new variables:
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enn R Data Editor = FIGURE 3.15
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g iy SR ML satisfaction data
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® An outcome variable: This variable contains the scores for each person at each time
point. In this case it contains all of the values for life satisfaction that were previously
contained in four columns. It is the column labelled ‘value’ in Figure 3.15.

® An index variable: A variable that tells you from which column the data originate. It
is the column labelled ‘variable’ in Figure 3.15. Note that it takes on four values that
represent baseline, 6 months, 12 months and 18 months. As such, this variable con-
tains information about the time point to which each life satisfaction score belongs.

Each person’s data, therefore, is now represented by four rows (one for each time point)
instead of one. Variables such as Gender that are invariant over the time points have the
same value within each person at each time point; however, our outcome variable (life sat-
isfaction) does vary over the four time points (the four rows for each person).

% If you look at your own data then you will probably see something a bit different because your data will be
ordered by variable. I wanted to show how each person had 4 rows of data so I created a new dataframe (restruc-
turedData.sorted) that sorted the data by Person rather than Time; I did this using: restructuredData.sorted <-re
structuredData[order(Person),].
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The satisfaction
data after
running

the stack()
command.
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To change between wide and long data formats we can use the melt() and cast() com-
mands from the reshape package, or for simple data sets we can use stack() and unstack().
Let’s look at stack() and unstack() first. These functions pretty much do what they say on
the tin: one of them stacks columns and the other unstacks them. We can use the stack
function in the following general form:

newDataFrame<-stack(oldDataFrame, select = c(variable list))

In short, we create a new dataframe based on an existing one. The select = ¢() is optional,
but is a way to select a subset of variables that you want to stack. So, for the current data,
we want to stack only the life satisfaction scores (we do not want to stack Gender as well).
Therefore, we could execute:

satisfactionStacked<-stack(satisfactionData, select = c("Satisfaction_
Base", "Satisfaction_6_Months", "Satisfaction_12_Months", "Satisfaction_
18_Months™))

This command will create a dataframe called satisfactionStacked, which is the variables
Satisfaction_Base, Satisfaction_6_Months, Satisfaction_12_Months, and Satisfaction_18_
Months from the dataframe satisfactionData stacked up on top of each other. You can see
the result in Figure 3.16 or by executing:

satisfactionStacked

Notice in Figure 3.16 that the scores for life satisfaction are now stored in a single column
(called values), and an index variable (called ind) has been created that tells us from which
column the data originate. If we want to undo our handywork, we can use the unstack()
function in much the same way:

satisfactionUnstacked<-unstack(satisfactionStacked)

Executing this command creates a new dataframe called satisfactionUnstacked that is based
on unstacking the satisfactionStacked dataframe. In this case, R could make an intelligent
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guess at how to unstack the data because we’d just used the stack() function to create it;
however, sometimes you will need to tell R how to do the unstacking. In this case, the com-
mand takes the following general form:

newDataFrame<-unstack(oldDataFrame, scores ~ columns)

in which scores is the name of the variable containing your scores (for
our current dataframe this is values) and columns is the name of the
variable that indicates the variable to which the score belongs (ind in
the current dataframe). Therefore, to make sure it’s going to unstack in

R has
restructured
my brain ...

¥

the way we want it to, we could fully specify the function as: @\' -
.

satisfactionUnstacked<-unstack(satisfactionStacked, values >

~ ind) ZC N —

Note that values~ind tells R that within the satisfactionStacked —@

dataframe, values contains the scores to be unstacked, and ind indicates
the columns into which these scores are unstacked.

The stack() and unstack() functions are fine for simple operations, but to gain more con-
trol over the data restructuring we should use the reshape package. To install this package
execute:

install.packages("reshape™)
library(reshape)

This package contains two functions: melt() for ‘melting’ wide data into the long format,
and cast() for ‘casting’ so-called molten data (i.e., long format) into a new form (in our cur-
rent context we’ll cast it into a wide format, but you can do other things too).

To restructure the satisfactionData dataframe we create a new dataframe (which I have
unimaginatively called restructuredData). This dataframe is based on the existing data (sai-
isfactionData), but we use melt() to turn it into ‘molten’ data. This function takes the
general form:

newDataFrame<-melt(oldDataFrame, id = c(constant variables), measured =
c(variables that change across columns))

We will have a look at each option in turn:

e id: This option specifies any variables in the dataframe that do not vary over time.
For these data we have two variables that don’t vary over time, the first is the person’s
identifier (Person), and the second is their gender (Gender). We can specify these
variables as id = c¢(“Person”, “Gender”).

® measured: This option specifies the variables that do vary over time or are
repeated measures (i.e., scores within the same entity). In other words, it speci-
fies the names of variables currently in different columns that you would like to
be restructured so that they are in different rows. We have four columns that we
want to restructure (Satisfaction_Base, Satisfaction_6_Months, Satisfaction_12_
Months, Satisfaction_18_Months). These can be specified as: measured= ¢
(“Satisfaction_Base”, “Satisfaction_6_Months”, “Satisfaction_12_Months”, “Satisfaction_
18 Months”).

If we piece all of these options together, we get the following command:

restructuredData<-melt(satisfactionData, id = c("Person", "Gender"), mea-
sured = c("Satisfaction_Base", "Satisfaction_6_Months", "Satisfaction_12_
Months", "Satisfaction_18_Months™"))
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If you execute this command, you should find that your data has been restructured to look
like Figure 3.15.

To get data from a molten state into the wide format we use the cast() function, which
takes the general form:

newData<-cast(moltenData, variables coded within a single column ~
variables coded across many columns, value = "outcome variable™)

This can be quite confusing. Essentially you write a formula that specifies on the left any
variables that do not vary within an entity. These are the variables that we specified in the id
option when we made the data molten. In other words, they are things that do not change
(such as name, gender) and that you would enter as a coding variable in the wide format. On
the right-hand side of the formula you specify any variable that represents something that
changes within the entities in your data set. These are the variables that we specified in the
measured option when we made the data molten. So these could be measures of the same vari-
able taken at different time points (such as in a repeated-measures or longitudinal design). In
other words, this is the variable that you would like to be split across multiple columns in the
wide format. The final option, value, enables you to specify a variable in the molten data that
contains the actual scores. In our current example we have only one outcome variable so we
don’t need to include this option (R will work out which column contains the scores), but it
is useful to know about if you have more complicated data sets that you want to restructure.

If we look at the data that we have just melted (restructuredData), we have four variables
(Figure 3.15):

® DPerson: This variable tells us to which person the data belong. Therefore, this variable
does not change within an entity (it identifies them).

® Gender: This variable tells us the gender of a person. This variable does not change
within an entity (for a given person its value does not change).

® variable: This variable identifies different time points at which life satisfaction was
measured. As such it does vary within each person (note that each person has four
different time points within the column labelled ‘variable’).

® value: This variable contains the life satisfaction scores.

Given that we put variables that don’t vary on the left of the formula and those that do on the
right, we need to put Gender and Person on the left, and variable on the right; our formula
will, therefore, be ‘Person + Gender ~ variable’. The variable called value contains the scores
that we want to restructure, so we can specify this by including the option value = “value”
(although note that because we have only one outcome variable we actually don’t need this
option, ’'m including it just so you understand what it does). Our final command will be:

wideData<-cast(restructuredData, Person + Gender ~ variable, value = "value")

Executing this command creates a new dataframe (wideData) that should, hopefully, look
a bit like Figure 3.14.

-

OLIVER TWISTED ‘Why don't you teach us about reshape()?" taunts Oliver. ‘Is
it because your brain is the size of a grape? No, Oliver, it's

Please, Sir, can | because | think cast() and melt() are simpler. ‘Grape brain, grape
have some more ... data brain, grape brain...” sings Oliver as | reach for my earplugs.
restructuring? It is true that there is a reshape() function that can be used to

restructure data; there is a tutorial on the companion website.



ey L L
"T’,L/\,«f‘%—: A, .

CHAPTER 3 THE R ENVIRONMENT

e

What have | discovered about statistics? @

This chapter has provided a basic introduction to the R environment. We’ve seen that R is
free software that you can download from the Internet. People with big brains contribute
packages that enable you to carry out different tasks in R. They upload these packages to
a mystical entity known as the CRAN, and you download them from there into your com-
puter. Once you have installed and loaded a package you can use the functions within it.

We also saw that R operates through written commands. When conducting tasks in
R, you write commands and then execute them (either in the console window, or using
a script file). It was noteworthy that we learned that we cannot simply write “R, can
you analyse my data for me please” but actually have to use specific functions and com-
mands. Along the way, we discovered that R will do its best to place obstacles in our
way: it will pedantically fail to recognize functions and variables if they are not written
exactly as they should be, it will spew out vitriolic error messages if we miss punctuation
marks, and it will act aloof and uninterested if we specify incorrectly even the smallest
detail. It believes this behaviour to be character building.

You also created your first data set by specifying some variables and inputting some data.
In doing so you discovered that we can code groups of people using numbers (coding vari-
ables) and discovered that rows in the data represent different entities (or cases of data) and
columns represent different variables. Unless of course you use the long format, in which
case a completely different set of rules apply. That’s OK, though, because we learnt how to
transform data from wide to long format. The joy that brought to us can barely be estimated.

We also discovered that I was scared of my new school. However, with the help of
Jonathan Land my confidence grew. With this new confidence I began to feel comfort-
able not just at school but in the world at large. It was time to explore.

R packages used in this chapter

foreign | Rcmdr

R functions used in this chapter

as.Date() names()
as.matrix() print()

c() read.csv()
cast() read.delim()
choose file() read.spss()
data.frame() recode()
factor() rep()
getwd() reshape()
gl() setwd()
help() stack()
install.packages|() subset()
levels() unstack()
library() write.csv()
mean() write.table()
melt()
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Console window Numeric variable
CRAN Package
Dataframe Object

Date variable Quartz window
Editor window script

Factor String variable
Function Wide format data
Graphics window Working directory
Long format data Workspace
Matrix

Smart Alex’s tasks

® Task 1: Smart Alex’s first task for this chapter is to save the data that you’ve entered
in this chapter. Save it somewhere on the hard drive of your computer (or a USB
stick if you’re not working on your own computer). Give it a sensible title and save
it somewhere easy to find (perhaps create a folder called ‘My Data Files’ where you
can save all of your files when working through this book).

® Task 2: Your second task is to enter the data below. These data show the score (out
of 20) for 20 different students, some of whom are male and some female, and some
of whom were taught using positive reinforcement (being nice) and others who were
taught using punishment (electric shock). Just to make it hard, the data should not be
entered in the same way that they are laid out below:

Male Female
Electric Shock Being Nice Electric Shock Being Nice
15 10 6 12
14 9 7 10
20 8 5 7
18 8 4 8
13 7 8 13

® Task 3: Research has looked at emotional reactions to infidelity and found that men
get homicidal and suicidal and women feel undesirable and insecure (Shackelford,
LeBlanc, & Drass, 2000). Let’s imagine we did some similar research: we took some
men and women and got their partners to tell them they had slept with someone else.
We then took each person to two shooting galleries and each time gave them a gun
and 100 bullets. In one gallery was a human-shaped target with a picture of their own
face on it, and in the other was a target with their partner’s face on it. They were left
alone with each target for 5§ minutes and the number of bullets used was measured.
The data are below; enter them into R and save them as Infidelity.csv (clue: they are
not entered in the format in the table!).
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Male Female
Partner’s Face Own Face Partner’s Face Own Face
69 33 70 97
76 26 74 80
70 10 64 88
76 51 43 100
72 34 51 100
65 28 93 58
82 27 48 95
71 9 51 83
71 ge 74 97
75 11 73 89
52 14 41 69
34 46 84 82

Answers can be found on the companion website.

Further reading

There are many good introductory R books on the market that go through similar material to this
chapter. Here a few:

Crawley, M. (2007). The R book. Chichester: Wiley. (A really good and thorough book. You could
also try his Statistics: An Introduction Using R, published by Wiley in 2003.)

Venables, W. N., & Smith, D. M., and the R Development Core Team (2002). An introduction to R.
Bristol: Network Theory.

Zuur, A. F., Teno, E. N., & Meesters, E. H. W. G. (2009) A beginner’s guide to R. Dordrecht:
Springer-Verlag.

There are also many good web resources:

e The main project website: http://www.r-project.org/

e Quick-R, a particular favourite of mine, is an excellent introductory website: http://www.stat
methods.net/index.htm

e John Fox’s R Commander website: http://socserv.mcmaster.ca/jfox/Misc/Remdr/
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FIGURE 4.1
Explorer Field
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ride it recklessly
around a caravan
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Exploring data with graphs

4.1. What will this chapter tell me? @

As T got a bit older T used to love exploring. At school they would teach you about maps
and how important it was to know where you were going and what you were doing. I
used to have a more relaxed view of exploration and there is a little bit of a theme of me
wandering off to whatever looked most exciting at the time. I got lost at a holiday camp
once when I was about 3 or 4. I remember nothing about this but apparently my parents
were frantically running around trying to find me while I was happily entertaining myself
(probably by throwing myself head first out of a tree or something). My older brother, who
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was supposed to be watching me, got a bit of flak for that but he was probably working out
equations to bend time and space at the time. He did that a lot when he was 7. The careless
explorer in me hasn’t really gone away: in new cities I tend to just wander off and hope for
the best, and usually get lost and fortunately usually don’t die (although I tested my luck
once by wandering through part of New Orleans where apparently tourists get mugged a
lot — it seemed fine to me). When exploring data you can’t afford not to have a map; to
explore data in the way that the 6-year-old me used to explore the world is to spin around
8000 times while drunk and then run along the edge of a cliff. Wright (2003) quotes
Rosenthal who said that researchers should ‘make friends with their data’. This wasn’t
meant to imply that people who use statistics may as well befriend their data because the
data are the only friend they’ll have; instead Rosenthal meant that researchers often rush
their analysis. Wright makes the analogy of a fine wine: you should savour the bouquet and
delicate flavours to truly enjoy the experience. That’s perhaps overstating the joys of data
analysis, but rushing your analysis is, I suppose, a bit like gulping down a bottle of wine:
the outcome is messy and incoherent! To negotiate your way around your data you need a
map. Maps of data are called graphs, and it is into this tranquil and tropical ocean that we
now dive (with a compass and ample supply of oxygen, obviously).

4.2. The art of presenting data ®

‘AW Why do we need graphs @

Graphs are a really useful way to look at your data before you get to
the nitty-gritty of actually analysing them. You might wonder why you
should bother drawing graphs — after all, you are probably drooling
like a rabid dog to get into the statistics and to discover the answer
to your really interesting research question. Graphs are just a waste
of your precious time, right? Data analysis is a bit like Internet dating
(actually it’s not, but bear with me): you can scan through the vital
statistics and find a perfect match (good 1Q, tall, physically fit, likes
arty French films, etc.) and you’ll think you have found the perfect
answer to your question. However, if you haven’t looked at a picture,
then you don’t really know how to interpret this information — your
perfect match might turn out to be Rimibald the Poisonous, King of the
Colorado River Toads, who has genetically combined himself with a
human to further his plan to start up a lucrative rodent farm (they like
to eat small rodents).! Data analysis is much the same: inspect your data with a picture, see
how it looks and only then think about interpreting the more vital statistics.

Why should |
bother with graphs?

M What makes a good graph? ©®

Before we get down to the nitty-gritty of how to draw graphs in R, I want to begin by
talking about some general issues when presenting data. R (and other packages) make
it very easy to produce very snazzy-looking graphs, and you may find yourself losing

'On the plus side, he would have a long sticky tongue and if you smoke his venom (which, incidentally, can kill
a dog) you’ll hallucinate (if you’re lucky, you’d hallucinate that he wasn’t a Colorado river toad-human hybrid).
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FIGURE 4.2

A cringingly bad
example of a
graph from the
first edition of the
SPSS version of
this book
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consciousness at the excitement of colouring your graph bright pink (really, it’s amaz-
ing how excited my undergraduate psychology students get at the prospect of bright pink
graphs — personally I’'m not a fan of pink). Much as pink graphs might send a twinge of
delight down your spine, [ want to urge you to remember why you’re doing the graph —
it’s not to make yourself (or others) purr with delight at the pinkness of your graph, it’s to
present information (dull, perhaps, but true).

Tufte (2001) wrote an excellent book about how data should be presented. He points out
that graphs should, among other things:

® Show the data.

® Induce the reader to think about the data being presented (rather than some other
aspect of the graph, like how pink it is).

Avoid distorting the data.

Present many numbers with minimum ink.

°
°

® Make large data sets (assuming you have one) coherent.
® Encourage the reader to compare different pieces of data.
°

Reveal data.

However, graphs often don’t do these things (see Wainer, 1984, for some examples).
Let’s look at an example of a bad graph. When searching around for the worst example
of a graph that I have ever seen, it turned out that I didn’t need to look any further than
myself — it’s in the first edition of the SPSS version of this book (Field, 2000). Overexcited
by SPSS’s ability to put all sorts of useless crap on graphs (like 3-D effects, fill effects and
so on — Tufte calls these chartjunk), I literally went into some weird orgasmic state and
produced an absolute abomination (I'm surprised Tufte didn’t kill himself just so he could
turn in his grave at the sight of it). The only consolation was that because the book was
published in black and white, it’s not pink! The graph is reproduced in Figure 4.2 (you

Error Bars show 95.0 % Cl of Mean

Bars show Means
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should compare this to the more sober version in this edition, Figure 16.4). What’s wrong
with this graph?

% The bars have a 3-D effect: Never use 3-D plots for a graph plotting two variables: it
obscures the data.? In particular it makes it hard to see the values of the bars because
of the 3-D effect. This graph is a great example because the 3-D effect makes the
error bars almost impossible to read.

% Patterns: The bars also have patterns, which, although very pretty, merely distract the
eye from what matters (namely the data). These are completely unnecessary.

% Cylindrical bars: What’s that all about, eh? Again, they muddy the data and distract
the eye from what is important.

% Badly labelled y-axis: ‘number’ of what? Delusions? Fish? Cabbage-eating sea lizards
from the eighth dimension? Idiots who don’t know how to draw graphs?

Now take a look at the alternative version of this graph (Figure 4.3). Can you see what
improvements have been made?

v" A 2-D plot: The completely unnecessary third dimension is gone, making it much
easier to compare the values across therapies and thoughts/behaviours.

v The y-axis has a more informative label: We now know that it was the number of
obsessive thoughts or actions per day that was being measured.

v" Distractions: There are fewer distractions like patterns, cylindrical bars and the like!

v" Minimum ink: I’ve got rid of superfluous ink by getting rid of the axis lines and by
using lines on the bars rather than grid lines to indicate values on the y-axis. Tufte
would be pleased.’

18 .
EmE Thoughts Error Bars Show 95% Cl F,IGURE 4.3
16 ™= Actions Figure 4.2 drawn
a properly
14

12

10

Number of Obsessive

Thoughts/Actions per Day
[o¢]

[ N O I I
=

CBT BT No Treatment

Therapy

2 If you do 3-D plots when you’re plotting only two variables then a bearded statistician will come to your house,
lock you in a room and make you write I puot vot 8o 3—A yparnc 75,172 times on the blackboard. Really, they will.

3 Although he probably over-prescribes this advice: grid lines are more often than not very useful for interpreting
the data.
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Lies, damned lies, and ... erm ... graphs @

Governments lie with statistics, but scientists shouldn’t. How you present your data makes
a huge difference to the message conveyed to the audience. As a big fan of cheese, ’'m often
curious about whether the urban myth that it gives you nightmares is true. Shee (1964)
reported the case of a man who had nightmares about his workmates: ‘He dreamt of one,
terribly mutilated, hanging from a meat-hook.* Another he dreamt of falling into a bottom-
less abyss. When cheese was withdrawn from his diet the nightmares ceased.” This would
not be good news if you were the minister for cheese in your country.
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Figure 4.4 shows two graphs that, believe it or not, display exactly the same data: the
number of nightmares had after eating cheese. The left-hand panel shows how the graph
should probably be scaled. The y-axis reflects the maximum of the scale, and this cre-
ates the correct impression: that people have more nightmares about colleagues hanging
from meat-hooks if they eat cheese before bed. However, as minister for cheese, you want
people to think the opposite; all you have to do is rescale the graph (by extending the
y-axis way beyond the average number of nightmares) and there suddenly seems to be little
difference. Tempting as it is, don’t do this (unless, of course, you plan to be a politician at
some point in your life).

EAVIVIIN RIS RIIS Graphs @

v The vertical axi
v The horizontal

is of a graph is known as the y-axis of the graph.
axis of a graph is known as the x-axis of the graph.

If you want to draw a good graph follow the cult of Tufte:

v" Don’t create false impressions of what the data actually show (likewise, don’t hide effects!) by scaling the y-axis in some

weird way.

v" Abolish chartjunk: Don’t use patterns, 3-D effects, shadows, pictures of spleens, photos of your Uncle Fred or anything else.
v" Avoid excess ink: don’t include features unless they are necessary to interpret or understand the data.

41 have similar dreams, but that has more to do with some of my workmates than cheese!
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4.3. Packages used in this chapter @

The basic version of R comes with a plot() function, which can create a wide variety of
graphs (type ¢plot in the command line for details) and the lattice() package is also helpful.
However, throughout this chapter I use Hadley Wickham’s ggplot2 package (Wickham,
2009). I have chosen to focus on this package because I like it. I wouldn’t take it out for
a romantic meal, but I do get genuinely quite excited by some of the stuff it can do. Just
to be very clear about this, it’s a very different kind of excitement than that evoked by a
romantic meal with my wife.

The ggplot2 package excites me because it is a wonderfully versatile tool. It takes a bit of
time to master it (I still haven’t really got to grips with the finer points of it), but once you
have, it gives you an extremely flexible framework for displaying and annotating data. The
second great thing about ggplot2 is it is based on Tufte’s recommendations about displaying
data and Wilkinson’s grammar of graphics (Wilkinson, 2005). Therefore, with basically no
editing we can create Tufte-pleasing graphs. You can install ggplot2 by executing the fol-
lowing command:

install.packages("ggplot2™)
You then need to activate it by executing the command:

library(ggplot2)

4.4. Introducing ggplot2 ®

There are two ways to plot graphs with ggplot2: (1) do a quick plot using the gploz() func-
tion; and (2) build a plot layer by layer using the ggploz() function. Undoubtedly the gplot()
function will get you started quicker; however, the ggplot() function offers greater versatil-
ity so that is the function that I will use throughout the chapter. I like a challenge.

There are several concepts to grasp that help you to understand how ggplot2 builds
graphs. Personally, I find some of the terminology a bit confusing so I apologize if occasion-
ally T use different terms than those you might find in the ggplo#2 documentation.

%W:%W The anatomy of a plot ®

A graph is made up of a series of layers. You can think of a layer as a plastic transparency
with something printed on it. That ‘something’ could be text, data points, lines, bars, pic-
tures of chickens, or pretty much whatever you like. To make a final image, these transpar-
encies are placed on top of each other. Figure 4.5 illustrates this process: imagine you begin
with a transparent sheet that has the axes of the graph drawn on it. On a second transpar-
ent sheet you have bars representing different mean scores. On a third transparency you
have drawn error bars associated with each of the means. To make the final graph, you put
these three layers together: you start with the axes, lay the bars on top of that, and finally
lay the error bars on top of that. The end result is an error bar graph. You can extend the
idea of layers beyond the figure: you could imagine having a layer that contains labels for
the axes, or a title, and again, you simply lay these on top of the existing image to add more
features to the graph.

As can be seen in Figure 4.5, each layer contains visual objects such as bars, data points,
text and so on. Visual elements are known as geoms (short for ‘geometric objects’) in
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goplot2. Therefore, when we define a layer, we have to tell R what geom we want displayed
on that layer (do we want a bar, line dot, etc.?). These geoms also have aesthetic properties
that determine what they look like and where they are plotted (do we want red bars or
green ones? do we want our data point to be a triangle or a square? etc.). These aesthetics
(aes() for short) control the appearance of graph elements (for example, their colour, size,
style and location). Aesthetics can be defined in general for the whole plot, or individually
for a specific layer. We’ll come back to this point in due course.

FIGURE 4.5 Plot
In ggplot2 a plot
is made up of
layers

To recap, the finished plot is made up of layers, each layer contains some geometric
element (such as bars, points, lines, text) known as a geom, and the appearance and loca-
tion of these geoms (e.g., size, colour, shape used) is controlled by the aesthetic properties
(aes()). These aesthetics can be set for all layers of the plot (i.e., defined in the plot as a
whole) or can be set individually for each geom in a plot (Figure 4.6). We will learn more
about geoms and aesthetics in the following sections.
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Aesthetics

(Colour, shape, size,
location)

Geoms
(Bars, lines, text, points)

A

Geometric objects (geoms) @

There are a variety of geom functions that determine what kind of geometric object is
printed on a layer. Here is a list of a few of the more common ones that you might use (for
a full list see the ggplot2 website http://had.co.nz/ggplot2/):

® geom_bar(): creates a layer with bars representing different statistical properties.

® geom_point(): creates a layer showing the data points (as you would see on a
scatterplot).

® geom _line(): creates a layer that connects data points with a straight line.

® geom_smooth(): creates a layer that contains a ‘smoother’ (i.e., a line that summarizes
the data as a whole rather than connecting individual data points).

® geom_histogram(): creates a layer with a histogram on it.

® geom_boxplot(): creates a layer with a box—whisker diagram.

® geom_text(): creates a layer with text on it.

® geom_density(): creates a layer with a density plot on it.

® geom_errorbar(): creates a layer with error bars displayed on it.

® geom_bline() and geom_vline(): create a layer with a user-defined horizontal or verti-
cal line, respectively.

Notice that each geom is followed by ‘()’, which means that it can accept aesthetics that
specify how the layer looks. Some of these aesthetics are required and others are optional.
For example, if you want to use the text geom then you have to specify the text that you
want to print and the position at which you want to print it (using x and y coordinates),
but you do not have to specify its colour.

In terms of required aesthetics, the bare minimum is that each geom needs you to specify
the variable or variables that the geom represents. It should be self-evident that ggploz2
can’t create the geom without knowing what it is you want to plot! Optional aesthetics
take on default values but you can override these defaults by specifying a value. These are
attributes of the geom such as the colour of the geom, the colour to fill the geom, the type
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FIGURE 4.6
The anatomy of a
graph
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Table 4.1 Aesthetic properties associated with some commonly used geoms

Required Optional

geom_bar() x: the variable to plot on the x-axis

geom_point() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

geom_line() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

geom_smooth() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

geom_histogram()  x: the variable to plot on the x-axis

geom_boxplot() x: the variable to plot
ymin: lower limit of ‘whisker’
ymax: upper limit of ‘whisker’
lower: lower limit of the ‘box’
upper: upper limit of the ‘box’
middle: the median

geom_text() x: the horizontal coordinate of where the text
should be placed
y: the vertical coordinate of where the text should
be placed
label: the text to be printed
all of these can be single values or variables
containing coordinates and labels for multiple
items

geom_density() x: the variable to plot on the x-axis
y: the variable to plot on the y-axis

colour
size

fill
linetype
weight
alpha

shape
colour
size

fill
alpha
colour
size
linetype
alpha

colour
size

fill
linetype
weight
alpha

colour
size

fill
linetype
weight
alpha

colour
size

fill
weight
alpha

colour

size

angle

hjust (horizontal
adjustment)
vjust (vertical
adjustment)
alpha

colour
size

fill
linetype
weight
alpha
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Table 4.1 (Continued)

Required Optional

geom_errorbar()  x: the variable to plot colour
ymin, ymax: lower and upper value of error bar size
linetype
width
alpha
geom_hline(), yintercept = value colour
geom viine() xintercept = value size
(where value is the position on the x- or y-axis linetype
where you want the vertical/horizontal line) alpha

of line to use (solid, dashed, etc.), the shape of the data point (triangle, square, etc.), the
size of the geom, and the transparency of the geom (known as alpha). Table 4.1 lists some
common geoms and their required and optional aesthetic properties. Note that many of
these aesthetics are common across geoms: for example, alpha, colour, linetype and fill can
be specified for most of geoms listed in the table.

Aesthetics ®

We have already seen that aesthetics control the appearance of elements within a geom or
layer. As already mentioned, you can specify aesthetics for the plot as a whole (such as the
variables to be plotted, the colour, shape, etc.) and these instructions will filter down to
any geoms in the plot. However, you can also specify aesthetics for individual geoms/layers
and these instructions will override those of the plot as a whole. It is efficient, therefore, to
specify things like the data to be plotted when you create the plot (because most of the time
you won’t want to plot different data for different geoms) but to specify idiosyncratic fea-
tures of the geom’s appearance within the geom itself. Hopefully, this process will become
clear in the next section.

For now, we will simply look at how to specify aesthetics in a general sense. Figure 4.7
shows the ways in which aesthetics are specified. First, aesthetics can be set to a specific value
(e.g., a colour such as red) or can be set to vary as a function of a variable (e.g., displaying
data for different experimental groups in different colours). If you want to set an aesthetic to
a specific value then you don’t specify it within the aes() function, but if you want an aesthetic

g Y Y
Don’t use aes()
e.g. > Layer/Geom
colour = “Red”
linetype = 2
= J N E—
4 N\ Y
Use aes()
e.g., > Plot
aes(colour = gender),
aes(shape = group)
A& J

FIGURE 4.7
Specifying
aesthetics in
ggplot2
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to vary then you need to place the instruction within aes(). Finally, you can set both specific
and variable aesthetics at the layer or geom level of the plot, but you cannot set specific values
at the plot level. In other words, if we want to set a specific value of an aesthetic we must do
it within the geom() that we’re using to create the particular layer of the plot.

Table 4.2 lists the main aesthetics and how to specify each one. There are, of course,
others, and I can’t cover the entire array of different aesthetics, but I hope to give you an
idea of how to change some of the more common attributes that people typically want to
change. For a comprehensive guide read Hadley Wickham’s book (Wickham, 2009). It
should be clear from Table 4.2 that most aesthetics are specified simply by writing the name
of the aesthetic, followed by an equals sign, and then something that sets the value: this can
be a variable (e.g., colour = gender, which would produce different coloured aesthetics for
males and females) or a specific value (e.g., colour = “Red”).

Table 4.2 Specifying optional aesthetics

Aesthetic Option Outcome

Linetype linetype = 1 Solid line (default)
linetype = 2 Hashed
linetype = 3 Dotted
linetype = 4 Dot and hash
linetype = 5 Long hash
linetype = 6 Dot and long hash
Size size = value Replace ‘value’ with a value in mm (default size = 0.5).

Larger values than 0.5 give you fatter lines/larger text/bigger
points than the default whereas smaller values will produce
thinner lines/smaller text and points than the default.

e.g., size = 0.25 Produces lines/points/text of 0.25mm
Shape shape = integer, The integer is a value between 0 and 25, each of which
shape = “x” specifies a particular shape. Some common examples are

below. Alternatively, specify a single character in quotes to
use that character (shape = "A” will plot each point as the

letter A).

shape = 0 Hollow square (15 is a filled square)

shape = 1 Hollow circle (16 is a filled circle)

shape = 2 Hollow triangle (17 is a filled triangle)

shape = 3 4

shape = 5 Hollow rhombus (18 for filled)

shape = 6 Hollow inverted triangle

Colour colour = “Name” Simply type the name of a standard colour. For example,

colour = “Red” will make the geom red.

colour = Specify exact colours using the RRGGBB system. For

“‘#RRGGBB” example, colour = “#3366FF” produces a shade of blue,

whereas colour = “#336633” produces a dark green.

Alpha alpha(colour, value) Colours can be made transparent by specifying alpha, which
can range from O (fully transparent) to 1 (fully opaque). For
example, alpha(“Red”, 0.5) will produce a half transparent
red.
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The anatomy of the ggplot() function ®

The command structure in ggplot2 follows the anatomy of the plot described above in a
very literal way. You begin by creating an object that specifies the plot. You can, at this stage
set any aesthetic properties that you want to apply to all layers (and geoms) within the plot.
Therefore, it is customary to define the variables that you want to plot at this top level. A
general version of the command might look like this:

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis))

In this example, we have created a new graph object called myGraph, we have told ggplot
to use the dataframe called myData, and we put the names of the variables to be plotted on
the x (horizontal) and y (vertical) axis within the aes() function. Not to labour the point,
but we could also set other aesthetic values at this top level. As a simple example, if we
wanted our layers/geoms to display data from males and females in different colours then
we could specify (assuming the variable gender defines whether a datum came from a man
or a woman):

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis,
colour = gender))

In doing so any subsequent geom that we define will take on the aesthetic of producing
different colours for males and females, assuming that this is a valid aesthetic for the par-
ticular geom (if not, the colour specification is ignored) and that we don’t override it by
defining a different colour aesthetic within the geom itself.

At this level you can also define options using the opts() function. The most common
option to set at this level is a title:

+ opts(title = "Title")

Whatever text you put in the quotations will appear as your title exactly as you have typed
it, so punctuate and capitalize appropriately.

So far we have created only the graph object: there are no graphical elements, and if you
try to display myGraph you’ll get an error. We need to add layers to the graph containing
geoms or other elements such as labels. To add a layer we literally use the ‘add’” symbol (+).
So, let’s assume we want to add bars to the plot, we can execute this command:

myGraph + geom_bar()

This command takes the object myGraph that we have already created, and adds a layer
containing bars to it. Now that there are graphical elements, ggplot2 will print the graph to
a window on your screen. If we want to also add points representing the data to this graph
then we add ‘+ geom_point()’ to the command and rerun it:

myGraph + geom_bar() + geom_point()

As you can see, every time you use a ‘+’ you add a layer to the graph, so the above example
now has two layers: bars and points. You can add any or all of the geoms that we have
already described to build up your graph layer by layer. Whenever we specify a geom we
can define an aesthetic for it that overrides any aesthetic setting for the plot as a whole. So,
let’s say we have defined a new graph as:

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis,
colour = gender))

but we want to add points that are blue (and do not vary by gender), then we can do
this as:

myGraph + geom_point(colour = "Blue")
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Note that because we’ve set a specific value we have not used the aes() function to set the
colour. If we wanted our points to be blue triangles then we could simply add the shape
command into the geom specification too:

myGraph + geom_point(shape = 17, colour =" "Blue")

We can also add a layer containing things other than geoms. For example, axis labels can
be added by using the labels() function:

myGraph + geom_bar() + geom_point() + labels(x = "Text", y = "Text")

in which you replace the word “Text” (again keep the quotations) with the label that you
want. You can also apply themes, faceting and options in a similar manner (see sections
4.4.6 and 4.10).

Stats and geoms ®

We have already encountered various geoms that map onto common plots used in research:
geom_histogram, geom_boxplot, geom_smooth, geom_bar etc. (see Table 4.1). At face value
it seems as though these geoms require you to generate the data necessary to plot them. For
example, the boxplot geom requires that you tell it the minimum and maximum values of
the box and the whiskers as well as the median. Similarly, the errorbar geom requires you
to feed in the minimum and maximum values of the bars. Entering the values that the geom
needs is certainly an option, but more often than not you’ll want to just create plots directly
from the raw data without having to faff about computing summary statistics. Luckily,
ggplot2 has some built-in functions called ‘stats’ that can be either used by a geom to get
the necessary values to plot, or used directly to create visual elements on a layer of a plot.

Table 4.3 shows a selection of stats that geoms use to generate plots. I have focused only
on the stats that will actually be used in this book, but there are others (for a full list see
http://had.co.nz/ggplot2/). Mostly, these stats work behind the scenes: a geom uses them
without you knowing about it. However, it’s worth knowing about them because they
enable you to adjust the properties of a plot. For example, imagine we want to plot a his-
togram, we can set up our plot object (myHistogram) as:

myHistogram <- ggplot(myData, aes(variable))

which has been defined as plotting the variable called variable from the dataframe myData.
As we saw in the previous section, if we want a histogram, then we simply add a layer to
the plot using the histogram geom:

myHistogram + geom_histogram()

That’s it: a histogram will magically appear. However, behind the scenes the histogram
geom is using the bin stat to generate the necessary data (i.e., to bin the data). We could get
exactly the same histogram by writing:

myHistogram + geom_histogram(aes(y = ..count..))

The aes(y = ..count..) is simply telling geom_histogram to set the y-axis to be the count
output variable from the bin stat, which geom_histogram will do by default. As we can see
from Table 4.3, there are other variables we could use though. Let’s say we wanted our
histogram to show the density rather than the count. Then we can’t rely on the defaults
and we would have to specify that geom_histogram plots the density output variable from
the bin stat on the y-axis:

myHistogram + geom_histogram(aes(y = ..density..))
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Table 4.3 Some of the built-in ‘stats’ in ggplot2

Stat
bin Bins data

Function

boxplot Computes
the data

necessary to

plot a boxplot

density Density

estimation

qq Compute
data for Q-Q
plots

Create a
smoother
plot

smooth

Summarize
data

summary

Output Variables

count: number of
points in bin

density: density of
points in bin, scaled to
integrate to 1

ncount: count, scaled
to maximum of 1
ndensity: density,
scaled to maximum of 1

width: width of boxplot
ymin: lower whisker
lower: lower hinge,
25% quantile

middle: median
upper: upper hinge,
75% quantile

ymax: upper whisker

density: density
estimate

count: density x
number of points
scaled: density
estimate, scaled to
maximum of 1

sample: sample
quantiles

theoretical: theoretical
quantiles

y: predicted value
ymin: lower pointwise
Cl around the mean
ymax: upper pointwise
Cl around the mean
se: standard error

Useful Parameters

binwidth: bin width
breaks: override bin width
with specific breaks to use
width: width of bars

quantiles

method: e.g., Im, gim,
gam, loess

formula: formula for
smoothing

se: display CI (true by
default)

level: level of Cl to use
(0.95 by default)

fun.y: determines the
function to plot on the
y-axis (e.g., fun.y = mean)

Associated

Geom
histogram

boxplot

density

point

smooth

bar, errorbar,
pointrange,
linerange

Similarly, by default, geom_histogram uses a bin width of the range of scores divided by 30.
We can use the parameters of the bin stat to override this default:

myHistogram + geom_histogram(aes(y = ..count..), binwidth = 0.4)

As such, it is helpful to have in mind the relationship between geoms and stats when plot-
ting graphs. As we go through the chapter you will see how stats can be used to control what
is produced by a geom, but also how stats can be used directly to make a layer of a plot.
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WM Avoiding overplotting @

Plots can become cluttered or unclear because (1) there is too much data to present in a
single plot, and (2) data on a plot overlap. There are several positioning tools in ggplot2
that help us to overcome these problems. The first is a position adjustment, defined very
simply as:

position = "x

in which x is one of five words:

® dodge: positions objects so that there is no overlap at the side.

® stack and fill: positions objects so that they are stacked. The stack instruction stacks
objects in front of each other such that the largest object is at the back and smallest
at the front. The fill instruction stacks objects on top of one other (to make up stacks
of equal height that are partitioned by the stacking variable).

® identity: no position adjustment.

® jitter: adds a random offset to objects so that they don’t overlap.

Another useful tool for avoiding overplotting is faceting, which basically means splitting
a plot into subgroups. There are two ways to do this. The first is to produce a grid that splits
the data displayed by the plot by combinations of other variables. This is achieved using
facet_grid(). The second way is to split the data displayed by the plot by a single variable
either as a long ribbon of individual graphs, or to wrap the ribbon onto the next line after
a certain number of plots such that a grid is formed. This is achieved using facet_wrap().

Figure 4.8 shows the differences between facet grid() and facet_wrap() using a con-
crete example. Social networking sites such as Facebook offer an unusual opportunity to
carefully manage your self-presentation to others (i.e., do you want to appear to be cool
when in fact you write statistics books, appear attractive when you have huge pustules all
over your face, fashionable when you wear 1980s heavy metal band t-shirts and so on).

Male Female

Introvert EID FETELD Cool Glam Attractive Fashion
Introverts | | Introverts

Male Female

Extrovert | £ iroverts | | Extroverts

Cool Glam

Attractive Fashion

facet_grid() facet_wrap()
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A study was done that examined the relationship between narcissism and other people’s
ratings of your profile picture on Facebook (Ong et al., 2011). The pictures were rated
on each of four dimensions: coolness, glamour, fashionableness and attractiveness. In
addition, each person was measuresd on introversion/extroversion and also their gen-
der recorded. Let’s say we wanted to plot the relationship between narcissism and the
profile picture ratings. We would have a lot of data because we have different types of
rating, males and females and introverts and extroverts. We could use facet grid() to
produce plots of narcissism vs. photo rating for each combination of gender and extro-
version. We’d end up with a grid of four plots (Figure 4.8). Alternatively, we could use
facet_wrap() to split the plots by the type of rating (cool, glamorous, fashionable, attrac-
tive). Depending on how we set up the command, this would give us a ribbon of four
plots (one for each type of rating) or we could wrap the plots to create a grid formation
(Figure 4.8).
To use faceting in a plot, we add one of the following commands:

+ facet_wrap( ~ y, nrow = integer, ncol = integer)

+ facet_grid(x ~ y)

In these commands, x and y are the variables by which you want to facet, and for facet
wrap nrow and ncol are optional instructions to control how the graphs are wrapped: they
enable you to specify (as an integer) the number of rows or columns that you would like.
For example, if we wanted to facet by the variables gender and extroversion, we would add
this command:

facet_grid(gender ~ extroversion)

If we wanted to draw different graphs for the four kinds of rating (Rating_Type), we could
add:

+ facet_wrap( ~ Rating_Type)

This would give us an arrangement of graphs of one row and four columns (Figure 4.8);
if we wanted to arrange these in a 2 by 2 grid (Figure 4.8) then we simply specify that we
want two columns:

+ facet_wrap( ~ Rating_Type, ncol = 2)
or, indeed, two rows:
+ facet_wrap( ~ Rating_Type, nrow = 2)

Saving graphs ®

Having created the graph of your dreams, you’ll probably want to save it somewhere.
There are lots of options here. The simplest (but least useful in my view) is to use the File
menu to save the plot as a pdf file. Figure 4.9 shows the stages in creating and saving a
graph. Like anything in R, you first write a set of instructions to generate the graph. You
select and execute these instructions. Having done this your graph appears in a new win-
dow. Click inside this window to make it active, then go to the File=Save As menu to open
a standard dialog box to save the file in a location of your choice.

Personally, I prefer to use the ggsave() function, which is a versatile exporting function
that can export as PostScript (.eps/.ps), tex (pictex), pdf, jpeg, tiff, png, bmp, svg and wmf
(in Windows only). In its basic form, the structure of the function is very simple:

ggsave(filename)
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FIGURE 4.9
Saving a graph
manually
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Here filename should be a text string that defines where you want to save the plot and the
filename you want to use. The function automatically determines the format to which you
want to export from the file extension that you put in the filename, so:

ggsave("Outlier Amazon.png™)
will export as a png file, whereas
ggsave("Outlier Amazon.tiff™)

will export as a tiff file. In the above examples I have specified only a filename, and these
files will, therefore be saved in the current working directory (see section 3.4.4). You can,
however, use a text string that defines an exact location, or create an object containing the
file location that is then passed into the ggsave() function (see R’s Souls’ Tip 4.1). There are
several other options you can specify, but mostly the defaults are fine. However, sometimes
you might want to export to a specific size, and this can be done by defining the width and
height of the image in inches: thus

ggsave("Outlier Amazon.tiff", width = 2, height = 2)
should save a tiff file that is 2 inches wide by 2 inches high.

Putting it all together: a quick tutorial ®

We have covered an enormous amount of ground in a short time, and have still only
scratched the surface of what can be done with ggplot2. Also, we haven’t actually plotted
anything yet! In this section we will do a quick tutorial in which we put into practice vari-
ous things that we have discussed in this chapter to give you some concrete experience of
using ggplor2 and to illustrate how some of the basic functionality the package works.
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Y IENR IR WY Saving graphs

By default ggsave() saves plots in your working directory (which hopefully you have set as something sensible). |
find it useful sometimes to set up a specific location for saving images and to feed this into the ggsave() function.
For example, executing:

imageDirectory<-file.path(Sys.getenv("HOME™"), "Documents", "Academic", "Books",
"Discovering Statistics", "DSUR I Images")

uses the file.path() and Sys.getenv() functions to create an object imageDirectory which is a text string defining
a folder called ‘DSUR | Images’, which is in a folder called ‘Discovering Statistics’ in a folder called ‘Books’ in a
folder called ‘Academic’ which is in my main ‘Documents’ folder. On my computer (an iMac) this command sets
imageDirectory to be:

"/Users/andyfield/Documents/Academic/Books/Discovering Statistics/DSUR I Images"

Sys.getenv(“HOME”) is a quick way to get the filepath of your home directory (in my case /Users/andy-
field/), and we use the file.path() function to paste the specified folder names together in an intelligent
way based on the operating system that you use. Because | use a Mac it has connected the folders using
an /', but if | used Windows it would have used ‘\\" instead (because this is the symbol Windows uses to
denote folders).

Having defined this location, we can use it to create a file path for a new image:

imageFile <- file.path(imageDirectory, "Graph.png™)
ggsave(imageFile)

This produces a text string called imageFile, which is the filepath we have just defined (imageDirectory) with the
filename that we want (Graph.png) added to it. We can reuse this code for a new graph by just changing the
filename specified in imageFile:

imageFile <- file.path(imageDirectory,"Outlier Amazon.png™)
ggsave(imageFile)

Earlier in the chapter we mentioned a study that looked at ratings of Facebook profile
pictures (rated on coolness, fashion, attractiveness and glamour) and predicting them from
how highly the person posting the picture scores on narcissism (Ong et al., 2011). The data
are in the file FacebookNarcissism.dat.

First set your working directory to be the location of the data file (see section 3.4.4).
Then create a dataframe called facebookData by executing the following command:

facebookData <- read.delim("FacebookNarcissism.dat", header = TRUE)
Figure 4.10 shows the contents of the dataframe. There are four variables:

1 id: a number indicating from which participant the profile photo came.

2 NPQC_R_Total: the total score on the narcissism questionnaire.

3 Rating_Type: whether the rating was for coolness, glamour, fashion or attractiveness
(stored as strings of text).

4 Rating: the rating given (on a scale from 1 to 5).
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First we need to create the plot object, which I have called, for want of a more original
idea, graph. Remember that we initiate this object using the ggplot() function, which takes
the following form:

graph <- ggplot(myData, aes(variable for x axis, variable for y axis))

To begin with, let’s plot the relationship between narcissism (NPQC_R_Total) and the
profile ratings generally (Rating). As such, we want NPQC_R_Total plotted on the x-axis
and Rating on the y-axis. The dataframe containing these variables is called facebookData
so we type and execute this command:

graph <- ggplot(facebookData, aes(NPQC_R_Total, Rating))

This command simply creates an object based on the facebookData dataframe and speci-
fies the aesthetic mapping of variables to the x- and y-axes. Note that these mappings are
contained within the ges() function. When you execute this command nothing will happen:
we have created the object, but there is nothing to print.

If we want to see something then we need to take our object (graph) and add some visual
elements. Let’s start with something simple and add dots for each data point. This is done
using the geom point() function. If you execute the following command you’ll see the
graph in the top left panel of Figure 4.11 appear in a window on your screen:

graph + geom_point()

If we don’t like the circles then we can change the shape of the points by specifying this for
the geom. For example, executing:

graph + geom_point(shape = 17)

will change the dots to triangles (top right panel of Figure 4.11). By changing the number
assigned to shape to other values you will see different shaped points (see section 4.4.3).
If we want to change the size of the dots rather than the shape, this is easily done too by
specifying a value (in mm) that you want to use for the ‘size’ aesthetic. Executing:

graph + geom_point(size = 6)
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creates the graph in the middle left panel of Figure 4.11. Note that the default shape has
been used (because we haven’t specified otherwise), but the size is larger than by default. At
this stage we don’t know whether a rating represented coolness, attractiveness or whatever.
It would be nice if we could differentiate different ratings, perhaps by plotting them in
different colours. We can do this by setting the colour aesthetic to be the variable Rating_
Type. Executing this command:

graph + geom_point(aes(colour = Rating_Type))

creates the graph in the middle right panel of Figure 4.11, in which, onscreen, different
types of ratings are now presented in different colours.®

5 Note that here we set the colour aesthetic by enclosing it in aes() whereas in the previous examples we did not.
This is because we’re setting the value of colour based on a variable, rather than a single value.

FIGURE 4.11
Different
aesthetics for the
point geom
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of the relationship between
two variables?
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We potentially have a problem of overplotting because there were a limited number of
responses that people could give (notice that the data points fall along horizontal lines that
represent each of the five possible ratings). To avoid this overplotting we could use the
position option to add jitter:

graph + geom_point(aes(colour = Rating_Type), position = "jitter")

Notice that the command is the same as before; we have just added position = “jitter”.
The results are shown in the bottom left panel of Figure 4.11; the dots are no longer in
horizontal lines because a random value has been added to them to spread them around
the actual value. It should be clear that many of the data points were sitting on top of each
other in the previous plot.

Finally, if we wanted to differentiate rating types by their shape rather than using a
colour, we could change the colour aesthetic to be the shape aesthetic:

graph + geom_point(aes(shape = Rating_Type), position = "jitter")

Note how we have literally just changed colour = Rating Type to shape = Rating Type.
The resulting graph in the bottom right panel of Figure 4.11 is the same as before except
that the different types of ratings are now displayed using different shapes rather than dif-
ferent colours.

This very rapid tutorial has hopefully demonstrated how geoms and aesthetics work
together to create graphs. As we now turn to look at specific kinds of graphs, you should
hopefully have everything you need to make sense of how these graphs are created.

4.5. Graphing relationships: the scatterplot @

Sometimes we need to look at the relationships between variables. A scat-
terplot is a graph that plots each person’s score on one variable against their
score on another. A scatterplot tells us several things about the data, such
as whether there seems to be a relationship between the variables, what
kind of relationship it is and whether any cases are markedly different from
the others. We saw earlier that a case that differs substantially from the

@\jﬂ general trend of the data is known as an outlier and such cases can severely
-e"%,fn, bias statistical procedures (see Jane Superbrain Box 4.1 and section 7.7.1.1

outliers.

/> - for more detail). We can use a scatterplot to show us if any cases look like
f\%éﬁ

LI Simple scatterplot @

This type of scatterplot is for looking at just two variables. For example, a psychologist
was interested in the effects of exam stress on exam performance. So, she devised and
validated a questionnaire to assess state anxiety relating to exams (called the Exam Anxiety
Questionnaire, or EAQ). This scale produced a measure of anxiety scored out of 100.
Anxiety was measured before an exam, and the percentage mark of each student on the
exam was used to assess the exam performance. The first thing that the psychologist should
do is draw a scatterplot of the two variables. Her data are in the file ExamAnxiety.dat and
you should load this file into a dataframe called examData by executing:

examData <- read.delim("Exam Anxiety.dat", header = TRUE)
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Figure 4.12 shows the contents of the dataframe. There are five variables:

Code: a number indicating from which participant the scores came.
Revise: the total hours spent revising.
Exam: mark on the exam as a percentage.

Anxiety: the score on the EAQ.

a A WO N =

Gender: whether the participant was male or female (stored as strings of text).

enno R Data Editor (o) FIGURE 4.12
e = The examData

Code Revse Exam Anxiety Gender dataframe

1 4 40 85.238 Male

2 11 65 88.716 Femals

3 27 80 70.178 Male

4 53 80 61.312 Male

S 4 40 89.522 Male

6 22 70 60.506 Female

7 16 20 81.452 Female

R 21 55 75.82 Femala

9 25 50 69.372 Female

10 18 40 82.258 Female

11 18 45 79.044 Male

12 16 85 80.656 Male

13 13 70 70.178 Male

14 18 50 75.014 Female

15 98 95 34.714 Male

16 1 70 95.154 Male

17 14 95 75.82 Male

18 29 as 79.044 Femal=

19 4 50 91.134 Female

20 23 60 64.536 Male :

21 14 80 80.656 Male

First we need to create the plot object, which I have called scatter. Remember that we
initiate this object using the ggplot() function. The contents of this function specify the
dataframe to be used (examData) and any aesthetics that apply to the whole plot. I've said
before that one aesthetic that is usually defined at this level is the variables that we want to
plot. To begin with, let’s plot the relationship between exam anxiety (Anxiety) and exam
performance (Exam). We want Anxiety plotted on the x-axis and Exam on the y-axis.
Therefore, to specify these variables as an aesthetic we type aes(Anxiety, Exam). Therefore,
the final command that we execute is:

scatter <- ggplot(examData, aes(Anxiety, Exam))

This command creates an object based on the examData dataframe and specifies the aes-
thetic mapping of variables to the x- and y-axes. When you execute this command nothing
will happen: we have created the object, but there is nothing to print.

If we want to see something then we need to take our object (scatter) and add a layer
containing visual elements. For a scatterplot we essentially want to add dots, which is done
using the geom_point() function.

scatter + geom_point()

If we want to add some nice labels to our axes then we can also add a layer with these
on using labs():

scatter + geom_point() + labs(x = "Exam Anxiety", y = "Exam
Performance %")



FIGURE 4.13
Scatterplot of
exam anxiety
and exam
performance
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If you execute this command you’ll see the graph in Figure 4.13. The scatterplot tells us
that the majority of students suffered from high levels of anxiety (there are very few cases
that had anxiety levels below 60). Also, there are no obvious outliers in that most points
seem to fall within the vicinity of other points. There also seems to be some general trend
in the data, such that low levels of anxiety are almost always associated with high examina-
tion marks (and high anxiety is associated with a lot of variability in exam marks). Another
noticeable trend in these data is that there were no cases having low anxiety and low exam
performance — in fact, most of the data are clustered in the upper region of the anxiety scale.

CNWAl Adding a funky line ©

You often see scatterplots that have a line superimposed over the top that summarizes the
relationship between variables (this is called a regression line and we will discover more
about it in Chapter 7). The scatterplot you have just produced won’t have a funky line on
it yet, but don’t get too depressed because ’'m going to show you how to add this line now.

In ggplot2 terminology a regression line is known as a ‘smoother’ because it
smooths out the lumps and bumps of the raw data into a line that summarizes
the relationship. The geom_smooth() function provides the functionality to
add lines (curved or straight) to summarize the pattern within your data.

To add a smoother to our existing scatterplot, we would simply add the
geom_smooth() function and execute it:

N@;‘"\“"fg scatter + geom_point() + geom_smooth() + labs(x = "Exam Anxiety",
‘%fyfw—;%)_\ y = "Exam Performance %")
= Fi
ff’/ /7 ;(/;I\ Note that the command is exactly the same as before except that we have
[ i~ T added a smoother in a new layer by typing + geom_smooth(). The resulting
T graph is shown in Figure 4.14. Note that the scatterplot now has a curved

line (a ‘smoother’) summarizing the relationship between exam anxiety and

exam performance. The shaded area around the line is the 95% confidence interval around
the line. We’ll see in due course how to remove this shaded error or to recolour it.

The smoothed line in Figure 4.14 is very pretty, but often we want to fit a straight line

(or linear model) instead of a curved one. To do this, we need to change the ‘method’
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associated with the smooth geom. In Table 4.3 we saw several methods that could be used
for the smooth geom: Im fits a linear model (i.e., a straight line) and you could use rlm for
a robust linear model (i.e., less affected by outliers).® So, to add a straight line (rather than
curved) we change geom_smooth() to include this instruction:

+ geom_smooth(method = "1m")

We can also change the appearance of the line: by default it is blue, but if we wanted a red
line then we can simply define this aesthetic within the geom:

+ geom_smooth(method = "1m", colour = "Red")
Putting this together with the code for the simple scatterplot, we would execute:

scatter <- ggplot(examData, aes(Anxiety, Exam))
scatter + geom_point() + geom_smooth(method = "Im", colour = "Red")+ labs(x
= "Exam Anxiety", y = "Exam Performance %")

The resulting scatterplot is shown in Figure 4.15. Note that it looks the same as Figure
4.13 and Figure 4.14 except that a red (because we specified the colour as red) regression
line has been added.” As with our curved line, the regression line is surrounded by the 95%
confidence interval (the grey area). We can switch this off by simply adding se = F (which
is short for ‘standard error = False’) to the geom_smooth() function:

+ geom_smooth(method = "lm", se = F)

We can also change the colour and transparency of the confidence interval using the fill and
alpha aesthetics, respectively. For example, if we want the confidence interval to be blue
like the line itself, and we want it fairly transparent we could specify:

geom_smooth(method = "Im", alpha = 0.1, fill = "Blue")

® You must have the MASS package loaded to use this method.

7 You’ll notice that the figure doesn’t have a red line but what you see on your screen does, that’s because this
book isn’t printed in colour which makes it tricky for us to show you the colourful delights of R. In general, use
the figures in the book as a guide only and read the text with reference to what you actually see on your screen.

FIGURE 4.14
Scatterplot of
exam anxiety
against exam
performance
with a smoother
added



FIGURE 4.15
A simple
scatterplot with
aregression line
added

FIGURE 4.16
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Note that transparency can take a value from 0 (fully transparent) to 1 (fully opaque)
and so we have set a fairly transparent colour by using 0.1 (after all we want to see the data
points underneath). The impact of these changes can be seen in Figure 4.16.

Grouped scatterplot @

What if we want to see whether male and female students had different reactions to exam
anxiety? To do this, we need to set Gender as an aesthetic. This is fairly straightforward.
First, we define gender as a colour aesthetic when we initiate the plot object:

scatter <- ggplot(examData, aes(Anxiety, Exam, colour

Gender))
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Note that this command is exactly the same as the previous example, except that we have
added ‘colour = Gender’ so that any geoms we define will be coloured differently for men
and women. Therefore, if we then execute:

scatter + geom_point + geom_smooth(method = "1m")

we would have a scatterplot with different coloured dots and regression lines for men and
women. It’s as simple as that. However, our lines would have confidence intervals and both
intervals would be shaded grey, so we could be a little more sophisticated and add some
instructions into geom_smooth() that tells it to also colour the confidence intervals accord-
ing to the Gender variable:

scatter + geom_point() + geom_smooth(method = "1Im", aes(fill = Gender), alpha
=0.1)

Note that we have used fill to specify that the confidence intervals are coloured according
to Gender (note that because we are specifying a variable rather than a single colour we
have to place this option within aes()). As before, we have also manually set the transpar-
ency of the confidence intervals to be 0.1.

As ever, let’s add some labels to the graph:

+ labs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender")

Note that by specifying a label for ‘colour’ I am setting the label that will be used on the
legend of the graph. The finished command to be executed will be:

scatter + geom_point() + geom_smooth(method = "1Im", aes(fill = Gender), alpha
=0.1) + labs(x = "Exam Anxiety", y = "Exam Performance %", colour = "Gender")

Figure 4.17 shows the resulting scatterplot. The regression lines tell us that the relation-
ship between exam anxiety and exam performance was slightly stronger in males (the line
is steeper) indicating that men’s exam performance was more adversely affected by anxiety
than women’s exam anxiety. (Whether this difference is significant is another issue — see
section 6.7.1.)
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exam anxiety
and exam
performance
split by gender
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SELF-TEST

v Go back to the Facebook narcissism data from the
earlier tutorial. Plot a graph that shows the pattern in
the data using only a line.

v" Plot different coloured lines for the different types of
rating (cool, fashionable, attractive, glamorous).

v/ Add a layer displaying the raw data as points.

v Add labels to the axes.

4.6. Histograms: a good way to spot obvious
problems @

In this section we’ll look at how we can use frequency distributions to screen our data.?
We’ll use an example to illustrate what to do. A biologist was worried about the poten-
tial health effects of music festivals. So, one year she went to the Download Music
Festival’® (for those of you outside the UK, you can pretend it is Roskilde Festival, Ozzfest,
Lollopalooza, Wacken or something) and measured the hygiene of 810 concert-goers over
the three days of the festival. In theory each person was measured on each day but because
it was difficult to track people down, there were some missing data on days 2 and 3.
Hygiene was measured using a standardized technique (don’t worry, it wasn’t licking the
person’s armpit) that results in a score ranging between 0 (you smell like a corpse that’s
been left to rot up a skunk’s arse) and 4 (you smell of sweet roses on a fresh spring day).
Now I know from bitter experience that sanitation is not always great at these places (the
Reading Festival seems particularly bad) and so this researcher predicted that personal
hygiene would go down dramatically over the three days of the festival. The data file,
DownloadFestival.dat, can be found on the companion website. We encountered histo-
grams (frequency distributions) in Chapter 1; we will now learn how to create one in R
using these data.

SELF-TEST

v What does a histogram show?

Load the data into a dataframe (which I've called festivalData); if you need to refresh
your memory on data files and dataframes see section 3.5. Assuming you have set the
working directory to be where the data file is stored, you can create the dataframe by
executing this command:

festivalData <- read.delim("DownloadFestival.dat", header = TRUE)

Now we need to create the plot object and define any aesthetics that apply to the plot as
a whole. I have called the object festivalHistogram, and have created it using the ggplot()

% An alternative way to graph the distribution is a density plot, which we’ll discuss later.

? http://www.downloadfestival.co.uk
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function. The contents of this function specify the dataframe to be used (festivalData) and
any aesthetics that apply to the whole plot. I’ve said before that one aesthetic that is usu-
ally defined at this level is the variables that we want to plot. To begin with let’s plot the
hygiene scores for day 1, which are in the variable day1. Therefore, to specify this variable
as an aesthetic we type aes(day1). I have also decided to turn the legend off so I have added
opts(legend.position = “none”) to do this (see R’s Souls’ Tip 4.2):

festivalHistogram <- ggplot(festivalData, aes(dayl)) + opts(legend.position
- llnonell)

Remember that having executed the above command we have an object but no graphi-
cal layers, so we will see nothing. To add the graphical layer we need to add the histogram
geom to our existing plot:

festivalHistogram + geom_histogram()

Executing this command will create a graph in a new window. If you are happy using the
default options then this is all there is to it; sit back and admire your efforts. However, we
can tidy the graph up a bit. First, we could change the bin width. I would normally play
around with different bin widths to get a feel for the distribution. To save time, let’s just
change it to 0.4. We can do this by inserting a command within the histogram geom:

+ geom_histogram(binwidth = 0.4)
We should also provide more informative labels for our axes using the labs() function:
+ labs(x = "Hygiene (Day 1 of Festival)", y = "Frequency™)

As you can see, I have simply typed in the labels I want (within quotation marks) for the
horizontal (x) and vertical (y) axes. Making these two changes leaves us with this com-
mand, which we must execute to see the graph:

festivalHistogram + geom_histogram(binwidth = 0.4) + labs(x = "Hygiene (Day
1 of Festival)", y = "Frequency")

The resulting histogram is shown in Figure 4.18. The first thing that should leap out at
you is that there appears to be one case that is very different than the others. All of the
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scores appear to be squashed up at one end of the distribution because they are all less
than 5 (yielding a very pointy distribution) except for one, which has a value of 20. This is
an outlier: a score very different than the rest (Jane Superbrain Box 4.1). Outliers bias the
mean and inflate the standard deviation (you should have discovered this from the self-test
tasks in Chapters 1 and 2) and screening data is an important way to detect them. You can
look for outliers in two ways: (1) graph the data with a histogram (as we have done here)
or a boxplot (as we will do in the next section); or (2) look at z-scores (this is quite com-
plicated, but if you want to know see Jane Superbrain Box 4.2).

The outlier shown on the histogram is particularly odd because it has a score of 20,
which is above the top of our scale (remember our hygiene scale ranged only from 0 to
4) and so it must be a mistake (or the person had obsessive compulsive disorder and had
washed themselves into a state of extreme cleanliness).

BN ERIT:WH Removing legends ®

By default ggplot2 produces a legend on the right-hand side of the plot. Mostly this legend is a useful thing to
have. However, there are occasions when you might like it to go away. This is achieved using the opts() function
either when you set up the plot object, or when you add layers to the plot. To remove the legend just add:

+ opts(legend.position="none™")
For example, either

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis)) + opts(legend.
position="none")

or

myGraph <- ggplot(myData, aes(variable for x axis, variable for y axis))
myGraph + geom_point() + opts(legend.position="none")

will produce a graph without a figure legend.

4.7. Boxplots (box—-whisker diagrams) @

Boxplots or box—whisker diagrams are really useful ways to display your data.
At the centre of the plot is the median, which is surrounded by a box the top
and bottom of which are the limits within which the middle 50% of observa-
tions fall (the interquartile range). Sticking out of the top and bottom of the box
are two whiskers that extend to one and a half times the interquartile range.
First, we will plot some using ggplot2 and then we’ll look at what they tell us in
more detail. In the data file of hygiene scores we also have information about
the gender of the concert-goer. Let’s plot this information as well. To make
our boxplot of the day 1 hygiene scores for males and females, we will need
to set the variable Gender as an aesthetic. The simplest way to do this is just
to specify Gender as the variable to be plotted on the x-axis, and the hygiene
scores (day1) to be the variable plotted on the y-axis. As such, when we initiate

Did someone say a
box of whiskas?




CHAPTER 4 EXPLORING DATA WITH GRAPHS

JANE SUPERBRAIN 4.1
What is an outlier? @

An outlier is a score very different from the rest of the
data. When we analyse data we have to be aware of such
values because they bias the model we fit to the data. A
good example of this bias can be seen by looking at the
mean. When | published my first book (the first edition of
the SPSS version of this book), | was quite young, | was
very excited and | wanted everyone in the world to love
my new creation and me. Consequently, | obsessively
checked the book’s ratings on Amazon.co.uk. These
ratings can range from 1 to 5 stars. Back in 2002, my
first book had seven ratings (in the order given) of 2, 5,
4,5, 5,5, and 5. All but one of these ratings are fairly
similar (mainly 5 and 4) but the first rating was quite dif-
ferent from the rest — it was a rating of 2 (a mean and
horrible rating). The graph plots seven reviewers on the
horizontal axis and their ratings on the vertical axis and
there is also a horizontal line that represents the mean
rating (4.43 as it happens). It should be clear that all of
the scores except one lie close to this line. The score of 2
is very different and lies some way below the mean. This
score is an example of an outlier — a weird and unusual

person (sorry, | mean score) that deviates from the rest of
¢ humanity (I mean, data set). The dashed horizontal line
represents the mean of the scores when the outlier is not
included (4.83). This line is higher than the original mean,
indicating that by ignoring this score the mean increases
(it increases by 0.4). This example shows how a single
i score, from some mean-spirited badger turd, can bias

the mean; in this case the first rating (of 2) drags the aver-
age down. In practical terms this had a bigger implication
because Amazon rounded off to half numbers, so that
single score made a difference between the average rat-
ing reported by Amazon as a generally glowing 5 stars
and the less impressive 4.5 stars. (Nowadays Amazon
sensibly produces histograms of the ratings and has a
better rounding system.) Although | am consumed with
bitterness about this whole affair, it has at least given me
a great example of an outlier! (Data for this example were
taken from http://www.amazon.co.uk/ in about 2002.)

5- [ ] [ ] ° (] [ ]

Mean (no outlier)

Mean (with outlier)

Rating (out of 5)
w

our plot object rather than set a single variable as an aesthetic as we did for the histogram
(aes(day1)), we set Gender and day1 as variables (aes(Gender, day1)). Having initiated the
plot object (I’ve called it festivalBoxplot), we can simply add the boxplot geom as a layer
(+ geom_boxplot()) and add some axis labels with the labs() function as we did when we
created a histogram. To see the graph we therefore simply execute these two lines of code:

festivalBoxplot <- ggplot(festivalData, aes(gender, dayl))

festivalBoxplot + geom_boxplot() + labs(x = "Gender", y = "Hygiene (Day 1 of
Festival)™)

The resulting boxplot is shown in Figure 4.19. It shows a separate boxplot for the men
and women in the data. Note that the outlier that we detected in the histogram is shown
up as a point on the boxplot (we can also tell that this case was a female). An outlier is an
extreme score, so the easiest way to find it is to sort the data:

festivalData<-festivalData[order(festivalData$dayl),]
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SELF-TEST

v Remove the outlier and replot the histogram.

JANE SUPERBRAIN 4.2

Using z-scores to find outliers @

To check for outliers we can look at z-scores. We saw in
section 1.7.4 that z-scores are simply a way of standard-
izing a data set by expressing the scores in terms of a
distribution with a mean of 0 and a standard deviation of
1. In doing so we can use benchmarks that we can apply
to any data set (regardless of what its original mean and
standard deviation were). To look for outliers we could
convert our variable to z-scores and then count how many
fall within certain important limits. If we take the absolute
value (i.e., we ignore whether the z-score is positive or
negative) then in a normal distribution we’d expect about
5% to have absolute values greater than 1.96 (we often
use 2 for convenience), and 1% to have absolute values
greater than 2.58, and none to be greater than about 3.29.

| have written a function that gets R to count them
for you called outlierSummary(). To use the function you

OLIVER TWISTED

Please, Sir, can |
have some more ...
complicated stuff?

¢ need to load the package associated with this book (see

section 3.4.5), you then simply insert the name of the vari-
able that you would like summarized into the function and
execute it. For example, to count the number of z-scores
with absolute values above our three cut-off values in the
day2 variable, we can execute:

outlierSummary(festivalData$day2)

Absolute z-score greater than 1.96 = 6.82 %
Absolute z-score greater than 2.58 = 2.27 %
Absolute z-score greater than 3.29 = 0.76 %

The output produced by this function is shown
above. We would expect to see 5% (or less) with an
absolute value greater than 1.96, 1% (or less) with an
absolute value greater than 2.58, and we'd expect no
cases above 3.29 (these cases are significant outliers).
For hygiene scores on day 2 of the festival, 6.82% of
z-scores had absolute values greater than 1.96. This is
slightly more than the 5% we would expect in a normal
distribution. Looking at values above 2.58, we would
expect to find only 1%, but again here we have a higher
value of 2.27%. Finally, we find that 0.76% of cases
were above 3.29 (so 0.76% are significant outliers). This
suggests that there may be slightly too many outliers in
this variable and we might want to do something about

i them.

‘Graphs are for laughs, and functions are full of fun’ thinks Oliver
as he pops a huge key up his nose and starts to wind the clock-
work mechanism of his brain. We don't look at functions for another
couple of chapters, which is why I've skipped over the details of how
the outlierSummary() function works. If, like Oliver, you like to wind up

your brain, the additional material for this chapter, on the companion
website, explains how | wrote the function. If that doesn’t quench your thirst for knowledge then you’re a grain of salt.
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00 FIGURE 4.19
Boxplot of
hygiene scores
on day 1 of
the Download
Festival split by
gender
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This command takes festivalData and sorts it by the variable day1. All we have to do
now is to look at the last case (i.e., the largest value of day1) and change it. The offending
case turns out to be a score of 20.02, which is probably a mistyping of 2.02. We’d have to
go back to the raw data and check. We’ll assume we’ve checked the raw data and it should
be 2.02, and that we’ve used R Commander’s data editor (see section 3.6 or the online
materials for this chapter) to replace the value 20.02 with the value 2.02 before we con-
tinue this example.

SELF-TEST

v Now we have removed the outlier in the data, try
replotting the boxplot. The resulting graph should look
like Figure 4.20.

Figure 4.20 shows the boxplots for the hygiene scores on day 1 after the outlier has been
corrected. Let’s look now in more detail about what the boxplot represents. First, it shows
us the lowest score (the lowest point of the bottom whisker, or a dot below it) and the
highest (the highest point of the top whisker of each plot, or a dot above it). Comparing
the males and females we can see they both had similar low scores (0, or very smelly) but
the women had a slightly higher top score (i.e., the most fragrant female was more hygienic
than the cleanest male).

The lowest edge of the white box is the lower quartile (see section 1.7.3); therefore, the
distance between the bottom of the vertical line and the lowest edge of the white box is the
range between which the lowest 25% of scores fall. This range is slightly larger for women
than for men, which means that if we take the most unhygienic 25% females then there is
more variability in their hygiene scores than the lowest 25% of males. The box (the white
area) shows the interquartile range (see section 1.7.3): that is, 50% of the scores are bigger
than the lowest part of the white area but smaller than the top part of the white area. These
boxes are of similar size in the males and females.

The top edge of the white box shows the value of the upper quartile (see section 1.7.3);
therefore, the distance between the top edge of the white box and the top of the vertical
line shows the range between which the top 25% of scores fall. In the middle of the white



FIGURE 4.20
Boxplot of
hygiene scores
on day 1 of

the Download
Festival split by
gender, after the
outlier has been
corrected
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box is a line that represents the value of the median (see section 1.7.2). The median for
females is higher than for males, which tells us that the middle female scored higher, or was
more hygienic, than the middle male.

Boxplots show us the range of scores, the range between which the middle 50% of scores
fall, and the median, the upper quartile and lower quartile score. Like histograms, they
also tell us whether the distribution is symmetrical or skewed. If the whiskers are the same
length then the distribution is symmetrical (the range of the top and bottom 25% of scores
is the same); however, if the top or bottom whisker is much longer than the opposite whis-
ker then the distribution is asymmetrical (the range of the top and bottom 25% of scores
is different). Finally, you’ll notice some dots above the male boxplot. These are cases that
are deemed to be outliers. In Chapter 5 we’ll see what can be done about these outliers.

w
?

Upper Quartile Top 25%

N
)
|

[l

154 v Middle 50%

1.0- Median b

Hygiene (Day 1 of Festival)

Bottom 25%
Lower Quartile

SELF-TEST

v" Produce boxplots for the day 2 and day 3 hygiene
scores and interpret them.

Density plots are rather similar to histograms except that they smooth the distribution into
a line (rather than bars). We can produce a density plot in exactly the same way as a his-
togram, except using the density geom: geom_density(). Assuming you have removed the
outlier for the festival data set,'? initiate the plot (which I have called density) in the same
way as for the histogram:

density <- ggplot(festivalData, aes(dayl))

10 Tf you haven’t there is a data file with it removed and you can load this into a dataframe called festivalData by
executing:

festivalData <- read.delim("DownloadFestival(No Outlier).dat", header = TRUE)
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Then, to get the plot simply add the density geom() function:

density + geom_density()

We can also add some labels by including:

+ labs(x = "Hygiene (Day 1 of Festival)", y = "Density Estimate")

in the command. The resulting plot is shown in Figure 4.21.

FIGURE 4.21
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4.9. Graphing means ®

M Bar charts and error bars ®

Bar charts are a common way for people to display means. The ggplot2 package does not
differentiate between research designs, so you plot bar charts in the same way regardless of
whether you have an independent, repeated-measures or mixed design. Imagine that a film
company director was interested in whether there was really such a thing as a ‘chick flick’
(a film that typically appeals to women more than men). He took 20 men and 20 women
and showed half of each sample a film that was supposed to be a ‘chick flick’ (Bridget
Jones’s Diary), and the other half of each sample a film that didn’t fall into the category
of ‘chick flick’ (Memento, a brilliant film by the way). In all cases he measured their physi-
ological arousal as an indicator of how much they enjoyed the film. The data are in a file
called ChickFlick.dat on the companion website. Load this file into a dataframe called
chickFlick by executing this command (I’m assuming you have set the working directory to
be where the data file is stored):

chickFlick <- read.delim("ChickFlick.dat", header = TRUE)



FIGURE 4.22
The ChickFlick.
dat data
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Figure 4.22 shows the data. Note there are three variables:

® gender: specifies the gender of the participant as text.
® film: specifies the film watched as text.

® arousal: is their arousal score.

Each row in the data file represents a different person.

ann R Data Editor (=]
f =i
gender film arousal
Male Bricget Jones' Diary 2 m
Male Brihget Jones' Diary 13 |
Male Briddget Junes' Diary 16 |
Male Bridget Jones' Diary 10 |
Male Bridget Jones' Diary 18 |
Male Bridget Jones' Diary 24
Male Rridget Jones' Diary [E] |
Male Bridget Jones' Diary 14 |
Male Bridyet Jones' Diary 19 |
Male Bricdget Jones' Diary 23 |
Male Memento 37 |
Male Memento 20 |
Male Memento 16 |
Male Memento 28 |
Male Memanto 27 |
Male Memento 18 {
Male Memento a2 |
Male Memento 24 |
Male Memento 21 |
Male Memento 35 |
Female Bridget Jones' Dlary 3 |
Female Bridget Jones' Diary 15 |
Famala Rridget Jones' Diary 5 U
Female Bridget Jones' Diary 16
Female Bridget Jones' Diary 17
Female Bridyet Jones' Diary 20
Female Brichyet Junes’ Diary 1
Female Bridget Jones® Diary 19
Female Bridget Jones' Dlary 15
Female Bridget Jones' Dlary 7 .

Female Mementa 30
Female Memento 25

4.9.1.1 Bar charts for one independent variable ®

To begin with, let’s just plot the mean arousal score (y-axis) for each film (x-axis). We can
set this up by first creating the plot object and defining any aesthetics that apply to the plot
as a whole. I have called the object bar, and have created it using the ggplot() function. The
function specifies the dataframe to be used (chickFlick) and has set film to be plotted on
the x-axis, and arousal to be plotted on the y-axis:

bar <- ggplot(chickFlick, aes(film, arousal))

This is where things get a little bit tricky; because we want to plot a summary of the data
(the mean) rather than the raw scores themselves, we have to use a stat (section 4.4.5) to
do this for us. Actually, we already used a stat when we plotted the boxplot in an earlier
section, but we didn’t notice because the boxplot geom sneaks off when we’re not looking
and uses the bin stat without us having to really do anything. However, if we want means
then we have no choice but to dive head first into the pit of razors that is a stat. Specifically
we are going to use stat_summary().
The stat_summary() function takes the following general form:

stat_summary(function = x, geom = y)

Functions can be specified either for individual points (fun.y) or for the data as a whole
(fun.data) and are set to be common statistical functions such as ‘mean’, ‘median’ and so
on. As you might expect, the geom option is a way of telling the stat which geom to use to
represent the function, and this can take on values such as ‘errorbar’, ‘bar’ and ‘pointrange’
(see Table 4.3). The stat_summary() function takes advantage of several built-in functions
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Table 4.4 Using stat summary() to create graphs

Option Plots Common geom
fun.y = mean The mean geom = “bar”
fun.y = median The median geom = “bar”
fun.data = 95% confidence intervals assuming geom = “errorbar”
mean_cl_normal() normality geom = “pointrange”
fun.data = mean_cl boot() 95% confidence intervals based on a geom = “errorbar”
bootstrap (i.e., not assuming normality) geom = “pointrange”
mean_sdl() Sample mean and standard deviation geom = “errorbar”

geom = “pointrange”

fun.data = median_hilow()  Median and upper and lower quantiles geom = “pointrange”

from the Hmisc package, which should automatically be installed. Table 4.4 summarizes
these functions and how they are specified within the stat_summary() function.

If we want to add the mean, displayed as bars, we can simply add this as a layer to ‘bar’
using the stat_summary() function:

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour How do I plot an
= "Black" error bar graph?

As shown in Table 4.4, fun.y = mean computes the mean for us, geom = “bar”
displays these values as bars, fill = “White” makes the bars white (the default is N; M,
: . . . [ Al @@1?5,)
dark grey and you can replace with a different colour if you like), and colour = 55
“Black” makes the outline of the bars black. s AN
If we want to add error bars to create an error bar chart, we can again add these Zl‘-ﬁ M\
as a layer using stat_summary(): i

+ stat_summary(fun.data = mean_cl_normal, geom = "pointrange")

This command adds a standard 95% confidence interval in the form of the pointrange
geom. Again, if you like you could change the colour of the pointrange geom by setting its
colour as described in Table 4.2.

Finally, let’s add some nice labels to the graph using lab():

+ labs(x = "Film", y = "Mean Arousal™)

To sum up, if we put all of these commands together we can create the graph by execut-
ing the following command:

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour =
"Black") + stat_summary(fun.data = mean_cl_normal, geom = "pointrange") +
labs(x = "Film", y = "Mean Arousal")

Figure 4.23 shows the resulting bar chart. This graph displays the means (and the 95% con-
fidence interval of those means) and shows us that on average, people were more aroused
by Memento than they were by Bridget Jones’s Diary. However, we originally wanted to
look for gender effects, so we need to add this variable into the mix.

SELF-TEST

v" Change the geom for the error bar to ‘errorbar’ and
change its colour to red. Replot the graph.

v" Plot the graph again but with bootstrapped confidence
intervals.




FIGURE 4.23
Bar chart of the
mean arousal for
each of the two
films

DISCOVERING STATISTICS USING R

35-
30-

25— I

20-

1s- |

Mean Arousal

10-

| |
Bridget Jones’s Memento
Diary
Film

4.9.1.2. Bar charts for several independent variables @

If we want to factor in gender we could do this in several ways. First we could set an aes-
thetic (such as colour) to represent the different genders, but we could also use faceting to
create separate plots for men and women. We could also do both. Let’s first look at sepa-
rating men and women on the same graph. This takes a bit of work, but if we build up the
code bit by bit the process should become clear.

First, as always we set up our plot object (again I’ve called it bar). This command is the
same as before, except that we have set the fill aesthetic to be the variable gender. This
means that any geom specified subsequently will be filled with different colours for men
and women.

bar <- ggplot(chickFlick, aes(film, arousal, fill = gender))

If we want to add the mean, displayed as bars, we can simply add this as a layer to bar
using the stat_summary() function as we did before, but with one important difference: we
have to specify position = “dodge” (see section 4.4.6) so that the male and female bars are
forced to stand side-by-side, rather than behind each other.

bar + stat_summary(fun.y = mean, geom = "bar", position="dodge")

As before, fun.y = mean computes the mean for us, geom = “bar” displays these values as
bars.
If we want to add error bars we can again add these as a layer using stat_summary():

+ stat_summary(fun.data = mean_cl_normal, geom = "errorbar", position = posi-
tion_dodge(width=0.90), width = 0.2)

This command is a bit more complicated than before. Note we have changed the geom to
errorbar; by default these bars will be as wide as the bars displaying the mean, which looks
a bit nasty, so I have reduced their width with width = 0.2, which should make them 20%
of the width of the bar (which looks nice in my opinion). The other part of the command
is that we have again had to use the dodge position to make sure that the error bars stand
side-by-side). In this case position = position_dodge(width=0.90) does the trick, but you
might have to play around with the values of width to get what you want.
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Finally, let’s add some nice labels to the graph using lab():

+ labs(x = "Film", y = "Mean Arousal", fill = "Gender™)

Notice that as well as specifying titles for each axis, I have specified a title for fill. This will
give a title to the legend on the graph (if we omit this option the legend will be given the
variable name as a title, which might be OK for you if you are less anally retentive than I am).

To sum up, if we put all of these commands together we can create the graph by execut-
ing the following command:

bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + stat_
summary(fun.data = mean_cl_normal, geom = "errorbar", position = position_
dodge(width = 0.90), width = 0.2) + labs(x = "Film", y = "Mean Arousal", fill
= "Gender™)

35-
30-
25-

20- Gender
Female
[ Male

Mean Arousal

0-
| |
Bridget Jones’s Memento
Diary
Film

Figure 4.24 shows the resulting bar chart. It looks pretty good, I think. It is possible to
customise the colours that are used to fill the bars also (see R’s Souls’ Tip 4.3). Like the
simple bar chart, this graph tells us that arousal was overall higher for Memento than for
Bridget Jones’s Diary, but it also splits this information by gender. The mean arousal for
Bridget Jones’s Diary shows that males were actually more aroused during this film than
females. This indicates they enjoyed the film more than the women did. Contrast this with
Memento, for which arousal levels are comparable in males and females. On the face of it,
this contradicts the idea of a ‘chick flick’: it actually seems that men enjoy chick flicks more
than the so-called ‘chicks’ do (probably because it’s the only help we get to understand the
complex workings of the female mind®).

The second way to express gender would be to use this variable as a facet so that we
display different plots for males and females:

bar <- ggplot(chickFlick, aes(film, arousal, fill = film))

Executing the above command sets up the graph in the same way as before. Note, however,
that we do not need to use ‘fill = gender’ because we do not want to vary the colour by
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FIGURE 4.24
Bar chart of the
mean arousal for
each of the two
films
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FIGURE 4.25
The mean
arousal (and
95% confidence
interval) for two
different films
displayed as
different graphs
for men and
women using
facet_wrap()
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gender. (You can omit the fill command altogether, but I have set it so that the bars repre-
senting the different films are filled with different colours.) We set up the bar in the same
way as before, except that we do not need to set the position to dodge because we are no
longer plotting different bars for men and women on the same graph:

bar + stat_summary(fun.y = mean, geom = "bar")

We set up the error bar in the same way as before, except again we don’t need to include
a dodge:

+ stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2)

To get different plots for men and women we use the facet option and specify gender as the
variable by which to facet:

+ facet_wrap( ~ gender)
We add labels as we did before:
+ labs(x = "Film", y = "Mean Arousal")

I’ve added an option to get rid of the graph legend as well (see R’s Souls’ Tip 4.2). I've
included this option because we specified different colours for the different films so ggplot
will create a legend; however, the labels on the x-axis will tell us to which film each bar
relates so we don’t need a colour legend as well):

+ opts(legend.position = "none")

The resulting graph is shown in Figure 4.25; compare this with Figure 4.24 and note how
by using gender as a facet rather than an aesthetic results in different panels for men and
women. The graphs show the same pattern of results though: men and women differ little
in responses to Memento, but men showed more arousal to Bridget Jones’s Diary.

Female Male

35-

30-

Mean Arousal
n
?

10-
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0_
| | | |
Bridget Memento Bridget Memento
Jones’s Jones’s
Diary Diary

Film
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SR ®,] Custom colours @

If you want to override the default fill colours, you can do this using the scale_fill_manual() function. For our chick
flick data, for example, if we wanted blue bars for females and green for males then we can add the following
command:

+ scale_fill_manual("Gender", c("Female" = "Blue", "Male" = "Green"))

Alternatively, you can use very specific colours by specifying colours using the RRGGBB system. For example,
the following produces very specifically coloured blue and green bars:

+ scale_fill_manual("Gender", c("Female" = "#3366FF", "Male" = "#336633"))

Try adding these commands to the end of the command we used to generate Figure 4.24 and see the effect it
has on the bar colours. Then experiment with other colours.

Line graphs @

4.9.2.1. Line graphs of a single independent variable @

Hiccups can be a serious problem: Charles Osborne apparently got a case of
hiccups while slaughtering a hog (well, who wouldn’t?) that lasted 67 years. How do | plot
People have many methods for stopping hiccups (a surprise, holding your a line graph?
breath), but actually medical science has put its collective mind to the task too.

The official treatment methods include tongue-pulling manoeuvres, massage m

of the carotid artery, and, believe it or not, digital rectal massage (Fesmire, D\
1988). I don’t know the details of what the digital rectal massage involved, &/ \(J 9
but I can probably imagine. Let’s say we wanted to put digital rectal massage | foA |
to the test (as a cure for hiccups, I mean). We took 15 hiccup sufferers, and [
during a bout of hiccups administered each of the three procedures (in ran-
dom order and at intervals of 5 minutes) after taking a baseline of how many
hiccups they had per minute. We counted the number of hiccups in the minute after
each procedure. Load the file Hiccups.dat from the companion website into a dataframe
called hiccupsData by executing (again assuming you have set your working directory to
be where the file is located):

hiccupsData <- read.delim("Hiccups.dat", header = TRUE)

Figure 4.26 shows the data. Note there are four variables:

® Baseline: specifies the number of hiccups at baseline.
® Tongue: specifies the number of hiccups after tongue pulling.
® Carotid: specifies the number of hiccups after carotid artery massage.

® Rectum: specifies the number of hiccups after digital rectal massage.



FIGURE 4.26
The Hiccups.dat
data
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annA R Data Fditor =)
I = =

Baseline Tongue Carotid Rectum
15 9 7 2

13 18 7 4

9 17 5 4

7 15 10 5

11 18 7 4

14 8 10 3

20 3 7 3

9 16 12 3

17 10 9 4

19 10 8 4

3 14 11 4

13 22 6 4

20 4 13 4

14 16 i1 2

13 12 8 3

Each row in the data file represents a different person, so these data are laid out as a
repeated-measures design, with each column representing a different treatment condition
and every person undergoing each treatment.

These data are in the wrong format for ggplot2 to use. We need all of the scores stacked
up in a single column and then another variable that specifies the type of intervention.

SELF-TEST

v" Thinking back to Chapter 3, use the stack() function to
restructure the data into long format.

We can rearrange the data as follows (see section 3.9.4):

hiccups<-stack(ChiccupsData)
names(hiccups)<-c("Hiccups","Intervention™)

Executing these commands creates a new dataframe called hiccups, which has the number
of hiccups in one column alongside a new variable containing the original variable name
associated with each score (i.e., the column headings) in the other column (Figure 4.27).
The names() function just assigns names to these new variables in the order that they
appear in the dataframe. To plot a categorical variable in ggplot() it needs to be recog-
nized as a factor, so we also need to create new variable in the hiccups dataframe called
Intervention_Factor, which is just the Intervention variable converted into a factor:

hiccups$Intervention_Factor <- factor(hiccups$Intervention, levels =
hiccups$Intervention)

We are now ready to plot the graph. As always we first create the plot object and define
the variables that we want to plot as aesthetics:

line <- ggplotChiccups, aes(Intervention_Factor, Hiccups))

I have called the object line, and have created it using the ggplot() function. The function
specifies the dataframe to be used (hiccups) and has set Intervention_Factor to be plotted
on the x-axis, and Hiccups to be plotted on the y-axis.
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@O O & Datatditor — FIGURE 4.27
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Hiczups Inzervention in |Ong format
15 Baseline M
13 Baseline
9 Baseline
7 Baseline
11 Baseline
14 Baseline
20 Baseline
9 Raseline
17 Baseline
19 Baseline
3 Baseline
13 Baseline
20 Baseline
14 Baseline
13 Baseline
9 Tongue
18 Tongue
17 Tongue
w/
18 Tongue
18 Tongue
8 Tongue
3 Tongue
16 Tongue
10 Tongue
10 Tongue
14 Tongue
22 Tongue
4 Tongue
16 Tnngue
12 Tongue
7 Carorid
7 Carotid
5 Carotid 1
10 Carotid .

Just as we did for our bar charts, we are going to use stat_summary() to create the mean
values within each treatment condition. Therefore, as with the bar chart, we create a layer
using stat_summary() and add this to the plot:

line + stat_summary(fun.y = mean, geom = "point")

Note that this command is exactly the same as for a bar chart, except that we have
chosen the point geom rather than a bar. At the moment we have a plot with a symbol
representing each group mean. If we want to connect these symbols with a line then we use
stat_summary() again, we again specify fun.y to be the mean, but this time choose the line
geom. To make the line display we also need to set an aesthetic of group = 1; this is because
we are joining summary points (i.e., points that summarize a group) rather than individual
data points. Therefore, we specify the line as:

+ stat_summary(fun.y = mean, geom = "line", aes(group = 1))

The above command will add a solid black line connecting the group means. Let’s imagine
we want this line to be blue, rather than black, and dashed rather than solid, we can simply
add these aesthetics into the above command as follows:

+ stat_summary(fun.y = mean, geom = "line", aes(group = 1), colour = "Blue",
linetype = “dashed”)

Now let’s add an error bar to each group mean. We can do this by adding another layer
using stat_summary(). When we plotted an error bar on the bar chart we used a normal
error bar, so this time let’s add an error bar based on bootstrapping. We set the function
for the data to be mean_cl_boot (fun.data = mean_cl_boot) — see Table 4.4 — and set the
geom to be errorbar (you could use pointrange as we did for the bar chart if you prefer):

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar™)



FIGURE 4.28
Line chart with
error bars of the
mean number
of hiccups at
baseline and
after various
interventions
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The default error bars are quite wide, so I recommend setting the width parameter to 0.2
to make them look nicer:

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2)

You can, of course, also change the colour and other properties of the error bar in the usual
way (e.g., by adding colour = “Red” to make them red). Finally, we will add some labels to
the x- and y-axes using the labs() function:

+ labs(x = "Intervention", y = "Mean Number of Hiccups")

If we put all of these commands together, we can create the graph by executing the fol-
lowing command:

line <- ggplotChiccups, aes(Intervention_Factor, Hiccups))

line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y =
mean, geom = "line", aes(group = 1),colour = "Blue", linetype = "dashed™)
+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) +
labs(x = "Intervention", y = "Mean Number of Hiccups™)
20-
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The resulting graph in Figure 4.28 displays the mean number of hiccups at baseline and
after the three interventions (and the confidence intervals of those means based on boot-
strapping). As we will see in Chapter 9, the error bars on graphs of repeated-measures
designs aren’t corrected for the fact that the data points are dependent; I don’t want to get
into the reasons why here because [ want to keep things simple, but if you’re doing a graph
of your own data then I would read section 9.2 before you do.

We can conclude that the amount of hiccups after tongue pulling was about the same as
at baseline; however, carotid artery massage reduced hiccups, but not by as much as a good
old fashioned digital rectal massage. The moral here is: if you have hiccups, find something
digital and go amuse yourself for a few minutes.
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4.9.2 2. Line graphs for several independent variables @

We all like to text-message (especially students in my lectures who feel the need to text-
message the person next to them to say ‘Bloody hell, this guy is so boring I need to poke
out my own eyes’). What will happen to the children, though? Not only will they develop
super-sized thumbs, they might not learn correct written English. Imagine we conducted
an experiment in which a group of 25 children was encouraged to send text messages on
their mobile phones over a six-month period. A second group of 25 children was forbidden
from sending text messages for the same period. To ensure that kids in this latter group
didn’t use their phones, this group was given armbands that administered painful shocks in
the presence of radio waves (like those emitted from phones).!! The outcome was a score
on a grammatical test (as a percentage) that was measured both before and after the inter-
vention. The first independent variable was, therefore, text message use (text messagers
versus controls) and the second independent variable was the time at which grammatical
ability was assessed (baseline or after 6 months). The data are in the file Text Messages.dat.

Load this file into a dataframe called textData by executing this command (I’'m assuming
you have set the working directory to be where the data file is stored):

textData <- read.delim("TextMessages.dat", header = TRUE)

Figure 4.29 shows the data. Note there are three variables:

® Group: specifies whether they were in the text message group or the control group.
® Baseline: grammar scores at baseline.

e Six_months: grammar scores after 6 months.

Each row in the data file represents a different person. These data are again in the wrong

format for ggplot2. Instead of the current wide format, we need the data in long (i.e., mol-
ten) format (see section 3.9.4). This format will have the following variables:

® Group: specifies whether they were in the text message group or the control group.
® Time: specifies whether the score relates to baseline or 6 months.

® Grammar_Score: the grammar scores.

SELF-TEST

v" Restructure the data to a new dataframe called
textMessages that is in long format. Use the factor()
function (see section 3.5.4.3) to convert the ‘Time’
variable to a factor with levels called ‘Baseline’ and ‘6
Months’.

Assuming that you have done the self-test, you should now have a dataframe called
textMessages that is formatted correctly for ggplot2. As ever, we set up our plot object
(Pve called it line). This command is the same as before, except that we have set the ‘fill’
aesthetic to be the variable Group. This means that any geom specified subsequently will

1 Although this punished them for any attempts to use a mobile phone, because other people’s phones also emit
microwaves, an unfortunate side effect was that these children acquired a pathological fear of anyone talking on
a mobile phone.



FIGURE 4.29
The text message
data before being
reshaped
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anA R Data Fditar =)
Group Baseline Six_manths

Text Messagers 52 32 1”
Text Messagers 68 48

Text Messagers 35 62

Text Messagers 47 16

Text Messagers 73 63

Text Messagers 57 53

Text Messagers 63 59

Text Messagers 50 S8

Text Messagers 656 59

Text Messagers 60 57

Text Messagers 51 60

Text Messagers 72 56

Text Messagers 77 61

Text Messagers 57 52

Text Messagers 79 9

Text Messagers 75 76

Text Messagers 33 38

Text Messagers 72 63

Text Messagers 62 53

Text Messagers 71 61 Jh
Text Messagers 33 50

Text Messagers 64 78

Text Messagers 79 33

Text Messagers 75 68

Text Messagers 60 59

Contruls 65 62

Controls 57 50

Controls 66 62

Contrals 71 61

Controls 75 70

Controls 61 64

Controls 30 64 =
Controls 656 55 p

be filled with different colours for text messagers and the control group. Note that we
have specified the data to be the textMessages dataframe, and for Time to be plotted on the
x-axis and Grammar_Score on the y-axis.

line <- ggplot(textMessages, aes(Time, Grammar_Score, colour = Group))

If we want to add the means, displayed as symbols, we can add this as a layer to /ine using
the stat_summary() function just as we did in the previous section:

line + stat_summary(fun.y = mean, geom = "point")

To add lines connecting the means we can add these as a layer using stat_summary() in
exactly the same way as we did in the previous section. The main difference is that because
in this example we have more than one group, rather than setting aes(group = 1) as we did
before, we now set this aesthetic to be the variable (Group) that differentiates the different
sets of means (aes(group = Group)):

+ stat_summary(fun.y = mean, geom = "line", aes(group = Group))

We can also add a layer containing error bars and a layer containing labels using the same
commands as the previous example:

+ stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) +
labs(x = "Time", y = "Mean Grammar Score", colour = "Group™)

If we put all of these commands together we can create the graph by executing the fol-
lowing command:

line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y =
mean, geom = "line", aes(group = Group)) + stat_summary(fun.data = mean_cl_
boot, geom = "errorbar", width = 0.2) + labs(x = "Time", y = "Mean Grammar

Score", colour = "Group")
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SELF-TEST

v" Use what you have learnt to repeat the text message
data plot but to also have different symbols for text
messagers and controls and different types of lines.

Figure 4.30 shows the resulting chart. It shows that at baseline (before the intervention)
the grammar scores were comparable in our two groups; however, after the intervention,
the grammar scores were lower in the text messagers than in the controls. Also, if you look
at the dark blue line you can see that text messagers’ grammar scores have fallen over the
6 months; compare this to the controls (the red line on your screen, or black in the figure)
whose grammar scores are fairly similar over time. We could, therefore, conclude that text
messaging has a detrimental effect on children’s understanding of English grammar and
civilization will crumble, with Abaddon rising cackling from his bottomless pit to claim our
wretched souls. Maybe.

FIGURE 4.30
Error bar graph
n of the mean
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4.10. Themes and options ®

I mentioned earlier that ggplot2 produces Tufte-friendly graphs. In fact, it has two built-in
themes. The default is called theme_grey(), which follows Tufte’s advice in that it uses grid
lines to ease interpretation but makes them have low visual impact so that they do not dis-
tract the eye from the data. The second theme is a more traditional black and white theme
called theme_bw(). The two themes are shown in Figure 4.31.

As well as these global themes, the opts() function allows you to control the look of
specific parts of the plot. For example, you can define a title, set the properties of that title
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FIGURE 4.31
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(size, font, colour, etc.). You can also change the look of axes, grid lines, background panels
and text. You apply theme and formatting instructions by adding a layer to the plot:

myGraph + geom_point() + opts()

Table 4.5 shows these themes, their aesthetic properties and the elements of the plot
associated with them. The table makes clear that there are four types of theme that

Table 4.5 Summary of theme elements and their properties

Theme Properties Elements
theme_text() family axis.text.x
face axis.text.y
colour "
' axis.title.x
size
hjust axis title.y
vjust legend.text
angle legend.title
lineheight ,
plot.title
strip.text.x
strip.text.y
theme _line() colour panel.grid.major
size panel.grid.minor
linetype
theme_segment() colour axis.line
size axis.ticks
linetype
theme_rect() colour legend.background
size legend.key
linetype

fill panel.background
panel.background
plot.background

strip.background

Element Description
x-axis label

y-axis label

Horizontal tick labels
Vertical tick labels
Legend labels

Legend name

Plot title

Horizontal facet label text
Vertical facet label text
Major grid lines

Minor grid lines

Line along an axis
Axis tick marks

Background of legend
Background under legend key
Background of panel

Border of panel

Background of the entire plot

Background of facet labels
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determine the appearance of text (theme_text), lines (theme_line), axes (theme_segment)
and rectangles (theme_rect). Each of these themes has properties that can be adjusted; so
for all of them you can adjust size and colour, for text you can also adjust things like the
font family and angle, for rectangles you can change the fill colour and so on. Different
elements of a plot can be changed by adjusting the particular theme attached to that ele-
ment. So, for example, if we wanted to change the colour of the major grid lines to blue, we
would have to do this by setting the colour aesthetic of the panel.grid.major element using
theme_line(). Aesthetic properties are set in the same way as described in section 4.4.3.
Therefore, we would do this as follows:

+ opts(panel.grid.major = theme_line(colour = "Blue™))
Similarly, we could make the axes have blue lines with:

+ opts(Caxis.line = theme_segment(colour = "Blue™))

or dashed lines by using:

+ opts(axis.line = theme_segment(linetype = 2))

The possibilities are endless, and I can’t explain them all without killing several more
rainforests, but I hope that you get the general idea.

- - 3 -

What have | discovered about statistics? @

This chapter has looked at how to inspect your data using graphs. We’ve covered a lot
of different graphs. We began by covering some general advice on how to draw graphs
and we can sum that up as minimal is best: no pink, no 3-D effects, no pictures of Errol
your pet ferret superimposed on the graph — oh, and did I mention no pink? We have
looked at graphs that tell you about the distribution of your data (histograms, boxplots
and density plots), that show summary statistics about your data (bar charts, error bar
charts, line charts, drop-line charts) and that show relationships between variables (scat-
terplots). Throughout the chapter we looked at how we can edit graphs to make them
look minimal (and of course to colour them pink, but we know better than to do that,
don’t we?).

We also discovered that I liked to explore as a child. I was constantly dragging my dad
(or was it the other way around?) over piles of rocks along any beach we happened to
be on. However, at this time I also started to explore great literature, although unlike
my cleverer older brother who was reading Albert Einstein’s papers (well, Isaac Asimov)
as an embryo, my literary preferences were more in keeping with my intellect, as we
will see.

R packages used in this chapter

ggplot2



R functions used in this chapter

file.path()
geom_boxplot()
geom_density()
geom_histogram()
geom_line()
geom_point()
geom_smooth()

ggplot()
ggsave()

labs()

opts()

gplot()

stat_ summary()
Sys.getenv()

Key terms that I’'ve discovered

Bar chart

Boxplot (box—whisker plot)
Chartjunk

Density plot

Error bar chart

Smart Alex’s tasks

lecturers.

Line chart
Outlier
Regression line
Scatterplot
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® Task 1: Using the data from Chapter 3 (which you should have saved, but if you
didn’t, re-enter it from Table 3.6), plot and interpret the following graphs: ®

o An error bar chart showing the mean number of friends for students and lecturers.
o An error bar chart showing the mean alcohol consumption for students and

o An error line chart showing the mean income for students and lecturers.
o An error line chart showing the mean neuroticism for students and lecturers.
o A scatterplot with regression lines of alcohol consumption and neuroticism

grouped by lecturer/student.

® Task 2: Using the Infidelity data from Chapter 3 (see Smart Alex’s Task 3), plot a

for males and females. ®

Further reading

Answers can be found on the companion website.

clustered error bar chart of the mean number of bullets used against self and partner

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics

Press.

Wainer, H. (1984). How to display data badly. American Statistician, 38(2), 137-147.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.
Wilkinson, L. (2005). The grammar of graphics. New York: Springer-Verlag.
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Wright, D. B., & Williams, S. (2003). Producing bad results sections. The Psychologist, 16, 646-648.
(This is a very accessible article on how to present data. Dan usually has this article on his website
so Google Dan Wright to find where his web pages are located.)

Web resources:

http://junkcharts.typepad.com/ is an amusing look at bad graphs.
http://had.co.nz/ggplot2/ is the official ggplot2 website (and very useful it is, too).

Interesting real research

Fesmire, F. M. (1988). Termination of intractable hiccups with digital rectal massage. Annals of
Emergency Medicine, 17(8), 872.



FIGURE 5.1
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Exploring assumptions

When we were learning to read at primary school, we used to read versions of stories by
the famous storyteller Hans Christian Andersen. One of my favourites was the story of
the ugly duckling. This duckling was a big ugly grey bird, so ugly that even a dog would
not bite him. The poor duckling was ridiculed, ostracized and pecked by the other ducks.
Eventually, it became too much for him and he flew to the swans, the royal birds, hoping
that they would end his misery by killing him because he was so ugly. As he stared into the
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water, though, he saw not an ugly grey bird but a beautiful swan. Data are much the same.
Sometimes they’re just big, grey and ugly and don’t do any of the things that they’re sup-
posed to do. When we get data like these, we swear at them, curse them, peck them and
hope that they’ll fly away and be killed by the swans. Alternatively, we can try to force our
data into becoming beautiful swans. That’s what this chapter is all about: assessing how
much of an ugly duckling of a data set you have, and discovering how to turn it into a swan.
Remember, though, a swan can break your arm.!

5.2. What are assumptions? @

Some academics tend to regard assumptions as rather tedious things about which
no one really need worry. When I mention statistical assumptions to my fellow
psychologists they tend to give me that raised eyebrow, ‘good grief, get a life’
look and then ignore me. However, there are good reasons for taking assump-
tions seriously. Imagine that I go over to a friend’s house, the lights are on and ;
it’s obvious that someone is at home. I ring the doorbell and no one answers. fte Y)
From that experience, I conclude that my friend hates me and that [ am a ter- \(J R
rible, unlovable person. How tenable is this conclusion? Well, there is a reality = S
that I am trying to tap (i.e., whether my friend likes or hates me), and I have )
collected data about that reality (I’ve gone to his house, seen that he’s at home,
rung the doorbell and got no response). Imagine that in reality my friend likes me (he’s a
lousy judge of character); in this scenario, my conclusion is false. Why have my data led me
to the wrong conclusion? The answer is simple: I had assumed that my friend’s doorbell
was working and under this assumption the conclusion that I made from my data was accu-
rate (my friend heard the bell but chose to ignore it because he hates me). However, this
assumption was not true — his doorbell was not working, which is why he didn’t answer
the door — and as a consequence the conclusion I drew about reality was completely false.
It pays to check assumptions and your doorbell batteries.

Enough about doorbells, friends and my social life: the point to remember is that when
assumptions are broken we stop being able to draw accurate conclusions about reality.
Different statistical models assume different things, and if these models are going to reflect
reality accurately then these assumptions need to be true. This chapter is going to deal with
some particularly ubiquitous assumptions so that you know how to slay these particular
beasts as we battle our way through the rest of the book. However, be warned: some tests
have their own unique two-headed, fire-breathing, green-scaled assumptions and these will
jump out from behind a mound of blood-soaked moss and try to eat us alive when we least
expect them to. Onward into battle ...

Why bother with
assumptions?

5.3. Assumptions of parametric data @

What are the
Many of the statistical procedures described in this book are paramet- assumptions of parametric

ric tests based on the normal distribution (which is described in section
1.7.4). A parametric test is one that requires data from one of the large
catalogue of distributions that statisticians have described, and for data to
be parametric certain assumptions must be true. If you use a parametric
test when your data are not parametric then the results are likely to be
inaccurate. Therefore, it is very important that you check the assump-
tions before deciding which statistical test is appropriate. Throughout

! Although it is theoretically possible, apparently you’d have to be weak boned, and swans are nice and wouldn’t
do that sort of thing.
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this book you will become aware of my obsession with assumptions and checking them.
Most parametric tests based on the normal distribution have four basic assumptions that
must be met for the test to be accurate. Many students find checking assumptions a pretty
tedious affair, and often get confused about how to tell whether or not an assumption has
been met. Therefore, this chapter is designed to take you on a step-by-step tour of the
world of parametric assumptions. Now, you may think that assumptions are not very excit-
ing, but they can have great benefits: for one thing, you can impress your supervisor/
lecturer by spotting all of the test assumptions that they have violated throughout their
careers. You can then rubbish, on statistical grounds, the theories they have spent their
lifetime developing — and they can’t argue with you,? but they can poke your eyes out. The
assumptions of parametric tests are:

1 Normally distributed data: This is a tricky and misunderstood assumption because it
means different things in different contexts. For this reason I will spend most of the
chapter discussing this assumption. In short, the rationale behind hypothesis test-
ing relies on having something that is normally distributed (in some cases it’s the
sampling distribution, in others the errors in the model), and so if this assumption
is not met then the logic behind hypothesis testing is flawed (we came across these
principles in Chapters 1 and 2).

2 Homogeneity of variance: This assumption means that the variances should be the
same throughout the data. In designs in which you test several groups of participants
this assumption means that each of these samples comes from populations with the
same variance. In correlational designs, this assumption means that the variance of
one variable should be stable at all levels of the other variable (see section 5.7).

3 Interval data: Data should be measured at least at the interval level. This assumption
is tested by common sense and so won’t be discussed further (but do read section
1.5.1.2 again to remind yourself of what we mean by interval data).

4 Independence: This assumption, like that of normality, is different depending on the
test you’re using. In some cases it means that data from different participants are inde-
pendent, which means that the behaviour of one participant does not influence the
behaviour of another. In repeated-measures designs (in which participants are mea-
sured in more than one experimental condition), we expect scores in the experimental
conditions to be non-independent for a given participant, but behaviour between dif-
ferent participants should be independent. As an example, imagine two people, Paul
and Julie, were participants in an experiment where they had to indicate whether they
remembered having seen particular photos earlier on in the experiment. If Paul and
Julie were to confer about whether they’d seen certain pictures then their answers
would 70t be independent: Julie’s response to a given question would depend on Paul’s
answer, and this would violate the assumption of independence. If Paul and Julie were
unable to confer (if they were locked in different rooms) then their responses should be
independent (unless they’re telepathic): Julie’s should not influence Paul’s responses.
In regression, however, this assumption also relates to the errors in the regression
model being uncorrelated, but we’ll discuss that more in Chapter 7.

We will, therefore, focus in this chapter on the assumptions of normality and homogeneity
of variance.

2 When I was doing my Ph.D., we were set a task by our statistics lecturer in which we had to find some published
papers and criticize the statistical methods in them. I chose one of my supervisor’s papers and proceeded to slag
off every aspect of the data analysis (and I was being very pedantic about it all). Imagine my horror when my
supervisor came bounding down the corridor with a big grin on his face and declared that, unbeknownst to me,
he was the second marker of my essay. Luckily, he had a sense of humour and I got a good mark.©
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5.4. Packages used in this chapter @

Some useful packages for exploring data are car, ggplot2 (for graphs), pastecs (for descrip-
tive statistics) and psych. Of course, if you plan to use R Commander then you need the
Remdr package installed too (see section 3.6). If you do not have these packages installed,
you can install them by executing the following commands:

install.packages("car"); install.packages("ggplot2™);
install.packages("pastecs™); install.packages("psych")
You then need to load these packages by executing the commands:

library(car); library(ggplot2); library(pastecs); library(psych);
library(Rcmdr)

We encountered the normal distribution back in Chapter 1, we know what it looks like
and we (hopefully) understand it. You’d think then that this assumption would be easy to
understand — it just means that our data are normally distributed, right? Actually, no. In
many statistical tests (e.g., the ¢-test) we assume that the sampling distribution is normally
distributed. This is a problem because we don’t have access to this distribution — we can’t
simply look at its shape and see whether it is normally distributed. However, we know
from the central limit theorem (section 2.5.1) that if the sample data are approximately
normal then the sampling distribution will be also. Therefore, people tend to look at their
sample data to see if they are normally distributed. If so, then they have a little party to
celebrate and assume that the sampling distribution (which is what actually matters) is also.
We also know from the central limit theorem that in big samples the sampling distribu-
tion tends to be normal anyway — regardless of the shape of the data we actually collected
(and remember that the sampling distribution will tend to be normal regardless of the
population distribution in samples of 30 or more). As our sample gets bigger, then, we
can be more confident that the sampling distribution is normally distributed (but see Jane
Superbrain Box 5.1).

The assumption of normality is also important in research using regression (or general
linear models). General linear models, as we will see in Chapter 7, assume that errors in the
model (basically, the deviations we encountered in section 2.4.2) are normally distributed.

In both cases it might be useful to test for normality, and that’s what this section is
dedicated to explaining. Essentially, we can look for normality visually, look at values that
quantify aspects of a distribution (i.e., skew and kurtosis) and compare the distribution we
have to a normal distribution to see if it is different.

Oh no, it’s that pesky frequency distribution again:
checking normality visually ©

We discovered in section 1.7.1 that frequency distributions are a useful way to look at
the shape of a distribution. In addition, we discovered how to plot these graphs in sec-
tion 4.4.8. Therefore, we are already equipped to look for normality in our sample using
a graph. Let’s return to the Download Festival data from Chapter 4. Remember that a
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biologist had visited the Download Festival (a rock and heavy metal festival in the UK) and
assessed people’s hygiene over the three days of the festival using a standardized technique
that results in a score ranging between 0 (you smell like a rotting corpse that’s hiding up a
skunk’s anus) and 4 (you smell of sweet roses on a fresh spring day). The data file can be
downloaded from the companion website (DownloadFestival.dat) — remember to use the
version of the data for which the outlier has been corrected (if you haven’t a clue what I
mean, then read section 4.4.8 or your graphs will look very different from mine!).

SELF-TEST

v Using what you learnt in Chapter 4, plot histograms
for the hygiene scores for the three days of the
Download Festival. (For reasons that will become
apparent, use geom_histogram(aes(y = ..density..)
rather than geom_histogram().)

When you drew the histograms, this gave you the distributions. It might be nice to also
have a plot of what a normal distribution looks like, for comparison purposes. Even better
would be if that we could put a normal distribution onto the same plot. Well, we can using
the power of ggplot2. First, load in the data:

dlf <- read.delim("DownloadFestival.dat", header=TRUE)

To draw the histogram, you should have used code something like:

hist.dayl <- ggplot(dlf, aes(dayl)) + opts(legend.position = "none") +
geom_histogram(aes(y = ..density..), colour = "black", fill = "white") +
labs(x = "Hygiene score on day 1", y = "Density")

hist.dayl

To see what this function is doing we can break down the command:

o goplot(dlf, aes(day1)): This tells R to plot the day1 variable from the dlf dataframe.
o opts(legend.position = “none”): This command gets rid of the legend of the graph.

® geom_histogram(aes(y=..density..), colour = “black”, fill="white”): This command
plots the histogram, sets the line colour to be black and the fill colour to be white.
Notice that we have asked for a density plot rather than frequency because we want
to plot the normal curve.

® labs(x = “Hygiene score on day 17, y = “Density”): this command sets the labels for
the x- and y-axes.

We can add another layer to the chart, which is a normal curve. We need to tell ggploz2
what mean and standard deviation we’d like on that curve though. And what we’d like is
the same mean and standard deviation that we have in our data. To add the normal curve,
we take the existing histogram object (hist.day1) and add a new layer that uses stat_func-
tion() to produce a normal curve and lay it on top of the histogram:

hist.dayl + stat_function(fun = dnorm, args = list(mean = mean(dlf$dayl,
na.rm = TRUE), sd = sd(dlf$dayl, na.rm = TRUE)), colour = "black", size = 1)

The stat_function() command draws the normal curve using the function dnorm(). This
function basically returns the probability (i.e., the density) for a given value from a normal
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distribution of known mean and standard deviation. The rest of the command specifies the
mean as being the mean of the day1 variable after removing any missing values (mean =
mean (dIf$day1, na.rm = TRUE)), and the standard deviation as being that of day1 (), sd =
sd(dlf$day1, na.rm = TRUE)). We also set the line colour as black and the line width as 1.3

SELF-TEST

v Add normal curves to the histograms that you drew
for day2 and day3.

There is another useful graph that we can inspect to see if a distribution is normal called a
Q-Q plot (quantile-quantile plot; a quantile is the proportion of cases we find below a certain
value). This graph plots the cumulative values we have in our data against the cumulative
probability of a particular distribution (in this case we would specify a normal distribu-
tion). What this means is that the data are ranked and sorted. Each value is compared to
the expected value that the score should have in a normal distribution and they are plotted
against one another. If the data are normally distributed then the actual scores will have the
same distribution as the score we expect from a normal distribution, and you’ll get a lovely
straight diagonal line. If values fall on the diagonal of the plot then the variable is normally
distributed, but deviations from the diagonal show deviations from normality.

To draw a Q-Q plot using the ggplot2 package, we can use the gplot() function in con-
junction with the gq statistic. Execute the following code:

qgplot.dayl <- gplot(sample = dlf$dayl, stat="qq")
qgplot.dayl

(Note that by default ggplot2 assumes you want to compare your distribution with a nor-
mal distribution — you can change that if you want to, but it’s so rare that we’re not going
to worry about it here.)

SELF-TEST

v" Create Q-Q plots for the variables day2 and day3.

Figure 5.2 shows the histograms (from the self-test task) and the corresponding Q-Q
plots. The first thing to note is that the data from day 1 look a lot more healthy since we’ve
removed the data point that was mistyped back in section 4.7. In fact the distribution is
amazingly normal looking: it is nicely symmetrical and doesn’t seem too pointy or flat —
these are good things! This is echoed by the Q-Q plot: note that the data points all fall very
close to the ‘ideal’ diagonal line.

3 I have built up the histogram and normal plot in two stages because I think it makes it easier to understand what
you’re doing, but you could build the plot in a single command:

hist.dayl <- ggplot(dlf, aes(dayl)) + opts(legend.position = "none") + geom_
histogram(aes(y = ..density..), colour = "black", fill = "white") + labs(x
"Hygiene score on day 1", y = "Density") + stat_function(fun = dnorm, args =
list(mean = mean(dlf$dayl, na.rm = TRUE), sd = sd(dlf$dayl, na.rm = TRUE)), colour
= "black", size = 1)

hist.dayl



FIGURE 5.2
Histograms (left)
and Q-Q plots
(right) of the
hygiene scores
over the three
days of the
Download Festival
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However, the distributions for days 2 and 3 are not nearly as symmetrical. In fact, they
both look positively skewed. Again, this can be seen in the Q-Q plots by the data val-
ues deviating away from the diagonal. In general, what this seems to suggest is that by
days 2 and 3, hygiene scores were much more clustered around the low end of the scale.
Remember that the lower the score, the less hygienic the person is, so this suggests that
generally people became smellier as the festival progressed. The skew occurs because a
substantial minority insisted on upholding their levels of hygiene (against all odds!) over
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the course of the festival (I find baby wet-wipes are indispensable). However, these skewed
distributions might cause us a problem if we want to use parametric tests. In the next sec-
tion we’ll look at ways to try to quantify the skew and kurtosis of these distributions.

Quantifying normality with numbers ®

It is all very well to look at histograms, but they are subjective and open to abuse (I can
imagine researchers sitting looking at a completely distorted distribution and saying ‘yep,
well Bob, that looks normal to me’, and Bob replying ‘yep, sure does’). Therefore, having
inspected the distribution of hygiene scores visually, we can move on to look at ways to quan-
tify the shape of the distributions and to look for outliers. To further explore the distribution
of the variables, we can use the describe() function, in the psych package.

describe(dlf$dayl)

We can also use the stat.desc() function of the pastecs package,* which takes the general
form:

stat.desc(variable name, basic = TRUE, norm = FALSE)

In this function, we simply name our variable and by default (i.e., if we simply name a vari-
able and don’t include the other commands) we’ll get a whole host of statistics including
some basic ones such as the number of cases (because basic = TRUE by default) but not
including statistics relating to the normal distribution (because norm = FALSE by default).
To my mind the basic statistics are not very useful so I usually specify basic = FALSE (to
get rid of these), but in the current context it is useful to override the default and specify
norm = TRUE so that we get statistics relating to the distribution of scores. Therefore, we
could execute:

stat.desc(dlf$dayl, basic = FALSE, norm = TRUE)

Note that we have specified the variable day1 in the dIf dataframe, asked not to see the

basic statistics (basic = FALSE) but asked to see the normality statistics (norm = TRUE).
We can also use describe() and stat.desc() with more than one variable at the same time,

using the cbind() function to combine two or more variables (see R’s Souls’ Tip 3.5).

describe(cbind(dlf$dayl, dlf$day2, dlf$day3))
stat.desc(cbind(dlf$dayl, dlf$day2, dlf$day3), basic = FALSE, norm = TRUE)

Note that in each case we have simply replaced a single variable with cbind(dlf$day1,
dlf$day2, dlf$day3) which combines the three variables day1, day2, and day3 into a single
object.

A second way to describe more than one variable is to select the variable names directly
from the data set (see section 3.9.1):

describe(dlf[,c("dayl", "day2", "day3")]1)
stat.desc(dlf[, c("dayl", "day2", "day3")], basic = FALSE, norm = TRUE)

4 There’s always a second way to do something with R. And often a third, fourth and fifth way. While writing this
book Jeremy and I would often look at each other’s bits (and sometimes what we’d written too) and then send an
email saying ‘oh, I didn’t know you could do that, I always use a different function in a different package’. People
can become quite attached to their ‘favourite’ way of doing things in R, but obviously we’re way too cool to have
favourite ways of doing stats, which is why I didn’t at all insist on adding reams of stuff on stat.desc() because I
prefer it to Jeremy’s crappy old describe() function.
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Remember that we can select rows and columns using [rows, columns], therefore, dlf],
c(“day1”, “day2”, “day3”)] means from the dlIf dataframe select all of the rows (because
nothing is specified before the comma) and select the columns labelled day1, day2, and
day3 (because we have specified ¢(“day1”, “day2”, “day3”)).

SRR TR Funny numbers @

You might notice that R sometimes reports numbers with the letter ‘e’ placed in the mix just to confuse you. For
example, you might see a value such as 9.612 e-02 and many students find this notation confusing. Well, this
notation means 9.612 x 10-2 (which might be a more familiar notation, or could be even more confusing). OK,
some of you are still confused. Well think of e—02 as meaning ‘move the decimal place 2 places to the left’, so
9.612 e—02 becomes 0.09612. If the notation read 9.612 e-01, then that would be 0.9612, and if it read 9.612
e-083, that would be 0.009612. Likewise, think of e+02 (notice the minus sign has changed) as meaning ‘move
the decimal place 2 places to the right’. So 9.612 e+02 becomes 961.2.

The results of these commands are shown in Output 5.1 (describe) and Output 5.2
(stat.desc). These outputs basically contain the same values® although they are presented
in a different notation in Output 5.2 (see R’s Souls’ Tip 5.1). We can see that, on average,
hygiene scores were 1.77 (out of 4) on day 1 of the festival, but went down to 0.96 and
0.98 on days 2 and 3, respectively. The other important measures for our purposes are the
skew and the kurtosis (see section 1.7.1). The values of skew and kurtosis should be zero
in a normal distribution. Positive values of skew indicate a pile-up of scores on the left of
the distribution, whereas negative values indicate a pile-up on the right. Positive values of
kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate
a flat and light-tailed distribution. The further the value is from zero, the more likely it is
that the data are not normally distributed. For day 1 the skew value is very close to zero
(which is good) and kurtosis is a little negative. For days 2 and 3, though, there is a skew
of around 1 (positive skew).

Although the values of skew and kurtosis are informative, we can convert these values
to z-scores. We saw in section 1.7.4 that a z-score is simply a score from a distribution
that has a mean of 0 and a standard deviation of 1. We also saw that this distribution has
known properties that we can use. Converting scores to a z-score can be useful (if treated
with suitable caution) because (1) we can compare skew and kurtosis values in different
samples that used different measures, and (2) we can see how likely our values of skew and
kurtosis are to occur. To transform any score to a z-score you simply subtract the mean of
the distribution (in this case zero) and then divide by the standard deviation of the distribu-
tion (in this case we use the standard error). Skew and kurtosis are converted to z-scores
in exactly this way.

S-0 K-0

zskewness - SE zkurtosis - SE

'skewness kurtosis

> The observant will notice that the values of kurtosis differ, this is because describe() produces an unbiased esti-
mate (DeCarlo, 1997) whereas stat.desc() produces a biased one.
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In the above equations, the values of S (skew) and K (kurtosis) and their respective stan-
dard errors are produced by R. These z-scores can be compared against values that you
would expect to get by chance alone (i.e., known values for the normal distribution shown
in the Appendix). So, an absolute value greater than 1.96 is significant at p < .05, above
2.58 is significant at p < .01, and above 3.29 is significant at p < .001. Large samples
will give rise to small standard errors and so when sample sizes are big, significant values
arise from even small deviations from normality. In smallish samples it’s OK to look for
values above 1.96; however, in large samples this criterion should be increased to the 2.58
one and in very large samples, because of the problem of small standard errors that I've
described, no criterion should be applied. If you have a large sample (200 or more) it is
more important to look at the shape of the distribution visually and to look at the value of
the skew and kurtosis statistics rather than calculate their significance.

var n mean sd median trimmed mad min max range skew kurtosis se
1809 1.77 0.69 1.79 1.77 0.70 0.02 3.69 3.67 0.00 -0.41 0.02
2 264 0.96 0.72 0.79 0.87 0.61 0.00 3.44 3.44 1.08 0.82 0.04
3 123 0.98 0.71 0.76 0.90 0.61 0.02 3.41 3.39 1.01 0.73 0.06

Output 5.1

dayl day?2 day3
median 1.790000000 7.900000e-01 7.600000e-01
mean 1.770828183 9.609091e-01 9.765041e-01
SE.mean 0.024396670 4.436095e-02 6.404352e-02
CI.mean.0.95 0.047888328 8.734781e-02 1.267805e-01
var 0.481514784 5.195239e-01 5.044934e-01
std.dev 0.693912663 7.207801e-01 7.102770e-01
coef.var 0.391857702 7.501022e-01 7.273672e-01
skewness -0.003155393 1.082811e+00 1.007813e+00
skew.2SE -0.018353763 3.611574e+00 2.309035e+00
kurtosis -0.423991408 7.554615e-01 5.945454e-01
kurt.2SE -1.234611514 1.264508e+00 6.862946e-01
normtest.W 0.995907247 9.083185e-01 9.077513e-01
normtest.p 0.031846386 1.281495e-11 3.804334e-07
Output 5.2

The stat.desc() function produces skew.2SE and kurt.2SE, which are the skew and kur-
tosis value divided by 2 standard errors. Remember that z is significant if it is greater than
2 (well, 1.96), therefore this statistic is simply the equations above in a slightly different
format. We have said that if the skew divided by its standard error is greater than 2 then it
is significant (at p < .05), which is the same as saying that if the skew divided by 2 times
the standard error is greater than 1 then it is significant (at p < .05). In other words, if
skew.2SE or kurt.2SE are greater than 1 (ignoring the plus or minus sign) then you have
significant skew/kurtosis (at p < .05); values greater than 1.29 indicate significance at p
< .01, and above 1.65 indicate significance at p < .001. However, as I have just said, you
would only use this criterion in fairly small samples so you need to interpret these values
of skew.2SE or kurt.2SE cautiously.

For the hygiene scores, the values of skew.2SE are —0.018, 3.612, and 2.309 for days 1,
2 and 3 respectively, indicating significant skew on days 2 and 3; the values of kurt.2SE
are —1.235, 1.265, and 0.686, indicating significant kurtosis on days 1 and 2, but not day
3. However, bear in mind what I just said about large samples because our sample size is
pretty big so the histograms are better indicators of the shape of the distribution.

The output of stat.desc() also gives us the Shapiro-Wilk test of normality, which we look
at in some detail in section 5.6. For the time being, just note that the test and its probability
value can be found in Output 5.2 labelled as normtest. W and normtest.p.
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, R Changing how many decimal places are
R’s Souls’ Tip 5.2 displayed in your output

Output 5.2 looks pretty horrible because of all of the decimal places and the scientific notation (i.e., 7.900000e—
01). Most of this precision is unnecessary for everyday purposes. However, we can easily convert our output
using the round() function. This function takes the general form:

round(object that we want to round, digits = x)

Therefore, we can stick an object into this function and then set digits to be the number of decimal places that we
want. For example, if we wanted Output 5.2 to be displayed to 3 decimal places we could execute:

round(stat.desc(dlf[, c("dayl", "day2", "day3")], basic = FALSE, norm = TRUE), digits
=3)

Note that we have simply placed the original command (stat.desc(dlf[, c(“day1’, “day2”, “day3”)], basic = FALSE,
norm = TRUE)) within the round() function, and then set digits to be 3. The result is a more palatable output:

dayl day2 day3

median 1.790 0.790 0.760
mean 1.771 0.961 0.977
SE.mean 0.024 0.044 0.064
CI.mean.0.95 0.048 0.087 0.127
var 0.482 0.520 0.504
std.dev 0.694 0.721 0.710
coef.var 0.392 0.750 0.727
skewness -0.003 1.083 1.008
skew.2SE -0.018 3.612 2.309
kurtosis -0.424 0.755 0.595
kurt.2SE -1.235 1.265 0.686
normtest.W 0.996 0.908 0.908
normtest.p 0.032 0.000 0.000

WIS Skew and kurtosis

e To check that the distribution of scores is approximately normal, we need to look at the values of skew and kurtosis in the
output.

e Positive values of skew indicate too many low scores in the distribution, whereas negative values indicate a build-up of high
SCOres.

o Positive values of kurtosis indicate a pointy and heavy-tailed distribution, whereas negative values indicate a flat and light-
tailed distribution.

o The further the value is from zero, the more likely it is that the data are not normally distributed.

e You can test the significance of these values of skew and kurtosis, but these tests should not be used in large samples
(because they are likely to be significant even when skew and kurtosis are not too different from normal).



CHAPTER 5 EXPLORING ASSUMPTIONS 177

Exploring groups of data ®

Sometimes we have data in which there are different groups of entities (cats
and dogs, different universities, people with depression and people without,
for example). There are several ways to produce basic descriptive statistics for
separate groups of people (and we will come across some of these methods in
section 5.6.1). However, I intend to use this opportunity to introduce you to
the by() function and reintroduce the subset() function from Chapter 3. These
functions allow you to specify a grouping variable which splits the data, or to
select a subset of cases.

You’re probably getting sick of the hygiene data from the Download Festival
so let’s use the data in the file RExam.dat. This file contains data regarding stu-
dents’ performance on an R exam. Four variables were measured: exam (first-
year R exam scores as a percentage), computer (measure of computer literacy
as a percentage), lecture (percentage of R lectures attended) and numeracy (a
measure of numerical ability out of 15). There is a variable called uni indicating whether
the student attended Sussex University (where I work) or Duncetown University. Let’s
begin by looking at the data as a whole.

Can | analyse
groups of data?

5.5.3.1. Running the analysis for all data ®

To begin with, open the file RExam.dat by executing:
rexam <- read.delim("rexam.dat", header=TRUE)

The variable uni will have loaded in as numbers rather than as text, because that was
how it was specified in the data file; therefore, we need to set the variable uni to be a factor
by executing (see section 3.5.4.3):

rexam$uni<-factor(rexam$uni, levels = «¢c(0:1), Tlabels = c("Duncetown
University", "Sussex University"))

Remember that this command takes the variable uni from the rexam dataframe (rexam$uni),
specifies the numbers used to code the two universities, 0 and 1 (levels = ¢(0:1)), and then
assigns labels to them so that 0 represents Duncetown University, and 1 represents Sussex
University (labels = c¢(“Duncetown University”, “Sussex University™)).

SELF-TEST

v Using what you have learnt so far, obtain descriptive
statistics and draw histograms of first-year exam
scores, computer literacy, numeracy and lectures
attended.

Assuming you completed the self-test, you should see something similar to what’s in
Output 5.3 (I used stat.desc()) and Figure 5.3. From Output 5.3, we can see that, on
average, students attended nearly 60% of lectures, obtained 58% in their R exam,
scored only 51% on the computer literacy test, and only 4.85 out of 15 on the numer-
acy test. In addition, the standard deviation for computer literacy was relatively small
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compared to that of the percentage of lectures attended and exam scores. The other
important measures are the skew and the kurtosis, and their associated tests of sig-
nificance. We came across these measures earlier on and found that we can interpret
absolute values of kurt.2SE and skew.2SE greater than 1, 1.29, and 1.65 as significant
p <.05,p <.01,and p < .001, respectively. We can see that for skew, numeracy scores
are significantly positively skewed (p < .001) indicating a pile-up of scores on the left
of the distribution (so most students got low scores). For kurtosis, prior exam scores
are significant (p < .05).

The histograms show us several things. The exam scores are very interesting because this
distribution is quite clearly not normal; in fact, it looks suspiciously bimodal (there are two
peaks, indicative of two modes). This observation corresponds with the earlier informa-
tion from the table of descriptive statistics. It looks as though computer literacy is fairly
normally distributed (a few people are very good with computers and a few are very bad,
but the majority of people have a similar degree of knowledge), as is the lecture attendance.
Finally, the numeracy test has produced very positively skewed data (i.e., the majority of
people did very badly on this test and only a few did well). This corresponds to what the
skew statistic indicated.
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exam computer lectures numeracy

median 60.000 51.500 62.000 4.000
mean 58.100 50.710 59.765 4.850
SE.mean 2.132 0.826 2.168 0.271
CI.mean.0.95 4.229 1.639 4.303 0.537
var 454 .354 68.228 470.230 7.321
std.dev 21.316 8.260 21.685 2.706
coef.var 0.367 0.163 0.363 0.558
skewness -0.104 -0.169 -0.410 0.933
skew.2SE -0.215 -0.350 -0.849 1.932
kurtosis -1.148 0.221 -0.285 0.763
kurt.2SE -1.200 0.231 -0.298 0.798
normtest.W 0.961 0.987 0.977 0.924
normtest.p 0.005 0.441 0.077 0.000
Output 5.3

Descriptive statistics and histograms are a good way of getting an instant picture of the
distribution of your data. This snapshot can be very useful: for example, the bimodal distri-
bution of R exam scores instantly indicates a trend that students are typically either very good
at statistics or struggle with it (there are relatively few who fall in between these extremes).
Intuitively, this finding fits with the nature of the subject: statistics is very easy once every-
thing falls into place, but before that enlightenment occurs it all seems hopelessly difficult.

5.5.3.2. Running the analysis for different groups @

If we want to obtain separate descriptive statistics for each of the universities, we can use
the by() function.® The by() function takes the general form:

by(data = dataFrame, INDICES = grouping variable, FUN = a function that you
want to apply to the data)

In other words, we simply enter the name of our dataframe or variables that we’d like to anal-
yse, we specify a variable by which we want to split the output (in this case, it’s uni, because we
want separate statistics for each university), and we tell it which function we want to apply to
the data (in this case we could use describe or stat.desc). Therefore, to get descriptive statistics
for the variable exam for each university separately using describe, we could execute:

by(data = rexam$exam, INDICES = rexam$uni, FUN = describe)
To do the same, but using stat.desc() instead of describe() we could execute:
by(data = rexam$exam, INDICES = rexam$uni, FUN = stat.desc)

In both cases, we can get away with not explicitly using data, INDICES and FUN as long
as we order the variables in the order in the functions above; so, these commands have the
same effect as those above:

by(rexam$exam, rexam$uni, describe)
by(rexam$exam, rexam$uni, stat.desc)

Finally, you can include any options for the function you’re using by adding them in at the
end; for example, if you’re using stat.desc() you can specify not to have basic statistics and
to have normality statistics by including those options:

by(rexam$exam, rexam$uni, stat.desc, basic = FALSE, norm = TRUE)

¢ by() is what is known as a ‘wrapper’ function — that is, it takes a more complicated function and simplifies it
for people like me. by() is a wrapper for a very powerful and clever function, called tapply(), which can do all
sorts of things, but is harder to use, so we use by() instead, which just takes our commands and turns them into
commands for tapply().
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If we want descriptive statistics for multiple variables, then we can use cbind() (see R’s
Souls’ Tip 3.5) to include them within the by() function. For example, to look at the
descriptive statistics of both the previous R exam and the numeracy test, we could execute:

by(cbind(data=rexam$exam,data=rexam$numeracy), rexam$uni, describe)

or
by(rexam[, c("exam", "numeracy")], rexam$uni, stat.desc, basic = FALSE,
norm = TRUE)

Note that the resulting Output 5.4 (which was created using describe rather than
stat.desc) is split into two sections: first the results for students at Duncetown
University, then the results for those attending Sussex University. From these tables it
is clear that Sussex students scored higher on both their R exam (called V1 here) and
the numeracy test than their Duncetown counterparts. In fact, looking at the means
reveals that, on average, Sussex students scored an amazing 36% more on the R exam
than Duncetown students, and had higher numeracy scores too (what can I say, my
students are the best).

INDICES: Duncetown University

var n mean sd median trimmed mad min max range skew kurtosis se
V1 1 50 40.18 12.59 38 39.85 12.60 15 66 51 0.29 -0.57 1.78
V2 2 50 4.12 2.07 4 4.00 2.22 1 9 8 0.48 -0.48 0.29

INDICES: Sussex University

var n mean sd median trimmed mad min max range skew kurtosis se
V1 1 50 76.02 10.21 75 75.70 8.90 56 99 43 0.26 -0.26 1.44
V2 2 50 5.58 3.07 5 5.28 2.97 1 14 13 0.75 0.26 0.43
Output 5.4

Next, we’ll look at the histograms. It might be possible to use by() with ggplot2() to draw
histograms, but if it is the command will be so complicated that no one will understand it.
A simple way, therefore, to create plots for different groups is to use the subset() function,
which we came across in Chapter 3 (section 3.9.2) to create an object containing only the
data in which we’re interested. For example, if we wanted to create separate histograms for
the Duncetown and Sussex Universities then we could create new dataframes that contain
data from only one of the two universities. For example, execute:

dunceData<-subset(rexam, rexam$uni=="Duncetown University")
sussexData<-subset(rexam, rexam$uni=="Sussex University")

These commands each create a new dataframe that is based on a subset of the rexam
dataframe; the subset is determined by the condition in the function. The first command
contains the condition rexam$uni==“Duncetown University”, which means that if the
value of the variable uni is exactly equal to the phrase “Duncetown University” then
the case is selected. In other words, it will retain all cases for which uni is Duncetown
University. Therefore, I've called the resulting dataframe dunceData. The second com-
mand does the same thing but this time specifies that uni must be exactly equal to the
phrase ‘Sussex University’. The resulting dataframe, sussexData, contains only the Sussex
University scores. This is a quick and easy way to split groups; however, you need to be
careful that the term you specify to select cases (e.g., ‘Duncetown University’) exactly
matches (including capital letters and spaces) the labelling in the data set otherwise you’ll
end up with an empty data set.

Having created our separate dataframes, we can generate histograms using the same
commands as before, but specifying the dataframe for the subset of data. For example, to
create a histogram of the numeracy scores for Duncetown University, we could execute:
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hist.numeracy.duncetown <- ggplot(dunceData, aes(numeracy)) + opts(legend.
position = "none") + geom_histogram(aes(y = ..density..), fill = "white",
colour = "black", binwidth = 1) + labs(x = "Numeracy Score", y = "Density")
+ stat_function(fun=dnorm, args=list(mean = mean(dunceData$numeracy,
na.rm = TRUE), sd = sd(dunceData$numeracy, na.rm = TRUE)), colour = "blue",
size=1)

hist.numeracy.duncetown

Compare this code with that in section 5.5.1; note that it is exactly the same, but we have
used the dunceData dataframe instead of using the whole data set.” We could create the
same plot for the Sussex University students by simply using sussexData in place of dunce-
Data in the command.

We could repeat these commands for the exam scores by replacing ‘numeracy’ with
‘exam’ throughout the commands above (this will have the effect of plotting exam scores
rather than numeracy scores). Figure 5.4 shows the histograms of exam scores and numer-
acy split according to the university attended. The first interesting thing to note is that for
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7Note that I have included ‘binwidth = 1’ (see Chapter 4) for the numeracy scores because it makes the result-
ing plot look better; for the other variables this option can be excluded because the default bin width produces

nice-looking plots.
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exam marks the distributions are both fairly normal. This seems odd because the overall
distribution was bimodal. However, it starts to make sense when you consider that for
Duncetown the distribution is centred on a mark of about 40%, but for Sussex the distri-
bution is centred on a mark of about 76%. This illustrates how important it is to look at
distributions within groups. If we were interested in comparing Duncetown to Sussex it
wouldn’t matter that overall the distribution of scores was bimodal; all that’s important is
that each group comes from a normal distribution, and in this case it appears to be true.
When the two samples are combined, these two normal distributions create a bimodal
one (one of the modes being around the centre of the Duncetown distribution, and the
other being around the centre of the Sussex data). For numeracy scores, the distribution is
slightly positively skewed (there is a larger concentration at the lower end of scores) in both
the Duncetown and Sussex groups. Therefore, the overall positive skew observed before is
due to the mixture of universities.

SELF-TEST

v' Repeat these analyses for the computer literacy and
percentage of lectures attended and interpret the
results.

Another way of looking at the problem is to see whether the distribution as
a whole deviates from a comparable normal distribution. The Shapiro-Wilk
test does just this: it compares the scores in the sample to a normally dis-
tributed set of scores with the same mean and standard deviation. If the test
is non-significant (p > .05) it tells us that the distribution of the sample is
not significantly different from a normal distribution. If, however, the test is
significant (p < .05) then the distribution in question is significantly differ-
ent from a normal distribution (i.e., it is non-normal). This test seems great:
in one easy procedure it tells us whether our scores are normally distributed
(nice!). However, it has limitations because with large sample sizes it is very
easy to get significant results from small deviations from normality, and so a
significant test doesn’t necessarily tell us whether the deviation from normality is enough
to bias any statistical procedures that we apply to the data. I guess the take-home message
is: by all means use these tests, but plot your data as well and try to make an informed
decision about the extent of non-normality.

Doing the Shapiro—Wilk test in R ®

We have already encountered the Shapiro-Wilk test as part of the output from the stat.
desc() function (see Output 5.2 and, for these data, Output 5.3). However, we can also use
the shapiro.test() function. This function takes the general form:

shapiro.test(variable)
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in which variable is the name of the variable that you’d like to test for normality. Therefore,
to test the exam and numeracy variables for normality we would execute:

shapiro.test(rexam$exam)
shapiro.test(rexam$numeracy)

The output is shown in Output 5.5. Note that the value of W corresponds to the value
of normtest.W, and the p-value corresponds to normtest.p from the stat.desc() function
(Output 5.3). For each test we see the test statistic, labelled W, and the p-value. Remember
that a significant value (p-value less than .05) indicates a deviation from normality. For
both numeracy (p = .005) and R exam scores (p < .001), the Shapiro—Wilk test is highly
significant, indicating that both distributions are not normal. This result is likely to reflect
the bimodal distribution found for exam scores, and the positively skewed distribution
observed in the numeracy scores. However, these tests confirm that these deviations were
significant (but bear in mind that the sample is fairly big).

Shapiro-Wilk normality test

data: rexam$Sexam
W = 0.9613, p-value = 0.004991

Shapiro-Wilk normality test
data: rexam$numeracy
W = 0.9244, p-value = 2.424e-05
Output 5.5

As a final point, bear in mind that when we looked at the exam scores for separate
groups, the distributions seemed quite normal; now if we’d asked for separate Shapiro—
Wilk tests for the two universities we might have found non-significant results. In fact, let’s
try this out, using the by() function we came across earlier. We use shapiro.test as the FUN
instead of describe or stat.desc, which we have used before (although stat.desc would also
give you the Shapiro—Wilk test as part of the output so you could use this function also):

by(rexam$exam, rexam$uni, shapiro.test)
by(rexam$numeracy, rexam$uni, shapiro.test)

You should get Output 5.6 for the exam scores, which shows that the percentages on the
R exam are indeed normal within the two groups (the p-values are greater than .05). This
is important because if our analysis involves comparing groups, then what’s important is
not the overall distribution but the distribution in each group.

rexam$Suni: Duncetown University
Shapiro-Wilk normality test

data: dd[x, 1]
W = 0.9722, p-value = 0.2829

rexam$Suni: Sussex University
Shapiro-Wilk normality test

data: ddix, ]
W = 0.9837, p-value = 0.7151

Output 5.6
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For numeracy scores (Output 5.7) the tests are still significant indicating non-normal
distributions both for Duncetown University (p = .015), and Sussex University (p = .007).

rexam$uni: Duncetown University
Shapiro-Wilk normality test

data: dd[x, ]
W = 0.9408, p-value = 0.01451

rexam$uni: Sussex University
Shapiro-Wilk normality test

data: ddix, ]
W = 0.9323, p-value = 0.006787

Output 5.7

We can also draw Q-Q plots for the variables, to help us to interpret the results of the
Shapiro—-Wilk test (see Figure 5.5).

gplot(sample = rexam$exam, stat="qq")
gplot(sample = rexam$numeracy, stat="qq")

The normal Q-Q chart plots the values you would expect to get if the distribution were
normal (theoretical values) against the values actually seen in the data set (sample values).
If the data are normally distributed, then the observed values (the dots on the chart) should
fall exactly along a straight line (meaning that the observed values are the same as you
would expect to get from a normally distributed data set). Any deviation of the dots from
the line represents a deviation from normality. So, if the Q-Q plot looks like a wiggly snake
then you have some deviation from normality. Specifically, when the line sags consistently
below the diagonal, or consistently rises above it, then this shows that the kurtosis differs
from a normal distribution, and when the curve is S-shaped, the problem is skewness.

In both of the variables analysed we already know that the data are not normal, and these
plots (see Figure 5.5) confirm this observation because the dots deviate substantially from
the line. It is noteworthy that the deviation is greater for the numeracy scores, and this is
consistent with the higher significance value of this variable on the Shapiro-Wilk test.
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Reporting the Shapiro-Wilk test ®

The test statistic for the Shapiro-Wilk test is denoted by W; we can report the results in
Output 5.5 in the following way:

v The percentage on the R exam, W = 0.96, p = .005, and the numeracy scores, W =
0.92, p < .001, were both significantly non-normal.

REVVIVINEV IV INEIISI Normality tests

e The Shapiro—-Wilk test can be used to see if a distribution of scores significantly differs from a normal distribution.

o If the Shapiro-Wilk test is significant (p-value less than .05) then the scores are significantly different from a normal
distribution.

o QOtherwise, scores are approximately normally distributed.

e Warning: In large samples this test can be significant even when the scores are only slightly different from a normal dis-
tribution. Therefore, they should always be interpreted in conjunction with histograms, or Q-Q plots, and the values of skew
and kurtosis.

5.7. Testing for homogeneity of variance @

So far I’'ve concentrated on the assumption of normally distributed data; however, at the
beginning of this chapter I mentioned another assumption: homogeneity of variance. This
assumption means that as you go through levels of one variable, the variance of the other
should not change. If you’ve collected groups of data then this means that the variance of
your outcome variable or variables should be the same in each of these groups. If you’ve
collected continuous data (such as in correlational designs), this assumption means that the
variance of one variable should be stable at all levels of the other variable. Let’s illustrate
this with an example. An audiologist was interested in the effects of loud concerts on peo-
ple’s hearing. So, she decided to send 10 people on tour with the loudest band she could
find, Motérhead. These people went to concerts in Brixton (London), Brighton, Bristol,
Edinburgh, Newcastle, Cardiff and Dublin and after each concert the audiologist measured
the number of hours after the concert that these people had ringing in their ears.

Figure 5.6 shows the number of hours that each person had ringing in his or her ears
after each concert (each person is represented by a circle). The horizontal lines represent
the average number of hours that there was ringing in the ears after each concert and these
means are connected by a line so that we can see the general trend of the data. Remember
that for each concert, the circles are the scores from which the mean is calculated. Now, we
can see in both graphs that the means increase as the people go to more concerts. So, after
the first concert their ears ring for about 12 hours, but after the second they ring for about
15-20 hours, and by the final night of the tour, they ring for about 45-50 hours (2 days).
So, there is a cumulative effect of the concerts on ringing in the ears. This pattern is found
in both graphs; the difference between the graphs is not in terms of the means (which are
roughly the same), but in terms of the spread of scores around the mean. If you look at the
left-hand graph, the spread of scores around the mean stays the same after each concert
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(the scores are fairly tightly packed around the mean). Put it another way, if you measured
the vertical distance between the lowest score and the highest score after the Brixton con-
cert, and then did the same after the other concerts, all of these distances would be fairly
similar. Although the means increase, the spread of scores for hearing loss is the same at
each level of the concert variable (the spread of scores is the same after Brixton, Brighton,
Bristol, Edinburgh, Newcastle, Cardiff and Dublin). This is what we mean by homogeneity
of variance. The right-hand graph shows a different picture: if you look at the spread of
scores after the Brixton concert, they are quite tightly packed around the mean (the vertical
distance from the lowest score to the highest score is small), but after the Dublin show (for
example) the scores are very spread out around the mean (the vertical distance from the
lowest score to the highest score is large). This is an example of heterogeneity of variance:
that is, at some levels of the concert variable the variance of scores is different than other
levels (graphically, the vertical distance from the lowest to highest score is different after
different concerts).
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SWAWM Levene’s test @

Hopefully you’ve got a grip of what homogeneity of variance actually means. Now, how
do we test for it? Well, we could just look at the values of the variances and see whether
they are similar. However, this approach would be very subjective and probably prone to
academics thinking ‘Ooh look, the variance in one group is only 3000 times larger than the
variance in the other: that’s roughly equal’. Instead, in correlational analysis such as regres-
sion we tend to use graphs (see section 7.9.5) and for groups of data we tend to use a test
called Levene’s test (Levene, 1960). Levene’s test tests the null hypothesis that the variances
in different groups are equal (i.e., the difference between the variances is zero). It’s a very
simple and elegant test that works by doing a one-way ANOVA (see Chapter 10) conducted
on the deviation scores; that is, the absolute difference between each score and the mean of
the group from which it came (see Glass, 1966, for a very readable explanation).® For now,
all we need to know is that if Levene’s test is significant at p <.05 then we can conclude that
the null hypothesis is incorrect and that the variances are significantly different — therefore,
the assumption of homogeneity of variances has been violated. If, however, Levene’s test

8 We haven’t covered ANOVA yet, so this explanation won’t make much sense to you now, but in Chapter 10 we
will look in more detail at how Levene’s test works.
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is non-significant (i.e., p > .05) then the variances are roughly equal and the assumption
is tenable.

5.7.1.1. Levene’s test with R Commander @

First we’ll load the data into R Commander. Choose Data = Import data = from text file,
clipboard, or URL... and then select the file RExam.dat (see section 3.7.3). Before we can
conduct Levene’s test we need to convert uni to a factor because at the moment it is simply
0s and 1s so R doesn’t know that it’s a factor — see section 3.6.2 to remind yourself how to do
that. Once you have done this you should be able to select Statistics= Variances=Levene’s
test (you won’t be able to select it unless R can ‘see’ a factor in the dataframe). Choosing
this option in the menu opens the dialog box shown in Figure 5.7. You need to select a
grouping variable. R Commander has realized that you only have one variable that could
be the grouping variable — because it is the only factor — and that’s uni. Therefore, it has
already selected this variable.

Choose the variable on the right that you want to test for equality of variances across
the groups defined by uni. You can choose median or mean for the centring — the median
tends to be more accurate and is the default; I use this default throughout the book. Run
the analysis for both exam and numeracy. Output 5.8 shows the results.
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5.7.1.2. Levene’s test withR®

To use Levene’s test, we use the leveneTest() function from the car package. This function
takes the general form:

leveneTest(outcome variable, group, center = median/mean)

FIGURE 5.7
Levene’s testin
R Commander
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Therefore, we enter two variables into the function: first the outcome variable of which we
want to test the variances; and second, the grouping variable, which must be a factor. We
can just enter these variables and Levene’s test will centre the variables using the median
(which is slightly preferable), but if we want to override this default and centre using the
mean then we can add the option center = “mean”. Therefore, for the exam scores we
could execute:

leveneTest(rexam$exam, rexam$uni)
leveneTest(rexam$exam, rexam$uni, center = mean)

For the numeracy scores we would execute (note that all we have changed is the outcome
variable):

leveneTest(rexam$numeracy, rexam$uni)

5.7.1.3. Levene’s test output ©

Output 5.8 shows the output for Levene’s test for exam scores (using the median), exam
scores (centring using the mean) and numeracy scores. The result is non-significant for the
R exam scores (the value in the Pr (>F) column is more than .05) regardless of whether
we centre with the median or mean. This indicates that the variances are not significantly
different (i.e., they are similar and the homogeneity of variance assumption is tenable).
However, for the numeracy scores, Levene’s test is significant (the value in the Pr (>F)
column is less than .05) indicating that the variances are significantly different (i.e., they
are not the same and the homogeneity of variance assumption has been violated).

> leveneTest (rexam$Sexam, rexamSuni)

Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr (>F)

group 1 2.0886 0.1516
98

> JleveneTest (rexam$Sexam, rexam$Suni, center = mean)

Levene’'s Test for Homogeneity of Variance (center = mean)
Df F value Pr (>F)

group 1 2.5841 0.1112
98

> leveneTest (rexam$Snumeracy, rexam$Suni)

Levene'’'s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 5.366 0.02262 *
98

Output 5.8

Reporting Levene’s test ®

Levene’s test can be denoted with the letter F and there are two different degrees of free-
dom. As such you can report it, in general form, as F(df1, df2) = value, Pr (>F). So, for the
results in Output 5.8 we could say:
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v" For the percentage on the R exam, the variances were similar for Duncetown and
Sussex University students, F(1, 98) = 2.09, ns, but for numeracy scores the variances
were significantly different in the two groups, F(1, 98) = 5.37, p = .023.

Hartley’s F__: the variance ratio ©

As with the Shapiro—Wilk test (and other tests of normality), when the sample size is
large, small differences in group variances can produce a Levene’s test that is significant
(because, as we saw in Chapter 1, the power of the test is improved). A useful double
check, therefore, is to look at Hartley’s F_, — also known as the variance ratio (Pearson
& Hartley, 1954). This is the ratio of the variances between the group with the biggest
variance and the group with the smallest variance. This ratio was compared to critical
values in a table published by Hartley. Some of the critical values (for a .05 level of sig-
nificance) are shown in Figure 5.8 (see Oliver Twisted); as you can see, the critical values
depend on the number of cases per group (well, 7 — 1 actually), and the number of vari-
ances being compared. From this graph you can see that with sample sizes (1) of 10 per
group, an F__of less than 10 is more or less always going to be non-significant, with
15-20 per group the ratio needs to be less than about 5, and with samples of 30-60 the
ratio should be below about 2 or 3.

% Number of Variances being Compared FIGURE 5.8
q —e— 2 Variances Selected critical
25 —V— 3 Variances
—s— 4 Variances valugs for
—O— 6 Variances )
\ —A— 8 Var:ances Hartley S Fmax test

20 \i\\ —o— 10 Variances
15 O\

Critical Value

OLIVER TWISTED Oliver thinks that my graph of critical values is stupid. ‘Look at that graph,’

he laughed, ‘it's the most stupid thing I've ever seen since | was at Sussex
Please Sir, can | have Uni and | saw my statistics lecturer, Andy Fie...". Well, go choke on your
some more ... Hartley’s  gruel you Dickensian bubo, because the full table of critical values is
in the additional material for this chapter on the companion website.

max?
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EEVWVIVINCY VSIS Homogeneity of variance

e Homogeneity of variance is the assumption that the spread of scores is roughly equal in different groups of cases, or more
generally that the spread of scores is roughly equal at different points on the predictor variable.

o \When comparing groups, this assumption can be tested with Levene’s test.

o |fLevene’s testis significant (Pr (>F) in the R output is less than .05) then the variances are significantly different in different
groups.

o (QOtherwise, homogeneity of variance can be assumed.

o The variance ratio is the largest group variance divided by the smallest. This value needs to be smaller than the critical values
in Figure 5.8.

e Warning: In large samples Levene’s test can be significant even when group variances are not very different. Therefore, it
should be interpreted in conjunction with the variance ratio.

The previous section showed us various ways to explore our data; we saw how to look for
problems with our distribution of scores and how to detect heterogeneity of variance. In
Chapter 4 we also discovered how to spot outliers in the data. The next question is what
to do about these problems.

Dealing with outliers ®

If you detect outliers in the data there are several options for reducing the impact of these
values. However, before you do any of these things, it’s worth checking that the data have
been entered correctly for the problem cases. If the data are correct then the three main
options you have are:

1 Remove the case: This entails deleting the data from the person who contributed the
outlier. However, this should be done only if you have good reason to believe that
this case is not from the population that you intended to sample. For example, if
you were investigating factors that affected how much cats purr and one cat didn’t
purr at all, this would likely be an outlier (all cats purr). Upon inspection, if you dis-
covered that this cat was actually a dog wearing a cat costume (hence why it didn’t
purr), then you’d have grounds to exclude this case because it comes from a different
population (dogs who like to dress as cats) than your target population (cats).

2 Transform the data: Outliers tend to skew the distribution and, as we will see in the
next section, this skew (and, therefore, the impact of the outliers) can sometimes be
reduced by applying transformations to the data.

3 Change the score: If transformation fails, then you can consider replacing the score.
This on the face of it may seem like cheating (you’re changing the data from what
was actually corrected); however, if the score you’re changing is very unrepresenta-
tive and biases your statistical model anyway then changing the score is the lesser of
two evils! There are several options for how to change the score:
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a The next highest score plus one: Change the score to be one unit above the next
highest score in the data set.

b Convert back from a z-score: A z-score of 3.29 constitutes an outlier (see Jane
Superbrain Box 4.1), so we can calculate what score would give rise to a z-score
of 3.29 (or perhaps 3) by rearranging the z-score equation in section 1.7.4, which
gives us X = (z x s) + X. All this means is that we calculate the mean (X) and stand-
ard deviation (s) of the data; we know that z is 3 (or 3.29 if you want to be exact)
so we just add three times the standard deviation to the mean, and replace our
outliers with that score.

¢ The mean plus two standard deviations: A variation on the above method is to use
the mean plus two times the standard deviation (rather than three times the stand-
ard deviation).

Dealing with non-normality and unequal variances @

5.8.2.1. Transforming data @

This section is quite hair raising so don’t worry if it doesn’t make much sense — many
undergraduate courses won’t cover transforming data so feel free to ignore this section if
you want to.

We saw in the previous section that you can deal with outliers by transforming the data
and that these transformations are also useful for correcting problems with normality and
the assumption of homogeneity of variance. The idea behind transformations
is that you do something to every score to correct for distributional problems,
outliers or unequal variances. Although some students often (understandably)
think that transforming data sounds dodgy (the phrase ‘fudging your results’
springs to some people’s minds!), in fact it isn’t because you do the same thing
to all of your scores.” As such, transforming the data won’t change the relation-
ships between variables (the relative differences between people for a given

What do | do if
my data are
not normal?

. . . . Vis
variable stay the same), but it does change the differences between different Wt
variables (because it changes the units of measurement). Therefore, if you are L Y”\%

; IS€ 1T ¢ : - L aerelore, 1t y« AT I
looking at relationships between variables (e.g., regression) it is alright just to 4|
transform the problematic variable, but if you are looking at differences within I ]
variables (e.g., change in a variable over time) then you need to transform all Al —

levels of those variables.

Let’s return to our Download Festival data (DownloadFestival.dat) from earlier in the
chapter. These data were not normal on days 2 and 3 of the festival (section 5.4). Now, we
might want to look at how hygiene levels changed across the three days (i.e., compare the
mean on day 1 to the means on days 2 and 3 to see if people got smellier). The data for
days 2 and 3 were skewed and need to be transformed, but because we might later compare
the data to scores on day 1, we would also have to transform the day 1 data (even though
scores were not skewed). If we don’t change the day 1 data as well, then any differences in
hygiene scores we find from day 1 to day 2 or 3 will be due to us transforming one variable
and not the others.

? Although there aren’t statistical consequences of transforming data, there may be empirical or scientific implica-
tions that outweigh the statistical benefits (see Jane Superbrain Box 5.1).
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Table 5.1 Data transformations and their uses

Data Transformation Can Correct For
Log transformation (log(X))): Taking the logarithm of a set of numbers Positive skew,
squashes the right tail of the distribution. As such it's a good way to reduce unequal variances

positive skew. However, you can't take the log of zero or negative numbers,

so if your data tend to zero or produce negative numbers you need to add a
constant to all of the data before you do the transformation. For example, if you
have zeros in the data then do log(X. + 1), or if you have negative numbers add
whatever value makes the smallest number in the data set positive.

Square root transformation (\/X,.): Taking the square root of large Positive skew,
values has more of an effect than taking the square root of small values. unequal variances
Consequently, taking the square root of each of your scores will bring any

large scores closer to the centre — rather like the log transformation. As

such, this can be a useful way to reduce positive skew; however, you still

have the same problem with negative numbers (negative numbers don’t

have a square root).

Reciprocal transformation (1/X): Dividing 1 by each score also reduces Positive skew,

the impact of large scores. The transformed variable will have a lower unequal variances
limit of O (very large numbers will become close to 0). One thing to bear

in mind with this transformation is that it reverses the scores: scores that

were originally large in the data set become small (close to zero) after

the transformation, but scores that were originally small become big after

the transformation. For example, imagine two scores of 1 and 10; after

the transformation they become 1/1 = 1 and 1/10 = 0.1: the small score

becomes bigger than the large score after the transformation. However, you

can avoid this by reversing the scores before the transformation, by finding

the highest score and changing each score to the highest score minus the

score you're looking at. So, you do a transformation 1/(X,,, ., —X).

Reverse score transformations: Any one of the above transformations Negative skew
can be used to correct negatively skewed data, but first you have to reverse

the scores. To do this, subtract each score from the highest score obtained,

or the highest score + 1 (depending on whether you want your lowest

score to be 0 or 1). If you do this, don't forget to reverse the scores back

afterwards, or to remember that the interpretation of the variable is reversed:

big scores have become small and small scores have become big!

There are various transformations that you can do to the data that are helpful in correct-
ing various problems.'® However, whether these transformations are necessary or useful is
quite a complex issue (see Jane Superbrain Box 5.1). Nevertheless, because they are used by
researchers Table 5.1 shows some common transformations and their uses.

Given that there are many transformations that you can do, how can you decide which one
is best? The simple answer is trial and error: try one out and see if it helps and if it doesn’t

1 You’ll notice in this section that I keep writing X. We saw in Chapter 1 that this refers to the observed score for
the ith person (so, the 7 could be replaced with the name of a particular person, thus for Graham, X, = X,

Graham
Graham’s score, and for Carol, X, = X = Carol’s score).
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then try a different one. If you are looking at differences between variables you must apply
the same transformation to all variables (you cannot, for example, apply a log transforma-
tion to one variable and a square root transformation to another). This can be quite time

consuming.

JANE SUPERBRAIN 5.1

To transform or not to transform, that is the
question

Not everyone agrees that transforming data is a good
idea; for example, Glass, Peckham and Sanders (1972),
in a very extensive review, commented that ‘the payoff of
normalizing transformations in terms of more valid prob-
ability statements is low, and they are seldom considered
to be worth the effort’ (p. 241). In which case, should we
bother?

The issue is quite complicated (especially for this
early in the book), but essentially we need to know
whether the statistical models we apply perform better
on transformed data than they do when applied to data
that violate the assumption that the transformation cor-
rects. If a statistical model is still accurate even when
its assumptions are broken it is said to be a robust test
(section 5.8.4). I'm not going to discuss whether particu-
lar tests are robust here, but | will discuss the issue for
particular tests in their respective chapters. The question
of whether to transform is linked to this issue of robust-
ness (which in turn is linked to what test you are perform-
ing on your data).

A good case in point is the F-test in ANOVA (see
Chapter 10), which is often claimed to be robust (Glass
et al., 1972). Early findings suggested that F performed
as it should in skewed distributions and that transform-
ing the data helped as often as it hindered the accuracy
of F (Games & Lucas, 1966). However, in a lively but
informative exchange, Levine and Dunlap (1982) showed
that transformations of skew did improve the perform-
ance of F;, however, in a response, Games (1983) argued

H

i that their conclusion was incorrect, which Levine and

Dunlap (1983) contested in a response to the response.
Finally, in a response to the response to the response,
Games (1984) pointed out several important questions
to consider:

1. The central limit theorem (section 2.5.1) tells us
that in big samples the sampling distribution will
be normal regardless, and this is what's actually
important, so the debate is academic in anything
other than small samples. Lots of early research
did indeed show that with samples of 40 the nor-
mality of the sampling distribution was, as pre-
dicted, normal. However, this research focused
on distributions with light tails and subsequent
work has shown that with heavy-tailed distributions
larger samples would be necessary to invoke the
central limit theorem (Wilcox, 2005). This research
suggests that transformations might be useful for
such distributions.

2. By transforming the data you change the hypoth-
esis being tested (when using a log transformation
and comparing means you change from comparing
arithmetic means to comparing geometric means).
Transformation also means that you're now address-
ing a different construct than the one originally
measured, and this has obvious implications for
interpreting that data (Gelman & Hill, 2007; Grayson,
2004).

3. In small samples it is tricky to determine normality one
way or another (tests such as Shapiro-Wilk will have
low power to detect deviations from normality and
graphs will be hard to interpret with so few data points).

4. The consequences for the statistical model of apply-
ing the ‘wrong’ transformation could be worse than the
consequences of analysing the untransformed scores.

As we will see later in the book, there is an exten-
sive library of robust tests that can be used and which
have considerable benefits over transforming data. The

i definitive guide to these is Wilcox's (2005) outstanding
i book.
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Transforming the data using R ®

5.8.3.1. Computing new variables ®

Transformations are very easy using R. We use one of two general commands:
newVariable <- function(oldVariable)

in which function is the function we will use to transform the variable. Or possibly:
newVariable <- arithmetic with oldVariable(s)

Let’s first look at some of the simple arithmetic functions:

+ Addition: We can add two variables together, or add a constant to our variables. For
example, with our hygiene data, ‘day1 + day?2’ creates a column in which each row
contains the hygiene score from the column labelled day? added to the score from the
column labelled day2 (e.g., for participant 1: 2.65 + 1.35 = 4). In R we would execute:

dlf$daylPlusDay2 <- dlf$dayl + dlf$day2

which creates a new variable day1PlusDay2 in the dlt dataframe based on adding the
variables day1 and day2.

= Subtraction: We can subtract one variable from another. For example, we could
subtract the day 1 hygiene score from the day 2 hygiene score. This creates a new
variable in our dataframe in which each row contains the score from the column
labelled day7 subtracted from the score from the column labelled day2 (e.g., for
participant 1: 1.35 — 2.65 = —1.30). Therefore, this person’s hygiene went down by
1.30 (on our 5-point scale) from day 1 to day 2 of the festival. In R we would execute:

dlf$day2MinusDayl <- dlf$day2 - dlf$dayl

which creates a new variable day2MinusDay1 in the dlf dataframe based on subtracting
the variable day1 from day2.

& Multiply: We can multiply two variables together, or we can multiply a variable by any
number. In R, we would execute:

dlf$day2Times5 <- dlf$dayl * 5

which creates a new variable day2Times5 in the dlf dataframe based on multiplying
day1 by 5.

*% Exponentiation: Exponentiation is used to raise the preceding term by the power

OR”™ of the succeeding term. So ‘day1**2’ or ‘day1 ~ 2’ (it doesn’t matter which you use)
creates a column that contains the scores in the day? column raised to the power of
2 (i.e., the square of each number in the day? column: for participant 1, 2.65% =7.02).
Likewise, ‘day1**3’ creates a column with values of day? cubed. In R, we would
execute either:

d1f$day2Squared <- dlf$day2 ** 2
or
dlf$day2Squared <- dlf$day2 A 2

both of which create a new variable day2Squared in the dlf dataframe based on
squaring values of day2.
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< Less than: This is a logical operator — that means it gives the answer TRUE (or 1)
or FALSE (or 0). If you typed ‘day1 < 1’, R would give the answer TRUE to those
participants whose hygiene score on day 1 of the festival was less than 1 (i.e., if day7 was
0.9999 or less). So, we might use this if we wanted to look only at the people who were
already smelly on the first day of the festival. In R we would execute:

dlf$dayllLessThanOne <- dlf$dayl < 1

to create a new variable day1LessThanOne in the dlf dataframe for which the values
are TRUE (or 1) if the value of day1 is less than 1, but FALSE (or 0) if the value of day1 is
greater than 1.

<= Less than or equal to: This is the same as above but returns a response of TRUE (or 1) if the
value of the original variable is equal to or less than the value specified. In R we would execute:

dlf$dayllLessThanOrEqualOne <- dlf$dayl <= 1

to create a new variable day1LessThanOrEqualOne in the dif dataframe for which the
values are TRUE (or 1) if the value of day1 is less than or equal to 1, but FALSE (or 0) if
the value of day1 is greater than 1.

> Greater than: This is the opposite of the less than operator above. It returns a response
of TRUE (or 1) if the value of the original variable is greater than the value specified. In R
we would execute:

dlf$daylGreaterThanOne <- dlf$dayl > 1

to create a new variable day1GreaterThanOne in the dlf dataframe for which the values
are TRUE (or 1) if the value of day1 is greater than 1, but FALSE (or 0) if the value of
day1 is less than 1.

>= Greater than or equal to: This is the same as above but returns a response of TRUE (or
1) if the value of the original variable is equal to or greater than the value specified. In R
we would execute:

dlf$daylGreaterThanOrEqualOne <- dlf$dayl >= 1

to create a new variable day1GreaterThanOrEqualOne in the dif dataframe for which
the values are TRUE (or 1) if the value of day1 is greater than or equal to 1, but FALSE
(or 0) if the value of day1 is less than 1.

= Double equals means ‘is equal to?’ It's a question, rather than an assignment, like a single
equals (=). Therefore, if we write something like dlf§gender == “Male” we are asking ‘is the
value of the variable gender in the dlf dataframe equal to the word ‘Male’? In R, if we executed:

dlf$male <- dlf$gender == "Male"

we would create a variable male in the dlf dataframe that contains the value TRUE if the
variable gender was the word ‘Male’ (spelt as it is specified, including capital letters) and
FALSE in all other cases.

1= Not equal to. The opposite of ==. In R, if we executed:
dlf$notMale <- dlf$gender != "Male"

we would create a variable notMale in the dlf dataframe that contains the value TRUE
if the variable gender was not the word ‘Male’ (spelt as it is specified including capital
letters) and FALSE otherwise.

Some of the most useful functions are listed in Table 5.2, which shows the standard form
of the function, the name of the function, an example of how the function can be used
and what R would output if that example were used. There are several basic functions for
calculating means, standard deviations and sums of columns. There are also functions such
as the square root and logarithm that are useful for transforming data that are skewed, and
we will use these functions now.
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Table 5.2 Some useful functions

Function Name Input example (0]7] 0]}
rowMeans() Mean for a rowMeans(cbind For each row, R calculates the mean
row (dif$day1, difgday2, hygiene score across the three days of the
dif$day3), na.rm = festival. na.rm tells R whether to exclude
TRUE) missing values from the calculation (see R’s
Souls’ Tip 5.3).
rowSums() Sums for  rowSums(cbind For each row, R calculates the sum of the
arow (difgdayt, difday2, hygiene scores across the three days of the
dif$day3), na.rm =  festival. na.rm tells R whether to exclude
TRUE) missing values from the calculation (see R’s
Souls’ Tip 5.4).
sqrt() Square sqrt(dif$day2) Produces a column containing the square
root root of each value in the column labelled day2
abs() Absolute  abs(dlIf$day1) Produces a variable that contains the
value absolute value of the values in the column

labelled day? (absolute values are ones
where the signs are ignored: so —5
becomes +5 and +5 stays as +5)

log10() Base 10 log10(dif$day1) Produces a variable that contains the logarithm
logarithm (to base 10) values of the variable day1.

log() Natural log10(dIf$day1) Produces a variable that contains the natural
logarithm logarithm values of the variable day7.

is.na() Is is.na(dlf$day1) This is used to determine if a variable is
missing? missing or not. If the variable is missing,

the case will be assigned TRUE (or 1); if
the case is not missing, the case will be
assigned FALSE (or 0).

IR R The is.na() function and missing data ®

If we want to count missing data, we can use is.na(). For example, if we want to know whether a person is missing
for their day 2 hygiene score, we use:

dlf$missingDay2 <- is.na(dlf$day2)

But we can then use that variable in some clever ways. How many people were missing on day 2? Well, we know
that the variable we just created is TRUE (or 1) if they are missing, so we can just add them up:

sum(dlf$missingDay2)
If we want to be lazy, we can embed those functions in each other, and not bother to create a variable:
(sum(is.na(dlf$day2))

which tells us that 546 scores are missing. What proportion of scores is that? Well, we have a 1 if they are missing,
and a zero if not. So the mean of that variable will be the proportion which are missing:

mean(is.na(dlf$day2))

This tells us that the mean is 0.674, so 67.4% of people are missing a hygiene score on day 2.
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5.8.3.2. The log transformation in R @

Now we’ve found out some basic information about the how to compute variables, let’s
use it to transform our data. To transform the variable day1, and create a new variable
logday1, we execute this command:

dlf$logdayl <- log(dlf$dayl)

This command creates a variable called logday1 in the dIf dataframe, which contains values
that are the natural log of the values in the variable day1.

For the day 2 hygiene scores there is a value of 0 in the original data, and there is no
logarithm of the value 0. To overcome this we should add a constant to our original
scores before we take the log of those scores. Any constant will do, provided that it
makes all of the scores greater than 0. In this case our lowest score is 0 in the data set so
we can simply add 1 to all of the scores and that will ensure that all scores are greater
than zero.

The advantage of adding 1 is that the logarithm of 1 is equal to 0, so people who scored
a zero before the transformation score a zero after the transformation. To do this transfor-
mation we would execute:

dlf$logdayl <- log(dlf$dayl + 1)

This command creates a variable called logday1 in the dlf dataframe, which contains values
that are the natural log of the values in the variable day1 after 1 has been added to them.

v Have a go at creating similar variables logday2
and logday3 for the day2 and day3 variables. Plot
histograms of the transformed scores for all three

To do a square root transformation, we run through the same process, by using a name
such as sgrtday1. Therefore, to create a variable called sqrtday1 that contains the square
root of the values in the variable day1, we would execute:

dlf$sqgrtdayl <- sqrt(dayl)

SELF-TEST

v" Repeat this process for day2 and day3 to create
variables called sqrtday2 and sqrtday3. Plot
histograms of the transformed scores for all three

To do a reciprocal transformation on the data from day 1, we don’t use a function, we use
an arithmetic expression: 1/variable. However, the day 2 data contain a zero value and if
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we try to divide 1 by 0 then we’ll get an error message (you can’t divide by 0). As such
we need to add a constant to our variable just as we did for the log transformation. Any
constant will do, but 1 is a convenient number for these data. We could use a name such as
recday1, and to create this variable we would execute:

dlf$recdayl <- 1/(d1f$dayl + 1)

SELF-TEST

v Repeat this process for day2 and day3. Plot
histograms of the transformed scores for all three
days.

The ifelse() function is used to create a new variable, or change an old variable, depending
on some other values. This function takes the general form:

ifelse(a conditional argument, what happens if the argument is TRUE, what
happens if the argument if FALSE)

This function needs three arguments: a conditional argument to test, what to do if the test
is true, and what to do if the test is false. Let’s use the original data where there was an
outlier in the day1 hygiene score. We can detect this outlier because we know that the high-
est score possible on the scale was 4. Therefore, we could set our conditional argument to
be dif$day1 > 4, which means we’re saying ‘if the value of day1 is greater than 4 then ...”.
The rest of the function tells it what to do, for example, we might want to set it to missing
(NA) if the score is over 4, but keep it as the old score if the score is not over 4. In which
case we could execute this command:

dl1f$daylNoQutlier <- ifelse(dlf$dayl > 4, NA, dlf$dayl)

This command creates a new variable called day1NoOutlier which takes the value NA if
day1 is greater than 4, but is the value of day1 if day1 is less than 4:

If yes, then the
new variable is set
to NA (Missing)

!

—
dlf$daylNoOutlier <-ifelse(dlf$dayl > 5, NA, dlf$dayl)
L J U J

\T( \T(
If no, then the new
Test is day1 variable is set to be

greater than 5? the value of the
old variable
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SR RN Careful with missing data ®

If you have any missing data in your variables, you need to be careful when using functions such as rowMeans|(),
to get the answer that you want. The problem is what you do when you have some missing values. Here'’s a prob-
lem: | have 2 oranges and 3 apples. How many fruits do | have? Obviously, | have a total of 5 fruits.

You have 2 oranges, and we don’t know how many apples — this value is missing. How many fruits do you
have? We could say that you have 2. Or we could say that we don’t know: the answer is missing. If you add apples
and oranges in R, most functions will tell you that the answer is NA (unknown).

apples <- 2
oranges <- NA
apples + oranges

[1] NA

The rowSums and rowMeans functions will allow you to choose what to do with missing data, by using the na.rm
option, which asks ‘should missing values (na) be removed (rm)?’
To obtain the mean hygiene score across three days, removing anyone with any missing values, we would use:

dlf$meanHygiene <- rowMeans(cbind(dlf$dayl, dlf$day2, dlf$day3))

But a lot of people would be missing. If we wanted to use everyone who had at least one score for the three days,
we would add na.rm=TRUE:

dlf$meanHygiene <- rowMeans(cbind(dlf$dayl, dlf$day2, dlf$day3), na.rm = TRUE)

But what would we do if we had 100 days of hygiene scores? And if we didn’t mind if people were missing one or
two scores, but we didn’t want to calculate a mean for people who only had one score? Well, we'd use the is.na()
function first, to count the number of missing variables.

dlf$daysMissing <- rowSums (cbind (is.na(dlf$dayl),
is.na(dlf$day2),
is.na(dlf$day3)))

(I's OK to break a command across rows like that, and sometimes it makes it easier to see that you didn't make
a mistake.) Then we can use the ifelse() function to calculate values only for those people who have a score on
at least two days:

dlf$meanHygiene <- ifelse(dlf$daysMissing < 2, NA,
rowMeans(cbind( dlf$dayl,
dlf$day2,
dlf$day3),
na.rm=TRUE))

Notice how I've used spacing so it's clear which arguments go with which function? That makes it (slightly) easier
to avoid making mistakes."

Figure 5.9 shows the distributions for days 1 and 2 of the festival after the three different
transformations. Compare these to the untransformed distributions in Figure 5.2. Now,
you can see that all three transformations have cleaned up the hygiene scores for day 2:

Tt still took me three tries to get this right.
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the positive skew is reduced (the square root transformation in particular has been useful).
However, because our hygiene scores on day 1 were more or less symmetrical to begin
with, they have now become slightly negatively skewed for the log and square root trans-
formation, and positively skewed for the reciprocal transformation!'? If we’re using scores
FIGURE 5.9 Day 1 of Download Day 2 of Download
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12The reversal of the skew for the reciprocal transformation is because, as I mentioned earlier, the reciprocal has
the effect of reversing the scores.
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from day 2 alone then we could use the transformed scores; however, if we wanted to look
at the change in scores then we’d have to weigh up whether the benefits of the transforma-
tion for the day 2 scores outweigh the problems it creates in the day 1 scores — data analysis
can be frustrating sometimes!

XM When it all goes horribly wrong ®

It’s very easy to think that transformations are the answers to all of your broken assump-
tion prayers. However, as we have seen, there are reasons to think that transformations
are not necessarily a good idea (see Jane Superbrain Box 5.1), and even if you think that
they are they do not always solve the problem, and even when they do solve
the problem they often create different problems in the process. This happens
more frequently than you might imagine (messy data are the norm).

If you find yourself in the unenviable position of having irksome data then
there are some other options available to you (other than sticking a big samu-
rai sword through your head). The first is to use a test that does not rely on the
assumption of normally distributed data, and as you go through the various

What do | do if my
transformation
doesn’t work?

chapters of this book I’ll point out these tests — there is also a whole chapter f H—{\,j /

dedicated to them later on.”® One thing that you will quickly discover about 3<é h@f : N
non-parametric tests is that they have been developed for only a fairly limited éﬁ o\
range of situations. So, happy days if you want to compare two means, but sad T - "'}ju

and lonely days listening to Joy Division if you have a complex experimental
design.

A much more promising approach is to use robust methods (which I mentioned in Jane
Superbrain Box 5.1). These tests have developed as computers have got more sophisticated
(doing these tests without computers would be only marginally less painful than ripping
off your skin and diving into a bath of salt). How these tests work is beyond the scope of
this book (and my brain), but two simple concepts will give you the general idea. Some
of these procedures use a trimmed mean. A trimmed mean is simply a mean based on the
distribution of scores after some percentage of scores has been removed from each extreme
of the distribution. So, a 10% trimmed mean will remove 10% of scores from the top and
bottom before the mean is calculated. With trimmed means you have to specify the amount
of trimming that you want; for example, you must decide to trim 5%, 10% or perhaps even
209% of scores. A similar robust measure of location is an M-estimator, which differs from a
trimmed mean in that the amount of trimming is determined empirically. In other words,
rather than the researcher deciding before the analysis how much of the data to trim, an
Me-estimator determines the optimal amount of trimming necessary to give a robust esti-
mate of, say, the mean. This has the obvious advantage that you never over- or under-trim
your data; however, the disadvantage is that it is not always possible to reach a solution. In
other words, robust tests based on M-estimators don’t always give you an answer.

We saw in Chapter 2 that the accuracy of the mean depends on a symmetrical distribu-
tion, but a trimmed mean (or M-estimator) produces accurate results even when the dis-
tribution is not symmetrical, because by trimming the ends of the distribution we remove
outliers and skew that bias the mean. Some robust methods work by taking advantage of
the properties of the trimmed mean and M-estimator.

13 For convenience a lot of textbooks refer to these tests as non-parametric tests or assumption-free tests and
stick them in a separate chapter. Actually neither of these terms are particularly accurate (none of these tests is
assumption-free) but in keeping with tradition I’ve put them in a chapter on their own (Chapter 15), ostracized
from their ‘parametric’ counterparts and feeling lonely.
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The second general procedure is the bootstrap (Efron & Tibshirani, 1993). The idea of
the bootstrap is really very simple and elegant. The problem that we have is that we don’t
know the shape of the sampling distribution, but normality in our data allows us to infer
that the sampling distribution is normal (and hence we can know the probability of a par-
ticular test statistic occurring). Lack of normality prevents us from knowing the shape of
the sampling distribution unless we have big samples (but see Jane Superbrain Box 5.1).
Bootstrapping gets around this problem by estimating the properties of the sampling dis-
tribution from the sample data. In effect, the sample data are treated as a population from
which smaller samples (called bootstrap samples) are taken (putting the data back before
a new case is drawn). The statistic of interest (e.g., the mean) is calculated in each
sample, and by taking many samples the sampling distribution can be estimated (rather
like in Figure 2.7). The standard error of the statistic is estimated from the standard devia-
tion of this sampling distribution created from the bootstrap samples. From this standard
error, confidence intervals and significance tests can be computed. This is a very neat way
of getting around the problem of not knowing the shape of the sampling distribution. The
bootstrap can be used in conjunction with trimmed means and M-estimators. For a fairly
gentle introduction to the concept of bootstrapping see Wright, London, and Field (2011).

There are numerous robust tests based on trimmed means, bootstrapping and
M-estimators described by Rand Wilcox (Figure 5.10) in his definitive text (Wilcox, 2005).
He has also written functions in R to do these tests (which, when you consider the number
of tests in his book, is a feat worthy of anyone’s respect and admiration). We cover quite a
few of these tests in this book.

There are two ways to access these functions: from a package, and direct from Wilcox’s
website. The package version of the tests is called WRS (although it is what’s known as a
beta version, which means it is not complete).'* To access this package in R we need to
execute:

install.packages("WRS", repos="http://R-Forge.R-project.org™)
library(WRS)

This is a standard install procedure, but note that we have to include repos=htip://R-
Forge.R-project.org because it is not a full package and this instruction tells R where to
find the package. This package is not always implemented in the most recent versions of R
(because it is only a beta) and it is not kept as up to date as Wilcox’s webpage, so although
we tend to refer to the package, to be consistent with the general ethos of downloading
packages, you should also consider sourcing the functions from Wilcox’s website. One
advantage of the website is that he keeps the functions very up to date. To source the func-
tions from his website, execute:

source("http://www-rcf.usc.edu/~rwilcox/Rallfun-v14™)

This command uses the source() function to access the webpage where Wilcox stores
the functions (as a text file). Rallfun-v14 is the name of the file (short for ‘R all functions —
version 14°). Without wishing to state the obvious, you need to be connected to the Internet
for this command to work. Depending on this book’s shelf-life, it is possible that the name
of the file might change (most likely to Rallfun-v15 or Rallfun-v16), so if you get an error
try replacing the v14 at the end with v15 and so on. It’s also possible that Rand might move
his webpage (http://www-rcf.usc.edu/~rwilcox/) in which case Google him, locate the lat-
est Rallfun file and replace the URL in the source function above with the new one. Having
either loaded the package or sources the file from the web, you now have access to all of
the functions in Wilcox’s book.

14 Actually, all of the functions are there, but there is very little documentation about what they do, which is why
it is only at the ‘beta’ stage rather than being a full release.
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FIGURE 5.10

The absolute
legend that is Rand
Wilcox, who is the
man you almost
certainly ought to
thank if you want
to do a robust test
inR

What have | discovered about statistics? @

“You promised us swans,” I hear you cry, ‘and all we got was normality this, homosome-
thingorother that, transform this, it’s all a waste of time that. Where were the bloody
swans?!” Well, the Queen owns them all so I wasn’t allowed to have them. Nevertheless,
this chapter did negotiate Dante’s eighth circle of hell (Malebolge), where data of deliber-
ate and knowing evil dwell. That is, data that don’t conform to all of those pesky assump-
tions that make statistical tests work properly. We began by seeing what assumptions
need to be met for parametric tests to work, but we mainly focused on the assumptions
of normality and homogeneity of variance. To look for normality we rediscovered the
joys of frequency distributions, but also encountered some other graphs that tell us about
deviations from normality (Q-Q plots). We saw how we can use skew and kurtosis values
to assess normality and that there are statistical tests that we can use (the Shapiro—-Wilk
test). While negotiating these evildoers, we discovered what homogeneity of variance is,
and how to test it with Levene’s test and Hartley’s F__ . Finally, we discovered redemp-
tion for our data. We saw we can cure their sins, make them good, with transformations
(and on the way we discovered some of the uses of the by() function and the transforma-
tion functions). Sadly, we also saw that some data are destined always to be evil.

We also discovered that I had started to read. However, reading was not my true pas-
sion; it was music. One of my earliest memories is of listening to my dad’s rock and soul
records (back in the days of vinyl) while waiting for my older brother to come home
from school, so I must have been about 3 at the time. The first record I asked my parents
to buy me was “Take on the World’ by Judas Priest, which I’d heard on Top of the Pops (a
now defunct UK TV show) and liked. This record came out in 1978 when I was 5. Some
people think that this sort of music corrupts young minds. Let’s see if it did ...
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R packages used in this chapter

car psych
ggplot2 Remdr
pastecs

R functions used in this chapter

abs() gplot()

by() rowMeans()
cbind() rowSums()
describe() round()
dnorm() shapiro.test()
ifelse() source()
is.na() sqrt()
leveneTest() stat.desc()
log() stat_function()
log10() tapply()

Key terms that I’'ve discovered

Bootstrap Normally distributed data
Hartley's F__ Parametric test
Heterogeneity of variance Q-Q plot

Homogeneity of variance Quantile

Independence Robust test

Interval data Shapiro-Wilk test
Levene’s test Transformation

Log Trimmed mean
M-estimator Variance ratio

Smart Alex’s tasks

® Task 1: Using the ChickFlick.dat data from Chapter 4, check the assumptions of
normality and homogeneity of variance for the two films (ignore gender): are the
assumptions met? @

® Task 2: Remember that the numeracy scores were positively skewed in the RExam.
dat data (see Figure 5.5)? Transform these data using one of the transformations
described in this chapter: do the data become normal? @

Answers can be found on the companion website.

Further reading

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn &
Bacon. (Chapter 4 is the definitive guide to screening data!)

Wilcox, R. R. (2003). Introduction to robust estimation and hypothesis testing (2nd ed.). Burlington,
MA: Elsevier. (Quite technical, but this is the definitive book on robust methods.)

Wright, D. B., London, K., & Field, A. P. (2011). Using bootstrap estimation and the plug-in principle
for clinical psychology data. Journal of Experimental Psychopathology, 2(2), 252-270. (A fairly
gentle introduction to bootstrapping in R.)
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FIGURE 6.1

| don’t have

a photo from
Christmas 1981,
but this was taken
about that time at
my grandparents’
house. I'm trying
to play an ‘E’ by
the looks of it, no
doubt because
it’s in ‘Take on the
World'.

When I was 8 years old, my parents bought me a guitar for Christmas. Even then, I’d des-
perately wanted to play the guitar for years. I could not contain my excitement at getting
this gift (had it been an electric guitar I think I would have actually exploded with excite-
ment). The guitar came with a ‘learn to play’ book and, after a little while of trying to play
what was on page 1 of this book, I readied myself to unleash a riff of universe-crushing
power onto the world (well, ‘Skip to my Lou’ actually). But, I couldn’t do it. I burst into
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tears and ran upstairs to hide.! My dad sat with me and said ‘Don’t worry, Andy, everything
is hard to begin with, but the more you practise the easier it gets.” In his comforting words,
my dad was inadvertently teaching me about the relationship, or correlation, between two
variables. These two variables could be related in three ways: (1) positively related, mean-
ing that the more I practised my guitar, the better a guitar player I would become (i.e., my
dad was telling me the truth); (2) not related at all, meaning that as I practised the guitar my
playing ability would remain completely constant (i.e., my dad has fathered a cretin); or (3)
negatively related, which would mean that the more I practised my guitar the worse a gui-
tar player I would become (i.e., my dad has fathered an indescribably strange child). This
chapter looks first at how we can express the relationships between variables statistically by
looking at two measures: covariance and the correlation coefficient. We then discover how
to carry out and interpret correlations in R. The chapter ends by looking at more complex
measures of relationships; in doing so it acts as a precursor to multiple regression, which
we discuss in Chapter 7.

In Chapter 4 I stressed the importance of looking at your data graphically before
running any other analysis on them. I just want to begin by reminding you that our
first starting point with a correlation analysis should be to look at some scatter-
plots of the variables we have measured. I am not going to repeat how to get R to
produce these graphs, but I am going to urge you (if you haven’t done so already)
to read section 4.5 before embarking on the rest of this chapter.

6.3. How do we measure relationships? ®

A detour into the murky world of covariance @

The simplest way to look at whether two variables are associated is to look at whether they
covary. To understand what covariance is, we first need to think back to the concept of
variance that we met in Chapter 2. Remember that the variance of a single variable repre-
sents the average amount that the data vary from the mean. Numerically, it is described by:

Variance(s?) = 2.5 =% _ 3 x %) ~ %) 6.1)
N-1 N-1

The mean of the sample is represented by x, x, is the data point in question and N is the
number of observations (see section 2.4.1). If we are interested in whether two variables
are related, then we are interested in whether changes in one variable are met with similar
changes in the other variable. Therefore, when one variable deviates from its mean we
would expect the other variable to deviate from its mean in a similar way. To illustrate what
I mean, imagine we took five people and subjected them to a certain number of advertise-
ments promoting toffee sweets, and then measured how many packets of those sweets each

!'This is not a dissimilar reaction to the one I have when publishers ask me for new editions of statistics textbooks.
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Table 6.1 Adverts watched and toffee purchases

Participant: 1 2 3 4 5 Mean s
Adverts watched 5 4 4 6 8 5.4 1.67
Packets bought 8 9 10 13 15 11.0 2.92

person bought during the next week. The data are in Table 6.1 as well as the mean and
standard deviation (s) of each variable.

If there were a relationship between these two variables, then as one variable deviates
from its mean, the other variable should deviate from its mean in the same or the directly
opposite way. Figure 6.2 shows the data for each participant (light blue circles represent the
number of packets bought and dark blue circles represent the number of adverts watched);
the grey line is the average number of packets bought and the blue line is the average num-
ber of adverts watched. The vertical lines represent the differences (remember that these
differences are called deviations) between the observed values and the mean of the relevant
variable. The first thing to notice about Figure 6.2 is that there is a very similar pattern of
deviations for both variables. For the first three participants the observed values are below
the mean for both variables, for the last two people the observed values are above the mean
for both variables. This pattern is indicative of a potential relationship between the two
variables (because it seems that if a person’s score is below the mean for one variable then
their score for the other will also be below the mean).

So, how do we calculate the exact similarity between the patterns of differences of the
two variables displayed in Figure 6.2? One possibility is to calculate the total amount of
deviation but we would have the same problem as in the single variable case: the positive
and negative deviations would cancel out (see section 2.4.1). Also, by simply adding the
deviations, we would gain little insight into the relationship between the variables. Now, in
the single variable case, we squared the deviations to eliminate the problem of positive and
negative deviations cancelling out each other. When there are two variables, rather than
squaring each deviation, we can multiply the deviation for one variable by the correspond-
ing deviation for the second variable. If both deviations are positive or negative then this
will give us a positive value (indicative of the deviations being in the same direction), but

e} FIGURE 6.2
141 ! Graphical display
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if one deviation is positive and one negative then the resulting product will be negative
(indicative of the deviations being opposite in direction). When we multiply the deviations
of one variable by the corresponding deviations of a second variable, we get what is known
as the cross-product deviations. As with the variance, if we want an average value of the
combined deviations for the two variables, we must divide by the number of observations
(we actually divide by N — 1 for reasons explained in Jane Superbrain Box 2.2). This aver-
aged sum of combined deviations is known as the covariance. We can write the covariance
in equation form as in equation (6.2) — you will notice that the equation is the same as the
equation for variance, except that instead of squaring the differences, we multiply them by
the corresponding difference of the second variable:

Y (x; ;[9_5)(13’1‘ -) (6.2)

cov(x,y) =

For the data in Table 6.1 and Figure 6.2 we reach the following value:

Z(xi -x)(y; - )
N-1
(-0.4)(-3)+ (-1.4)(-2) + (-1.4)(-1) + (0.6)(2) + (2.6)(4)
4
_ 1.2+2.841.4+1.2+10.4

cov(x,y) =

Calculating the covariance is a good way to assess whether two variables are related to
each other. A positive covariance indicates that as one variable deviates from the mean,
the other variable deviates in the same direction. On the other hand, a negative covariance
indicates that as one variable deviates from the mean (e.g., increases), the other deviates
from the mean in the opposite direction (e.g., decreases).

There is, however, one problem with covariance as a measure of the relationship between
variables and that is that it depends upon the scales of measurement used. So, covariance is
not a standardized measure. For example, if we use the data above and assume that they rep-
resented two variables measured in miles then the covariance is 4.25 (as calculated above). If
we then convert these data into kilometres (by multiplying all values by 1.609) and calculate
the covariance again then we should find that it increases to 11. This dependence on the
scale of measurement is a problem because it means that we cannot compare covariances
in an objective way — so, we cannot say whether a covariance is particularly large or small
relative to another data set unless both data sets were measured in the same units.

Standardization and the correlation coefficient ®

To overcome the problem of dependence on the measurement scale, we need to convert
the covariance into a standard set of units. This process is known as standardization. A very
basic form of standardization would be to insist that all experiments use the same units
of measurement, say metres — that way, all results could be easily compared. However,
what happens if you want to measure attitudes — you’d be hard pushed to measure them
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in metres. Therefore, we need a unit of measurement into which any scale of measurement
can be converted. The unit of measurement we use is the standard deviation. We came
across this measure in section 2.4.1 and saw that, like the variance, it is a measure of the
average deviation from the mean. If we divide any distance from the mean by the standard
deviation, it gives us that distance in standard deviation units. For example, for the data in
Table 6.1, the standard deviation for the number of packets bought is approximately 3.0
(the exact value is 2.92). In Figure 6.2 we can see that the observed value for participant
1 was 3 packets less than the mean (so there was an error of =3 packets of sweets). If we
divide this deviation, —3, by the standard deviation, which is approximately 3, then we get
a value of —1. This tells us that the difference between participant 1’s score and the mean
was —1 standard deviation. So, we can express the deviation from the mean for a partici-
pant in standard units by dividing the observed deviation by the standard deviation.

It follows from this logic that if we want to express the covariance in a standard unit of
measurement we can simply divide by the standard deviation. However, there are two vari-
ables and, hence, two standard deviations. Now, when we calculate the covariance we actu-
ally calculate two deviations (one for each variable) and then multiply them. Therefore,
we do the same for the standard deviations: we multiply them and divide by the product
of this multiplication. The standardized covariance is known as a correlation coefficient and
is defined by equation (6.3), in which s_is the standard deviation of the first variable and
s, is the standard deviation of the second variable (all other letters are the same as in the
equation defining covariance):

r_COny _Z(x,’_i)(yi_y) 63
a SxSy a (N—l)sxsy (6-3)

The coefficient in equation (6.3) is known as the Pearson product-moment correlation coeffi-
cient or Pearson correlation coefficient (for a really nice explanation of why it was originally
called the ‘product-moment’ correlation, see Miles & Banyard, 2007) and was invented by
Karl Pearson (see Jane Superbrain Box 6.1).2 If we look back at Table 6.1 we see that the
standard deviation for the number of adverts watched (s ) was 1.67, and for the number
of packets of crisps bought (s ) was 2.92. If we multiply these together we get 1.67 x 2.92
= 4.88. Now, all we need to do is take the covariance, which we calculated a few pages
ago as being 4.25, and divide by these multiplied standard deviations. This gives us 7 =
4.25/4.88 = .87.

By standardizing the covariance we end up with a value that has to lie between —1
and +1 (if you find a correlation coefficient less than —1 or more than +1 you can be
sure that something has gone hideously wrong!). A coefficient of +1 indicates that the
two variables are perfectly positively correlated, so as one variable increases, the other
increases by a proportionate amount. Conversely, a coefficient of —1 indicates a perfect
negative relationship: if one variable increases, the other decreases by a proportionate
amount. A coefficient of zero indicates no linear relationship at all and so if one variable
changes, the other stays the same. We also saw in section 2.6.4 that because the correla-
tion coefficient is a standardized measure of an observed effect, it is a commonly used
measure of the size of an effect and that values of +.1 represent a small effect, +.3 is a
medium effect and *.5 is a large effect (although I re-emphasize my caveat that these
canned effect sizes are no substitute for interpreting the effect size within the context of
the research literature).

2 You will find Pearson’s product-moment correlation coefficient denoted by both 7 and R. Typically, the upper-
case form is used in the context of regression because it represents the multiple correlation coefficient; however,
for some reason, when we square 7 (as in section 6.5.4.3) an upper case R is used. Don’t ask me why — it’s just
to confuse me, I suspect.



JANE SUPERBRAIN 6.1
Who said statistics was dull? @

Students often think that statistics is dull, but back in the
early 1900s it was anything but dull, with various promi-
nent figures entering into feuds on a soap opera scale.
One of the most famous was between Karl Pearson and
Ronald Fisher (whom we met in Chapter 2). It began
when Pearson published a paper of Fisher’s in his journal
but made comments in his editorial that, to the casual
reader, belittled Fisher’'s work. Two years later Pearson’s
group published work following on from Fisher’s paper
without consulting him. The antagonism persisted with
Fisher turning down a job to work in Pearson’s group and
publishing ‘improvements’ on Pearson’s ideas. Pearson
for his part wrote in his own journal about apparent errors
made by Fisher.

DISCOVERING STATISTICS USING R

Another prominent statistician, Jerzy Neyman, criti-

cized some of Fisher's most important work in a paper
delivered to the Royal Statistical Society on 28 March
1935 at which Fisher was present. Fisher’s discussion
of the paper at that meeting directly attacked Neyman.
Fisher more or less said that Neyman didn’'t know
¢ what he was talking about and didn’t understand the
background material on which his work was based.
Relations soured so much that while they both worked
at University College London, Neyman openly attacked
many of Fisher's ideas in lectures to his students. The
two feuding groups even took afternoon tea (a com-
i mon practice in the British academic community of the
time) in the same room but at different times! The truth
behind who fuelled these feuds is, perhaps, lost in the
mists of time, but Zabell (1992) makes a sterling effort
i tounearth it.

Basically, then, the founders of modern statisti-

cal methods were a bunch of squabbling children.
Nevertheless, these three men were astonishingly gifted
individuals. Fisher, in particular, was a world leader in
genetics, biology and medicine as well as possibly the
¢ most original mathematical thinker ever (Barnard, 1963;
i Field, 2005¢; Savage, 1976).

The significance of the correlation coefficient ®

Although we can directly interpret the size of a correlation coefficient, we have seen in
Chapter 2 that scientists like to test hypotheses using probabilities. In the case of a correla-
tion coefficient we can test the hypothesis that the correlation is different from zero (i.e.,
different from ‘no relationship’). If we find that our observed coefficient was very unlikely
to happen if there was no effect in the population, then we can gain confidence that the
relationship that we have observed is statistically meaningful.

There are two ways that we can go about testing this hypothesis. The first is to use our
trusty z-scores that keep cropping up in this book. As we have seen, z-scores are useful
because we know the probability of a given value of z occurring, if the distribution from
which it comes is normal. There is one problem with Pearson’s 7, which is that it is known
to have a sampling distribution that is not normally distributed. This is a bit of a nuisance,
but luckily, thanks to our friend Fisher, we can adjust 7 so that its sampling distribution is
normal as follows (Fisher, 1921):

1 1+7
=—1 - 6.4
z, ZOge(l—r) (6.4)
The resulting z_has a standard error of:
SE =1 6.5)

“ JIN-=3
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For our advert example, our » = .87 becomes 1.33 with a standard error of .71.

We can then transform this adjusted 7 into a z-score just as we have done for raw scores,
and for skewness and kurtosis values in previous chapters. If we want a z-score that rep-
resents the size of the correlation relative to a particular value, then we simply compute
a z-score using the value that we want to test against and the standard error. Normally
we want to see whether the correlation is different from 0, in which case we can subtract
0 from the observed value of  and divide by the standard error (in other words, we just
divide z, by its standard error):

(6.6)

For our advert data this gives us 1.33/.71 = 1.87. We can look up this value of z (1.87)
in the table for the normal distribution in the Appendix and get the one-tailed probability
from the column labelled ‘Smaller Portion’. In this case the value is .0307. To get the two-
tailed probability we simply multiply the one-tailed probability value by 2, which gives us
.0614. As such the correlation is significant, p < .05, one-tailed, but not two-tailed.

In fact, the hypothesis that the correlation coefficient is different from 0 is usually (R,
for example, does this) tested not using a z-score, but using a ¢-statistic with N — 2 degrees
of freedom, which can be directly obtained from 7:

.- 6.7)

You might wonder then why I told you about z-scores, then. Partly it was to keep the dis-
cussion framed in concepts with which you are already familiar (we don’t encounter the
t-test properly for a few chapters), but also it is useful background information for the next
section.

XMW Confidence intervals for r®

Confidence intervals tell us something about the likely value (in this case of the correlation)
in the population. To understand how confidence intervals are computed for 7, we need to
take advantage of what we learnt in the previous section about converting 7 to 2z, (to make
the sampling distribution normal), and using the associated standard errors. We can then
construct a confidence interval in the usual way. For a 95% confidence interval we have
(see section 2.5.2.1):

lower boundary of confidence interval = X —(1.96 x SE)
upper boundary of confidence interval = X + (1.96 x SE)
In the case of our transformed correlation coefficients these equations become:

lower boundary of confidence interval = z, —(1.96 X SE_ )

upper boundary of confidence interval = 2, +(1.96 X SE_ )
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For our advert data this gives us 1.33 — (1.96 X .71) = —0.062, and 1.33 + (1.96 X .71)
= 2.72. Remember that these values are in the z, metric and so we have to convert back to
correlation coefficients using:

%) _1q

(6.8)
) 41

r =

This gives us an upper bound of 7 = .991 and a lower bound of —0.062 (because this value
is so close to zero the transformation to z has no impact).

PV IV NI Correlation

A crude measure of the relationship between variables is the covariance.

If we standardize this value we get Pearson’s correlation coefficient, r.

The correlation coefficient has to lie between —1 and +1.

A coefficient of +1 indicates a perfect positive relationship, a coefficient of —1 indicates a perfect negative relationship, and
a coefficient of 0 indicates no linear relationship at all.

The correlation coefficient is a commonly used measure of the size of an effect: values of +.1 represent a small effect, +.3
is a medium effect and +.5 is a large effect. However, if you can, try to interpret the size of correlation within the context of
the research you’ve done rather than blindly following these benchmarks.

A word of warning about interpretation: causality ®

Considerable caution must be taken when interpreting correlation coefficients because
they give no indication of the direction of causality. So, in our example, although we can
conclude that as the number of adverts watched increases, the number of packets of toffees
bought increases also, we cannot say that watching adverts causes you to buy packets of
toffees. This caution is for two reasons:

® The third-variable problem: We came across this problem in section 1.6.2. To recap,
in any correlation, causality between two variables cannot be assumed because there
may be other measured or unmeasured variables affecting the results. This is known as
the third-variable problem or the tertium quid (see section 1.6.2 and Jane Superbrain
Box 1.1).

® Direction of causality: Correlation coefficients say nothing about which variable
causes the other to change. Even if we could ignore the third-variable problem
described above, and we could assume that the two correlated variables were the only
important ones, the correlation coefficient doesn’t indicate in which direction causal-
ity operates. So, although it is intuitively appealing to conclude that watching adverts
causes us to buy packets of toffees, there is no statistical reason why buying packets
of toffees cannot cause us to watch more adverts. Although the latter conclusion
makes less intuitive sense, the correlation coefficient does not tell us that it isn’t true.
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6.4. Data entry for correlation analysis @

Data entry for correlation, regression and multiple regression is straightforward because
each variable is entered in a separate column. If you are preparing your data in software
other than R then this means that, for each variable you have measured, you create a vari-
able in the spreadsheet with an appropriate name, and enter a participant’s scores across
one row of the spreadsheet. There may be occasions on which you have one or more cat-
egorical variables (such as gender) and these variables can also be entered in a column — see
section 3.7 for more detail.

As an example, if we wanted to calculate the correlation between the two variables in
Table 6.1 we would enter these data as in Figure 6.3. You can see that each variable is
entered in a separate column, and each row represents a single individual’s data (so the first
consumer saw 5 adverts and bought 8 packets).

If you have a small data set you might want to enter the variables directly into R and
then create a dataframe from them. For the advert data this can be done by executing the
following commands (see section 3.5):

adverts<-c(5,4,4,6,8)
packets<-c(8,9,10,13,15)
advertData<-data.frame(adverts, packets)

[7] Adverts.xlsx =

m Qv ( search in Sheet

| # Home | layout | Tables | Charts | SmartArt | Formulas | | A 37
Edit Font Alignment Number Format : Cells
- [ calibri v | General o] ===

- (ctieew e o] (=], (o L] B (0. (5
H = vl - v| O : it : _
il H& | 1&1 | © Align ;1@ Yo 3 |E‘ég:':|'a'{?i:;| Styles - Actiol
10 0 (= & |~
B | C | D | E | F [ G | H [ =
adverts | packets
s 0
9
10
13 b
15 A
) v
<< il sheet JT NG9 <>l
Normal View ‘ Ready ‘ 4

SELF-TEST

v Enter the advert data and use ggplot2 to produce a
scatterplot (number of packets bought on the y-axis,
and adverts watched on the x-axis) of the data.

6.5. Bivariate correlation ®

There are two types of correlation: bivariate and partial. A bivariate correlation is a cor-
relation between two variables (as described at the beginning of this chapter) whereas a
partial correlation (see section 6.6) looks at the relationship between two variables while
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FIGURE 6.3
Data entry for
correlation using
Excel
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‘controlling’ the effect of one or more additional variables. Pearson’s product-moment cor-
relation coefficient (described earlier), Spearman’s rho (see section 6.5.5) and Kendall’s tau
(see section 6.5.6) are examples of bivariate correlation coefficients.

Let’s return to the example from Chapter 4 about exam scores. Remember that a psy-
chologist was interested in the effects of exam stress and revision on exam performance.
She had devised and validated a questionnaire to assess state anxiety relating to exams
(called the Exam Anxiety Questionnaire, or EAQ). This scale produced a measure of anxi-
ety scored out of 100. Anxiety was measured before an exam, and the percentage mark
of each student on the exam was used to assess the exam performance. She also measured
the number of hours spent revising. These data are in Exam Anxiety.dat on the companion
website. We already created scatterplots for these data (section 4.5) so we don’t need to
do that again.

Packages for correlation analysis in R ®

There are several packages that we will use in this chapter. Some of them can be accessed
through R Commander (see the next section) but others can’t. For the examples in this
chapter you will need the packages Hmisc, polycor, boot, ggplot2 and ggm. If you do not
have these packages installed (some should be installed from previous chapters), you can
install them by executing the following commands (boot is part of the base package and
doesn’t need to be installed):

install.packages("Hmisc"); install.packages("ggm");
install.packages("ggplot2"); install.packages("polycor™)

You then need to load these packages by executing the commands:

library(boot); library(ggm); library(ggplot2); library(Hmisc);
library(polycor)

General procedure for correlations using R
Commander ©

To conduct a bivariate correlation using R Commander, first initiate the package by execut-
ing (and install it if you haven’t — see section 3.6):

library(Rcmdr)

You then need to load the data file into R Commander by using the Data=Import
data=from text file, clipboard, or URL... menu (see section 3.7.3). Once the data are
loaded in a dataframe (I have called the dataframe examData), you can use either the Statis
tics=>Summaries=Correlation matrix... or the Statistics=>Summaries=Correlation test...
menu to get the correlation coefficients. These menus and their dialog boxes are shown in
Figure 6.4.

The correlation matrix menu should be selected if you want to get correlation
coefficients for more than two variables (in other words, produce a grid of correlation
coefficients); the correlation test menu should be used when you want only a single corre-
lation coefficient. Both menus enable you to compute Pearson’s product-moment correla-
tion and Spearman’s correlation, and both can be used to produce p-values associated with
these correlations. However, there are some important differences too: the correlation test
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menu enables you to compute Kendall’s correlation, produces a confidence interval and
allows you to select both two-tailed and one-tailed tests, but can be used to compute only
one correlation coefficient at a time; in contrast, the correlation matrix cannot produce
Kendall’s correlation but can compute partial correlations, and can also compute multiple
correlations from a single command.

Let’s look at the Correlation Matrix dialog box first. Having accessed the main dialog box,
you should find that the variables in the dataframe are listed on the left-hand side of the
dialog box (Figure 6.4). You can select the variables that you want from the list by clicking
with the mouse while holding down the Ctrl key. R will create a grid of correlation coef-
ficients for all of the combinations of variables that you have selected. This table is called a
correlation matrix. For our current example, select the variables Exam, Anxiety and Revise.
Having selected the variables of interest you can choose between three correlation coef-
ficients: Pearson’s product-moment correlation coefficient (pearson product-moment® ), Spearman’s
rho (spsamanmnk-order  ®) and a partial correlation (ratial ). Any of these can be selected by
clicking on the appropriate tick-box with a mouse. Finally, if you would like p-values for the

Pairwise p-values =

correlation coefficients then select? forPearson or Spearman correlations ¥

For the correlation test dialog box you will again find that the variables in the dataframe
are listed on the left-hand side of the dialog box (Figure 6.4). You can select only two by
clicking with the mouse while holding down the C#7/ key. Having selected the two variables
of interest, choose between three correlation coefficients: Pearson’s product-moment cor-
relation coefficient (pearon product-moment @ ), Spearman’s rho (speamanmnkoder  ®) and Kendall’s
tau (kendairstau@). In addition, it is possible to specify whether or not the test is one- or two-
tailed (see section 2.6.2). To recap, a two-tailed test (the default) should be used when you
cannot predict the nature of the relationship (i.e., ‘I’'m not sure whether exam anxiety will
improve or reduce exam marks’). If you have a non-directional hypothesis like this, click

74 R Commander =3 Eol =)
File Edit Data [Stafistics| Graphs Models Distributions Tools Help
R, votoser o MIETINIITNINN  Active data set >
ands ! , S = a3
Contingency tables » Numerical summaries...
Script Window %
i Means » Frequency distributions...
| i » issi
}laad ("M:/R 4 Pm?omons Count muy?g.obsewalrons
|exampata <- Variances » Table of statistics... , header=TRUE,
sep="\t", Nonparametric tests »
Dimensional analysis » Correlation test...
Fit models Shapiro-Wilk test of noNpality...
74 Correlation Matrix o &[] R Cometion Test fol @ =
Variables (pick two or more) Variables (pick two)
Type of Correlations
Pearson product-moment © Type of Correlation Alternative Hypothesis
Spearman rank-order Pearson product-moment @  Two-sided @
Partial Spearman rank-order @  Correlation<0 ©
Pairwise p-values y 2 Kendall's tau @  Correlation>0 ©
for Pearson or Spearman correlations
OK ] [ Cancel ] [ Help ] [ oK ] [ fancel ] [ bielp

3 Selecting this option changes the function that R Commander uses to generate the output. If this option is not
selected then the function cor() is used, but if it is selected rcorr() is used (which is part of the Hmisc package).
The main implication is that rcorr() reports the results to only 2 decimal places (see the next section for a full
description of these functions).

215

FIGURE 6.4
Conducting

a bivariate
correlation using
R Commander
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on Twesided  ©. A one-tailed test should be selected when you have a directional hypothesis.
With correlations, the direction of the relationship can be positive (e.g., ‘the more anxious
someone is about an exam, the better their mark will be’) or negative (e.g., ‘the more
anxious someone is about an exam, the worse their mark will be’). A positive relationship
means that the correlation coefficient will be greater than 0; therefore, if you predict a
positive correlation coefficient then select comeition<0 ®. However, if you predict a negative
relationship then the correlation coefficient will be less than 0, so select conestion<0 @. For
both the correlation matrix and correlation test dialog boxes click on [_9K_] to generate the
output.

General procedure for correlations using R @

To compute basic correlation coefficients there are three main functions that can be used:
cor(), cor.test() and rcorr(). Table 6.2 shows the main differences between the three func-
tions. The functions cor() and cor.test() are part of the base system in R, but rcorr() is part
of the Hmisc package, so make sure you have it loaded.

Table 6.2 should help you to decide which function is best in a particular situation: if you
want a confidence interval then you will have to use cor.test(), and if you want correlation
coefficients for multiple pairs of variables then you cannot use cortest(); similarly, if you
want p-values then cor() won’t help you. You get the gist.

Table 6.2 Attributes of different functions for obtaining correlations

Multiple
Function Pearson Spearman Kendall p-values CI Correlations? Comments

cor() v v v v
cor.test() v v v v v
rcorr() v v v v 2 d.p. only

We will look at each function in turn and see what parameters it uses. Let’s start with
cor(), which takes the general form:

cor(x,y, use = "string", method = "correlation type")

in which:

® x is a numeric variable or dataframe.
® yisanother numeric variable (does not need to be specified if x above is a dataframe).

® use is set equal to a character string that specifies how missing values are handled.
The strings can be: (1) “everything”, which will mean that R will output an NA
instead of a correlation coefficient for any correlations involving variables containing
missing values; (2) “all.obs”, which will use all observations and, therefore, returns
an error message if there are any missing values in the data; (3) “complete.obs”, in
which correlations are computed from only cases that are complete for all variables —
sometimes known as excluding cases listwise (see R’s Souls’ Tip 6.1); or (4) “pairwise.
complete.obs”, in which correlations between pairs of variables are computed for
cases that are complete for those two variables — sometimes known as excluding cases
pairwise (see R’s Souls’ Tip 6.1).
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» o«

® method enables you to specify whether you want “pearson”, “spearman” or “kend-
all” correlations (note that all are written in lower case). If you want more than one

» <

type you can specify a list using the ¢() function; for example, c(“pearson”, “spear-
man”) would produce both types of correlation coefficients.

If we stick with our exam anxiety data, then we could get Pearson correlations between all
variables by specifying the dataframe (examData):

cor(examData, use = "complete.obs", method = "pearson")

If we want a single correlation between a pair of variables (e.g., Exam and Anxiety) then
we’d specify both variables instead of the dataframe:

cor(examData$Exam, examData$Anxiety, use = "complete.obs", method = "pearson™)

We can get a different type of correlation (e.g., Kendall’s tau) by changing the method
command:

cor(examData$Exam, examData$Anxiety, use = "complete.obs", method = "kendall™)

We can also change how we deal with missing values, for example, by asking for pairwise
exclusion:

cor(examData$Exam, examData$Anxiety, wuse = "pairwise.complete.obs",
method = "kendall™)

Y IEMR T MW Exclude cases pairwise or listwise? @

As we discover various functions in this book, many of them have options that determine how missing data are
handled. Sometimes we can decide to exclude cases ‘pairwise’ or ‘listwise’. Listwise means that if a case has
a missing value for any variable, then they are excluded from the whole analysis. So, for example, in our exam
anxiety data if one of our students had reported their anxiety and we knew their exam performance but we didn’t
have data about their revision time, then their data would not be used to calculate any of the correlations: they
would be completely excluded from the analysis. Another option is to exclude cases on a pairwise basis, which
means that if a participant has a score missing for a particular variable or analysis, then their data are excluded
only from calculations involving the variable for which they have no score. For our student about whom we don’t
have any revision data, this means that their data would be excluded when calculating the correlation between
exam scores and revision time, and when calculating the correlation between exam anxiety and revision time;
however, the student’s scores would be included when calculating the correlation between exam anxiety and
exam performance because for this pair of variables we have both of their scores.

The function rcorr() is fairly similar to cor(). It takes the general form:
rcorr(x,y, type = "correlation type™)

in which:

® x is a numeric variable or matrix.
® y is another numeric variable (does not need to be specified if x above is a matrix).

® type enables you to specify whether you want “pearson” or “spearman” correlations.
If you want both you can specify a list as ¢(“pearson”, “spearman’).
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A couple of things to note: first, this function does not work on dataframes, so you have to
convert your dataframe to a matrix first (see section 3.9.2); second, this function excludes
cases pairwise (see R’s Souls’ Tip 6.1) and there is no way to change this setting. Therefore, if
you have two numeric variables (that are not part of a dataframe) called Exam and Anxiety
then you could compute the Pearson correlation coefficient and its p-value by executing:

rcorr(Exam, Anxiety, type = "pearson")

Similarly, you could compute Pearson correlations (and their p-values) between all vari-
ables in a matrix called examData by executing:

rcorr(examData, type = "pearson")

The function cor.test() can be used only on pairs of variables (not a whole dataframe) and
takes the general form:

cor.test(x, y, alternative = "string", method = "correlation type", conf.
level = 0.95)
in which:

® x is a numeric variable.
® y is another numeric variable.

® glternative specifies whether you want to do a two-tailed test (alternative = “two.
sided”), which is the default, or whether you predict that the correlation will be less
than zero (i.e., negative) or more than zero (i.e., positive), in which case you can use
alternative = “less” and alternative = “greater”, respectively.

® method is the same as for cor() described above.

® conflevel allows you to specify the width of the confidence interval computed for
the correlation. The default is 0.95 (conf.level = 0.95) and if this is what you want
then you don’t need to use this command, but if you wanted a 90% or 99% con-
fidence interval you could use conf.level = 0.9 and conf.level = 0.99, respectively.
Confidence intervals are produced only for Pearson’s correlation coefficient.

Using our exam anxiety data, if we want a single correlation coefficient, its two-tailed
p-value and 95% confidence interval between a pair of variables (for example, Exam and
Anxiety) then we’d specify it much like we did for cor():

cor.test(examData$Exam, examData$Anxiety, method = "pearson™)
If we predicted a negative correlation then we could add in the alternative command:

cor.test(examData$Exam, examData$Anxiety, alternative = "less"), method =
"pearson™)

We could also specify a different confidence interval than 95%:

cor.test(examData$Exam, examData$Anxiety, alternative
"pearson", conf.level = 0.99)

"less"), method =

Hopefully you get the general idea. We will now move on to look at some examples of
specific types of correlation coefficients.

I

OLIVER TWISTED Oliver is so excited to get onto analysing his data that he doesn’t want
me to spend pages waffling on about variance and covariance. ‘Stop

Please Sir, can /hé?Ve writing, you waffling fool,” he says. ‘| want to analyse my data.’ Well, he's
SOme more ... varnance  got a point. If you want to find out more about two functions for calculat-
and covariance? ing variances and covariances that are part of the cor() family, then the

additional material for this chapter on the companion website will tell you.
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RX:W Pearson’s correlation coefficient @

6.5.4.1. Assumptions of Pearson’s r @

Pearson’s (Figure 6.5) correlation coefficient was described in full at the beginning of this
chapter. Pearson’s correlation requires only that data are interval (see section 1.5.1.2) for it
to be an accurate measure of the linear relationship between two variables. However, if you
want to establish whether the correlation coefficient is significant, then more assumptions
are required: for the test statistic to be valid the sampling distribution has to be normally
distributed and as we saw in Chapter 5 we assume that it is if our sample data are normally
distributed (or if we have a large sample). Although typically, to assume that the sampling
distribution is normal, we would want both variables to be normally distributed, there is
one exception to this rule: one of the variables can be a categorical variable provided there
are only two categories (in fact, if you look at section 6.5.7 you’ll see that this is the same
as doing a #-test, but I’'m jumping the gun a bit). In any case, if your data are non-normal
(see Chapter 5) or are not measured at the interval level then you should use a different
kind of correlation coefficient or use bootstrapping.

FIGURE 6.5
Karl Pearson

That’s a confusing title. We have already gone through the nuts and bolts of using R
Commander and the command line to calculate Pearson’s . We’re going to use the exam
anxiety data to get some hands-on practice.

SELF-TEST

v" Load the Exam Anxiety.dat file into a dataframe
called examData.
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Let’s look at a sample of this dataframe:

Code Revise Exam Anxiety Gender

1 1 4 40 86.298 Male
2 2 11 65 88.716 Female
3 3 27 80 70.178 Male
4 4 53 80 61.312 Male
5 5 4 40 89.522 Male
6 6 22 70 60.506 Female
7 7 16 20 81.462 Female
8 8 21 55 75.820 Female
9 9 25 50 69.372 Female
10 10 18 40 82.268 Female

The first issue we have is that some of the variables are not numeric (Gender) and others
are not meaningful numerically (code). We have two choices here. The first is to make a
new dataframe by selecting only the variables of interest) — we discovered how to do this
in section 3.9.1. The second is to specify this subset within the cor() command itself. If we
choose the first method then we should execute:

examData2 <- examDatal[, c("Exam", "Anxiety", "Revise")]
cor(examData2)

The first line creates a dataframe (examData2) that contains all of the cases, but only the
variables Exam, Anxiety and Revise. The second command creates a table of Pearson cor-
relations between these three variables (note that Pearson is the default so we don’t need to
specify it and because there are no missing cases we do not need the #se command).

Alternatively, we could specify the subset of variables in the examData dataframe as part
of the cor() function:

cor(examDatal[, c("Exam", "Anxiety", "Revise")])

The end result is the same, so it’s purely down to preference. With the first method it is a
little easier to see what’s going on, but as you gain confidence and experience you might
find that you prefer to save time and use the second method.

Exam Anxiety Revise
Exam 1.0000000 -0.4409934 0.3967207
Anxiety -0.4409934 1.0000000 -0.7092493
Revise 0.3967207 -0.7092493 1.0000000

Output 6.1: Output for a Pearson’s correlation

Output 6.1 provides a matrix of the correlation coefficients for the three variables.
Each variable is perfectly correlated with itself (obviously) and so » = 1 along the diago-
nal of the table. Exam performance is negatively related to exam anxiety with a Pearson
correlation coefficient of » = —.441. This is a reasonably big effect. Exam performance
is positively related to the amount of time spent revising, with a coefficient of r = .397,
which is also a reasonably big effect. Finally, exam anxiety appears to be negatively related
to the time spent revising, » = —.709, which is a substantial effect size. In psychologi-
cal terms, this all means that as anxiety about an exam increases, the percentage mark
obtained in that exam decreases. Conversely, as the amount of time revising increases, the
percentage obtained in the exam increases. Finally, as revision time increases, the student’s
anxiety about the exam decreases. So there is a complex interrelationship between the
three variables.

Correlation coefficients are effect sizes, so we can interpret these values without really
needing to worry about p-values (and as I have tried to drum into you, because p-values
are related to sample size, there is a lot to be said for not obsessing about them). However,
if you are the type of person who obsesses about p-values, then you can use the rcorr()



CHAPTER 6 CORRELATION 221

function instead and p yourself with excitement at the output it produces. First, make sure
you have loaded the Hmisc package by executing:

library(Hmisc)

Next, we need to convert our dataframe into a matrix using the as.matrix() command.
We can include only numeric variables so, just as we did above, we need to select only the
numeric variables within the examData dataframe. To do this, execute:

examMatrix<-as.matrix(examDatal[, c("Exam", "Anxiety", "Revise")])

Which creates a matrix called examMatrix that contains only the variables Exam, Anxiety,
and Revise from the examData dataframe. To get the correlation matrix we simply input
this matrix into the rcorr() function:*

rcorr(examMatrix)

As before, I think that the method above makes it clear what we’re doing, but more expe-
rienced users could combine the previous two commands into a single one:

rcorr(as.matrix(examDatal[, c("Exam", "Anxiety", "Revise")]))

Output 6.2 shows the same correlation matrix as Output 6.1, except rounded to 2 decimal
places. In addition, we are given the sample size on which these correlations are based, and
also a matrix of p-values that corresponds to the matrix of correlation coefficients above.
Exam performance is negatively related to exam anxiety with a Pearson correlation coefficient
of r = —.44 and the significance value is less than .001 (it is approximately zero). This signifi-
cance value tells us that the probability of getting a correlation coefficient this big in a sample
of 103 people if the null hypothesis were true (there was no relationship between these vari-
ables) is very low (close to zero in fact). Hence, we can gain confidence that there is a genuine
relationship between exam performance and anxiety. Our criterion for significance is usually
.05 (see section 2.6.1) so we can say that all of the correlation coefficients are significant.

Exam Anxiety Revise

Exam 1.00 -0.44 0.40
Anxiety -0.44 1.00 -0.71
Revise 0.40 -0.71 1.00
n= 103
P

Exam Anxiety Revise
Exam 0 0
Anxiety 0 0
Revise 0 0
Output 6.2

It can also be very useful to look at confidence intervals for correlation coefficients. Sadly,
we have to do this one at a time (we can’t do it for a whole dataframe or matrix). Let’s look
at the correlation between exam performance (Exam) and exam anxiety (Anxiety). We can
compute the confidence interval using cor.test() by executing:

cor.test(examData$Anxiety, examData$Exam)

4 The ggm package also has a function called rcorr(), so if you have this package installed, R might use that func-
tion instead, which will produce something very unpleasant on your screen. If so, you need to put Hmisc:: in front
of the commands to make sure R uses rcorr() from the Hmisc package (R’s Souls’ Tip 3.4):

Hmisc: :rcorr(examMatrix)
Hmisc::rcorr(as.matrix(CexamDatal[, c("Exam", "Anxiety", "Revise")]))
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Note that we have specified only the variables because by default this function produces
Pearson’s r and a 95% confidence interval. Output 6.3 shows the resulting output; it reiter-
ates that the Pearson correlation between exam performance and anxiety was —441, but
tells us that this was highly significantly different from zero, #(101) = —4.94, p < .001.
Most important, the 95% confidence ranged from —.585 to — .271, which does not cross
zero. This tells us that in all likelihood, the population or actual value of the correlation
is negative, so we can be pretty content that exam anxiety and exam performance are, in
reality, negatively related.

Pearson’s product-moment correlation

data: examData$Anxiety and examDataS$Exam
t = -4.938, df = 101, p-value = 3.128e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5846244 -0.2705591
sample estimates:
cor
-0.4409934

Output 6.3

SELF-TEST

v" Compute the confidence intervals for the
relationships between the time spent revising
(Revise) and both exam performance (Exam) and
exam anxiety (Anxiety).

Although we cannot make direct conclusions about causality from a correlation, we can
take the correlation coefficient a step further by squaring it. The correlation coefficient
squared (known as the coefficient of determination, R?) is a measure of the amount of vari-
ability in one variable that is shared by the other. For example, we may look at the relation-
ship between exam anxiety and exam performance. Exam performances vary from person
to person because of any number of factors (different ability, different levels of preparation
and so on). If we add up all of this variability (rather like when we calculated the sum of
squares in section 2.4.1) then we would have an estimate of how much variability exists
in exam performances. We can then use R? to tell us how much of this variability is shared
by exam anxiety. These two variables had a correlation of —0.4410 and so the value of R?
will be (—0.4410)* = 0.194. This value tells us how much of the variability in exam per-
formance is shared by exam anxiety.

If we convert this value into a percentage (multiply by 100) we can say that exam anxi-
ety shares 19.4% of the variability in exam performance. So, although exam anxiety was
highly correlated with exam performance, it can account for only 19.4% of variation in
exam scores. To put this value into perspective, this leaves 80.6% of the variability still to
be accounted for by other variables.

You’ll often see people write things about R? that imply causality: they might write ‘the
variance in y accounted for by x°, or ‘the variation in one variable explained by the other’.
However, although R?is an extremely useful measure of the substantive importance of an
effect, it cannot be used to infer causal relationships. Exam anxiety might well share 19.4%
of the variation in exam scores, but it does not necessarily cause this variation.
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We can get R to compute the coefficient of determination by remembering that ™ 2”
means ‘squared’ in R-speak. Therefore, for our examData2 dataframe (see earlier) if we
execute:
cor(examData2)A2
instead of:
cor(examData2)
then you will see be a matrix containing 7* instead of 7 (Output 6.4).

Exam Anxiety Revise
Exam 1.0000000 0.1944752 0.1573873
Anxiety 0.1944752 1.0000000 0.5030345
Revise 0.1573873 0.5030345 1.0000000
Output 6.4
Note that for exam performance and anxiety the value is 0.194, which is what we calcu-
lated above. If you want these values expressed as a percentage then simply multiply by
100, so the command would become:
cor(examData2)A2 * 100
" - 2 G

Spearman’s correlation coefficient @
Spearman’s correlation coefficient (Spearman, 1910), r, is a non-parametric statis-
tic and so can be used when the data have violated parametric assumptions such What if my data are
as non-normally distributed data (see Chapter 5). You’ll sometimes hear the test not parametric?
referred to as Spearman’s rho (pronounced ‘row’, as in ‘row your boat gently o
down the stream’). Spearman’s test works by first ranking the data (see section r_:'\@f

15.4.1), and then applying Pearson’s equation (equation (6.3)) to those ranks.
I was born in England, which has some bizarre traditions. One such oddity is
the World’s Biggest Liar competition held annually at the Santon Bridge Inn in
Wasdale (in the Lake District). The contest honours a local publican, ‘Auld Will
Ritson’, who in the nineteenth century was famous in the area for his far-fetched
stories (one such tale being that Wasdale turnips were big enough to be hollowed out and
used as garden sheds). Each year locals are encouraged to attempt to tell the biggest lie in the
world (lawyers and politicians are apparently banned from the competition). Over the years
there have been tales of mermaid farms, giant moles, and farting sheep blowing holes in the
ozone layer. (I am thinking of entering next year and reading out some sections of this book.)
Imagine I wanted to test a theory that more creative people will be able to create taller
tales. I gathered together 68 past contestants from this competition and asked them where
they were placed in the competition (first, second, third, etc.) and also gave them a creativity
questionnaire (maximum score 60). The position in the competition is an ordinal variable
(see section 1.5.1.2) because the places are categories but have a meaningful order (first place
is better than second place and so on). Therefore, Spearman’s correlation coefficient should
be used (Pearson’s r requires interval or ratio data). The data for this study are in the file
The Biggest Liar.dat. The data are in two columns: one labelled Creativity and one labelled
Position (there’s actually a third variable in there but we will ignore it for the time being). For
the Position variable, each of the categories described above has been coded with a numerical
value. First place has been coded with the value 1, with positions being labelled 2, 3 and so on.
The procedure for doing a Spearman correlation is the same as for a Pearson correlation
except that we need to specify that we want a Spearman correlation instead of Pearson,
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which is done using method = “spearman’ for cor() and cor.test(), and type = “spearman”
for rcorr(). Let’s load the data into a dataframe and then create a dataframe by executing:

liarData = read.delim("The Biggest Liar.dat", header = TRUE)

or if you haven’t set your working directory, execute this command and use the dialog box
to select the file:

liarData = read.delim(file.choose(), header = TRUE)

SELF-TEST

v" See whether you can use what you have learned so
far to compute a Spearman’s correlation between
Position and Creativity.

To obtain the correlation coefficient for a pair of variables we can execute:
cor(liarData$Position, liarData$Creativity, method = "spearman")

Note that we have simply specified the two variables of interest, and then set the method
to be a Spearman correlation. The output of this command will be:

[1] -0.3732184

If we want a significance value for this correlation we could either use rcorr() by executing
(remembering that we have to first convert the dataframe to a matrix):

liarMatrix<-as.matrix(liarData[, c("Position", "Creativity")])
rcorr(liarMatrix)

or simply use cor.test(), which has the advantage that we can set a directional hypothesis.
I predicted that more creative people would tell better lies. Doing well in the competition
(i.e., telling better lies) actually equates to a lower number for the variable Position (first
place = 1, second place = 2 etc.), so we’re predicting a negative relationship. High scores
on Creativity should equate to a lower value of Position (because a low value means you
did well!). Therefore, we predict that the correlation will be less than zero, and we can
reflect this prediction by using alternative = “less” in the command:

cor.test(liarData$Position, TliarData$Creativity, alternative = "less",
method = "spearman™)
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Spearman’s rank correlation rho
data: 1liarData$Position and liarDataS$Creativity
S = 71948.4, p-value = 0.0008602
alternative hypothesis: true rho is less than 0
sample estimates:

rho
-0.3732184

Output 6.5

Output 6.5 shows the output for a Spearman correlation on the variables Creativity and
Position. The output is very similar to that of the Pearson correlation (except that confidence
intervals are not produced — if you want one see the section on bootstrapping): the correla-
tion coefficient between the two variables is fairly large (—.373), and the significance value of
this coefficient is very small (p < .001). The significance value for this correlation coefficient
is less than .05; therefore, it can be concluded that there is a significant relationship between
creativity scores and how well someone did in the World’s Biggest Liar competition. Note
that the relationship is negative: as creativity increased, position decreased. Remember that a
low number means that you did well in the competition (a low number such as 1 means you
came first, and a high number like 4 means you came fourth). Therefore, our hypothesis is
supported: as creativity increased, so did success in the competition.

SELF-TEST

v" Did creativity cause success in the World's Biggest
Liar competition?

Kendall’s tau (non-parametric) ®

Kendall’s tau, T, is another non-parametric correlation and it should be used rather than
Spearman’s coefficient when you have a small data set with a large number of tied ranks.
This means that if you rank all of the scores and many scores have the same rank, then
Kendall’s tau should be used. Although Spearman’s statistic is the more popular of the
two coefficients, there is much to suggest that Kendall’s statistic is actually a better esti-
mate of the correlation in the population (see Howell, 1997: 293). As such, we can draw
more accurate generalizations from Kendall’s statistic than from Spearman’s. To carry out
Kendall’s correlation on the World’s Biggest Liar data simply follow the same steps as for
Pearson and Spearman correlations but use method = “kendall”:

cor(liarData$Position, liarData$Creativity, method = "kendall™)

cor.test(liarData$Position, TliarData$Creativity, alternative = "less",
method = "kendall™)

The output is much the same as for Spearman’s correlation.
Kendall’s rank correlation tau

data: liarDataSPosition and liarDataS$Creativity
z = -3.2252, p-value = 0.0006294
alternative hypothesis: true tau is less than 0
sample estimates:

tau
-0.3002413

Output 6.6
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You’ll notice from Output 6.6 that the actual value of the correlation coefficient is closer
to zero than the Spearman correlation (it has increased from —.373 to —.300). Despite the
difference in the correlation coefficients we can still interpret this result as being a highly
significant relationship (because the significance value of .001 is less than .05). However,
Kendall’s value is a more accurate gauge of what the correlation in the population would
be. As with the Pearson correlation, we cannot assume that creativity caused success in the
World’s Best Liar competition.

SELF-TEST

v Conduct a Pearson correlation analysis of the advert
data from the beginning of the chapter.

Bootstrapping correlations ®

Another way to deal with data that do not meet the assumptions of Pearson’s  is to use
bootstrapping. The boot() function takes the general form:

object<-boot(data, function, replications)

in which data specifies the dataframe to be used, function is a function that you write to
tell boot() what you want to bootstrap, and replications is a number specifying how many
bootstrap samples you want to take (I usually set this value to 2000). Executing this com-
mand creates an object that has various properties. We can view an estimate of bias, and
an empirically derived standard error by viewing object, and we can display confidence
intervals based on the bootstrap by executing boot.ci(object).

When using the boot() function with correlations (and anything else for that matter) the
tricky bit is writing the function (R’s Souls’ Tip 6.2). If we stick with our biggest liar data
and want to bootstrap Kendall tau, then our function will be:

bootTau<-function(liarData,i)cor(liarData$Position[i], liarData$Creativity[i],
use = "complete.obs", method = "kendall")

Executing this command creates an object called bootTau. The first bit of the function tells
R what input to expect in the function: in this case we need to feed a dataframe (liarData)
into the function and a variable that has been called 7 (which refers to a particular bootstrap
sample). The second part of the function specifies the cor() function, which is the thing we
want to bootstrap. Notice that cor() is specified in exactly the same way as when we did the
original Kendall correlation except that for each variable we have added [i], which again
just refers to a particular bootstrap sample. If you want to bootstrap a Pearson or Spearman
correlation you do it in exactly the same way except that you specify method = “pearson”
or method = “spearman” when you define the function.
To create the bootstrap object, we execute:

library(boot)
boot_kendall<-boot(liarData, bootTau, 2000)
boot_kendall

The first command loads the boot package (in case you haven’t already initiated it). The
second command creates an object (boot_kendall) based on bootstrapping the liarData
dataframe using the bootTau function that we previously defined and executed. The second
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line displays a summary of the boot_kendall object. To get the 95% confidence interval for
the boot_kendall object we execute:®

boot.ci(boot_kendall)

Output 6.7 shows the contents of both boot _kendall and also the output of the boot.ci()
function. First, we get the original value of Kendall’s tau (-.300), which we computed in
the previous section. We also get an estimate of the bias in that value (which in this case
is very small) and the standard error (0.098) based on the bootstrap samples. The out-
put from boot.ci() gives us four different confidence intervals (the basic bootstrapped CI,
percentile and BCa). The good news is that none of these confidence intervals cross zero,
which gives us good reason to think that the population value of this relationship between
creativity and success at being a liar is in the same direction as the sample value. In other
words, our original conclusions stand.

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = liarData, statistic = bootTau, R = 2000)

Bootstrap Statistics
original bias std. error
tl* -0.3002413 0.001058191 0.097663

> boot.ci(boot_kendall)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL
boot.ci (boot.out = boot_kendall)

Intervals

Level Normal Basic

95% (-0.4927, -0.1099 ) (-0.4956, -0.1126 )
Level Percentile BCa

95% (-0.4879, -0.1049 ) (-0.4777, -0.0941 )

Calculations and Intervals on Original Scale
Warning message:
In boot.ci(boot_kendall)
bootstrap variances needed for studentized intervals

Output 6.7

v Conduct bootstrap analysis of the Pearson and
Spearman correlations for the examData2 dataframe.

5 If we want something other than a 95% confidence interval we can add conf = x, in which x is the value of the
confidence interval as a proportion. For example, we can get a 99% confidence interval by executing:

boot.ci(boot_kendall, conf = 0.99)
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YR MW Writing functions ®

What happens if there is not a function available in R to do what you want to do? Simple, write your own function.
The ability to write your own functions is a very powerful feature of R. With a sufficient grasp of the R environment
(and the maths behind whatever you're trying to do) you can write a function to do virtually anything for you (apart
from making coffee). To write a function you need to execute a string of commands that define the function. They
take this general format:

nameofFunction<-function(inputObjectl, inputObject2, etc.)

{
a set of commands that do things to the input object(s)

a set of commands that specify the output of the function

}

Basically, you name the function (any name you like, but obviously one that tells you what the function does is
helpful). The function() tells R that you're writing a function, and you need to place within the brackets anything
you want as input to the function: this can be any object in R (a model, a dataframe, a numeric value, text, etc.). A
function might just accept one object, or there might be many. The names you list in the brackets can be whatever
you like, but again it makes sense to label them based on what they are (e.g., if you need to input a dataframe
then it makes sense to give the input a label of dataframe so that you remember what it is that the function needs).
You then use {} to contain a set of instructions that tell R what to do with the objects that have been input into the
function. These are usually some kind of calculations followed by some kind of instruction about what to return
from the function (the output).

Imagine that R doesn’t have a function for computing the mean and we wanted to write one (this will keep
things familiar). We could write this as:

meanOfVariable<-function(variable)

{

mean<-sum(variable)/length(variable)

cat("Mean = ", mean)

}

Executing this command creates a function called meanOfVariable that expects a variable to be entered into it.
The bits in {} tell R what to do with the variable that is entered into the function. The first line computes the mean
using the function sum() to add the values in the variable that was entered into the function, and the function
length() counts how many scores are in the variable. Therefore, mean <-sum(variable)/length(variable) translates
as mean = sum of scores/number of scores (which, of course, is the definition of the mean). The final line uses
the cat() function to print the text “Mean =" and the value of mean that we have just computed.

Remember the data about the number of friends that statistics lecturers had that we used to explore the mean
in Chapter 2 (section 2.4.1). We could enter these data by executing:

lecturerFriends = ¢(1,2,3,3,4)
Having executed our function, we can use it to find the mean. We simply execute:
meanOfVariable(lecturerFriends)

This tells R that we want to use the function meanOfVariable(), which we have just created, and that the variable
we want to apply this function to is lecturerFriends. Executing this command gives us:

Mean = 2.6

In other words, R has printed the text ‘Mean =" and the value of the mean computed by the function (just as we
asked it to). This value is the same as the one we calculated in section 2.4.1, so the function has worked. The
beauty of functions is that having executed the commands that define it, we can use this function over and over
again within our session (which saves time).
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As a final point, just to be clear, when we define our function we can name things anythi

ng we like. For

example, although | named the input to the function ‘variable’ to remind myself what the function needs, | could

have named it ‘HarryTheHungryHippo' if | had wanted to. Provided that | carry this name
commands within the function, it will work:

meanOfVariable<-function(HarryTheHungryHippo)

{
mean<-sum(HarryTheHungryHippo)/length(HarryTheHungryHippo)
cat("Mean = ", mean)

}

through to the

Note that within the function | now apply the sum() and length() functions to HarryTheHungryHippo because this
is the name that | gave to the input of the function. It will work, but people will be probably confused about what

HarryTheHungryHippo is when they read your code.

Biserial and point-biserial correlations ®

The biserial and point-biserial correlation coefficients are distinguished by only a concep-
tual difference, yet their statistical calculation is quite different. These correlation coef-
ficients are used when one of the two variables is dichotomous (i.e., it is categorical with
only two categories). An example of a dichotomous variable is being pregnant, because a
woman can be either pregnant or not (she cannot be ‘a bit pregnant’). Often it is necessary
to investigate relationships between two variables when one of the variables is dichoto-
mous. The difference between the use of biserial and point-biserial correlations depends
on whether the dichotomous variable is discrete or continuous. This difference is very
subtle. A discrete, or true, dichotomy is one for which there is no underlying continuum
between the categories. An example of this is whether someone is dead or alive: a person
can be only dead or alive, they can’t be ‘a bit dead’. Although you might describe a person
as being ‘half-dead’ — especially after a heavy drinking session — they are clearly still alive
if they are still breathing! Therefore, there is no continuum between the two categories.
However, it is possible to have a dichotomy for which a continuum does exist. An example
is passing or failing a statistics test: some people will only just fail while others will fail by
a large margin; likewise some people will scrape a pass while others will excel. So although
participants fall into only two categories there is an underlying continuum along which
people lie. Hopefully, it is clear that in this case there is some kind of continuum underlying
the dichotomy, because some people passed or failed more dramatically than others. The
point-biserial correlation coefficient (rph) is used when one variable is a discrete dichotomy
(e.g., pregnancy), whereas the biserial correlation coefficient (7,) is used when one variable
is a continuous dichotomy (e.g., passing or failing an exam).

Imagine that I was interested in the relationship between the gender of a cat and how
much time it spent away from home (what can I say? I love cats so these things interest me).
I had heard that male cats disappeared for substantial amounts of time on long-distance
roams around the neighbourhood (something about hormones driving them to find mates)
whereas female cats tended to be more homebound. So, I used this as a purr-fect (sorry!)
excuse to go and visit lots of my friends and their cats. I took a note of the gender of the
cat and then asked the owners to note down the number of hours that their cat was absent
from home over a week. Clearly the time spent away from home is measured at an interval
level — and let’s assume it meets the other assumptions of parametric data — while the gen-
der of the cat is discrete dichotomy. A point-biserial correlation has to be calculated and
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this is simply a Pearson correlation when the dichotomous variable is coded with 0 for one
category and 1 for the other.

Let’s load the data in the file pbcorr.csv and have a look at it. These data are in the CSV
format, so we can load them as (assuming you have set the working directory correctly):

catData = read.csv("pbcorr.csv", header = TRUE)

Note that we have used the read.csv() function because the file is a .csv file. To look at the
data execute:

catData
A sample of the data is as follows:

time gender recode

1 41 1

2 40 0 1
3 40 1 0
4 38 1 0
5 34 1 0
6 46 0 1
7 42 1 0
8 42 1 0
9 47 1 0
10 42 0 1
11 45 1 0
12 46 1 0
13 44 1 0
14 54 0 1

There are three variables:

® time, which is the number of hours that the cat spent away from home (in a week).
® gender, is the gender of the cat, coded as 1 for male and 0 for female.

® recode, is the gender of the cat but coded the opposite way around (i.e., 0 for male
and 1 for female). We will come to this variable later, but for now ignore it.

SELF-TEST

v' Carry out a Pearson correlation on time and gender.

Congratulations: if you did the self-test task then you have just conducted your first
point-biserial correlation. See, despite the horrible name, it’s really quite easy to do. If you
didn’t do the self-test then execute:

cor.test(catData$time, catData$gender)

You should find that you can see Output 6.8. The point-biserial correlation coefficient is
r,, = -378, which has a significance value of .003. The significance test for this correlation
is actually the same as performing an independent-samples #-test on the data (see Chapter
9). The sign of the correlation (i.e., whether the relationship was positive or negative) will
depend entirely on which way round the coding of the dichotomous variable was made. To
prove that this is the case, the data file pbcorr.dat has an extra variable called recode which
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is the same as the variable gender except that the coding is reversed (1 = female, 0 = male).
If you repeat the Pearson correlation using recode instead of gender you will find that the
correlation coefficient becomes —.378. The sign of the coefficient is completely dependent
on which category you assign to which code and so we must ignore all information about
the direction of the relationship. However, we can still interpret R? as before. So in this
example, R? = .378% = .143. Hence, we can conclude that gender accounts for 14.3% of
the variability in time spent away from home.

SELF-TEST

v’ Carry out a Pearson correlation on time and recode.

Pearson’s product-moment correlation

data: catDhatas$time and catData$Sgender
t = 3.1138, df = 58, p-value = 0.002868
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.137769 0.576936
sample estimates:
cor
0.3784542

Output 6.8

Imagine now that we wanted to convert the point-biserial correlation into the biserial
correlation coefficient (7,) (because some of the male cats were neutered and so there might
be a continuum of maleness that underlies the gender variable). We must use equation (6.9)
in which p is the proportion of cases that fell into the largest category and g is the propor-
tion of cases that fell into the smallest category. Therefore, p and g are simply the number
of male and female cats. In this equation y is the ordinate of the normal distribution at
the point where there is p% of the area on one side and g% on the other (this will become
clearer as we do an example):

"= T Pa (6.9)
y
To calculate p and g, we first need to use the table() function to compute the frequencies
of males and female cats. We will store these frequencies in a new object called catFrequen-
cies. We then use this object to compute the proportion of male and female cats using the
prop.table() function. We execute these two commands as follows:

catFrequencies<-table(catData$gender)
prop.table(catFrequencies)

The resulting output tells us that the proportion of male cats (1) was .467 (this is g because
it is the smallest portion) and the proportion of females (0) was .533 (this is p because it is
the largest portion):

0 1
0.5333333 0.4666667

To calculate y, we use these values and the values of the normal distribution displayed in the
Appendix. Figure 6.7 shows how to find the ordinate (the value in the column labelled y)
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when the normal curve is split with .467 as the smaller portion and .533 as the larger portion.
The figure shows which columns represent p and g and we look for our values in these columns
(the exact values of 0.533 and 0.467 are not in the table so instead we use the nearest values
that we can find, which are .5319 and .4681, respectively). The ordinate value is in the column
y and is .3977.

FIGURE 6.7 '
Getting the T ;
‘ordinate’ of 57 Larger ; Smaller
the normal %- Portion 5 Portion
distribution T :
!
.
i
z
Test Stalistic
00 50000 50000 3989 12 54776 45224 3961
01 507aa 40RM 2059 13 55172 44828 3956
44433 3951
44038 3945
43644 3939
43251 3932
42858 3925
42465 3918
42074 3910
09 53586 46414 3973 21 58317 41683 3902
10 53983 46017 3970 22 58706 41264 3894
1 54380 45620 3965 23 59095 40905 3885

If we replace these values in equation (6.9) we get .475 (see below), which is quite a lot
higher than the value of the point-biserial correlation (0.378). This finding just shows you
that whether you assume an underlying continuum or not can make a big difference to the
size of effect that you get:

__Tw\Pd _ 378V533%.467

b =475
y 3977

If this process freaks you out, then luckily you can get R to do it for you by installing the
polycor package and using the polyserial() function. You can simply specify the two vari-
ables of interest within this function just as you have been doing for every other correlation
in this chapter. Execute this command:

polyserial(catData$time, catData$gender)
and the resulting output:
[1] 0.4749256

confirms out earlier calculation.
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You might wonder, given that you can get R to calculate the biserial correlation in one
line of code, why I got you to calculate it by hand. It’s entirely plausible that I’'m just a nasty
person who enjoys other people’s pain. An alternative explanation is that the values of p
and g are about to come in handy so it was helpful to show you how to calculate them. I’ll
leave you to decide which explanation is most likely.

To get the significance of the biserial correlation we need to first work out its standard
error. If we assume the null hypothesis (that the biserial correlation in the population is
zero) then the standard error is given by (Terrell, 1982):

SE, = % (6.10)
y

This equation is fairly straightforward because it uses the values of p, ¢ and y that we
already used to calculate the biserial 7. The only additional value is the sample size (N),
which in this example was 60. So our standard error is:

o V-S33x.467

3977 x60

The standard error helps us because we can create a z-score (see section 1.7.4). To get a
z-score we take the biserial correlation, subtract the mean in the population and divide by
the standard error. We have assumed that the mean in the population is 0 (the null hypoth-
esis), so we can simply divide the biserial correlation by its standard error:

-7 1n-0 7 475

z, = = =——=2.93
* SE SE SE,  .162

3 7 3

We can look up this value of z (2.93) in the table for the normal distribution in the Appendix
and get the one-tailed probability from the column labelled ‘Smaller Portion’. In this case
the value is .00169. To get the two-tailed probability we simply multiply the one-tailed
probability value by 2, which gives us .00338. As such the correlation is significant, p < .01.

WYV Y\ I Correlaion coefficients

o We can measure the relationship between two variables using correlation coefficients.

o These coefficients lie between —1 and +1.

e Pearson’s correlation coefficient, r, is a parametric statistic and requires interval data for both variables. To test its signifi-
cance we assume normality too.

e Spearman’s correlation coefficient, r., is a non-parametric statistic and requires only ordinal data for both variables.

e Kenaall’s correlation coefficient, <, is like Spearman’s r, but probably better for small samples.

« The point-biserial correlation coefficient, r ,, quantifies the relationship between a continuous variable and a variable that is
a discrete dichotomy (e.g., there is no continuum underlying the two categories, such as dead or alive).

o The biserial correlation coefficient, r,, quantifies the relationship between a continuous variable and a variable that is a con-
tinuous dichotomy (e.g., there is a continuum underlying the two categories, such as passing or failing an exam).
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The theory behind part and partial correlation ®

I mentioned earlier that there is a type of correlation that can be done that allows you
to look at the relationship between two variables when the effects of a third variable are
held constant. For example, analyses of the exam anxiety data (in the file Exam Anxiety.
dat) showed that exam performance was negatively related to exam anxiety, but positively
related to revision time, and revision time itself was negatively related to exam anxiety.
This scenario is complex, but given that we know that revision time is related to both
exam anxiety and exam performance, then if we want a pure measure of the relationship
between exam anxiety and exam performance we need to take account of the influence of
revision time. Using the values of R? for these relationships (refer back to Output 6.4), we
know that exam anxiety accounts for 19.4% of the variance in exam performance, that
revision time accounts for 15.7% of the variance in exam performance, and that revision
time accounts for 50.2% of the variance in exam anxiety. If revision time accounts for half
of the variance in exam anxiety, then it seems feasible that at least some of the 19.4% of
variance in exam performance that is accounted for by anxiety is the same variance that
is accounted for by revision time. As such, some of the variance in exam performance
explained by exam anxiety is not unique and can be accounted for by revision time. A cor-
relation between two variables in which the effects of other variables are held constant is
known as a partial correlation.

Let’s return to our example of exam scores, revision time and exam anxiety to illus-
trate the principle behind partial correlation (Figure 6.8). In part 1 of the diagram there
is a box for exam performance that represents the total variation in exam scores (this
value would be the variance of exam performance). There is also a box that represents
the variation in exam anxiety (again, this is the variance of that variable). We know
already that exam anxiety and exam performance share 19.4% of their variation (this
value is the correlation coefficient squared). Therefore, the variations of these two vari-
ables overlap (because they share variance) creating a third box (the blue cross hatched
box). The overlap of the boxes representing exam performance and exam anxiety is the
common variance. Likewise, in part 2 of the diagram the shared variation between exam
performance and revision time is illustrated. Revision time shares 15.7% of the variation
in exam scores. This shared variation is represented by the area of overlap (the dotted-
blue lines box). We know that revision time and exam anxiety also share 50% of their
variation; therefore, it is very probable that some of the variation in exam performance
shared by exam anxiety is the same as the variance shared by revision time.

Part 3 of the diagram shows the complete picture. The first thing to note is that the boxes
representing exam anxiety and revision time have a large overlap (this is because they share
50% of their variation). More important, when we look at how revision time and anxiety
contribute to exam performance we see that there is a portion of exam performance that
is shared by both anxiety and revision time (the white area). However, there are still small
chunks of the variance in exam performance that are unique to the other two variables.
So, although in part 1 exam anxiety shared a large chunk of variation in exam perform-
ance, some of this overlap is also shared by revision time. If we remove the portion of
variation that is also shared by revision time, we get a measure of the unique relationship
between exam performance and exam anxiety. We use partial correlations to find out the
size of the unique portion of variance. Therefore, we could conduct a partial correlation
between exam anxiety and exam performance while ‘controlling’ for the effect of revision
time. Likewise, we could carry out a partial correlation between revision time and exam
performance while ‘controlling’ for the effects of exam anxiety.
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FIGURE 6.8
Exam Diagram showing
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Partial correlation using R ®

We will use the examData2 dataframe again, so if you haven’t got this loaded then execute
these commands:

examData = read.delim("Exam Anxiety.dat", header = TRUE)
examData2 <- examDatal[, c("Exam", "Anxiety", "Revise")]

This will import the Exam Anxiety.dat file and create a dataframe containing only the
three variables of interest. We will conduct a partial correlation between exam anxiety and
exam performance while ‘controlling’ for the effect of revision time. To compute a partial
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correlation and its significance we will use the pcor() and pcor.test() functions respectively.
These are part of the ggm package, so first load this:

library(ggm)
The general form of pcor() is:

pcor(c("varl", "var2", "controll", "control2" etc.), var(dataframe))

Basically, you enter a list of variables as strings (note the variable names have to be in quotes)
using the ¢() function. The first two variables should be those for which you want the partial
correlation; any others listed should be variables for which you’d like to ‘control’. You can
‘control’ for the effects of a single variable, in which case the resulting coefficient is known
as a first-order partial correlation; it is also possible to control for the effects of two (a
second-order partial correlation), three (a third-order partial correlation), or more variables
at the same time. The second part of the function simply asks for the name of the dataframe
(in this case examData2). For the current example, we want the correlation between exam
anxiety and exam performance (so we list these variables first) controlling for exam revision
(so we list this variable afterwards). As such, we can execute the following command:

pcor(c("Exam", "Anxiety", "Revise"), var(examData2))

Executing this command will print the partial correlation to the console. However, I find it
useful to create an object containing the partial correlation value so that we can use it in other
commands. As such, I suggest that you execute this command to create an object called pc:

pc<-pcor(c("Exam", "Anxiety", "Revise"), var(examData2))

We can then see the partial correlation and the value of R? in the console by executing;:

pc
pcA2

The general form of pcor.test() is:
pcor(pcor object, number of control variables, sample size)

Basically, you enter an object that you have created with pcor() (or you can put the pcor() com-
mand directly into the function). We created a partial correlation object called pc, had only
one control variable (Revise) and there was a sample size of 103; therefore we can execute:

pcor.test(pc, 1, 103)

to see the significance of the partial correlation.
> pc

[1] -0.2466658

> pcA2

[1] 0.06084403

> pcor.test(pc, 1, 103)
$tval

[1] -2.545307

$df
[1] 100

$pvalue
[1] 0.01244581

Output 6.9



CHAPTER 6 CORRELATION 237

Output 6.9 shows the output for the partial correlation of exam anxiety and exam per-
formance controlling for revision time; it also shows the squared value that we calculated
(pc ™ 2), and the significance value obtained from pcor.test(). The output of pcor() is the par-
tial correlation for the variables Anxiety and Exam but controlling for the effect of Revision.
First, notice that the partial correlation between exam performance and exam anxiety is
—.247, which is considerably less than the correlation when the effect of revision time is not
controlled for (r = —.441). In fact, the correlation coefficient is nearly half what it was before.
Although this correlation is still statistically significant (its p-value is .012, which is still below
.05), the relationship is diminished. In terms of variance, the value of R?for the partial cor-
relation is .06, which means that exam anxiety can now account for only 6% of the vari-
ance in exam performance. When the effects of revision time were not controlled for, exam
anxiety shared 19.4% of the variation in exam scores and so the inclusion of revision time
has severely diminished the amount of variation in exam scores shared by anxiety. As such, a
truer measure of the role of exam anxiety has been obtained. Running this analysis has shown
us that exam anxiety alone does explain some of the variation in exam scores, but there is a
complex relationship between anxiety, revision and exam performance that might otherwise
have been ignored. Although causality is still not certain, because relevant variables are being
included, the third variable problem is, at least, being addressed in some form.

These partial correlations can be done when variables are dichotomous (including the
‘third’ variable). So, for example, we could look at the relationship between bladder relax-
ation (did the person wet themselves or not?) and the number of large tarantulas crawling
up your leg, controlling for fear of spiders (the first variable is dichotomous, but the second
variable and ‘controlled for’ variables are continuous). Also, to use an earlier example, we
could examine the relationship between creativity and success in the World’s Biggest Liar
competition, controlling for whether someone had previous experience in the competition
(and therefore had some idea of the type of tale that would win) or not. In this latter case
the ‘controlled for’ variable is dichotomous.®

Semi-partial (or part) correlations ®

In the next chapter, we will come across another form of correlation known as a semi-
partial correlation (also referred to as a part correlation). While I’'m babbling on about partial
correlations it is worth my explaining the difference between this type of correlation and
semi-partial correlation. When we do a partial correlation between two variables, we con-
trol for the effects of a third variable. Specifically, the effect that the third variable has on
both variables in the correlation is controlled. In a semi-partial correlation we control for
the effect that the third variable has on only one of the variables in the correlation. Figure
6.9 illustrates this principle for the exam performance data. The partial correlation that we

FIGURE 6.9
Revision Revision The difference
between a partial
@ % @ and a semi-partial
correlation
“ “
Partial Correlation Semi-Partial Correlation

¢ Both these examples are, in fact, simple cases of hierarchical regression (see the next chapter) and the first
example is also an example of analysis of covariance. This may be confusing now, but as we progress through the
book I hope it’ll become clearer that virtually all of the statistics that you use are actually the same things dressed
up in different names.
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calculated took account not only of the effect of revision on exam performance, but also
of the effect of revision on anxiety. If we were to calculate the semi-partial correlation for
the same data, then this would control for only the effect of revision on exam performance
(the effect of revision on exam anxiety is ignored). Partial correlations are most useful for
looking at the unique relationship between two variables when other variables are ruled
out. Semi-partial correlations are, therefore, useful when trying to explain the variance in
one particular variable (an outcome) from a set of predictor variables. (Bear this in mind
when you read Chapter 7.)

GV IVINEEYAV SIS Partial and semi-partial correlation

e A partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable on
both variables in the original correlation.

o A semi-partial correlation quantifies the relationship between two variables while controlling for the effects of a third variable
on only one of the variables in the original correlation.

6.7. Comparing correlations ®

Comparing independent rs ®

Sometimes we want to know whether one correlation coefficient is bigger than another.
For example, when we looked at the effect of exam anxiety on exam performance, we
might have been interested to know whether this correlation was different in men and
women. We could compute the correlation in these two samples, but then how would we
assess whether the difference was meaningful?

SELF-TEST

v Use the subset() function to compute the correlation
coefficient between exam anxiety and exam
performance in men and women.

If we did this, we would find that the correlations were 7, | = -.506 and r, = -.381.
These two samples are independent; that is, they contain different entities. To compare
these correlations we can again use what we discovered in section 6.3.3 to convert these
coefficients to z_ (just to remind you, we do this because it makes the sampling distribution
normal and, therefore, we know the standard error). If we do the conversion, then we get
z, (males) = —.557 and z, (females) = —.401. We can calculate a z-score of the differences
between these correlations as:

P =
Difference \/ 1 1 (6 1 1)
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We had 52 men and 51 women so we would get:

R -557—-(-401) _ -.156 —_0.768
1 1 0.203

7+7
49 48

We can look up this value of z (0.768; we can ignore the minus sign) in the table for the
normal distribution in the Appendix and get the one-tailed probability from the column
labelled ‘Smaller Portion’. In this case the value is .221. To get the two-tailed probability
we simply multiply the one-tailed probability value by 2, which gives us .442. As such the
correlation between exam anxiety and exam performance is not significantly different in
men and women (see Oliver Twisted for how to do this using R).

OLIVER TWISTED ‘These equations are rubbish,” says Oliver, ‘they’re too confusing and |
hate them. Can’t we get R to do it for us while we check Facebook?’

Please Sir, can | Well, no, you can’t. Except you sort of can by writing your own function.
have some more ... ‘Write my own function!!” screams Oliver whilst trying to ram his computer
functions? keyboard into his mouth. ‘You've got to be joking, you steaming dog

colon, | can barely write my own name.’ Luckily for you Oliver, I've done
it for you. To find out more, read the additional material for this chap-
ter on the companion website. Or check Facebook, the choice is yours.

Comparing dependent rs ®

If you want to compare correlation coefficients that come from the same entities then
things are a little more complicated. You can use a ¢-statistic to test whether a difference
between two dependent correlations from the same sample is significant. For example,
in our exam anxiety data we might want to see whether the relationship between exam
anxiety (x) and exam performance (y) is stronger than the relationship between revision
(z) and exam performance. To calculate this, all we need are the three rs that quantify the
relationships between these variables: 7, the relationship between exam anxiety and exam
performance (-.441); T the relationship between revision and exam performance (.397);
and r_, the relationship between exam anxiety and revision (-.709). The ¢-statistic is com-
puted as (Chen & Popovich, 2002):

(n=3)1+r,)
. - 1) 2 6.12
Difference xy =y \/2(1 _ rxzy _ szz — rzzy + eryrxzrzy ( !

Admittedly that equation looks hideous, but really it’s not too bad: it just uses the three
correlation coefficients and the sample size N.

Put in the numbers from the exam anxiety example (N was 103) and you should end up
with:

29.1

In: = —.838 =_5.09
Diffrence = ( )\/ 2(1-.194—-.503—.158+0.248)




Can | use r2 for
non-parametric
correlations?
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This value can be checked against the appropriate critical value in the Appendix with N—3
degrees of freedom (in this case 100). The critical values in the table are 1.98 (p < .05) and
2.63 (p < .01), two-tailed. As such we can say that the correlation between exam anxiety
and exam performance was significantly higher than the correlation between revision time
and exam performance (this isn’t a massive surprise, given that these relationships went in
the opposite directions to each other).

OLIVER TWISTED ‘Are you having a bloody laugh with that equation?’ yelps Oliver.

'd rather smother myself with cheese sauce and lock myself

Please Sir, can | have . in a room of hungry mice.” Yes, yes, Oliver, enough of your sex-
some maore ... comparng  ual habits. To spare the poor mice | have written another R func-
of correlations? tion to run the comparison mentioned in this section. For a guide

on how to use them read the additional material for this chap-
ter on the companion website. Go on, be kind to the mice!

Calculating effect sizes for correlation coefficients couldn’t be easier because, as we saw
earlier in the book, correlation coefficients are effect sizes! So, no calculations (other than
those you have already done) necessary! However, I do want to point out one caveat when
using non-parametric correlation coefficients as effect sizes. Although the Spearman and
Kendall correlations are comparable in many respects (their power, for example, is similar
under parametric conditions), there are two important differences (Strahan, 1982).

First, we saw for Pearson’s 7 that we can square this value to get the proportion of shared
variance, R®. For Spearman’s r, we can do this too because it uses the same equation as
Pearson’s 7. However, the resulting R’ needs to be interpreted slightly dif-
ferently: it is the proportion of variance in the ranks that two variables share.
Having said this, R’ is usually a good approximation for R* (especially in con-
ditions of near-normal distributions). Kendall’s 7, however, is not numerically
similar to either 7 or 7_and so 7* does not tell us about the proportion of vari-
ance shared by two variables (or the ranks of those two variables).

Second, Kendall’s 7 is 66-75% smaller than both Spearman’s 7 and Pearson’s
r, but 7 and 7, are generally similar sizes (Strahan, 1982). As such, if 7 is used
as an effect size it should be borne in mind that it is not comparable to 7 and 7,
and should not be squared. A related issue is that the point-biserial and biserial
correlations differ in size too (as we saw in this chapter, the biserial correlation
was bigger than the point-biserial). In this instance you should be careful to decide whether
your dichotomous variable has an underlying continuum, or whether it is a truly discrete
variable. More generally, when using correlations as effect sizes you should remember
(both when reporting your own analysis and when interpreting others) that the choice of
correlation coefficient can make a substantial difference to the apparent size of the effect.

6.9. How to report correlation coefficents ®

Reporting correlation coefficients is pretty easy: you just have to say how big they are and
what their significance value was (although the significance value isn’t that important because
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the correlation coefficient is an effect size in its own right!). Five things to note are that: (1)
if you follow the conventions of the American Psychological Association, there should be no
zero before the decimal point for the correlation coefficient or the probability value (because
neither can exceed 1); (2) coefficients are reported to 2 decimal places; (3) if you are quoting
a one-tailed probability, you should say so; (4) each correlation coefficient is represented by
a different letter (and some of them are Greek); and (5) there are standard criteria of prob-
abilities that we use (.05, .01 and .001). Let’s take a few examples from this chapter:

v" There was a significant relationship between the number of adverts watched and the
number of packets of sweets purchased, r = .87, p (one-tailed) < .05.

v Exam performance was significantly correlated with exam anxiety, r = —.44, and time
spent revising, » = .40; the time spent revising was also correlated with exam anxiety,
r=-=.71 (all ps <.001).

v" Creativity was significantly related to how well people did in the World’s Biggest Liar
competition, 7, = =37, p < .001.

v" Creativity was significantly related to how well people did in the World’s Biggest Liar
competition, T = —.30, p < .001. (Note that I’ve quoted Kendall’s 7 here.)

v The gender of the cat was significantly related to the time the cat spent away from
home, r, = .38, p < .01.

b
v The gender of the cat was significantly related to the time the cat spent away from
home, r, = .48, p < .01.

Scientists, rightly or wrongly, tend to use several standard levels of statistical significance.
Primarily, the most important criterion is that the significance value is less than .05; however,
if the exact significance value is much lower then we can be much more confident about the
strength of the effect. In these circumstances we like to make a big song and dance about the
fact that our result isn’t just significant at .05, but is significant at a much lower level as well
(hooray!). The values we use are .05, .01, .001 and .0001. You are rarely going to be in the
fortunate position of being able to report an effect that is significant at a level less than .0001!

When we have lots of correlations we sometimes put them into a table. For example, our
exam anxiety correlations could be reported as in Table 6.3. Note that above the diagonal
I have reported the correlation coefficients and used symbols to represent different levels
of significance. Under the table there is a legend to tell readers what symbols represent.
(Actually, none of the correlations were non-significant or had p bigger than .001, so most
of these are here simply to give you a reference point — you would normally include sym-
bols that you had actually used in the table in your legend.) Finally, in the lower part of the
table I have reported the sample sizes. These are all the same (103), but sometimes when
you have missing data it is useful to report the sample sizes in this way because different
values of the correlation will be based on different sample sizes. For some more ideas on
how to report correlations have a look at Labcoat Leni’s Real Research 6.1.

Table 6.3 An example of reporting a table of correlations

Exam Exam Anxiety Revision Time
Performance

Exam Performance 1 — VAR O***

Exam Anxiety 103 1 _ 7R

Revision Time 103 103 1

ns = not significant (o > .05), * p < .05, ** p < .01, *** p < .001
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Why do you like your
lecturers? @

Labcoat Leni’s Real Research 6.1

Chamorro-Premuzic, T, et al. (2008). Personality and Individual Differences, 44, 965-976.

As students you probably have to rate your lecturers at the end of the course. There will be some lecturers you like
and others that you hate. As a lecturer | find this process horribly depressing (although this has a lot to do with
the fact that | tend focus on negative feedback and ignore the good stuff). There is some evidence that students
tend to pick courses of lecturers whom they perceive to be enthusastic and good communicators. In a fascinat-
ing study, Tomas Chamorro-Premuzic and his colleagues (Chamorro-Premuzic, Furnham, Christopher, Garwood,
& Martin, 2008) tested a slightly different hypothesis, which was that students tend to like lecturers who are like
themselves. (This hypothesis will have the students on my course who like my lectures screaming in horror.)

First of all, the authors measured students’ own personalities using a very well-established measure (the
NEO-FFI) which gives rise to scores on five fundamental personality traits: Neuroticism, Extroversion, Openness
to experience, Agreeableness and Conscientiousness. They also gave students a questionnaire that asked them
to rate how much they wanted their lecturer to have each of a list of characteristics. For example, they would
be given the description ‘warm: friendly, warm, sociable, cheerful, affectionate, outgoing’ and asked to rate
how much they wanted to see this in a lecturer from —5 (they don’t want this characteristic at all) through 0 (the
characteristic is not important) to +5 (I really want this characteristic in my lecturer). The characteristics on the
questionnaire all related to personality characteristics measured by the NEO-FFI. As such, the authors had a
measure of how much a student had each of the five core personality characteristics, but also a measure of how
much they wanted to see those same characteristics in their lecturer.

In doing so, Tomas and his colleagues could test whether, for instance, extroverted students want extrovert
lecturers. The data from this study (well, for the variables that I've mentioned) are in the file Chamorro-Premuzic.
dat. Run some Pearson correlations on these variables to see if students with certain personality characteristics
want to see those characteristics in their lecturers. What conclusions can you draw?

Answers are in the additional material on the companion website (or look at Table 3 in the original article, which
will also show you how to report a large number of correlations).

What have | discovered about statistics? 9

This chapter has looked at ways to study relationships between variables. We began
by looking at how we might measure relationships statistically by developing what
we already know about variance (from Chapter 1) to look at variance shared between
variables. This shared variance is known as covariance. We then discovered that when
data are parametric we can measure the strength of a relationship using Pearson’s cor-
relation coefficient, . When data violate the assumptions of parametric tests we can
use Spearman’s 7, or for small data sets Kendall’s 7 may be more accurate. We also saw
that correlations can be calculated between two variables when one of those variables is
a dichotomy (i.e., composed of two categories); when the categories have no underly-
ing continuum then we use the point-biserial correlation, 7, , but when the categories
do have an underlying continuum we use the biserial correlation, 7,. Finally, we looked
at the difference between partial correlations, in which the relationship between two
variables is measured controlling for the effect that one or more variables has on both
of those variables, and semi-partial correlations, in which the relationship between two
variables is measured controlling for the effect that one or more variables has on only
one of those variables. We also discovered that I had a guitar and, like my favourite
record of the time, I was ready to “Take on the World’. Well, Wales at any rate ...
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R packages used in this chapter

boot Polycor
ggm Rcmdr
ggplot2

Hmisc

R functions used in this chapter

boot() polyserial()
boot.ci() prop.table()
cor() rcorr()
cor.test() read.csv()
pcor() read.delim()
pcor.test() table()

Key terms that I’'ve discovered

Biserial correlation Kendall’s tau

Bivariate correlation Partial correlation

Coefficient of determination Pearson correlation coefficient
Correlation coefficient Point-biserial correlation
Covariance Semi-partial correlation
Cross-product deviations Spearman’s correlation coefficient
Dichotomous Standardization

Smart Alex’s tasks ®

® Task 1: A student was interested in whether there was a positive relationship between
the time spent doing an essay and the mark received. He got 45 of his friends and
timed how long they spent writing an essay (hours) and the percentage they got
in the essay (essay). He also translated these grades into their degree classifications
(grade): in the UK, a student can get a first-class mark (the best), an upper-second-
class mark, a lower second, a third, a pass or a fail (the worst). Using the data in the
file EssayMarks.dat find out what the relationship was between the time spent doing
an essay and the eventual mark in terms of percentage and degree class (draw a scat-
terplot too!). ®

® Task 2: Using the ChickFlick.dat data from Chapter 3, is there a relationship between
gender and arousal? Using the same data, is there a relationship between the film
watched and arousal? @

® Task 3: As a statistics lecturer I am always interested in the factors that determine
whether a student will do well on a statistics course. One potentially important factor
is their previous expertise with mathematics. Imagine I took 25 students and looked
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at their degree grades for my statistics course at the end of their first year at univer-
sity: first, upper second, lower second or third class. I also asked these students what
grade they got in their GCSE maths exams. In the UK, GCSEs are school exams taken
at age 16 that are graded A, B, C, D, E or F (an A grade is better than all of the lower
grades). The data for this study are in the file grades.csv. Carry out the appropriate
analysis to see if GCSE maths grades correlate with first-year statistics grades. ®

Answers can be found on the companion website.

Further reading

Chen, P Y., & Popovich, P M. (2002). Correlation: Parametric and nonparametric measures.
Thousand Oaks, CA: Sage.

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.
Both are excellent texts that are a bit more technical than this book, so they are a useful next step.)

Miles, J. N. V,, & Banyard, P (2007). Understanding and using statistics in psychology: A practical
introduction. London: Sage. (A fantastic and amusing introduction to statistical theory.)

Wright, D. B.,& London, K. (2009). First steps in statistics (2nd ed.). London: Sage. (This book is a
very gentle introduction to statistical theory.)

Interesting real research

Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds
of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965-976.
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FIGURE 7.1

Me playing

with my ding-
a-ling in the
Holimarine Talent
Show. Note the
groupies queuing
up at the front

7.1. What will this chapter tell me? ®

Although none of us can know the future, predicting it is so important that organisms
are hard-wired to learn about predictable events in their environment. We saw in the
previous chapter that I received a guitar for Christmas when I was 8. My first foray into
public performance was a weekly talent show at a holiday camp called ‘Holimarine’
in Wales (it doesn’t exist any more because I am old and this was 1981). I sang a
Chuck Berry song called ‘My Ding-a-ling’! and to my absolute amazement I won the

! It appears that even then I had a passion for lowering the tone of things that should be taken seriously.
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competition.? Suddenly other 8-year-olds across the land (well, a ballroom in Wales) wor-
shipped me (I made lots of friends after the competition). I had tasted success, it tasted
like praline chocolate, and so I wanted to enter the competition in the second week of
our holiday. To ensure success, I needed to know why I had won in the first week. One
way to do this would have been to collect data and to use these data to predict people’s
evaluations of children’s performances in the contest from certain variables: the age of
the performer, what type of performance they gave (singing, telling a joke, magic tricks),
and maybe how cute they looked. A regression analysis on these data would enable us
to predict future evaluations (success in next week’s competition) based on values of
the predictor variables. If, for example, singing was an important factor in getting a
good audience evaluation, then I could sing again the following week; however, if jokers
tended to do better then I could switch to a comedy routine. When I was 8 I wasn’t the
sad geek that I am today, so I didn’t know about regression analysis (nor did I wish to
know); however, my dad thought that success was due to the winning combination of a
cherub-looking 8-year-old singing songs that can be interpreted in a filthy way. He wrote
me a song to sing in the competition about the keyboard player in the Holimarine Band
‘messing about with his organ’, and first place was mine again. There’s no accounting
for taste.

In the previous chapter we looked at how to measure relationships between
two variables. These correlations can be very useful, but we can take this pro-
cess a step further and predict one variable from another. A simple example
might be to try to predict levels of stress from the amount of time until you
have to give a talk. You’d expect this to be a negative relationship (the smaller
the amount of time until the talk, the larger the anxiety). We could then extend
this basic relationship to answer a question such as ‘if there’s 10 minutes to go
until someone has to give a talk, how anxious will they be?’ This is the essence
of regression analysis: we fit a model to our data and use it to predict values
of the dependent variable (DV) from one or more independent variables (IVs).
Regression analysis is a way of predicting an outcome variable from one predictor variable
(simple regression) or several predictor variables (multiple regression). This tool is incred-
ibly useful because it allows us to go a step beyond the data that we collected.

In section 2.4.3 I introduced you to the idea that we can predict any data using the fol-
lowing general equation:

outcome, = (model) + error, (7.1)

This just means that the outcome we’re trying to predict for a particular person can be
predicted by whatever model we fit to the data plus some kind of error. In regression, the
model we fit is linear, which means that we summarize a data set with a straight line (think
back to Jane Superbrain Box 2.1). As such, the word ‘model’ in the equation above simply
gets replaced by ‘things’ that define the line that we fit to the data (see the next section).
With any data set there are several lines that could be used to summarize the general
trend, and so we need a way to decide which of many possible lines to choose. For the sake

2 1 have a very grainy video of this performance recorded by my dad’s friend on a video camera the size of a
medium-sized dog that had to be accompanied at all times by a battery pack the size and weight of a tank. Maybe
I’ll put it up on the companion website ...



CHAPTER 7 REGRESSION 247

of making accurate predictions we want to fit a model that best describes the data. The
simplest way to do this would be to use your eye to gauge a line that looks as though it
summarizes the data well. You don’t need to be a genius to realize that the ‘eyeball” method
is very subjective and so offers no assurance that the model is the best one that could have
been chosen. Instead, we use a mathematical technique called the method of least squares
to establish the line that best describes the data collected.

Some important information about straight lines ®

I mentioned above that in our general equation the word ‘model’ gets replaced by ‘things
that define the line that we fit to the data’. In fact, any straight line can be defined by two
things: (1) the slope (or gradient) of the line (usually denoted by & ); and (2) the point at
which the line crosses the vertical axis of the graph (known as the intercept of the line, b).
In fact, our general model becomes equation (7.2) below in which Y, is the outcome that
we want to predict and X is the ith participant’s score on the predictor variable.’ Here b is
the gradient of the straight line fitted to the data and b, is the intercept of that line. These
parameters b and b are known as the regression coefficients and will crop up time and
time again in this book, where you may see them referred to generally as b (without any
subscript) or b, (meaning the b associated with variable 7). There is a residual term, &, which
represents the difference between the score predicted by the line for participant 7 and the
score that participant 7 actually obtained. The equation is often conceptualized without this
residual term (so ignore it if it’s upsetting you); however, it is worth knowing that this term
represents the fact that our model will not fit the data collected perfectly:

Yi = (bo + bIXi) +€, (7.2)

A particular line has a specific intercept and gradient. Figure 7.2 shows a set of lines that
have the same intercept but different gradients, and a set of lines that have the same gradi-
ent but different intercepts. Figure 7.2 also illustrates another useful point: the gradient of
the line tells us something about the nature of the relationship being described. In Chapter
6 we saw how relationships can be either positive or negative (and I don’t mean the dif-
ference between getting on well with your girlfriend and arguing all the time!). A line that
has a gradient with a positive value describes a positive relationship, whereas a line with a
negative gradient describes a negative relationship. So, if you look at the graph in Figure
7.2 in which the gradients differ but the intercepts are the same, then the red line describes
a positive relationship whereas the green line describes a negative relationship. Basically
then, the gradient (b)) tells us what the model looks like (its shape) and the intercept (b,)
tells us where the model is (its location in geometric space).

If it is possible to describe a line knowing only the gradient and the intercept of that
line, then we can use these values to describe our model (because in linear regression the
model we use is a straight line). So, the model that we fit to our data in linear regression
can be conceptualized as a straight line that can be described mathematically by equation
(7.2). With regression we strive to find the line that best describes the data collected, then
estimate the gradient and intercept of that line. Having defined these values, we can insert

3 You’ll sometimes see this equation written as:
Y= (B,+ B, X) +e

The only difference is that this equation has got f§s in it instead of bs and in fact both versions are the same thing,
they just use different letters to represent the coefficients.
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different values of our predictor variable into the model to estimate the value of the out-
come variable.

The method of least squares @

I have already mentioned that the method of least squares is a way of finding the line that
best fits the data (i.e., finding a line that goes through, or as close to, as many of the data
points as possible). This ‘line of best fit’ is found by ascertaining which line, of all of the
possible lines that could be drawn, results in the least amount of difference between the
observed data points and the line. Figure 7.3 shows that when any line is fitted to a set of
data, there will be small differences between the values predicted by the line and the data
that were actually observed.

Back in Chapter 2 we saw that we could assess the fit of a model (the example we used
was the mean) by looking at the deviations between the model and the actual data col-
lected. These deviations were the vertical distances between what the model predicted and
each data point that was actually observed. We can do exactly the same to assess the fit of
aregression line (which, like the mean, is a statistical model). So, again we are interested in
the vertical differences between the line and the actual data because the line is our model:
we use it to predict values of Y from values of the X variable. In regression these differences
are usually called residuals rather than deviations, but they are the same thing. As with
the mean, data points fall both above (the model underestimates their value) and below
(the model overestimates their value) the line, yielding both positive and negative differ-
ences. In the discussion of variance in section 2.4.2 I explained that if we sum positive and
negative differences then they tend to cancel each other out and that to circumvent this
problem we square the differences before adding them up. We do the same thing here. The
resulting squared differences provide a gauge of how well a particular line fits the data: if
the squared differences are large, the line is not representative of the data; if the squared
differences are small, the line is representative.

You could, if you were particularly bored, calculate the sum of squared differences (or
SS for short) for every possible line that is fitted to your data and then compare these
‘goodness-of-fit” measures. The one with the lowest SS is the line of best fit. Fortunately
we don’t have to do this because the method of least squares does it for us: it selects the
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line that has the lowest sum of squared differences (i.e., the line that best represents the
observed data). How exactly it does this is by using a mathematical technique for finding
maxima and minima and this technique is used to find the line that minimizes the sum of
squared differences. I don’t really know much more about it than that to be honest, so I
tend to think of the process as a little bearded wizard called Nephwick the Line Finder who
just magically finds lines of best fit. Yes, he lives inside your computer. The end result is
that Nephwick estimates the value of the slope and intercept of the ‘line of best fit’ for you.
We tend to call this line of best fit a regression line (or more generally a regression model).

Assessing the goodness of fit: sums of squares,
Rand R*O®

Once Nephwick the Line Finder has found the line of best fit it is important that we assess
how well this line fits the actual data (we assess the goodness of fit of the model). We do this
because even though this line is the best one available, it can still be a lousy fit to the data.
In section 2.4.2 we saw that one measure of the adequacy of a model is the sum of squared
differences (or more generally we assess models using equation (7.3) below). If we want to
assess the line of best fit, we need to compare it against something, and the thing we choose
is the most basic model we can find. So we use equation (7.3) to calculate the fit of the most
basic model, and then the fit of the best model (the line of best fit), and basically if the best
model is any good then it should fit the data significantly better than our basic model:

deviation = Y,(observed — model)? (7.3)

This is all quite abstract so let’s look at an example. Imagine that I was interested in
predicting physical and downloaded album sales (Y) from the amount of money spent
advertising that album (X). One day my boss came in to my office and said ‘Andy, I know
you wanted to be a rock star and you’ve ended up working as my stats-monkey, but how
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many albums will we sell if we spend £100,000 on advertising?’ If I didn’t
have an accurate model of the relationship between album sales and advertis-
ing, what would my best guess be? Well, probably the best answer I could give
would be the mean number of album sales (say, 200,000) because on average
that’s how many albums we expect to sell. This response might well satisfy a
brainless record company executive (who didn’t offer my band a recording
contract). However, what if he had asked ‘How many albums will we sell if we
spend £1 on advertising?’ Again, in the absence of any accurate information,
my best guess would be to give the average number of sales (200,000). There
is a problem: whatever amount of money is spent on advertising I always predict the same
levels of sales. As such, the mean is a model of ‘no relationship’ at all between the variables.
It should be pretty clear then that the mean is fairly useless as a model of a relationship
between two variables — but it is the simplest model available.

So, as a basic strategy for predicting the outcome, we might choose to use the mean, because
on average it will be a fairly good guess of an outcome. Using the mean as a model, we can cal-
culate the difference between the observed values, and the values predicted by the mean (equa-
tion (7.3)). We saw in section 2.4.1 that we square all of these differences to give us the sum
of squared differences. This sum of squared differences is known as the total sum of squares
(denoted SS.) because it is the total amount of differences present when the most basic model
is applied to the data. This value represents how good the mean is as a model of the observed
data. Now, if we fit the more sophisticated model to the data, such as a line of best fit, we can
again work out the differences between this new model and the observed data (again using
equation (7.3)). In the previous section we saw that the method of least squares finds the best
possible line to describe a set of data by minimizing the difference between the model fitted
to the data and the data themselves. However, even with this optimal model there is still some
inaccuracy, which is represented by the differences between each observed data point and the
value predicted by the regression line. As before, these differences are squared before they are
added up so that the directions of the differences do not cancel out. The result is known as the
sum of squared residuals or residual sum of squares (SS,). This value represents the degree of
inaccuracy when the best model is fitted to the data. We can use these two values to calculate
how much better the regression line (the line of best fit) is than just using the mean as a model
(i.e., how much better is the best possible model than the worst model?). The improvement
in prediction resulting from using the regression model rather than the mean is obtained by
calculating the difference between SS. and SS,. This difference shows us the reduction in the
inaccuracy of the model resulting from fitting the regression model to the data. This improve-
ment is the model sum of squares (SS,,). Figure 7.4 shows each sum of squares graphically.

If the value of SS, is large then the regression model is very different from using the
mean to predict the outcome variable. This implies that the regression model has made a big
improvement to how well the outcome variable can be predicted. However, if SS,, is small
then using the regression model is little better than using the mean (i.e., the regression model
is no better than taking our ‘best guess’). A useful measure arising from these sums of squares
is the proportion of improvement due to the model. This is easily calculated by dividing the
sum of squares for the model by the total sum of squares. The resulting value is called R? and
to express this value as a percentage you should multiply it by 100. R? represents the amount
of variance in the outcome explained by the model (SS,,) relative to how much variation
there was to explain in the first place (SS,). Therefore, as a percentage, it represents the per-
centage of the variation in the outcome that can be explained by the model:

sS,,
sS

R= (7.4)

T

This R? is the same as the one we met in Chapter 6 (section 6.5.4.3) and you might have
noticed that it is interpreted in the same way. Therefore, in simple regression we can take
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the square root of this value to obtain Pearson’s correlation coefficient. As such, the cor-
relation coefficient provides us with a good estimate of the overall fit of the regression
model, and R? provides us with a good gauge of the substantive size of the relationship.

A second use of the sums of squares in assessing the model is through the F-test. I
mentioned way back in Chapter 2 that test statistics (like F) are usually the amount of
systematic variance divided by the amount of unsystematic variance, or, put another way,
the model compared against the error in the model. This is true here: F is based upon the
ratio of the improvement due to the model (SS,) and the difference between the model
and the observed data (SS,). Actually, because the sums of squares depend on the number
of differences that we have added up, we use the average sums of squares (referred to as

FIGURE 7.4
Diagram showing
from where the
regression sums
of squares derive



DISCOVERING STATISTICS USING R

the mean squares or MS). To work out the mean sums of squares we divide by the degrees
of freedom (this is comparable to calculating the variance from the sums of squares — see
section 2.4.2). For SS,, the degrees of freedom are simply the number of variables in the
model, and for SS, they are the number of observations minus the number of parameters
being estimated (i.e., the number of beta coefficients including the constant). The result is
the mean squares for the model (MS,) and the residual mean squares (MS,). At this stage
it isn’t essential that you understand how the mean squares are derived (it is explained in
Chapter 10). However, it is important that you understand that the F-ratio (equation (7.5))
is a measure of how much the model has improved the prediction of the outcome com-
pared to the level of inaccuracy of the model.

MS,,

F=
MS,

(7.5)

If a model is good, then we expect the improvement in prediction due to the model to be
large (so MS,, will be large) and the difference between the model and the observed data to
be small (so MS, will be small). In short, a good model should have a large F-ratio (greater
than 1 at least) because the top of equation (7.5) will be bigger than the bottom. The exact
magnitude of this F-ratio can be assessed using critical values for the corresponding degrees
of freedom (as in the Appendix).

Assessing individual predictors @

We’ve seen that the predictor in a regression model has a coefficient (b,), which in simple
regression represents the gradient of the regression line. The value of b represents the
change in the outcome resulting from a unit change in the predictor. If the model was
useless at predicting the outcome, then if the value of the predictor changes, what might
we expect the change in the outcome to be? Well, if the model is very bad then we would
expect the change in the outcome to be zero. Think back to Figure 7.4 (see the panel
representing SS.) in which we saw that using the mean was a very bad way of predict-
ing the outcome. In fact, the line representing the mean is flat, which means that as the
predictor variable changes, the value of the outcome does not change (because for each
level of the predictor variable, we predict that the outcome will equal the mean value).
The important point here is that a bad model (such as the mean) will have regression
coefficients of 0 for the predictors. A regression coefficient of 0 means: (1) a unit change
in the predictor variable results in no change in the predicted value of the outcome (the
predicted value of the outcome does not change at all); and (2) the gradient of the regres-
sion line is 0, meaning that the regression line is flat. Hopefully, you’ll see that it logically
follows that if a variable significantly predicts an outcome, then it should have a b-value
significantly different from zero. This hypothesis is tested using a ¢-test (see Chapter 9).
The t-statistic tests the null hypothesis that the value of b is 0: therefore, if it is significant
we gain confidence in the hypothesis that the b-value is significantly different from 0 and
that the predictor variable contributes significantly to our ability to estimate values of
the outcome.

Like F, the ¢-statistic is also based on the ratio of explained variance against unex-
plained variance or error. Well, actually, what we’re interested in here is not so much
variance but whether the b we have is big compared to the amount of error in that
estimate. To estimate how much error we could expect to find in b we use the standard
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error. The standard error tells us something about how different b-values would be
across different samples. We could take lots and lots of samples of data regarding
album sales and advertising budgets and calculate the b-values for each sample. We
could plot a frequency distribution of these samples to discover whether the b-values
from all samples would be relatively similar, or whether they would be very different
(think back to section 2.5.1). We can use the standard deviation of this distribution
(known as the standard error) as a measure of the similarity of b-values across samples.
If the standard error is very small, then it means that most samples are likely to have
a b-value similar to the one in our sample (because there is little variation across sam-
ples). The #-test tells us whether the b-value is different from 0 relative to the variation
in b-values across samples. When the standard error is small even a small deviation
from zero can reflect a meaningful difference because b is representative of the major-
ity of possible samples.

Equation (7.6) shows how the ¢-test is calculated and you’ll find a general version of
this equation in Chapter 9 (equation (9.1)). The b, term is simply the value of b that
we would expect to obtain if the null hypothesis were true. I mentioned earlier that the
null hypothesis is that b is 0 and so this value can be replaced by 0. The equation sim-
plifies to become the observed value of b divided by the standard error with which it is
associated:

observed expected

SE

=
b

observed

SE

b

The values of # have a special distribution that differs according to the degrees of freedom
for the test. In regression, the degrees of freedom are N — p — 1, where N is the total
sample size and p is the number of predictors. In simple regression when we have only
one predictor, so this gives N — 2. Having established which ¢-distribution needs to be
used, the observed value of ¢ can then be compared to the values that we would expect to
find if there was no effect (i.e., b = 0): if # is very large then it is unlikely to have occurred
when there is no effect (these values can be found in the Appendix). R provides the exact
probability that the observed value (or a larger one) of ¢t would occur if the value of b was,
in fact, 0. As a general rule, if this observed significance is less than .05, then scientists
assume that b is significantly different from 0; put another way, the predictor makes a
significant contribution to predicting the outcome.

7.3. Packages used in this chapter ®

There are several packages we will use in this chapter. Some, but not all, can be accessed
through R Commander. You will need the packages boot (for bootstrapping), car (for
regression diagnostics) and QuantPsyc (to get standardized regression coefficients). If you
don’t have these packages installed you’ll need to install them (boot comes pre-installed)
by executing:

install.packages("car™); install.packages("QuantPsyc")
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Then you need to load the packages by executing these commands (although boot is
installed with the base stats package, you still need to load it):

library(boot); library(car); library(QuantPsyc)

7.4. General procedure for regression in R ®

Doing simple regression using R Commander ©

So far, we have seen a little of the theory behind regression, albeit restricted to the situation
in which there is only one predictor. To help clarify what we have learnt so far, we will go
through an example of a simple regression using R. Earlier on I asked you to imagine that
I worked for a record company and that my boss was interested in predicting album sales
from advertising. There are some data for this example in the file Album Sales 1.dat.

To conduct a regression analysis using R Commander, first initiate the package by exe-
cuting the command:

library(Rcmdr)

Once you have initiated the package, you need to load the data file into R. You can read
Album Sales 1.dat into R Commander by using Data = Import data = from text file,
clipboard, or URL... (see section 3.7.3). We can click on to look at the data and
check they were read into R properly. Figure 7.5 shows the data: there are 200 rows,
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each one representing a different album. There are also two columns, one representing
the sales of each album (in thousands) in the week after release and the other represent-
ing the amount (in thousands of pounds) spent promoting the album before release.
This is the format for entering regression data: the outcome variable and any predictors
should be entered in different columns, and each row should represent independent val-
ues of those variables.

The pattern of the data is shown in Figure 7.6, and it should be clear that a positive
relationship exists: so, the more money spent advertising the album, the more it is likely
to sell. Of course there are some albums that sell well regardless of advertising (top left
of scatterplot), but there are none that sell badly when advertising levels are high (bottom
right of scatterplot). The scatterplot also shows the line of best fit for these data: bearing in
mind that the mean would be represented by a flat line at around the 200,000 sales mark,
the regression line is noticeably different.
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To find out the parameters that describe the regression line, and to see whether this
line is a useful model, we need to run a regression analysis. In R Commander, choose
Statistics=>Fit models=Linear regression to activate the linear regression dialog box
(Figure 7.7). On the left we choose a response variable — this is the outcome, or depend-
ent variable. On the right we choose an explanatory (predictor, or independent) variable.
In this case our outcome is sales so we have highlighted this variable in the list labelled
Response variable (pick one), and the predictor variable is adverts, so we have selected
this variable in the list labelled Explanatory variables (pick one or more). At the top of the
dialog box, there is a box labelled Enter name for model: by default R Commander has
named the model albumSales. 1. By replacing the text in this box we can change that name
of the model, for example, to albumSalesModel or whatever makes sense to you. When you
have selected your variables and named the model, click on | 2K _|. The resulting output is
described in section 7.5.
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Regression in R®

First load the data file by setting your working directory to the location of the file (see sec-
tion 3.4.4) and executing:

albuml<-read.delim(“Album Sales 1.dat”, header = TRUE)

We run a regression analysis using the /m() function — Im stands for ‘linear model’. This
function takes the general form:

newModel<-1m(Coutcome ~ predictor(s), data = dataFrame, na.action = an action))

in which:

newModel is an object created that contains information about the model. We can get
summary statistics for this model by executing summary(newModel) and summary.
Im(newModel) for specific parameters of the model.

outcome is the variable that you’re trying to predict, also known as the dependent
variable. In this example it will be the variable sales.

predictor(s) lists the variable or variables from which you’re trying to predict the
outcome variable. In this example it will be the variable adverts. In more complex
designs we can specify several predictors but we’ll come to that in due course.

dataFrame is the name of the dataframe from which your outcome and predictor
variables come.

na.action is an optional command. If you have complete data (as we have here) you
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can
be useful — see R’s Souls’ Tip 19.2).

The important part to note (especially important because many analyses in the rest of the
book uses some variant of /#1()) is that within the function we write a formula that specifies
the model that we want to estimate. This model takes the form:

outcome variable ~ predictor variable
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in which ~ (tilde) means ‘predicted from’. (We can’t write ‘=" because that would confuse
R, plus we’re not saying the outcome is equal to the predictor, just that the outcome has
something to do with the predictor.)

As with functions we have come across before, we can reference variables in two ways:
we can either put the whole variable name, including the dataframe:

albumSales.1 <- Im(Calbuml$sales ~ albuml$adverts)

or we can tell R what dataframe to use (using data = nameOfDataFrame), and then specify
the variables without the dataFrameName§ before them:

albumSales.l <- 1m(sales ~ adverts, data = albuml)

I prefer this second method, but both of these commands create an object called album-
Sales1 that contains information about the model. (Note that the command we have just
written is the same as the command that R Commander generates for us using the menus.)

SEBYINIEHR I AN Missing data®

Often data sets have missing data, which might be denoted with a placeholder such as ‘NA’, ‘Missing’, or a
number that denotes missing such as 9999. As we have seen before, when missing data are imported into R you
typically get an NA in your dataframe to denote the missing value.

If you try to estimate a model with dataframes that have missing values you will get an error because /m() does
not know what to do with the NAs that it finds in the data. Therefore, you can add na.action = action to the function
to let it know what to do. There are two main options:

1. na.action = na.fail: This is the default and it simply means that if there are any missing values the model will
fail to compute.

2. na.action = na.omit or na.exclude: This estimates the model but excludes any case that has any missing
data on any variable in the model (this is sometimes known as casewise deletion). There are subtle differ-
ences between the two but they are so subtle | haven’'t worked out what they are.

Therefore, if we had missing values in the data we should specify our album sales model as:

albumSales.1l <- Im(sales ~ adverts, data = albuml, na.action = na.exclude)

We have created an object called albumSales. 1 that contains the results of our analysis. We can
show the object by executing:

summary(albumSales.1)

which displays the information in Output 7.1.

Call:
Im(formula = sales ~ adverts, data = albuml)

Residuals:
Min 10 Median 30 Max
-152.949 -43.796 -0.393 37.040 211.866
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Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.341le+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 **’ 0.05 ‘.’ 0.1 » 1

Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

Output 7.1

Overall fit of the object model ®

Let’s start at the bottom of Output 7.1:
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313

This part of the output provides the value of R? and adjusted R? for the model that has
been derived. For these data, R* has a value of .335. Because there is only one predictor,
this value represents the square of the simple correlation between advertising and album
sales — we can find the square root of R* by running:

sqrt(0.3346)
Which R tells us is:
[1] 0.5784462

The Pearson correlation coefficient is, therefore, 0.58. (You can confirm this by running
a correlation using what you were taught in Chapter 6.) The value of R? of .335 also tells
us that advertising expenditure can account for 33.5% of the variation in album sales.
In other words, if we are trying to explain why some albums sell more than others, we
can look at the variation in sales of different albums. There might be many factors that
can explain this variation, but our model, which includes only advertising expenditure, can
explain approximately 33% of it. This means that 67% of the variation in album sales can-
not be explained by advertising alone. Therefore, there must be other variables that have
an influence also.

The next part of Output 7.1 reports the results of an analysis of variance (ANOVA - see
Chapter 10):

F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

It doesn’t give us all of the sums of squares, it just gives the important part: the F-ratio,
which is calculated using equation (7.5), and the associated significance value of that
F-ratio. For these data, F is 99.59, which is significant at p < .001* (because the value

4 Remember that when R wants to show small or large numbers it uses exponential notation. So 2.2e-16
means “2.2 with the decimal place moved 16 places to the left, and add zeros as necessary”, which means:
0.00000000000000022. That’s a very small number indeed.
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labelled p-value is less than .001). This result tells us that there is less than a 0.1% chance
that an F-ratio this large would happen if the null hypothesis were true. Therefore, we
can conclude that our regression model results in significantly better prediction of album
sales than if we used the mean value of album sales. In short, the regression model overall
predicts album sales significantly well.

Model parameters ©

The ANOVA tells us whether the model, overall, results in a significantly good degree of
prediction of the outcome variable. However, the ANOVA doesn’t tell us about the indi-
vidual contribution of variables in the model (although in this simple case there is only one
variable in the model and so we can infer that this variable is a good predictor).

The final part of Output 7.1 that we will look at (for now) is the part
labelled Coefficients. This part contains the model parameters (the beta val-
ues) and the significance of these values. We saw in equation (7.2) that b,
was the Y intercept and this value is the value in the Estimate column for the o
(intercept). (Notice that R puts intercept in brackets, because it’s in a list of <f= __K\

e

How do | interpret
b-values?

variables, but it’s not a real variable). So, from the table shown in Output .
7.1, we can say that b is 134.1, and this can be interpreted as meaning that = L Q)
when no money is spent on advertising (when X = 0), the model predicts <T %&5;\\
that 134,100 albums will be sold (remember that our unit of measurement L—~—-_\_AL!'£w
was thousands of albums). We can also read off the value of b, from the

row labelled adverts and this value represents the gradient of the regression line. It is
0.096. Although this value is the slope of the regression line, it is more useful to think of
this value as representing the change in the outcome associated with a unit change in the
predictor. Therefore, if our predictor variable is increased by one unit (if the advertising
budget is increased by 1), then our model predicts that 0.096 units of extra albums will be
sold. Our units of measurement were thousands of pounds and thousands of albums sold,
so we can say that for an increase in advertising of £1000 the model predicts 96 (0.096 x
1000 = 96) extra album sales. As you might imagine, this investment is pretty bad for the
record company: it invests £1000 and gets only 96 extra sales.

We saw earlier that, in general, values of the regression coefficient b represent the change
in the outcome resulting from a unit change in the predictor and that if a predictor is having a
significant impact on our ability to predict the outcome then this b should be different from 0
(and big relative to its standard error). We also saw that the ¢-test tells us whether the b-value
is different from 0. R provides the exact probability that the observed value of ¢ would occur
if the value of b in the population were 0. If this observed significance is less than .03, then
scientists agree that the result reflects a genuine effect (see Chapter 2). For these two values,
the probabilities are <2e~16 (which means 15 zeros, followed by a 2) and so we can say
that the probability of these #-values (or larger) occurring if the values of b in the population
were 0 is less than .001. Therefore, the bs are different from 0 and we can conclude that the
advertising budget makes a significant contribution (p < .001) to predicting album sales.

v" How is the t in Output 7.1 calculated? Use the
values in the output to see if you can get the same
value as R.
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JAA Using the model ®

So far, we have discovered that we have a useful model, one that significantly improves our
ability to predict album sales. However, the next stage is often to use that model to make
some predictions. The first stage is to define the model by replacing the b-values in equa-
tion (7.2) with the values from the output. In addition, we can replace the X and Y with the
variable names so that the model becomes:

album sales,=b+ b, advertising budget,
=134.14 + (0.096 x advertising budget) (7.7)

It is now possible to make a prediction about album sales, by replacing the advertising bud-
get with a value of interest. For example, imagine a recording company executive wanted
to spend £100,000 on advertising a new album. Remembering that our units are already
in thousands of pounds, we can simply replace the advertising budget with 100. He would
discover that album sales should be around 144,000 for the first week of sales:

album sales,= 134.14 + (0.096 x advertising budget)
= 134.14 + (0.096 x 100)
=143.74 (7.8)

SELF-TEST

v" How many units would be sold if we spent £666,000
on advertising the latest album by black metal band
Abgott?

BRVAVVIVINEEYNV SIS Simple regression

Simple regression is a way of predicting values of one variable from another.
We do this by fitting a statistical model to the data in the form of a straight line.
This line is the line that best summarizes the pattern of the data.

We have to assess how well the line fits the data using:

o R? which tells us how much variance is explained by the model compared to how much variance there is to explain in the
first place. It is the proportion of variance in the outcome variable that is shared by the predictor variable.

o F, which tells us how much variability the model can explain relative to how much it can’t explain (i.e., it’s the ratio of how
good the model is compared to how bad it is).

The b-value tells us the gradient of the regression line and the strength of the relationship between a predictor and the out-
come variable. If it is significant (Pr(>|¢|) < .05 in the R output) then the predictor variable significantly predicts the outcome
variable.
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7.6. Multiple regression: the basics @

To summarize what we have learnt so far, in simple linear regression the out-
come variable Y is predicted using the equation of a straight line (equation (7.2)).
Given that we have collected several values of Y and X, the unknown parameters
in the equation can be calculated. They are calculated by fitting a model to the

What is the difference
between simple and
multiple regression?

data (in this case a straight line) for which the sum of the squared differences Py
between the line and the actual data points is minimized. This method is called £ »%
the method of least squares. Multiple regression is a logical extension of these %«fgl;P{
principles to situations in which there are several predictors. Again, we still use i/} & \
our basic equation: ( mf_ 3

outcome, = (model) + error,

but this time the model is slightly more complex. It is basically the same as for simple
regression except that for every extra predictor you include, you have to add a coefficient;
so0, each predictor variable has its own coefficient, and the outcome variable is predicted
from a combination of all the variables multiplied by their respective coefficients plus a
residual term (see equation (7.9) — the brackets aren’t necessary, they’re just to make the
connection to the general equation above):

Y =06,+bX,+bX,, +...+bX ) +e, (7.9)

Y is the outcome variable, b is the coefficient of the first predictor (X)), b, is the coefficient
of the second predictor (X,), b, is the coefficient of the nth predictor (X ), and €, is the dif-
ference between the predicted and the observed value of Y for the ith participant. In this
case, the model fitted is more complicated, but the basic principle is the same as simple
regression. That is, we seek to find the linear combination of predictors that correlate
maximally with the outcome variable. Therefore, when we refer to the regression model in

multiple regression, we are talking about a model in the form of equation (7.9).

An example of a multiple regression model ®

Imagine that our recording company executive was interested in extending his model of
album sales to incorporate another variable. We know already that advertising accounts for
33% of variation in album sales, but a much larger 67% remains unexplained. The record
executive could measure a new predictor in an attempt to explain some of the unexplained
variation in album sales. He decides to measure the number of times the album is played
on Radio 1 (the UK’s biggest national radio station) during the week prior to release. The
existing model that we derived using R (see equation (7.7)) can now be extended to include
this new variable (airplay):

Album Sales, = (b, + b, advertising budget, + b, airplay) + ¢, (7.10)

The new model is based on equation (7.9) and includes a b-value for both predictors (and,
of course, the constant). If we calculate the b-values, we could make predictions about
album sales based not only on the amount spent on advertising but also in terms of radio
play. There are only two predictors in this model and so we could display this model
graphically in three dimensions (Figure 7.8).



FIGURE 7.8
Scatterplot of
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Equation (7.9) describes the tinted trapezium in the diagram (this is known as the regres-
sion plane) and the dots represent the observed data points. Like simple regression, the
plane fitted to the data aims to best predict the observed data. However, there are invari-
ably some differences between the model and the real-life data (this fact is evident because
some of the dots do not lie exactly on the tinted area of the graph). The b-value for adver-
tising describes the slope of the left and right sides of the regression plane, whereas the
b-value for airplay describes the slope of the top and bottom of the regression plane. Just
like simple regression, knowledge of these two slopes tells us about the shape of the model
(what it looks like) and the intercept locates the regression plane in space.

It is fairly easy to visualize a regression model with two predictors, because it is possible
to plot the regression plane using a 3-D scatterplot. However, multiple regression can be
used with three, four or even ten or more predictors. Although you can’t immediately
visualize what such complex models look like, or visualize what the b-values represent, you
should be able to apply the principles of these basic models to more complex scenarios.

Sums of squares, Rand R* ®

When we have several predictors, the partitioning of sums of squares is the same as in the
single variable case except that the model we refer to takes the form of equation (7.9) rather
than simply being a 2-D straight line. Therefore, SS.. can be calculated that represents the
difference between the observed values and the mean value of the outcome variable. SS_ still
represents the difference between the values of Y predicted by the model and the observed
values. Finally, SS,, can still be calculated and represents the difference between the values
of Y predicted by the model and the mean value. Although the computation of these values
is much more complex than in simple regression, conceptually these values are the same.
When there are several predictors we can’t look at the simple R?, and instead R produces
a multiple R?. Multiple R is the square of the correlation between the observed values of
Y and the values of Y predicted by the multiple regression model. Therefore, large values
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of multiple R? represent a large correlation between the predicted and observed values
of the outcome. A multiple R*> of 1 represents a situation in which the model perfectly
predicts the observed data. As such, multiple R? is a gauge of how well the model predicts
the observed data. It follows that the resulting R? can be interpreted in the same way as in
simple regression: it is the amount of variation in the outcome variable that is accounted
for by the model.

Parsimony-adjusted measures of fit ®

The big problem with R? is that when you add more variables to the model, it will always
go up. If you are deciding which of two models fits the data better, the model with more
predictor variables in will always fit better. The Akaike information criterion (AIC)® is a mea-
sure of fit which penalizes the model for having more variables — a little like adjusted R%.
The AIC is defined as:

AIC = nln(gJ+2k

n

in which # is the number of cases in the model, In is the natural log, SSE is the sum of
square errors for the model, and & is the number of predictor variables. We are not going
to worry too much about this equation, other than to notice that the final part — the 2k — is
the part that does all the work.

Imagine we add a variable to the model; usually this would increase R?, and hence SSE
would be reduced. But imagine that this variable does not change the fit of the model
at all. What will happen to the AIC? Well, the first part will be the same: # and SSE are
unchanged. What will change is k: it will be higher, by one (because we have added a vari-
able). Hence, when we add this variable to the model, the AIC will be higher by 2. A larger
value of the AIC indicates worse fit, corrected for the number of variables.

There are a couple of strange things about the AIC. One of them is there are no guide-
lines for how much larger is ‘a lot” and how much larger is ‘not very much’: If the AIC is
bigger, the fit is worse; if the AIC is smaller, fit is better.

The second thing about the AIC is that it makes sense to compare the AIC only between
models of the same data. The AIC doesn’t mean anything on its own: you cannot say that
a value of the AIC of 10 is small, or that a value for the AIC of 1000 is large. The only
thing you do with the AIC is compare it to other models with the same outcome variable.

R also provides the option of a second measure of parsimony adjusted model fit, called
the Bayesian information criterion (BIC), but that is rather beyond the level of this book.

Methods of regression @

If we are interested in constructing a complex model with several predictors, how do we
decide which predictors to use? A great deal of care should be taken in selecting predictors
for a model because the values of the regression coefficients depend upon the variables in

S Hirotsugu Akaike (pronounced A-Ka-Ee-Kay) was a Japanese statistician who gave his name to the AIC, which is
used in a huge range of different places. You get some idea of this range when you find out that the paper in which
the AIC was proposed was published in a journal called IEEE Transactions on Automatic Control.
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the model. Therefore, the predictors included and the way in which they are entered into
the model can have a great impact. In an ideal world, predictors should be selected based
on past research.® If new predictors are being added to existing models then select these
new variables based on the substantive theoretical importance of these variables. One thing
not to do is select hundreds of random predictors, bung them all into a regression analysis
and hope for the best. In addition to the problem of selecting predictors, there are several
ways in which variables can be entered into a model. When predictors are all completely
uncorrelated, the order of variable entry has very little effect on the parameters calculated;
however, we rarely have uncorrelated predictors and so the method of predictor selection
is crucial.

7.6.4.1. Hierarchical ®

In hierarchical regression predictors are selected based on past work and the experimenter
decides in which order to enter the predictors into the model. As a general rule, known
predictors (from other research) should be entered into the model first in order of their
importance in predicting the outcome. After known predictors have been entered, the
experimenter can add any new predictors into the model. New predictors can be entered
either all in one go, in a stepwise manner, or hierarchically (such that the new predictor
suspected to be the most important is entered first).

7.6.4.2. Forced entry ®

Forced entry is a method in which all predictors are forced into the model simultane-
ously. Like hierarchical, this method relies on good theoretical reasons for including the
chosen predictors, but unlike hierarchical the experimenter makes no decision about the
order in which variables are entered. Some researchers believe that this method is the only
appropriate method for theory testing (Studenmund & Cassidy, 1987) because stepwise
techniques are influenced by random variation in the data and so seldom give replicable
results if the model is retested.

7.6.4.3. Stepwise methods ®

Stepwise regressions are generally frowned upon by statisticians, and R is not as good at
running automated stepwise regressions as some other statistics programs we could men-
tion. However, I’m still going to tell you how to do them, but be aware that if you can’t do
a stepwise regression in the same way in R that you can in another program, that’s because
the other program was written 40 years ago when people didn’t know better. In stepwise
regression decisions about the order in which predictors are entered into the model are
based on a purely mathematical criterion.

When you carry out a stepwise regression in R, you need to specify a direction. In
the forward direction, an initial model is defined that contains only the constant (b,). The
computer then searches for the predictor (out of the ones available) that best predicts the
outcome variable — it does this by selecting the predictor that has the highest simple cor-
relation with the outcome. If this predictor improves the ability of the model to predict
the outcome, then this predictor is retained in the model and the computer searches for

¢ I might cynically qualify this suggestion by proposing that predictors be chosen based on past research that has
utilized good methodology. If basing such decisions on regression analyses, select predictors based only on past
research that has used regression appropriately and yielded reliable, generalizable models.
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a second predictor. The criterion used for selecting this second predictor is that it is the
variable that has the largest semi-partial correlation with the outcome. Let me explain this
in plain English. Imagine that the first predictor can explain 40% of the variation in the
outcome variable; then there is still 60% left unexplained. The computer searches for the
predictor that can explain the biggest part of the remaining 60% (so it is not interested in
the 40% that is already explained). As such, this semi-partial correlation gives a measure
of how much ‘new variance’ in the outcome can be explained by each remaining predictor
(see section 6.6). The predictor that accounts for the most new variance is added to the
model and, if it makes a contribution to the predictive power of the model, it is retained
and another predictor is considered.

R has to decide when to stop adding predictors to the model, and it does this based on
the Akaike information criterion which was described above: a lower AIC indicates a better
model. A variable is kept in the model only if it improves (i.e., lowers) the AIC, and if no
variable can lower the AIC further, the model is stopped.

The backward method is the opposite of the forward method in that the computer begins
by placing all predictors in the model and then by looking to see if the AIC goes down
when each variable is removed. If a variable is removed, the contribution of the remaining
predictors is then reassessed and the process continues until removing any variable causes
AIC to increase.

The final direction is called ‘both’ by R (and stepwise by some other programs). This
method, as the name implies, goes in both directions. It starts the in same way as the for-
ward method, except that each time a predictor is added to the equation, a removal test
is made of the least useful predictor. As such the regression equation is constantly being
reassessed to see whether any redundant predictors can be removed.

If you do decide to use a stepwise method then the backward direction is preferable to
the forward method. This is because of suppressor effects, which occur when a predictor
has an effect but only when another variable is held constant. Forward selection is more
likely than backward elimination to exclude predictors involved in suppressor effects. As
such, the forward method runs a higher risk of making a Type II error (i.e., missing a pre-
dictor that does in fact predict the outcome).

7.6.4.4. All-subsets methods ®

The problem with stepwise methods is that they assess the fit of a variable based on the
other variables that were in the model. Some people use the analogy of getting dressed to
describe this problem. If a stepwise regression method was selecting your clothes, it would
decide what clothes you should wear, based on the clothes it has already selected. If, for
example, it is a cold day, a stepwise selection method might choose a pair of trousers to put
on first. But if you are wearing trousers already, it is difficult to get your underwear on:
stepwise methods will decide that underwear does not fit, and you will therefore go with-
out. A better method is all-subsets regression. As the name implies, all-subsets regression
tries every combination of variables, to see which one gives the best fit (fit is determined by
a statistic called Mallows’ C , which we are not going to worry about). The problem with
all-subsets regression is that as the number of predictor variables increases, the number of
possible subsets increases exponentially. If you have two predictor variables, A and B, then
you have 4 possible subsets: none of them, A alone, B alone, or A and B. If you have three
variables (A, B, C), the possible subsets are none, A, B, C, AB, AC, BC, ABC, making 8 sub-
sets. If you have 10 variables, there are 1024 possible subsets. In the days when computers
were slower and running a regression analysis might take a couple of minutes, running
1024 regressions might take a day or so. Thankfully, computers aren’t slow any more, and
so this method is feasible — it’s just that other programs have not yet caught up with R, so
you tend to come across this method less.
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R allows you to opt for any one of these methods and it is important to select
an appropriate one. The three directions of stepwise selection (forward, back-
ward and both) and all-subsets regression all come under the general heading of
stepwise methods because they all rely on the computer selecting variables based
upon mathematical criteria. Many writers argue that this takes many important
methodological decisions out of the hands of the researcher. What’s more, the
models derived by computer often take advantage of random sampling varia-
tion and so decisions about which variables should be included will be based
upon slight differences in their semi-partial correlation. However, these slight
statistical differences may contrast dramatically with the theoretical importance
of a predictor to the model. There is also the danger of over-fitting (having too many variables
in the model that essentially make little contribution to predicting the outcome) and under-
fitting (leaving out important predictors) the model. For this reason stepwise methods are best
avoided except for exploratory model building. If you must do a stepwise regression then it is
advisable to cross-validate your model by splitting the data (see section 7.7.2.2).

When there is a sound theoretical literature available, then base your model upon what
past research tells you. Include any meaningful variables in the model in their order of
importance. After this initial analysis, repeat the regression but exclude any variables that
were statistically redundant the first time around. There are important considerations in
deciding which predictors should be included. First, it is important not to include too many
predictors. As a general rule, the fewer predictors the better, and certainly include only
predictors for which you have a good theoretical grounding (it is meaningless to measure
hundreds of variables and then put them all into a regression model). So, be selective and
remember you should have a decent sample size — see section 7.7.2.3.

7.7. How accurate is my regression model? @

When we have produced a model based on a sample of data there are two
important questions to ask. First, does the model fit the observed data well,
or is it influenced by a small number of cases? Second, can my model gen-
eralize to other samples? These questions are vital to ask because they affect
ﬁg*ffh% how we use the model that has been constructed. These questions are also, in
i some sense, hierarchical because we wouldn’t want to generalize a bad model.

' i\%{ However, it is a mistake to think that because a model fits the observed data
L/ Rt ﬁ} well we can draw conclusions beyond our sample. Generalization is a critical
" | additional step, and if we find that our model is not generalizable, then we
~ must restrict any conclusions based on the model to the sample used. First,
we will look at how we establish whether a model is an accurate representa-
tion of the actual data, and in section 7.7.2 we move on to look at how we assess whether
a model can be used to make inferences beyond the sample of data that has been collected.

Assessing the regression model |: diagnostics @

To answer the question of whether the model fits the observed data well, or if it is influ-
enced by a small number of cases, we can look for outliers and influential cases (the differ-
ence is explained in Jane Superbrain Box 7.1). We will look at these in turn.
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In this section | describe two ways to look for cases that

might bias the model: residual and influence statistics.
To illustrate how these measures differ, imagine that
the Mayor of London at the turn of the last century was
interested in how drinking affected mortality. London is
divided up into different regions called boroughs, and so
he might measure the number of pubs and the number
of deaths over a period of time in eight of his boroughs.
The data are in a file called pubs.dat.

The scatterplot of these data reveals that without the
last case there is a perfect linear relationship (the dashed
straight line). However, the presence of the last case
(case 8) changes the line of best fit dramatically (although

this line is still a significant fit to the data — do
i the regression analysis and see for yourself).

What's interesting apout these' data is %
when we look at the residuals and influence
statistics. The residual for case 8 is the second smallest:
this outlier produces a very small residual (most of the

non-outliers have larger residuals) because it sits very
i close to the line that has been fitted to the data. How can
i this be? Look at the influence statistics below and you'll

see that they’re massive for case 8: it exerts a huge influ-
ence over the model.

Residual Cook’s Distance Leverage (Hat Value) DFBeta (Intercept) DFBeta (Pubs)
1 —2495.34 0.21 0.17 -509.62 1.39
2 —-1638.73 0.09 0.16 -321.10 0.80
3 -782.12 0.02 0.15 -147.08 0.33
4 74.49 0.00 0.14 13.47 -0.03
5 931.10 0.02 0.14 161.47 -0.27
6 1787.71 0.08 0.13 297.70 -0.41
7 2644.32 0.17 0.13 422.68 -0.44
8 -521.42 22714 0.99 3351.53 -85.65

As always when you see a statistical oddity, you
should ask what was happening in the real world. The
last data point represents the City of London, a tiny
area of only 1 square mile in the centre of London
where very few people lived but where thousands of
commuters (even then) came to work and had lunch
in the pubs. Hence the pubs didn’t rely on the resident

[
7.7.1.1. Outliers and residuals ®

i population for their business and the residents didn't
consume all of their beer! Therefore, there was a mas-
i sive number of pubs.

This illustrates that a case exerting a massive influ-

ence can produce a small residual — so look at both. (I'm
i very grateful to David Hitchin for this example, and he in
i turn got it from Dr Richard Roberts.)

An outlier is a case that differs substantially from the main trend of the data (see Jane
Superbrain Box 4.1). Figure 7.9 shows an example of such a case in regression. Outliers
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can cause your model to be biased because they affect the values of the estimated regression
coefficients. For example, Figure 7.9 uses the same data as Figure 7.3 except that the
score of one participant has been changed to be an outlier (in this case a person who was
very calm in the presence of a very big spider). The change in this one point has had a
dramatic effect on the regression model chosen to fit the data. With the outlier present,
the regression model changes: its gradient is reduced (the line becomes flatter) and the
intercept increases (the new line will cross the Y-axis at a higher point). It should be clear
from this diagram that it is important to try to detect outliers to see whether the model is
biased in this way.
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How do you think that you might detect an outlier? Well, we know that an outlier, by its
nature, is very different from all of the other scores. This being true, do you think that the
model will predict that person’s score very accurately? The answer is #o: looking at Figure
7.9, it is evident that even though the outlier has biased the model, the model still predicts
that one value very badly (the regression line is long way from the outlier). Therefore, if
we were to work out the differences between the data values that were collected, and the
values predicted by the model, we could detect an outlier by looking for large differences.
This process is the same as looking for cases that the model predicts inaccurately. The dif-
ferences between the values of the outcome predicted by the model and the values of the
outcome observed in the sample are known as residuals. These residuals represent the error
present in the model. If a model fits the sample data well then all residuals will be small
(if the model was a perfect fit to the sample data — all data points fall on the regression
line — then all residuals would be zero). If a model is a poor fit to the sample data then
the residuals will be large. Also, if any cases stand out as having a large residual, then they
could be outliers.

The normal or unstandardized residuals described above are measured in the same units as
the outcome variable and so are difficult to interpret across different models. What we can do
is to look for residuals that stand out as being particularly large. However, we cannot define
a universal cut-off point for what constitutes a large residual. To overcome this problem, we
use standardized residuals, which are the residuals divided by an estimate of their standard
deviation. We came across standardization in section 6.3.2 as a means of converting variables
into a standard unit of measurement (the standard deviation); we also came across z-scores
(see section 1.7.4) in which variables are converted into standard deviation units (i.e., they’re
converted into scores that are distributed around a mean of 0 with a standard deviation of 1).
By converting residuals into z-scores (standardized residuals) we can compare residuals from
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different models and use what we know about the properties of z-scores to devise universal
guidelines for what constitutes an acceptable (or unacceptable) value. For example, we know
from Chapter 1 that in a normally distributed sample, 95% of z-scores should lie between
—1.96 and +1.96, 99% should lie between —2.58 and +2.58, and 99.9% (i.e., nearly all of
them) should lie between —3.29 and +3.29. Some general rules for standardized residuals are
derived from these facts: (1) standardized residuals with an absolute value greater than 3.29
(we can use 3 as an approximation) are cause for concern because in an average sample a
value this high is unlikely to happen by chance; (2) if more than 1% of our sample cases have
standardized residuals with an absolute value greater than 2.58 (we usually just say 2.5) there
is evidence that the level of error within our model is unacceptable (the model is a fairly poor
fit of the sample data); and (3) if more than 5% of cases have standardized residuals with an
absolute value greater than 1.96 (we can use 2 for convenience) then there is also evidence
that the model is a poor representation of the actual data.

As well as testing for outliers by looking at the error in the model, it is also possible to look
at whether certain cases exert undue influence over the parameters of the model. So, if we
were to delete a certain case, would we obtain different regression coefficients? This type
of analysis can help to determine whether the regression model is stable across the sample,
or whether it is biased by a few influential cases. Again, this process will unveil outliers.

There are several residual statistics that can be used to assess the influence of a particular
case. One statistic is the adjusted predicted value for a case when that case is excluded from the
analysis. In effect, the computer calculates a new model without a particular case and then uses
this new model to predict the value of the outcome variable for the case that was excluded.
If a case does not exert a large influence over the model then we would expect the adjusted
predicted value to be very similar to the predicted value when the case is included. Put sim-
ply, if the model is stable then the predicted value of a case should be the same regardless of
whether or not that case was used to calculate the model. The difference between the adjusted
predicted value and the original predicted value is known as DFFit (see below). We can also
look at the residual based on the adjusted predicted value: that is, the difference between the
adjusted predicted value and the original observed value. When this residual is divided by the
standard error it gives a standardized value known as the studentized residual. This residual
can be compared across different regression analyses because it is measured in standard units,
and is called a studentized residual because it follows a Student’s #-distribution.

The studentized residuals are very useful to assess the influence of a case on the ability
of the model to predict that case. However, they do not provide any information about
how a case influences the model as a whole (i.e., the impact that a case has on the model’s
ability to predict all cases). One statistic that does consider the effect of a single case on the
model as a whole is Cook’s distance. Cook’s distance is a measure of the overall influence
of a case on the model, and Cook and Weisberg (1982) have suggested that values greater
than 1 may be cause for concern.

A second measure of influence is hat values (sometimes called leverage), which gauge
the influence of the observed value of the outcome variable over the predicted values. The
average leverage value is defined as (k+1)/n, in which k is the number of predictors in the
model and # is the number of participants.” Leverage values can lie between 0 (indicating
that the case has no influence whatsoever) and 1 (indicating that the case has complete

7 You may come across the average leverage denoted as p/n, in which p is the number of parameters being
estimated. In multiple regression, we estimate parameters for each predictor and also for a constant and so p is
equivalent to the number of predictors plus one (k + 1).
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influence over prediction). If no cases exert undue influence over the model then we would
expect all of the leverage values to be close to the average value ((k + 1)/n). Hoaglin and
Welsch (1978) recommend investigating cases with values greater than twice the average
(2(k + 1)/n) and Stevens (2002) recommends using three times the average (3(k + 1)/n) as
a cut-off point for identifying cases having undue influence. We will see how to use these
cut-off points later. However, cases with large leverage values will not necessarily have a
large influence on the regression coefficients because they are measured on the outcome
variables rather than the predictors.

It is possible to run the regression analysis with a case included and then rerun the ana-
lysis with that same case excluded. If we did this, undoubtedly there would be some differ-
ence between the b coefficients in the two regression equations. This difference would tell
us how much influence a particular case has on the parameters of the regression model. To
take a hypothetical example, imagine two variables that had a perfect negative relationship
except for a single case (case 30). If a regression analysis was done on the 29 cases that were
perfectly linearly related then we would get a model in which the predictor variable X per-
fectly predicts the outcome variable Y, and there are no errors. If we then ran the analysis
but this time include the case that didn’t conform (case 30), then the resulting model would
have different parameters. Some data are stored in the file dfbeta.dat that illustrate such
a situation. Try running a simple regression first with all the cases included and then with
case 30 deleted. The results are summarized in Table 7.1, which shows: (1) the parameters
for the regression model when the extreme case is included or excluded; (2) the resulting
regression equations; and (3) the value of Y predicted from participant 30’s score on the X
variable (which is obtained by replacing the X in the regression equation with participant
30’s score for X, which was 1).

Table 7.1 The difference in the parameters of the regression model when one case is excluded

Parameter (b) Case 30 Included Case 30 Excluded Difference
Constant (intercept) 29.00 31.00 -2.00
Predictor (gradient) -0.90 -1.00 0.10
Model (regression line): Y =(-0.9)X + 29 Y=(-1)X+31

Predicted Y 28.10 30.00 -1.90

When case 30 is excluded, these data have a perfect negative relationship; hence the
coefficient for the predictor (b,) is —1 (remember that in simple regression this term is the
same as Pearson’s correlation coefficient), and the coefficient for the constant (the inter-
cept, b,) is 31. However, when case 30 is included, both parameters are reduced® and the
difference between the parameters is also displayed. The difference between a parameter
estimated using all cases and estimated when one case is excluded is known as the DFBeta
in R. DFBeta is calculated for every case and for each of the parameters in the model. So,
in our hypothetical example, the DFBeta for the constant is —2, and the DFBeta for the
predictor variable is 0.1. By looking at the values of DFBeta, it is possible to identify cases
that have a large influence on the parameters of the regression model.

A related statistic is the DFFit, which is the difference between the predicted value for
a case when the model is calculated including that case and when the model is calculated
excluding that case: in this example the value is —1.90 (see Table 7.1). If a case is not

# The value of b, is reduced in absolute size because the data no longer have a perfect linear relationship and so
there is now variance that the model cannot explain.
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influential then its DFFit should be zero — hence, we expect non-influential cases to have
small DFFit values.

7.7.1.3. A final comment on diagnostic statistics @

There are a lot of diagnostic statistics that should be examined after a regression analysis,
and it is difficult to summarize this wealth of material into a concise conclusion. However,
one thing I would like to stress is a point made by Belsey, Kuh, and Welsch (1980) who
noted the dangers inherent in these procedures. The point is that diagnostics are tools that
enable you to see how good or bad your model is in terms of fitting the sampled data. They
are a way of assessing your model. They are not, however, a way of justifying the removal
of data points to effect some desirable change in the regression parameters (e.g., deleting a
case that changes a non-significant b-value into a significant one). Stevens (2002, p. 135),
as ever, offers excellent advice:

If a point is a significant outlier on Y, but its Cook’s distance is < 1, there is no real
need to delete that point since it does not have a large effect on the regression analysis.
However, one should still be interested in studying such points further to understand
why they did not fit the model.

Assessing the regression model Il: generalization ®

When a regression analysis is done, an equation can be produced that is correct for the
sample of observed values. However, in the social sciences we are usually interested in gen-
eralizing our findings outside the sample. So, although it can be useful to draw conclusions
about a particular sample of people, it is usually more interesting if we can then assume
that our conclusions are true for a wider population. For a regression model to generalize
we must be sure that underlying assumptions have been met, and to test whether the model
does generalize we can look at cross-validating it.

7 7.2.1. Checking assumptions @

To draw conclusions about a population based on a regression analysis done on a sample,
several assumptions must be true (see Berry, 1993):

® Variable types: All predictor variables must be quantitative or categorical (with
two categories), and the outcome variable must be quantitative, continuous and
unbounded. By ‘quantitative’ I mean that they should be measured at the interval
level and by ‘unbounded’ I mean that there should be no constraints on the variability
of the outcome. If the outcome is a measure ranging from 1 to 10 yet the data col-
lected vary between 3 and 7, then these data are constrained.

® Non-zero variance: The predictors should have some variation in value (i.e., they do
not have variances of 0).

® No perfect multicollinearity: There should be no perfect linear relationship between
two or more of the predictors. So, the predictor variables should not correlate too
highly (see section 7.7.2.4).

® Predictors are uncorrelated with ‘external variables’: External variables are variables
that haven’t been included in the regression model which influence the outcome
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variable.” These variables can be thought of as similar to the ‘third variable’ that was
discussed with reference to correlation. This assumption means that there should be
no external variables that correlate with any of the variables included in the regres-
sion model. Obviously, if external variables do correlate with the predictors, then the
conclusions we draw from the model become unreliable (because other variables exist
that can predict the outcome just as well).

Homoscedasticity: At each level of the predictor variable(s), the variance of the resid-
ual terms should be constant. This just means that the residuals at each level of the
predictor(s) should have the same variance (homoscedasticity); when the variances
are very unequal there is said to be heteroscedasticity (see section 5.7 as well).

Independent errors: For any two observations the residual terms should be uncorre-
lated (or independent). This eventuality is sometimes described as a lack of autocor-
relation. This assumption can be tested with the Durbin-Watson test, which tests for
serial correlations between errors. Specifically, it tests whether adjacent residuals are
correlated. The test statistic can vary between 0 and 4, with a value of 2 meaning that
the residuals are uncorrelated. A value greater than 2 indicates a negative correlation
between adjacent residuals, whereas a value less than 2 indicates a positive correla-
tion. The size of the Durbin—Watson statistic depends upon the number of predictors
in the model and the number of observations. As a very conservative rule of thumb,
values less than 1 or greater than 3 are definitely cause for concern; however, values
closer to 2 may still be problematic depending on your sample and model. R also
provides a p-value of the autocorrelation. Be very careful with the Durbin—Watson
test, though, as it depends on the order of the data: if you reorder your data, you’ll
get a different value.

Normally distributed errors: It is assumed that the residuals in the model are random,
normally distributed variables with a mean of 0. This assumption simply means that
the differences between the model and the observed data are most frequently zero or
very close to zero, and that differences much greater than zero happen only occasion-
ally. Some people confuse this assumption with the idea that predictors have to be
normally distributed. Predictors do not need to be normally distributed (see section
7.12).

Independence: It is assumed that all of the values of the outcome variable are inde-
pendent (in other words, each value of the outcome variable comes from a separate
entity).

Linearity: The mean values of the outcome variable for each increment of the
predictor(s) lie along a straight line. In plain English this means that it is assumed that
the relationship we are modelling is a linear one. If we model a non-linear relation-
ship using a linear model then this obviously limits the generalizability of the findings.

This list of assumptions probably seems pretty daunting but, as we saw in Chapter 3,
assumptions are important. When the assumptions of regression are met, the model that
we get for a sample can be accurately applied to the population of interest (the coefficients
and parameters of the regression equation are said to be unbiased). Some people assume
that this means that when the assumptions are met the regression model from a sample is
always identical to the model that would have been obtained had we been able to test the

? Some authors choose to refer to these external variables as part of an error term that includes any random factor
in the way in which the outcome varies. However, to avoid confusion with the residual terms in the regression
equations I have chosen the label ‘external variables’. Although this term implicitly washes over any random
factors, I acknowledge their presence here.
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entire population. Unfortunately, this belief isn’t true. What an unbiased model does tell
us is that on average the regression model from the sample is the same as the population
model. However, you should be clear that even when the assumptions are met, it is possible
that a model obtained from a sample may not be the same as the population model — but
the likelihood of them being the same is increased.

7.7.2.2. Cross-validation of the model ®

Even if we can’t be confident that the model derived from our sample accurately repre-
sents the entire population, there are ways in which we can assess how well our model can
predict the outcome in a different sample. Assessing the accuracy of a model across dif-
ferent samples is known as cross-validation. If a model can be generalized, then it must be
capable of accurately predicting the same outcome variable from the same set of predictors
in a different group of people. If the model is applied to a different sample and there is a
severe drop in its predictive power, then the model clearly does not generalize. As a first
rule of thumb, we should aim to collect enough data to obtain a reliable regression model
(see the next section). Once we have a regression model there are two main methods of
cross-validation:

® Adjusted R?: In R, not only is the value of R? calculated, but also an adjusted R2. This
adjusted value indicates the loss of predictive power or shrinkage. Whereas R? tells
us how much of the variance in Y is accounted for by the regression model from our
sample, the adjusted value tells us how much variance in Y would be accounted for if
the model had been derived from the population from which the sample was taken.
R derives the adjusted R? using Wherry’s equation. However, this equation has been
criticized because it tells us nothing about how well the regression model would
predict an entirely different set of data (how well can the model predict scores of a
different sample of data from the same population?). One version of R? that does tell
us how well the model cross-validates uses Stein’s formula (see Stevens, 2002):

) : 4 n—1 n-2 n+1 _p2
adjusted R* =1 [(n—k—l)(rz—k—Z)( - )}(1 R%) (7.11)

In Stein’s equation, R? is the unadjusted value, 7 is the number of participants and & is
the number of predictors in the model. For the more mathematically minded of you,
it is worth using this equation to cross-validate a regression model.

® Data splitting: This approach involves randomly splitting your data set, computing
a regression equation on both halves of the data and then comparing the resulting
models. When using stepwise methods, cross-validation is a good idea; you should
run the stepwise regression on a random selection of about 80% of your cases. Then
force this model on the remaining 20% of the data. By comparing values of the R?

and b-values in the two samples you can tell how well the original model generalizes
(see Tabachnick & Fidell, 2007, for more detail).

In the previous section I said that it’s important to collect enough data to obtain a reliable
regression model. Well, how much is enough? You’ll find a lot of rules of thumb float-
ing about, the two most common being that you should have 10 cases of data for each
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predictor in the model, or 15 cases of data per predictor. So, with five predic-
tors, you’d need 50 or 75 cases respectively (depending on the rule you use).
These rules are very pervasive (even I used the 15 cases per predictor rule in
the first edition of this book) but they oversimplify the issue considerably. In
fact, the sample size required will depend on the size of effect that we’re trying
to detect (i.e., how strong the relationship is that we’re trying to measure) and
how much power we want to detect these effects. The simplest rule of thumb
is that the bigger the sample size, the better! The reason is that the estimate of
R that we get from regression is dependent on the number of predictors, k, and
the sample size, N. In fact the expected R for random data is k/(N—1), and so with small
sample sizes random data can appear to show a strong effect: for example, with six pre-
dictors and 21 cases of data, R = 6/(21—1) = .3 (a medium effect size by Cohen’s criteria
described in section 6.3.2). Obviously for random data we’d want the expected R to be 0
(no effect) and for this to be true we need large samples (to take the previous example, if
we had 100 cases, not 21, then the expected R would be a more acceptable .06).

It’s all very well knowing that larger is better, but researchers usually need some more
concrete guidelines (much as we’d all love to collect 1000 cases of data, it isn’t always prac-
tical). Green (1991) makes two rules of thumb for the minimum acceptable sample size, the
first based on whether you want to test the overall fit of your regression model (i.e., test
the R?), and the second based on whether you want to test the individual predictors within
the model (i.e., test the b-values of the model). If you want to test the model overall, then
he recommends a minimum sample size of 50 + 8k, where k is the number of predictors.
So, with five predictors, you’d need a sample size of 50 + 40 = 90. If you want to test the
individual predictors then he suggests a minimum sample size of 104 + k, so again taking
the example of five predictors you’d need a sample size of 104 + 5 = 109. Of course, in
most cases we’re interested both in the overall fit and in the contribution of individual pre-
dictors, and in this situation Green recommends you calculate both of the minimum sample
sizes I’ve just described, and use the one that has the largest value (so in the five-predictor
example, we’d use 109 because it is bigger than 90).

Now, these guidelines are all right as a rough and ready guide, but they still oversimplify
the problem. As I’ve mentioned, the sample size required actually depends on the size of
the effect (i.e., how well our predictors predict the outcome) and how much statistical
power we want to detect these effects. Miles and Shevlin (2001) produce some extremely
useful graphs that illustrate the sample sizes needed to achieve different levels of power, for
different effect sizes, as the number of predictors vary. For precise estimates of the sample
size you should be using, I recommend using these graphs. I’'ve summarized some of the
general findings in Figure 7.10. This diagram shows the sample size required to achieve a
high level of power (I’ve taken Cohen’s, 1988, benchmark of .8) depending on the number
of predictors and the size of expected effect. To summarize the graph very broadly: (1) if
you expect to find a large effect then a sample size of 80 will always suffice (with up to 20
predictors) and if there are fewer predictors then you can afford to have a smaller sample;
(2) if you’re expecting a medium effect, then a sample size of 200 will always suffice (up
to 20 predictors), you should always have a sample size above 60, and with six or fewer
predictors you’ll be fine with a sample of 100; and (3) if you’re expecting a small effect size
then just don’t bother unless you have the time and resources to collect at least 600 cases
of data (and many more if you have six or more predictors).

Multicollinearity exists when there is a strong correlation between two or more predic-
tors in a regression model. Multicollinearity poses a problem only for multiple regres-
sion because (without wishing to state the obvious) simple regression requires only one
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tion of the others (the simplest example being two predictors that are perfectly correlated —
they have a correlation coefficient of 1). If there is perfect collinearity between predictors it

becomes impossible to obtain unique estimates of the regression coefficients because there

are an infinite number of combinations of coefficients that would work equally well. Put

simply, if we have two predictors that are perfectly correlated, then the values of b for each
variable are interchangeable. The good news is that perfect collinearity is rare in real-life

data. The bad news is that less than perfect collinearity is virtually unavoidable. Low levels
of collinearity pose little threat to the models generated by R, but as collinearity increases

there are three problems that arise:

® Untrustworthy bs: As collinearity increases so do the standard errors of the b coef-

ficients. If you think back to what the standard error represents, then big stan-
dard errors for b coefficients means that these bs are more variable across samples.
Therefore, it means that the b coefficient in our sample is less likely to represent
the population. Crudely put, multicollinearity means that the b-values are less trust-
worthy. Don’t lend them money and don’t let them go for dinner with your boy- or
girlfriend. Of course if the bs are variable from sample to sample then the resulting
predictor equations will be unstable across samples too.

It limits the size of R: Remember that R is a measure of the multiple correlation
between the predictors and the outcome and that R? indicates the variance in the
outcome for which the predictors account. Imagine a situation in which a single
variable predicts the outcome variable fairly successfully (e.g., R =.80) and a second
predictor variable is then added to the model. This second variable might account
for a lot of the variance in the outcome (which is why it is included in the model),
but the variance it accounts for is the same variance accounted for by the first vari-
able. In other words, once the variance accounted for by the first predictor has been
removed, the second predictor accounts for very little of the remaining variance (the
second variable accounts for very little unique variance). Hence, the overall variance
in the outcome accounted for by the two predictors is little more than when only one
predictor is used (so R might increase from .80 to .82). This idea is connected to the
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notion of partial correlation that was explained in Chapter 6. If, however, the two
predictors are completely uncorrelated, then the second predictor is likely to account
for different variance in the outcome to that accounted for by the first predictor. So,
although in itself the second predictor might account for only a little of the variance
in the outcome, the variance it does account for is different than that of the other
predictor (and so when both predictors are included, R is substantially larger, say
.95). Therefore, having uncorrelated predictors is beneficial.

® Importance of predictors: Multicollinearity between predictors makes it difficult to
assess the individual importance of a predictor. If the predictors are highly correlated,
and each accounts for similar variance in the outcome, then how can we know which
of the two variables is important? Quite simply, we can’t tell which variable is impor-
tant — the model could include either one, interchangeably.

One way of identifying multicollinearity is to scan a correlation matrix of all of the
predictor variables and see if any correlate very highly (by ‘very highly’ I mean correla-
tions of above .80 or .90). This is a good ‘ball park’ method but misses more subtle forms
of multicollinearity. Luckily, R can produce various collinearity diagnostics, one of which
is the variance inflation factor (VIF). The VIF indicates whether a predictor has a strong
linear relationship with the other predictor(s). Although there are no hard and fast rules
about what value of the VIF should cause concern, Myers (1990) suggests that a value of 10
is a good value at which to worry. What’s more, if the average VIF is greater than 1, then
multicollinearity may be biasing the regression model (Bowerman & O’Connell, 1990).
Related to the VIF is the tolerance statistic, which is its reciprocal (1/VIF). As such, values
below 0.1 indicate serious problems, although Menard (1995) suggests that values below
0.2 are worthy of concern.

If none of this has made any sense then have a look at Hutcheson and Sofroniou (1999,
pp. 78-85) who give a really clear explanation of multicollinearity.

7.8. How to do multiple regression using R
Commander and R ®

Some things to think about before the analysis ®

A good strategy to adopt with regression is to measure predictor variables for which there
are sound theoretical reasons for expecting them to predict the outcome. Run a regression
analysis in which all predictors are entered into the model and examine the output to see
which predictors contribute substantially to the model’s ability to predict the outcome.
Once you have established which variables are important, rerun the analysis including only
the important predictors and use the resulting parameter estimates to define your regres-
sion model. If the initial analysis reveals that there are two or more significant predictors,
then you could consider running a forward stepwise analysis (rather than forced entry) to
find out the individual contribution of each predictor.

I have spent a lot of time explaining the theory behind regression and some of the
diagnostic tools necessary to gauge the accuracy of a regression model. It is important
to remember that R may appear to be very clever, but in fact it is not. Admittedly, it can
do lots of complex calculations in a matter of seconds, but what it can’t do is control the
quality of the model that is generated — to do this requires a human brain (and preferably a
trained one). R will happily generate output based on any garbage you decide to feed into
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it and will not judge the results or give any indication of whether the model can be general-
ized or if it is valid. However, R provides the statistics necessary to judge these things, and
at this point our brains must take over the job — which is slightly worrying (especially if
your brain is as small as mine).

Multiple regression: running the basic model ®

7.8.2.1. Multiple regression using R Commander:
the basic model @

Imagine that the record company executive was now interested in extending the model of
album sales to incorporate other variables. He decides to measure two new variables: (1)
the number of times songs from the album are played on Radio 1 during the week prior
to release (airplay); and (2) the attractiveness of the band (attract). Before an album is
released, the executive notes the amount spent on advertising, the number of times songs
from the album are played on radio the week before release, and the attractiveness of the
band. He does this for 200 different albums (each made by a different band). Attractiveness
was measured by asking a random sample of the target audience to rate the attractiveness
of each band on a scale from 0 (hideous potato-heads) to 10 (gorgeous sex objects). The
mode attractiveness given by the sample was used in the regression (because he was inter-
ested in what the majority of people thought, rather than the average of people’s opinions).
The data are in a file called Album Sales 2.dat.
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To conduct a multiple regression using R Commander, first initiate the package by exe-
cuting (and install it if you haven’t — see section 3.6):

library(Rcmdr)

You can read the data file Album Sales 2.dat into R using the Data = Import data =
from text file, clipboard, or URL... menu (see section 3.7.3). Then you can look at the
data, by clicking on [esdstzz2]. You should note that each variable has its own column (the
same layout as for correlation) and each row represents a different album. So, the first
album had £10,256 spent advertising it, sold 330,000 copies, received 43 plays on Radio
1 the week before release, and was made by a band that the majority of people rated as
gorgeous sex objects (Figure 7.11).

The executive has past research indicating that advertising budget is a significant pre-
dictor of album sales, and so he should include this variable in the model first. His new
variables (airplay and attract) should, therefore, be entered into the model after advertis-
ing budget. This method is hierarchical (the researcher decides in which order to enter
variables into the model based on past research). The record executive needs to run two
models. In his first model, the predictor will be adverts. In the second model, the predic-
tors will be adverts, airplay and attract.
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We can use R Commander to run the model by selecting Statistics = Fit models =
Linear regression... (Figure 7.12). For the first model (left dialog box in Figure 7.12) we
select sales as the response variable, and adverts as the explanatory variable. We have
named this model albumSales.2. When you have selected your variables and named the
model, click on [ _]. The resulting output is described in section 7.8.3.1.

For the second model we choose three explanatory variables, adverts, attract and sales.
To select multiple variables you can either ‘swipe” over all the variables you are interested
in with the mouse (if they are next to each other), or hold down the Ctr/ key (cmd on a
Mac) while you click on each one (if they are not next to each other). When you have
selected your variables and named the model, click on [_2%_|. The resulting output is also
described in section 7.8.3.1.
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7.8.2.2. Multiple regression using R: the basic model ®

First load the data file by setting your working directory to the location of the file (see sec-
tion 3.4.4) and executing:

album2<-read.delim("Album Sales 2.dat", header = TRUE)

We can again run the regression analysis using the /m() function. We need to create two
models: the first, albumSales.2, will have adverts as a predictor. The second, albumSales. 3,
will have adverts, airplay and attract as predictors.

The first model is the same as the one we created in section 7.4.2 and we can create it by
executing the following command:

albumSales.2 <- 1Im(sales ~ adverts, data = album2)

To remind you, this creates a model called albumSales.2, in which the variable sales is
predicted from the variable adverts (sales ~ adverts). The data = simply tells R which
dataframe contains the variables we’re using in the model.

To create the second model, we need to specify additional predictors, and we can do
this in the same way that we added predictors to the regression equation itself: we simply
use ‘+’ to add them into the model. Therefore, if we want to predict sales from the vari-
ables adverts, airplay and attract, then our model is specified as sales ~ adverts + airplay +
attract. It basically looks the same as the regression equation but without the bs. Therefore,
to create this model we would execute:

albumSales.3 <- lm(sales ~ adverts + airplay + attract, data = album2)

This command creates a model albumSales.3, in which the variable sales is predicted from
the variables adverts, airplay and attract. We could also have used the update() function
to do this because this model is simply adding new predictors to the previous model (R’s
Souls’ Tip 19.3).

SR IEMR WAV The update() function®

Writing out the models in full can be helpful to understand how the /m() function works: | think it's useful to see
how the code relates to the equation that describes the model. However, the update() function is a quicker way
to add new things to old models. In our example our model albumSales.3 is the same as the previous model,
albumSales.2, except that we added two variables (attract and airplay). Look at the two model specifications:

albumSales.2 <- lm(sales ~ adverts, data = album2)
albumSales.3 <- lm(sales ~ adverts + airplay + attract, data = album2)

Note that they are identical except that the second model has two new variables added as predictors. Using the
update() function we can create the second model in less text:

albumSales.3<-update(CalbumSales.2, .~. + airplay + attract)

This function, like the longhand one, creates a new model called albumSales.3, and it does this by updating an
existing model. The first part of the parenthesis tells R which model to update (in this case we want to update the
model called albumSales.2). The .~. means ‘keep the outcome and predictors the same as the baseline model':
the dots mean ‘keep the same’ so the fact that we put dots on both sides of the ~ means that we want to keep
both the outcome and predictors the same as in the baseline model. The + airplay + attract means ‘add airplay
and attract as predictors’. Therefore, ‘.~. + airplay + attract’ can be interpreted as ‘keep the same outcomes and
predictors as the baseline model but add airplay and attract as predictors.
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Interpreting the basic multiple regression ®

7.8.3.1. The model summary @

To see the output of these models we need to use the summary() function (in which we
simply place the name of the model). To see the output of our models, execute:

summary(albumSales.2)
summary(albumSales.3)

The summary of the albumSales.2 model is shown in Output 7.2, whereas the summary of
albumSales.3 is in Output 7.3.

Call: Im(formula = sales ~ adverts, data = album2?)

Residuals:

Min 10 Median 30 Max
-152.949 -43.796 -0.393 37.040 211.866
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 , , 1

Residual standard error: 65.99 on 198 degrees of freedom
Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16

Output 7.2

Call: Im(formula = sales ~ adverts + airplay + attract, data = album2)

Residuals:

Min 10 Median 30 Max
-121.324 -28.336 -0.451 28.967 144.132
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -26.612958 17.350001 -1.534 0.127
adverts 0.084885 0.006923 12.261 < 2e-16 ***
airplay 3.367425 0.277771 12.123 < 2e-16 ***
attract 11.086335 2.437849 4.548 9.49e-06 ***
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 **’ 0.05 *.” 0.1 * 1

Residual standard error: 47.09 on 196 degrees of freedom
Multiple R-squared: 0.6647, Adjusted R-squared: 0.6595
F-statistic: 129.5 on 3 and 196 DF, p-value: < 2.2e-16

Output 7.3

Let’s look first at the R? statistics at the bottom of each summary. This value describes the over-
all model (so it tells us whether the model is successful in predicting album sales). Remember that
we ran two models: albumSales.2 refers to the first stage in the hierarchy when only advertising
budget is used as a predictor, albumSales.3 refers to when all three predictors are used. At the
beginning of each output, R reminds us of the command that we ran to get each model.
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When only advertising budget is used as a predictor, the R* statistic is the square of
simple correlation between advertising and album sales (0.5782). In fact all of the statistics
for albumSales.2 are the same as the simple regression model earlier (see albumSales.1 in
section 7.5). The value of R?, we already know, is a measure of how much of the variability
in the outcome is accounted for by the predictors. For the first model its value is .3335,
which means that advertising budget accounts for 33.5% of the variation in album sales.
However, when the other two predictors are included as well (albumSales.3 in Output
7.3), this value increases to .665, or 66.5% of the variance in album sales. Therefore, if
advertising accounts for 33.5%, we can tell that attractiveness and radio play account for
an additional 33.0%.'° So the inclusion of the two new predictors has explained quite a
large amount of the variation in album sales.

The adjusted R? gives us some idea of how well our model generalizes, and ideally we would
like its value to be the same, or very close to, the value of R%. In this example the difference for
the final model (Output 7.3) is small (in fact the difference between the values is .665 —.660 =
.005 (about 0.5%)). This shrinkage means that if the model were derived from the population
rather than a sample it would account for approximately 0.5% less variance in the outcome.
Advanced students might like to apply Stein’s formula to the R? to get some idea of its likely
value in different samples. Stein’s formula was given in equation (7.11) and can be applied by
replacing 7 with the sample size (200) and k with the number of predictors (3):

200-1 y 200-2 ><200+1
200-3-1 200-3-2 200
=1-(1.015x1.015%1.005)x 0.335
=1-0.347

=0.653

adjusted R* = 1—( ](1—0.665)

This value is very similar to the observed value of R? (.665), indicating that the cross-
validity of this model is very good.

CRAMMING SAM’S TIPS pRVETLIR{I

The fit of the regression model can be assessed with the model fit. Look for the R?to tell you the proportion of
variance explained by the model. Multiply this value by 100 to give the percentage of variance explained by the model.

7.8.3.2. Model parameters ®

So far we have looked at the overall fit of the model. The next part of the output to consider
is the parameters of the model. Now, the first step in our hierarchy was to include advertis-
ing budget (as we did for the simple regression earlier in this chapter) and so the parameters
for the first model are identical to the parameters obtained in Output 7.1. Therefore, we

10 That is, 33% = 66.5% — 33.5% (this value is known as the R? change).
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will be concerned only with the parameters for the final model (in which all predictors were
included). Output 7.3 shows the estimate, standard error, ¢-value and p-value.

Remember that in multiple regression the model takes the form of equation (7.9) and in
that equation there are several unknown quantities (the b-values). The first column gives
us estimates for these b-values, and these values indicate the individual contribution of
each predictor to the model (notice that in the first model, R is using the slightly annoying
1.341e+02 notation, which means ‘move the decimal point two places to the right’, so this
value is equal to 134.1). If we replace the b-values in equation (7.9) we find that we can
define the model as follows:

sales, = b + b advertising,+ b airplay, + b.attractiveness,
=-26.61 +(0.08 advertising) + (3.37 airplay,) + (11.09 attractiveness)

The b-values tell us about the relationship between album sales and each predictor. If the
value is positive we can tell that there is a positive relationship between the predictor and
the outcome, whereas a negative coefficient represents a negative relationship. For these
data all three predictors have positive b-values indicating positive relationships. So, as
advertising budget increases, album sales increase; as plays on the radio increase, so do
album sales; and finally more attractive bands will sell more albums. The b-values tell us
more than this, though. They tell us to what degree each predictor affects the outcome if
the effects of all other predictors are held constant:

® Advertising budget (b = 0.085): This value indicates that as advertising budget
increases by one unit, album sales increase by 0.085 units. Both variables were mea-
sured in thousands; therefore, for every £1000 more spent on advertising, an extra
0.085 thousand albums (85 albums) are sold. This interpretation is true only if the
effects of attractiveness of the band and airplay are held constant.

® Airplay (b = 3.367): This value indicates that as the number of plays on radio in the
week before release increases by one, album sales increase by 3.367 units. Therefore,
every additional play of a song on radio (in the week before release) is associated with
an extra 3.367 thousand albums (3367 albums) being sold. This interpretation is true
only if the effects of attractiveness of the band and advertising are held constant.

® Attractiveness (b = 11.086): This value indicates that a band rated one unit higher on
the attractiveness scale can expect additional album sales of 11.086 units. Therefore,
every unit increase in the attractiveness of the band is associated with an extra 11.086
thousand albums (11,086 albums) being sold. This interpretation is true only if the
effects of radio airplay and advertising are held constant.

Each of these beta values has an associated standard error indicating to what extent
these values would vary across different samples, and these standard errors are used to
determine whether or not the b-value differs significantly from zero. As we saw in section
7.5.2, a t-statistic can be derived that tests whether a b-value is significantly different from
0. In simple regression, a significant value of ¢ indicates that the slope of the regression
line is significantly different from horizontal, but in multiple regression, it is not so easy to
visualize what the value tells us. Well, it is easiest to conceptualize the ¢-tests as measures of
whether the predictor is making a significant contribution to the model. Therefore, if the
t-test associated with a b-value is significant (if the value in the column labelled Pr(>|¢|)
is less than .05) then the predictor is making a significant contribution to the model. The
smaller the value of Pr(>|t|) (and the larger the value of t), the greater the contribution of
that predictor. For this model, the advertising budget, #(196) = 12.26, p <.001, the amount
of radio play prior to release, #(196) = 12.12, p < .001, and attractiveness of the band,
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1(196) =4.55, p < .001, are all significant predictors of album sales.!! From the magnitude
of the #-statistics we can see that the advertising budget and radio play had a similar impact,
whereas the attractiveness of the band had less impact.

The b-values and their significance are important statistics to look at; however, the
standardized versions of the b-values are in many ways easier to interpret (because they are
not dependent on the units of measurement of the variables). To obtain the standardized
beta estimates (usually denoted by ) we need to use a function called Im.beta(). This is
found in the QuantPsyc package, and so you need to install and load this package (see sec-
tion 7.3). All we need to do is to specify our model within this function and then execute
it. Therefore, to get standardized betas for the albumSales.3 model, we execute:

Im.betaCalbumSales.3)
The resulting output is:

adverts airplay attract
0.5108462 0.5119881 0.1916834

These estimates tell us the number of standard deviations by which the outcome will
change as a result of one standard deviation change in the predictor. The standardized
beta values are all measured in standard deviation units and so are directly comparable:
therefore, they provide a better insight into the ‘importance’ of a predictor in the model.
The standardized beta values for airplay and advertising budget are virtually identical
(0.512 and 0.511, respectively) indicating that both variables have a comparable degree of
importance in the model (this concurs with what the magnitude of the #-statistics told us).

® Advertising budget (standardized 8 = .511): This value indicates that as advertising
budget increases by one standard deviation (£485,655), album sales increase by 0.511
standard deviations. The standard deviation for album sales is 80,699 and so this con-
stitutes a change of 41,240 sales (0.511 x 80,699). Therefore, for every £485,655
more spent on advertising, an extra 41,240 albums are sold. This interpretation is
true only if the effects of attractiveness of the band and airplay are held constant.

® Airplay (standardized B =.512): This value indicates that as the number of plays on
radio in the week before release increases by 1 standard deviation (12.27), album
sales increase by 0.512 standard deviations. The standard deviation for album sales is
80,699 and so this constitutes a change of 41,320 sales (0.512 x 80,699). Therefore,
if Radio 1 plays the song an extra 12.27 times in the week before release, 41,320
extra album sales can be expected. This interpretation is true only if the effects of
attractiveness of the band and advertising are held constant.

® Attractiveness (standardized § = .192): This value indicates that a band rated one
standard deviation (1.40 units) higher on the attractiveness scale can expect addi-
tional album sales of 0.192 standard deviations units. This constitutes a change of
15,490 sales (0.192 x 80,699). Therefore, a band with an attractiveness rating 1.40
higher than another band can expect 15,490 additional sales. This interpretation is
true only if the effects of radio airplay and advertising are held constant.

Next we need to think about the confidence intervals. We know the estimate, the stand-
ard error of the estimate, and the degrees of freedom, and so it would be relatively straight-
forward to calculate the confidence intervals for each estimate. It would be even more

"' For all of these predictors I wrote #(196). The number in parentheses is the degrees of freedom. We saw in sec-
tion 7.2.4 that in regression the degrees of freedom are N — p — 1, where N is the total sample size (in this case
200) and p is the number of predictors (in this case 3). For these data we get 200 -3 — 1 = 196.
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straightforward to make R do that, using the confint() function. Again, we simply put the
name of the regression model into the function and execute it; therefore, to get confidence
intervals for the parameters in the model albumSales.3, we execute:

confint(albumSales.3)

The results are shown in Output 7.4. Imagine that we collected 100 samples of data mea-
suring the same variables as our current model. For each sample we could create a regres-
sion model to represent the data. If the model is reliable then we hope to find very similar
parameters in all samples. Therefore, each sample should produce approximately the same
b-values. The confidence intervals of the unstandardized beta values are boundaries con-
structed such that in 95% of these samples these boundaries will contain the true value of b
(see section 2.5.2). Therefore, if we’d collected 100 samples, and calculated the confidence
intervals for b, we are saying that 95% of these confidence intervals would contain the
true value of b. Therefore, we can be fairly confident that the confidence interval we have
constructed for this sample will contain the true value of b in the population. This being
s0, a good model will have a small confidence interval, indicating that the value of b in
this sample is close to the true value of b in the population. The sign (positive or negative)
of the b-values tells us about the direction of the relationship between the predictor and
the outcome. Therefore, we would expect a very bad model to have confidence intervals
that cross zero, indicating that in some samples the predictor has a negative relationship
to the outcome whereas in others it has a positive relationship. In this model, the two best
predictors (advertising and airplay) have very tight confidence intervals, indicating that
the estimates for the current model are likely to be representative of the true population
values. The interval for attractiveness is wider (but still does not cross zero), indicating that
the parameter for this variable is less representative, but nevertheless significant.

2.5 % 97.5 %
(Intercept) -60.82960967 7.60369295
adverts 0.07123166 0.09853799
airplay 2.81962186 3.91522848
attract 6.27855218 15.89411823

Output 7.4

VIV YAV IS Model parameters

The individual contribution of variables to the regression model can be found in the Coefficients part of the
output from the summary() of the model. If you have done a hierarchical regression then look at the values for the final model. For
each predictor variable, you can see if it has made a significant contribution to predicting the outcome by looking at the column
labelled Pr(>|f]): values less than .05 are significant. You should also look at the standardized beta values because these tell
you the importance of each predictor (bigger absolute value = more important).

XXM Comparing models ®

We did a hierarchical regression, which means we need to compare the fit of the two
models, and see if the R? is significantly higher in the second model than in the first. The
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significance of R? can be tested using an F-ratio, and this F is calculated from the following
equation (in which N is the number of cases or participants, and k is the number of predic-
tors in the model):

(N -k -1)R>
k(1—R?)

The first model (albumSales.2) causes R* to change from 0 to .335, and this change
in the amount of variance explained gives rise to an F-ratio of 99.59, which is signifi-
cant with a probability less than .001. Bearing in mind for this first model that we have
only one predictor (so k = 1) and 200 cases (N = 200), this F comes from the equation
above:

- (200-1-1)0.334648 _ oo <o~
1(1-0.334648)

The addition of the new predictors (albumSales.3) causes R? to increase by a further
.330 (see above). We can calculate the F-ratio for this change using the same equation,
but because we’re looking at the change in models we use the change in R*, R*, .,
and the R* in the new model (model 2 in this case, so I've called it R}) and we also
use the change in the number of predictors, k, . (model 1 had one predictor and
model 2 had three predictors, so the change in the number of predictorsis 3 — 1 =2),
and the number of predictors in the new model, k, (in this case because we’re looking
at model 2):

_(N—k, 1R

Change — k

Change
Change (1 - R; )
(200-3-1)x0.330
2(1-0.664668)
=96.44

The degrees of freedom for this change are kChange (in this case 2) and N — k, — 1 (in this case
196). As such, the change in the amount of variance that can be explained is significant,
F(2, 196) = 96.44, p < .001. The change statistics therefore tell us about the difference
made by adding new predictors to the model.

7.8.4.1. Comparing models with R Commander ®

To compare two hierarchical models using R Commander we choose Models =
Hypothesis tests = Compare two models... (Figure 7.13). Note that there are two
lists of models that we have previously created in the current session of R Commander.
Both lists contain the same models, which are the albumSales.1, albumSales.2, and
albumSales.3 models. We want to compare albumSales.2 with albumSales.3 so we need
to click on albumSales.2 in the list labelled First model (pick one) and then click on
albumSales.3 in the list labelled Second model (pick one). Once the two models are
selected, click on [ 9 | to make the comparison. The resulting output is described in
the following section.
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7.8.4.2. Comparing models using R @

To compare models using R we use the anova() function, which takes the general form:

anova(model.l, model.2, .. , model.n)

which simply means that we list the models that we want to compare in the order in which we
want to compare them. It’s worth noting that we can only compare hierarchical models; that
is to say, the second model must contain everything that was in the first model plus something
new, and the third model must contain everything in the second model plus something new,
and so on. Using this principle, we can compare albumSales.2 with albumSales.3 by executing:

anova(albumSales.2, albumSales.3)

Output 7.5 shows the results of this comparison. Note that the value of F is 96.44, which is
the same as the value that we calculated by hand at the beginning of this section. The value
in column labelled Pr(>F) is 2.2e-16 (i.e., 2.2 with the decimal place moved 16 places to
the left, or a very small value indeed); we can say that albumSales.3 significantly improved
the fit of the model to the data compared to albumSales.2, F(2, 196) = 96.44, p < .001.
Analysis of Variance Table
Model 1:
Model 2:
Res.Df

198
196

album2$sales ~ album2S$Sadverts

album2S$Ssales ~ album2S$Sadverts + album2Sairplay + album2Sattract
RSS Df Sum of Sg F Pr (>F)

862264

434575

1

2 2 427690 96.447 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 *’ 0.05 *.” 0.1 *» 1

Output 7.5

Assessing model improvement in
hierarchical regression

CRAMMING SAM’S TIPS

If you have done a hierarchical regression then you can assess the improvement of the model at each stage of the analysis by
looking at the change in R? and testing whether this change is significant using the anova() function.
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7.9. Testing the accuracy of your regression
model ®

Diagnostic tests using R Commander @

R Commander will allow you to run a range of diagnostic tests and other modifications to
your model — these are found in the Models menu, shown in Figure 7.14. The menus are
listed below with a brief description of what functions they enable you to access. We will
not look at any particular function in detail because, in general, we think it is quicker to
use commands, and we outline a general strategy for testing the accuracy of your regression
model in the next two sections.

7 R Commander == FIGURE 7.14
File Edit Data Statistics Graphs [ Models | Distributions Tools Help RegresS|on
Rl ouesa sz | g et scte e F diagnostics using
ST Add observation statistics to data... i R Com mander
‘albumz <- read.table ("N:/1 SRl ", header=TRUE, F
sep="\t", na.strings="Ni Akaike Information Criterion (AIC) |
albumSales.3 <- Ilm(sales~; BayesianInformation Criterion (BIC) talbum2)
summary (albumSales.3) Stepwise model selection... [
Subset model selection...
Hypothesis tests L
Numerical diagnostics 3 Variance-inflation factors
Graphs > Breusch-Pagan test for heteroscedasticity...
T

RESET test for nonlinearity...
Bonferrani outlier test

Output Window

ilm(fomula = sales ~ adverts + airplay + attract, data

—

® Select active model...: This menu allows you to choose a regression model that you
would like to get more information on.

® Summarize model: This command produces a summary of the model, by running the
summary() function.

® Add observation statistics to data...: If you run this command, it will create the out-
lier detection statistics for each case, and then it will merge these into your original
dataframe, creating new variables in the dataframe called hatvalue, covratio, etc.

e Confidence intervals...: Produces the confidence intervals for the model.

® Akaike Information Criterion (AIC): This command will display the AIC for the
model, which is used to select between models (see section 7.6.3).

® Bayesian Information Criterion (BIC): We have not discussed the BIC in detail, but
it is a similar measure to the AIC.

® Stepwise model selection...: Used for stepwise model selection to add and remove
variables from the model to try to obtain the best fit possible, with the fewest vari-
ables. Usually not advised.

® Subset model selection...: Slightly (but only slightly) better than stepwise model
selection, this tries combinations of variables to try to obtain the best fit, with various
penalties for having too many variables.

® Hypothesis tests: This menu has three options. The first (ANOVA table...) produces
sums of squares and F-statistics for each predictor variable in the model. You usually
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want type III sums of squares (see Jane Superbrain Box 11.1).'> The second option
(Compare two models...) allows you to do hierarchical regression by comparing the
fit of two models. Finally the third option (Linear hypothesis...) is involved in ana-
lyses that go beyond the material in this chapter.

® Numerical diagnostics: This gives a number of other diagnostic tests, of which we
have covered the Variance inflation factors (VIF) and Durbin—Watson test.

® Graphs: Several diagnostic graphs are available. It might surprise you, given its length
and how long it has taken you to read, that there is anything not covered in this chapter,
but we do not cover these graphs.

Outliers and influential cases ®

The diagnostics that we have examined so far all relate to either the overall model,
or to a specific variable. The other type of diagnostic we can look at relates to cases:
each case (making up a row in the data set) has a value, hence these are called casewise
diagnostics. These diagnostics were described in section 7.7.1. There are various func-
tions that we can use to obtain different casewise diagnostics and in general they take
the form of:

function(regressionModel)

In other words, all we need to do is place the name of our regression model (in this case
albumSales.3) into the function and execute it. As we did earlier, we can distinguish these
measures by whether they help us to identify outliers or influential cases:

® Outliers: Residuals can be obtained with the resid() function, standardized residuals
with the rstandard() function and studentized residuals with the rstudent() function.

® [Influential cases: Cook’s distances can be obtained with the cooks.distance() func-
tion, DFBeta with the dfbeta() function, DFFit with the dffits() function, hat values
(leverage) with the hatvalues() function, and the covariance ratio with the covratio()
function.

If we merely execute these functions, R will print a long list of values to the console for
us, which isn’t very useful. Instead, we can store the values in the dataframe, which will
enable us to look at them more easily. We can store them in the dataframe by simply creat-
ing a new variable within the dataframe and setting the value of this variable to be one of
the functions we’ve just discussed. Remember from section 3.5.2, that to add a variable to
a dataframe we execute a command with this general format:

dataFrameName$newVariableName<-newVariableData

In other words, we create the variable by specifying a name for it and appending this to
the name of the dataframe to which we want to add it, then on the right-hand side of the
command we specify what the variable contains (with some arithmetic or a function, etc.).
Therefore, to create a variable in our album2 dataframe that contains the residuals for each
case, we would execute:

album2$residuals<-resid(albumSales.3)

12 Statisticians can get quite hot under the collar about the different types of sums of squares. However, if you
ask for type III sums of squares, you’ll get the same p-values that you get in the model summary. That’s why we
like them here.
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This creates a variable called residuals in the dataframe called album?2 (album2$residuals)
that contains the residuals from the albumSales.3 model (resid(albumSales.3)). Similarly,
we can add all of the other residuals and casewise statistics by executing:

album2$standardized.residuals<- rstandard(albumSales.3)
album2$studentized.residuals<-rstudent(albumSales.3)
album2$cooks.distance<-cooks.distance(albumSales.3)
album2$dfbeta<-dfbetaCalbumSales.3)
album2$dffit<-dffits(albumSales.3)
album2$leverage<-hatvalues(albumSales.3)
album2$covariance.ratios<-covratio(albumSales.3)

If you look at the data, you’ll see that as well as the original variables, the dataframe now
contains variables containing the casewise statistics. For example, if you execute:

album?2

You will see the contents of the dataframe (I’ve edited the column names, suppressed some
of the columns, and included only the first six rows of data):!

adverts sales airplay attract resid stz.r stu.r cooks dfbeta

10.256 330 43 10 100.080 2.177 2.199 0.059 -5.422
985.685 120 28 7 -108.949 -2.323 -2.350 0.011 0.216
1445.563 360 35 7 68.442 1.469 1.473 0.011 -0.659
1188.193 270 33 7 7.024 0.150 0.150 0.000 -0.045
574.513 220 44 5 -5.753 -0.124 -0.123 0.000 -0.149
568.954 170 19 5 28.905 0.618 0.617 0.001 1.143

Having created these new variables it might be a good idea to save the data (see section
3.8), which we can do by executing;:

write.tableCalbum2, "Album Sales With Diagnostics.dat", sep = "\t", row.names
= FALSE)

First, let’s look at the standardized residuals. I mentioned in section 7.7.1.1 that in an
ordinary sample we would expect 95% of cases to have standardized residuals within about
+2. We have a sample of 200, therefore it is reasonable to expect about 10 cases (5%) to
have standardized residuals outside these limits. One of the nice things about R is that it
automatically considers those standardized residuals to be data, so we can examine them
just like we examine data. For example, if you execute the command:

album2$standardized.residuals > 2 | album2$standardized.residuals < -2

then R will tell you for every case if the residual is less than —2 or greater than 2 (remember
that the ¢|” symbol in the command means ‘or’, so the command asks ‘is the standardized
residual greater than 2 or smaller than —2?°). The command produces the following output:

TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE etc.

13 To save space, [ wanted the values rounded to 3 decimal places so I executed:

round(Calbum2, digits = 3)
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For each case, it tells us whether it is TRUE that they have a residual more than 2 or
less than -2 (i.e., a large residual), or FALSE, that they do not (i.e., the residual falls
between +2). As before, we can store this information as a new variable in our dataframe
by executing:

album2$large.residual <-album2$standardized.residuals>2 | album2$standardized.
residuals < -2

Now we have a variable that we can use. To use it, it is useful to remember that R stores
‘TRUE’ as 1, and ‘FALSE’ as 0. Because of that, we can use the sum() function to get the
sum of the variable large.residual, and this will be the number of cases with a large residual.
To use the sum() function we simply enter into it the variable that we want to sum; there-
fore, to find out how many large residuals there are we can execute:

sum(Calbum2$large.residual)

[1] 12

In other words, R will tell you that only 12 cases had a large residual (which we
defined as one bigger than 2 or smaller than —2). It might be better to know not just
how many cases there are, but also which cases they are. We can do this by selecting
only those cases for which the variable large.residual is TRUE. Remember from sec-
tion 3.9.1 that we can select parts of the data set by using dataFrame[rows, columns]
in which we can specify conditions for rows and columns that tell R what we want to
see. If we set rows to be album2$large.residual, then we will see only those rows for
which large.residual is TRUE. If we don’t want to see all of the columns, we could
also list the columns that we do want to see by providing a list of variable names. For
example, if we execute:

album2[album2$large.residual,c("sales", "airplay", "attract", "adverts",
"standardized.residuals")]

we will see the variables (or columns) labelled sales, airplay, attract, adverts and standard-
ized.residuals but only for cases for which large.residual is TRUE. Output 7.6 shows these
values. From this output we can see that we have 12 cases (6%) that are outside of the lim-
its: therefore, our sample is within 1% of what we would expect. In addition, 99% of cases
should lie within £2.5 and so we would expect only 1% of cases to lie outside of these
limits. From the cases listed here, it is clear that two cases (1%) lie outside of the limits
(cases 164 and 169). Therefore, our sample appears to conform to what we would expect
for a fairly accurate model. These diagnostics give us no real cause for concern except that
case 169 has a standardized residual greater than 3, which is probably large enough for us
to investigate this case further.

We have saved a range of other casewise diagnostics from our model. One useful strat-
egy is to use the casewise diagnostics to identify cases that you want to investigate further.
Let’s continue to look at the diagnostics for the cases of interest. Let’s look now at the
leverage (hat value), Cook’s distance and covariance ratio for these 12 cases that have large
residuals. We can do this by using the same command as before, but listing different vari-
ables (columns) in the data set:

album2[album2$large.residual , c("cooks.distance", "leverage", "covariance.
ratios")]

Executing this command prints the variables (or columns) labelled cooks.distance,
leverage, and covariance.ratios but only for cases for which large.residual is TRUE.
Output 7.7 shows these values; none of them has a Cook’s distance greater than 1 (even
case 169 is well below this criterion), so none of the cases is having an undue influence
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on the model. The average leverage can be calculated as 0.02 (k + 1/n = 4/200) and
so we are looking for values either twice as large as this (0.04) or three times as large
(0.06) depending on which statistician you trust most (see section 7.7.1.2). All cases
are within the boundary of three times the average and only case 1 is close to two times
the average.

sales airplay attract adverts standardized.residuals

1 330 43 10 10.256 2.177404
2 120 28 7 985.685 -2.323083
10 300 40 7 174.093 2.130289
47 40 25 8 102.568 -2.460996
52 190 12 4 405.913 2.099446
55 190 33 8 1542.329 -2.455913
61 300 30 7 579.321 2.104079
68 70 37 7 56.895 -2.363549
100 250 5 7 1000.000 2.095399
164 120 53 8 9.104 -2.628814
169 360 42 8 145.585 3.093333
200 110 20 9 785.694 -2.088044

Output 7.6

cooks.distance leverage covariance.ratios

1 0.058703882 0.047190526 0.9712750
2 0.010889432 0.008006536 0.9201832
10 0.017756472 0.015409738 0.9439200
47 0.024115188 0.015677123 0.9145800
52 0.033159177 0.029213132 0.9599533
55 0.040415897 0.026103520 0.9248580
61 0.005948358 0.005345708 0.9365377
68 0.022288983 0.015708852 0.9236983
100 0.031364021 0.027779409 0.9588774
164 0.070765882 0.039348661 0.9203731
169 0.050867000 0.020821154 0.8532470
200 0.025134553 0.022539842 0.9543502
Output 7.7

There is also a column for the covariance ratio. We saw in section 7.7.1.2 that we need
to use the following criteria:

® CVR,>1+[3(k+1)/n]=1+[3(3+1)/200] = 1.06;
® CVR <1 —[3(k+1)/n]=1—[3(3 +1)/200] = 0.94.

Therefore, we are looking for any cases that deviate substantially from these boundaries.
Most of our 12 potential outliers have CVR values within or just outside these boundar-
ies. The only case that causes concern is case 169 (again) whose CVR is some way below
the bottom limit. However, given the Cook’s distance for this case, there is probably little
cause for alarm.

You could have requested other diagnostic statistics and from what you know from
the earlier discussion of them you would be well advised to glance over them in case
of any unusual cases in the data. However, from this minimal set of diagnostics we
appear to have a fairly reliable model that has not been unduly influenced by any subset
of cases.
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W IVILCY WIS Influential cases

You need to look for cases that might be influencing the regression model:

Look at standardized residuals and check that no more than 5% of cases have absolute values above 2, and that no more
than about 1% have absolute values above 2.5. Any case with a value above about 3 could be an outlier.

Look at the values of Cook’s distance: any value above 1 indicates a case that might be influencing the model.
Calculate the average leverage (the number of predictors plus 1, divided by the sample size) and then look for values
greater than twice or three times this average value.

Calculate the upper and lower limit of acceptable values for the covariance ratio, CVR. The upper limitis 1 plus three times
the average leverage, whereas the lower limit is 1 minus three times the average leverage. Cases that have a CVR falling
outside these limits may be problematic.

Assessing the assumption of independence @

In section 7.7.2.1 we discovered that we can test the assumption of independent errors
using the Durbin—Watson test. We can obtain this statistic along with a measure of autocor-
relation and a p-value in R using the durbinWatsonTest() (careful, that’s a lower case d at
the start, and upper case W and T) or, equivalently, dwt() function. All you need to do is to
name your regression model within the function and execute it. So, for example, to see the
Durbin—Watson test for our albumSales.3 model, we would execute:

durbinWatsonTest(albumSales.3)
or

dwt(albumSales.3)

both of which do the same thing. As a conservative rule I suggested that values less than 1
or greater than 3 should definitely raise alarm bells. The closer to 2 that the value is, the
better, and for these data (Output 7.8) the value is 1.950, which is so close to 2 that the
assumption has almost certainly been met. The p-value of .7 confirms this conclusion (it is
very much bigger than .05 and, therefore, not remotely significant). (The p-value is a little
strange, because it is bootstrapped, and so, for complex reasons that we don’t want to go
into here, it is not always the same every time you run the command.)

lag Autocorrelation D-W Statistic p-value

1 0.0026951 1.949819 0.7
Alternative hypothesis: rho != 0
Output 7.8

Assessing the assumption of no multicollinearity ®

The VIF and tolerance statistics (with tolerance being 1 divided by the VIF) are useful sta-
tistics to assess collinearity. We can obtain the VIF using the vif() function. All we need to do
is to specify the model name within the function; so, for example, to get the VIF statistics
for the albumSales.3 model, we execute:

vif(albumSales.3)
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The tolerance doesn’t have its own function, but we can calculate it very easily, if we
remember that tolerance = 1/VIF. Therefore, we can get the values by executing:

1/vif(albumSales.3)

It can be useful to look at the average VIF too. To calculate the average VIF we can add the
VIF values for each predictor and divide by the number of predictors (k):

P —
VIF
VIF = i:/; _ 1.015+1.(;43+1.038

=1.032

Alternatively, we can ask R to do it for us by placing the vif command above into the
mean() function and executing:

mean(vif(albumSales.3))
vif(albumSales.3)

adverts airplay attract
1.014593 1.042504 1.038455

1/vif(albumSales.3)

adverts airplay attract
0.9856172 0.9592287 0.9629695

mean(vif(albumSales.3))

[1] 1.03185

Output 7.9

These statistics are shown in Output 7.9 (the VIF first, then the tolerance, then the mean
VIF). There are a few guidelines from section 7.7.2.4 that can be applied here:

® If the largest VIF is greater than 10 then there is cause for concern (Bowerman &
O’Connell, 1990; Myers, 1990).

® If the average VIF is substantially greater than 1 then the regression may be biased
(Bowerman & O’Connell, 1990).

® Tolerance below 0.1 indicates a serious problem.

® Tolerance below 0.2 indicates a potential problem (Menard, 1995).
For our current model the VIF values are all well below 10 and the tolerance statistics all

well above 0.2. Also, the average VIF is very close to 1. Based on these measures we can
safely conclude that there is no collinearity within our data.

SEEVVIVINCYVVISIIDI Checking for multicollinearity

To check for multicollinearity, use the VIF values. If these values are less than 10 then that indicates there probably isn’t cause
for concern. If you take the average of VIF values, and this average is not substantially greater than 1, then that also indicates
that there’s no cause for concern.
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Checking assumptions about the residuals ®

As a final stage in the analysis, you should visually check the assumptions that relate to
the residuals (or errors). For a basic analysis it is worth plotting the standardized residual
(y-axis) against the predicted value (x-axis), because this plot is useful to determine whether
the assumptions of random errors and homoscedasticity have been met. If we wanted to
produce high-quality graphs for publication we would use ggplot2() — see R’s Souls’ Tip
7.3. However, if we’re just looking at these graphs to check our assumptions, we’ll use the
simpler (but not as nice) plot() and hist() functions.

The first useful graph is a plot of fitted values against residuals. This should look like
a random array of dots evenly dispersed around zero. If this graph funnels out, then the
chances are that there is heteroscedasticity in the data. If there is any sort of curve in this
graph then the chances are that the data have violated the assumption of linearity. Figure
7.15 shows several examples of plots of standardized predicted values against standard-
ized residuals. The top left panel shows a situation in which the assumptions of linearity
and homoscedasticity have been met. The top right panel shows a similar plot for a data
set that violates the assumption of homoscedasticity. Note that the points form the shape
of a funnel so they become more spread out across the graph. This funnel shape is typical
of heteroscedasticity and indicates increasing variance across the residuals. The bottom
left panel shows a plot of some data in which there is a non-linear relationship between
the outcome and the predictor. This pattern is shown up by the residuals. There is a clear
curvilinear trend in the residuals. Finally, the bottom right panel illustrates a situation in
which the data not only represent a non-linear relationship, but also show heteroscedas-
ticity. Note first the curved trend in the data, and then also note that at one end of the
plot the points are very close together whereas at the other end they are widely dispersed.
When these assumptions have been violated you will not see these exact patterns, but
hopefully these plots will help you to understand the types of anomalies you should look
out for.

It is easy to get this plot in R: we can simply enter the name of the regression model into
the ploz() function. One of the clever things about R is that when you ask it to perform an
action on something, it looks at what that something is before it decides what to do. For
example, when we ask R to summarize something, using summary(x), if x is a continuous
variable it will give the mean, but if x is a factor (categorical) variable, it will give counts.
And if x is a regression model, it gives the parameters, R?, and a couple of other things. The
same happens when we use plot(). When you specify a regression model in the ploz() func-
tion, R decides that you probably want to see four plots — the first of which is the residuals
plotted against the fitted values.

This plot is shown in Figure 7.16; compare this plot to the examples shown in Figure
7.15. Hopefully, it’s clear to you that the graph for the residuals in our album sales model
shows a fairly random pattern, which is indicative of a situation in which the assumptions
of linearity, randomness and homoscedasticity have been met.

The second plot that is produced by the plot() function is a Q-Q plot, which shows
up deviations from normality (see Chapter 5). The straight line in this plot represents
a normal distribution, and the points represent the observed residuals. Therefore, in
a perfectly normally distributed data set, all points will lie on the line. This is pretty
much what we see for the record sales data (Figure 7.17, left-hand side). However,
next to the normal probability plot of the record sales data is an example of a plot for
residuals that deviate from normality. In this plot, the dots are very distant from the
line (at the extremes), which indicates a deviation from normality (in this particular
case skew).
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SRR AT Publication-quality plots®

The model that is produced by Im() is a type of data set, which has variables in it. One of those variables is the
predicted (or fitted) values for each case. It's called fitted.values, and we can refer to it just like we refer to any
other variable, by using a $ sign: so, albumSales.3%fitted.values gives us the predicted values of the model
albumSales.3. We can save these values in our original dataframe just as we did for the other casewise diagnostic
variables by executing:

album2$fitted <- albumSales.3$fitted.values

We now have a new variable, fitted, in our original dataframe that contains the predicted values. We also have
the studentized residuals stored in the variable studentized.residuals. Using what we learnt in Chapters 4 and
5, we can therefore create publication-standard plots by using these two variables. For example, we could plot a
histogram of the studentized residuals by executing (see Chapter 5 for an explanation of this code):

histogram<-ggplot(album2, aes(studentized.residuals)) + opts(legend.position =
"none") + geom_histogram(Caes(Cy = ..density..), colour = "black", fill = "white") +
labs(x = "Studentized Residual", y = "Density")

histogram + stat_function(fun = dnorm, args = list(mean = mean(album2$studentized.
residuals, na.rm = TRUE), sd = sd(album2$studentized.residuals, na.rm = TRUE)), colour
= "red", size = 1)

We could create a Q-Q plot of these values by executing:

ggplot.resid <- gplot(sample = album2$studentized.residuals, stat="qq") + labs(x =
"Theoretical Values", y = "Observed Values")

Finally, we could plot a scatterplot of studentized residuals against predicted values by executing:

scatter <- ggplot(album2, aes(fitted, studentized.residuals))
scatter + geom_point() + geom_smooth(method = "1m", colour = "Blue")+ labs(x = "Fitted
Values", y = "Studentized Residual")

The resulting graphs look like this:
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Another useful way to check whether the residuals deviate from a normal distribution
is to inspect the histogram of the residuals (or the standardized or studentized residuals).
We can obtain this plot easily using the hist() function. We simply place a variable name



CHAPTER 7 REGRESSION

Normality Assumed Non-Normal FIGURE 7.17
Histogram of album2$studentized.residuals Histogram of Outcome .
Histograms
40— gy and Q-Q plots
40
] of normally
30 30+ distributed
3 3 residuals (left-
@ i D 204 :
g2 g% hand side) and
i = non-normally
4 104 I
10 distributed
0 - — 0 residuals (right-
T T T T T T 1 T T T T T 1 H
3 2 4 o0 1 2 3 o 4 0 1 > 3 hand side)
album2$studentized.residuals Outcome
Normal Q-Q Normal Q-Q
3 1690 3 200
- 00, ©199
] e o 98 .
% 2 0.’ % 2 (ﬁ)@”//
8 1 ’ 3 jf -
3 3 14 ,/
S 0+ °
© © 0
(D) . n
o L -1
e 77
164 o o 00,/
T T T T T Pl T T T T

Theoretical Quantiles
Im(outcome ~ pred3)

Theoretical Quantiles
Im(sales ~ adverts + airplay + attract)

into this function and it will plot us a histogram. We saved the studentized residuals in our
dataframe earlier so we could enter this variable into the function and execute it:

hist(album2$studentized.residuals)

If you haven’t saved the studentized residuals into your dataframe you can generate the
same plot by entering the rstudent() function that we used earlier directly into hist():

hist(rstudent(albumSales.3))

Figure 7.17 shows the histogram of the data for the current example (left-hand side). The
histogram should look like a normal distribution (a bell-shaped curve). For the record com-
pany data, the distribution is roughly normal. Compare this histogram to the non-normal
histogram next to it and it should be clear that the non-normal distribution is skewed
(asymmetrical). So, you should look for a distribution that has the same shape as the one
for the album sales data: any deviation from this shape is a sign of non-normality — the
greater the deviation, the more non-normally distributed the residuals. For both the histo-
gram and normal Q-Q plots, the non-normal examples are extreme cases and you should
be aware that the deviations from normality are likely to be subtler.

We could summarize by saying that the model appears, in most senses, to be both accu-
rate for the sample and generalizable to the population. Therefore, we could conclude
that in our sample advertising budget and airplay are fairly equally important in predicting
album sales. Attractiveness of the band is a significant predictor of album sales but is less
important than the other two predictors (and probably needs verification because of pos-
sible heteroscedasticity). The assumptions seem to have been met and so we can probably
assume that this model would generalize to any album being released.
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(REVVIVINCY SIS Generalizing your model beyond
your sample

You need to check some of the assumptions of regression to make sure your model generalizes beyond your sample:

o Look at the graph of the standardized residuals plotted against the fitted (predicted) values. If it looks like a random array of
dots then this is good. If the dots seem to get more or less spread out over the graph (look like a funnel) then this is probably
a violation of the assumption of homogeneity of variance. If the dots have a pattern to them (i.e., a curved shape) then this
is probably a violation of the assumption of linearity. If the dots seem to have a pattern and are more spread out at some
points on the plot than others then this probably reflects violations of both homogeneity of variance and linearity. Any of these
scenarios puts the validity of your model into question. Repeat the above for all partial plots too.

o Look at a histogram of the residuals too. If the histogram looks like a normal distribution (and the Q-Q plot looks like a diago-
nal line), then all is well. If the histogram looks non-normal, then things are less good. Be warned, though: distributions can
look very non-normal in small samples even when they are normal!

What if | violate an assumption? ®

It’s worth remembering that you can have a perfectly good model for your data (no out-
liers, influential cases, etc.) and you can use that model to draw conclusions about your
sample, even if your assumptions are violated. However, it’s much more interesting to
generalize your regression model and this is where assumptions become important. If they
have been violated then you cannot generalize your findings beyond your sample. The
options for correcting for violated assumptions are a bit limited. If residuals show problems
with heteroscedasticity or non-normality you could try transforming the raw data — but this
won’t necessarily affect the residuals. If you have a violation of the linearity assumption
then you could see whether you can do logistic regression instead (described in the next
chapter). Finally, you could do a robust regression, and this topic is next on our agenda.

7.10. Robust regression: bootstrapping ®

We saw in Section 6.5.7 that we could bootstrap our estimate of a correlation to obtain
the statistical significance and confidence intervals, and that this meant we could relax the
distributional assumptions. We can do the same thing with regression estimates. When I
showed you how to bootstrap correlations, we used the boot package, and we’re going to
use the same procedure again.'*

We first encountered bootstrapping and the boot() function in Chapter 6, but it won’t
hurt to recap. When we use the boot() function, it takes the general form of:

object<-boot(data, function, replications)

4 There is a package called simpleboot, which has a function called Im.boot(). However, at the time of writing,
although simpleboot is very easy to use to bootstrap, obtaining things like the confidence intervals after you have
bootstrapped is much harder.
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in which data specifies the dataframe you want to use, function is the function you want to
bootstrap, and replications is the number of bootstrap samples you want to use. (More is
always better, but takes longer — I find 2000 to be a nice compromise.)

As we did for correlations, we need to write a function (R’s Souls’ Tip 6.2) we want to boot-
strap. We’ll write one called bootReg() — this function is a little more complex than the function
we wrote for the correlation, because we are interested in more than one statistic (we have an
intercept and three slope parameters to bootstrap). The function we need to execute is:

bootReg <- function (formula, data, indices)

{

d <- data [1i,]

fit <- Im(formula, data = d)
return(coef(fit))

3

Executing this command creates an object called bootReg. The first bit of the function
tells R what input to expect in the function: in this case we need to feed into the function
a regression formula (just like what we’d put into the lm() function, so something like y
~ a + b), a dataframe, and a variable that has been called i (which refers to a particular
bootstrap sample, just as it did in the correlation example). Let’s look at what the bits of
the function do:

® d <- data [i,]: This creates a dataframe called d, which is a subset of the dataframe
entered into the function. The i again refers to a particular bootstrap sample.

® fit <- Im(formula, data = d): This creates a regression model called fit using the [m()
function (notice that the formula that we enter into the bootReg function is used
within /m() to generate the model).

o return(coef(fit)): The return() function, as the name suggests, just determines what
our function bootReg returns to us. The function coef() is one that extracts the
coefficients from a regression object; therefore, return(coef(fit)) means that the
output of bootReg will be the intercept and any slope coefficients for predictors
in the model.

Having created this function (remember to execute the code), we can use the function to
obtain the bootstrap samples:

bootResults<-boot(statistic = bootReg, formula = sales ~ adverts + airplay +
attract, data = album2, R = 2000)

Executing this command creates an object called bootResults that contains the bootstrap
samples. We use the boot() function to get these. Within this function we tell it to use the
function bootReg() that we just created (statistic = bootReg); because that function requires
a formula and dataframe, we specify the model as we did for the original model (formula
= sales ~ adverts + airplay + attract), and name the dataframe (data = album?2). As such,
everything in the boot() function is something that we specified as being necessary input for
the bootReg() function when we defined it. The only new thing is R, which sets the num-
ber of bootstrap samples (in this case we have set it to 2000, which means we will throw
these instructions into the bootReg() function 2000 different times and save the results in
bootResults each time.

Instead of one statistic, we need to obtain bootstrap confidence intervals for the inter-
cept, and the three slopes for advert, airplay and attract. We can do this with the boot.ci()
function that we encountered in Chapter 6. However, R doesn’t know the names of the
statistics in bootResults, so we instead have to use their location in the bootResults object
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(because R does know this information). The intercept is the first thing in bootResults, so
to obtain the bootstrapped confidence interval for the intercept we use index = 1:

boot.ci(bootResults, type = "bca", index = 1)

Note that we enter the object from which the confidence intervals will come (bootResults),
and index to tell R where in bootResults to look (index = 1), and specify the type of confi-
dence interval that we want (in this case bias corrected and accelerated, type = “bca™). The
locations of the coefficients for adverts, airplay and attract are given by index values of 2,
3 and 4, respectively, so we can get the bootstrap confidence intervals for those predictors
by executing:

boot.ci(bootResults, type = "bca", index = 2)
boot.ci(bootResults, type = "bca", index = 3)
boot.ci(bootResults, type = "bca", index = 4)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL

boot.ci(boot.out = bootResults, type = "bca", index = 1)
Intervals

Level BCa

95% (-58.49, 5.17 )

Calculations and Intervals on Original Scale
> boot.ci(bootResults , type="bca", index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL

boot.ci(boot.out = bootResults, type = "bca", index = 2)
Intervals

Level BCa

95% (0.0715, 0.0992 )

Calculations and Intervals on Original Scale
> boot.ci(bootResults , type="bca", index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL

boot.ci(boot.out = bootResults, type = "bca", index = 3)
Intervals

Level BCa

95% (2.736, 3.980 )

Calculations and Intervals on Original Scale
> boot.ci (bootResults , type="bca", index=4)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 2000 bootstrap replicates

CALL

boot.ci(boot.out = bootResults, type = "bca", index = 4)
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Intervals :
Level BCa
95% ( 6.52, 15.32 )

Calculations and Intervals on Original Scale

Output 7.10

This gives us Output 7.10, which shows the confidence interval for the intercept is from
—58.49 to 5.17 (remember that because of how bootstrapping works, you won’t get exactly
the same result as me, but it should be very close). Compare that with the confidence inter-
val we found using the plug-in approach, shown in Output 7.4, which was from —-60.83 to
7.60; the bootstrap results are pretty close.

The first predictor (but second variable) was adverts. The plug-in approach gave us a
confidence interval from 0.071 to 0.099; the bootstrap confidence interval is from 0.072
to 0.099. Next came airplay, which had a plug-in confidence interval from 2.82 to 3.92
and a bootstrap confidence interval from 2.74 to 3.98. Finally, attract had a plug-in confi-
dence interval from 6.28 to 15.89 and a bootstrap confidence interval from 6.52 to 15.32.
All of the bootstrap confidence intervals are very close to the plug-in confidence intervals,
suggesting that we did not have a problem of non-normal distribution in the model.

7.11. How to report multiple regression ®

If you follow the American Psychological Association guidelines for reporting multiple
regression then the implication seems to be that tabulated results are the way forward. The
APA also seem in favour of reporting, as a bare minimum, the standardized betas, their sig-
nificance value and some general statistics about the model (such as the R?). If you do decide
to do a table then the beta values and their standard errors are also very useful. Personally
I’d like to see the constant as well because then readers of your work can construct the full
regression model if they need to. Also, if you’ve done a hierarchical regression you should
report these values at each stage of the hierarchy. So, basically, you want to reproduce the
table labelled Estimates from the output and omit some of the non-essential information.
For the example in this chapter we might produce a table like that in Table 7.2.

Look back through the output in this chapter and see if you can work out from where
the values came. Things to note are: (1) ’ve rounded off to 2 decimal places throughout;
(2) in line with APA convention, I’ve omitted 0 from the probability values, as these cannot
exceed 1. All other values can, so the 0 is included.

Table 7.2 How to report multiple regression

AR? B SEB B P
Step 1 0.34 <.001
Constant 134.14 7.54 <.001
Advertising budget 0.10 0.01 0.58* <.001
Step 2 0.33 <.001
Constant —26.61 17.35 127
Advertising budget 0.09 0.01 0.51* <.001
Plays on BBC Radio 1 3.37 0.28 0.51* <.001

Attractiveness 11.09 2.44 0.19* <.001
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Why do you like your

Labcoat Leni’s Real Research 7.1 lecturers?

Chamorro-Premuzic, T., et al. (2008). Personality and Individual Differences, 44, 965-976.

In the previous chapter we encountered a study by Chamorro-Premuzic et al. in which they measured students’
personality characteristics and asked them to rate how much they wanted these same characteristics in their
lecturers (see Labcoat Leni’'s Real Research 6.1 for a full description). In that chapter we correlated these scores;
however, we could go a step further and see whether students’ personality characteristics predict the character-
istics that they would like to see in their lecturers.

The data from this study are in the file Chamorro-Premuzic.dat. Labcoat Leni wants you to carry out five

multiple regression analyses: the outcome variable in each of the five analyses is how much students want to see

. heuroticism, extroversion, openness to experience, agreeableness and conscientiousness. For each
) of these outcomes, force Age and Gender into the analysis in the first step of the hierarchy, then in the
second block force in the five student personality traits (Neuroticism, Extroversion, Openness to experi-
ence, Agreeableness and Conscientiousness). For each analysis create a table of the results.
Answers are in the additional material on the companion website (or look at Table 4 in the original article).

7.12. Categorical predictors and multiple
regression @

Often in regression analysis you’ll collect data about groups of people (e.g., ethnic group,
gender, socio-economic status, diagnostic category). You might want to include these
groups as predictors in the regression model; however, we saw from our assumptions that
variables need to be continuous or categorical with only two categories. We saw in sec-
tion 6.5.7 that a point-biserial correlation is Pearson’s 7 between two variables when one
is continuous and the other has two categories coded as 0 and 1. We’ve also learnt that
simple regression is based on Pearson’s 7, so it shouldn’t take a great deal of imagination
to see that, like the point-biserial correlation, we could construct a regression model with
a predictor that has two categories (e.g., gender). Likewise, it shouldn’t be too inconceiv-
able that we could then extend this model to incorporate several predictors that had two
categories. All that is important is that we code the two categories with the values of 0
and 1. Why is it important that there are only two categories and that they’re coded 0 and
1? Actually, I don’t want to get into this here because this chapter is already too long, the
publishers are going to break my legs if it gets any longer, and I explain it anyway later in
the book (sections 9.4.2 and 10.2.3), so, for the time being, just trust me!

JAYRE Dummy coding ®

The obvious problem with wanting to use categorical variables as predictors is that often
you’ll have more than two categories. For example, if you’d measured religious affiliation
you might have categories of Muslim, Jewish, Hindu, Catholic, Buddhist, Protestant, Jedi
(for those of you not in the UK, we had a census here in 2001 in which a significant portion
of people put down Jedi as their religion). Clearly these groups cannot be distinguished
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using a single variable coded with zeros and ones. In these cases we can use what we call
dummy variables. Dummy coding is a way of representing groups of people using only zeros
and ones. To do it, we have to create several variables; in fact, the number of variables we
need is one less than the number of groups we’re recoding. There are eight basic steps:

Count the number of groups you want to recode and subtract 1.

2 Create as many new variables as the value you calculated in step 1. These are your
dummy variables.

3 Choose one of your groups as a baseline (i.e., a group against which all other groups
should be compared). This should usually be a control group, or, if you don’t have
a specific hypothesis, it should be the group that represents the majority of people
(because it might be interesting to compare other groups against the majority).

4 Having chosen a baseline group, assign that group values of 0 for all of your dummy
variables.

5 For your first dummy variable, assign the value 1 to the first group that you want to
compare against the baseline group. Assign all other groups 0 for this variable.

6 For the second dummy variable assign the value 1 to the second group that you want
to compare against the baseline group. Assign all other groups 0 for this variable.

Repeat this until you run out of dummy variables.

Place all of your dummy variables into the regression analysis!

Let’s try this out using an example. In Chapter 4 we came across an example in which
a biologist was worried about the potential health effects of music festivals. She collected
some data at the Download Festival, which is a music festival specializing in heavy metal.
The biologist was worried that the findings that she had were a function of the fact that she
had tested only one type of person: metal fans. Perhaps it’s not the festival that makes peo-
ple smelly, maybe it’s only metal fans at festivals that get smellier (as a metal fan, I would at
this point sacrifice the biologist to Satan for being so prejudiced). Anyway, to answer this
question she went to another festival that had a more eclectic clientele. The Glastonbury
Music Festival attracts all sorts of people because many styles of music are performed there.
Again, she measured the hygiene of concert-goers over the three days of the festival using
a technique that results in a score ranging between 0 (you smell like you’ve bathed in sew-
age) and 4 (you smell of freshly baked bread). Now, in Chapters 4 and 5, we just looked at
the distribution of scores for the three days of the festival, but now the biologist wanted to
look at whether the type of music you like (your cultural group) predicts whether hygiene
decreases over the festival. The data are in the file called GlastonburyFestivalRegression.
dat. This file contains the hygiene scores for each of three days of the festival, but it also
contains a variable called change, which is the change in hygiene over the three days of the
festival (so it’s the change from day 1 to day 3)." Finally, the biologist categorized people
according to their musical affiliation: if they mainly liked alternative music she called them
‘indie kid’, if they mainly liked heavy metal she called them a ‘metaller’, and if they mainly
liked hippy/folky/ambient type music then she labelled them a ‘crusty’. Anyone not falling
into these categories was labelled ‘no musical affiliation’.

The first thing we should do is calculate the number of dummy variables. We have four
groups, so there will be three dummy variables (one less than the number of groups). Next
we need to choose a baseline group. We’re interested in comparing those who have differ-
ent musical affiliations against those who don’t, so our baseline category will be ‘no musi-
cal affiliation’. We give this group a code of 0 for all of our dummy variables. For our first

15 Not everyone could be measured on day 3, so there is a change score only for a subset of the original sample.
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dummy variable, we could look at the ‘crusty’ group, and to do this we give anyone that
was a crusty a code of 1, and everyone else a code of 0. For our second dummy variable,
we could look at the ‘metaller’ group, and to do this we give anyone that was a metaller
a code of 1, and everyone else a code of 0. We have one dummy variable left and this will
have to look at our final category: ‘indie kid’; we give anyone who was an indie kid a code
of 1, and everyone else a code of 0. The resulting coding scheme is shown in Table 7.3. The
thing to note is that each group has a code of 1 on only one of the dummy variables (except
the base category that is always coded as 0).

Table 7.3 Dummy coding for the Glastonbury Festival data

Dummy Variable 1 Dummy Variable 2 Dummy Variable 3

Crusty 1 0 0
Indie Kid 0 1 0
Metaller 0 0 1
No Affiliation 0 0 0

This being R, there are several ways to code dummy variables. We’re going to have a
look at the contrasts() function, because we will use it time and time again later in the book.
First let’s load the data by executing:

gfr<-read.delim(file="GlastonburyFestivalRegression.dat", header = TRUE)

This creates a dataframe called gfr (because we didn’t want to have to keep typing
glastonburyFestivalRegression). These data look like this (the first 10 cases only):

ticknumb music dayl day2 day3 change
1 2111 Metaller 2.65 1.35 1.61 -1.04
2 2229 Crusty 0.97 1.41 0.29 -0.68
3 2338 No Musical Affiliation 0.84 NA NA NA
4 2384 Crusty 3.03 NA NA NA
5 2401 No Musical Affiliation 0.88 0.08 NA NA
6 2405 Crusty 0.85 NA NA NA
7 2467 Indie Kid 1.56 NA NA NA
8 2478 Indie Kid 3.02 NA NA NA
9 2490 Crusty 2.29 NA NA NA
10 2504 No Musical Affiliation 1.11 0.44 0.55 -0.56

Note that the variable music contains text; therefore, R has intelligently decided to cre-
ate this variable as a factor, and treat the levels in alphabetical order (level 1 = crusty, level 2
=indie kid, 3 = metaller, and 4 = no musical affiliation). We can use the contrast() function
on this variable to set contrasts because it is a factor. There are several built-in contrasts
that we can set (these are described in Chapter 10, Table 10.6, when we get into this topic
in more detail). For now, all I’ll say is that in a situation in which we want to compare all
groups to a baseline we can execute this command:

contrasts(gfr$music)<-contr.treatment(4, base = 4)

The contrasts(gfr$music) simply sets the contrast for the variable music in the gfr dataframe.
The contr.treatment() function sets a contrast based on comparing all groups to a baseline
(a.k.a. treatment) condition. This function takes the general form:

contr.treatment(number of groups, base = number representing the baseline
group)
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Therefore, in our command we have told R that there are four groups, and to use the last
group as the baseline condition. We can see what this command has done by looking at the
music variable by executing:

gfr$music

Note that it now has a contrasts attribute:

attr(, "contrasts")

123
Crusty 100
Indie Kid 010
Metaller 001
No Musical Affiliation 0 0 O

Levels: Crusty Indie Kid Metaller No Musical Affiliation

You can see three contrasts that related to those that we discussed in Table 7.3. This method
is the quickest way, but personally I prefer to set the contrasts manually. This preference is
not masochism, but because you can then give your contrasts informative names (there is
nothing worse than seeing an output with ‘contrast1’ in it and having no idea what contrast
1 is). To do this, we create variables that reflect each of the dummy variables in Table 7.3:

crusty_v_NMA<-c(1, 0, 0, @)
indie_v_NMA<-c(@, 1, @, 0)
metal_v_NMA<-c(0Q, @, 1, 0)

We have created three variables, the first (crusty_ v NMA) contains the codes for the first dummy
variable. Note that we have listed the codes in the order of the factor levels for music (so, the
first group, crusty, gets a code of 1, the others a code of 0) and given it a name that reflects what
it compares (crusty vs. no musical affiliation); therefore, when we see it in the output we will
know what it represents. Similarly, the second variable (indie v NMA) contains the codes for
the second dummy variable. Again we list the codes in the order of the factor levels for music
(so, the second group, indie kid, gets a code of 1, the others a code of 0). You get the idea.
Having created the dummy variables, we can bind them together using cbind() — see R’s
Souls’ Tip 3.5 — and set them as the contrasts in a similar way to before, by executing:

contrasts(gfré$music)<-cbind(crusty_v_NMA, indie_v_NMA, metal_v_NMA)
When we inspect the music variable now, it again has the same contrasts, but they have

more helpful names than before:

attr (, "contrasts")
crusty_v_NMA indie_v_NMA metal_v_NMA

Crusty 1 0 0
Indie Kid 0 1 0
Metaller 0 0 1
No Musical Affiliation 0 0 0

Levels: Crusty Indie Kid Metaller No Musical Affiliation

JAYWA Regression with dummy variables ®

Now you’ve created the dummy variables, you can run the regression in the same way as
for any other kind of regression, by executing:

glastonburyModel<-1m(change ~ music, data = gfr)

summary(glastonburyModel)
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The fact that we have set contrasts for the variable music means that the three dummy
variables will be entered into the model in a single step. This is one reason why setting
contrasts is a useful way to handle categorical predictors (but see R’s Souls’ Tip 7.4).

RN WY A small confession @

Before we move on, | have a small confession to make. R will actually dummy-code your data for you. When you
put a variable as a predictor into a regression, R looks to see what kind of variable it is. Most variables in R are
considered ‘numeric’. But some variables are considered to be ‘factors’ — a factor is a variable that R knows to
be categorical. | mentioned that when we loaded the data R would intelligently create the variable music as a
factor. If you enter a string variable or a factor into a regression equation, R knows that it is categorical, and so will
dummy-code it for you. So, you can skip all the dummy coding nonsense and simply execute:

1mCchange ~ music, data = gfr)

So why didn'’t | tell you that to start with? There are three reasons. First, to interpret the results you need to
understand what R is doing. Second, we often want to decide what category is going to be the reference cat-
egory when we create the dummy variables, based on the meaning of the data. R doesn'’t know what the data
mean (it's not that clever), so it chooses the first group to be the reference (in this case it would have chosen
crusty, which was not what we want). Finally, and | know | keep going on about this, if we set our contrasts manu-
ally we can give them helpful names.

Call:
Im(formula = change ~ music, data = gfr)

Residuals:
Min 10 Median 30 Max
-1.82569 -0.50489 0.05593 0.42430 1.59431

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.55431 .09036 -6.134 1.15e-08 **x*
musiccrusty_v_NMA -0.41152 .16703 -2.464 0.0152 *
musicindie_v_NMA -0.40998 .20492 -2.001 0.0477 *
musicmetal_v_NMA 0.02838 .16033 0.177 0.8598

Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 **’ 0.05 *.” 0.1 * " 1

o O O O

Residual standard error: 0.6882 on 119 degrees of freedom
(687 observations deleted due to missingness)

Multiple R-squared: 0.07617, Adjusted R-squared: 0.05288

F-statistic: 3.27 on 3 and 119 DF, p-value: 0.02369

Output 7.11

Output 7.11 shows the summary of the regression model (it also shows the command
that you run to get the model). This shows that by entering the three dummy variables we
can explain 7.6% of the variance in the change in hygiene scores (R*> expressed as a percent-
age). In other words, 7.6% of the variance in the change in hygiene can be explained by



CHAPTER 7 REGRESSION 307

the musical affiliation of the person. The F-statistic (which shows the same thing as the R?
change statistic because there is only one step in this regression) tells us that the model is
significantly better at predicting the change in hygiene scores than having no model (or, put
another way, the 7.6% of variance that can be explained is a significant amount). Most of
this should be clear from what you’ve read in this chapter already; what’s more interesting
is how we interpret the individual dummy variables.

Let’s look at the coefficients for the dummy variables. The first thing to notice is that
each dummy variable appears in the table with its name (because we named them, oth-
erwise they’d be called something unhelpful like contrast1). The first dummy variable
(crusty_v_NMA) shows the difference between the change in hygiene scores for the no-
affiliation group and the crusty group. Remember that the beta value tells us the change in
the outcome due to a unit change in the predictor. In this case, a unit change in the predic-
tor is the change from 0 to 1. As such it shows the shift in the change in hygiene scores that
results from the dummy variable changing from 0 to 1. By including all three dummy vari-
ables at the same time, our baseline category is always zero, so this actually represents the
difference in the change in hygiene scores if a person has no musical affiliation, compared
to someone who is a crusty. This difference is the difference between the two group means.

To illustrate this fact, I’'ve produced a table (Output 7.12) of the group means for each
of the four groups by executing this command:

round(tapply(gfr$change, gfr$music, mean, na.rm=TRUE), 3)

These means represent the average change in hygiene scores for the three groups (i.e.,
the mean of each group on our outcome variable). If we calculate the difference in these
means for the no-affiliation group and the crusty group, we get crusty — no affiliation =
(—0.966) — (—0.554) = —0.412. In other words, the change in hygiene scores is greater
for the crusty group than it is for the no-affiliation group (crusties’ hygiene decreases
more over the festival than those with no musical affiliation). This value is the same as the
regression estimate value in Output 7.11. So, the beta values tell us the relative difference
between each group and the group that we chose as a baseline category. This beta value is
converted to a ¢-statistic and the significance of this ¢ reported. This z-statistic is testing,
as we’ve seen before, whether the beta value is 0, and when we have two categories coded
with 0 and 1, that means it’s testing whether the difference between group means is 0. If
it is significant then it means that the group coded with 1 is significantly different from
the baseline category — so, it’s testing the difference between two means, which is the
context in which students are most familiar with the z-statistic (see Chapter 9). For our
first dummy variable, the ¢-test is significant, and the beta value has a negative value so we
could say that the change in hygiene scores goes down as a person changes from having no
affiliation to being a crusty. Bear in mind that a decrease in hygiene scores represents more
change (you’re becoming smellier) so what this actually means is that hygiene decreased
significantly more in crusties compared to those with no musical affiliation.

Crusty Indie Kid Metaller No Musical Affiliation
-0.966 -0.964 -0.526 -0.554

Output 7.12

For the second dummy variable (indie_v_NMA), we’re comparing indie kids to those
that have no musical affiliation. The beta value again represents the shift in the change in
hygiene scores if a person has no musical affiliation, compared to someone who is an indie
kid. If we calculate the difference in the group means for the no-affiliation group and the
indie kid group, we get indie kid — no affiliation = (—0.964) — (—0.554) = —0.410. It
should be no surprise to you by now that this is the unstandardized beta value in Output
7.11. The t-test is significant, and the beta value has a negative value so, as with the first
dummy variable, we could say that the change in hygiene scores goes down as a person
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changes from having no affiliation to being an indie kid. Bear in mind that a decrease in
hygiene scores represents more change (you’re becoming smellier) so what this actually
means is that hygiene decreased significantly more in indie kids compared to those with no
musical affiliation.

Moving on to our final dummy variable (metal v. NMA), this compares metallers to
those that have no musical affiliation. The beta value again represents the shift in the
change in hygiene scores if a person has no musical affiliation, compared to someone who
is a metaller. If we calculate the difference in the group means for the no affiliation group
and the metaller group, we get metaller — no affiliation = (=0.526) — (—0.554) = 0.028.
This value is again the same as the unstandardized beta value in Output 7.11. For this last
dummy variable, the #-test is not significant, so we could say that the change in hygiene
scores is the same if a person changes from having no affiliation to being a metaller. In
other words, the change in hygiene scores is not predicted by whether someone is a met-
aller compared to if they have no musical affiliation.

So, overall this analysis has shown that, compared to having no musical affiliation, crust-
ies and indie kids get significantly smellier across the three days of the festival, but met-
allers don’t.

This section has introduced some really complex ideas that I expand upon in Chapters 9
and 10. It might all be a bit much to take in, and so if you’re confused or want to know more
about why dummy coding works in this way, I suggest reading sections 9.4.2 and 10.2.3
and then coming back here. Alternatively, read Hardy’s (1993) excellent monograph!

What have | discovered about statistics? @

This chapter is possibly the longest book chapter ever written, and if you feel like you
aged several years while reading it then, well, you probably have (look around, there are
cobwebs in the room, you have a long beard, and when you go outside you’ll discover
a second ice age has been and gone, leaving only you and a few woolly mammoths to
populate the planet). However, on the plus side, you now know more or less everything
you ever need to know about statistics. Really, it’s true; you’ll discover in the coming
chapters that everything else we discuss is basically a variation on the theme of regres-
sion. So, although you may be near death having spent your life reading this chapter
(and I’'m certainly near death having written it) you are a stats genius — it’s official!

We started the chapter by discovering that at 8 years old I could have really done
with regression analysis to tell me which variables are important in predicting talent
competition success. Unfortunately I didn’t have regression, but fortunately I had my
dad instead (and he’s better than regression). We then looked at how we could use sta-
tistical models to make similar predictions by looking at the case of when you have one
predictor and one outcome. This allowed us to look at some basic principles such as the
equation of a straight line, the method of least squares, and how to assess how well our
model fits the data using some important quantities that you’ll come across in future
chapters: the model sum of squares, SS,,, the residual sum of squares, SS, and the total
sum of squares, SS,. We used these values to calculate several important statistics such
as R? and the F-ratio. We also learnt how to do a regression using R, and how we can
plug the resulting beta values into the equation of a straight line to make predictions
about our outcome.

Next, we saw that the question of a straight line can be extended to include several
predictors and looked at different methods of placing these predictors in the model
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(hierarchical, forced entry, stepwise). Then we looked at factors that can affect the accu-
racy of a model (outliers and influential cases) and ways to identify these factors. We
then moved on to look at the assumptions necessary to generalize our model beyond the
sample of data we’ve collected before discovering how to do the analysis using R, and
how to interpret the output, create our multiple regression model and test its reliability
and generalizability. I finished the chapter by looking at how we can use categorical
predictors in regression. In general, multiple regression is a long process and should be
done with care and attention to detail. There are a lot of important things to consider
and you should approach the analysis in a systematic fashion. I hope this chapter helps
you to do that!

So, I was starting to get a taste for the rock-idol lifestyle: I had friends, a fortune (well,
two gold-plated winner’s medals), fast cars (a bike) and dodgy-looking 8-year-olds were
giving me suitcases full of lemon sherbet to lick off mirrors. However, my parents and
teachers were about to impress reality upon my young mind ...

R packages used in this chapter

boot ‘ QuantPsyc
car

R functions used in this chapter

anova() Im()
confint() Im.beta()
contrasts() mean()
contr.treatmenty() plot()
cooks.distance() resid()
covratio() return()
coef() rstandard()
dfbeta) rstudent()
dffits() sqart()
durbinWatsonTest() sum()
dwi() summary()
hatvalues() update()
hist() vif()

Key terms that I've discovered

Adjusted predicted value b,
Adjusted R? B
Akaike information criterion (AIC) Cook’s distance

Autocorrelation Covariance ratio



Cross-validation
Deleted residual
DFBeta

DFFit

Dummy variables
Durbin-Watson test
F-ratio

Generalization
Goodness of fit

Hat values
Heteroscedasticity
Hierarchical regression
Homoscedasticity
Independent errors
Leverage

Mean squares

Model sum of squares
Multicollinearity
Multiple R?

Multiple regression
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Perfect collinearity
Regression coefficient
Regression model
Residual

Residual sum of squares
Shrinkage

Simple regression
Standardized DFBeta
Standardized DFFit
Standardized residuals
Stepwise regression
Studentized deleted residuals
Studentized residuals
Suppressor effects
t-statistic

Tolerance

Total sum of squares
Unstandardized residuals
Variance inflation factor

Smart Alex’s tasks

® Task 1: Run a simple regression for the pubs.dat data in Jane Superbrain Box 7.1,

predicting mortality from number of pubs. Try repeating the analysis but bootstrap-
ping the regression parameters. ®

Task 2: A fashion student was interested in factors that predicted the salaries of cat-
walk models. She collected data from 231 models. For each model she asked them
their salary per day on days when they were working (salary), their age (age), how
many years they had worked as a model (years), and then got a panel of experts
from modelling agencies to rate the attractiveness of each model as a percentage,
with 100% being perfectly attractive (beauty). The data are in the file Supermodel.
dat. Unfortunately, this fashion student bought some substandard statistics text and
so doesn’t know how to analyse her data.© Can you help her out by conducting a
multiple regression to see which variables predict a model’s salary? How valid is the
regression model? @

Task 3: Using the Glastonbury data from this chapter, which you should’ve already
analysed, comment on whether you think the model is reliable and generalizable. ®

Task 4: A study was carried out to explore the relationship between Aggression and
several potential predicting factors in 666 children who had an older sibling. Variables
measured were Parenting_Style (high score = bad parenting practices), Computer_
Games (high score = more time spent playing computer games), Television (high score
= more time spent watching television), Diet (high score = the child has a good diet
low in additives), and Sibling_Aggression (high score = more aggression seen in their
older sibling). Past research indicated that parenting style and sibling aggression were
good predictors of the level of aggression in the younger child. All other variables
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were treated in an exploratory fashion. The data are in the file ChildAggression.dat.
Analyse them with multiple regression. @

Answers can be found on the companion website.

Further reading

Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd
ed.). Belmont, CA: Duxbury. (This text is only for the mathematically minded or postgraduate
students but provides an extremely thorough exposition of regression analysis.)

Hardy, M. A. (1993). Regression with dummy variables. Sage University Paper Series on Quantitative
Applications in the Social Sciences, 07-093. Newbury Park, CA: Sage.

Howell, D. C. (2006). Statistical methods for psychology (6th ed.). Belmont, CA: Duxbury. (Or you
might prefer his Fundamental Statistics for the Behavioral Sciences, also in its 6th edition, 2007.
Both are excellent introductions to the mathematics behind regression analysis.)

Miles, J. N. V. & Shevlin, M. (2001). Applying regression and correlation: A guide for students and
researchers. London: Sage. (This is an extremely readable text that covers regression in loads of
detail but with minimum pain — highly recommended.)

Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Hillsdale, NJ:
Erlbaum. Chapter 3.

Interesting real research

Chamorro-Premuzic, T., Furnham, A., Christopher, A. N., Garwood, J., & Martin, N. (2008). Birds
of a feather: Students’ preferences for lecturers’ personalities as predicted by their own personal-
ity and learning approaches. Personality and Individual Differences, 44, 965-976.
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of 10. (Note the
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Logistic regression

8.1. What will this chapter tell me? ®

We saw in the previous chapter that T had successfully conquered the holiday camps of
Wales with my singing and guitar playing (and the Welsh know a thing or two about good
singing). I had jumped on a snowboard called oblivion and thrown myself down the black
run known as world domination. About 10 metres after starting this slippery descent I
hit the lumpy patch of ice called ‘adults’. T was 9, life was fun, and yet every adult that I
seemed to encounter was obsessed with my future. “‘What do you want to be when you
grow up?’ they would ask. I was 9 and ‘grown-up’ was a lifetime away; all T knew was that I
was going to marry Clair Sparks (more about her in the next chapter) and that I was a rock
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legend who didn’t need to worry about such adult matters as having a job. It was a difficult
question, but adults require answers and I wasn’t going to let them know that I didn’t care
about ‘grown-up’ matters. We saw in the previous chapter that we can use regression to
predict future outcomes based on past data, when the outcome is a continuous variable, but
this question had a categorical outcome (e.g., would I be a fireman, a doctor, an evil dicta-
tor?). Luckily, though, we can use an extension of regression called logistic regression to
deal with these situations. What a result; bring on the rabid wolves of categorical data. To
make a prediction about a categorical outcome, then, as with regression, I needed to draw
on past data: [ hadn’t tried conducting brain surgery, neither had I experience of senten-
cing psychopaths to prison sentences for eating their husbands, nor had I taught anyone. I
had, however, had a go at singing and playing guitar; ‘I’'m going to be a rock star’ was my
prediction. A prediction can be accurate (which would mean that I am a rock star) or it can
be inaccurate (which would mean that ’'m writing a statistics textbook). This chapter looks
at the theory and application of logistic regression, an extension of regression that allows
us to predict categorical outcomes based on predictor variables.

8.2. Background to logistic regression @

In a nutshell, logistic regression is multiple regression but with an outcome variable that is a
categorical variable and predictor variables that are continuous or categorical. In its simplest
form, this means that we can predict which of two categories a person is likely to belong
to given certain other information. A trivial example is to look at which variables predict
whether a person is male or female. We might measure laziness, pig-headedness, alcohol
consumption and number of burps that a person does in a day. Using logistic regression, we
might find that all of these variables predict the gender of the person, but the technique will
also allow us to predict whether a person, not in our original data set, is likely to be male
or female. So, if we picked a random person and discovered they scored highly on laziness,
pig-headedness, alcohol consumption and the number of burps, then the regression model
might tell us that, based on this information, this person is likely to be male. Admittedly, it
is unlikely that a researcher would ever be interested in the relationship between flatulence
and gender (it is probably too well established by experience to warrant research), but logis-
tic regression can have life-saving applications. In medical research logistic regression is used
to generate models from which predictions can be made about the likelihood that a tumour
is cancerous or benign (for example). A database of patients can be used to establish which
variables are influential in predicting the malignancy of a tumour. These variables can then
be measured for a new patient and their values placed in a logistic regression model, from
which a probability of malignancy could be estimated. If the probability value of the tumour
being malignant is suitably low then the doctor may decide not to carry out expensive and
painful surgery that in all likelihood is unnecessary. We might not face such life-threatening
decisions but logistic regression can nevertheless be a very useful tool. When we are trying
to predict membership of only two categorical outcomes the analysis is known as binary
logistic regression, but when we want to predict membership of more than two categories
we use multinomial (or polychotomous) logistic regression.

8.3. What are the principles behind logistic
regression? ®

I don’t wish to dwell on the underlying principles of logistic regression because they aren’t
necessary to understand the test (I am living proof of this fact). However, I do wish to draw



DISCOVERING STATISTICS USING R

a few parallels to normal regression so that you can get the gist of what’s going on using
a framework that will be familiar to you already (what do you mean you haven’t read the
regression chapter yet!). To keep things simple I’'m going to explain binary logistic regres-
sion, but most of the principles extend easily to when there are more than two outcome
categories. Now would be a good time for those with equation-phobia to look away. In
simple linear regression, we saw that the outcome variable Y is predicted from the equation
of a straight line:

Y, =b,+bX, +¢, (8.1)

in which b, is the Y intercept, b, is the gradient of the straight line, X, is the value of the
predictor variable and € is a residual term. Given the values of Y and X, the unknown
parameters in the equation can be estimated by finding a solution for which the squared
distance between the observed and predicted values of the dependent variable is minimized
(the method of least squares).

This stuff should all be pretty familiar by now. In multiple regression, in which there are
several predictors, a similar equation is derived in which each predictor has its own coef-
ficient. As such, Y is predicted from a combination of each predictor variable multiplied by
its respective regression coefficient:

Y.=b,+bX,+b,X,,+...+b,X  +¢ (8.2)

in which b_is the regression coefficient of the corresponding variable X . In logistic regres-
sion, instead of predicting the value of a variable Y from a predictor variable X, or several
predictor variables (Xs), we predict the probability of Y occurring given known values of X
(or Xs). The logistic regression equation bears many similarities to the regression equations
just described. In its simplest form, when there is only one predictor variable X , the logistic
regression equation from which the probability of Y is predicted is given by:

1

PO = (8.3)

in which P(Y) is the probability of Y occurring, e is the base of natural logarithms, and the
other coefficients form a linear combination much the same as in simple regression. In
fact, you might notice that the bracketed portion of the equation is identical to the linear
regression equation in that there is a constant (b ), a predictor variable (X,) and a coeffi-
cient (or weight) attached to that predictor (b,). Just like linear regression, it is possible to
extend this equation so as to include several predictors. When there are several predictors
the equation becomes:

1
~(bo+by Xy +b, X 4.0, X,,;) (8.4)

P(Y)=
1+e

Equation (8.4) is the same as the equation used when there is only one predictor except
that the linear combination has been extended to include any number of predictors. So,
whereas the one-predictor version of the logistic regression equation contained the simple
linear regression equation within it, the multiple-predictor version contains the multiple
regression equation.

Despite the similarities between linear regression and logistic regression, there is a good
reason why we cannot apply linear regression directly to a situation in which the outcome
variable is categorical. The reason is that one of the assumptions of linear regression is
that the relationship between variables is linear. We saw in section 7.7.2.1 how important
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it is that the assumptions of a model are met for it to be accurate. Therefore,
for linear regression to be a valid model, the observed data should contain a linear regression?
linear relationship. When the outcome variable is categorical, this assumption

is violated (Berry, 1993). One way around this problem is to transform the data
using the logarithmic transformation (see Berry & Feldman, 1985, and Chapter
5). This transformation is a way of expressing a non-linear relationship in a lin-
ear way. The logistic regression equation described above is based on this prin-
ciple: it expresses the multiple linear regression equation in logarithmic terms
(called the logit) and thus overcomes the problem of violating the assumption
of linearity.

The exact form of the equation can be arranged in several ways but the ver-
sion I have chosen expresses the equation in terms of the probability of Y occurring (i.e.,
the probability that a case belongs in a certain category). The resulting value from the equa-
tion, therefore, varies between 0 and 1. A value close to 0 means that Y is very unlikely to
have occurred, and a value close to 1 means that Y is very likely to have occurred. Also, just
like linear regression, each predictor variable in the logistic regression equation has its own
coefficient. When we run the analysis we need to estimate the value of these coefficients so
that we can solve the equation. These parameters are estimated by fitting models, based on
the available predictors, to the observed data. The chosen model will be the one that, when
values of the predictor variables are placed in it, results in values of Y closest to the observed
values. Specifically, the values of the parameters are estimated using maximum-likelihood esti-
mation, which selects coefficients that make the observed values most likely to have occurred.
So, as with multiple regression, we try to fit a model to our data that allows us to estimate
values of the outcome variable from known values of the predictor variable or variables.

Assessing the model: the log-likelihood statistic ®

We’ve seen that the logistic regression model predicts the probability of an event occurring
for a given person (we would denote this as P(Y), the probability that Y occurs for the ith
person), based on observations of whether or not the event did occur for that person (we
could denote this as Y, the actual outcome for the ith person). So, for a given person, Y
will be either 0 (the outcome didn’t occur) or 1 (the outcome did occur), and the predicted
value, P(Y), will be a value between 0 (there is no chance that the outcome will occur) and
1 (the outcome will certainly occur). We saw in multiple regression that if we want to assess
whether a model fits the data we can compare the observed and predicted values of the
outcome (if you remember, we use R%, which is the Pearson correlation between observed
values of the outcome and the values predicted by the regression model). Likewise, in logis-
tic regression, we can use the observed and predicted values to assess the fit of the model.
The measure we use is the log-likelihood:

N
log-ikelihood = Y [ Y/ (P(Y;)) + (1 - Y, )ln(1 - P(Y;))] (8.5)

i=1

The log-likelihood is based on summing the probabilities associated with the predicted
and actual outcomes (Tabachnick & Fidell, 2007). The log-likelihood statistic is analogous
to the residual sum of squares in multiple regression in the sense that it is an indicator of
how much unexplained information there is after the model has been fitted. It, therefore,
follows that large values of the log-likelihood statistic indicate poorly fitting statistical
models, because the larger the value of the log-likelihood, the more unexplained observa-
tions there are.
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Assessing the model: the deviance statistic ®

The deviance is very closely related to the log-likelihood: it’s given by

deviance = -2 x log-likelihood

The deviance is often referred to as —2LL because of the way it is calculated. It’s actu-
ally rather convenient to (almost) always use the deviance rather than the log-likelihood
because it has a chi-square distribution (see Chapter 18 and the Appendix), which makes it
easy to calculate the significance of the value.

Now, it’s possible to calculate a log-likelihood or deviance for different models and to
compare these models by looking at the difference between their deviances. One use of this
is to compare the state of a logistic regression model against some kind of baseline state.
The baseline state that’s usually used is the model when only the constant is included. In
multiple regression, the baseline model we use is the mean of all scores (this is our best
guess of the outcome when we have no other information). In logistic regression, if we
want to predict the outcome, what would our best guess be? Well, we can’t use the mean
score because our outcome is made of zeros and ones and so the mean is meaningless.
However, if we know the frequency of zeros and ones, then the best guess will be the cat-
egory with the largest number of cases. So, if the outcome occurs 107 times, and doesn’t
occur only 72 times, then our best guess of the outcome will be that it occurs (because it
occurs more often than it doesn’t). As such, like multiple regression, our baseline model is
the model that gives us the best prediction when we know nothing other than the values
of the outcome: in logistic regression this will be to predict the outcome that occurs most
often — that is, the logistic regression model when only the constant is included. If we then
add one or more predictors to the model, we can compute the improvement of the model
as follows:

= (—ZLL(baseline)) - (—ZLL (new))
=2LL (new) - 2LL(baseline)
df =k new —k baseline

(8.6)

So, we merely take the new model deviance and subtract from it the deviance for the baseline
model (the model when only the constant is included). This difference is known as a likeli-
hood ratio,! and has a chi-square distribution with degrees of freedom equal to the number of
parameters, k, in the new model minus the number of parameters in the baseline model. The
number of parameters in the baseline model will always be 1 (the constant is the only parameter
to be estimated); any subsequent model will have degrees of freedom equal to the number of
predictors plus 1 (i.e., the number of predictors plus one parameter representing the constant).

Assessing the model: Rand R* ®

When we talked about linear regression, we saw that the multiple correlation coefficient R
and the corresponding R*> were useful measures of how well the model fits the data. We’ve

You might wonder why it is called a ‘ratio’ when a ‘ratio’ usually means something is divided by something else,
and we’re not dividing anything here: we’re subtracting. The reason is that if you subtract logs of numbers, it’s
the same as dividing the numbers. For example, 10/5 = 2 and (try it on your calculator) log(10) — log(5) = log(2)
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also just seen that the likelihood ratio is similar in that it is based on the level of
correspondence between predicted and actual values of the outcome. However,
you can calculate a more literal version of the multiple correlation in logistic
regression known as the R-statistic. This R-statistic is the partial correlation
between the outcome variable and each of the predictor variables, and it can
vary between —1 and 1. A positive value indicates that as the predictor vari-
able increases, so does the likelihood of the event occurring. A negative value
implies that as the predictor variable increases, the likelihood of the outcome
occurring decreases. If a variable has a small value of R then it contributes only
a small amount to the model.
The equation for R is:

2
R = - de (87)
—2LL(baseline)

The —2LL term is the deviance for the baseline model, z? is the Wald statistic calculated
as described in section 8.3.5, and the degrees of freedom can be read from the summary
table for the variables in the equation. However, because this value of R is dependent upon
the Wald statistic it is by no means an accurate measure (we’ll see in section 8.3.5 that the
Wald statistic can be inaccurate under certain circumstances). For this reason the value of
R should be treated with some caution, and it is invalid to square this value and interpret
it as you would in linear regression.

There is some controversy over what would make a good analogue to the R? in linear
regression, but one measure described by Hosmer and Lemeshow (1989) can be easily cal-
culated. Hosmer and Lemeshow’s ( Rf) measure is calculated as:

Is there a logistic
regression equivalent
of R2?

, _ —2LL(model)
L= —2LL(baseline) (8.8)

As such, R} is calculated by dividing the model chi-square, which represents the change
from the baseline (based on the log-likelihood) by the baseline —2LL (the deviance of the
model before any predictors were entered). Given what the model chi-square represents,
another way to express this is:

R2 - (—2LL(baseline)) - (—ZLL(new))
L —2LL(baseline)

R} is the proportional reduction in the absolute value of the log-likelihood measure and
as such it is a measure of how much the badness of fit improves as a result of the inclusion
of the predictor variables. It can vary between 0 (indicating that the predictors are useless
at predicting the outcome variable) and 1 (indicating that the model predicts the outcome
variable perfectly).
Cox and Snell’s R%, (1989) is based on the deviance of the model (—2LL(new)) and the

deviance of the baseline model (—2LL(baseline)), and the sample size, 7:

(-2LL(new) - (-2LL(baseline)

REs =1-exp - (8.9)
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However, this statistic never reaches its theoretical maximum of 1. Therefore, Nagelkerke
(1991) suggested the following amendment (Nagelkerke’s R?):

R
. exp[_ —2LL(baseline)] (8.10)
n

Ry =

Although all of these measures differ in their computation (and the answers you get),
conceptually they are somewhat similar. So, in terms of interpretation they can be seen as
similar to the R*in linear regression in that they provide a gauge of the substantive signifi-
cance of the model.

Assessing the model: information criteria ®

As we saw with linear regression, in section 7.6.3, we can use the Akaike information
criterion (AIC) and the Bayes information criterion (BIC) to judge model fit. These two
criteria exist to solve a problem with R?: that every time we add a variable to the model, R?
increases. We want a measure of fit that we can use to compare two models which penalizes
a model that contains more predictor variables. You can think of this as the price you pay
for something: you get a better value of R?, but you pay a higher price, and was that higher
price worth it? These information criteria help you to decide.
The AIC is the simpler of the two; it is given by:

AIC = -2LL +2k

in which —2LL is the deviance (described above) and & is the number of predictors in the
model. The BIC is the same as the AIC but adjusts the penalty included in the AIC (i.e., 2k)
by the number of cases:

BIC = -2LL + 2k xlog(n)

in which 7 is the number of cases in the model.

SRl Assessing the contribution of predictors: the z-statistic @

As in linear regression, we want to know not only how well the model overall fits the
data, but also the individual contribution of predictors. In linear regression, we used the
estimated regression coefficients (b) and their standard errors to compute a #-statistic. In
logistic regression there is an analogous statistic — the z-statistic — which follows the normal
distribution. Like the #-test in linear regression, the z-statistic tells us whether the b coeffi-
cient for that predictor is significantly different from zero. If the coefficient is significantly
different from zero then we can assume that the predictor is making a significant contribu-
tion to the prediction of the outcome (Y):

= (8.11)



CHAPTER 8 LOGISTIC REGRESSION

Equation (8.11) shows how the z-statistic is calculated and you can see it’s basically iden-
tical to the #-statistic in linear regression (see equation (7.6)): it is the value of the regres-
sion coefficient divided by its associated standard error. The z-statistic is usually used to
ascertain whether a variable is a significant predictor of the outcome; however, it is prob-
ably more accurate to examine the likelihood ratio statistics. The reason why the z-statistic
should be used a little cautiously is because, when the regression coefficient (b) is large, the
standard error tends to become inflated, resulting in the z-statistic being underestimated
(see Menard, 1995). The inflation of the standard error increases the probability of reject-
ing a predictor as being significant when in reality it is making a significant contribution to
the model (i.e., you are more likely to make a Type II error). The z-statistic was developed
by Abraham Wald (Figure 8.2), and is thus sometimes known as the Wald statistic.

The odds ratio ®

More crucial to the interpretation of logistic regression is the value of the odds ratio, which
is the exponential of B (i.e., €® or exp(B)) and is an indicator of the change in odds result-
ing from a unit change in the predictor. As such, it is similar to the b coefficient in logistic
regression but easier to understand (because it doesn’t require a logarithmic transforma-
tion). When the predictor variable is categorical the odds ratio is easier to explain, so ima-
gine we had a simple example in which we were trying to predict whether or not someone
got pregnant from whether or not they used a condom last time they made love. The odds
of an event occurring are defined as the probability of an event occurring divided by the
probability of that event not occurring (see equation (8.12)) and should not be confused
with the more colloquial usage of the word to refer to probability. So, for example, the
odds of becoming pregnant are the probability of becoming pregnant divided by the prob-
ability of not becoming pregnant:

FIGURE 8.2
Abraham Wald
writing ‘I must
not devise

test statistics
prone to having
inflated standard
errors’ on the
blackboard 100
times
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odds = P(event)
P(no event)
1
P tY)=—F—7+-
(event Y = (5.12)

P(noeventY) =1-P(event Y)

To calculate the change in odds that results from a unit change in the predictor, we must
first calculate the odds of becoming pregnant given that a condom wasn’t used. We then
calculate the odds of becoming pregnant given that a condom was used. Finally, we calcu-
late the proportionate change in these two odds.

To calculate the first set of odds, we need to use equation (8.3) to calculate the probabil-
ity of becoming pregnant given that a condom wasn’t used. If we had more than one pre-
dictor we would use equation (8.4). There are three unknown quantities in this equation:
the coefficient of the constant (b ), the coefficient for the predictor (b,) and the value of the
predictor itself (X). We’ll know the value of X from how we coded the condom use variable
(chances are we would’ve used 0 = condom wasn’t used and 1 = condom was used). The
values of b, and b will be estimated for us. We can calculate the odds as in equation (8.12).

Next, we calculate the same thing after the predictor variable has changed by one unit.
In this case, because the predictor variable is dichotomous, we need to calculate the odds of
getting pregnant, given that a condom was used. So, the value of X is now 1 (rather than 0).

We now know the odds before and after a unit change in the predictor variable. It is a
simple matter to calculate the proportionate change in odds by dividing the odds after a
unit change in the predictor by the odds before that change:

Aodds = odds after a unit change in the predictor

(8.13)

original odds

This proportionate change in odds is the odds ratio, and we can interpret it in terms of the
change in odds: if the value is greater than 1 then it indicates that as the predictor increases,
the odds of the outcome occurring increase. Conversely, a value less than 1 indicates that
as the predictor increases, the odds of the outcome occurring decrease. We’ll see how this
works with a real example shortly.

Methods of logistic regression ®

As with multiple regression (section 7.6.4), there are several different methods that can be
used in logistic regression.

8.3.7.1. The forced entry method @

The default method of conducting the regression is simply to place predictors into the
regression model in one block, and estimate parameters for each predictor.

If you are undeterred by the criticisms of stepwise methods in the previous chapter, then
you can select either a forward or a backward stepwise method, or a combination of them.
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When the forward method is employed the computer begins with a model that includes
only a constant and then adds single predictors to the model based on the criterion that
adding the variable must improve the AIC or BIC (whichever you chose). The computer
proceeds until none of the remaining predictors have decreased the criterion.

The opposite of the forward method is the backward method. This method uses the
same criteria, but instead of starting the model with only a constant, it begins the model
with all predictors included. The computer then tests whether any of these predictors can
be removed from the model without increasing the information criterion. If it can, it is
removed from the model, and the variables are all tested again.

Better than these two simple methods are the backward/forward and the forward/back-
ward methods. These are hybrids of the two methods — the forward/backward approach
starts off doing a forward method, but each time a variable is added, it tests whether it’s
worth removing any variables.

8.3.7.3. How do | select a method? ®

As with ordinary regression (previous chapter), the method of regression chosen
will depend on several things. The main consideration is whether you are testing W:'Cfl‘d"l‘ethof
shou use’

a theory or merely carrying out exploratory work. As noted earlier, some people

believe that stepwise methods have no value for theory testing. However, stepwise A
methods are defensible when used in situations where causality is not of interest and é}_\ &)
you merely wish to find a model to fit your data (Agresti & Finlay, 1986; Menard, 7<-L;*°:17 )
1995). Also, as I mentioned for ordinary regression, if you do decide to use a step- Z ‘:{ Q
wise method then the backward method is preferable to the forward method. This is It .
because of suppressor effects, which occur when a predictor has a significant effect — i)

but only when another variable is held constant. Forward selection is more likely
than backward elimination to exclude predictors involved in suppressor effects. As
such, the forward method runs a higher risk of making a Type II error.

8.4. Assumptions and things that can
go wrong @

Assumptions @

Logistic regression shares some of the assumptions of normal regression:

1 Linearity: In ordinary regression we assumed that the outcome had linear relation-
ships with the predictors. In logistic regression the outcome is categorical and so
this assumption is violated. As I explained before, this is why we use the log (or
logit) of the data. The linearity assumption in logistic regression, therefore, is that
there is a linear relationship between any continuous predictors and the logit of the
outcome variable. This assumption can be tested by looking at whether the interac-
tion term between the predictor and its log transformation is significant (Hosmer &
Lemeshow, 1989). We will go through an example in section 8.8.1.

2 Independence of errors: This assumption is the same as for ordinary regression
(see section 7.7.2.1). Basically it means that cases of data should not be related; for
example, you cannot measure the same people at different points in time (well, you
can actually, but then you have to use a multilevel model - see Chapter 19).
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3 Multicollinearity: Although not really an assumption as such, multicollinearity is a
problem as it was for ordinary regression (see section 7.7.2.1). In essence, predictors
should not be too highly correlated. As with ordinary regression, this assumption can
be checked with tolerance and VIF statistics, the eigenvalues of the scaled, uncentred
cross-products matrix, the condition indices and the variance proportions. We go

through an example in section 8.8.1.

Logistic regression also has some unique problems of its own (not assumptions, but
things that can go wrong). R solves logistic regression problems by an iterative procedure
(R’s Souls’ Tip 8.1). Sometimes, instead of pouncing on the correct solution quickly, you’ll
notice nothing happening: R begins to move infinitely slowly, or appears to have got fed
up with you asking it to do stuff and gone on strike. If it can’t find a correct solution, then
sometimes it actually does give up, quietly offering you (without any apology) a result that
is completely incorrect. Usually this is revealed by implausibly large standard errors. Two
situations can provoke this situation, both of which are related to the ratio of cases to vari-

ables: incomplete information and complete separation.

SRR BB Error messages about ‘failure to converge’ @

Many statistical procedures use an iterative process, which means that R attempts to estimate the parameters
of the model by finding successive approximations of those parameters. Essentially, it starts by estimating the
parameters with a ‘best guess’. It then attempts to approximate them more accurately (known as an iteration). It
then tries again, and then again, and so on through many iterations. It stops either when the approximations of
parameters converge (i.e., at each new attempt the ‘approximations’ of parameters are the same or very similar
to the previous attempt), or it reaches the maximum number of attempts (iterations).

Sometimes you will get an error message in the output that says something like

Warning messages:
1: glm.fit: algorithm did not converge

What this means is that R has attempted to estimate the parameters the maximum number of times (as specified in
the options) but they are not converging (i.e., at each iteration R is getting quite different estimates). This certainly
means that you should ignore any output that R has produced, and it might mean that your data are beyond help.

A Incomplete information from the predictors @

Imagine you’re trying to predict lung cancer from smoking and whether or not you eat
tomatoes (which are believed to reduce the risk of cancer). You collect data from people
who do and don’t smoke, and from people who do and don’t eat tomatoes; however, this
isn’t sufficient unless you collect data from all combinations of smoking and tomato eating.

Imagine you ended up with the following data:

Do you smoke? Do you eat tomatoes? Do you have cancer?
Yes No Yes
Yes Yes Yes
No No Yes

No Yes Y daads
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Observing only the first three possibilities does not prepare you for the outcome of the
fourth. You have no way of knowing whether this last person will have cancer or not based
on the other data you’ve collected. Therefore, R will have problems unless you’ve collected
data from all combinations of your variables. This should be checked before you run the
analysis using a crosstabulation table, and I describe how to do this in Chapter 18. While
you’re checking these tables, you should also look at the expected frequencies in each cell
of the table to make sure that they are greater than 1 and no more than 20% are less than
5 (see section 18.5). This is because the goodness-of-fit tests in logistic regression make this
assumption.

This point applies not only to categorical variables, but also to continuous ones. Suppose
that you wanted to investigate factors related to human happiness. These might include
age, gender, sexual orientation, religious beliefs, levels of anxiety and even whether a per-
son is right-handed. You interview 1000 people, record their characteristics, and whether
they are happy (‘yes’ or ‘no’). Although a sample of 1000 seems quite large, is it likely to
include an 80-year-old, highly anxious, Buddhist, left-handed lesbian? If you found one
such person and she was happy, should you conclude that everyone else in the same cat-
egory is happy? It would, obviously, be better to have several more people in this category
to confirm that this combination of characteristics predicts happiness. One solution is to
collect more data.

As a general point, whenever samples are broken down into categories and one or more
combinations are empty it creates problems. These will probably be signalled by coef-
ficients that have unreasonably large standard errors. Conscientious researchers produce
and check multiway crosstabulations of all categorical independent variables. Lazy but
cautious ones don’t bother with crosstabulations, but look carefully at the standard errors.
Those who don’t bother with either should expect trouble.

Complete separation @

A second situation in which logistic regression collapses might surprise you: it’s when the
outcome variable can be perfectly predicted by one variable or a combination of variables!
This is known as complete separation.

Figure 8.3
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Let’s look at an example: imagine you placed a pressure pad under your doormat and
connected it to your security system so that you could detect burglars when they creep in
at night. However, because your teenage children (which you would have if you’re old
enough and rich enough to have security systems and pressure pads) and their friends
are often coming home in the middle of the night, when they tread on the pad you want
it to work out the probability that the person is a burglar and not one of your teenagers.
Therefore, you could measure the weight of some burglars and some teenagers and use
logistic regression to predict the outcome (teenager or burglar) from the weight. The graph
(Figure 8.3) would show a line of triangles at zero (the data points for all of the teenagers
you weighed) and a line of triangles at 1 (the data points for burglars you weighed). Note
that these lines of triangles overlap (some teenagers are as heavy as burglars). We’ve seen
that in logistic regression, R tries to predict the probability of the outcome given a value
of the predictor. In this case, at low weights the fitted probability follows the bottom line
of the plot, and at high weights it follows the top line. At intermediate values it tries to
follow the probability as it changes.

Imagine that we had the same pressure pad, but our teenage children had left home to
go to university. We’re now interested in distinguishing burglars from our pet cat based
on weight. Again, we can weigh some cats and weigh some burglars. This time the graph
(Figure 8.4) still has a row of triangles at zero (the cats we weighed) and a row at 1 (the
burglars) but this time the rows of triangles do not overlap: there is no burglar who weighs
the same as a cat — obviously there were no cat burglars in the sample (groan now at that
sorry excuse for a joke). This is known as perfect separation: the outcome (cats and bur-
glars) can be perfectly predicted from weight (anything less than 15 kg is a cat, anything
more than 40 kg is a burglar). If we try to calculate the probabilities of the outcome given
a certain weight then we run into trouble. When the weight is low, the probability is 0,
and when the weight is high, the probability is 1, but what happens in between? We have
no data between 15 and 40 kg on which to base these probabilities. The figure shows two
possible probability curves that we could fit to these data: one much steeper than the other.
Either one of these curves is valid, based on the data we have available. The lack of data
means that R will be uncertain about how steep it should make the intermediate slope and
it will try to bring the centre as close to vertical as possible, but its estimates veer unsteadily
towards infinity (hence large standard errors).

© o o
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o
(V)

o
o

0 20 40 60 80
Weight (KG)



CHAPTER 8 LOGISTIC REGRESSION 325

This problem often arises when too many variables are fitted to too few cases. Often the
only satisfactory solution is to collect more data, but sometimes a neat answer is found by
using a simpler model.

SRV IVIINCEYAVV SIS Issues in logistic regression

o Inlogistic regression, like ordinary regression, we assume linearity, no multicollinearity and independence of errors.

o The linearity assumption is that each predictor has a linear relationship with the log of the outcome variable.

o [f we created a table that combined all possible values of all variables then we should ideally have some data in every cell of
this table. If we don’t then we should watch out for big standard errors.

o |[f the outcome variable can be predicted perfectly from one predictor variable (or a combination of predictor variables) then
we have complete separation. This problem creates large standard errors too.

8.5. Packages used in this chapter ®

There are several packages we will use in this chapter. Some, but not all, can be accessed
through R Commander. You will need the packages car (to recode variables and test multi-
collinearity) and mlogit (for multinomial logistic regression). If you don’t have these pack-
ages installed you’ll need to install them and load them.

install.packages("car"); install.packages("mlogit")
Then you need to load the packages by executing these commands:

library(car); library(mlogit)

8.6. Binary logistic regression: an example that
will make you feel eel ®

It’s amazing what you find in academic journals sometimes. It’s a bit of a hobby of mine trying
to unearth bizarre academic papers (really, if you find any, email them to me). I believe that sci-
ence should be fun, and so I like finding research that makes me laugh. A research paper by Lo
and colleagues is the one that (so far) has made me laugh the most (Lo, Wong, Leung, Law, &
Yip, 2004). Lo et al. report the case of a 50-year-old man who presented himself at the Accident
and Emergency Department (ED for the Americans) with abdominal pain. A physical examina-
tion revealed peritonitis so they took an X-ray of the man’s abdomen. Although it somehow
slipped the patient’s mind to mention this to the receptionist upon arrival at the hospital, the
X-ray revealed the shadow of an eel. The authors don’t directly quote the man’s response to
this news, but I like to imagine it was something to the effect of ‘Oh, that! Erm, yes, well I didn’t
think it was terribly relevant to my abdominal pain so I didn’t mention it, but I did insert an eel
into my anus this morning. Do you think that’s the problem?” Whatever he did say, the authors
report that he admitted to inserting an eel into his anus to ‘relieve constipation’.

I can have a lively imagination at times, and when I read this article I couldn’t help think-
ing about the poor eel. There it was, minding its own business swimming about in a river
(or fish tank possibly), thinking to itself “Well, today seems like a nice day, there are no



Can an eel cure
constipation?
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eel-eating sharks about, the sun is out, the water is nice, what could possibly go
wrong?’ The next thing it knows, it’s being shoved up the anus of a man from
Hong Kong. ‘Well, I didn’t see that coming’, thinks the eel. Putting myself in
the mindset of an eel for a moment, he has found himself in a tight dark tunnel,
there’s no light, there’s a distinct lack of water compared to his usual habitat, and
he probably fears for his life. His day has gone very wrong. How can he escape
this horrible fate? Well, doing what any self-respecting eel would do, he notices
that his prison cell is fairly soft and decides ‘bugger this,? I’ll eat my way out of
here’. Unfortunately he didn’t make it, but he went out with a fight (there’s a
fairly unpleasant photograph in the article of the eel biting the splenic flexure).
The authors conclude that ‘Insertion of a live animal into the rectum causing rectal perfora-
tion has never been reported. This may be related to a bizarre healthcare belief, inadvertent
sexual behavior , or criminal assault. However, the true reason may never be known.” Quite.

OK, so this is a really grim tale.? It’s not really very funny for the man or the eel, but it did
make me laugh. Of course my instant reaction was that sticking an eel up your anus to ‘relieve
constipation’ is the poorest excuse for bizarre sexual behaviour I have ever heard. But upon
reflection I wondered if I was being harsh on the man — maybe an eel up the anus really can
cure constipation. If we wanted to test this, we could collect some data. Our outcome might be
‘constipated’ vs. ‘not constipated’, which is a dichotomous variable that we’re trying to predict.
One predictor variable would be intervention (eel up the anus) vs. waiting list (no treatment).
We might also want to factor how many days the patient had been constipated before treat-
ment. This scenario is perfect for logistic regression (but not for eels). The data are in Eel.dat.

I’m quite aware that many statistics lecturers do not share my unbridled joy at discussing
eel-created rectal perforations with students, so I have named the variables in the file more
generally:

® outcome (dependent variable): Cured (cured or not cured);
e predictor (independent variable): Intervention (intervention or no treatment);

e predictor (independent variable): Duration (the number of days before treatment
that the patient had the problem).

In doing so, your tutor can adapt the example to something more palatable if they wish to,
but you will secretly know that the example is all about putting eels up your bum.

Preparing the data ®

To carry out logistic regression, the data must be entered as for normal regression: they
are arranged in whatever data editor you use in three columns (one representing each vari-
able). First load the data file by setting your working directory to the location of the file
(see section 3.4.4) and executing:

eelData<-read.delim("eel.dat", header = TRUE)

2 Literally.

3 As it happens, it isn’t an isolated grim tale. Through this article I found myself hurtling down a road of morbid
curiosity that was best left untravelled. Although the eel was my favourite example, I could have chosen from
a very large stone (Sachdev, 1967), a test tube (Hughes, Marice, & Gathright, 1976), a baseball (McDonald &
Rosenthal, 1977), an aerosol deodorant can, hose pipe, iron bar, broomstick, penknife, marijuana, bank notes,
blue plastic tumbler, vibrator and primus stove (Clarke, Buccimazza, Anderson, & Thomson, 2005), or (a close
second place to the eel) a toy pirate ship, with or without pirates ’'m not sure (Bemelman & Hammacher, 2005).
So, although I encourage you to send me bizarre research, if it involves objects in the rectum then probably don’t,
unless someone has managed to put Buckingham Palace up there.
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This creates a dataframe called eelData. We can look at the data using the head() func-
tion, which shows the first six rows of the dataframe entered into the function:

head(eelData)

Cured Intervention Duration
1 Not Cured No Treatment
2 Not Cured No Treatment
3 Not Cured No Treatment
4 Cured No Treatment
5 Cured Intervention
6 Cured No Treatment

O~ oo N J

Note that we have three variables in different columns. The categorical data have been
entered as text. For example, the variable Cured is made up of the phrases Cured and Not
Cured. When we read in data that are text strings like this, R helpfully converts them to
factors. It doesn’t tell us that it has done this, it just does it.

When we do logistic regression, we want to do it with numbers, not words. In creating
the factors R also helpfully assigned some numbers to the variables. There is no end to how
helpful R will try to be. The trouble is that the numbers that R has assigned might not be
the numbers that we want. In fact, R creates levels of the factor by taking the text strings
in alphabetical order and assigning them ascending numerical values. In other words, for
Cured we have two categories and R will have ordered these categories alphabetically
(i.e., ‘Cured’ and ‘Not Cured’). So, Cured will be the baseline category because it is first.
Likewise, for Intervention the categories were Intervention and No Treatment, so given the
alphabetic order Intervention will be the baseline category.

However, it makes more sense to code both of these variables the opposite way around.
For Cured it would be good if Not Cured was the baseline, or first category, because then we
would know that the model coefficients reflect the probability of being cured (which is what
we want to know) rather than the probability of not being cured. Similarly, for Intervention
it would be useful if No Treatment were the first category (i.e., the baseline). Fortunately, the
function relevel() lets us specify the baseline category for a factor. It takes the general form:

newFactor<-relevel(oldFactor, "baseline category™)

In other words, we can create a factor by specifying an existing factor, and simply writing
the name of the baseline category in quotes. For Cured and Intervention, it makes most
sense not to create new factors, but just to overwrite the existing ones, therefore, we spe-
cify these variables as both the new and old factors; this will simply respecify the baseline
category of the existing variables. Execute these commands:

eelData$Cured<-relevel(eelData$Cured, "Not Cured")
eelData$Intervention<-relevel(eelData$Intervention, "No Treatment™)

The variable Cured now has Not Cured as the first level (i.e., the baseline category), and
Intervention now has No Treatment as the baseline category. Having set our baseline cat-
egories, we can get on with the analysis.

The main logistic regression analysis @

8.6.2.1. Basic logistic regression analysis using R Commander @
First, import the data, using the Data=Import data=from text file, clipboard, or URL...
menu to set the import options and choose the file eel.dat (see section 3.7.3). As discussed
in the previous section, R will import the variables Cured and Intervention as factors
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(because they contain text) but we might not like the baseline category that it sets by default.

Therefore, the first thing that we need to do is to set the baseline category to one that we
want. We can do this by selecting Data=Manage variables in active data set=Reorder fac-
tor levels... as shown in Figure 8.5. In the first dialog box there is a list of factors (labelled
Factor (pick one)); select the factor that you want to reorder (I have selected Cured). By

default the function will simply overwrite the existing factor, which is why the Name for

factor box contains <same as original>; however, if you want to create a new variable then

replace the text in this box with a new name. Having selected a factor and named it, click
on [ 9k |, The next dialog box displays the categories contained within the selected factor
and their order. Note that we have two categories — Cured and Not Cured — and the 1 and

2 reflects their order (Cured is first, and Not Cured second). We want to reverse this order,
so we need to change the numbers so that Cured is 2 and Not Cured is 1 (which will make
it the baseline category). Once you have edited the numbers to reflect the order you want
click on to make the change. You can repeat the process for the Intervention variable.

We will carry out a hierarchical regression: in model 1, we’ll include only Intervention

as a predictor, and then in model 2 we’ll add Duration. Let’s create the first model. To run
binary logistic regression, choose Statistics=Fit models=Generalized linear model... to
access the dialog box in Figure 8.6. In the box labelled Enter name for model: we enter a
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name for the model we are going to estimate; I’ve called it ee/Model.1. Next, we need to
create the formula that described the model. The formula consists of an outcome variable,
which should be a dichotomous factor variable for logistic regression. In our case, the vari-
able is Cured. (Notice that R Commander has labelled the variable as a factor in the list of
variables.) First double-click on Cured, which will move it to box under the label Model
Formula: (which is where the cursor would be). Having specified the outcome variable, the
cursor will hop into the box to the right, which is where we want to put any predictors.
There are several buttons above this box that make it easy for us to add useful things like
‘+’ (to add predictors), or “*’ (for interaction terms) or even brackets. We can build the
predictors up by double-clicking on them in the list of variables and adding appropriate
symbols. In model 1 we want only Intervention as a predictor, so double-click on this vari-
able in the list (the completed box should look like the left-hand box in Figure 8.6).

When we use a generalized linear model we need to specify a family and link function. The
family relates to the type of distribution that we assume; for example, if we choose Gaussian,
that means we are assuming a normal distribution. We would choose this for linear regres-
sion. For logistic regression we choose binomial. We also need to choose a link function — for
logistic regression, we choose the logit. R Commander helpfully selects these by default.

We generate the second model in much the same way. In the box labelled Enter name for
model: enter a name for the model; I’ve called it eelModel.2. Next, double-click on Cured,
to move it to the left-hand box under the label Model Formula: (which is where the cursor
would be). Then to specify the predictors, double-click on Intervention to move it to the
right-hand box under the label Model Formula:, then type ‘+’ or click on (=], then double-
click on Duration in the list to move it to the formula box. The finished dialog box should
look like the right-hand dialog box in box in Figure 8.6.

Basic logistic regression analysis using R ®

To do logistic regression, we use the gim() function. The glm() function is very similar to
the Im() function that we saw in Chapter 7. While [m stands for ‘linear model’, glm stands
for ‘generalized linear model’ — that is, the basic linear model that has been generalized to
other sorts of situations. The general form of this function is:

newModel<-glm(outcome ~ predictor(s), data = dataFrame, family = name of a
distribution, na.action = an action)

in which:
® newModel is an object created that contains information about the model. We can get
summary statistics for this model by executing summary(newModel).

® outcome is the variable that you’re trying to predict, also known as the dependent
variable. In this example it will be the variable Cured.

® predictor(s) lists the variable or variables from which you’re trying to predict the out-
come variable. In this example it will be the variables Cured and Duration.

® dataFrame is the name of the dataframe from which your outcome and predictor
variables come.

® family is the name of a distribution (e.g., Gaussian, binomial, poisson, gamma).

® na.action is an optional command. If you have complete data (as we have here) you
can ignore it, but if you have missing values (i.e., NAs in the dataframe) then it can
be useful — see R’s Souls’ Tip 7.1).
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The format, as you can see, is extremely similar to /m() in that we specify a formula that
describes our model, we specify the dataframe that contains the variables in the formula,
and we can use na.action to determine how to deal with missing cases. The only difference
is a new option called family. This enables us to tell R the detail of the kind of regression
that we want to do: by specifying the distribution on which our model is based. If we were
doing an ordinary regression (as in Chapter 7) we could set this option to Gaussian (which
is another name for a normal distribution) because ordinary regression is based on a nor-
mal distribution. Logistic regression is based on a binomial distribution, so we need to set
this option to family = binomial().*

We will carry out a hierarchical regression: in model 1, we’ll include only Intervention
as a predictor, and then in model 2 we’ll add Duration. To create the first model we can
execute:

eelModel.1 <- glm(Cured ~ Intervention, data = eelData, family = binomial())

This command creates a model called ee/lModel.1 in which Cured is predicted from only
Intervention (Cured ~ Intervention) based on a logit function. Similarly, we can create the
second model by executing:

eelModel.2 <- glm(Cured ~ Intervention + Duration, data = eelData, family =
binomial())

This command creates a model called ee/lModel.2 in which Cured is predicted from both
Intervention and Duration (Cured ~ Intervention + Duration).

Interpreting a basic logistic regression @

To see the models that we have just generated we need to execute the summary() function
(remembering to put the model name into the function):

summary(eelModel.1)
summary(eelModel.2)

The results are shown in Outputs 8.1 and 8.3 and are discussed in the next two sections.

Model 1: Intervention only @

Output 8.1 shows the model summary for model 1, which used Intervention to predict
Cured. First, we should look at the summary statistics about the model. The overall fit
of the model is assessed using the deviance statistic (to recap: this is —2 times the log-
likelihood). Remember that larger values of the deviance statistic indicate poorer-fitting
statistical models. R provides two deviance statistics: the null deviance and the residual
deviance. The null deviance is the deviance of the model that contains no predictors other

*R has a number of useful defaults. If you don’t specify a family, R assumes that you want to use a Gaussian family
of distributions, which is the same as using /m(). In addition, you can specify a link function for the binomial
family. The logit and probit are two commonly used link functions, which are specified as Binomial(link = “logit™)
and Binomial(link = “probit”). If you don’t specify a link function, R chooses the logit link function for you,
which is what is needed for logistic regression so we don’t need to explicitly use a link function in our model.
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than the constant — in other words, —2LL(baseline).’ The residual deviance is the deviance
for the model — in other words, —2LL (new).

Call:
glm(formula = Cured ~ Intervention, family = binomial(), data = eelData)

Deviance Residuals:
Min 10 Median 30 Max
-1.5940 -1.0579 0.8118 0.8118 1.3018

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.2877 0.2700 -1.065 0.28671
InterventionIntervention 1.2287 0.3998 3.074 0.00212 **
Signif. codes: 0 ‘***’ (0.001 ***’ 0.01 **’ 0.05 *.” 0.1 » " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 111 degrees of freedom
AIC: 148.16

Number of Fisher Scoring iterations: 4
Output 8.1

At this stage of the analysis the value of the deviance for the model should be less than
the value for the null model (when only the constant was included in the model) because
lower values of —2LL indicate that the model is predicting the outcome variable more
accurately. For the null model, —2LL = 154.08, but when Intervention has been included
this value has been reduced to 144.16. This reduction tells us that the model is better at
predicting whether someone was cured than it was before Intervention was added.

The question of how much better the model predicts the outcome variable can be
assessed using the model chi-square statistic, which measures the difference between the
model as it currently stands and the model when only the constant was included. We saw
in section 8.3.1 that we could assess the significance of the change in a model by taking the
log-likelihood of the new model and subtracting the log-likelihood of the baseline model
from it. The value of the model chi-square statistic works on this principle and is, there-
fore, equal to —2LL with Intervention included minus the value of —2LL when only the
constant was in the model (154.08 — 144.16 = 9.92). This value has a chi-square distri-
bution and so its statistical significance can be calculated easily. In this example, the value
is significant at a .05 level and so we can say that overall the model is predicting whether
a patient is cured or not significantly better than it was with only the constant included.
The model chi-square is an analogue of the F-test for the linear regression (see Chapter 7).
In an ideal world we would like to see a non-significant overall —2LL (indicating that the
amount of unexplained data is minimal) and a highly significant model chi-square statistic
(indicating that the model including the predictors is significantly better than without those
predictors). However, in reality it is possible for both statistics to be highly significant.

We can use R to automatically calculate the model chi-square and its significance. We
can do this by treating the output model as data. The object eelModel.1 has a number of

*You can try this by running a model with only an intercept. Use:

eelModel.@ <- glm(Cured ~ 1, data = eelData, family = binomial())
summary(eelModel . @)
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variables associated with it. Two of these are the deviance and null.deviance. By subtracting
the deviance from the null deviance we can find the improvement, which gives us a chi-
square statistic. We can reference these variables the same as any other: by appending the
variable name to the model using dollar sign. To calculate this value execute:

modelChi <- eelModel.1$%$null.deviance - eelModel.l1$deviance

This creates a value called modelChi that is the deviance for the model ee/Model.1 sub-
tracted from the null deviance from the same model. We can see the value by executing:

modelChi
[1] 9.926201

As you can see, this value corresponds to the one we calculated by hand (allowing for
differences in rounding). Similarly, the degrees of freedom for the model are stored in the
variable df.residual and for the null model are stored as df.null. These are the values of 111
and 112 in Output 8.1. We can compute the degrees of freedom associated with the chi-
square statistic that we just computed by subtracting the degrees of freedom exactly as we
did for the deviance values. Execute:

chidf <- eelModel.1$df.null - eelModel.1%$df.residual

This creates a value called chidf that is the degrees of freedom for the model ee/Model.1 sub-
tracted from the degrees of freedom for the null model. We can see the value by executing:

chidf
[1] 1

As you can see, the change in de