Lab 4: Data Analysis in Excel

Analysis ToolPak

1. Load ToolPak add-in

 Click on the green "File" tab → select "Option" → An excel option dialog appears, select "Add-ins".

Excel Options			? ×
General Formulas Proofing	View and manage Microsof	ít Office Add-ins.	
Save Language Advanced	Name A Active Application Add-ins Analysis ToolPak Excel Reader Addin	Location C:\e\Office14\Library\Analysis\ANALYS32.XLL C:\gins\Creator\x64\FPC_ExcelAddin_x64.dll	Type ^ Excel Add-in COM Add-in
Quick Access Toolbar	Analysis ToolPak - VBA Custom XML Data Date (XML) Euro Currency Tools	C:\ffice14\Library\Analysis\ATPVBAEN.XLAM C:\\Microsoft Office\Office14\OFFRHD.DLL C:\es\microsoft shared\Smart Tag\MOFL.DLL C:\ Office\Office14\Library\EUROTOOL.XLAM	Excel Add-in Document Inspector Action Excel Add-in
Trust Center	Financial Symbol (XML) Headers and Footers Hidden Rows and Columns Hidden Worksheets IAS.ADsDataStore.1 Invisible Content Microsoft Actions Pane 3 Solver Add-in Document Related Add-ins No Document Related Add-ins	C:\es\microsoft shared\Smart Tag\MOFL.DLL C:\\Microsoft Office\Office14\OFFRHD.DLL C:\\Microsoft Office\Office14\OFFRHD.DLL C:\\Microsoft Office\Office14\OFFRHD.DLL C:\\Microsoft Office\Office14\OFFRHD.DLL C:\\Microsoft Office\Office14\OFFRHD.DLL C:\e\Office14\Library\SOLVER\SOLVER.XLAM	Action Document Inspector Document Inspector Excel Add-in Document Inspector XML Expansion Pack Excel Add-in
	Disabled Application Add-ins Add-in: Analysis ToolPak Publisher: Microsoft Corporation Compatibility: No compatibility in Location: C:\Program Files\W Description: Provides data analy Manage: Excel Add-ins	tion Iformation available licrosoft Office\Office14\Library\Analysis\ANALYS32.XLL ysis tools for statistical and engineering analysis	~
			OK Cancel

2. Click Go button, The Add-Ins dialog appears, Check "Analysis ToolPak" and Ok.

Add-Ins		?	×		
Add-Ins available:					
Analysis ToolPak	\sim	Oł	<		
Euro Currency Tools		Can	cel		
Solver Add-in		Brows	e		
		A <u>u</u> toma	tion		
	~				
Analysis ToolPak					
Provides data analysis tools for statistical and engineering analysis					

The Data Analysis tool bar now appears under the Data tab.

computer [Compatibility Mode] - Microsoft Excel							_	đ	\times								
Data	Rev	iew	View	Fo	xit Reader PDF											» 🕜	- 6 23
Connect	ions es	Az↓	AZA	Y	🕼 Clear	*		ő		£ ?	•		++	♥를 Show Detai ■를 Hide Detail	💾 Data Analysis)	
🕫 Edit Link	s	Z A↓	Sort	Filter	Mathematical Advanced	Text to Columns	Remove Duplicates	Data Validation	Consolidate	What-If Analysis ▼	Group	Ungroup	Subtotal				
nnections				Sort & Fi	lter			Data Too	ls			(Outline	Gi Gi	Analysis		
																	A

2. Histogram

A histogram is a graphical representation of the distribution of numerical data. It is an estimate of the probability distribution of a continuous variable (quantitative variable).

1. First, enter the bin numbers (upper levels), for example TTU's scale (A2:A13)

_	~	5	~
1	Student grades	TTU scale	
2	90	100	
3	79	96	
4	31	92	
5	65	89	
6	78	86	
7	98	82	
8	46	79	
9	97	76	
10	48	72	
11	89	69	
12	87	66	
13	84	59	
14	91		
15	90		
16	95		
17	79		
18	89		
19	85		
20	76		
21	89		
22	65		
23	73		
24	81		
25	74		
14 4	Histogram	Sheet2	Shee
Rea	ady		

2. On the Data tab, click Data Analysis.

Select Histogram and click OK.

Data Analysis	? 🗙
<u>A</u> nalysis Tools	
Correlation Covariance Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis	Cancel
Histogram Moving Average Random Number Generation Rank and Percentile	

- 3. . Select the range (student grade column)
- 4. Click in the Bin Range box and select the range (column TTU scale).

- 5. Click the Output Range option button, click in the Output Range box and select any cell.
- 6. Check Chart Output.

3. Descriptive Statistics

- 1. On the Data tab, click Data Analysis.
- 2. Select Descriptive Statistics and click OK.
- 3. Select the range (Student grade) as the Input Range.
- 4. Select any cell as the Output Range.
- 5. Make sure Summary statistics is checked.

Descriptive Statistics			? <mark>- x</mark>
Input Input Range: Grouped By:	\$A\$2:\$A\$15 <u>C</u>olumns <u>R</u>ows <u>R</u>ows 	F	OK Cancel <u>H</u> elp
Labels in first row			
Output options Output Range: New Worksheet Ply:	\$C\$1		
New <u>W</u> orkbook			
Confidence Level for Mean: Kth Largest:	95	%	
Kth Smallest:	1		

Result

Column	1
Mean	80.20634921
Standard Error	2.04945995
Median	87
Mode	89
Standard Deviation	16.26708405
Sample Variance	264.6180236
Kurtosis	1.910532125
Skewness	-1.618207824
Range	67
Minimum	31
Maximum	98
Sum	5053
Count	63

4. Analysis of variance (ANOVA)

a. A single factor

A single factor or one-way ANOVA is used to test the null hypothesis that the means of several groups are identical.

• Suppose that the benefit of a company is separated by different regions as follows.

1	Region	2009	2010	2011	2012	2013	2014	
2	G1	23454	24872	19070	21308	21676	22938	
3	G1	21376	21876	21736	21467	23731	22685	
4	G3	24501	20231	18033	23457	20436	22215	
5	G4	20316	23075	20018	19543	20813	19066	
6	G5	20134	23886	23220	20962	18206	20855	
7	G6	19219	19715	22526	20019	24654	23925	
8	G6	21795	24508	18344	22379	21641	20948	
9	G8	24206	19001	21664	18530	21827	23389	
10	G9	19962	23148	23695	18376	22462	18786	
11								

- Now we consider that there is a difference of benefit among regions (i.e., single factor)?
- Hypothesis
 - $\circ \quad \mathsf{H}_{0} = \mathsf{M}_{G1} \approx \mathsf{M}_{G2} \approx \mathsf{M}_{G3} \approx \mathsf{M}_{G4} \approx \mathsf{M}_{G5} \approx \mathsf{M}_{G6} \approx \mathsf{M}_{G7} \approx \mathsf{M}_{G8} \approx \mathsf{M}_{G9}$
 - H₁: there is a difference among regions
- Check these hypothesis using Excel

1. Select Data tab \rightarrow click Data Analysis \rightarrow select Anova: single factor

2. Select Input range, choose group by Rows (enter alpha value, not important), select output range (any cell)

Anova: Single Factor		? ×
Input Input Range: Grouped By: Labels in first column Alpha: 0.05	\$A\$5:\$G\$13 Fill O Columns Rows	OK Cancel <u>H</u> elp
Output options Output Range: New Worksheet Ply: New Workbook	\$C\$18	

3. Result

Anorarongie ractor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
G1	6	133318	22219.66667	4024312.667		
G2	6	132871	22145.16667	819536.5667		
G3	6	128873	21478.83333	5621386.567		
G4	6	122831	20471.83333	1992443.767		
G5	6	127263	21210.5	4314079.1		
G6	6	130058	21676.33333	5455400.667		
G7	6	129615	21602.5	4025922.7		
G8	6	128617	21436.16667	5213206.967		
G9	6	126429	21071.5	5369663.1		
ANOVA						\sim
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	13805553	8	1725694.125	0.421632841	0.901935	2.15213
Within Groups	184179760.5	45	4092883.567			\smile
Total	197985313.5	53				

 Conclusion: F<F_{critical}, we accept the hypothesis H₀. If H₀ is rejected, means that at least one of the means is different. However, the ANOVA does not tell you where the difference lies. You need a T-Test (later) to test each pair of means.

b. Two-way ANOVA without replication

Similar as One-Way Anova, but we consider the influence of two factors on a dependent variable. For example: there are 4 experts to predict the development rate of 5 companies as follows.

Company	Expert 1	Expert 2	Expert 2	Expert 4
C1	8	12	8.5	13
C2	14	10	9	11
C3	11	9	12	10
C4	9	13	10	13
C5	12	10	10	10

Question: is there a difference of mean of development rate among 5 companies and experts?

Using Excel to check this hypothesis as follows.

 Select Data tab → click Data Analysis → select Anova: two factor without replication → select input range and output range. (change alpha if needed)

Anova: Two-Factor Without	? ×	
Input Input Range: Labels Alpha: 0.05	\$A\$1:\$E\$6	OK Cancel <u>H</u> elp
Output options	\$B\$11	

2. Result

Anova: Two-Factor v	vithout kep	incation				
SUMMARY	Count	Sum	Average	Variance		
C1	4	41.5	10.375	6.229166667		
C2	4	44	11	4.666666667		
C3	4	42	10.5	1.666666667		
C4	4	45	11.25	4.25		
C5	4	42	10.5	1		
Expert 1	5	54	10.8	5.7		
Expert 2	5	54	10.8	2.7		
Expert 2	5	49.5	9.9	1.8		
Expert 4	5	57	11.4	2.3		
ANOVA						
Source of Variation	SS	df	MS		P-value	Fuit
Rows	2.3	4	0.575	0.144654088	0.961924355	3.25916673
Columns	5.7375	3	1.9125	0.481132075	0.701475354	3.49029482
Error	47.7	12	3.975	\smile		\smile
Total	55.7375	19				

- 3. Conclusion:
 - F_Rows < F_Rows _{Crit} and F_columns < F_columns _{Crit}, we accept the null hypothesis.

c. Two-way ANOVA with replication

Similar as two-way ANOVA without replication, however a sample has some rows of data as following table.

Fertilizer	Wheat	Corn	Soy	Rice
Blend X	123	128	166	151
	156	150	178	125
	112	174	187	117
	100	116	153	155
	168	109	195	158
Blend Y	135	175	140	167
	130	132	145	183
	176	120	159	142
	120	187	131	167
	155	184	126	168
Blend Z	156	186	185	175

180	138	206	173
147	178	188	154
146	176	165	191
193	190	188	169

Select Data tab → click Data Analysis → select Anova: two factor with replication → select input range and output range. (change alpha if needed) → Indicate rows per sample, here is 5 (i.e., there are 5 data rows per fertilizer).

Anova: Two-Factor With Rep	olication	? ×
Input <u>I</u> nput Range: <u>R</u> ows per sample: <u>A</u> lpha:	\$A\$24\$E\$17 E\$ 5 0.05	OK Cancel <u>H</u> elp
Output options	\$1\$6	

2. Result

Anova: Two-Factor With Replication

SUMMAR	RY	Wheat	Corn	Soy	Rice	Total	
	Blend X						
Count		5	5	5	5	20	
Sum		659	677	879	706	2921	
Average		131.8	135.4	175.8	141.2	146.05	
Variance		844.2	707.8	278.7	354.2	782.3658	
	Blend Y						
Count		5	5	5	5	20	
Sum		716	798	701	827	3042	
Average		143.2	159.6	140.2	165.4	152.1	
Variance		498.7	978.3	165.7	217.3	511.0421	
	Blend Z						
Count		5	5	5	5	20	
Sum		822	868	932	862	3484	
Average		164.4	173.6	186.4	172.4	174.2	

Variance	443.3	428.8	212.3	175.8	330.6947	
Total						
Count	15	15	15	15		
Sum	2197	2343	2512	2395		
Average	146.4667	156.2	167.4667	159.6667		
Variance	705.8381	871.0286	605.981	404.9524		
ANOVA						
Source of	SS	df	MS	F	P-value	F crit
Variation						
Sample	8782.9	2	4391.45	9.933347	0.000245	3.190727
Columns	3411.65	3	1137.217	2.572355	0.064944	2.798061
Interaction	6225.9	6	1037.65	2.347138	0.045555	2.294601
Within	21220.4	48	442.0917			
Total	39640.85	59				

3. Conclusion:

- F_sample > F_sample_{Crit} → there is a difference according to fertilizer
- F_columns < F_columns_{Crit} → accept the null hypothesis (there is no difference among type of crop)
- F_interaction > F_interaction_{Crit} → reject the null hypothesis (there is a difference)

5. F-Test

The F-Test is used to test the null hypothesis that the variances of two populations are equal.

Example:

- The study hours of 9 female students and 8 male students as follows.
- There is a difference of variance of two samples?

Female	Male
26	19
25	25
43	23
34	30
18	18
52	25
45	23
26	28
29	

 Select Data tab → click Data Analysis → select F-Test Two-Sample for Variances and click OK. → select variance 1 and variance 2 range. Choose output range (any cell).

F-Test Two-Sample for Varia	nces	? ×
Input Variable <u>1</u> Range: Variable <u>2</u> Range: Labels <u>A</u> lpha: 0.05	\$A\$2:\$A\$10 \$8\$2:\$8\$9	Cancel
Output options	\$F\$4	

2. Result

F-Test Two-Sample for Variances

	Variable 1	Variable 2
Mean	33.11111111	23.875
Variance	126.1111111	16.69642857
Observations	9	8
df	8	7
F	7.553178847	
P(F<=f) one-tail	0.007518426	
F Critical one-tail	3.725725317	

Conclusion: $F > F_Crit \rightarrow reject$ null hypothesis (there is a difference)

NOTE: be sure that the variance of Variable 1 is higher than the variance of Variable 2. If not, swap your data.

6. T-Test

The t-Test is used to test the null hypothesis that the means of two populations are equal. For example: use the same data as F-Test, we compare the means of study hour of female and male. *Null hypothesis is equal.*

 Select Data tab → click Data Analysis → select t-Test: Two Sample Assuming Unequal Variance (we choose this because we have knew the variance of female and variance of male are different).

t-Test: Two-Sample Assuming Unequal Variances	? ×
Input Variable <u>1</u> Range: \$A\$2:\$A\$10 Variable <u>2</u> Range: \$B\$2:\$B\$9 Hypoth <u>e</u> sized Mean Difference: Labels <u>A</u> lpha: 0.05	OK Cancel Help
Output options <u>O</u>utput Range: <u>P</u>ly: <u>New Workbook </u> 	

2. Result

t-Test: Two-Sample Assuming Unequal Variances

	Variable 1	Variable 2
Mean	33.11111111	23.875
Variance	126.1111111	16.69642857
Observations	9	8
Hypothesized Mean Difference	0	
df	10	
t Stat	2.301888661)
P(T<=t) one-tail	0.022056149	
t Critical one-tail	1.812461123	

P(T<=t) two-tail	0.044112298
t Critical two-tail	2.228138852

Conclusion: We do a two-tail test (inequality). If t Stat < -t Critical twotail or t Stat > t Critical two-tail, we reject the null hypothesis.