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Abstract  

The concept of double points detector model approach (DPDM) is developed as a procedure to find the full energy peak 
efficiency of the coaxial 120 cm3 closed hyperpure germanium (HPGe) detectors. Usually in the experimental nuclear physics 
work, which involves using HPGe detector for gamma-ray spectrometry, the full energy peak efficiency function must 
represent adequately the HPGe detector response. In the current work the gamma-ray energy in the range from 60 to 1332 keV 
and gamma-ray intensity changes by changing source to detector distance from 10 to 800 mm. The detector was characterized 
using a number of point–like standard sources. The calculated efficiencies obtained by (DPDM) are in good agreement with 
experimental data. 
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1. 1. Introduction 

The quantitative γ-ray spectrometry at different geometries is a commonly encountered 

problem. Accurate relative intensity calibration of photon emitted is usually performed by 

counting a sample and standard sources in the same geometry. It is therefore important to 

have available method to correct measurement taken with HPGe detectors from the effects of 

geometry change, hearing in mind that HPGe detector efficiency curves are most often and 

conveniently determined using point-like standards. In general, one or two efficiency curves 

are obtained at different distances. This is usually done in order to minimize the detector’s use 

time and to maximize the area under full energy peak, a higher surge in the photo-peak area is 

found due to the changing in counting geometry. Hence, changing counting geometry is a 

mandatory for comparison between measurements, introduces a need for solid angle geometry 

corrections as well as for coincidence summing if applicable. Many authors commented of the 

importance of measurement geometries (Grant, 1975; Maia et al., 1997). 

2. Experimental Procedure  

2.1. Experimental set up 

The detector used in these measurements was ORTEC hyperpure germanium detector. The 

germanium crystal was nominally 55 mm in diameter and 60 mm long. It was mounted inside a 

protective aluminum end, with its axis vertical, on a liquid nitrogen Dewar, with an energy 

resolution of 2.0 keV for a γ -ray energy of 1332 keV. The source holder was made of 

cylindrical hard paper with seven slots to accommodate the point sources which are at the 

center of a polyethylene dish. The detector active volume was estimated to be (120± 6) cm3. 

The detector was biased to + 4500V using an ORTEC-459 power supply. Pulses from the 

detector were amplified and shaped by Canberra-2021 spectroscopy amplifier before being 

transmitted to multi-channel analyzer (MCA) of type, Trumf-8192 and the data were buffered 

from the analog-to-digital converter and were saved to computer memory. 
 
 

2.2. The γ -ray sources 

For the point-like sources we used γ -ray reference standard sources from the Oak-Ridge, The 

Tennessee, U.S.A. These take the form of ion-exchange beads 2 mm in diameter held in clear 

plastics cases fitted with polyethylene windows 0.5 mm thick. The radionuclides used were 
241Am, 133Ba, 137Cs, 54Mn, 65Zn, 109Cd and 60Co these span the energy range from 60-1332 

keV. All point sources are located at a distance range from 100 to 400 mm in front of the 



detector cap. The uncertainties of the activities of these sources were all 2% and the 

uncertainties of their corresponding peak areas did not significantly exceed 1 %. The resulting 

FEPE curve is shown in Fig. 1. The error bars are mostly hidden by the size of the point-

symbol used. 

2.3. Efficiency calculation 

Once the full energy peak area is obtained, the intrinsic efficiency can be calculated by 

the following equation:  
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Where: 

( )i E γε is the intrinsic peak efficiency, is defined as the probability that a photo striking the 

detector will produce a pulse residing in the full energy peak of the spectrum. 

( )γENC is the corrected net peak area in counts/s  

oA is the activity of the source at the time of standardization in (Bq), 

( ) ( )( )CDt ttIf λλλγ −−⋅−⋅⋅= − exp1exp1  

γI is the absolute γ -ray emission probability  

λ is the decay constant. ( λτ /1= ) 

Dt t is the elapsed time since standardization 

Ct is the duration of the count (sec). 
 

The experimental uncertainties dependence on time (t) and distance (d) were negligible 

thus the standard deviation on ε, Eσ  was determined by the uncertainties on CN , γI ,Ao, and 

λ and was calculated by the propagation of error equation according to (Bevington and 

Robinson, 2010): 
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The fractional uncertainty in the number of counts was always arranged to be < 0.5% and 

so the absolute uncertainty measurements were dominated by the uncertainty in the initial 

activity (~1%). Uncertainties in the relative efficiency measurements with  



a given source as a function of distance were generally determined by a combination of 

counting statistics and positioning uncertainties (< 0.3 mm). 

3. Efficiency measurements 

The samples were positioned on axis above the detector by placing them on light weight 

cord a top light weight cord cylinders (Challan, 2007). Distances were measured from the 

center of the source to the external front face of the detector end cap. In the case of short half-

life, it will be necessary to apply correction factors for the radioactivity decay before and 

during the measurements period. Following small corrections for dead time losses (5% in the 

most severe case) and room background, the number of counts, C, in the full energy peak 

(FEP) was obtained by fitting a Gaussian profile superimposed on a linear background to the 

spectrum. This was related to the absolute (FEP) efficiency, ( )a E γε , in counts per γ –emitted 

according to full energy peak efficiency as a function of energy. This function has the great 

advantage over the other considered functions. 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5

1 2 3 4 5 6ln ln ln ln lni E p p E p E p E p E p E Eγ γ γ γ γ γ γ= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ε  (3) 

Where ε represents the full energy peak efficiency, 

  E is the γ -ray energy in MeV, 

  61 pp → are the function fitting parameters.    

A number of analytical functions describing the dependence of the full energy peak efficiency 

as a function the energy have been proposed by several authors (Debertin and Helmer, 2001; 

Sanchezreyes et al., 1987). The efficiency function used in this work has the form logarithmic 

positive power transferred series; it has been proposed by Hammed (Hammed et al., 1993). 

Fig.(1) shows the efficiency function as a function of energy was fitted to the experimental 

points. 
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solid angle of one point represents the source subtended by at the other point represents the 

detector will be less than unity, if the distance decreased than or the solid angle will be more 

than unity. We then multiply the intrinsic detector efficiency by a factor to complete the whole 

solid angle surrounding the point source.  

We could write down the absolute efficiency as: 

( ) ( ) ( ) ( ), ,a i CSE r E r I rγ γ γΩ= ⋅ ⋅ε ε ε ε     (5) 

Substituting from eq. (1) 
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Where  

( ),a E rγε
 is the absolute full energy peak efficiency, 

( )rΩε  is geometrical efficiency due to solid angle subtended by detector 

( ),CS I rγε
 is a correction for coincidence summing due to radionuclides having decays in 

cascades 

5. Full energy peak efficiency as a function of distance 

There are several authors dealt with analytical formulae considering for examples the 

detector active volume and the geometrical solid angle due to bulk samples to obtain a simple 

formula for the efficiency. In addition, the self-attenuation coefficient of the source matrix, 

the attenuation factors of the source container and the detector housing materials are also 

treated by calculating the average path length within these materials (Agarwal et al., 2011; 

Badawi et al., 2012) concentrated mostly on the extended sources that imply efficiency 

transfer (Bell et al., 2012; Liye et al., 2006; Vargas et al., 2003). In this work, the full energy 

peak efficiency as a function of distance could be represented as follow: 
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or can be determined by plotting the efficiency formula, representing the counting rate N 

in a certain photo-peak, γE  varies with the source-detector distance according with Notea 

(Notea, 1971) and Grant (Grant, 1975). 
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The determination of or  can be done by plotting 2/1−N  against r , and extrapolating the 

straight line obtained to the zero value of 2/1−N . Typical plots of this type using a coaxial 

close-ended HPGe detector as shown in Fig. (2). 

 

 

 
Fig. 2. Typical plots for determining or using a coaxial close-ended HPGe detector. 

 

The lines obtained for sources with different photon energies and intensities, differ in or  and 

slopes, herein (Grant, 1975)declared that, the slope of the linear portion of a Ge(Li) 

log(efficiency) vs log(energy) plot varies with the source-to-detector distance and crystal 

geometry, (Hnatowicz, 1977) as a function of detector volume and/or shape. 
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The function which fits best the experimental values is [cf. 5]: 

 

( )( )[ ]987 exp1 pEppro +−−⋅= γ   (8) 

E γ in MeV      ,     or  in mm 

From eq. (5): 
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For a given γ -ray energy, The FEP efficiency for a point source on axis at a distance r 

from the external face of the end-cap can, according to this scheme be written as Eq.(11) 

where, 987 ,, ppp are fitting parameters. From Eq. (12) which follow that a plot of the FEP 

efficiency root against separation should be the straight line described by   
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ε    (12) 

This is the case as shown from fig (3) which shows such a plot together with the best fit line 

to the data. From the ratio of the intercept to the slope we could deduce a value for or the 

intercept located at -2.69 mm behind the aluminum end cap, intersect a part from y-axis 

equivalent to 1.55 mm. The superposition occurs for the three gamma lines of 88, 661.6, and 

1115.5 keV for 109Cd, 137Cs, and 54Mn, respectively. 
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Highlights:- 

• We introduced the concept of a double point detector model approach (DPDM). 
• Examining the detector efficiency depended on source detector separation. 
• Gamma-ray energies covered in this work span from 59 to 1408 keV. 
• Gamma-ray counting dependence on source to detector distance from 10 to 800 mm. 
• The efficiencies obtained by (DPDM) are in good agreement with experimental data 

 
 
 




