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1. Σώμα μάζας m κινείται στο πεδίο ελκτικής κεντρικής δύναμης V = −GMm

r + d
, όπου GM και d θετικές

σταθερές. Η τροχιά του έχει αψίδες στις ακτίνες r1 και r2, όπου r2 > r1 ≫ d. Κρατώντας μέχρι πρώτης τάξης
όρους ως προς d βρείτε:
(α) τη στροφορμή και την ενέργεια του σώματος,
(β) την περίοδο της ακτινικής κίνησης,
(γ) τη γωνιακή μετατόπιση σε μία περίοδο της ακτινικής κίνησης και μέσω αυτής την μετάπτωση του περίκε-
ντρου της τροχιάς.
Υπόδειξη: Δείξτε ότι για μικρά d το πεδίο είναι V ≈ −GMm

r
+

GMmd

r2
.

Δίνονται τα ολοκληρώματα
∫ r2

r1

r dr√
(r − r1)(r2 − r)

= π
r1 + r2

2
,
∫ r2

r1

dr

r
√
(r − r1)(r2 − r)

=
π

√
r1r2

.

Για να απλοποιηθούν οι πράξεις θεωρήστε σε όλη την άσκηση m = 1, GM = 1, r1 = 1− ε, r2 = 1 + ε.

2. Σώμα μάζας m = 1 κινείται στο κεντρικό πεδίο V = e1/r. Αρχικά βρίσκεται σε μεγάλη απόσταση από το
κέντρο, έχει ταχύτητα μέτρου v∞ =

√
2e και παράμετρο κρούσης b = 1/

√
e (όλα σε κατάλληλες μονάδες).

(α) Ποια η ελάχιστη απόσταση που φτάνει από το κέντρο;
(β) Γράψτε την διαφορική εξίσωση που πρέπει να λυθεί για να βρεθεί η εξίσωση τροχιάς (δεν χρειάζεται να
την επιλύσετε, αλλά προσπαθήστε να την απλοποιήσετε όσο γίνεται).

3. Η κίνηση ενός δέσμιου σωματιδίου στο βαρυτικό πεδίο μιας ακλόνητης σημειακής μάζας είναι μια έλλειψη.
Σε ποια σημεία της ελλειπτικής τροχιάς η ταχύτητα απομάκρυνσης και προσέγγισης του σωματιδίου στο βαρυ-
τικό κέντρο γίνεται μέγιστη;

4. Ένα σωματίδιο κινείται στο βαρυτικό κέντρο μιας ακλόνητης σημειακής μάζας. Σε κάθε περιφορά του σωμα-
τιδίου και όταν το σωματίδιο διέρχεται από το περίκεντρο, μια έκρηξη της κεντρικής μάζας ωθεί το σωματίδιο
ακτινικά προς τα έξω, δίνοντάς του μια στιγμιαία σταθερή ακτινική ταχύτητα v0. Αν αρχικά το σωματίδιο
κινούνταν σε σχεδόν κυκλική τροχιά ακτίνας r0, μετά από πόσες τέτοιες ωθήσεις το σωματίδιο θα πάψει να
είναι δέσμιο και θα διαφύγει από το βαρυτικό πεδίο;



Λύσεις

1. (α) Με
1

r + d
=

1

r
(1+d/r)−1 ≈ 1

r
(1−d/r) (χρησιμοποιώντας το ανάπτυγμα (1+ϵ)ν ≈ 1+νϵ για |ϵ| ≪ 1)

είναι V ≈ −GMm

r
+

GMmd

r2
και Veff(r) =

L2

2mr2
− GMm

r + d
≈ L2 + 2GMm2d

2mr2
− GMm

r
(ουσιαστικά ίδιο

με το πρόβλημα Kepler στροφορμής LK =
√
L2 + 2GMm2d).

Οι αψίδες είναι οι ακτίνες στις οποίες Veff(r1) = Veff(r2) = E από τις οποίες προκύπτει L ≈
√

GMm2p(1−

d/p) (θετική χωρίς βλάβη της γενικότητας) και E ≈ −GMm

2α
, όπου

2

p
=

1

r1
+

1

r2
⇔ p =

2r1r2
r1 + r2

και

α =
r1 + r2

2
. Με την προτεινόμενη κανονικοποίηση L →

√
1− ε2

(
1− d

1− ε2

)
, E → −1

2
.

(β) E − Veff(r) ≈ −GMm

2α
− GMm2p

2mr2
+

GMm

r
= GMm

(r − r1)(r2 − r)

2αr2
,

Tr = 2

∫ r2

r1

dr

ṙ
= 2

∫ r2

r1

dr√
(2/m)[E − Veff(r)]

≈ 2

√
α

GM

∫ r2

r1

r dr√
(r − r1)(r2 − r)

= 2π

√
α3

GM
→ 2π.

(Η ακτινική κίνηση δεν έχει πρώτης τάξης διόρθωση ως προς d, για δεδομένα βέβαια r1, r2.)

(γ) ∆ϕ = 2

∫ r2

r1

ϕ̇

ṙ
dr = 2

∫ r2

r1

(L/mr2) dr√
(2/m)[E − Veff(r)]

≈
(
1− d

p

)∫ r2

r1

2
√
r1r2 dr

r
√
(r − r1)(r2 − r)

= 2π

(
1− d

p

)
.

Δύο διαδοχικά περίκεντρα απέχουν γωνιακή απόσταση −2πd/p = −πd
r1 + r2
r1r2

→ − 2πd

1− ε2
.

Το αρνητικό πρόσημο σημαίνει ότι το περίκεντρο μεταπίπτει αντίθετα στην κίνηση του σώματος. Δηλ. ενώ το
ϕ του σώματος αυξάνει με τον χρόνο, αν ϕπ1 ένα περίκεντρο το επόμενο συναντάται σε ϕπ2 < ϕπ1 + 2π.

Η αντίστοιχη γωνιακή ταχύτητα είναι
−2πd/p

Tr

= − d
√
2GM

r1r2
√
r1 + r2

→ − d

1− ε2
.

Τα ίδια προκύπτουν και από u′′ + u = − mf

L2u2
με f =

− GMm

(r + d)2
≈ −GMm

r2
(1−2d/r) = −GMmu2(1−2du),

οπότε u′′+(1+2d/P )u = 1/P , P = L2/GMm2, με λύση

u =
1 + ε cos[(1 + d/P )ϕ]

P + 2d
, r =

1

u
.

Είναι
1

r1
=

1 + ε

P + 2d
και

1

r2
=

1− ε

P + 2d
, οπότε

2

P + 2d
=

1

r1
+

1

r2
⇔ P+2d =

2r1r2
r1 + r2

και ε =
r2 − r1
r1 + r2

. Επομένως η

εξίσωση τροχιάς είναι r =
2r1r2
r1+r2

1 + r2−r1
r1+r2

cos[(1 + d r1+r2
2r1r2

)ϕ]
.

Τα περίκεντρα αντιστοιχούν σε (1 + d r1+r2
2r1r2

)ϕ = 2kπ ⇔
ϕ ≈ 2kπ(1 − d r1+r2

2r1r2
) και απέχουν γωνιακή απόσταση

−πd
r1 + r2
r1r2

.
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Τα ίδια προκύπτουν και από Veff(r) =
L2

2mr2
− GMm

r + d
≈ L2

2mr2
− GMm

r
(1 − d/r) ≈ L2

K
2mr2

− GMm

r
με

LK =
√
L2 + 2GMm2d ≈ L(1+d/p), οπότε ϕ̇ =

L

mr2
=

LK(1− d/p)

2mr2
, δηλ. ϕ = ϕK(1−d/p) όπου ϕK είναι

η γωνία για το πρόβλημα Kepler για το οποίο Veff(r) =
L2

K
2mr2

− GMm

r
, ϕ̇K =

LK

mr2
.



2. Το σώμα έχει στροφορμή με μέτρο L = mv∞b =
√
2 και ενέργεια E =

mv2∞
2

+ V |r=∞ = e+ 1.

(α) Η Veff =
L2

2mr2
+ V =

1

r2
+ e1/r είναι φθίνουσα, μεταβάλλεται από Veff|r=0+ = +∞ σε Veff|r=∞ = 1.

Η ελάχιστη απόσταση rmin είναι η μόνη λύση της εξίσωσης Veff(r) = E ⇔ 1

r2
+ e1/r = e+ 1, δηλ. rmin = 1.

(β) u′′ + u = − mf

L2u2
με f = −dV

dr
=

1

r2
e1/r = u2eu, δηλ. u′′ + u = −1

2
eu. Πρέπει να επιλυθεί με αρχικές

συνθήκες u = 0 και u′ =
−ṙ/r2

ϕ̇
=

mv∞
L

=
1

b
=

√
e αν επιλέξουμε άξονες ώστε η στροφορμή να είναι

θετική, π.χ. το σώμα έχει αρχικά x = +∞ και y = +b, οπότε αρχικά ϕ = 0+ και η ϕ αυξάνει με το χρόνο.
Μπορούμε να ολοκληρώσουμε μία φορά την εξίσωση αν πολλαπλασιάσουμε με u′ (ισοδύναμα αν γράψουμε

u′′ = u′du
′

du
). Έτσι u′u′′ + u′u = −1

2
u′eu ⇔ u′2 + u2 + eu = σταθερά = e + 1 από αρχικές συνθήκες. Δηλ.

ισχύει u′2 + u2 + eu = e+ 1.
Η διαφορική αυτή εξίσωση πρώτης τάξης θα μπορούσε να βρεθεί κατευθείαν από το ολοκλήρωμα ενέργειας
mṙ2

2
+ Veff(r) = E θέτοντας ṙ = ϕ̇

dr

dϕ
=

L

mr2
dr

dϕ
= −L

m
u′. Έτσι προκύπτει u′2 + u2 + eu = e+ 1.

Η εξίσωση πρώτης τάξης που προέκυψε είναι χωριζομένων μεταβλητών και ανάγεται σε ολοκλήρωμα. Μέχρι
το σώμα να φτάσει στο rmin είναι u′ > 0 (αφού L > 0), οπότε u′ = +

√
e+ 1− u2 − eu. Χωρίζοντας μετα-

βλητές και ολοκληρώνοντας έχουμε εξίσωση τροχιάς
∫ 1/r

0

du√
e+ 1− u2 − eu

= ϕ.

Ένας άλλος τρόπος να βρεθεί η σχέση αυτή είναι να

ολοκληρώσουμε την dϕ =
ϕ̇

ṙ
dr. Με ϕ̇ =

L

mr2
=

√
2

r2
και

ṙ = −
√

2

m
[E − Veff(r)] = −

√
2

√
e+ 1− 1

r2
− e1/r

(αρνητική όσο το σώμα πλησιάζει προς το κέντρο), δίνει∫ ϕ

0

dϕ =

∫ r

∞

dr

−r2
√

e+ 1− 1

r2
− e1/r

.

Με αλλαγή μεταβλητής r = 1/u καταλήγουμε στη σχέση

που βρέθηκε και πριν ϕ =

∫ 1/r

0

du√
e+ 1− u2 − eu

.

Η αριθμητική ολοκλήρωση δίνει ότι μέχρι να φτάσει στο
rmin = 1 διαγράφεται γωνία ϕ ≈ 58◦. Άλλη τόση
γωνία διαγράφεται μέχρι το σώμα να απομακρυνθεί από
το rmin = 1 στο άπειρο.
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3. Το μέτρο της ακτινικής ταχύτητας |ṙ| γίνεται μέγιστο όταν η Veff(r) γίνεται ελάχιστη (αφού
mṙ2

2
+Veff(r) =

σταθερά). Είναι Veff(r) =
L2

2mr2
− GMm

r
και

dVeff

dr
= 0 ⇔ L2

mr3
=

GMm

r2
⇔ r =

L2

GMm2
.

Αλλιώς: r =
p

1 + ε cosϕ
⇒ ṙ =

dr

dϕ
ϕ̇ =

Lε

mp
sinϕ, άρα η |ṙ| γίνεται μέγιστη για ϕ = ±π/2, όταν r = p.

4. Σε κάθε ώθηση η ενέργεια αυξάνεται κατά
mv20
2

(αφού∆v⃗⊥v⃗αρχική οπότε v2τελική = v2αρχική+ v20). Αφού

αρχικά E = −GMm

2r0
η ενέργεια γίνεται θετική μετά από n ωθήσεις με −GMm

2r0
+ n

mv20
2

≥ 0 ⇔ n ≥ GM

r0v20
.

Επομένως το πλήθος των απαιτούμενων ωθήσεων ισούται με τον ακέραιο n ∈
[
GM

r0v20
,
GM

r0v20
+ 1

)
.


