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1. Έστω σώμα μάζας m αφήνεται να εκτελέσει ελεύθερη πτώση από ύψος H υπό την επίδραση του βάρους
τουmg, το οποίο θεωρείται σταθερό, οπότε φτάνει στο έδαφος με κινητική ενέργεια T (0) = mgH .
Θέλουμε να βρούμε πόσο αλλάζει η κινητική ενέργεια με την οποία θα φτάσει το σώμα στο έδαφος αν του
ασκείται και «μικρή» αντίσταση μέτρου λsνT , όπου s το διάστημα που έχει διανύσει κάθε στιγμή, T η στιγμι-
αία κινητική ενέργεια και λ, ν θετικές σταθερές.
(Η εξάρτηση της αντίστασης από τη θέση αντιστοιχεί σε μεταβολή της πυκνότητας με το ύψος. Υποτίθεται ότι
το σώμα αφήνεται από την κορυφή της ατμόσφαιρας όπου η πυκνότητα είναι μηδενική και καθώς πλησιάζει
το έδαφος η πυκνότητα – άρα και η αντίσταση – αυξάνεται.)
(α) Βρείτε διαστατικά τη ζητούμενη αλλαγή T (1) στο έδαφος.
Υπόδειξη: Είναι ανάλογη του λ (γραμμική εξάρτηση) και εξαρτάται επίσης από ταm, g, H .
(β) Τι σημαίνει «μικρή» αντίσταση; Δηλ. ποια αδιάστατη παράμετρος, ανάλογη του λ, είναι μικρός αριθμός;
(γ) Βρείτε διαταρακτικά τη ζητούμενη αλλαγή T (1) στο έδαφος, με έναν από τους ακόλουθους τρόπους.
(γ1) Αφού μας ενδιαφέρει η σχέση κινητικής ενέργειας με τη θέση, δείξτε ότι η εξίσωση που συνδέει αυτά τα
δύο μεγέθη είναι

dT

ds
= mg − λsνT , λύστε την διαταρακτικά και βρείτε την T (1) στο έδαφος.

(γ2) Βρείτε προσεγγιστικά το έργο της αντίστασης και συνδέστε το με την αλλαγή T (1).

(γ3) Λύστε διαταρακτικά το νόμο Νεύτωναms̈ = mg−λsν
mṡ2

2
για να βρείτε τη θέση συναρτήσει του χρόνου,

μετά βρείτε διαταρακτικά το χρόνο πτώσης, και τέλος την ταχύτητα και την κινητική ενέργεια στο έδαφος.

2. Σώμα μοναδιαίας μάζας βρίσκεται το χρόνο t = 0 στην αρχή των αξόνων r⃗|t=0 = 0 και έχει αρχική ταχύτητα
v⃗|t=0 = x̂+ ŷ + ẑ. Στο σώμα ασκείται δύναμη F⃗ = −xx̂− 2κ

√
1− vyŷ − λtẑ με αποτέλεσμα να επιστρέψει

στην αφετηρία.
(α) Ποιες οι τιμές των σταθερών κ, λ;
(β) Σχεδιάστε τις προβολές της τροχιάς στο επίπεδο xy και στο επίπεδο yz.

3. Ο λόφος του σχήματος έχει κωνικό σχήμα θ = arcsin
3

π
σε

σφαιρικές συντεταγμένες. Ένας βούβαλος ξεκινά από την κορυφή
το χρόνο t = 0 και κατεβαίνει το λόφο με σταθερή ταχύτητα U
ακολουθώντας την ευθύγραμμη πορεία ϕ = 0. Το χρόνο t = 0
ξεκινά και ένα αυτοκίνητο από την κορυφή και κατεβαίνει με
ταχύτητα σταθερού μέτρου v ακολουθώντας το δρόμο που έχει
εξίσωση r = λϕ με λ σταθερά.
Για ποιες τιμές του λόγου

v

U
θα συγκρουσθούν;

Υπόδειξη: Η έκφραση της ταχύτητας σε σφαιρικές συντεταγμένες είναι v⃗ = ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂.

Δίνεται
∫ ξ

0

√
1 + ξ2 dξ =

1

2

[
ξ
√

1 + ξ2 + ln
(
ξ +

√
1 + ξ2

)]
.



Λύσεις

1. (α) Οι διαστάσεις του λ είναι [λ] =
δύναμη

μήκοςν × ενέργεια
και αφού η ενέργεια έχει μονάδες δύναμη επί μήκος

(έργο), είναι [λ] =
1

μήκοςν+1 . (Το ίδιο από [λ] =
δύναμη

μήκοςν × ενέργεια
=

[M ][L]/[T ]2

[L]ν × [M ][L]2/[T ]2
=

1

[L]ν+1
.)

Η σχέση T (1) ∝ λmαgβHγ δίνει [M ]
[L]2

[T ]2
=

1

[L]ν+1
[M ]α

(
[L]

[T ]2

)β

[L]γ , δηλ. 2 = −ν − 1 + γ + β από μήκη,

1 = α από μάζες και −2 = −2β από χρόνους. Επομένως α = 1, β = 1, γ = ν + 2 και η ζητούμενη σχέση
είναι T (1) ∼ −λmgHν+2 (αρνητική διότι η αντίσταση αφαιρεί ενέργεια).
(Το ίδιο από τη σκέψη ότι το mgH έχει μονάδες ενέργειας και το λHν+1 είναι αδιάστατο, οπότε η έκφραση
της ενέργειας που είναι ευθέως ανάλογη του λ είναι T (1) ∝ λHν+1mgH .)
(β) Αφού οι μονάδες του λ βρέθηκαν να είναι 1/[L]ν+1 η αδιάστατη παράμετρος που δημιουργούν τα δεδομένα
του προβλήματος είναι λHν+1 και πρέπει να είναι μικρή ώστε η αντίσταση να θεωρείται «μικρή».
Το αποτέλεσμα αυτό προκύπτει και από τη σύγκριση των δυνάμεων. H αντίσταση πρέπει να είναι πολύ μικρό-
τερη του βάρους για να θεωρείται «μικρή», δηλ. πρέπει σε όλη την κίνηση να ισχύει λsνT ≪ mg. Η μέγιστη
τιμή της αντίστασης είναι λHν × mgH (στο έδαφος όπου s = H και T ≲ mgH). Επομένως η αντίσταση
μπορεί να θεωρείται «μικρή» αν λHν ×mgH ≪ mg ⇔ λHν+1 ≪ 1.
(γ1) Έστω κατακόρυφος άξονας s με αρχή την αρχική θέση του σώματος και φορά προς τα κάτω. Σε αυτό το
σύστημα r⃗ = sŝ, v⃗ = vŝ με v = ṡ > 0, a⃗ = v̇ŝ, g⃗ = gŝ, F⃗a = −λsνT ŝ (αντίρροπη της ταχύτητας) και ο νόμος
του Νεύτωνα δίνειmv̇ = mg − λsνT .
Για να βρούμε τη σχέση ταχύτητας–θέσης (και συνεπώς τη σχέση κινητικής ενέργειας–θέσης) θέτουμε v̇ =
dv

ds
ṡ =

dv

ds
v =

d(v2/2)

ds
. Θέτοντας επίσης v2 = 2T/m ο νόμος Νεύτωνα δίνει την διαφορική εξίσωση

dT

ds
= mg − λsνT .

Με λ = 0 έχουμε την παραπάνω εξίσωση σε μηδενική τάξη
dT (0)

ds
= mg και ολοκληρώνοντας βρίσκουμε την

αδιατάρακτη λύση
∫ T (0)

0

dT (0) =

∫ s

0

mgds ⇔ T (0) = mgs.

Θεωρώντας T = T (0)+T (1)+. . . όπου η διόρθωση T (1) είναι ανάλογη του λ, και κρατώντας όρους μέχρι τάξης
λ στην εξίσωση (πιο αυστηρά τάξης λHν+1 αφού αυτή είναι η μικρή αδιάστατη παράμετρος όπως δείξαμε,

αλλά πρακτικά αρκεί να σκεφτόμαστε ότι οι όροι αυτοί είναι ανάλογοι του λ), προκύπτει
d(T (0) + T (1))

ds
=

mg−λsνT (0). ΑντικαθιστώνταςT (0) = mgs βρίσκουμε
dT (1)

ds
= −λmgsν+1 και ολοκληρώνοντας

∫ T (1)

0

dT (1) =

−
∫ s

0

λmgsν+1ds ⇔ T (1) = − 1

ν + 2
λmgsν+2. (Η αρχική τιμή της διόρθωσης T (1) είναι μηδενική γιατί η

αρχική συνθήκη για την T |s=0 ικανοποιείται από την αδιατάρακτη λύση.)
Επομένως T ≈ mgs− 1

ν + 2
λmgsν+2 και η μεταβολή που προκαλεί η αντίσταση στην κινητική ενέργεια που

έχει το σώμα στο έδαφος (s = H) είναι T (1) = − 1

ν + 2
λmgHν+2.

(Η διαστατική ανάλυση έδωσε το ίδιο, εκτός από τον αριθμητικό παράγοντα
1

ν + 2
.)

Αν συνεχίσουμε την εύρεση των επόμενων διορθώσεων, από τους όρους τάξης λn στην διαφορική εξίσωση με

n ≥ 1 βρίσκουμε
dT (n)

ds
= −λsνT (n−1). Με διαδοχικές ολοκληρώσεις έχουμεT (2) =

λ2mgs2ν+3

(ν + 2)(2ν + 3)
, T (3) =



−λ3mgs3ν+4

(ν + 2)(2ν + 3)(3ν + 4)
, . . . , T (n) =

(−λ)nmgsnν+n+1

n∏
k=0

(kν + k + 1)

(σχέση που μπορεί να αποδειχθεί και με τη μέθοδο

της επαγωγής), οπότε η γενική λύση σε μορφή σειράς ως προς λ είναι T = mgs

∞∑
n=0

(−λsν+1)n

n∏
k=0

(kν + k + 1)

.

(Παρατηρούμε ότι κάθε όρος T (n) αφενός προέκυψε ανάλογος του λn και αφετέρου η παράμετρος λ εμφανί-
ζεται αυτόματα πολλαπλασιασμένη με μήκος στην ν + 1 ώστε ο όρος T (n) να έχει μονάδες ενέργειας.
Αξίζει επίσης να σχολιαστεί ότι το τελικό αποτέλεσμα δεν θα άλλαζε αν εκφράζαμε εξ αρχής την κινητική

ενέργεια σαν σειρά ως προς λ, δηλ. T =
∞∑
n=0

λnfn(s) και ψάχναμε τις συναρτήσεις fn(s), ούτε αν χρησιμο-

ποιούσαμε την αδιάστατη μικρή παράμετρο, δηλ. γράφαμε T =
∞∑
n=0

(λHν+1)nfn(s) και ψάχναμε τις συναρ-

τήσεις fn(s). Όλες αυτές οι μορφές είναι εντελώς ισοδύναμες με την T =
∞∑
n=0

T (n)(s) που χρησιμοποιήσαμε,

θεωρώντας ότι κάθε όρος T (n)(s) είναι ανάλογος του λn.)

Μία άλλη προσπάθεια να βρεθεί η ακριβής λύση είναι να απλοποιήσουμε την εξίσωση
dT

ds
+ λsνT = mg με

την αντικατάσταση T = f(s)e−
∫
λsνds = f(s)e−λ sν+1

ν+1 , οπότε προκύπτει
df

ds
= mgeλ

sν+1

ν+1 . Ολοκληρώνοντας

και χρησιμοποιώντας την αρχική συνθήκη f |s=0 = T |s=0 = 0 έχουμε f = mg

∫ s

0

eλ
sν+1

ν+1 ds και μπορούμε να

γράψουμε την ακριβή λύση ως T = mg

∫ s

0

e−λ
sν+1−(s′)ν+1

ν+1 ds′. Το ολοκλήρωμα δεν υπολογίζεται αναλυτικά
για τυχαία τιμή του ν, αλλά η έκφραση μπορεί να χρησιμοποιηθεί για να αναπτυχθεί η λύση σε δυνάμεις του λ,

βάσει του αναπτύγματος ex =
∞∑
n=0

xn

n!
. Προκύπτει T = mg

∞∑
n=0

(−λ)n

n!(ν + 1)n

∫ s

0

[
sν+1 − (s′)ν+1

]n
ds′. Αλλά-

ζοντας μεταβλητή s′ = sξ1/(ν+1) έχουμε T = mgs
∞∑
n=0

(−λsν+1)n

n!(ν + 1)n+1

∫ 1

0

ξ−ν/(ν+1)(1 − ξ)ndξ. Το τελευταίο

ολοκλήρωμα μπορεί να εκφραστεί μέσω των συναρτήσεων βήτα και γάμμα για τις οποίες ισχύει B(z1, z2) =∫ 1

0

ξz1−1(1 − ξ)z2−1dξ =
Γ(z1)Γ(z2)

Γ(z1 + z2)
. Έτσι βρίσκουμε T = mgs

∞∑
n=0

(−λsν+1)n

n!(ν + 1)n+1

Γ

(
1

ν + 1

)
Γ(n+ 1)

Γ

(
1

ν + 1
+ n+ 1

) .

Χρησιμοποιώντας τις ιδιότητες Γ(n + 1) = n! και Γ(z + 1) = zΓ(z), οπότε Γ(z + n + 1) = (z + n) · (z +

n − 1) · . . . · zΓ(z) = Γ(z)
n∏

k=0

(z + k), με n φυσικό αριθμό, το αποτέλεσμα μπορεί να γραφεί όπως πριν

T = mgs

∞∑
n=0

(−λsν+1)n

n∏
k=0

(kν + k + 1)

.

(γ2) Η κινητική ενέργεια στο τυχαίο σημείο s ισούται με το άθροισμα του έργου του βάρους mgs και του
έργου της αντίστασης −

∫ s

0

λsνTds, δηλ. T = mgs −
∫ s

0

λsνTds. (Αυτό προκύπτει από το θεώρημα μετα-
βολής της κινητικής ενέργειας, ή ισοδύναμα από την ολοκλήρωση της διαφορικής για την T , γραμμένη σαν
dT = (mg−λsνT )ds, από s = 0 μέχρι το τυχαίο s.) Η αλλαγή δηλ. στην T σε σχέση με την τιμή T (0) = mgs

https://en.wikipedia.org/wiki/Beta_function
https://en.wikipedia.org/wiki/Gamma_function


που θα είχε χωρίς αντίσταση, ισούται με το έργο της αντίστασης. Σε πρώτη τάξη ως προς λ βρίσκουμε T (1) =

−
∫ s

0

λsνT (0)ds και αντικαθιστώντας T (0) = mgs προκύπτει T (1) = −λmg

∫ s

0

sν+1ds = − 1

ν + 2
λmgsν+2.

Αν συνεχίσουμε την εύρεση των επόμενων διορθώσεων, από τους όρους τάξης λn με n ≥ 1 προκύπτει
T (n) = −

∫ s

0

λsνT (n−1)ds και τελικά η σειρά που βρέθηκε πριν.

(γ3) Ο νόμος Νεύτωνα s̈ = g−λsν
1

2
ṡ2 σε μηδενική τάξη (για λ = 0) δίνει s(0) =

gt2

2
. Σε πρώτη τάξη ως προς

λ, θέτοντας s ≈ s(0) + s(1), βρίσκουμε
d2s(0)

dt2
+

d2s(1)

dt2
= g − λ[s(0)]ν

1

2

[
ds(0)

dt

]2
⇔ d2s(1)

dt2
= −λ

gν+2t2ν+2

2ν+1
.

Ολοκληρώνοντας δύο φορές προκύπτει s(1) = −λ
gν+2t2ν+4

2ν+1(2ν + 3)(2ν + 4)
.

Επομένως σε κάθε χρόνο s ≈ gt2

2
− λ

gν+2t2ν+4

2ν+1(2ν + 3)(2ν + 4)
και (παραγωγίζοντας) v ≈ gt− λ

gν+2t2ν+3

2ν+1(2ν + 3)
.

Ο χρόνος στον οποίο s = H είναι σε μηδενική τάξη t(0) =
√

2H/g, ενώ κρατώντας μέχρι πρώτης τάξης όρους

είναι t ≈ t(0) + t(1) με H ≈ g(t(0) + t(1))2

2
− λ

gν+2[t(0)]2ν+4

2ν+1(2ν + 3)(2ν + 4)
. Κρατώντας όρους μέχρι πρώτης τάξης

στο (t(0) + t(1))2 ≈ [t(0)]2 + 2t(0)t(1) βρίσκουμε t(1) ≈ λ
gν+1[t(0)]2ν+3

2ν+1(2ν + 3)(2ν + 4)
.

Αντικαθιστώντας στην έκφραση της ταχύτητας βρίσκουμε την ταχύτητα με την οποία φτάνει το σώμα στο

έδαφος v ≈ g(t(0)+t(1))−λ
gν+2[t(0)]2ν+3

2ν+1(2ν + 3)
= gt(0)−λ

gν+2[t(0)]2ν+3

2ν+1(2ν + 4)
. Τέλος, αντικαθιστώντας στην έκφραση της

κινητικής ενέργειας και αγνοώντας όρους τάξης λ2 βρίσκουμε T =
mv2

2
≈ m

2

{
gt(0) − λ

gν+2[t(0)]2ν+3

2ν+1(2ν + 4)

}2

≈

m

2

{
g2[t(0)]2 − 2λ

gν+3[t(0)]2ν+4

2ν+1(2ν + 4)

}
= mgH − 1

ν + 2
λmgHν+2.

2. (α) Από x̂ συνιστώσα του νόμου Νεύτωνα ẍ = −x, δηλ. εξίσωση αρμονικού ταλαντωτή με λύση x =
A sin t + B cos t. Από αρχικές συνθήκες x|t=0 = 0, ẋ|t=0 = 1 βρίσκουμε τις σταθερές B = 0, A = 1 και
τελικά x = sin t.
Από ẑ συνιστώσα του νόμουΝεύτωνα z̈ = −λt. Ολοκληρώνοντας δύο φορές βρίσκουμε

∫ ż

1

dż = −
∫ t

0

λtdt ⇔

ż = 1− λ

2
t2 και

∫ z

0

dz =

∫ t

0

(
1− λ

2
t2
)
dt ⇔ z = t− λ

6
t3.

Η συντεταγμένη z μηδενίζεται για t =

√
6

λ
(αυτή είναι η μόνη θετική ρίζα και υπάρχει εφόσον λ > 0). Για να

μηδενίζεται ταυτόχρονα και η x πρέπει
√

6

λ
= nπ, δηλ. λ =

6

n2π2
, n = 1, 2, 3, . . .

Από ŷ συνιστώσα του νόμου Νεύτωνα v̇y = −2κ
√
1− vy. Αυτή είναι μια διαφορική εξίσωση χωριζομένων

μεταβλητών που δίνει
dvy√
1− vy

= −2κdt. Ολοκληρώνοντας −2
√

1− vy = −2κt+C. Από αρχική συνθήκη

vy|t=0 = 1 βρίσκουμε τη σταθερά C = 0 και άρα
√

1− vy = κt. Προκύπτει αφενός ότι η σταθερά κ είναι

θετική και αφετέρου ẏ = 1−κ2t2. Ολοκληρώνοντας την τελευταία
∫ y

0

dy =

∫ t

0

(1−κ2t2)dt ⇔ y = t− κ2

3
t3.

Η συντεταγμένη y μηδενίζεται για t =

√
3

κ
(αυτή είναι η μόνη θετική ρίζα). Για να μηδενίζεται ταυτόχρονα

και η x = sin t, αλλά και η z, πρέπει
√
3

κ
= nπ ⇔ κ =

√
3

nπ
(με n τον ίδιο ακέραιο που δίνει και το λ).

Η δοσμένη δύναμη −2κ
√

1− vy δεν θα μπορούσε να υπάρξει στη φύση για vy > 1 (δεν δίνει πραγματικό



αριθμό), αλλά ούτε για vy = 1, διότι η έκφρασή της δεν είναι αναλυτική συνάρτηση της ταχύτητας στην τιμή
αυτή όπου απειρίζεται η παράγωγος. Επειδή η αρχική ταχύτητα είναι η ανώμαλη τιμή vy = 1, η αφύσικη (για
vy ≥ 1) δοσμένη δύναμη δημιουργεί απροσδιοριστία στη λύση. Μιας και v̇y|vy=1 = 0 θα έλεγε κανείς ότι δεν
υπάρχει αίτιο αλλαγής της ταχύτητας, άρα θα παραμείνει vy = 1 σε κάθε χρόνο. Μπορεί όμως ένα μέγεθος να
προσδιοριστεί με άπειρη ακρίβεια, δηλ. η vy να είναι ακριβώς μονάδα; Αν είναι απειροστά μικρότερη τότε η
λύση θα είναι η vy = 1−κ2t2 που βρέθηκε παραπάνω. (Μια δεκτή φυσική δύναμη θα έπρεπε να δίνει πραγμα-
τική τιμή και για ταχύτητα απειροστά μεγαλύτερη από μονάδα, κάτι που δεν συμβαίνει εδώ λόγω της ρίζας.)
Γενικότερα, η διαφορική εξίσωση v̇y = −2κ

√
1− vy έχει άπειρες λύσεις που ικανοποιούν την αρχική συνθήκη

vy|t=0 = 1, τις vy =
{

1 αν 0 ≤ t ≤ ts ,
1− κ2(t− ts)

2 αν t ≥ ts ,

}
για οποιοδήποτε χρόνο ts. Καθεμία περιγράφει την

περίπτωση όπου η ταχύτητα παραμένει ακριβώς μονάδα μέχρι το χρόνο ts, και τότε μειώνεται απειροστά, κάτι
που συνεπάγεται την επακόλουθη μείωσή της λόγω της δράσης της μη-μηδενικής δύναμης. Η θέση βρίσκεται

εύκολα ολοκληρώνοντας και προκύπτει y =

{
t αν 0 ≤ t ≤ ts ,
t− κ2(t− ts)

3/3 αν t ≥ ts .

}
Αν ts ∈ [0, nπ) το σώμα

γυρίζει στην αρχή σε χρόνο nπ αρκεί να ισχύει κ =

√
3nπ

(nπ − ts)3
.

Υπάρχουν και άλλα παραδείγματα προβλημάτων Κλασικής Μηχανικής με μη-μοναδική χρονική εξέλιξη, π.χ.
αυτά που αναφέρουν οι Bhat & Bernstrein 1997 στο άρθρο τους https://doi.org/10.1007%2FBF02435747
ή ο «θόλος τουΝόρτον» https://sites.pitt.edu/~jdnorton/goodies/Dome/ (https://en.wikipedia.
org/wiki/Norton%27s_dome). Σε όλες αυτές τις περιπτώσεις οι απροσδιοριστίες δεν σχετίζονται με εγγενείς
ιδιότητες των νόμων της Κλασικής Φυσικής (που είναι ντετερμινιστική), αλλά οφείλονται στη χρήση μη-
αναλυτικών συναρτήσεων στην μοντελοποίηση. Τα ανώμαλα σημεία αυτών των συναρτήσεων και οι σχετικοί
απειρισμοί είναι τεχνητοί, δεν υπάρχουν στη φύση. Πιο προσεκτική μοντελοποίηση αίρει όλα τα παράδοξα.

(β) Έστω η θέση σε κάθε χρόνο είναι
{
x = sin t , y = z = t− t3

n2π2

}
όπου n κάποιος θετικός ακέραιος.

Η συντεταγμένη x = sin t ξεκινά από το μηδέν και μηδενίζεται άλλες n φορές μέχρι το χρόνο t = nπ που το
σώμα γυρνά στην αφετηρία (ο n-οστός μηδενισμός είναι η επιστροφή).

Η συντεταγμένη y = t− t3

n2π2
ξεκινά από το μηδέν, αυξάνεται όσο ẏ > 0 ⇔ t <

nπ√
3
και κατόπιν μειώνεται

μέχρι το σώμα να φτάσει στην αφετηρία. Αποκτά μέγιστη τιμή το χρόνο μηδενισμού της ταχύτητας t =
nπ√
3
,

ίση με ymax =
2nπ

3
√
3
.

Ο συνδυασμός δίνει τις τροχιές του σχήματος.

1
x

1.21

y

n = 1

-1 1
x

2.42

y

n = 2

-1 1
x

3.63

y

n = 3

-1 1
x

4.84

y

n = 4

-1 1
x

6.05

y

n = 5

-1 1
x

7.26

y

n = 6

Η προβολή της τροχιάς στο επίπεδο yz είναι το ευθύγραμμο τμήμα y = z από την αρχή των αξόνων ως το
ακραίο σημείο ymax = zmax =

2nπ

3
√
3
.

https://doi.org/10.1007%2FBF02435747
https://sites.pitt.edu/~jdnorton/goodies/Dome/
https://en.wikipedia.org/wiki/Norton%27s_dome
https://en.wikipedia.org/wiki/Norton%27s_dome


3. Ο βούβαλος έχει θέση σε κάθε χρόνο
{
rB = rB(t) , θB = arcsin

3

π
, ϕB = 0

}
και άρα η ταχύτητά του είναι

v⃗B = ṙB r̂B. Αφού vB = U και rB|t=0 = 0 είναι rB(t) = Ut.

Το αυτοκίνητο έχει θέση σε κάθε χρόνο
{
rA = λϕA(t) , θA = arcsin

3

π
, ϕA = ϕA(t)

}
και άρα η ταχύτητά του

είναι v⃗A = ṙAr̂A+rAθ̇Aθ̂A+rA sin θAϕ̇Aϕ̂A = λϕ̇Ar̂A+λϕA
3

π
ϕ̇Aϕ̂A. Αφού |v⃗A| = v είναιλϕ̇A

√
1 +

(
3ϕA

π

)2

=

±v. Κρατάμε το θετικό πρόσημο αφού λϕ̇A = ṙA και η απόσταση rA αυξάνεται με το χρόνο. Η διαφο-

ρική αυτή εξίσωση είναι χωριζομένων μεταβλητών και δίνει λ
∫ ϕA

0

dϕA

√
1 +

(
3ϕA

π

)2

= v

∫ t

0

dt (αρχικά

ϕA = rA = 0). Αλλάζοντας μεταβλητή ξ =
3ϕA

π
έχουμε

πλ

3

∫ 3ϕA/π

0

√
1 + ξ2 dξ = vt και χρησιμοποιώντας το

δοσμένο ολοκλήρωμα προκύπτει
πλ

6

3ϕA

π

√
1 +

(
3ϕA

π

)2

+ ln

3ϕA

π
+

√
1 +

(
3ϕA

π

)2
 = vt. Η σχέση

αυτή προσδιορίζει πλήρως την ϕA(t) και άρα τη θέση του αυτοκινήτου σε κάθε χρόνο.

Για να συγκρουσθούν τα δύο σώματα πρέπει σε κάποια χρονική στιγμή να ισχύει ϕA = 2nπ με ακέραιο n

και rA = rB ⇔ 2nπλ = Ut (αφού rA = λϕA = 2nπλ). Αντικαθιστώντας ϕA = 2nπ και t =
2nπλ

U
στην παραπάνω σχέση που δίνει την ϕA(t) βρίσκουμε ότι η συνθήκη σύγκρουσης μετά από |n| στροφές του

αυτοκινήτου στο δρόμο είναι
v

U
=

√
1 + 36n2

2
+

ln
(
6n+

√
1 + 36n2

)
12n

, |n| = 1, 2, 3, . . . (ο ακέραιος n
έχει το πρόσημο του λ, αλλά η έκφραση του λόγου v/U είναι άρτια ως προς n). Οι αριθμητικές τιμές είναι
v

U
≈ 3.25, 6.15, 9.11, 12.09, 15.08, . . . (σε μεγάλα |n| ο λόγος προσεγγίζει την τιμή 3|n|).

Το αποτέλεσμα είναι ανεξάρτητο της σταθεράς λ και της ταχύτητας U . Αυτό ήταν αναμενόμενο, διότι η
σταθερά λ δίνει μόνο κλίμακα μήκους στο πρόβλημα και όμοια η σταθερά U δίνει κλίμακα χρόνου (θα
μπορούσαν να θεωρηθούν μονάδα κάτι που θα σήμαινε ότι μετράμε μήκη σε μονάδες λ και χρόνους σε μονάδες
λ/U ). Συνεπώς δεν επηρεάζουν τον ζητούμενο αδιάστατο λόγο ταχυτήτων.


