
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής
Εξετάσεις στη Μηχανική Ι, 22 Σεπτεμβρίου 2025
Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία

Θέμα 1o:
Σωματίδιο μάζαςm = 1 κινείται σε μια διάσταση.

Για τα πρώτα 2 ερωτήματα θεωρήστε ότι η δύναμη που ασκείται στο σωματίδιο είναι αυτή ενός αρμονικού
ταλαντωτή με συχνότητα ω.

(α) Γράψτε την εξίσωση κίνησης του σωματιδίου (όχι τη λύση).

(β) Αν το σωματίδιο αυτό έχει αρχικές συνθήκες x(0) = x0, u(0) = u0, αφού γράψετε τη συνάρτηση
που περιγράφει την κίνησή του, βρείτε το όριο αυτής στην περίπτωση που ω → 0 και εξηγήστε αν το
αποτέλεσμα αυτό είναι αναμενόμενο βάσει του ερωτήματος (α).

Θεωρήστε στη συνέχεια ότι η δύναμη που ασκείται στο σωματίδιο είναι άγνωστη.

(γ) Αν η ταχύτητα της παρατηρούμενης κίνησης του σωματιδίου δίνεται από μια φθίνουσα συνάρτηση του
x της μορφής u(x), βρείτε τη δυναμική ενέργεια V (x) που περιγράφει το πεδίο δύναμης που ασκείται
στο σωματίδιο.

(δ) Για u(x) =
√
1− x2 (με x ∈ [0, 1]) βρείτε ποια είναι η δύναμη F (x) που ασκείται στο σωματίδιο και

πόσο χρόνο θα χρειαστεί να φτάσει αυτό στο x = 1 ξεκινώντας από το x(t = 0) = 0. Επαναλάβατε τις
απαντήσεις σας αν u(x) = 1− x (με x ∈ [0, 1]).

Θέμα 2o:
Σημειακό σώμα μάζαςm κινείται στο εσωτερικό λείου μπολ με κυκλικό παρα-
βολοειδές σχήμα, δηλ. σε επιφάνεια με εξίσωση z = λϖ2 σε κυλινδρικές
συντεταγμένες, όπου λ θετική σταθερά και z ο κατακόρυφος άξονας με φορά
προς τα πάνω (η επιτάχυνση της βαρύτητας είναι g⃗ = −gẑ).
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(α) Αν αφήσουμε ακίνητο το σώμα από σημείο του μπολ με ακτίνα ϖi με ποια ταχύτητα vi θα φτάσει στο
κατώτερο σημείο ϖ = 0;

(β) Αν από το ίδιο σημείο του μπολ (με ακτίναϖi) βάλλουμε το σώμα οριζόντια με ταχύτητα v⃗i = viϕ̂ (ίδιου
μέτρου με αυτή που βρέθηκε στο προηγούμενο ερώτημα) δείξτε ότι θα εκτελέσει οριζόντια κυκλική
κίνηση.

(bonus) Η τυχαία κίνηση της μάζας γίνεται μεταξύ των ακραίων υψών z1, z2 (και των αντίστοιχων ακτίνων ϖ1,
ϖ2), όπου η ταχύτητα είναι οριζόντια με μέτρο v1, v2, αντίστοιχα. Δείξτε ότι η κινητική ενέργειαmv21/2
στο σημείο 1 ισούται με την δυναμική ενέργειαmgz2 στο σημείο 2 και αντίστροφα.

Υπόδειξη: Δείξτε πρώτα ότι, χρησιμοποιώντας την διατήρηση της ενέργειας E και της ẑ στροφορμής Lz,

η κίνηση ανάγεται σε μονοδιάστατη με ολοκλήρωμα
m

2
(1 + 4λ2ϖ2)ϖ̇2︸ ︷︷ ︸

Teff

+
L2
z

2mϖ2
+mgλϖ2︸ ︷︷ ︸

Veff(ϖ)

= E. Κατόπιν

σχεδιάστε την γραφική παράσταση της Veff(ϖ).



Θέμα 3o:
Δορυφόρος κινείται σε κυκλική τροχιά ακτίναςR = 4R⊕ γύρω από τη Γη. Ξαφνικά διασπάται σε δύο τμήματα
με μάζες m1 και m2. Αμέσως μετά τη διάσπαση τα δύο τμήματα κινούνται ομόρροπα, αλλά με διαφορετικές
ταχύτητες, τέτοιες ώστε τοm1 μόλις που διαφεύγει του βαρυτικού πεδίου της Γης.

(α) Ποια η ταχύτητα του δορυφόρου πριν την διάσπαση;

(β) Ποια η ταχύτητα τουm1 αμέσως μετά την διάσπαση;

(γ) Τι είδους τροχιά διαγράφει τοm2;

Θεωρήστε στη συνέχεια ότι η εκκεντρότητα της τροχιάς τουm2 είναι 1/2.

(δ) Ποιος είναι ο λόγος των μαζώνm2/m1;

(bonus) Σχεδιάστε τις τρεις τροχιές (αρχική του δορυφόρου, τροχιά τουm1, τροχιά τουm2).

Η μάζα της ΓηςM , η ακτίνα της R⊕ και η σταθερά G θεωρούνται γνωστές.
Ταm1,m2 δέχονται μόνο την βαρυτική έλξη από τη Γη (η βαρυτική έλξη μεταξύ τους είναι αμελητέα).

Ίσως χρειαστούν κάποιες από τις σχέσεις V = −k

r
, r =

p

1 + ε cos(ϕ− ϕπ)
, p =

L2

mk
, ε =

√
1 +

2EL2

mk2
.

Θέμα 4o:
Θεωρήστε έναν ομογενή λεπτό σφαιρικό φλοιό ακτίνας R και συνολικής μάζαςM .

(α) Να γραφεί το διάνυσμα της έντασης του βαρυτικού πεδίου στη θέση r μετρούμενη από το κέντρο του
φλοιού.

(β) Αφαιρούμε από τον σφαιρικό φλοιό έναν λεπτό δακτύλιο που καταλαμβάνει τον «Ισημερινό» της σφαίρας,
χωρίς όμως να μετακινήσουμε τα δύο εναπομείναντα ημισφαίρια από την αρχική τους θέση. Αν ο δακτύ-
λιος αυτός καταλαμβάνει εύρος σφαιρικών συντεταγμένων θ ∈ [π/2 − δθ, π/2 + δθ] με δθ << π, τι
ποσοστό μάζας αφαιρέθηκε;

(γ) Υπολογίστε για τον νέο σφαιρικό φλοιό από τον οποίο «λείπει» ο Ισημερινός, το βαρυτικό δυναμικό
κατά μήκος του άξονα z, θεωρώντας ότι αυτός είναι ο άξονας του δακτυλίου και σχεδιάστε το.

(δ) Από ποιο σημείο πάνω στο z εκτός του φλοιού (z(0) = R + η) πρέπει να αφήσουμε ακίνητο ένα
σωματίδιο μάζας m, ώστε αυτό αφού διαπεράσει τον φλοιό να φτάσει οριακά στο κέντρο της σφαίρας;
Θεωρούμε ότι η διάσχιση του φλοιού δεν παρουσιάζει κάποια αντίσταση. [Αν δεν μπορείτε να το υπολο-
γίσετε γράψτε απλώς την εξίσωση που πρέπει να λυθεί.]

(bonus) Δώστε μια προσεγγιστική λύση για το η, που σχετίζεται με την μικρότητα του δθ.



ΛΥΣΕΙΣ:

Θέμα 1o:

(α) ẍ = −ω2x.

(β) x(t) = x0 cos(ωt) + (u0/ω) sin(ωt). Αν ω → 0, x(t) → x0 + u0t, που περιγράφει μια ομαλή κίνηση
αφού στην περίπτωση αυτή η εξίσωση κίνησης (του α) είναι αυτή ελεύθερου σωματιδίου.

(γ) u̇ = u′(x)u(x) = F (x) = −V ′(x). Συνεπώς V (x) = −
∫
u′udx = −u(x)2/2 + C.

(δ) (i) Αν u(x) =
√
1− x2, F (x) = −V ′ = uu′ = −x. Σύμφωνα με το (α) x0 = 0, u0 = 1, οπότε

x(t) = (v0/1) sin(1t) = sin(t). Το σωματίδιο φτάνει στο x = 1 σε χρόνο t = π/2.
(ii) Αν u(x) = 1−x, F (x) = −V ′ = uu′ = −(1−x) = x−1. Τώρα η εξίσωση κίνησης είναι ẍ = x−1
με λύση x(t) = 1+(x0−1) cosh t+v0 sinh t = (1−cosh t)+sinh(t) = 1−e−t. Επομένως θα χρειαστεί
άπειρος χρόνος για να φτάσει το σωματίδιο στο x = 1.

Θέμα 2o:
(α) Οι δυνάμεις που ασκούνται στο σώμα είναι συντηρητικές, το βάρος αντιστοιχεί σε δυναμική ενέργεια
V = mgz, ενώ η αντίδραση ως κάθετη στην κίνηση δεν παράγει έργο. Άρα υπάρχει ολοκλήρωμα ενέργειας
mv2

2
+ V = E. Εξισώνοντας την αρχική ενέργεια 0 +mgzi = mgλϖ2

i με την τελική mv2i /2 + 0 βρίσκουμε
vi = ϖi

√
2gλ.

(β) Το ολοκλήρωμα ενέργειας
mv2

2
+ V = E, αντικαθιστώντας V = mgz και v⃗ = ϖ̇ϖ̂ + ϖϕ̇ϕ̂ + żẑ, με

z = λϖ2 και ż = 2λϖϖ̇, δίνει
m

2
(1 + 4λ2ϖ2)ϖ̇2 +

m

2
ϖ2ϕ̇2 +mgλϖ2 = E = σταθερά.

Αφού δεν υπάρχει αζιμουθιακή δύναμη, η ẑ στροφορμή διατηρείται, δηλ. ισχύειmϖ2ϕ̇ = Lz = σταθερά.
Λύνοντας την τελευταία ως προς ϕ̇ και αντικαθιστώντας στο ολοκλήρωμα ενέργειας, η κίνηση ανάγεται σε

μονοδιάστατη ως προς θέση ϖ με ολοκλήρωμα ενέργειας
m

2
(1 + 4λ2ϖ2)ϖ̇2︸ ︷︷ ︸

Teff

+
L2
z

2mϖ2
+mgλϖ2︸ ︷︷ ︸

Veff(ϖ)

= E .

Tο γράφημα της ενεργού δυναμικής ενέργειας δίνει
τις επιτρεπτές περιοχές κίνησης στην ακτινική
κατεύθυνση μέσω της ανισότητας Veff(ϖ) ≤ E.

Η συνάρτηση Veff(ϖ) =
L2
z

2mϖ2
+ mgλϖ2 έχει

παράγωγο V ′
eff(ϖ) =

2mgλ

ϖ3

(
ϖ4 −ϖ4

c

)
, όπου

ϖc =

(
L2
z

2m2gλ

)1/4

, άρα έχει ελάχιστο στην

ακτίνα ϖc ίσο με Ec = Veff(ϖc) = 2mgλϖ2
c .

ϖϖcϖmin ϖmax

Veff

E

0

Για κάθε ενέργεια E και στροφορμή Lz η επιτρεπτή περιοχή κίνησης είναι ϖmin ≤ ϖ ≤ ϖmax, όπου ϖmin,
ϖmax οι δύο λύσεις της Veff(ϖ) = E. Στα σημεία αυτά η ακτινική ταχύτητα μηδενίζεται (μηδενίζεται και η
κατακόρυφη, αλλά υπάρχει αζιμουθιακή, δηλ. η τροχιά τοπικά είναι οριζόντια κυκλική).
Αν η ενέργεια είναι ίση με την ελάχιστη τιμή Ec = Veff(ϖc) η επιτρεπτή ακτινική περιοχή εκφυλίζεται σε
σημείο, δηλ. η κίνηση είναι κυκλική ακτίναςϖc. (Το ελάχιστο είναι σημείο ισορροπίας μόνο για την ακτινική
κίνηση.) Αυτό συμβαίνει για τις δεδομένες αρχικές συνθήκες, για τις οποίες Lz = mϖivi = mϖ2

i

√
2gλ και

E =
mv2i
2

+mgλϖ2
i = 2mgλϖ2

i , δηλ. πράγματι ισχύουν οι ϖi = ϖc και E = Ec.



Η απάντηση θα μπορούσε να δοθεί μελετώντας τις δυνάμεις, όπως στο βιβλίο Βλαχάκης, Ν. (2024). Κλασική
Μηχανική. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. https://dx.doi.org/10.57713/kallipos-338,
σελ. 101.
(bonus) Στα άκρα ισχύει Veff(ϖ1) = Veff(ϖ2) ⇔

L2
z

2mϖ2
1

+mgλϖ2
1 =

L2
z

2mϖ2
2

+mgλϖ2
2.

Αντικαθιστώντας Lz = mϖ1v1 προκύπτει
mv21
2

(
1− ϖ2

1

ϖ2
2

)
= mgλϖ2

2

(
1− ϖ2

1

ϖ2
2

)
, άρα ισχύει

mv21
2

= mgz2.

Όμοια, αντικαθιστώντας Lz = mϖ2v2 προκύπτει
mv22
2

= mgz1.

Αλλιώς: Οι ακραίες θέσεις αντιστοιχούν σε λύσεις της Veff(ϖ) = E ⇔ mgz2 −Ez+
λL2

z

2m
= 0. Οι λύσεις του

τριωνύμου έχουν άθροισμα z1+z2 =
E

mg
. ΑντικαθιστώνταςE =

mv21
2

+mgz1 προκύπτει
mv21
2

= mgz2. Εναλ-

λακτικά, οι λύσεις του τριωνύμου έχουν γινόμενο z1z2 =
λL2

z

2m2g
. Αντικαθιστώντας L2

z = m2ϖ2
1v

2
1 =

m2z1v
2
1

λ

προκύπτει
mv21
2

= mgz2.

Θέμα 3o:

(α) Πριν την διάσπαση η τροχιά είναι κυκλική, άρα
GM

R2
=

v2

R
⇔ v =

√
GM

R
.

(β) Τοm1 μόλις διαφεύγει, άρα έχει μηδενική ενέργεια, δηλ.
m1v

2
1

2
− GMm1

R
= 0 ⇔ v1 =

√
2GM

R
.

(γ) Από διατήρηση ορμής αφού η ταχύτητα τουm1 αυξάνεται, αυτή τουm2 θα μειώνεται.

m1v1 +m2v2 = (m1 +m2)v ⇔ m1

(√
2GM

R
−
√

GM

R

)
= m2

(√
GM

R
− v2

)
, άρα v2 <

√
GM

R
.

Αφού v2 < v1 και τοm1 μόλις που διαφεύγει, τοm2 εκτελεί ελλειπτική τροχιά.
Αυτό φαίνεται και από το πρόσημο της ενέργειας. Αφού η ταχύτητα του m2 μειώνεται, μειώνεται και η ενέρ-

γειά του, άρα παραμένει αρνητική. Το ίδιο από v2 <
√

GM

R
οπότε E2 =

m2v
2
2

2
− GMm2

R
< −GMm2

2R
< 0.

(δ) Για το m2 το αρχικό σημείο είναι αψίδα, απόγειο ή περίγειο, οπότε ισχύει αντίστοιχα R =
p2

1∓ ε2
=

L2
2/m

2
2GM

1∓ ε2
=

(m2v2R)2/m2
2GM

1∓ 1/2
, δηλ. v2 =

√
GM(1∓ 1/2)

R
.

Το ίδιο προκύπτει από τη σχέση ε2 =

√
1 +

2E2L
2
2

m2(GMm2)2
. Θέτοντας L2 = m2Rv2, E2 =

m2v
2
2

2
− GMm2

R

και ε2 =
1

2
δίνει τριώνυμο

(v22)
2

2
− GM

R
(v22) +

3G2M2

8R2
= 0.

Η διατήρηση ορμής δίνει m1v1 + m2v2 = (m1 + m2)v ⇔ m2

m1

=

√
2− 1

1−
√

1∓ 1/2
. Μόνο το πάνω πρόσημο

είναι δεκτό (δίνει θετική τιμή του λόγου μαζών) και προκύπτει
m2

m1

=
√
2.



(bonus) Το m1 εκτελεί παραβολική
τροχιά με περίγειο το αρχικό σημείο

R = 4R⊕ και p1 =
(m1v1R)2

m2
1GM

= 8R⊕.

Για τοm2 το αρχικό σημείο αντιστοιχεί
στο απόγειο, αφού R =

p2
1− ε2

. Άρα

p2 =
R

2
= 2R⊕ και η ακτίνα του περί-

γειου είναι
p2

1 + ε2
=

4

3
R⊕.
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Θέμα 4o:

(α) g0(r) = 0 αν r < R και g0(r) = −GM
r2

r̂ αν r > R. Στο
r = R δεν ορίζεται (ασυνεχής).

(β) µ = 2π2δθ
4π

M = δθM . Το ποσοστό είναι δθ.

(γ) Η ένταση του πεδίου είναι g = g0 + gδακτ με
gδακτ = − G(−µ)z

(R2+z2)3/2
ẑ ως το κλασικό πεδίο δακτυλίου.

Το δε βαρυτικό δυναμικό είναι V (r) = −GM/R +
Gµ/

√
R2 + z2 αν r < R και V (r) = −GM/r +

Gµ/
√
R2 + z2 αν r ≥ R. Το (-) στο βαρυτικό δυνα-

μικό του δακτυλίου είναι λόγω ελλείπουσας μάζας. Η
ένταση και το δυναμικό σχετίζονται μέσω της σχέσης
g = −∇V . (Στο σχήμα φαίνεται το γράφημα της V
για µ/M = 0.1.)

(δ) Από διατήρηση της ενέργειας
V (R + η) + 0 = V (0) + 0

οπότε χρησιμοποιώντας τις προηγούμενες σχέσεις βρίσκουμε

− GM

R + η
+

GMδθ√
R2 + (R + η)2

= −GM

R
+

GMδθ√
R2

.

αν στην παραπάνω σχέση διαγράψουμε τον κοινό όρο GM/R και αναπύξουμε τις εκφράσεις για μικρό
η/R (αλλά αγνοήσουμε τον εις διπλούν μικρό όρο δθ(η/R) θα λάβουμε

−(1− η/R) + δθ/
√
2 = −1 + δθ

οπότε λύνοντας βρίσκουμε
η = Rδθ(1− 1/

√
2).


