
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής
Εξετάσεις στη Μηχανική Ι, 19 Μαΐου 2025
Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία

Θέμα 1ο:
Σωματίδιο μάζας m = 1 κινείται σε μια διάσταση έχοντας δυναμική ενέργεια V (x) = 1

4
kx4 με k θετική

σταθερά.

(α) Αφού γράψετε τη διαφορική εξίσωση της κίνησης, ελέγξτε αν μια λύση της μορφής x(t) = A sin(ωt)
με κατάλληλες παραμέτρους A,ω θα μπορούσε να περιγράφει την κίνηση του εν λόγω σωματιδίου.

(β) Βρείτε τη σχέση v(x) για το εν λόγω σωματίδιο αν γνωρίζετε ότι στο x = 0 το σωματίδιο είχε ταχύτητα
v0. Ποια η μέγιστη απομάκρυνση του σωματιδίου από το σημείο x = 0;

(γ) Θα περιγράφατε την κίνηση του σωματιδίου, ως κάποιου είδους ταλάντωση γύρω από το x = 0;

(δ) Γράψτε την περίοδο της κίνησης σε μορφή σχέσης με δεδομένη την τιμή του ολοκληρώματος

I4 =

∫ 1

0

dξ√
1− ξ4

.

[Ίσως σας βοηθήσει η αντικατάσταση x = 4
√
(2v20/k) ξ.]

bonus (ε) Αν δύο σωματίδια με αυτή τη δυναμική ενέργεια ξεκινήσουν ταυτόχρονα από τη θέση x = 0, το ένα
κινούμενο με ταχύτητα v0 και το άλλο με ταχύτητα 4v0, ζωγραφίστε την κίνησή τους στο χώρο των
φάσεων, μέχρις ότου το δεύτερο περάσει για πρώτη φορά από το σημείο εκκίνησης κινούμενο με την
ίδια φορά που κινούνταν αρχικά (πρόκειται για το δεύτερο πέρασμα από το σημείο εκκίνησης μετά την
εκκίνηση).

Θέμα 2ο:
Το ευθύγραμμο σύρμα του σχήματος έχει μήκος 2ri και περιστρέφεται
γύρω από κατακόρυφο άξονα που περνά από το άκρο του Ο με σταθερή
γωνιακή ταχύτητα ω, σχηματίζοντας σταθερή γωνία θ με τον κατακό-
ρυφο αυτό άξονα. Δαχτυλίδι είναι περασμένο στο σύρμα και μπορεί
να κινείται χωρίς τριβές σε αποστάσεις r ≥ ri από το Ο (ένα εμπόδιο
δεν επιτρέπει την κίνηση σε αποστάσεις r < ri). Αρχικά το δαχτυλίδι
βρίσκεται ακίνητο ως προς το σύρμα στην απόσταση ri.
(α) Αιτιολογήστε γιατί η εξίσωση κίνησης του δαχτυλιδιού (σε αποστά-

σεις r ≥ ri) είναι το ολοκλήρωμα
mṙ2

2
+ Veff(r) = Veff(ri), όπου

Veff(r) = mgr cos θ − mω2r2 sin2 θ
2

, m η μάζα του δαχτυλιδιού και g
η επιτάχυνση βαρύτητας.
(β) Για ποιες τιμές της γωνιακής ταχύτητας το δαχτυλίδι θα αρχίσει να
κινείται ως προς το σύρμα; (Ίσως βοηθήσει το γράφημα της Veff(r).)
(γ) Έστω ότι η ω είναι απειροστά μεγαλύτερη από την οριακή τιμή για
την οποία το δαχτυλίδι αρχίζει να κινείται ως προς το σύρμα. Με πόση
ταχύτητα φτάνει στο άκρο του σύρματος r = 2ri;
bonus (δ) Στην περίπτωση του ερωτήματος (γ) εκτιμήστε σε πόσο
χρόνο φτάνει το δαχτυλίδι στο άκρο.
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Θέμα 3ο:

Σώμα μάζαςm = 1 κινείται στο επίπεδο xy μέσα σε πεδίο κεντρικής δύναμης F⃗ = − k

r2
r̂, V = −k

r
.

Τον χρόνο t = 0 βρίσκεται στο σημείο A (r = 1, ϕ = 0) και έχει ταχύτητα vr = 0, vϕ = 1.

Η τροχιά του έχει εξίσωση r =
1

cos2(ϕ/2)
.

(α) Ποια είναι η στροφορμή του σώματος;
(β) Ποια είναι η σταθερά k του πεδίου;
(γ) Ποια είναι η ενέργεια του σώματος;
(δ) Ποια είναι η ακτίνα καμπυλότητας της τροχιάς στο
σημείο Α;
(ε) Σε ποια χρονική στιγμή το σώμα περνά από το σημείο B
(r = 2, ϕ = π/2);

Δίνονται (δεν χρειάζονται όλα) a⃗ = (r̈− rϕ̇2)r̂+
1

r

d(r2ϕ̇)

dt
ϕ̂,

u′′ + u = − mF

L2u2
,
∫

dξ

cos4 ξ
= tan ξ +

1

3
tan3 ξ+ σταθερά,∫

ξ dξ

(ξ − 1)1/2
= 2(ξ − 1)1/2 +

2

3
(ξ − 1)3/2+ σταθερά.
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Θέμα 4ο:
Σωματίδιο μάζαςm κινείται υπό τη βαρυτική έλξη ενός ομογενούς λεπτού δακτυλίου μάζαςM και ακτίνας R.
Το σωματίδιο μπορεί να κινείται στον άξονα του δακτυλίου και ο δακτύλιος είναι πακτωμένος (στερεωμένος).

(α) Να υπολογιστεί η ένταση g⃗ του πεδίου βαρύτητας στη θέση του σωματιδίου, δηλαδή στο σημείο z = z0,
όπου z είναι ο άξονας του δακτυλίου και το 0 βρίσκεται στο επίπεδο του δακτυλίου.

(β) Ποια η βαρυτική δυναμική ενέργεια του σωματιδίου όταν αυτό βρίσκεται στη θέση z = z0 (δεν ζητείται
το δυναμικό).

(γ) Αν αρχικά το σωματίδιο στη θέση z = z0 ήταν ακίνητο με τι ταχύτητα θα διέλθει από το κέντρο του
δακτυλίου και σε ποιο σημείο θα ξανασταματήσει;

(δ) Αν το σωματίδιο και ο δακτύλιος έχουν ίδια μάζα M = m και ο δακτύλιος είναι και αυτός ελεύθερος
να κινείται, σε ποιο σημείο θα βρίσκονται τα δύο σώματα όταν το σωματίδιο διασχίσει το κέντρο του
δακτυλίου; Αρχικά τα δύο σώματα είναι ακίνητα, στις θέσεις zM = 0, zm = z0.



ΛΥΣΕΙΣ:

Θέμα 1ο:
(α) F (x) = −dV /dx = −kx3, επομένως θα θέλαμε λύση της εξίσωσης mẍ = ẍ = −kx3. Η υποτι-
θέμενη λύση x(t) = A sin(ωt) δεν μπορεί να είναι λύση αφού d2[A sin(ωt)]/dt2 = −Aω2 sin(ωt), ενώ
−k[A sin(ωt)]3 = −kA2 sin3(ωt). Ακόμη και αν οι συντελεστές των δύο ημιτονικών όρων ταιριάζαν δεν
μπορεί να είναι sin(ωt) = sin3(ωt) για όλους τους χρόνους.
(β)

1

2
v2 +

1

4
kx4 =

1

2
v20 ⇒ v = ±

√
v20 − kx4/2

Τη μέγιστη απομάκρυνση τη βρίσκουμε θέτοντας v = 0, δηλαδή για v20 = kx4
max|/2 ⇒ xmax = ± 4

√
2v20/k (σε

συμμετρικές θέσεις γύρω από το 0).
(γ) Το σωματίδιο πράγματι εκτελεί μια ταλάντωση γύρω από το 0 (κίνηση σε μία διάσταση σε κοιλότητα
δυναμικής ενέργειας μεταξύ κάποιων άκρων). Η κίνηση είναι περιοδική και συμμετρική γύρω από το 0, αλλά
όχι αρμονική.
(δ) Από τη σχέση v(x) του (β)

dx

dt
= ±

√
v20 − kx4/2 ⇒ ± dx√

v20 − kx4/2
= dt

Με ολοκλήρωση αυτής από x = 0 ως x = xmax υπολογίζουμε το 1/4 της περιόδου, αφού η κίνηση είναι
συμμετρική x → −x (συμμετρική V (x)) και η «προς τα πίσω» κίνηση διαρκεί όσο η «προς τα εμπρός»
(μονοδιάστατο πρόβλημα). Έτσι

T/4 =

∫ xmax

0

dx√
v20 − kx4/2

=
xmax

v0

∫ 1

0

dξ√
1− ξ4

=
xmax

v0
I4

(ε) Οι καμπύλες θα έχουν τη μορφή (παραμορφωμένης έλλειψης) v2 + kx4/2 = σταθ. Επειδή η περίοδος
σχετίζεται με την αρχική ταχύτητα T ∼ xmax/v0 ∼ 1/

√
v0, το σωματίδιο με την μεγάλη ταχύτητα, 4v0, θα

κινείται πιο γρήγορα και θα ολοκληρώσει μια περίοδο (επάνοδος στο αρχικό σημείο στο χώρο των φάσεων)
στο μισό χρόνο, απ’ ότι αυτό με τη μικρή ταχύτητα, που θα εκτελέσει στον ίδιο χρόνο μισό κύκλο.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

v/
v 0

Σχήμα 1: Οι κινήσεις είναι ωρολογιακές.



Θέμα 2ο:
(α) Στο περιστρεφόμενο σύστημα η κίνηση είναι ευθύγραμμη και υπάρχει ολοκλήρωμα «ενέργειας», αρκεί να
συμπεριλάβουμε στην ενεργό δυναμική ενέργεια την συνεισφορά της βαρύτητας mgz = mgr cos θ και της

φυγόκεντρου−mω2r2⊥
2

= −mω2r2 sin2 θ
2

. (Η Coriolis δεν συνεισφέρει αφού είναι κάθετη στην κίνηση.) Άρα
mṙ2

2
+ Veff(r) = E με Veff(r) = mgr cos θ − mω2r2 sin2 θ

2
. Η τιμή της σταθεράς E υπολογίζεται από τις

αρχικές συνθήκες r = ri, ṙ = 0 και είναι Veff(ri).
Η εξίσωση κίνησης θα μπορούσε να προκύψει και από την προβολή του νόμου Νεύτωνα στην διεύθυνση
κίνησης στο περιστρεφόμενο σύστημα. Πάνω στην r̂ το βάρος έχει προβολή mg⃗ · r̂ = −mg cos θ, η φυγό-
κεντρος mω2r⃗⊥ · r̂ = mω2r⊥ sin θ = mω2r sin2 θ, η Coriolis μηδενική προβολή και άρα η r̂ συνιστώσα
του νόμου Νεύτωνα δίνειmr̈ = −mg cos θ +mω2r sin2 θ. Πολλαπλασιάζοντας με ṙ βρίσκουμε ολοκλήρωμα
«ενέργειας».
Θα μπορούσαμε να εργαστούμε και στο αδρανειακό σύστημα, σε σφαιρικές συντεταγμένες, r, θ = σταθερό,
ϕ = ωt. Η r̂ προβολή του νόμουΝεύτωναma⃗ = mg⃗+N⃗ , αντικαθιστώνταςNr = 0 (διότι η δύναμη αντίστασης
από το σύρμα στο δαχτυλίδι έχει θ̂ και ϕ̂ συνιστώσες, αλλά όχι r̂) και την σχέση που δίνει την r̂ συνιστώσα της
επιτάχυνσης σε σφαιρικές ar = r̈ − rθ̇2 − rϕ̇2 sin2 θ = r̈ − rω2 sin2 θ (αφού θ = σταθερό και ϕ = ωt), δίνει
mr̈ −mrω2 sin2 θ = −mg cos θ, ίδια εξίσωση με αυτή που βρέθηκε στο μη-αδρανειακό.
(β) Πρέπει η συνάρτηση Veff(r) να είναι φθίνουσα στη θέση ri ώστε το δαχτυλίδι να μετακινηθεί σε μεγαλύ-

τερες αποστάσεις. Πρέπει λοιπόν V ′
eff(ri) < 0 ⇔ mg cos θ < mω2ri sin2 θ ⇔ ω2 >

g cos θ
ri sin2 θ

.

(Μελετώντας την Veff(r) προκύπτει ότι είναι αύξουσα μέχρι την απόσταση req =
g cos θ
ω2 sin2 θ

και φθίνουσα μετά.
Το δαχτυλίδι κινείται αν ri > req.)
Η μελέτη μπορεί να γίνει και μέσω των δυνάμεων. Για να κινηθεί το δαχτυλίδι στο περιστρεφόμενο σύστημα
πρέπει η r̂ συνιστώσα της φυγόκεντρου να είναι μεγαλύτερη από την −r̂ συνιστώσα του βάρους.

(γ) Αν ω2 =
g cos θ
ri sin2 θ

είναι Veff(r) = mgr cos θ − mgr2 cos θ
2ri

και το ri είναι ασταθές σημείο ισορροπίας, ενώ
για απειροστά μεγαλύτερη ω το δαχτυλίδι θα αρχίσει να κινείται και θα φτάσει στο άκρο του σύρματος r = 2ri

με ταχύτητα που δίνεται από το ολοκλήρωμα
mṙ2

2
+ Veff(2ri) = Veff(ri) ⇔ ṙ =

√
gri cos θ.

(δ) Το ολοκλήρωμα είναι διαφορική εξίσωση πρώτης τάξης και μπορεί να δώσει την r(t). Είναι όμως ευκολό-
τερο να λυθεί η δευτεροβάθμια διαφορική εξίσωση κίνησης που προκύπτει παραγωγίζοντας το ολοκλήρωμα,
δηλ. η r̈−ω2r sin2 θ = −g cos θ, που είναι γραμμική, μη-ομογενής, με σταθερούς συντελεστές και έχει γενική
λύση r = C1e

ωt sin θ + C2e
−ωt sin θ +

g cos θ
ω2 sin2 θ

. Από αρχικές συνθήκες r|t=0 = ri, ṙ|t=0 = 0 προκύπτουν οι

σταθερές και τελικά η λύση r =

(
ri −

g cos θ
ω2 sin2 θ

)
cosh(ωt sin θ) +

g cos θ
ω2 sin2 θ

. Το δαχτυλίδι φτάνει στο άκρο

r = 2ri σε χρόνο που δίνεται από cosh(ωt sin θ) =
2ri −

g cos θ
ω2 sin2 θ

ri −
g cos θ
ω2 sin2 θ

. Όπως αναμέναμε ο χρόνος απειρίζεται αν

ισχύει ακριβώς ω2 =
g cos θ
ri sin2 θ

(οπότε το ri είναι ασταθές σημείο ισορροπίας και το δαχτυλίδι θεωρητικά μένει
για πάντα ακίνητο). Για απειροστά μεγαλύτερη γωνιακή ταχύτητα ο χρόνος στον οποίο το δαχτυλίδι απομακρύ-

νεται από την αρχική θέση είναι τάξης
5

|ω| sin θ
= 5

√
ri

g cos θ
(τότε ο όρος cosh(ωt sin θ) ≈ e|ω|t sin θ

2
πρακτικά

απειρίζεται).



Θέμα 3ο:
(α) L = mrvϕ = 1 χρησιμοποιώντας τις τιμές στο σημείο Α. (Η στροφορμή παραμένει σταθερή.)

(β) Αντικαθιστώντας u =
1

r
= cos2(ϕ/2) και F = −ku2 στην εξίσωση u′′ + u = − mF

L2u2
βρίσκουμε k = 1/2.

(γ) E =
mv2

2
− k

r
= 0 χρησιμοποιώντας τις τιμές στο σημείο Α.

Η τροχιά είναι παραβολική αφού r =
1

cos2(ϕ/2)
=

2

1 + cosϕ
, δηλ. της μορφής r =

p

1 + ε cosϕ
με ε = 1.

(δ) Στο σημείο Α η επιτάχυνση είναι a⃗ =
F⃗

m
= −1

2
r̂, κάθετη στην ταχύτητα v⃗ = ϕ̂, δηλ. είναι κεντρομόλος.

Από aκ =
v2

R
βρίσκουμεR = 2.

Το ίδιο απόR =
v3

|⃗a× v⃗|
.

(ε) Από διατήρηση στροφορμής ϕ̇ =
L

mr2
= cos4(ϕ/2), άρα t =

∫ π/2

0

dϕ

ϕ̇
=

∫ π/2

0

dϕ

cos4(ϕ/2)
. Με ϕ/2 = ξ

και χρησιμοποιώντας το δοσμένο ολοκλήρωμα προκύπτει t = 2

[
tan(ϕ/2) +

tan3(ϕ/2)
3

]π/2
0

=
8

3
.

Το ίδιο προκύπτει χρησιμοποιώντας την διατήρησης ενέργειας
mṙ2

2
+

L2

2mr2
− k

r
= E ⇔ ṙ = +

(r − 1)1/2

r

(επιλέγοντας το θετικό πρόσημο γιατί η ακτίνα r αυξάνεται) και ολοκληρώνοντας t =
∫ 2

1

dr

ṙ
=

∫ 2

1

r dr

(r − 1)1/2
=[

2(r − 1)1/2 +
2

3
(r − 1)3/2

]2
1

=
8

3
(χρησιμοποιώντας το δοσμένο ολοκλήρωμα).

Θέμα 4ο:
(α) Κάνοντας την ολοκλήρωση των εντάσεων από κάθε μέρος του δακτυλίου και αγνοώντας τις κάθετες συνι-
στώσες στον άξονα που αλληλοαναιρούνται για λόγους συμμετρίας έχουμε

g⃗ = −ẑ
GM

R2 + z20
cos θ = −ẑ

GMz0
(R2 + z20)

3/2

Το αποτέλεσμα θα μπορούσε να υπολογιστεί μέσω του δυναμικού Φ = −GM/
√
R2 + z2, με απλή διαφόριση

g⃗ = ẑ(−dΦ/dz)|z=z0 .
(β) V (z0) = mΦ(z0) = −GMm/

√
R2 + z20 .

(γ) Από διατήρηση ενέργειας

0− GM��m√
R2 + z20

=
1

2
��mv2z −

GM��m

R
= 0− GM��m√

R2 + (−z0)2

Από την πρώτη εξίσωση βρίσκουμε

vz =
√
2GM

(
1

R
− 1√

R2 + z20

)
και από τη δεύτερη διαπιστώνουμε ότι θα ξανασταματήσει στο συμμετρικό του αρχικού σημείου z = −z0. Το
σωματίδιο θα εκτελεί ταλάντωση μεταξύ αυτών των δύο ακραίων σημείων.
(δ) Αν τα δύο σώματα αφεθούν ελεύθερα να κινηθούν το ΚΜ τους θα παραμείνει ακίνητο, όπως ήταν αρχικά
και εφόσον οι μάζες είναι ίδιες αυτό βρίσκεται στον άξονα z στη θέση z0/2. Στο σημείο αυτό τα δύο σώματα
θα βρεθούν ταυτόχρονα κινούμενα με αντίθετες ταχύτητες.


