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Preface

It has been my intention in this book to give a coordinated treatment of
the whole of theoretical geophysics. The book assumes a mathematical back-
ground through calculus and differential equations. It also assumes a reason-
able background in physics and in elementary vector analysis. The level of
the book is commensurate with that of a senior undergraduate or first year
graduate course. Its aim is to provide the reader with a survey of the whole
of theoretical geophysics.

The emphasis has been on the basic and the elementary. The expert in any
one of the several disciplines covered here will find much lacking from his
particular area of investigation; no apology is made for that. In order to treat
all aspects in a coordinated manner, the simplest type of mathematical nota-
tion for the various physical problems has been used, namely, that of scalars,
three-dimensional vectors, and the vector operators, gradient, curl, divergence,
etc. It is appreciated that this elementary notation often may not be the
most conducive to the solution of some of the more complex geophysical
problems.

The derivations are, in almost every case, carried through in considerable
detail. Sometimes the particulars of the algebra and calculus have been
omitted and relegated to one of the problems following the section. The
emphasis has been on the physics of the derivations and on explaining the
various physical principles important in geophysics, such as continuity,
mixing, diffusion, conduction, convection, precession, wobble, rays, waves,
dispersion, and potential theory.

The problems are considered an important part of the text. They include
filling in mathematical details in the derivations and applications and exten-
sions of the derivations. They do vary considerably in complexity.

The order of the chapters has not been entirely arbitrary. Part I is neces-
sarily a hodgepodge. It includes discussions of the solutions of some of the
basic partial differential equations of physics and of the properties of some
of the functions particularly pertinent to geophysics. Part II is on the thermo-
dynamics of the earth and the hydrodynamics of the earth’s outer surface,
the ocean. Part IIl—seismology, gravity, and magnetism—is largely on the
applications of various physical principles to a definition and investigation
of the earth and its properties. Part IV is on the dynamics of the earth itself

1 4
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and necessarily includes results from various of the preceding chapters. In

addition, there is some increase in complexity as the chapters move along.
I should like to express my thanks to Dartmouth College for the use of

the facilities at the Baker Library and at the Department of Earth Sciences.

Hanover, New Hampshire CHARLES B. OFFICER
January, 1974
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Part One

Introduction



CHAPTER 1

MATHEMATICAL CONSIDERATIONS

1.1 Vector Analysis

It is assumed that the reader has a working knowledge of elementary,
three-dimensional vector analysis. We shall review, or rather restate, the
more important relations, which will be needed in the derivations in the later
sections.

A vector will be denoted by a letter in bold face type, the scalar magnitude
being indicated by the same bold face letter between vertical bars, or simply
by the same letter in italics. Thus, the scalar magnitude of the vector P is
designated by either |P| or P.

A unit vector is one whose magnitude is unity, and the three unit vectors
parallel, respectively, to the X, Y, Z rectangular axes will be designated by
i, j, k. Rectangular axes are always taken to constitute a right-handed set;
that is, the positive direction of the Z axis is determined by the sense of
advance of a right-handed screw rotated in the XY plane from the positive
direction of the X axis to that of the Y axis through the right angle between
them.

Occasionally, it is convenient to specify the direction of a vector by its
three-dimensional cosines I, m, n with the axes X, Y, Z, and the reader is
reminded of the geometrical relations

P+m*+n? =1 (1.1
cos 8 = Il,+mm,+nn, (1.2)

In the second of these, § is the angle between two lines whose direction
cosines are /,, m,, n, and I,, m,, n,, respectively.

Two vectors add as shown in Fig. 1.1 so that magnitude of their sum or
resultant, R, is simply

R?* = P2+ Q?+2PQ cos « (1.3)

The components of a vector P are simply any vectors whose sum is P.
The components most frequently used are those parallel to the axes X, Y, Z,

3



4 § Introduction

Fig. 1.1

designated by P,, P,, P, and referred to as the rectangular components, for
which the relation

P?=P?*+P?+P? (1.4)
holds.

A surface, such as ABC in Fig. 1.2, may be represented by a vector o,
whose magnitude is equal to the area of the surface and whose direction is
normal to the surface. For a closed surface, the outward drawn normal is
taken as positive; for a surface that is not closed, the positive sense of
describing the periphery is connected with the positive sense of the normal,
as shown in Fig. 1.2.

Fig. 1.2

Transformation of the components of a vector P from one set of rect-
angular axes to another is the same as the transformation of the coordinates
themselves. We then have from the diagram of Fig. 1.3, where /,, /,, /5 are the
direction cosines of X’ referred to X, Y, Z, and so on, that

X v z
X L oL o1

’
Y my m, m,

’
Z' n, n, ny
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x'=hLx+hLy+lz
= m;x+myy+msyz

N <
If

nx+n,y+nyz

or (1.5)
x=ILx"+my' +nz’
y = Lx'"+my +nyz’

z = lyx"+myy’ +n32’

or the same relations for P, in terms of P,,P,, P,, and so on, and i’ in terms
of i, j, k, and so on, and vice versa.

The scalar or dot product of two vectors is defined as a scalar equal in
magnitude to the product of the magnitudes of the two vectors by the cosine
of the angle between them. From this definition, we then have the relations

QP=PQ (1.6)
P+Q)R=P-R+Q-R (1.7
and
i'i=jj=kk=1 (1.8)
i'rj=Jk=ki=0
and

PQ =PxQx+PyQy+PzQz (19)
P*=P-P=P2+P>+P?

The vector or cross product of two vectors is a vector perpendicular to

their plane in the sense of a right-handed screw rotated from the first to the

second through the smaller angle between their positive directions as shown
in Fig. 1.4, and with a magnitude equal to the product of the magnitudes of

Fig. 1.4

the two vectors by the sine of the angle between them. From this definition,
we then have the relations
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QxP=-PxQ PxP=0 (1.10)
and
P+Q)xR=PxR+QxR (1.11)
and
ixj=k jxk=i kxi=j
and (1.12)
ixi=jxj=kxk=0
i j k
PxQ=|P, P, P, (1.13)
0. 90, 0.

= i(Psz_PzQy)+j(PzQx_PxQz)+k(Pny_Pny)
where the expression of the right-hand side of Eq. (1.13) is the determinant.
For products involving three vectors, we can have two distinct combina-
tions. The triple scalar product is the scalar
(PxQ)'R=R-(PxQ) = —R-(QxP) = —(QxP)-R (I.14a)
where the vector product P x Q is formed first, and then the scalar product
of this vector is taken with R. We can then obtain the further relations

PxQ)'R=P-(QxR) (1.14b)
and
P, P, P,
PxQR=|0, 0, O, (1.15)
R, R, R,
and
ixjk=ijxk=—-ikxj=1 (1.16)
The triple vector product is the vector
PxQ)xR = —-Rx(PxQ)=Rx(QxP) (1.17)

where the vector product P x Q is formed first, and then the cross product
of this vector is taken with R. It is apparent from Fig. 1.5 that (Px Q)xR
will lie in the plane of P and Q. We can then obtain the relations

Fig. 1.5
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PxQ)xR =R-PQ-R-QP (1.18)
Rx(PxQ)=R-QP-R-PQ
For the derivative of a vector function r of the scalar ¢, defined by
r(t) = ix(6) +jy(t) +kz(r)
and where X, Y, Z are fixed rectangular coordinate axes, we have
dr d dy dz

a dr +Jﬁ+kdt

and
d2r d2x 4%y d*z (1.19)
ar =g gz tkgn
For the derivatives of the scalar and vector products, we shall also have
dQ
P-
( Q) =—-Q+ Z
and
d dQ (1.20)
E( xQ) =— x Q+P x @
The vector differential operator V is defined as the quantity
0 0 0
V=i—4+j— +k— (1.21)

ox oy oz

If we wish to use spherical coordinates r, 6, p—where r is the radius vector,
0 the polar angle, and ¢ the azimuth and where r,, 0,, and ¢p,, are the
respective unit vectors—V will be given by

0 0 0

V=r,—+ 0, — _ 1.22

l8r+ lr819+q’lrsin08<p (1:22)

If we wish to use cylinderical coordinates p, ¢, z—where p is the distance

coordinate normal to the cylindrical axis, ¢ the azimuth, and z the axial

distance coordinate and where p,,¢,, and k are the respective unit vectors—
V will be given by

0

/) /)
o 2 2 +k= 1.23
v m%+¢%%+k& (1.23)

If ©(x, y, z) is a proper scalar function of the coordinates, then the vector

ob oD b
VO =i —+j—+k— (1.24)
ox oy oz

is called the gradient of ®. Considering ®(x, y, z) = C, a constant, to define
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a surface in space, the geometrical significance of V® is that it is a vector
having both the magnitude and the direction of the greatest space rate of
increase of @. It is normal to the surface, ® = C, and its component in any
direction is equal to the space rate of increase of ® in that direction so that,
as shown in Fig. 1.6, the incremental increase in ® from 4 to B is simply

Fig. 1.6

dd = VddA cos § = VO-dk (1.25)
If V(x, y, z) is a proper vector function of the coordinates, then the scalar

v, v, v,
VV=—4+-

ox oy oz
is called the divergence of V. Considering V = pv to represent the mass of
fluid flowing through a unit cross section in a unit time, where p is the fluid
density and v its velocity, the quantity —V-V represents the total increase
in mass per unit volume per unit time due to the flow and leads directly to
the equation of continuity:

(1.26)

% _ _v.y
= (1.27)
or
ap
o TV =0 (1.28)

If the fluid is incompressible, that is, p a constant, these equations reduce
simply to
V-V=Vv=0 (1.29)

Again if V(x, y, z) is a proper vector function of the coordinate, then the
vector

i j k
o 0

vxv=| 2 2 & (1.30)
ox oy 0z
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is called the curl or rotation of V. Considering a rigid body, which has a
constant angular velocity w about an origin O fixed in the body, O itself
having the constant linear velocity v,, as shown in Fig. 1.7, the total linear

1

0
Fig. 1.7

velocity of a point P will be
V=Vy+wXxr (1.31)

and we can obtain the relation
Vxv =w (1.32)

so that the curl of the linear velocity is equal to twice the angular velocity.
Taking successive application of V, we have that the divergence of the

gradient is
o PO 20

VO = —_— .
Vv éx? + 0y? + 0z2 (133
The operator
32 32 32
V'V = g{z + (52 + 3_22 (1.34)

is referred to as the Laplacian and may be equally well applied to a vector
function V. We also have that the curl of the gradient is uniquely zero, or

VxVd =0 (1.35)
and the divergence of curl is uniquely zero, or
V-VxV =0 (1.36)

If the curl of a vector function of position in space vanishes everywhere in a
region 7, W is said to be irrotational; from Eq. (1.35) it is seen that if W is
the gradient of a scalar function ®, then W is irrotational. Further, if the
divergence of a vector function W vanishes everywhere, W is said to be
solenoidal; from Eq. (1.36) we see that if W is the curl of a vector function
V, then W is solenoidal. The vector product, VxV xV, of the curl of the
vector V is also important and is given by

VxVxV =Vx(VxV) = V(V-V)—V-VV (1.37)
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From the relations above, we can also obtain the useful result that any
vector W, which can be expressed in terms of the Laplacian of another vector,
can be considered to be composed of two vector functions, one of which is
irrotational and the other of which is solenoidal, or

W=Vd+VxA (1.38)
V-A=0
where @ is referred to as the scalar potential of W and A as its vector potential.
If V (x, y, 2) is again a proper vector function, then the integral

B
JV-dA

as defined by Fig. 1.8, is referred to as the line integral of V along the path 4AB.

Fig. 1.8

Considering V to be the force on a moving particle, then the line integral of
VY over the path described by the particle is simply the work done by the
force. If V is the gradient V® of a scalar function of position, it follows that
the line integral is independent of the path from 4 to B and that the line
integral around a closed curve, denoted by

5}3 V-da

is uniquely zero. It also follows that if the line integral of V vanishes about
every closed path, V must be the gradient of some scalar function ® and
therefore irrotational.

Considering a surface o, as shown in Fig. 1.9, the integral

[ V-do
is referred to as the surface integral of V over the surface o. The surface

integral of a vector V is called the flux of V through the surface. If again V
is the mass of fluid flowing through a unit cross section per unit time, then the
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Fig. 1.9

surface integral is the mass of fluid passing through the entire surface per
unit time.

We next have the integral relation, known as Gauss’ theorem, which states
that the volume integral of the divergence of a vector function V taken over
any volume r is equal to the surface integral of V taken over the closed
surface surrounding the volume =, or

V-Vdr=|V-do (1.39)
Jova-]

and its corollary, Green’s theorem, which states that

j WV -Vo—oV-Vu)dr = f (Vv —vVu)-do (1.40)

where u and v are two scalar functions of the coordinates.

We also have the integral relation, known as Stokes’ theorem, which
states that the surface integral of the curl of a vector function V taken over
any surface ¢ is equal to the line integral of V around the periphery A of the
surface, or

VxV-de = § V-dr (1.41)
[vavio=§

If the surface to which Stokes’ theorem is applied is a closed surface, the
length of the periphery is zero, and hence the left-hand side of Eq. (1.41) is
equal to zero.

We shall also have brief need of the simplest of vector operators, ¥ known
as a dyadic or tensor of the second rank, to transform one vector into another
vector and defined by

Y = a,,ii+a,,ij+a,,ik

+a,,ji+a,,jj+a,;jk (1.42)
+a,,ki+ a3 kj+a,;kk
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By taking the scalar product of the dyadic ¥ by the vector P, a new vector
Q, which differs in general from P in direction as well as magnitude, is
obtained. The new vector Q is said to be a linear vector function of P. If

a;; = a;;, the dyadic is said to be symmetric. If a;; = —a;;, the dyadic is said
to be skew-symmetric; for a skew-symmetric dyadic, a,, = a,, = a;; = 0.
For a symmetric dyadic, we have that
PY=YP (1.43)
and for a skew-symmetric dyadic,
P-¥Y=-YP

The conjugate ¥, of any dyadic ¥ is obtained by interchanging the order of
the unit vectors in each of the members of Eq. (1.42) so that

PY=Y,_P (1.44)
The symmetric dyadic

I =ii+jj+kk (1.45)

is known as the idemfactor and has the simple property that
P-I=IP=P (1.46)

It can be shown that any dyadic may be expressed as the sum of a symmetric
and a skew-symmetric dyadic and that any symmetric dyadic may be reduced

to
¥ = aii+a,jj+akk (1.47)

by a suitable orientation of coordinate axes.

Problem 1.1(a) By vector algebra, prove that the diagonals of a parallelo-
gram bisect each other.

Problem 1.1(b) By vector algebra, prove that the line that joins one
corner of a parallelogram to the middle point of an opposite side trisects
the diagonal and is trisected by it.

Problem 1.1(c) A vector has components x>4, +xyA,+xzA,, xyA,+y*4,
+yzA,, xz2A,.+ ysz+22A, relative to X, Y, Z where A is a constant vector.
Show that its components relative to X', Y', Z’ are given by the same func-
tion of x’, y’, z’, A;, Ay', A;. Such a vector is known as a proper vector function.

Problem 1.1(d) Show by use of the expansion of the scalar product that
if two vectors have direction cosines /,, m,, n, and l,, m,, n,, respectively,
and 6 is the angle between them, then cos 8 = [,/, +m,m,+nn,.

Problem 1.1(e) If A and B are the sides of a parallelogram, C and D the
diagonals, and ¢ the angle between A and B, show by vector algebra that
C?+ D? = 2(A*+ B?) and that C?— D? = 44B cos 6.
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Problem 1.1(f) Ifl,, 1, 1l5; m,, m,, my; n, n,, ny are the direction cosines
of the rectangular axes X', Y’, Z’ relative to X, Y, Z, deduce by vector
methods the relations [, = myny—n,my; 1, = myn, —mny; 13 = mn,—m,n,,
and so on.

Problem 1.1(g) Verify the relations
(AxB)-(CxD) = (A-C) (B-D)—(A-D) (B-C)
(AxB)x(CxD) = (A-CxD)B—(B-CxD)A
= (A-BxD)C—(A-BxC)D

Problem 1.1(h) If a is a vector constant in magnitude but variable in
direction, show that a-da = 0.

Problem 1.1(i) If r, is a unit vector of variable direction along the radius
vector, the position vector of a moving point may be written: r = r,r.
Find, by vector methods, the components of the acceleration parallel and
perpendicular to the radius vector of a particle moving in the XY plane.

Problem 1.1(j) Show that V-r = 3 and Vxr = 0 where r = ix+jy+kz.

Problem 1.1(k) Show by expanding the vectors in terms of their compon-
ents that
V- UxV)=V:VxU-U-VxV
and that
Vx(UxV)=(V-V)U=-V(V-U)—(U-V)V+U(V V)

Problem 1.1(1) Show that V-V(1/r) = 0 where r = ix+jy+kz.

Problem 1.1(m) Derive the equation of continuity by the use of Gauss’
theorem.

Problem 1.1(n) By the use of Gauss’ theorem and Stokes’ theorem prove
that V-V xV = 0 and that VxV® = 0.

1.2 Curvilinear Coordinates

Frequently it is necessary, or convenient, to derive various physical laws
or solve problems in coordinates other than rectangular (Cartesian) co-
ordinates. It is the purpose of the next four sections to show how vectors and
vector operators may be formulated in more general, curvilinear coordinates.

In Cartesian coordinates, the position of a point is determined by the
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three coordinates x, ¥, z and is the intersection of the three mutually per-
pendicular planes determined by each of these coordinates, respectively. If
we designate by ¢,, ¢,, g5 our three generalized coordinates, we can express
x, y, and z in terms of them by

x = x(41, 92, 93)
Y = Y(q1> 92, 93) (1.48)

z = 2(91, 92 93)
and conversely

91 = 4:(x,,2)
9 = 92(%, ), 2) (1.49)
93 = q3(x, », 2)
Any point may then be specified by either x, y, z or gy, ¢,, 43.
From Eqgs. (1.48) we may write directly,

ox ox ox

dx = — dql + —‘dqz + D d£I3
oq, 9, oq;
oy oy oy

d = 4. a_ n .

Y= dq, + % dg, + 5, dq, (1.50)
0z 0z 0z

dz = —d —d d

Z 22, q, + 22, q; + %0, %95

We shall designate by ds the incremental distance between two adjacent
points. Clearly, in Cartesian coordinates ds?> = dx2+dy?+dz? or in terms
of our curvilinear coordinates from Eqgs. (1.50)

ds* = dx*+dy* +dz*
= Q,%dq,*+ Q,%dg,* + Q3%dg;* (1.51)
+2Q,,dq,dq,+20Q,3dq,dq;+2Q,3dq,dq,

ox\? ay\? 0z \?
2 _ [ 9* hed il =
e = <a‘1i) * (3‘11‘) * <3‘1i> ¢ 1.2,3)

0x 0x 8y8y+(’)zaz Gj=1,23%10%))
Py o A, o o L]=1,40,1 J
09;09; 0q9;9q9; 9q;0q;

where

and

Qij =

Now the distance along any curvilinear coordinate direction we shall desig-
nate for convenience by s,, 5,, 53 corresponding to q,, q,, g5. In general, and
unlike Cartesian coordinates, the distance and coordinate elements in curvi-
linear coordinates are not the same. For example, in two-dimensional polar
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coordinates, the coordinate is the polar angle and the distance the arc
length. From Eq. (1.51) we may write for the incremental coordinate dist-
ances, when variation is limited to only one of the ¢,

ds; = Qdg;  (i=1,2,3) (1.52)

In general, we are only interested in curvilinear coordinate systems that
are orthogonal, that is, coordinate systems in which the three coordinate
surfaces always intersect at right angles. For orthogonal coordinates, the

incremental distance ds between two points is simply in terms of the co-
ordinate incremental distances

ds? = ds,® +ds,* +ds;* (1.53)
From Egs. (1.51) and (1.52) we see that Eq. (1.53) will only be valid for all
points if Q;; = 0. For orthogonal curvilinear coordinates, Eq. (1.51) reduces
to
ds* = Q,%dgq,*+ Q,%dq,* + Q3%dg,* (1.54)
The incremental volume element dr and the three incremental surface ele-
ments normal to the three coordinate directions become

dr = ds,ds,ds; = 0,0,0,dq,dq,dq, (1.55)
and

do;; = dsds; = 0,0;dq,dq;  (i,j=1,2,3,i#)) (1.56)
1.3 Vector Relations in Curvilinear Coordinates

For convenience, we shall designate by u,, u,, u; the three unit vectors
along the curvilinear coordinate axes, corresponding to i, j, k along the
rectangular coordinate axes. Then we may write, for any proper vector
function V in terms of its components V,, V,, V, along the curvilinear
coordinate axes,

V=uwV +uwV,+u,V, (1.57)
From Section 1.1 we know that V@ is a vector whose magnitude and direction
give the maximum space rate of change of ® and that a component of V® is

its directional derivative along a given coordinate direction. From Eq. (1.52)
we may write, for these space derivatives,

0 _ 1 o
3Si_QiaQi

Since V is a proper vector operator, we may then write for V in orthogonal
curvilinear coordinates,

(i=1,273) (1.58)

u, 0 u, 0 u; 0
==t = —+ = (1.59)
Q109  Q,0q, Q;0q,
and for the gradient
u, 60 80 80
o=t 4 W s (1.60)

—_— + P
0, dq, 0, 5q; Q3 9q;
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We now wish to find what V-V and V x V are in terms of the orthogonal
curvilinear coordinates q,, ¢,, ¢; and the curvilinear unit vectors u,, u,, u;.
To do this, we must first proceed by evaluating V xu; and V-u;. From Eq.
(1.60) we can write that

Vg, =
g = -
Yo,

so that
VxV VxoL_y —1>>< +—1 Vxu
= X - = u
& ) 1 0, ! 0, !
1

1
= _ule<-Qv1>+EIqul (1.61)

using Eqgs. (1.10). From Eq. (1.35) we have that the curl of the gradient of a
scalar function is uniquely zero so that Eq. (1.61) becomes

UIXV<Q11> = —Vxu, (1.62)

Performing the differentiation on the second member of the left-hand side
of Eq. (1.62) with the use of Eq. (1.59), we obtain

V(L) _ W90 w90, w00
Q13 0q, Q12Q2 0q, Q12Q3 oq;

0 (1.63)

Since we are using orthogonal curvilinear coordinates, the same relations
for the vector products of the unit vectors will pertain as we had in Egs.
(1.12), or

U, Xu, = u, u, XUy = u,; U3 XUy = U, (1.64)

U Xu; =, xu; =uzxuy; =0

Remembering these relations in the evaluation of the left-hand side of Eq.
(1.62), we obtain for Vxu,,
u 900, u; 00,

Vxu, = = = =
0,05 9q; 0.0, 99,
and similarly

Vxu, = u; 00, oy LQZ (1.65)

0.0, 9q, 0,05 94,

Vv w90, u, 090

XUy = —— —~ — ——— ——=

0,05 94, Q.05 9q,

We shall have the same relations for the scalar products of the unit vectors
u,, uy, u; as we had in Eqgs. (1.8) or

u U = U,y = uycuy =1 (1.66)

I
o

Ug"u; = U3 = U3y =
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We may then write for V-u,, using Eqs. (1.64) and the results of Problem
1.1(k),

V-u, = V-(uyxuy) = uy-(Vxuy)—u,-(Vxus) (1.67)
Evaluating the right-hand side of Eq. (1.67) with the substitution of Egs.
(1.65) and the use of Egs. (1.66), we obtain

L i@y 1 0Qy 1 #0:05)
0,0, ¢q, 0,05 g, 0,0.0, ¢q,

V-u, =

and similarly

1 e(0,03)
Vo, = 1.68
" 0:0,0; ¢q, ( )
1 40,0,)
Vou; =
" 0:0:0, g5

For V-V in orthogonal curvilinear coordinates, we may then write,
using Eq. (1.6) and remembering that u; is a vector and V; a scalar,

V-V =VuV)+V-u,V;)+V-(u;V3)
= V,V-u,+u,-VV,+V,V-u,
+u2'VV2+ V3V'“3+“3'VV3 (1.69)

Evaluating the first and second terms of the right-hand side, using, respec-
tively, Eqgs. (1.68) and (1.59) and (1.66), we obtain

Vi %Q,05)
V,V-u, = 1.70
! ! 0,0,09; 9q, ( )
and
vV L 9% (1.71)
u- =— .
! ! 0, 9q,

Substituting Egs. (1.70) and (1.71) and the similar expressions for the other
terms on the right-hand side of Eq. (1.69) into Eq. (1.69) and combining
terms, we obtain finally

1 0 P 3
o o, ! 20, V201 0. 12 .
vV-v 0.0,0, [341 (V10,05 + o (V20,05 + o V50,0 ):] (1.72)

For VxV in orthogonal curvilinear coordinates, we may proceed in the
same manner, using Egs. (1.10) and again remembering that u; is a vector

and V; a scalar,
VXV =VxV)+Vxu,V,)+Vx(u;V;)

ViVxu—u xVV,+V,Vxu,

—u,xVV,+V;Vxuy—uy; xVV, (1.73)
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Evaluating, as before, the first and second terms of the right-hand side, using,
respectively, Egs. (1.65) and (1.59) and (1.64), we obtain
uw,V, 20, u v, 200,

V.Vxu, = e (1.74
! ! 0:0; 9q, 0.0, %; )

and

ov v
uxVy, = 2% W% (1.75)
0 9q, Qs 0q;

Subtracting Eq. (1.75) from Eq. (1.74), we obtain

V, 00, 1 6V1>
0,05 945 Q3 945
< v, 29, 1 8V1>
—_— u3 —_— + —_—
0,0, 9q, 0, 0q,
1 aV,0y) 1 aV,0y)
= —u3
0,0; g 0,0, 9q,
Substituting Eq. (1.76) and the similar expressions for the other terms on

the right-hand side of Eq. (1.73) into Eq. (1.73) and combining terms in
determinental form, we obtain

ViVxu, —u, xVV, = u2<

(1.76)

Quu;  Qu;  Qug
0 tj 0

1 - -
VxV = 0 0 0
10,0, 9 q> q3
Vi@, V20, V30;

We may obtain the form of the Laplacian operator in orthogonal curvi-
linear coordinates by simply making the substitution V = V® in Eq. (1.72),
remembering that the components of V@ corresponding to the components
Vi, Va3, V5 of V are given by Eq. (1.60)

vove - ! [i<Q2Q3§{>

(1.77)

QIQZE oq, Q, 9q,
0 (0,030 0 (0,0, 00
e <377 —_ — 1.78
* 342( 0, a‘Iz) * 393( 0, 393)] ( )

Problem 1.3(a) Derive the second and third equations of Egs. (1.65) and
(1.68).

1.4 Spherical Coordinates

In spherical coordinates, the position of a point P is determined by the
three coordinates r, 0, ¢, where r is the radius vector, 8 the polar angle, and
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@ the azimuth (see Fig. 1.10). The three orthogonal coordinate surfaces are
concentric spheres about the origin, right circular cones with apex at the
origin and axis along Z, and half-planes through the Z axis, respectively.
The three unit vectors r, 0,,¢p, are, respectively, in the direction of increasing
1, at right angles to r, in the direction of increasing 6, and at right angles to
both r, and 0, in the direction of increasing ¢ in the XY plane. From Fig.
1.10 Eq. (1.48) for x, y, z in terms of r, 6, ¢ become

x =rsin fcos ¢
y = rsin fsin ¢ (1.79)
z=rcos b

Again from Fig. 1.10 we can also write for the distance elements of Eq. (1.52)
in the directions of ry, 0,,¢,,

ds, = dr
dsg = rdf (1.80)
ds, = rsin 0 dp

or
0 =1
Qo =r (1.81)
Q, =rsind

Fig. 1.10
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We may then determine directly from Eq. (1.59), using Eqgs. (1.81), the gradient

0, o @, 0
r 08  rsind op

V=r—+ (1.82)

the same as we had previously in Eq. (1.22), and we may also determine the
Laplacian from Eq. (1.78)

1 ] 2 ] 2 1 o
2= inf —{r?— )+ ~|sind__ )+ — 5| (183
Vo= e BI:Sm f or <r 8r> " %0 (sm 80) *sin 6 8<p2] (1.83)

Problem 1.4(a) . Show that in spherical coordinates

V-V = o

e, o v,
T s smﬁa—r(r V,)+ra9(sm0V9)+r—

VxV : ¢ (sin V) Vo
X = —{(SIn _—
( ) rsin 8] 20 ¢ dp

I av, 0
(VxV)y = —— [—' — sin 05 (rV‘p):I
r

rsin 0| dp
1o ov,
= -] — V — r
(VXV)(” r[@r r¥y) 30]

1.5 Cylindrical Coordinates

In cylindrical coordinates, the position of a point P is determined by the
three coordinates p, ¢, z, where p is the distance coordinate normal to the
cylindrical axis (Z axis), ¢ the azimuth, and z the Cartesian z coordinate (see
Fig. 1.11). The three orthogonal coordinate surfaces are right circular
cylinders about the Z axis, half-planes through the Z axis, and planes parallel
to the X'Y plane, respectively. The three unit vectors p,,¢,, k are, respectively,
in the direction of increasing p, at right angles to p, in the direction of in-
creasing ¢, and parallel to the Z axis. For Fig. 1.11 Eqgs. (1.48) for x, y, z
in terms of p, ¢, kK become

X = pcose
y =psing
z=1z (1.84)

Again from Fig. 1.11 we can also write for the distance elements of Eq. (1.52)
in the directions of p,, ¢, k,
ds, = dp

P

ds, = pdep (1.85)

P

ds, = dz
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or
Q,=1
Q,=pr (1.86)
0 =1
Fig. 1.11

We may then determine directly from Eq. (1.59), using Eqs. (1.86), the gradient
0 0 0
Vep o+ % 2 (1.87)
p

the same as we had previously in Eq. (1.23), and we may also determine the
Laplacian from Eq. (1.78)

, [ 3 1 82 82

1.6 Legendre Polynomials

We shall be interested in some of the sections in the following chapters in
series expansions, or approximations, given in terms of Legendre polynomials.
These will be of particular interest for problems defined in terms of spherical
coordinates. We may develop the Legendre polynomials and the series
related thereto by consideration of the following geometric problem.
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With reference to Fig. 1.12, let us write an expression for r in terms of
the coordinate distances p and p’ and the angle 6. The distances p and p’ are,
respectively, the radial distances from the origin O to the Points P and Q

Q

Fig: 1.12
and 6 the angle between them, or the polar angle in spherical coordinates
if OP is the polar axis. From the law of cosines, we have

r? = p?+p'?~2pp’ cos 0
We may rewrite

o' _ 1 _ 1
ro 2 1= 2ux+x? 1.89
/l—2ﬁ,cos0+i,2 v Hxx (1.89)

N P P
where we have set p/p’ = x and cos § = u. We now wish to develop Eq.
(1.89) in a power series expansion in terms of x for values of x limited to
|2ux—x*| < 1. From the binomial theorem, we have for such an expansion

(1—-2)""2 = agtaz4a,22 40323+ +o, 2"+ - (1.90)
where
i =1-3--~--(2n—1) (19
n 2-4-'--'(2n) :
Hence

(1 =2ux+x%)""% = oy +a,Qux —x?) + o, Qux — x?)? + a3 Qux — x2)?
+ - a,Qux —xH)"+ - - (1.92)
Collecting terms in x, we obtain
(1=2ux+x*)"Y% = ag+[o; Qu)x 4 [ — oty + oty (4u?)]x?
= () + oy () + -+ -
= Po+ P (u)x+Py(u)x* +Py(u)x>+ - - -

FP W)X+ - (1.93)
where Py(u), P,(u), P,(u), P5(u), - -, P,(u)," - - are the coefficients of x°, x!,
x%, x>+, x",---. The coefficients P,(u) are polynomials in u and are the

desired Legendre polynomials for the series expansion Eq. (1.93).
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We may determine the general expression for P, by collecting the terms
in x" from Eq. (1.92). From the term «,(2ux —x?)" = «,x"(2u—x)", we shall
have a contribution from the first term in the binomial expansion of (2u — x)".
From the term «,_,Qux—x*)""1' = «,_,x" 'Qu—x)""!, we shall have a
contribution from the second term in the binomial expansion of 2u—x)""!,
and so on, for the succeeding lower expression of «,_,(2u—x)"~* until we
have run through the expansion of (2u—x)""*. Thus, we have

P(u)x" = a,x"[(u)"] + o, 1 x" " [(n— 1) 2u)"~*(=x)]

+an_zx"‘2[(————” 2073 Gup-+(- x)Z]

+ xn_k[(n—k)(n—k—l)--~(n—2k+1)
Xn—k

= (2u)"—“(—x>"]

ERP
or

n/2
13+ -+ - Qn=2k—1)
Fi) = ; 24 - - (2n—2k)

(n—k)(n—k—1)--(n—2k+1)2" " 2k(=1)* n—2k
k! !

From the definition of the factorial, we have

24 -+ - (2n=2k) = 2""Mn—-k)! = 2" ¥n—2k)/(n-2k+1)- - - (n—k)
and substituting into the expression for P,(u), we obtain finally
n/2
13- - - @n=2k—1) . .
P(u) = Z ez (D (1.94)

We observe that P,(u) is a polynomial of degree n and that only alternate
powers of n occur in it so that the Legendre polynomials of even degree are
even functions of « and those of odd degree are odd functions of u.

We now wish to derive certain recursion formulas among the P, and

their derivatives. Taking the derivative of Eq. (1.93) with respect to x, we
obtain

u—x

—_— = 24 ...

T2ttt — i)+ 2Pa)x+3Py(u)x+ (1.95)

Comparing Eq. (1.95) with Eq. (1.93), we may write, rearranging terms,
(U=x) [Po+P+P,x"+ - +P X"+ - - -]

= (1=2ux+x?) [Py +2P,x+3Pyx?+ - - - +(n+1)P, . X"+ - -]
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Equating the coefficients of x” on both sides of this equation, which conditions
must be met for the expression to be valid for all values of x, gives

UPX"—xP,_;x" "' = (n+1)P,, X" —2uxnP,x" "' +x*(n—1)P,_ x" "2
uP,—P,_, = n+1)P,,—2unP,+(n—1)P,_,
> (n+ )P, —Q@2n+DuP,+nP,_, =0 (1.96)
Now taking the derivative of Eq. (1.93) with respect to u, we obtain
x
(1 =2ux+x%)*?
Again comparing this time Eq. (1.97) with Eq. (1.95), we may write, re-
arranging terms,
(u—x) [Py+Pix+Px*+ - +P.x"+ ]
= X[P; +2P,x+3P3x*+ - +(n+ P, x" -]

= Py(u)+Py(u)x + Py(u)x*+ - - - (1.97)

Equating the coefficients of x” on both sides of this equation gives
uPx"—xP,_x" ! = nPx""!
or
uP,—P,_, = nP, (1.98)

From Egs. (1.98) and (1.96) we may derive a differential equation
satisfied by the Legendre polynomials. We proceed by deriving an equation
for P, and its derivatives only. Differentiating Eq. (1.96) with respect to u,
we obtain

(n+DP., —(n+1)P,—(2n+DuP,+nP,_, = 0 (1.99)

Substituting Eq. (1.98) into Eq. (1.99), we obtain
(n+ 1P, ~Q2n+1)P,—(2n+ \)uP,+nuP,—n*P, = 0
(n+ P, —(n+1DuP,—(n+1)P, = 0 (1.100)
and rewriting Eq. (1.100) for P, rather than P, ,
P, —uP,_ —nP,=0 (1.101)
Now substituting Eq. (1.98) into Eq. (1.101), we obtain
P,+nuP,~u*P,—nP,_, =0
(1-u*)P.+nuP,—nP,_, =0 (1.102)
Differentiating Eqs. (1.102) with respect to # and substituting once more

from Eq. (1.98), we obtain

d
7 [(1-u?)P,) +nP,+nuP,+n*P,—nuP, = 0

d 2 ’
2 [A=u)P)+n(n+1)P, = 0 (1.103)
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Equation (1.103) is the desired equation. It is referred to as the Legendre
differential equation and is a homogeneous linear differential equation of the
second order.

We shall now derive an alternative expression for P,(u#) to Eq. (1.94),
which, in some applications, is simpler and more useful. Let us first examine
the binomial expansion of the following expression:

-1
@ =1)" = u*+m*""(=1) + ___n(nz' )uz(”"z)(—l)z

n(n—1)n-2) w3
3!

Z (- )k .k)v y2n=b

Differentiating this expression n times with respect to u, we obtain

)3+

n/2

n_ n! (2n=2k)!
L 1) Z( Y oo e 0109

dll

where because of the terms dropped out due to the successive differentiations,
the summation now continues only to n/2. Examining the factorial of
(2n—2k), we obtain
(2n—-2k)! = [1:3-5---- - (2n=2k—1)] [2-4:6 - - -+ - 2n—2k)]
=[1-3-5- - - @2n=2k-1)] 2" ¥n—k)!

Substituting this back into Eq. (1.104) and comparing with Eq. (1.94), we
obtain

< @ =1 (1.105)

P) = -

This expression for P,(u) is known as Rodrigues’ formula.

Finally, in our discussion of Legendre polynomials, we wish to demon-
strate an extremely useful property of Legendre polynomials. This is ortho-
gonality. A set of functions is said to be orthogonal if the integral of the
product of any two of them is zero over a specified interval, and the integral
of the square of any one of them is not zero over the same interval This
property of Legendre polynomials is similar to that which is obtained for
the Fourier series of sine and cosine. It provides us with the same useful
condition for meeting boundary conditions on spherical surfaces with
Legendre polynomials that are obtained through the use of Fourier series on
planar surfaces.
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We may proceed to demonstrate this property by multiplying the Legendre
differential equation (1.103) by P,(u) and integrating from —1 to 1

1
f 1 P, (u) i [(1 =u®)P(w)] du+n(n+1) j P, (u)P,(u) =0
1 du -1

Integrating the first expression by parts, the integrated term vanishes at
either limits, and we have

1 1
- j (1 =u®)P. (w)P.(u) du+n(n+1) P, ()P, (u)du = 0 (1.106)
If we had proceeded with Eq. (1.103) in terms of P,,(«) and multiplied it by
P,(u), we would have obtained an expression the same as Eq. (1.106) with
an interchange of m and n. Subtracting this from Eq. (1.106), we obtain

[n(n+ D =m(m+1)] [ | PP, o) du = 0
from which we have directly our first property of orthogonality,
f D PP du=0  (m+#n) (1.107)

Through the use of Rodrigues’ formula, we can obtain our second ortho-
gonality property that
! 2

Pru)du = —— 1.108

f_l C)de =5 (1.108)

We now are in a position to determine the coefficients in the development

of a given function in a series of Legendre polynomials. If we have such a
series,

V() = coPy)+cyPy(u)+coPy(u)+ - - -

[.e)

= Y P, (1.109)

n=0

multiplication by P, () and integrating from —1 to 1 will give, with the use
of Eqgs. (1.107) and (1.108),

1

1
2
V(u)P, = P> =, —
Jl (P () d f ) it =

or
2m+1 (!
Cp = — 1 V(u)P,(u) du (1.110)
For some problems involving boundary conditions on a sphere, it is more
convenient to express Eq. (1.110) in terms of the incremental solid angle
dw. Remembering that we have from Fig. 1.13

dw = 2nsin 0d0 = =27 du
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Fig. 1.13

so that Eq. (1.110) becomes, reversing the limits of integration,

_2m+1 i

Cp = ~47r_ . V(u)P,,,(u) dw (1111)
Problem 1.6(a) Determine by expansion of Eq. (1.93) that the first five
Legendre polynomials are

P, = 3 (cos? -1
P3 = 3 (cos® 6—2 cos 0)

— 35 4 6 2 3
P, = 32 (cos* 60— cos® 0+

Problem 1.6(b) Using Rodrigues’ formula and integrating by parts,
obtain Eq. (1.108).

1.7 Laplace’s Equation

Laplace’s equation is obtained by setting the Laplacian operator, Eq.
(1.34), of a scalar equal to zero, or

V-VO =0 (1.112)

Laplace’s equation is of great importance in theoretical physics. It appears
in problems occurring in gravity, physical oceanography, thermodynamics,
seismology, and geomagnetism. It is indeed the most often occurring partial
differential equation in theoretical geophysics. It is of advantage for us to
look at some of its solutions here.

We recall that in dealing with solutions of partial differential equations,
we can be confronted with a variety of functions that satisfy the determining
equation. We shall restrict ourselves to consideration of solutions that will be
of use to us in later problems, that is, to solutions that may be made unique
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by satisfying the necessary and sufficient boundary and initial conditions of
these problems. To obtain these solutions, we shall use the familiar method of
solution known as the separation of variables.

To start, let us consider two rather obvious characteristics of solutions
of Laplace’s equation. First, if ®,, ®,,---, ®, are individual solutions of
Laplace’s equation, then

(D = A1®1 +A2®2+ e +A"q)n
is a solution where 4,, 4,,- -, A, are any constants. For
V-VO = 4,V-VO,+A4,V-VO,+ -4+ 4,V-VO, =0

as each term contains a vanishing factor. Second, if ® is a solution of
Laplace’s equation, any partial derivative of ® of any order with respect to
the coordinates x, y, z is a solution. Writing out V-V in terms of partial
derivatives with respect to x, y, z, Laplace’s equation takes the form

?0 o '

gtz =0

and differentiating with respect to x, we obtain

(0 @ (00 2 (a)
o\ox) T o2 \ax) T a2 \ex) T

Therefore, if ® is a solution of Laplace’s equation, é®/dx is also. In similar
fashion, it may be shown that

o0 od 2’0 '
oy’ oz’ ox*’ oxoy’

and also the vector V& are solutions.
Let us examine the two-dimensional form of Laplace’s equation in rect-
angular coordinates,
o o
To use the method of separation of variables, let us make the assumption,
justifiable by its success, that a particular solution of ® may be written in
the form

ox

® = X(x)Y () (1.114)

where X and Y are functions of only one independent variable, x and ¥,
respectively. Substituting into Eq. (1.113), we obtain

X'Y+XY" =0
XII Y”

r oo
o w5 =0 (1.115)
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If Eq. (1.115) is to have any solution at all, then each of the terms on the
left-hand side must separately be equal to a constant; for a change in x would
not alter the value of the second term, and a change in y would not alter the
value of the first term. One may, therefore, conclude that

n Y”
i"f - =k (1.116)

where the constant parameter k2> may have any value real, imaginary, or
complex. Equations (1.116) are two ordinary differential equations whose
solutions are simply

X = aet™ Y =aet® (1.117)

which may be seen by substitution back into Eqs. (1.116). Our solution of
the form of Eq. (1.114) in terms of the parameter k is then

O, = cettx*in (1.118)

or since k is undetermined and may have any constant value, a more general
solution is

D = Y cetkx+in (1.119)
k

Let us now examine Laplace’s equation in spherical coordinates. From
Eq. (1.83) we have

Lof, o0\ 1 of. o0 L se
—_— | — _— 1n —_— —_— =
rrar\ r?sin 6 26 26) * FTsinT o op? (1.120)

If we put u for cos 6, we shall have

0 _ 0 du_ o 0
00 oudo . "
so that Eq. (1.120) becomes
o ( o0 0 oD 1 20
A=)+ |-y = |+ ——2 " =
or <r 8r) + 8u[( u) c"‘u] + 1—u? o¢? 0 (1.121)

We shall be interested here in solutions that are functions of r and 8 only,
and not of the aximuth ¢. Then the last term in Eq. (1.121) vanishes, and we

have
o (0 o @]
a\" o) Va0 " (122

We shall again use the method of separation of variables and assume a
solution of the form

® = R(r)U(u) (1.123)
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i

Substituting into Eq. (1.122), we obtain

o 2
= (F*R'U) + — [(1-u?)RU’') = 0

or
1o , 1 o
o ’ ——[1-u»U1=0 1.124
7o CR) + 5o [=u))U] (1.124)

We see that this is of the same form as Eq. (1.115) with a separation of the
variables r and u. We shall choose, for convenience, in this case our constant
parameter to be n(n+1). We then obtain the two ordinary differential
equations, corresponding to Egs. (1.116),

d
Q—(rZR’)—n(n+l)R =0 (1.125)
r

and

i[(l—uZ)U']+n(n+1)U =0 (1.126)
du

Examining Eq. (1.125), we have
r’R’+2rR' —n(n+1R = 0

This is a familiar ordinary differential equation, whose solution is of the
form R = r® Substituting, we obtain the conditional equation for «,

a(e—1)+2a—nn+1) =0
or
(x—n)(e+n+1) =0
whose solutions are
a=mn, —(n+1)
Hence
R =a;r"+ay~ 0D (1.127)

Returning to Eq. (1.126), we notice that it is the Legendre differential
equation (1.103) whose solutions are the Legendre polynomials P,. We may
then write, for our final solution in the form of Eq. (1.119),

Q=Y [ar"+b,r" V)P, (cos 6) (1.128)

Let us now examine Laplace’s equation in cylindrical coordinates. From
Eq. (1.88) we have

1o 3®+182(D+32(D 0 1129

pop\"ep) T PP gt T o (1.129)

We shall be interested here in solutions that are functions of p and z only,
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and not of the azimuth ¢. The second term in Eq. (1.129) vanishes, and we
have
7?0 10 %D

— 7—+h
2 pép 0%

=0 1.130
W (1.130)

Again, using the method of separation of variables, we assume a solution of
the form
D = M(p)Z(2) (1.131)

Substituting into Eq. (1.130), we obtain

1
MZ+-MZ+ MZ"=0
p
or
M 1M Z

-+
M M Z

=0 (1.132)

We see that Eq. (1.132) has the proper separation of variables, and we shall
choose our constant parameter to be k2. We obtain as before

1
M +-M'+k*M =0
p
or
pPM"+ oM’ + p%k*M = 0 (1.133)
and
Z"—kZ = 0 (1.134)

Examining Eq. (1.134), we see that it is the same as the first equation of
Eqgs. (1.116) and has the solution

Z = a,eth (1.135)

In Eq. (1.133) if we make a change of variable to x such that x = kp, we
shall have

0 ddx 0

2 oxdp ox
so that Eq. (1.133) becomes,

2‘1’2M+ dM+ M =0 (1.136)

x* — — = .
a2 T % ax

which is a reduced form of the Bessel differential equation. We shall look for
a solution of Eq. (1.136) in the form of a convergent series in x. We shall
assume

w0
M=) ax*=a+a;x+a,x* +a x>+ +ax*+--- (1.137)
A=0

Substituting into Eq. (1.136), we obtain
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Y adA-Dx* + Y gt + Y ax*t? =0
A i A

This equation must hold for every value of x, and this can only be true if
the coefficient of every power of x is identically zero. Equating the co-
efficients of x* to zero, we obtain

@G A-1D+ar+a;_, =0

or, increasing A to A+2,

a;,,.,(A+2)(A+1D+a;4,(A+2)+a, =0

a,42(A+2)°

-1
A2 = m a,

This gives us a recursion relation for a;,, in terms of a,. Thus, if the co-
efficients a, and a, are specified, all other a, can be determined from Egq.
(1.138). We are particularly interested in the solution that occurs if we take
a, equal to a constant, chosen for convenience as unity, and a, equal to zero.
This gives us a convergent series for all values of x and is one of the two
particular solutions of Eq. (1.136). It is the one that will be of interest to us
in later problems. Thus, Eq. (1.137) becomes
1 1 1
M=l-p¥tng” " pae
=n"

22.42.62. ..« - m

(1.138)

XS4 - -

+

2m ..,
3 X+

This is the Bessel function of zero order Jy(x), which, remembering the
definition of the factorial, becomes in summary form

-1
M = Jy(x) = z(m)v (-) (1.139)

The function J(x) oscillates back and forth across the X axis, similar to the
sine and cosine functions, but with decreasing amplitude. For our final
solution in the form of Eq. (1.119), we may then write

Q=Y ¢ Jo(kp) et*= (1.140)
k

We should now like to look at the conditions required for any of the
particular solutions developed above to represent the complete solution to a
problem for a region in which there are no singularities. We shall show that
if @ is given at all points on a surface surrounding a region in which Laplace’s
equation holds, then a solution of this equation that satisfies the assigned
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boundary conditions is unique. Let ®; be a solution of Laplace’s equation
satisfying the boundary conditions. Assume that another distinct solution
®,, which satisfies the same boundary conditions, exists. We shall prove that
®, must be identical with ®,. Let ¥ = ®, —®,; then ¥ satisfies Laplace’s
equation in the region under consideration, since ®, and ®, satisfy it indi-
vidually. Expanding the expression V-(¥'VY), we obtain

V-(¥VY) = V¥-V¥ + V- V¥
or
V-V = V- (YVY) - ¥V V¥

Integrating this expression over the region = in which Laplace’s equation
holds, we have

J (V¥)2 dr = j V-(¥VY) dr — j ¥YvV-v¥dr
As ¥ satisfies Laplace’s equation, the integrand of the last term on the right
vanishes throughout the region 7. The first term on the right may be trans-
formed into a surface integral by Gauss’ theorem. Hence,

J (V¥)? dr = f (¥VY)-do

But as @, = ®, everywhere on the surface o bounding the volume r, the
right-hand side of this equation vanishes. Therefore, as the integrand of the
volume integral is a sum of squares, the integrand itself must vanish; that is,

¥\ ? ¥\ 2 ov\?
o -(5) +(5) (%)

and again for this equation to be zero for all x, y, z, each of its terms must be
Zero, or
oY ov oY

0 — =0

— =0
ox oy 0z

Therefore, ¥ is a constant. But, since ¥ vanishes on the boundary, this
constant is zero. Therefore,
o, =0,

and the two solutions of Laplace’s equation are the same.

Suppose, now, that in solving a physical problem, we find that a certain
function @ of the coordinates must satisfy Laplace’s equation inside a region
v and have certain assigned values over a surface bounding this region.
Then if we find a solution of Laplace’s equation that satisfies the given
boundary conditions, we know that we have the correct solution to the
problem. We need not ponder the possibility that there may exist some other
solution of Laplace’s equation that satisfies the assigned boundary con-
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ditions and also fulfills further necessary conditions that we have overlooked
and that are not fulfilled by the first solution. For there is only one solution
of Laplace’s equation that can satisfy the given boundary conditions. In
mathematical language, Laplace’s equation and the assigned boundary
conditions are sufficient to determine the function ®.

1.8 Fourier Series

It is sometimes useful to express a given function f(x) in terms of a
series of trigonometric functions, as contrasted, say, with a power series
expansion on an expansion in terms of Legendre polynomials. Such a series,
known as Fourier series, may be written in general form:

a
f&x) = 30 + a; cos x+a,cos2x+ -+ +a,cosnx+ -

+ b, sin x+b, sin2x+ -+ +b, sin nx+ - -- (1.141)

The constant term has been written a,/2 rather than a, for subsequent
convenience in evaluation of the a,. We note immediately that since cos x
and sin x, and consequently cos 2x, sin 2x,- - -, cos nx, sin ax,- - - are periodic
with a period 2w, the function f(x) is necessarily restricted to being a periodic
function with a period of 27; in a physical sense, this means that we can
define f(x) only over a 2« interval. We shall see later that this seemingly severe
restriction can be relieved sufficiently so that Fourier series are quite useful in
problems of theoretical geophysics. Solutions in terms of Fourier series,
and logical extensions thereof, are often useful in problems having to do
with vibration or wave propagation.

The trigonometric functions of a Fourier series exhibit the same useful
property of orthogonality over the interval 2= as the Legendre polynomials.
For convenience, we shall take our 2= interval from —= to =. We see
immediately that

n n
J sin mx cos nx dx = J sin mx sin nx dx

=J cosmxcosnxdx =0 (1.142)
for m # n for the last two integrals, from the trigonometric identities

sin mx cos nx = 4[sin (m—n)x +sin (m+n)x]

sin mx sin nx = 4[cos (m—n)x—cos (m+n)x]

cos mx cos nx = }[cos (m—n)x+cos (m+n)x]

and also that
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J sin? nx dx = %J (1—cos2nx)dx = =
" - (1.143)
J cos? nx dx = &J (14cos2nx)dx = =

From these orthogonal relations, we can determine the coefficients a,
and b, in Eq. (1.141). We proceed as follows in a manner similar to that for
the determination of the coefficients in a Legendre polynomial series. Multiply
Eq. (1.141) by cos mx and integrate from —= to . From Egs. (1.142) and
(1.143) we shall obtain

n

n
J f(x) cos mx dx = a,, [ cos’? mx dx = a,m
-n

J -7

or
a, = %J-n f(x) cos mx dx (1.144)

including m = 0. Similarly, we obtain
b, = ;ITJ"! f(x) sin mx dx (1.145)

Let us examine for the moment the properties of a function referred to as
even and odd. By definition, a function f(x) is called an even function if
S(—=x) = f(x). We see then that cos nx is an even function since cos (—nx)
= cos (nx). Also, by definition, a function f(x) is called an odd function
if f(—x) = —f(x). We see then that sin nx is an odd function since sin (—nx)
= —sin (nx). Now, if perchance f(x) in Eq. (1.141) is an even function, we see
that the coefficients of the trigonometric expansion are given by

a, = gJmf(x) cos mx dx (1.146)
T Jo

b, =0

since the contribution from —= to 0 in Eq. (1.145) is canceled by the con-
tribution from 0 to #. For an even function f(x), the Fourier series expansion
is given in terms of cosine functions only. Similarly, if f(x) in Eq. (1.141) is
odd, we have, for the coefficients of the trigonometric expansion,

a,=0
2 .

b, = —j f(x) sin mx dx (1.147)
™Jo

For an odd function, f(x), the Fourier series expansion is given in terms of
sine functions only.
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Often in geophysical problems, we are interested in defining or in obtain-
ing values of f(x) over positive values of x. We may then wish to have f(x)
defined only over the interval O to =, that is, half the interval previously con-
sidered. We may then arbitrarily define f(x) over the interval —= to O to be
an even function, in which case f(x) will be given by a cosine series only,
whose coefficients are determined by Eqs. (1.146). Alternatively, we may
arbitrarily define f(x) over the interval —7 to 0 to be an odd function, in
which case f(x) will be given by a sine series only, whose coefficients are
determined by Eqs. (1.147). Such series are known as half-range series.

In general, we do not wish to restrict ourselves to an interval —= to =
or 0 to =. It is desirable to develop methods and formulas that will enable us
to expand a function over an arbitrary interval —/ to / or 0 to /. Consider a
Fourier series expansion of F(z) in the form of Eq. (1.141)

a
F(z) = —29 + aycosz+a,cos2z+ - +a,cosnz+ -

+ b, sinz+b,sin2z+ -+ +b,sinnz+--- (1.148)
Let us make the substitution in Eq. (1.148) of

7= (1.149)
l
from which we shall define f(x) by
Fz) = F(?) = f(%) (1.150)
Substituting Eqgs. (1.149) and (1.150) into Eq. (1.148), we obtain
2
Jx) = % + a,cos”7x + azcos—Tf +'-'+a,,cosn—71r)-c +--

. mX . 2mx . nmx
+blsmT+bzsmT +'-'+b,,smT+-~ (1.151)

Evaluating the coefficients of Eqs. (1.148) and (1.151) by Egs. (1.144) and
(1.145), we obtain

1("
a, = - F(z)cosmz dz
77'“ -
1[! mnx
= 7 J(x) cos—I—dx (1.152)
Y -l
and
1{
bu=7| f@x)sin ’@‘ dx (1.153)

v =1



Mathematical Considerations 9§ 37
For the coefficients of a half-range cosine series, we obtain
2! X
a, = ;f 1(x) cos 72X g (1.154)
1), )
and for the coefficients of a half-range sine series, we obtain
2! m>
b, = -J. 1) sin 27X dx (1.155)
In some instances, it is more convenient to have our Fourier series

expansion expressed in complex form. If the cosine and sine functions are
written in their exponential form, we can obtain for Eq. (1.151)

fix) = i c,e' /D (1.156)

- o0

where the coefficients ¢, are complex and are given by

]
e = 1} S(&) e gg (1.157)
21 _,

and where, for convenience, we have used the variable ¢ for the variable of
integration in the determination of our coefficients ¢, to distinguish from
the variable x in our final expression.

Problem 1.8(a) Determine the half-range cosine and sine coefficients,
respectively, and the Fourier series expansions for f(x) = 1 defined over the
interval O to /.

Problem 1.8(b) Determine the half-range cosine and sine coefficients,

respectively, and the Fourier series expansions for f(x) = x defined over the
interval 0 to /.

Problem 1.8(c) Determine the half-range cosine and sine coefficients,
respectively, and the Fourier series expansions for f(x) = x? defined over
the interval O to /.

Problem 1.8(d)  Prove that "™/ and e~ ™D are orthogonal over the
interval —/to /.

Problem 1.8(e) Derive expressions (1.156) and (1.157).

1.9 Fourier Integrals

In the previous section, we have seen how we can express a function
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f(x) defined over an interval from —= to = in terms of a Fourier series, and
we have extended this to an arbitrary interval from —/to /. It is of interest in
this section to extend this analysis to a function defined over the entire real
axis from — oo to co.

From Egs. (1.151), (1.152), and (1.153) we may write, for our function
f(x) defined over the interval —/to /,

16 = %,f_lf(f) dt + ,‘Z [cos ’? f S®cos " dg

1

. hmx . nné
+ sin - f(§) sin T df] (1.158)
-1

where we have used ¢ as the variable of integration in the determination of
the coefficients a, and b, for convenience to distinguish it from the variable x

in our final expression. From the trigonometric identity
nmé nmx . nmé | nmx nm
C0s — = €os —~ + sin - sin = cos (¢—x

we may write for Eq. (1.158)

1 (! 1 < (¢ ™
S(x) =2lf_lf(§) df+72f_ f(f)cosnT(f—x)df (1.159)

Now if / is taken large enough, we may neglect the first term in Eq.
(1.159) provided that the integral in this term converges as / — c0. We are
then left with the second term, which we can express as

1 < ! nm
l—;f_lf(f) cos " (¢=x) dg

B 1
=% ok J £(&) cos k(£—x) d¢ + 6k

-1
f () cos 26k(¢ —x) d+ - - ]

= 1 S(&) d¢ {[cos 8k(£ —x)+cos 28k(£—x)+ - - -] 8k} d¢

7Td —
(1.160)
where we have substituted for / in the integrand
™
8k = —
/

The expression in the braces of Eq. (1.160) is simply a series approximation
to the definite integral

[ cos k(e —x) dk = lim {[cos 8k(¢—x)-+cos 28k(¢ —x)+ - -] 8k}
0
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Assuming that this sum has a limit as / - , we may then write for f(x),
now defined over the interval — oo to oo,

Jx) = 1J’°° J© ng‘m cos k (§—x) dk
7)o 0

=lfwdk ? f(&) cos k (£—x) d¢ (1.161)
mJo

- a0

Equation (1.161) is known as the Fourier integral theorem. The condition

that applies to f(x) for this integral to exist, which we shall state but not prove,
is that

|2 16l ax
exists.
By the same method as above or directly from Eq. (1.161), we may obtain
the half-range cosine series, where f(x) is defined from 0 to o and f(—x) =

Jx), :
flx) = gjw dkjwf(f) cos k¢ cos kx d¢ (1.162)
7)o 0

Similarly, for the half-range sine series, where f(x) is defined from 0 to o

and f(—x) = —f(x),
f(x) = 2 f ) dkfm F(&) sin k¢ sin kx d¢ (1.163)

Equations (1.162) and (1.163) may be written in complementary form as

flx) = \/2 ? g(k) cos kx dk
e (1.164)
gk) = \/2 F®) cos ke d
mJo
for the half-range cosine series, and as
flx) = \/ 2 h(k) sin kx dk
;1 (1.165)
h(k) = \/ —| Sf(¢)sinkéd¢
TJo

o

for the half-range sine series. Expressions (1.164) and (1.165) are known as
the Fourier cosine and sine transforms.
If we had followed through the analysis of this section for our Fourier

series expansion expressed in complex form, we would have obtained for the
Fourier integral theorem
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1 [® ® .
fx) = Z—J dkj (&) &M= g¢ (1.166)
T - — a0
and for the Fourier transforms

— _1_ ® ikx
f(x) = JzﬂJ’ ] g(k) e dk

I [® .
g(k) = Ef_wf(f) e ™ d¢

(1.167)

The Fourier transforms, either Eqs. (1.164) or (1.165) or more generally
Egs. (1.167), have a useful application in the description of the source function
for problems in vibration or wave propagation. Often, we wish to consider
a source function f{(¢), which is usually given as some function of the pressure,
velocity, or displacement with respect to time in terms of its simple harmonic
components. By a simple harmonic component, we mean an oscillation with
respect to time of a cosine or sine expression. Let us consider such a com-
ponent in its most general form

y = acos (wt—39) (1.168)
Its graph will be as shown in Fig. 1.14. It oscillates back and forth across the

al— e e e

Fig. 1.14

t axis between maximum values of @ and —a. The maximum displacement a
is referred to as the amplitude of the motion. The period P of the motion is the
time required to execute a complete oscillation. From Eq. (1.168) this will be
simply
[w(t+P)—8]—[wt—8] = 2=
or
P=— (1.169)

w
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The frequency v is defined as the number of oscillations per unit time. It is,
therefore, simply the reciprocal of the period

1
y = — =
P
or (1.170)

w = 2mv

¥le

The quantity o is referred to as the circular or angular frequency, and the
quantity § is referred to as the initial phase. The usefulness of the concept of
simple harmonic motion is, in part, that such functions are often solutions
to the partial differential equations of physics.

We should like now to generalize our simple harmonic motion com-
ponents to an arbitrary source function. We can do this through the Fourier
transforms. Let us consider, for example, a source function f(¢), which is
an even function of ¢. In Eqgs. (1.164) let the time ¢ replace the variable x,
7 replace the variable of integration £, the angular frequency w replace the
variable k, and the function s(w) replace the function (2/7)!/?g(w). Then we
shall have

f(t) = j 7 5(w) cos wt dw
(1.171)

S(w) = EJ‘w_f(r) cos wr dr
7Jo

our desired result. The source function f{¢) is given by a summation over all
frequencies w of the simple harmonic components, each with an amplitude
S(w). The amplitude of the components is determined from the second of
Eq. (1.171). The quantity s(w) is referred to as the spectrum of frequencies
which, when added together, give the desired impulse f(z).

In complex form, these same equations become from Egs. (1.167)

f(t) = j © s(w) e do
(1.172)

S(w) = 2i‘” [“’ f(r)e " dr

Usually, the integrand of the first integral of Egs. (1.172) is an even function,
which conveniently obviates the necessity of considering negative frequencies.
The spectrum function is then 2s(w). In this case, s(w) is, in general, complex
expressing both the amplitude and phase of the simple harmonic com-
ponents.

Problem 1.9(a) Derive expressions (1.166) and (1.167).

Problem 1.9%b) Show that the Fourier transform of f(x) = e */% is
gk) = ™2,
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Problem 1.9(c) Show that the Fourier transform of the step function

fx) = \/2—2;7 for |x| < 1

=0 for |x| > 1
is g(k) = sin kl/kl.

Problem 1.9(d) Extend the results of Problem 1.9(c) to show that the
Fourier transform of the unit impulse, f(x) = o at x = 0 and f(x) = 0 for
all other values of x, is g(k) = 1.

Problem 1.9(e) Derive the spectrum function s(w) for
f(t) = cos yt for jt| < 4T

=0 for |t| > 4T
and discuss the results.

Problem 1.9(f) Derive the spectrum function for
fW)=e* fort>0

=0 fort <0
and discuss the results.

1.10 Wave Equation

Another important partial differential equation in geophysics is the wave
equation. It is obtained by setting the second partial derivative of a function,
¥, with respect to time equal to a factor times the Laplacian of ¥, or

2
VY = oY (1.173)
or?
It is convenient to denote the factor of proportionality by ¢2, for as we shall
soon find out, c is the velocity of propagation of ¥. In general, the factor ¢
will be a function of one or more of the space coordinates. For our discussion
in this section, we shall restrict ourselves to considering ¢ a constant.

Let us consider briefly here the properties of one type of general solution
of this equation. For one-dimensional motion, ¥ = W¥(x, t), and Eq. (1.173)
becomes

, Y *Y

= .1
ox? ot? (1.174)

A general solution of this equation is
Y = f(x—ct)+ F(x+ct) (1.175)
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as may be seen by substitution back into Eq. (1.174) and where f and F
are arbitrary functions. Let us examine what significance these functions
have. If, in the first function, the time ¢ is increased by an amount 8¢, the
value of f will remain unchanged if x is increased by an amount ¢dt. We
see then that a particular value of the function f, which was observed at
position x at time t, will be found at position x+ ¢3¢ at time ¢+ 8¢ and that
this is valid in a corresponding manner for all other values of x. The function
f represents a disturbance propagated in the positive x direction with a
velocity ¢. Similarly, the function F remains unchanged at a time 7+ 8¢ by
a decrease in x of céz; it represents a disturbance propagated in the negative
x direction with a velocity ¢. These relations are illustrated in Fig. 1.15.

1+ 51 t t 1+ 8¢
f\ [\ /\ . X
- o —— - ——
Fig. 1.15

Next, let us consider a disturbance that is propagated in three dimensions
and is symmetrical about a center O. Then ¥ = ¥(r, 1), and the Laplacian
of Eq. (1.83) in spherical coordinates and Eq. (1.173) will reduce to

c2of,dr\ &Y
—_—rc— e —
r2 or or ot?

2(32‘1’ 23‘1’) ’*v
ANeFg+=—)=—
r or

or? ot?
2P0 _ 20 (1.176)
or? ot?

which is of the same form as Eq. (1.174), giving for ¥
1 1
¥ = ;f(r—ct) + ;F(r+ct) (1.177)

The function f(r — ct) represents a spherical wave diverging from O, and the
function F(r+ ct) represents a spherical wave converging on O. The amplitude
of f(r—ct) decreases as r~'. The amplitude factor would be expected from
physical considerations; for as a spherical wave is propagated outward, the
area of the wave front (sphere) increases as r*. Consequently, the energy flow
per unit area will decrease as r ~2. As will be shown later, the energy flow per
unit area is proportional to ¥2.

It is of interest to examine, at this point, the type of solution of the wave
equation that results from the use of the method of separation of variables.
For simplicity, we shall examine the type of solution obtained from the one-



44 9  Introduction

dimensional wave equation (1.174). As with our examples in Section 1.7, we
shall assume a solution of the form

¥ = X(x)T(t) (1.178)
Substituting Eq. (1.178) into Eq. (1.174), we obtain
2X'T = XT"
X'I TII
22 _ =90 1.179
“xXTT (1.179)

The separation is as before. We shall, for convenience, designate this constant
as —w? for the first term, and necessarily w? for the second term. Equation
(1.179) then gives us the following two equations:

T"+?T =0 (1.180)
and
wz
X" + - X=0
(4
X'+k*X =0 (1.181)

where we have made the substitution
k=2 (1.182)
c

in the second equation. Solutions of these two ordinary differential equations
are simply

T = ae™'+a,e ™t (1.183)
and

X = bie*™ 4+ be™i** (1.184)
in complex form.

Let us look at one of the four real-value components of this solution.
We shall take, for convenience, from Eqs. (1.183) and (1.184)

¥ = XT = acos (kx—wt) (1.185)

This is an expression of simple harmonic motion. If we were to look at the
motion at a particular instant of time, it would be represented by an oscillation
back and forth across the X axis. The distance between two successively
repeated points, such as the distance between two troughs as indicated in
Fig. 1.16, is defined as the wavelength. From Eq. (1.185) the wavelength A
will then be simply
kx = kX =27
27

A= (1.186)
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Fig. 1.16

The quantity k is referred to as the wave number. Similarly, if we were to
stand at a particular point in space and observe the motion as a function of
time, it would be a series of oscillations as shown in Fig. 1.14. From Eq.
(1.185) we would have the same relation for period P and frequency v, as
before, or

P= 2—" (1.187)
w
and
w
= — 1.18
v=o (1.188)

We see that again our constant w is the angular frequency. From Egs. (1.182),
(1.186), and (1.188) we obtain the familiar relation

c=2=n (1.189)

which states that the velocity of propagation of simple harmonic motion is
equal to the product of frequency and wavelength. This is physically under-
standable in that if we are at a fixed point in space and observe the number of
cycles that pass in a unit time, the velocity of propagation of the wave
motion will be the product of this number by the length of one cycle, or Eq.
(1.189). It we were to examine the other three terms of Eqs. (1.183) and
(1.184), we would obtain the same results for motion propagating in either
the positive or negative X direction.

Let us look, for the moment, at the energy partition occurring in simple
harmonic motion. As we shall see in later sections, one associates two types
of energy with wave or particle motion. One is the energy associated with the
motion, or kinetic energy, and the other is the energy associated with the state
of stress, or potential energy. The potential energy is the negative of the
work that would have to be done to reach the particular state of stress. If,

-
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for the moment, we assume that ¥ in Eq. (1.185) is a displacement com-
ponent and rewrite Eq. (1.174) as

Y *Y¥

where p is the density, and p is defined by
p=clp (1.191)

we see that the right-hand side of Eq. (1.190) is a mass per unit volume, or
density, multiplied by an acceleration. Therefore, from Newton’s second law,
the left-hand side must be a force per unit volume. We may then write, for
the kinetic energy per unit volume, 7,

T = 1p¥? = Lpw?a? sin® (kx—wt) (1.192)
and for the potential energy per unit volume, V,

¥ g2y ¥ ¥
V= —FJ g3 d¥ = }LJO k*a cos (kx—cgt) d¥ = ”kzj ¥ av

0 0
= pk?¥? = Luk?a® cos? (kx—wt) (1.193)

Since simple harmonic motion is repetitive over one cycle, we may find the
average kinetic and potential energies per unit volume T, and V, by integrating
over one period, or

— 1%
= }pwia? l:;f sin? (kx — wt) dt:,
0

-1
= tpw’a? {; [3kx —wt)—1sin 2 (kx—wt)]}

2n/w

0

~ Lol (1.199)
and
V = Jukla 2[ f cos? (kx—wt) dt]
— 2n/w
= luk*a® {2— [1(kx—wt)+ L sin 2 (kx— wt)]}
0
= Luk?a? = lpw (1.195)

using Eqs. (1.187), (1.189), and (1.191). The average kinetic and potential
energies are equal for simple harmonic motion. The total energy is the sum
of the kinetic and potential energies. We then have, for the average total
energy, U, per unit volume,

U=T+V = }pu?a® (1.196)
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We see that this relation between average kinetic and potential energies
holds whether ¥ is the displacement or the displacement is given by some
space or time derivative of Y.

It is easy to extend the separation of variables solution to two and three
dimensions in rectangular coordinates. For the two-dimensional wave
equation, we obtain

Y = getikex ptikyy o iwt (1.197)
where
k2 = kx2+ky2 (1.198)

Following the same reasoning as before, when k, and &, are real, Eq. (1.197)
represents simple harmonic motion propagating in a direction r = ix+jy,
whose wave number components in the X and Y directions are k, and k,.
From Fig. 1.17 we can see the physical significance of Eq. (1.198). Let AB

Fig. 1.17

and CD be the traces of the two successive crests of a plane wave propagating
in the direction r. Then the wavelength A will be the distance PQ as shown,
and the wavelengths A, and A, measured along the X and Y directions,
will be the distances AC and BD, respectively. From Fig. 1.17 and Eq.
(1.186) we have

2 _ 2w cos 8

k,=—
A, A
and (1.199)
27 2wsin 6
b= =

y
or

k* = k2 4k,
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For the three-dimensional wave equation in rectangular coordinates, our
solution will be, following the same reasoning,

| - ae:tik,,x e:tikyy e:tik,z etivwt (1_200)
where
k* = k2+k}2+k}? (1.201)

We may think of Eq. (1.201) as defining a vector k, whose components
are k,, k,, and k,. Equation (1.200) can then be written

¥ = petitkrin (1.202)

We are interested in looking at one other special type of solution of the
wave equation by the method of separation of variables. This is for the
Laplacian expressed in cylindrical coordinates and for which ¥ is a function
of p and z only, and not of the azimuth ¢. From Eqgs. (1.88) and (1.173) we
obtain

cz[az_‘*’+lal’+ﬂ] _ oY (1.203)
o2 ' pop | oz or?
Choosing a solution of the form

Y = M(p)Z()T([) (1.204)
we obtain, upon substituting into Eq. (1.203),

1
c? [M"ZT + - M'ZT+MZ”T:| - MZT" =0
P

) M” 1 M ’ ZII Tll
C . PR —
T

R Tt
M oM Z

2

=0 (1.205)

Again, we shall designate —w? as the constant for the first term and w?
for the second term. This operation yields Eq. (1.180) for the second term,
whose solution is Eq. (1.183), and

MI/ + 1 MI + ZII + k2 0 2
P > = (1.206)
for the first term. We again have a separation of variables, and we shall

choose —«? as the constant for the first term and «? for the second term,
which lead to

pPPM"+pM '+ p*®M = 0 (1.207)
and

Z'+(k*-xHZ =0 (1.208)
Equation (1.207) is the same as Eq. (1.133) whose solution is (1.139), and
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Eq. (1.208) is of the same form as Eq. (1.181). We may then write, for our
solution in general form,

| - ZzawaO(KP) etV -k 7, tiwt (1.209)

where the summation is taken over both w (or k) and «. When « is real and
less than k, the following physical significance can be attached to it. The z
component of Eq. (1.209) is of a form that shows that the wave number in
the Z direction is the radical in the exponent of that term. The wave number
in the p direction will then be, from Eq. (1.198),

k2 = k2—k2 = K2 —(K*—x?) = (1.210)
(4

The wave number in the p direction is the constant «.

Problem 1.10(a) Carry through the reductions to obtain Egs. (1.197) and
(1.198).

1.11 Associated Legendre Polynomials

Although we shall be concerned almost entirely, at the level of this book,
with azimuthal symmetry for those problems utilizing spherical coordinates,
it is of interest to develop the functions that occur in the three-dimensional
solution of Laplace’s equation in spherical coordinates. Such solutions
involving these functions necessarily occur in many geophysical problems
involving solutions of Laplace’s equation for gravitational, hydrodynamic,
and magnetic potentials. These relations can be developed readily from the
results already obtained in Sections 1.6 and 1.7.

To proceed, we know from Section 1.6 that the Legendre polynomials
P, are solutions of the Legendre differential equation (1.103), written as

(1—u?) P'—2uP!+n(n+1) P, = 0 (1.211)

Differentiating this equation m times with respect to », we obtain sequentially

d
P,—-2P, +n(n+1) P_O

1_2__Pu 2P" 2
(I1-u) u u

d d d
1- 2\ * pr_ - PI _ - -
(1-u )duP" 2(2u T wHnn+1)-2] duP" 0

for the first differentiation,

2 2
(1—u);21>" 2(3)ud P +[n(n+1)— 2(3)]d P,=0
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for the second differentiation,

3 d3 d3
(1-u 2)~«P”—2(4)u P’+[n(n+1) 3(4)] =0

for the third differentiation, and

m m

(1- Z)AP"—Z(m+1)uiP I+ D—m(m+ D] d _P, =0 (1.212)

for the mth differentiation. Now let the function ©(ux) be defined by the
relation

m

o i) = (1=?) "0 (1.213)

and let us see what differential equation © satisfies. We have then

m

I Plu) = (1—u®)~™20" + mu(l —u?)~™2-1¢

= (1=u?)" ™D (1 - 4?0 +muB]

d
o Pa) = (1=?) ™20 + 2mu(1— )~ "D 71O (1 —u?) =D g
+m(m+2)u(1 —u?)~ ") =29

—Uu

2 2
= (1-w?)~ 2=t [(1 —u?)0" +2mu®’ +mO + f”_(’l’f“—z)“_ @]
Substituting these relations into Eq. (1.212), we obtain
(1=u?)?0" + 2mu(1 —u?)®’ +m(1 —u?)O + m(m + 2)u*0
=2(m+ Du(1 —u?)O' =2m(m+ D20 +[n(n+ 1) —m(m+ 1] (1 —=u>)O = 0

or after algebraic reduction
2
(1—u?)0" —2u0" + [n(n+1) - I"Lz] =0 (1.214)
—Uu

which is our desired result. The functions O(u), usually designated by P,™(u),
given from Eq. (1.213) as
dar
OW) = P,"(w) = (1—u?)™? T —— P, (u) (1.215)
are known as the associated Legendre polynomials or associated spherical
harmonics.
Laplace’s equation in spherical coordinates is given by Eq. (1.121).
Again, using the method of separation of variables of Section 1.7, we assume

a solution of the form
b = R(r)OW)H (¢) (1.216)
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Substituting into Eq. (1.212), we obtain

/] 0
—(r*R’ —[(1-u®)RO'H ROH" =0
& (PROH) + — [(1—u)RO'H] + -
or
1-u? o, 1—u? 2 H’
2 R 211 -uwe’ 0 (1217
—— S O7R) + —o— - [(1-w)0] + - =0 (@.217)

Setting the third term equal to —m?, we have the same equation as the
second of Egs. (1.116), whose solution [Egs. (1.117)] is

H = cetim (1.218)
Equation (1.217) then becomes
2

=0 (1.219)

12 12
——(*R) + = —[(1-u?O’] —
R TR+ 5504001105

Equation (1.219) is similar to Eq. (1.124), and using again the quantity
n(n+1) as the constant parameter, Eq. (1.219) reduces to Eq. (1.125), whose
solution is Eq. (1.127), and to

2

1—u?

1[(1 -u*)0'] - O+n(n+1)0 =0
du

or

2
(1-u2)0"—2u0" + [ n(n+1) - 2 lo =0
1-u?

the equation satisfied by the associated Legendre polynomials. Our final
answer then, of the form of Eq. (1.128), is

D =Y (A" + bpur ~ " D] P, (cOs §) et ime (1.220)

In geophysical potential theory problems, the Legendre polynomials P, are
often referred to as zonal harmonics, and the associated Legendre poly-
nomials P,™ referred to as tesseral harmonics when m # n and sectorial
harmonics when m = n.

Problem 1.11(a) Determine the tesseral and sectorial harmonics for P,,
P,, P,.
Ans. P! =sin 8

P, = 3sinfcos §

P,?> = 3sin? 0

Py' = Zsin 0 (cos® 6 1)

Py% = 15sin? 0 cos 0

P, = 15sin3 0
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1.12 Bessel Functions

One of the more important functions that appears in solutions of partial
differential equations in geophysics is the Bessel function. In particular, it
occurs in solutions of problems involving cylindrical symmetry and in
problems involving solutions of the heat conduction, diffusion, and electro-
magnetic induction equations, all of which are given in the form of the
Laplacian of a quantity being equal to the partial time derivative of the
same quantity. Although little use will be made of such solutions at the level
of this text, it is necessary to derive some of the basic relations involving
Bessel functions.

The Bessel function of order n, J(x), is defined as

; x" : x? x*
V=50 =i\ T 2@t T 2amry nray
(_l)mx2m N
T2 2n(n+2) @ntd) - @atam) )
* _1)1 Y\ 124
Z (A)'(Hn),( ) (1.221)

Taking the first and second derivative of J,(x) with respect to x, we shall have

© _1)). n+2\ n—-1+24
) = Z/\'(/\-{-n)' 2 (2)

0

Ji(x) = (=1* (n+2X) (n—1+22) [x\"~2+24
" - 1=0 Al(A+n)! 92 §>

and

Multiplying the second derivative by x* and the first derivative by x and

adding and subtracting n? times J,(x), we shall have, for the coefficient of
the (x/2)"*2* term,

(= e
m[(n+2/\) (n—142X)+(n+2)—n* = ,\!((T+_)n—)![(”+2/\)2—n2]
_ =
= m[4/\(/\+n)]

If we were to multiply J,(x) by x?, we would have, for the coefficient of the
(x/2)"*2* term of that expression

(=1 (=1
O—)i+n—n1 A = T MA+n)!

[4AM(A+n)]
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We see then that J,(x) satisfies the differential equation

X2+ xJ J(x)—nPT(x) = —x*T(x)

or
2

d d
287 XY L -y =0 (1.222)
X

Y2 ra

Equation (1.222) is known as Bessel’s differential equation of order n. We see
that J,(x) is one of the two particular solutions to this equation. Referring
back to Eqgs. (1.136) and (1.139), we see from Egs. (1.222) and (1.221) that
they are the Bessel equation of zero order and the zero order Bessel function.

We now wish to obtain the recurrence formulas among Bessel functions
of different orders. For J,_,(x) and J,, ,(x), we shall have

20 (=1 [(x\rrn
S = 2, m<5>

Jor1(x) = ;,\!(/\+n+l)! (5)

Adding these two expressions, we shall have, for the term of order
(x/z)n—l+2).’

(_l)l (_])l—l X n—1+22
MOA+n—1) T (A——l)!(A+n)!] <§)

(_1)1(,\_*_”)_,_(_1)1—1(,\) x\#—1+24
A(A+n)! ~)

2
B (_1)). n x n+22
T A+ x \2
Comparing this with the expression (1.221) for the definition of J,(x), we see
that

and

2n
; n(x) = Jn—l(x)+Jn+l(x) (1223)

Subtracting J,;(x) from J,_,(x), we shall have, for the term of order
(o2 te 2,
ERTY! n-1+24
A—!((/\-il-—)n)! (n+22) (g)
Comparing this with the expression for J (%), we see that
20,(x) = Jpe () =T 1 1(x) (1.224)
Eliminating J,_;(x) from Egs. (1.223) and (1.224), we obtain
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2 1) =Jx) = Ty 1 (®) (1.225)
X
or
d. i
LG = —x "1 (%) (1.226)
dx

Eliminating J, . ,(x) from Egs. (1.223) and (1.224), we obtain

T+ = Ty (6) (1.227)

or
4 [X'V(x)] = x"J,_1(x) (1.228)
dx

We shall have some interest in solutions of Bessel’s equation when # is
half an odd integer, that is, when # is replaced by p+ 4 in Eq. (1.222), p being
an integer. In this case, the solutions have a particularly simple form related

to the trigonometric functions. To proceed, let us solve Eq. (1.222) for the
case when p = 0, or

dzy dy
X T "Z +(*-dy =0 (1.229)

Making a change of dependent variable from y to z, defined by
~-1/2

y=x 'z

we have
Y o=x"13 2z —1x" 1)

and

yu — x—l/Z(Zn__x—IZr_i_%x—Zz)
Substituting these expressions into Eq. (1.229), we obtain

Z’"+z=0

whose solutions in terms of y are simply

y = ax""?sin x+bx~1/2 cos x (1.230)

By choosing the value of the constants of integration to be @ = b = (2/=)!/2,
it can be shown that the solutions [Eq. (1. 230)] are equal to the reduced form
of the Bessel function [Eq. (1.221)] forn =  and n = — 3, respectively, or

2 1/2
2 1/2
J..l/z(x) = (:x) COoS x

(1.231)
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The other half-order Bessel functions can then be found simply by application
of the recurrence formulas (1.226) and (1.228).

We should also like to examine briefly the relations among Bessel
functions corresponding to the relations between trigonometric and hyper-
bolic functions. In Eq. (1.222), let us replace x by kx, where & is a constant,
for which we shall have then

, 4%y dy 2.2 .2

x-S +x— + kx*—=n")y=0 (1.232)
dx dx
whose solution is simply J,(kx). Let us now set k equal to the imaginary,
k =i= /-1, for which Eq. (1.232) will become
d’y dy

x2 p + xd-; - (x2+n2)y =0 (1233)
Equation (1.233) is called the modified Bessel equation of order n. We shall
take its solution in the form

S . CRV x T
Y= = om U T 22nr2) T 24020+ 2) 2nt4)
x2m
) 23
o 2m@ne) @ntd) o @ntam) ) (1239
corresponding to Eq. (1.221). From Eq. (1.221) we note that
I(x) = i~J,(ix) (1.235)

The function I,(x) is known as the modified Bessel function. In particular,
from Egs. (1.235) and (1.231) or from the derivation of the last paragraph,

we find that
2 1/2
I,(x) = (—) sinh x
mX

2\~ 1/2
I_y,(x) = (ﬂ) cosh x

Problem 1.12(a) Reduce the expression (1.221) to Egs. (1.231) for
n= +1

(1.236)

Hint: Replace the factorial by its generalization in terms of the gamma
function.

Problem 1.12(b) Derive the recurrence formulas for I,(x).

d
Ans. — [T ()] = x4 ()

d
7 L = XL )
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Problem 1.12(c) Derive the expressions for J3,(x), J_3,2(x), and Js,,(x).

2 1/2 :

Ans.  J3;(x) = (——) (—cos x + S—H—l—x)
X x
2 1/2

J_32(x) = (—) (—sinx _ o x)
X x
2\ (3 3
Js)n(x) = <~> l:<_2 — 1) sin x — — cos x:I

X X x

Problem 1.12(d) Derive the expressions for I3,,(x) and I_3,,(x).

2\'/? inh
Ans. I;;,(x) = <—> <cosh x — in x)
X x
2\!? h
I_3,(x) = <—> (sinh x - eos x)
X x

1.13 Velocity and Acceleration Referred to Moving Axes

We should now like to consider one final background item in this intro-
ductory chapter. That has to do with vector relations in a moving coordinate
system and, in particular, with those having to do with velocity and acceler-
ation. Our equations of motion refer back to an inertial, reference coordinate
system. However, for earth problems we shall often use a coordinate system
fixed to the earth which, due to the earth’s rotation and revolution, will not
be an inertial system. We should like to find the relations between velocity
and acceleration as referred to the moving and inertial coordinate systems.

Consider first a vector A defined by its coordinates 4,, 4,, 4, in a rotating
coordinate system. There, the unit vectors i, j, k will no longer be fixed in
direction, and we shall have, for the time derivative of A,

dA dA, . dA dA, d dj dk

pilng d + A, A, — A, — 237
a Pl TR a T g Ty 4D

Referring to Fig. 1.18, we see that the magnitude of the increment di is
given by

|di| = |i sin «d6 = |i| sin « w dt (1.238)

where w is the angular velocity of rotation of the coordinate system and
that its direction is at right angles to w and i so that in vector form we
shall have

— =wxi (1.239)
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and similarly for dj/dt and dk/d:. We also see that the first three terms in
Eq. (1.237) are simply the time derivative of A referred to the rotating
coordinates axes so that we may write

dA dA

:1?=d—7_+wXA (1240)

or the operator
d_4d + wx 1.241
at ar " ? (1.241)

where d/dt is used to indicate a time derivation with respect to an inertial
system and d/dr with respect to the rotating system.
Now for the velocity of a point P, as shown in Fig. 1.19, referred to a

Fig. 1.19
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rotating coordinate system, X, Y, Z whose origin O is also translating with
respect to an inertial coordinate system X, Y,, Z,, we shall have first that
the position vectors r, and r of the point P referred to the inertial and
rotating coordinate systems are related by

I, = p+r (1.242)
where p is the position vector of O with respect to O,. Applying Eq. (1.241),
we shall then have for the velocities

Vo = P+v+wxr (1.243)

since the unit vectors iy, jo, ko of the components of p are fixed and where v,
is the velocity of P referred to X,, Yy, Z,, v the velocity of P referred to
X, Y, Z, and § the velocity of the moving origin. This, of course, is exactly
the result that we would expect; for referring to Fig. 1.9, we see that the
velocity v, will be composed of three parts: the velocity v of P with respect
to the rotating coordinates X, Y, Z, the linear velocity w xr of P as part of
the rotating coordinate system, and the translation velocity § of O with
respect to 0.

To find the acceleration, we simply apply Eq. (1.241) to Eq. (1.243),
obtaining

fo = pHT+xXV+wXr+wxv+wx(wxr)

=p+wXx(WXr)+wxr+2wxv+f (1.244)

So the acceleration of the point P is made up of five terms. The first repre-
sents the acceleration of the origin of the moving axes, the second the centri-
petal acceleration due to the rotation of the moving axes, the third the linear
acceleration due to the angular acceleration w of the moving axes, the fourth
the Coriolis acceleration, and the fifth the apparent acceleration of P relative
to the moving axes.

Let us consider, in some more detail, certain of the individual terms of
which the acceleration f, is composed. If P is rigidly attached to the moving
axes, v and f vanish and f;, reduces to the sum of the first three terms on the
right of Eq. (1.244). Therefore, the sum of these three terms is said to repre-
sent the acceleration of transport of the moving space XYZ. The term
2w x v exists only when the point is moving relative to the rotating axes.
It is directed perpendicular to the plane of w and v in the sense of advance
of a right-handed screw rotated from w to v and is equal in magnitude to
twice the product of w by the component of v perpendicular to w. Therefore,
if v is parallel to w, the Coriolis acceleration vanishes.

When referred to the earth, the angular velocity of the earth’s rotation is
constant so that the term in & disappear, and the linear acceleration of the
earth’s center is so small that the term in § can be neglected. We may then
write for our general equation of motion, mf, = F, where F is the resultant
force acting on the particle P,

mf = F—mw X (0w X1)—2mw x v (1.245)
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referred to an origin at the center of the earth. Now if the only impressed
force acting on the particle is the force F, due to the gravitational attraction
of the earth, Eq. (1.245) will be simply

mf = F,—mw X (W XT1) ~2mw x v (1.246)

Now the familiar acceleration g of gravity as measured by any gravity
measuring instrument is not, however, the acceleration due to F, alone,
but rather the acceleration due to the resultant of ¥, and the centrifugal
reaction —mw X (w X r) so that

mg = F,~mw x (wxr) (1.247)
and substituting into Eq. (1.246), we obtain the useful relation
f=g-2wxv (1.248)

As this final equation does not involve the position vector of the particle,
we can take the origin of coordinates at any convenient point instead of at
the center of the earth.

Problem 1.13(a) Show that the angular acceleration of w is the same
whether measured in the inertial or a rotating coordinate system.

Problem 1.13(b) Two spheres of equal mass m, connected by a taut
inextensible string of length /, have holes drilled through their centers so
that they can slide along a straight bar. The bar rotates about a fixed axis at
right angles to its length with a constant angular velocity w. Assuming the
spheres to be initially at rest relative to the rotating bar at distances 4 and
d—1 from the axis, find the speed with which they are sliding along the bar
at time ¢, and determine their positions for no sliding, discussing the stability
of the equilibrium configuration. Treat the spheres as particles.

Ans. v = fw(d—1l) (' —e™ )
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CHAPTER 2

THERMODYNAMICS OF THE EARTH

2.1 Thermodynamics

We assume at the outset in this section that the reader has an understanding
of the basic principles of thermodynamics. We shall simply restate some of
these more basic relations.

For our purposes, the first and second laws of thermodynamics may be
summarized as stating that the intrinsic energy U and the entropy S are exact
differentials, where these quantities are defined by the relations

dU = 8Q—8W 2.1

and, for a reversible transformation,

_%
ds = = 2.2)

and where Q is the heat taking in by a substance and W the work done by
the substance, and where § is used to designate a small quantity, which is
not an exact differential. The summary statement of the combined first and
second laws is then

dU = TdS—pdV 2.3
or
du = Tds—pdv 24)

when referred to a unit mass of the substance, and where T is the temperature,
D the pressure, u the intrinsic energy per unit mass, s the entropy per unit
mass, and v the volume per unit mass of specific volume. We also have that
we may at will choose any two of the five variables u, s, T, v, p as independent
variables for the purpose of describing the state of a substance, expressing
the remaining three as functions of these two. We note also that there are
two types of reversible transformations that are of particular importance
in developing certain thermodynamic relations—an isothermal transformation

63
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during which the temperature remains constant and an adiabatic transforma-
tion during which heat is neither taken in nor given out.
Since du is an exact differential, we may express it in the form

u u
du = (Es),,ds-‘- (a—v)sdv 2.5)

from which we see that when u is expressed as a function of s and v that

ou ou

The subscript appended to the derivative indicates which variable is kept
constant in the process of differentiation. Taking the second partial derivative
of the first expression of Egs. (2.6) with respect to v and that of the second
with respect to s, we obtain the equality

aTy op 27

av s_ —a_s v ( . )

There are three other expressions, similar to u, which are exact differentials.
The free energy i is defined by

p=u-Ts (2.8)

for which we have

d} = du—Tds—sdT = —sdT—pdv 2.9)

os op
<3—v),- _ (E‘T ) 2.10)

The enthalpy x is defined by

and

X = u+pv @.11)

for which we have

dx = du+pdv+vdp = Tds+vdp 2.12)

oT _ ov
%)s = (8_S)p (2.13)

The thermodynamic potential { is defined by

and

{=u—Ts+pv (2.14)
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for which we have
d{ = du—Tds—sdT+ pdv+vdp = —sdT+ vdp (2.15)

os ov
9,--)

The functions i, x, { are known as Gibbs’ functions and the equalities (2.7),
(2.10), (2.13), and (2.16) as Maxwell’s relations.

and

Problem 2.1(a) The pressure on a perfect reflector due to radiation of
energy u per unit volume is p = } u. Show that the energy density of radiation
in equilibrium with matter at temperature 7 is proportional to the fourth
power of the absolute temperature. This is known as the Stefan-Boltzmann
law. Hint: The energy density u is a function of T only. Make use of the fact
that ds is an exact differential.

Problem 2.1(b) A wire expands on being heated. Show that if a tension
stress F is applied adiabatically, the temperature falls. Hinz: Use the function
x = U—Fx. Why?

2.2 Implicit Functions in Thermodynamics

We have that the state of a substance can be given by any two of the
variables u, s, p, v, T acting as independent variables, the remaining three
being given as functions of these two. We shall be interested in the implicit
relations among the partial derivatives using two of the three variables
p, v, T as independent.

In particular, there will be a functional relation among the three variables
D, v, T, referred to as the equation of state, which we may express in the form

If we choose v = v(p, T) as the dependent variable, or alternatively p or T
as dependent variable, we may write successively

ov ov
dv =|—) d —
v <3P)r Ip + (6T)pdT
op op
dp == |dT+ | —
Ip ( 8T),, + (a v),dv (2.18)

oT oT
dT = | — |} di —
(av)p v (al’)odp
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If in the second of these equations dp = 0, we shall have

<2—‘;>0dT+ (%)Tdv =0
op
(aT 1 (a_u)T '
),

= o =
(%),
w\ (o) _ _(% 2.19)
oT J,\ov)y — \oT), '

Taking the other two equations of Eqgs. (2.18), similar reciprocal relations
for the other two partial derivatives and the same final result, Eq. (2.19),
would be obtained. Certain of these partial derivatives, or simple relations
involving them, are conveniently measurable physical quantities. They are
the thermometric coefficients «, and «,, being, respectively, the coefficient
of change of pressure at constant volume and the coefficient of dilatation
at constant pressure, defined by

1/op
&, = ;) (ﬁ)v (2.20)

1/0ov
(2 221
%r v(@T)p (2:21)

and the thermoelastic coefficients k1 and k,, being, respectively, the modulus
of elasticity for an isothermal change and the modulus of elasticity for an
adiabatic change, defined by

P =

|

and

kr= —v <a_p) (2.22)
ov)y
and
)
k, = —v <—”> (2.23)
v/

We see that Eqs. (2.22) and (2.23) are simply the bulk moduli defined for the
thermodynamic condition under which the stress change has taken place.
Substituting Egs. (2.20), (2.21), and (2.22) into Eq. (2.19), we obtain the
relation (2.19) in terms of these coefficients as

kra, = pa, (2.24)

Taking alternate pairs of the three variables p, v, T as independent, we
may write, for the differential heat,
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o (- (e () o

Each of these six coefficients is a physically measurable and useful quantity.
They are the calorimetric coefficients 7, and A, being, respectively, the heat
of compression at constant volume and the heat of expansion at constant

pressure, given as
5q
2.26
7, = (ap) (2.26)

8q
A, = (a?),, (2.27)

¢, and c,, being, respectively, the specific heat at constant volume and the
specific heat at constant pressure, given as

_ (%
¢, = (ﬁ) (2.28)

_ (%
c, = (ﬁ), (2.29)

hy and I, being, respectively, the latent heat of change of pressure and the
latent heat of change of volume, given as

and

and

3
By = (ﬁ> (2.30)
p)r
and
3
Iy = (—"> @2.31)
ov/)r
We may then write Eq. (2.25) in terms of these coefficients as
8q = n,dp+A,dv = c,dT+hrdp = ¢, dT+ Ipdv (2.32)

Now we may consider separately the three equations given by the equalities
of the last three members of Eq. (2.32). Only two of these will give independent
equations. For each of these equations, we may successively take dp, dv, dT
equal to zero to find the implicit relations among the calorimetric, the thermo-
metric, and the thermoelastic coefficients. Again, only two of each of these
three relations will be independent. We shall derive the following four
independent relations among coefficients. Equating the third and fourth
members of Eq. (2.32), we obtain

(c,—c)dT+hydp—Idv = 0
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If dp = 0: we obtain from this expression

ov
c,—c,—Ir T =0
1 4

and then substituting from Eq. (2.21),
¢, = ¢, +Iva, (2.33)
If dT = 0, we obtain from this expression, using Eq. (2.22),

ov
he=Ilr{—1] =0
T T<3p>r
hy = —— (2.34)

Equating the second and fourth members of Eq. (2.32), we obtain
Ap,=Ipdv+n,dp—c,dT =0
If dv = 0, we obtain from this expression, using Eq. (2.20),

oT
—_ — =0
N —Cy (ap>v

n, = 2 (2.35)
px,
Equating the second and third members of Eq. (2.32), we obtain
(no—hr)dp+A,dv—c,dT = 0
If dp = 0, we obtain from this expression, using Eq. (2.21),
oT
A,—c (——) =0
PP\ ),
c
A, =-2 (2.36)

<
]

o

We obtain an additional relation involving the coefficient k.. If in Eq.
(2.32) 8q = 0, we have from the first and second members

(%) <o
T\ ), T

Substituting from Egs. (2.35), (2.24), (2.36), and (2.23) in this expression,
we obtain

kroe, vak
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or

o

Lz =f=y 2.37)
kT (o
where the symbol y is used to denote the ratio of specific heats at constant
pressure and constant volume.

It is of interest at this point to examine the relations among some of these
quantities for a change of state of a substance. During a change of state
from solid to liquid or liquid to gas, the temperature remains constant.
Denoting by L the latent heat of change of state, that is, the heat necessary
to change the state of a unit mass of the substance from solid to liquid or
liquid to gas, we have from Eq. (2.31)

L =56q=1(vy—v)r (2.38)

where v, is the specific volume before the change in state and v, that after.
From Eq. (2.2) we may also expresss /; under these conditions as

(%) _ (&
Iy = (8_11)T = T(gv)r (2.39)

Substituting Eq. (2.39) and the Maxwell relation (2.10) into Eq. (2.38), we

obtain
ep
L= T(ﬁ)g (v—v)r
or (2.40)
dT, [(eT\ T,
@ " (a—,,) =Lt

where the exact derivative can replace the partial derivative since the
temperature at which a change of state occurs is a function of the pressure
only, and not of the specific volume, where the subscript can be omitted
from the expression (v,—v,) since the change of state necessarily takes
place at constant temperature, and where T, is used instead of T to indicate
the temperature of the change of state. Expression (2.40) is known as the
Clausius-Clapeyron equation. It is an expression for the variation of the
temperature at which a change of state occurs with respect to pressure given
in terms of its absolute temperature, latent heat of change of state, and
specific volumes before and after the change of state. We see that an increase
in pressure raises the temperature at which the change in state takes place
if v,>v,, and lowers it if v, <v, since T and L are always positive. Thus,
as ice contracts on melting, an increase in pressure lowers the freezing point
of water. On the other hand, water expands on boiling so that an increase
in pressure raises the boiling point.

Problem 2.2(a) Follow through the derivations from the other two
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equations of Egs. (2.18) to (2.19) and the reciprocal relations for the partial
derivatives.

Problem 2.2(b) Derive the other five implicit relations from Eq. (2.32).

Problem 2.2(c) Derive these same relations from Egs. (2.33), (2.34),
(2.35), and (2.36).

Problem 2.2(d) For a mixture of water and steam at atmospheric pressure,
dp/dT = 2.68 cm of mercury per °C, L = 538.7 cal/g, T = 373° absolute,
v, = 1 cm®/g. Find the specific volume of steam.

Ans. 1686 cm3/g

Problem 2.2(e) Find the depression of the freezing point of water for an
increase in pressure of 1 atmosphere. L = 80 cal/g, T = 273° absolute,
vy = 1.09 cm?/g, v, = 1.00 cm3/g

Ans. 0.0073°C/atmosphere

2.3 Gravitational Adiabatic Equilibrium

It is of interest to derive an expression for the change in temperature as
a function of depth, or elevation, under adiabatic conditions and under the
influence of the earth’s gravitational attraction. When a particle is lowered,
or raised, from a given depth, it will undergo an increase, or decrease, in
hydrostatic pressure due to the change in the weight of the overlying material.
In general, it will also suffer a change in temperature. If this change in
temperature is such that there is no exchange of heat, the system is said to
be in adiabatic equilibrium. This temperature variation is the one we wish
to derive. A system in adiabatic equilibrium is often a convenient reference
system for geophysical problems of atmosphere, oceans, or the cooling of
the earth.

For adiabatic equilibrium, we have from Eq. (2.32)

8q = ¢, dT+hdp = 0 (2.41)
From Egs. (2.30), (2.2), (2.21) and the relation (2.16), we have

8q os v
h = —_ = T R = —-T —_— = — .
(&) -r(G) (@), e

since the quantity T can be removed outside the partial derivative, which is
kept constant with respect to 7. Substituting Eq. (2.42) into Eq. (2.41), we

obtain
oT Tva,
= — (2.43)

)",
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If we take the depth z directed downward, we have that the change in pressure
with respect to depth is simply

d
;‘3 — gp (2.44)
Z

where g is the force per unit mass due to the earth’s gravitational attraction
and p the density. Since, by definition, the density is the reciprocal of the
specific volume, we have finally

dar or\dp go,T
o) E = 2.45
dz ( op )s dz , (245)

Since all the quantities on the right-hand side of Eq. (2.45) are positive, we
see that dT/dz will always be positive.

For the oceans, if there were complete mixing in a vertical direction, all
temperature differences except those due to adiabatic effects would be
eliminated. For such thermal equilibrium, the temperature at each depth
would be fixed by purely adiabatic displacements of water, and for such
equilibrium, the vertical distribution of temperature would remain invariable.
Such a condition is sometimes referred to as indifferent equilibrium. The
temperature of a water mass moved to the surface under these conditions
is known as its potential temperature. If, instead, the vertical temperature
gradient is greater than adiabatic, the equilibrium will be unstable in the
vertical; for if a small water mass is displaced downward, it will remain
colder, and heavier, than its surroundings in spite of the adiabatic heating
and will be forced further downward. If, on the other hand, the vertical
temperature gradient is less than adiabatic or negative, the equilibrium will
be stable gravitationally in the vertical.

For the earth, the assumption is sometimes made that the earth was at
some stage in its early history in a liquid state and has cooled to its present state
since then. The further assumption is made that the convection of the high-
temperature fluids was such as to obtain a nearly adiabatic condition. A
comparison then of the Clausius-Clapeyron equation, (2.40), for the variation
of melting temperature with pressure and Eq. (2.45) is of interest in indicating
at what depths solidification will occur first and how it will proceed. We
may put Eq. (2.40) into a form comparable with Eq. (2.45) through the use
of Eq. (2.44), obtaining

dT, 0T, dp T, ® )
—_—_————= —_— -0
dz ép dz P2 0270

gTo( Pz)
=—|1-= 2.46
L Py ( )
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Problem 2.3(a) For a characteristic ocean situation, calculate the adiabatic
gradient.

Ans. ~0.1°C/km

Problem 2.3(b) For silicate rocks at the earth’s surface at their melting
temperature, determine approximate values for Eqs. (2.45) and (2.46).

Ans. ~0.3°C/km, ~3°C/km

Problem 2.3(c) From the results of Problem 2.3(b) discuss how solidifica-
tion would occur in the earth. Discuss the complications and uncertainties
for extrapolating the results of Problem 2.3(b) directly in depth. Assuming
the mantle to be silicate rock and the core to be nickel-iron, determine
approximate values of the melting point for each at the core-mantle boundary
and discuss solidification under these conditions.

2.4 Heat Conduction Equation

The fundamental physical fact from which the heat conduction equation
is derived is that when there is a difference of temperature in a material body,
heat will flow, and the rate of flow will be proportional to the difference in
temperature. It is important to note that we are not considering heat transfer
by radiation or heat transfer by flow of material of different temperatures
—convection. The term conduction is used to refer to the transfer of heat
under the above conditions. We may write this physical fact in mathematical
terms by

oT
= —k n (2.47)
where n is the coordinate measured in the direction of heat flow; k is the
constant of proportionality; and w is the heat flow per unit time per unit
cross section of area normal to the coordinate n. The quantity w is sometimes
referred to as the heat flux. The constant k is referred to as the thermal
conductivity of the material.

Fig. 2.1
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Let us next consider the continuity of heat flow into and out of a small
volume, for convenience taken as a small rectangular parallelopiped as
shown in Fig. 2.1. Our derivation, which will equate the net heat flow into
the volume to the increase in heat per unit time of the volume, follows the
same reasoning as that used for the derivation of the equation of continuity
for the mass flow into and the mass increase of a small volume. Our resultant
equation, that is, the heat conduction equation, may be thought of then as
simply the equation of continuity referred to heat flow. The heat flow per
unit time through the face O4BC, normal to the X coordinate, will be, from
Eq. (2.47) and Fig. 2.1,

0
wdydz = kT ay dz
ox
and that out through the face DEFG will be
ow cT /] oT
[w,+ Fw dx:|dy dz = —[k o + P (k a)dx]dy dz

The net heat flow into the volume from heat flow normal to the X coordinate
will then be simply the difference of these two expressions, or

ow, 0 °oT
e dxdydz = P (k a) dx dy dz (2.48)

Similarly, the net heat flow into the volume from heat flow normal to the
Y and Z coordinates will be

ow, o (, T
— —dxd =—|k—
P x dy dz o <k 8y> dx dy dz 2.49)
and
ow, o, oT
- dxdydz = % (k 8—z> dxdy dz (2.50)

From the definition of specific heat in Section 2.2, we may write for the
increase of heat per unit time of our volume in terms of the increase in
temperature per unit time as

oT
cpdxdy dzE 2.51)

where p is the density and c¢ the specific heat, making no distinction here,
as is usually the case for solid materials, between the specific heat at constant
volume and that at constant pressure. Equating the sum of Eqgs. (2.48),
(2.49), and (2.50) to Eq. (2.51), we obtain

or

-V-w= cPB—z (2.52)



74 Y  Thermodynamics and Hydrodynamics

If k is a constant with respect to the coordinates, this reduces to

cT
kVT = cp— (2.53)
ot
or
oT
2 .
oVT = o (2.54)
where
k
o= — (2.55)
cp

The constant « is referred to as the thermal diffusivity. The similarity of form
of the heat conduction equation (2.54) with Laplace’s equation of Section 1.7
and the wave equation of Section 1.10 should be noted. Some of the methods
of solution used there will carry over to solutions of the heat conduction
equation.

2.5 Periodic Flow of Heat

One of the simplest applications of the heat conduction equation is in
the study of the periodic flow of heat from the diurnal or annual temperature
cycle. We shall assume a daily or annual temperature cycle of the form

T =T, sin wt (2.56)

where T is now the temperature variation from the mean daily or annual

temperature, T, half the total temperature range, and w the circular frequency
associated with a period of one day or one year.

We look for a solution of the one-dimensional form of Eq. (2.54), or

T oT 557

“o2 T (2.57)

where z is the depth, satisfying the initial condition Eq. (2.56). Let us apply

the method of separation of variables and look for general solutions of the

form

T = Z(2)0(¢) (2.58)
Substituting Eq. (2.58) into Eq. (2.57), we obtain
aZ"®—-Z0"' =0
or
ZII @I
———=0 2.59)

Z a@:
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As before, if Eq. (2.59) is to have any solution at all, each of the terms on
the left-hand side must separately be equal to a constant. We may then write
ZII 2 9’ 2
= = - — = = 2.60
> Y e Y (2.60)

where the constant parameter > may have any value real, imaginary, or
complex. Solutions of these two ordinary differential equations are simply

Z = a e + ae” i (2.61)
and
0 = g™ (2.62)

To obtain a specific solution that will satisfy our initial condition, Eq.
(2.56), we choose a value of y such that

y: = — (2.63)

or

y = \/2%(l+i) (2.64)

remembering that

1+i

V2

Substituting Eqs. (2.64) and (2.63) into Egs. (2.61) and (2.62), we obtain
Z = a,eim DV 4 g (it D2Vel2E (2.65)

\/ i = My =

and
0 = aze” " (2.66)

In order to have a function decreasing toward infinity in the positive z direction,
we take only the first term of Eq. (2.65), and to satisfy the initial condition,
Eq. (2.56), we take the imaginary part of the product of Egs. (2.65) and (2.66)
and the coefficient a,a; to be T, from which we have our final solution

T=T,e Vo2 (wt—z \/ 2%) (2.67)

We see that the temperature variation is represented by a wave motion
whose amplitude decreases rapidly as a function of depth. We see, as we
might expect, that the amplitude decreases more rapidly as a function of depth
for short-period fluctuations, such as the diurnal temperature variation,
than for long-period fluctuations, such as the annual temperature variation.
From the discussion of Section 1.10, the velocity of propagation of the wave
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motion is seen to be \/2xw so that the time lag for a particular phase that
occurs at the surface will be at a depth z,

k! 2.68
t = N (2.68)
The net heat flow across any surface at depth will be represented by the
integral of Eq. (2.47) over a cycle. From Eq. (2.67) we see that the derivative
dT/dz will only contain sine and cosine terms in the form of Eq. (2.67), and
its integral over a cycle will be zero. As we might have expected, there is no
net heat flow into the earth from a periodic temperature variation at the
surface.

Problem 2.5(a) Consider a diurnal temperature variation of maximum
and minimum values of 16°C and —4°C and a soil of diffusivity, « = 0.0049
CGS. Find the temperature variation at depths of 30 cm and 1 m. What
will the time lag be at a depth of 30 cm.

Ans. 1.4°C, 0.004°C, 9.7 hr

Problem 2.5(b) Consider an annual temperature variation of from 22°C
to —8°C. Find the temperature variation at depths of I m and 10 m. How
deep will a freezing temperature penetrate? At what depth will the seasons
be reversed?

Ans. 19°C, 0.33°C, 170 cm, 7 m

Problem 2.5(c) Extend the solution [Eq. (2.67)] to an initial condition
represented by a Fourier series. Discuss the characteristics of the harmonic
terms in the solution.

2.6 Heat Flow

We shall be interested here in more general solutions of the heat conduc-
tion equation, but shall restrict ourselves to one-dimensional considerations.
In one-dimensional form, the heat conduction equation reduces to Eq. (2.57),
for which we may have solutions of the form of Eqgs. (2.61) and (2.62), which
we shall take for convenience in the form

T = Be™*"* cos (yz)

(2.69)
T = Ce™**sin (yz)
These particular solutions may be generalized to an integral
T = f ~[B cos (y2)+ Csin (yz)le™ ™" dy (2.70)

over the parameter y.
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Now if we should have an initial temperature distribution f(z) at ¢t = 0,
we can evaluate the quantities B and C. At t = 0, Eq. (2.70) reduces to

T(z 0) = f(z) = f ~ [B cos (yz)+C sin (yz)] dy @.71)
From the Fourier integral theorem [Eq. (1.161)], we shall then have that
B - j;f:f(C) cos (D) 41 1)
and
c-1| swsnena @)
Substituting Egs. (2.72) and (2.73) back into Eq. (2.70), we obtain
T = w ey [" ) cos -1 dt @.74)

We may evaluate one of these integrals, obtaining

1 (* 0 (* 0

T=—| ADdL| e **cos [y ({-2)]dy

0
_L( [ V7 (e esam
= _mf(C)dC _2\/58

1 ©
_ —({~-2)?/4at
= 2\/mtJ‘_wf(l)e dt

= L. r f(z+ 5) e P dp (2.75)
NLa 7

- oo

where, in the last equation, we have made the following substitution for the
variable of integration

{—z
B = m (2.76)
and have also substituted
1
n= 27[3 (277)

In many heat conduction problems, one is concerned with a semi-infinite
solid, for which we shall have a given initial temperature distribution f(z)
in the positive z direction at t+ = 0 and also for which we shall have the
surface kept at a constant temperature, taken for convenience to be zero, for
all time. This second condition can simply be met by imposing a temperature
distribution — f(—z) for the negative z direction; under such a temperature
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distribution, there will be no heat flow across the plane z = 0, and its
temperature will remain constant. From Eq. (2.75) we shall have

0

T j“, Umf(o e~ (= e dz+f —f(= Q) et s dCJ
e 0 - ©
= ml;J I e g s g @.18)
mat | o

Making the change of variable to B defined, respectively, in this case for the
first and second integrals,

{~z {+z
B=agum P aym

we obtain the alternative form

7= L [F f<z+ E) e ” dﬁ—fwf<—z+ B) e ?” dﬁ] (2.80)
\/77 —zn n zn n

If the body were at a constant initial temperature, the solution [Eq. (2.80)]

would reduce to
T ® 2 » 2
T = °U et dB—J e’ dﬁ]
\/" ~zn zn

- %j—”zr: e—pz dﬁ

2T, [
=7,
= T,Y (zn) (2.81)

(2.79)

e P dp

where Y(zn) is the error function. It is a conveniently tabulated function,
and many heat conduction problems can be reduced to summations of error
function values.

In other heat conduction problems, one may be interested in heat in a
semi-infinite solid, for which there is a given temperature function F(z)
along the surface z = 0. Such a consideration arises in postglacial time
calculations, where one can assume a given temperature distribution during
the glacial period followed by a warmer temperature during the interglacial
or postglacial times.

To arrive at this solution, we must first consider the effect of a heat source.
Let us take an instantaneous source of heat of an amount Q per unit area
acting at time ¢ = 0 over a slab at z = X of thickness AX. Then from the
definition of specific heat, the temperature of the slab will be raised by an
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amount Q/cpAA. In terms of the previous discussion, our initial condition
f(z) will then be

o S
& = =55 = s (A<z<A+AX) (2.82)

and zero everywhere else. The quantity S defined by Eq. (2.82) is often
referred to as the strength of the source. The integral [Eq. (2.75)] will

reduce to
S At AA
T——° -({-2)Y/4at g
2AA\/mzL ¢ ¢

_ S —(A—-2z)?/4at

=5 \/;T;te (2.83)
in the limit as AX — 0. Now if| instead, we have a constant source of strength
S’ per unit area per unit time located in the plane z = A, which begins to
liberate heat at ¢+ = 0, the total effect at some later time ¢ will be the
summation of each effect S'dr that acted at a time t—r previously, 7
being the time variable with limits 0 and t. From Eq. (2.83) we shall
then have

A 2
=, J TGN (112 4 (2.84)
x| o

For a source at the origin, this reduces to

s [t
T = 2\/1;.2 [ e—z2/4a(r—1) (t—‘r)_”z dr
0

=5 \/wf /32 (2.85)
where, in the last equation, we have substituted » and have made the following
substitution for the variable of integration

—z
2\/a(t—‘r)

To obtain a solution satisfying our desired initial condition F(r), we
must go through the subterfuge of considering a doublet source. If a source
and sink, negative source, of equal strength S are made to approach each
other while keeping constant the product of S and the distance 25 between
them, the combination, in the limit, is referred to as a doublet of strength
S4 = 2bS. From Eq. (2.83) we shall then have, for the combined effect of
such a doublet source centered at the origin,

B = (2.86)
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T:

[e—(b—z)2/4at__e—(b+ z)2/4ﬂ]

S
3 Jmat
S — (b2 +z2)/4at[ bz/2at —bz/2at
= e [e —e ]

2\/mxi
Sy (b2 + 22y dat bz bz
= — z « 1 —_— o —_— 1_ N +-..
4b\/7rcxt ¢ + at + 2at

Sdz —~z2/4at
B (2.87)
4\/77'0(313

in the limit as & — 0. For a doublet source of strength S)(t), we shall have
from Eqs. (2.87) and (2.84)

z t )
— ’ —z2/4a(t—7) (4 _ .\~ 3/2
T = 4\/77'“3\[‘0 Sd(r) e ' (t 'r) dr

1 (= z?
=—| Silt— 5 e "4 2.88
a\/"J‘zr’ d ( 40:,32 > (4 ﬁ ( )
where we have made the same substitution for g as given in Eq. (2.86). Finally,

if we now make the doublet source to be of strength Sj(t) = 2«F(t), we
obtain the desired result

2 [ z? o

Expression (2.89) satisfies the differential equation (2.57), and at z = 0
reduces to

T,¢) = zzf/—(’)r e P dB = F(r)
™ Jo

our initial condition. From the method of derivation, it also satisfies the
condition that T = 0 for f = 0.

If we were to have both an initial temperature distribution f(z) at t = 0
and an initial temperature function F(f) at z = 0 for a semi-infinite solid,
the solution would simply be the sum of Egs. (2.80) and (2.89). It should
also be apparent from the derivations that the zero of the temperature scale
is, like the zero of the Cartesian coordinate system, relative and not necessarily
related to the zero of the centigrade or absolute temperature scales.

For heat flow in a problem with spherical symmetry, the Laplacian in
spherical coordinates, Eq. (1.83), will reduce the heat conduction equation
(2.54) to
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«d(,0T\ oT
Rl [ Tl Il
r? or or ot

(32T 20T ) or
a +

ot ror ) a
Ty o(T)
e (2.90)

similar to the reduction for Eq. (1.176). We are interested in a solution of
Eq. (2.90), which will satisfy an initial condition T = f(r) when ¢t = 0. If we
make the substitution

u=rT (2.91)
for the independent variable, the differential equation (2.90) becomes
a« ?2‘ = 2—;‘ (2.92)
and the initial condition becomes
u=rf(ry t=0
plus (2.93)
u=20 r=0

These conditions for u are the same as those for T in the derivation of Eq.
(2.78), so that we may write down our solution immediately as

1 © 2 2
u=1rT= J‘ Af(/\) [e—(l—r) /4at_e—().+r) /41!] dA
0

or

oo

1
T=——
2r,/7rdtJ‘o

Making the change of variable to 8, defined, respectively, for the first and
second integrals the same as Eqs. (2.79), we obtain the alternative form

T = L.[J’w <r+ é)f(r+ E) e P dp
rdal)_a\ 1 7
—r(—m E)f(—r+ E) e ? d,s] (2.95)
- U] 7

If we had a spherical body of radius R at a constant initial temperature
Ty, the solutions [Eqs. (2.94) and (2.95)] would reduce, respectively, to

A(Q) [e™Bndat _ o= (tn2/dar g) (2.94)

- 2r ol 0

TO . —(A—=r)?/4at —(A+r)2/4at
Ale —e~(4Fndan 1y (2.96)



82 9 Thermodynamics and Hydrodynamics

and

=20 [j(h)n <’+ é) e P dp— J“R“)" <_’+ é) e dg (297)
r\/rr —r n r K

Problem 2.6(a) Consider a layer 20 m thick of lava extruded at the earth’s
surface. Assuming the initial temperature of the lava to be 1000°C, that of
the underlying rock to be zero, and that of the surface of the lava to remain
at zero, calculate the temperature distribution as a function of depth after
1 and 9 yr. Use a value of « = 0.012 CGS for both the hot lava and the
underlying rock.

Problem 2.6(b) Consider an immense intrusion of roughly spherical size
with a radius of 1000 m. Assuming the initial temperature of the material
to be 1000°C and that of the surrounding rock to be zero, calculate the
temperature distribution as a function of radial distance measured from the
center of the intrusion after 100 and 10,000 yr. Use a value of « = 0.012
CGS for both the intrusion and surrounding rock.

2.7 Internal Heat of the Earth

When we come to study the internal heat of the earth, we find unfor-
tunately that there is only one directly measurable quantity that we have
available. This is the outward heat flow through the crust, often referred to
as the geothermal flux. Determinations of the geothermal flux require measure-
ments of the vertical temperature gradients in the crust and of the thermal
conductivities of the earth materials in which the gradient is measured. The
geothermal flux is then calculated simply by Eq. (2.47). Proper consideration,
of course, must be taken to correct for, or to measure at sufficiently great
depths to eliminate, the effects of diurnal and annual periodic heat flow,
to compensate for the thermal effects of the introduction of the heat probe
measuring device into the earth materials, and to consider and correct, if
necessary, for possible heat flow effects from nearby internal heat sources
or from glacial and postglacial surface temperature differences.

In the derivations to be given in this section, we shall anticipate one of
the results, namely, that the cooling of the earth by conduction has become
considerable only down to depths of the order of 300 km, a distance small
compared with the radius of the earth. We may then carry through our
derivations with respect to the Cartesian coordinate z, rather than the spherical
distance coordinate r. For the first derivation, let us make the gross assumption
that when the earth initially reached a solid state, it was at a constant initial
temperature 7. The solution will then be that given by Eq. (2.81). Differentiat-
ing this for the temperature gradient, we obtain
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aT 2T0 a =m _pz
—_— = —— — d
oz [ azl:fo ) '3]

_ Mo
™
To ,-22/4a (2.98)

For the temperature gradient at the earth’s surface, we then have

oTr T,
— ] = = 2.99
(32)0 \/ﬂat ( )
or
= 2.
! 70T 02)y2 (2.100)

From Eq. (2.100) we may obtain an age of the earth, using the observed
value of the surface temperature gradient and under the assumptions of
the derivation.

Let us next make the assumption that instead of a constant initial
temperature, the temperature increases linearly with depth. This might be
considered to be a first approximation to the melting point curve, Eq. (2.46),
for the initial solidified earth. Our initial condition will then be

T(z,0) = f(z2) = mz+T, (2.101)

where T is the initial surface temperature. The solution satisfying the constant
term initial condition T, of Eq. (2.101) is given by Eq. (2.81). The solution
satisfying the gradient term initial condition is simply T = mz, which is, in
itself, a solution of the heat conduction equation; it satisfies the gradient
portion of the initial condition Eq. (2.101) and satisfies the further subsidiary
initial condition that 7 = 0 for z = 0. Our solution then is

T = ms+T,Y(zn) (2.102)

We could also have obtained Eq. (2.102) by substituting Eq. (2.101) directly
into Eq. (2.80). The temperature gradient will then be

oT ,
T (2.103)
0z \/mxt

For the temperature gradient at the earth’s surface, we then have

aT N T,
iz)y " Jmat

(2.104)
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or
" wa(8T)02)y — m)?

(2.105)

For the final derivation, let us consider the effect of internal heat sources
within the earth. It is known from observations of surficial rocks that the
content of the long-term radioactively decaying isotopes of uranium, thorium,
and potassium is such that if these same rocks extended to any modest depths
in the earth’s crust with the same percentages of the radioactive materials,
an appreciable fraction of the observed geothermal flux would be attributable
to the heat generated by the radioactively disintegrating materials. We shall
assume here that the radioactive heat generation may be approximated by
an exponentially decreasing function from the surface down as a function
of depth

Y(z,t) = Beb* (2.106)

where B is the quantity of heat generated per unit volume per second at the
earth’s surface. There is nothing particularly attractive in itself in taking an
exponential function; it is simply a mathematical convenience. It is known,
however, from the observed values of B that such materials need only extend
down to a modest depth, 20 to 40 km, to account for all the measured
geothermal flux. The exponential function does, at least, indicate such a
decrease in radioactive heat generation as a function of depth. The total
amount of heat generated per unit time, and necessarily for steady state in
a closed system, escaping through the earth’s surface per unit time will be

@ B
w, =J Be b4z = — (2.107)
° b

If wg is the total geothermal flux, we may write for the fraction n, due to
radioactive heat generation,

ne=-"= " (2.108)

It is necessary for us to specify any two of the three quantities n, B, b, that is,
fraction of geothermal flux attributable to radioactive heating, radioactive
heat generated by surficial rocks, and effective depth to which radioactive
materials extend, to be able to make any calculation.

Referring back to Section 2.4 for the derivation of the heat conduction
equation, we see that if our small volume included heat generation ¢ per
unit volume per unit time, Eq. (2.53) would be altered to read

oT
KVPT+) = cp— (2.109)
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or, in one-dimensional form,

3T ¢ oT
— + = =— 2.110
%oz + cp ot ( )
Substituting Eq. (2.106) into Eq. (2.110), we obtain

oTr 3T

= = —bz 2
o = %57 T Ce 2.111)

where we have made the further substitution
C=— (2.112)

cp

It will be convenient for us to reduce Eq. (2.111) down to the form of
our original heat conduction equation. We may do this by making the following
substitution for the independent variable T,

C bz
u=T+b—%—te b (2.113)
obtaining
cu &*u
il 114
o el (2.114)

Taking our previous initial condition Eq. (2.101) and that T = 0 for z = 0,
these will become in terms of v from Eq. (2.113)

C
u=mz+T,+ ——e b =0 (2.115)
b*a
and
C
u = z=0 (2.116)

Since our problem would be further simplified if the second condition for
the dependent variable were to be zero at z = 0, we make the further
substitution

C
v == .117)

o

giving the same differential equation (2.114) in terms of v and the two
conditions

v=f(2)=mz+T,— g + ¢

bzoz Ee"bz t=0 (2118)

and
» =0 z=0 (2.119)
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Our solution is then that given by Eq. (2.80). Substituting Eq. (2.118) into
Eq. (2.80), we obtain, after some reduction,

C
v =mz+ (Ts— BE;) Y(zn)

l:e(bz/Atnz)—bZJgO e " d,y_e(l’z/“ﬂz)Jrl’ZJ‘Oo e—yzdy] (2.120)

(b/2n) -z (b/2n)+2zn

, C
bPo/m

or for T from Eqs. (2.113) and (2.117)

C
T= mz+TT(z~q)+ {I—T(zn)-e bz

b
+ Lty =bz |y —b——zn S il [ B f e (2.121)
2y 27

For the temperature gradient at the earth’s surface, we obtain, after some

reduction,
T 2f4+£ 1_etran| 1y (2 (2.122)
ez /, \/71' 2y

When b/27 is large, which is the case for the earth, this reduces to

oT T, C 1
Y - 2 - — 2.123
<82>0 m+ Jmat * boc( b\/mxl) ( )
or
( w)
T —_

-8)

- (2.124)

wa[(eT/ez)y —m— C/ba]?

For a more thorough examination of the internal temperature structure
of the earth and of the earth’s thermal history, it is necessary to reexamine
some of the assumptions used in the above derivations. In particular, we
have assumed a constant value for the thermal conductivity k and for the
thermal diffusivity «; this is certainly not correct for the earth as a whole.
Of more importance, we have assumed that heat flow has been entirely by
conduction; this is probably not correct. Generally, the core is assumed to
be liquid, and its thermal state is assumed to be adiabatic. Further, if there
are any convection cells, or convective overturn, in the mantle on any geologic
time scale, the heat transfer by such convection will be substantially larger
than the corresponding heat transfer by conduction over the same time
period for such zones. Still further, we have neglected heat transfer by
radiation. We have, from the results of Problem 2.1(a), that the energy
density of radiation is proportional to 7%, and we may anticipate that the
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associated heat flow may become important at the elevated temperatures
of the mantle.

In addition, we have made a rather simple assumption as to the distribution
of radioactive heat sources. Measurements of heat flow through continental
and oceanic areas indicate that the geothermal flux is comparable in the two
areas. From observations of surficial rocks, it is generally assumed that
there is a greater quantity of radioactive heat source materials in the con-
tinental crustal rocks than in the oceanic crustal rocks. The geothermal flux
measurements would then indicate that there might have been a differentiation
of the upper mantle beneath the continental and oceanic crusts to produce
a balancing lower quantity of radioactive heat source material in the con-
tinental upper mantle than in the oceanic upper mantle.

Problem 2.7(a) Calculate an age of the earth from Egs. (2.100), (2.105),
and (2.124), assuming T, = 4000°C, « = 0.012 CGS, (¢T/éz), = 1°C for
40 m, m = 5°C/km, w, = 1.3x107% CGS, n = 0.25, 1/b = 20 km, and
k = 0.006 CGS.

Ans. 216 x 10° yr, 337 x 10° yr, 634 x 10 yr
Problem 2.7(b) Obtain Eq. (2.102) directly from Eq. (2.80).

Problem 2.7(c) Calculate a temperature curve for the earth from Eq.
(2.81) after cooling for (1) 50 x 10° yr and (2) 500 x 10° yr. Assume « = 0.012
CGS. Discuss the significance of the results and their effect on the earth’s
thermal history.

Problem 2.7(d) Carry through the reduction to Eq. (2.120).
Problem 2.7(e) Carry through the reduction to Egs. (2.122) and (2.123).

Problem 2.7(f) Assume that the earth solidified from the core-mantle
boundary outward and that the loss of internal heat since solidification has
been by conduction. Taking various reasonable assumptions for the melting
point curve variation in the earth, discuss the present thermal condition of
the earth, zones where slow convection currents may exist, and the possible
significance and effect of the seismic transition zone at 400 km.
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CHAPTER 3

HYDRODYNAMICS

3.1 Kinematic Preliminaries

In hydrodynamics, we are dealing with a continuum, that is, a fluid, in
motion in which there is relative motion of one part with respect to the next.
This is to be contrasted with the problems in dynamics such as the motion of
a particle or a small, finite number particles under the action of a given force
field and interaction forces among particles for which there are a discrete
number of equations, the solutions of which define the motion of the particles;
or such as the motion of a rigid body in which distances between fixed points
in the body remain constant; or such as elastic wave propagration for which
the motions are small and are about an equilibrium position. We must
develop a new formulation to describe hydrodynamic motion before we can
develop the equations of motion and their solutions.

We may alternatively seek a solution that gives a description of the
velocity of the fluid, its pressure, and its density at all points of space occupied
by the fluid at all instants of time, or seek a solution that gives a description
of the motion of each particle. The equations obtained by the two methods
are referred to, respectively, as being in Eulerian or Lagrangian form. We
shall generally seek a solution in terms of the first method; however, it will
be necessary for the derivation of the equations of motions, that is, the
application of Newton’s second law for the forces acting on and the accelera-
tion of a given particle, to use the concepts of the second method. For the
solutions, our attention will be fixed on a particular point in the observer’s
inertial system, and the velocity of fluid, its pressure, and its density at this
point, and all other points, will be determined as functions of time.

For the first five sections of this chapter, we shall be concerned with a
perfect fluid. By a perfect fluid we mean one that cannot support a tangential
stress. In the last section, we shall consider tangential stresses with the
introduction of the concept of viscosity.

Let v denote the linear velocity of the fluid at a point P(x, y, z) at the
time ¢, and v,, v,, v, the components of v along the three coordinate directions.
To calculate the rate at which any function F(x, y, z, t) varies for a moving

89
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particle of the fluid, we note that at the time ¢+ 8¢, the particle that was
originally at P(x, y, z) will now be at Q(x+38x, y+ 8y, z+8z), where Q is
given in terms of the components of the linear velocity as Q(x +v,8t, y+v,3t,
z+v,8t). Then the value of F at Q will be

F(x+0,8t, y+v,8t, z+0,8t, t+ 8¢)
oF

oF oF oF
= — — 0,8 — 0,8 — &t 3.1
F+3xv"8t+ayv”t+3zv’t+3t 3.0

If we introduce the symbol D/Dt to denote a differentiation following the
motion of the fluid, the new value of F may also be expressed, by definition,
as F+(DF/Dt)dt so that from Eq. (3.1) ,we obtain

DF OF oF oF oF

el I 32

Dr a B T Ty (3-2)
or

DF OF

T vvF 33

o~ at VY (3:3)

For the acceleration of a particle of the fluid, we shall then have, substituting
v for F,
Dv ov
D= % + v-Vv (3.9
Let us next consider the rotation of neighboring fluid particles about
P(x, y, z) at the instant . Since the medium is not rigid, different neighboring
particles may have different angular velocities about P, and we cannot avail
ourselves of the relation stated in Section 1.1 between the angular velocity
w and the curl of the linear velocity v for a rigid body, Eq. (1.32). Neverthe-
less, we can show that V x v at P represents both in magnitude and direction
twice the average angular velocity about P of the fluid particles. Consider a
small sphere with P as center as shown in Fig. 3.1. Then for an annular ring
of radius p about the Z axis at a distance dz from P, we shall have, applying
Stokes’ theorem, Eq. (1.41), to the area bounded by the ring,

Lva-do = fv-dx

2 9
ap* | [Vxv|, + aZ(V><v)

dz] = 2upi,

Vxv

0
.+ {* (Vxv)
oz

dz = 2,

where |V xv|, is the z component of V xv, #, the average value of the tan-
gential component of v around the circumference of the annular ring, and
@, the corresponding average angular velocity, given by @, = o,/p. If we
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Vxyv

Fig. 3.1

average this over two annular rings equidistant from P on opposite sides,
the term in dz will necessarily disappear. Hence, as the volume of the sphere
can be divided into such pairs of annular rings, we get

Vxv|, =2,

for the entire sphere. Since similar expressions hold for the other com-
ponents, the mean angular velocity of the particles contained in a small
sphere with P as center will be

W= 3Vxv 3.5

If the mean angular velocity is everywhere zero, v by definition from
Section 1.1. is an irrotational vector. In this case, the motion is said to be
irrotational. Now it was stated in Section 1.1 that any irrotational vector
may be expressed as the gradient of a scalar function of position in space.
So if the motion is irrotational, we may write

v= -V (3.6)

The scalar function of position is known as the velocity potential, since the
velocity is obtained from it by the same mathematical operation as that
used to get the force from the potential energy in the case of a conservative
dynamical system. For such a situation, we may seek a solution, generally
more easily, in terms of the scalar function @ rather than the vector function v.

A surface over which @ is a constant is known, similar to gravitational
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theory, as an equipotential surface. The streamlines in the fluid are curves
having everywhere the direction of the velocity v. It was stated in Section 1.1
that V@ is perpendicular to the surface ®(x, y, z) = constant. Therefore,
the streamlines are perpendicular to the equipotential surfaces, the
differential equation of these lines being
e & o
v v, v

X z

Finally, let us consider the boundary conditions at the surface of a solid
with which a fluid is in contact. As a perfect fluid cannot support a tangential
stress, its velocity tangent to the surface is not determined by that of the
solid. On the other hand, its velocity normal to the surface must be the
same as that of the solid for it to maintain contact. Let 4B in Fig. 3.2 repre-

Fig. 3.2

sent the surface of a solid moving with velocity V in a direction making an
angle 8 with the normal N. Then if /, m, n are the direction cosines of the
normal, the components of velocity of a fluid in contact with the solid must
satisfy the boundary condition

lv.+mv,+nv, = Vcos 0 3.8)
at the surface 4B.

3.2 Conjugate Functions

If the potential is a function of x and y only, the problem under con-
sideration reduces to one in two dimensions. In solving such a problem, the
method of conjugate functions is often useful. Let z represent the complex

quantity x-+iy so that z = x+iy, where i = \/ —1. Then any function
F(z) of z may be written

F(2) = F(x+1iy) = ¢(x, y)+ij(x, ) (3.9)
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where the real function ¢(x, y) and ¥(x, y) are known as conjugate functions.
Now we shall have

oF dF #F d°F
ox dz ox®  dz?

and (.10)
oF dF o*F d*F

= ] —

oy d o d?
so that

*F  8*F _ d*F sz_ 0

ox? + W Cd2 d?

showing that F(z) satisfies the two-dimensional Laplace’s equation. Con-
sequently, the real part ¢(x, y) and the imaginary part y(x, y) of any function
F(z) of the complex variable x + iy are each solutions of Laplace’s equation.
Either of them represents the potential in a two-dimensional problem, for
which the velocity potential is a solution of Laplace’s equation, such as, for
example, the conditions given by the case for Eq. (3.19).
From Eq. (3.10), if we replace F by ¢+ ith, we shall have
bp G _F_OF _(a.p a.p)

— 4+ i—= =i— =i + i
oy cy oy ox !

ox ox

from which we get separating real and imaginary parts

dy ox 8y ox '
Consequently,
dp i Op oY
. V _ — _—— =
(Vo) (W) = 22+ 505y = O

We know that Vg is normal to the curve ¢ = constant and that V¢ to the
curve y = constant. Hence, the two families of curves ¢(x, y) = constant
and ¢(x, y) = constant intersect orthogonally. If one family represents the
traces on the plane of the equipotential surfaces in a hydrodynamic problem,
the other represents the streamlines.

Problem 3.2(a) Consider the function F = Az". Introducing polar co-
ordinates, we shall have ¢ = Ar" cos nb, = Ar" sin n6. Examine, discuss,
and sketch the cases for n = 1, 2, and ~1.

Problem 3.2(b) Examine and discuss the equipotential surfaces and
streamlines represented by the function F = —p log z.
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Problem 3.2(c) Determine the potential and stream functions for
F = —z+ife =,

Ans. ¢ = —x+8e" sin (kx)
Y = —y+Pe cos (kx)

3.3 Equation of Continuity

We have essentially derived the equation of continuity in Section 2.4.
It is of interest to rederive it here using the concepts of Section 3.1. If Q be
the volume of a small, moving element of the fluid, we have, on account of
the constancy of mass, that

D
- (pQ) =0

or
1D 1D
100 1D _, (3.12)
Q Dt p Dt
To calculate the value of the first term in Eq. (3.12), let the volume element in
question at time ¢ be a rectangular space, dx, dy, dz, having one corner at P
and edges parallel to the three coordinate axes. Then at a later time ¢+dt,
the same volume element will form an oblique parallelopiped. The side of
original length dx will now be oriented, so its projections on the three
coordinate axes will be

9 9 9
U+ P ax, 2 arax, 2% drdx
ox ox ox

A similar orientation will hold for the other two side, and we may show that
the change in volume per unit volume will be

1D ov ov ov
109 o, o, o, G.13)
O Dt 0x dy oz

As we see, the expression (3.13) measures the rate of dilatation of the fluid
and is sometimes referred to as the expansion. Substituting Eq. (3.13) into

Eq. (3.12), we obtain

Dp o, ov, v,
e[+ 2+ =0 :
Dt P(ax Tyt az) G149
or
Dp

o T VY =0 (3.15)
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which is the form of the equation of continuity in terms of the derivative
(D] Dt) following the motion. Substituting Eq. (3.3) into Eq. (3.15), we
obtain

0
g + v-Vp+pV:v=0

or
ép
V(=0 (3.16)

which is the same as Eq. (1.28).
If the fluid is incompressible, which is often the assumption in hydro-
dynamics, p is a constant, and Eq. (3.16) becomes

Viv=0 (3.17)
or
0 0 0
i P O (3.18)
ox oy oz

If, in addition, the motion is irrotational, we obtain, substituting Eq. (3.6)
into Eq. (3.17),

V-V =0 (3.19)

The differential equation is Laplace’s equation discussed in Section 1.7.

The equation of continuity is of fundamental importance in hydro-
dynamics. For a number of hydrodynamic problems, the method of attack
consists simply in finding a solution of this differential equation that satisfies
the bondary conditions.

We have examined here the application of the principle of continuity to
the derivation of an equation of continuity for mass transport and, in Section
2.4, its application for heat flux to the derivation of the heat conduction
equation. Let us now look at its application to other quantities occurring in
hydrodynamics. We shall first consider the salinity of sea water. Salinity s is
usually defined as a ratio expressing the number of grams of salt per kilogram
of sea water. Returning to the derivation of Section 2.4, the flux of salt S,
expressed in grams per kilogram, will then be

S = psv (3.20)

Following through the same derivation as given there or simply using ps
for p in Section 1.1, we obtain

a%(ps)+V-(psv) =0 (3.21)
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which can be reduced, using Eq. (3.16), to

os op
P[a—t"}‘VVS]"}‘S[et'FV (pV)]—O

— 4+ v Vs= (3.22)

or from Eq. (3.3) in terms of D/Dt
Ds
— =0 3.23

We could have written Eq. (3.23) down directly. It is simply the direct
statement that any particular quantity of water moves without change in
total salt content. If the conditions are stationary, Eq. (3.22) reduces to

v-Vs =0 (3.29)
or
os s cs
vxa—%vya}—kvzg—z:o (3.25)

We may extend this to any conservative quantity Q associated with fluid
motion, that is, one that remains unchanged for any particular quantity of
sea water, for which we shall have the same equation as Eq. (3.23)

DO
o =0 (3.26)
or
°Q
= FVVe =0 (3.27)

Problem 3.3(a) Show that the change in the volume of the distorted
parallelopiped is as given in Eq. (3.13).

3.4 Equation of Motion

Since we are dealing with a perfect fluid in which there are no tangential
stresses, the stress relations reduce down simply to a hydrostatic pressure.
Let us examine first the effect of such an internal hydrostatic pressure distri-
bution on the equation of motion. Consider a rectangular parallelopiped as
shown in Fig. 3.3 of volume dxdydz fixed relative to the axes XYZ. If we
denote by p the pressure at the center P of the parallelopiped, the force on the
fluid inside the parallelopiped due to the hydrostatic pressure on the face
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ABFE will be the pressure multiplied by the area of the face or

acting in the positive X direction, and that on the face DCGH will be

op dx
(p + i 2 ) dydz

acting in the negative X direction. The net force in the positive X direction
due to the pressure on these two faces will then be simply

7
— 2 ixdydz
°x

Similar expressions hold for the forces in the Y and Z directions for the
faces perpendicular to these two directions. Dividing by the volume dxdydz
and then reducing the parallelopiped to zero, we obtain for the net force
per unit volume at P
p . p
—i—=-j—-k—= - .

! ox ! oy oz vp (3.28)

In addition to the internal stress due to the pressure, there may be
external, or body, forces acting on the elements of the fluid, such as the
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force of gravity. Denoting by F the external force per unit mass of the fluid
and by p the density of the fluid, the total force per unit volume will be
pF—Vp. By applying Newton’s second law, the equation of motion for a
particle of the fluid will be

Dv

— = oF-— 3.29
P =P Vp (3.29)

or, using Eq. (3.4),

] 1
N o vW=F—-Vp (3.30)
ot P

This is clearly not a very simple differential equation and is not amenable
to some of the general solutions obtained for other equations of motion.
We may, however, obtain a useful integration under the simplifying assump-
tions given below. Often, the external force may be derivable from a potential,
such as the case for the force of gravity. In this case, we can integrate Eq.
(3.30) provided further that (1) the motion is irrotational and (2) the density
p is a function of the pressure only. Putting —VQ for F in Eq. (3.30), we have

ov 1
—+vVWw=-VQ --Vp (3.31)
ot p

As the motion is irrotational, V x v is zero so that expanding by the triple

vector product rule of Section 1.1,

(Vxv)xv=v-Vv—(Vv)'v =0
or
v-Vv = (Vv)'v = V(3v-v) = V(30?) (3.32)
Substituting Eq. (3.32) into Eq. (3.31) and putting —V® for v, we obtain

ob ) 1
-V—=4+VE¥)=~-VQ - -Vp (3.33)

ot P
Taking the scalar product of Eq. (3.33) with an arbitrary position vector

dA and remembering the definition of the gradient, particularly Eq. (1.25),
we obtain

o) 2 1
—-d|—)+d3¥) =dQ - -dp (3.34)
ot P
Integrating, we obtain
dp oD O—1024G

where the constant of integration may be a function of the time since our
integration is with respect to the space coordinates only and where by
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hypothesis p is a function of p only. If the motion is steady, ® is not a function
of the time, and Eq. (3.35) reduces to

J Py orpr=c (3.36)
p

where C is a constant. Equation (3.36) is known as Bernoulli’s equation. If,
in addition, the fluid is incompressible, p is a constant, and Eq. (3.36) reduces
to

P i+ =D (3.37)
P

where D is a constant.

Problem 3.4(a) Find the pressure at a distance r from the center of the
earth due to gravitational attraction, assuming the earth to be an incompres-
sible fluid of spherical form without rotation and of density 5.6 g/cm?
throughout. What is the pressure at the center?

Ans. p = dgpa[l —(r?/a®)], 13,000 tons/in.2. Here p is the density and a the
radius of the earth.

Problem 3.4(b) Obtain the result of Eq. (3.32) by direct substitution of
v = —VO into the left-hand member and reduction.

Problem 3.4(c) Consider the flow of fluid of constant density in a smooth
horizontal trough. Discuss the relation between pressure and velocity.
Consider flow in the same trough in which there are variations in cross-
sectional area normal to the flow. Discuss the relation between pressure and
velocity.

Problem 3.4(d) Consider a vertical tank of fluid with a small hole near
the bottom. Determine the velocity v with which the fluid leaves the container.

Ans. v* = 2gh, where h is the height of the fluid surface above the hole.
This result is known as Torricelli’s law.

3.5 Kelvin’s Circulation Theorem

We are interested in this section in showing that if the initial motion of the
liquid is irrotational, it will remain irrotational forever provided that the
external force is derivable from a potential. This result is known as Kelvin’s
circulation theorem.

Consider a closed curve A lying in the fluid and moving along with the
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fluid motion, as shown in Fig. 3.4. The circulation K is defined as the line
integral along this curve

K= j€v- SA (3.38)

where the differential symbol 8 is used to distinguish a differential around
this loop, the loop itself moving with the fluid. Now it was stated in Section
1.1. that if the line integral of a vector vanishes about every closed path, the

Fig. 3.4

vector is irrotational. Therefore, the condition for irrotational motion of a
fluid is that the circulation shall vanish everywhere.
Let us calculate the time rate of change of the circulation, or

DK D Dy fﬁv DM

2R Zhveea =2 - s
Dt Dt 1" Dt + Dt

(3.39)

For the second integral, we shall have, interchanging the order of differentia-

tion,
(5o s

where the rate of change of A, moving along with the fluid, is simply the
fluid velocity v. The last expression is an integral of an exact differential
of a single valued function about a closed loop, which is necessarily zero,
since its value at the beginning and end points of the integration is the same.
We then have for Eq. (3.39), substituting the equation of motion (3.29) into
the first integral and using the assumed condition that the external force is
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derivable from a potential,

1
DK = — ﬁ;VQ-S)\ - §—Vp'87\
Dt P

- 4539 - ﬂﬁlap (3.40)
P

where we have again used the definition of the gradient, Eq. (1.25). The first
integral of this expression will be zero for the same reason as stated above.
If p is a constant or a singled valued function of the pressure, the integrand
of the second integral will also be an exact differential and its integral around
a closed loop zero. We then have
DK
T 0 3.41)

This equation tells us that, as the closed curve around which we are
integrating is carried through the fluid by the motion of the fluid, the line
integral of the velocity around this curve remains unchanged in value.
Thus, if the circulation is initially zero everywhere in the fluid, it will remain
zero for all time. As zero circulation is equivalent to irrotational motion;
irrotational motion once established, which was our original assumption,
will persist indefinitely. These conclusions are subject to the condition that
the external force is derivable from a potential and that the density is a
constant or a function of the pressure only, and, of course, they are true
only for a perfect fluid free from viscosity. If an external force not derivable
from a potential acts on the fluid or if there are frictional forces between
the layers of fluid and the walls of a containing vessel, a circulation may be
set up in a fluid whose motion was initially irrotational.

3.6 Equation of Motion of a Viscous Fluid

The dynamics of a viscous fluid are very similar to those of an elastic
solid, restated in Section 6.1, the main point of difference being that the
shearing stress in a fluid is proportional to the time rate of change of strain
instead of to the strain itself. In particular, the rate of strain dyadic Vv will
be similar to the strain dyadic of Section 6.1 and may be considered as the
sum of a pure strain dyadic @, which is symmetric, and a rotation dyadic O,
which is skew-symmetric, and where both are given by

D = J[Vv+(Vv),] 3.42)
and

0 = §[Vv—(Wv),] (3.43)

In particular, it is found by experiment, similar to Hooke’s law, that the



102 9§  Thermodynamics and Hydrodynamics

excess stress in the fluid over the hydrostatic stress is a homogeneous linear
function of the rate of pure strain. We may then write down in principal
axis form, referring again to Section. 6.1,

o,
P+p=AV-v+2u—
ox
8
O+p = \Vev2u 22
oy

ov,

where P, Q, R are the principal axis tensions and where the mean pressure p
is given simply by
P+QO+R=-3p

Adding the three above equations, we then have
A= —%u

so that the excess stress rate of pure strain relation in general form, similar
to the stress-strain relation of Section 6.1, is simply

Y = —(p+3uV-v)I+2ud (3.44)

where ¥ is the stress dyadic and I the idemfactor. In general, Eq. (3.44) is
equivalent to nine scalar equations, of which three are redundant on account
of the symmetry of the dyadics involved. The coefficient w is known as the
coefficient of viscosity.

To obtain the equation of motion for a viscous fluid, we have shown in
Section 6.1 in the derivation of the equation of motion for an elastic solid that
the force per unit volume due to the internal stresses is V-¥. From Eq. (3.44)
we shall have

VY = —Vp—-3%uVV-v+2uV-0 (3.45)

since V-1 = V. To express V- @ in terms of v, we have from Eq. (3.42)
V-® = }[V-Vv+V-(Vv).]

= }[V-Vv+VV-v] (3.46)
Substituting Eq. (3.46) into Eq. (3.45), we have
V¥ = —Vp+3iuVV-v+uV-Vv 3.47)

If in addition to the internal stresses, there is an external force F per unit
mass, the equation of motion, similar to Eq. (3.29) for a perfect fluid,
becomes

D
pﬁft = pF—Vp+4uVV -v+puV- Vv (3.48)
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This equation obviously reduces to Eq. (3.29) when n is put equal to zero.
Using Eq. (3.4), we obtain the usual form

o

&
b+ PYVY = pE—Vp+ JuVV V44V VY (3.49)
Equation (3.49) is referred to as the Navier-Stokes’ equation.
If the fluid is incompressible, the equation of continuity requires that
Vv vanish so that Eq. (3.49) reduces to

ov

5 TPV VY = pF=Vp ¥V (3.50)

P
If, in addition, the velocity of the fluid elements is small, we can neglect the
second term on the left of Eq. (3.50), reducing it still further to
ov

Py = PE=Vp+uV-Vy (3.51)
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CHAPTER 4

PHYSICAL OCEANOGRAPHY—CIRCULATION

4.1 Thermodynamic Circulation

In this chapter, we shall be concerned with the application of some of the
results from the previous two chapters on thermodynamics and hydro-
dynamics to a description of circulation in the ocean. We shall consider the
general categories of thermodynamic circulation, mixing and diffusion, steady
currents without friction, and driven currents with friction.

We shall consider thermodynamic circulation only in a rather general
and qualitative manner to obtain general principles rather than specific
results. Let us consider a vertical section in the ocean, for which we shall
arbitrarily assume a circulation around the rectangle ABCD as shown in
Fig. 4.1. We shall assume that the circulation is stationary, that the driving

B 1 A
T
2 4
C 3 D
Fig. 4.1

energy for the circulation is thermodynamic in nature, that is, caused by heat
sources and sinks along the circulation, and that the driving energy is
balanced by frictional energy losses of the water circulation itself to create
the stationary conditions.

Let us consider first a heat source along CD and a heat sink along AB.
Let us suppose that the circulation is in the direction 4BCD. The thermo-

104



Physical Oceanography—Circulation ¢ 105

metric coefficient «, of Eq. (2.21) is positive for sea water so that for an
increase in temperature T, there will be a corresponding increase in specific
volume v, or what is the same a decrease in its reciprocal, the density p.
Along CD, T will increase and p decrease; along AB, T will decrease and
p increase. Along the arms BC and DA, both T and p will be constant.
Therefore, pgc > pp4> and the forces of gravity will maintain the circulation
in the direction ABCD. If we had initially assumed a circulation in the
direction DCBA, the same conclusion would be obtained with p,, > ppc
and the circulation maintained in the direction DCBA.

If we next consider a heat sink along CD and a heat source along 4B,
the opposite conclusion will be reached. The gravitational forces along the
arms BC and DA will act in the same direction as the frictional forces to
impede, rather than maintain, the circulation. Stationary circulation is not
possible. Both of these conclusions should, of course, be considered within
the limits of gravitational adibatic equilibrium as discussed in Section 2.3.

Let us next consider a heat source along DA and a heat sink along 4B.
Then T will be a maximum at A and constant along BC and CD. The average
value of T along DA will be greater than that along BC so that pgc > ppa,
and the circulation will be maintained by the gravity forces. If we had initially
assumed a circulation DCBA, T would be a minimum at A4 so that p,, >
pac> and the circulation would again be maintained by the gravity forces in
the direction DCBA.

Finally, let us consider a heat source along the first half of AB and a heat
sink along the second half. T will be a maximum at the midpoint of 4B
and constant and of the same value along BC, CD, and DA. The forces of
gravity would not then maintain the circulation. Under such conditions, we
must then consider the transfer of heat by the slower process of heat con-
duction. Heat conduction will cause a rise in 7 in the arm DA and a lowering
of T in the arm BC. Then, pgc > pp, so that gravity can maintain a circula-
tion in the direction ABCD.

For the stationary circulation of Fig. 4.1 where the fluid velocity is
constant, the equations of motion (3.30) for each of the arms 4B, BC, CD,
and DA reduce to

0= _Lldr_
pdx
1dp
O—K”;Z\:‘R 4.1
1dp
0= ——— -
pdx
1 4]
0=—g—.—£_.R
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where F is g, the force of gravity, and R is the friction per unit mass and
where the coordinate direction x is taken in the direction of circulation
ABCD. On multiplying Eqs. (4.1) by p and integrating for one complete
turn around the circulation loop, we obtain

gfipdx—gf';pdx = ff;dex 4.2)

Since R is positive, we see that, as before, the density in the arm BC must
be greater than that in the arm DA for the circulation to be maintained in
the direction ABCD. If p is a known function of the circulation loop and
R is a known function of fluid velocity, Eq. (4.2) can be used to obtain the
stationary circulation velocity.

On integrating Eqs. (4.1), as they stand, for one complete turn around the
circulation loop, we obtain

—§u@=§Ra (4.3)

where we have substituted for the density p its reciprocal the specific volume
v. Now, since

§u@+§p@=§d@m=o 4.4)

we can write Eq. (4.3) as
§pW=§Rw @.5)

which is simply an expression for the work done around the loop. We could
have obtained Eq. (4.5) directly from Section 3.5 if we had included a
frictional resistance force and had not assumed p to be a function of p only.
Since the integral on the right-hand-side of Eq. (4.5) must be positive, we
see that for a circulation to exist, the expansions, which correspond to positive
values of dv, take place, in general, at higher pressures than the contractions.

From the first of the implicit thermodynamic relations [Eq. (2.18)] with
the use of the definitions {Egs. (2.21) and (2.22)], we may write

dv = va,dT — — dp 4.6)
kr

Integrating Eq. (4.6) around the circulation loop, using Eq. (4.4) and a
similar relation for d(7Tv) and assuming the coefficients to be constant, we

obtain
1
0= ocp§vdT— —&vdp
kr

1
0=a‘,§Tdv—k—T§pdu

§mw=h%§rw @.7)

or
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Since the integral on the left-hand side is positive and the coefficients X and
«, are positive, we see that for a circulation to exist, the expansions take
place, in general, at higher temperatures than the contractions. Combining
this conclusion with that of the previous paragraph, it follows that for a
circulation to exist, the greater values of temperature are, in general, asso-
ciated with the greater values of pressure.

4.2 Continuity, Mixing, and Diffusion

As was mentioned in the previous chapter, a number of physical oceano-
graphic problems can be solved simply by the application of considerations
of continuity along with the associated boundary conditions. We shall start,
in this section, with a few simple examples and then go in the latter part of
this section and in the following two sections to somewhat more complex
examples.

Consider a body of water, which has one major inflow section and one
major outflow section, as shown in Fig. 4.2. Let 4, and 4, be the cross-

\#]

Fig. 4.2

sectional areas at the entrance and exit, and v, and v, the average water
velocities normal to these two sections. Let r denote the mean rainfall plus
fresh water river flow over evaporation per unit area between the two cross
sections, and let B denote the surface area between the two sections. Then
assuming the density p to be constant and assuming that there is complete
mixing of the salt water entering A, and the fresh water represented by rB
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and that the conditions are stationary, we shall have, for continuity of the
water mass,

All’l+rB = szz (4.8)
and for the continuity of the salt mass
All)lsl = A2U2S2 (4.9)

where s, and s, are the average salinities of the sea water at sections 4, and
A,, respectively. Solving Egs. (4.8) and (4.9) for 4,v, and A4,v,, we obtain

A, = rB (4.10)
g
52
and
Ap, = "B @.11)
§2
1 =22
Sy

From Eqgs. (4.10) and (4.11) we see that when r is positive, that is, the
influx of fresh water exceeds evaporation, the current is in the direction of
decreasing salinity; when r is negative, the current is in the direction of
increasing salinity, as expected. Now, if we denote by & the mean depth of
water beneath the surface area B, we see from Eq. (4.11) that the time
necessary to empty the volume between the two cross sections, or the flushing

time, is given by
hB S\ A
t=—-=[(1--"=]- 4.12
A,v, < sl> r ( )

If 4, v, and s can be regarded as functions of a single space coordinate
under the same conditions as above and if r can be regarded as a constant,
for example, no influx of fresh water by river flow, Eqgs. (4.8) and (4.9) can
be generalized to

-

0
p (Av) = br 4.13)
and

0

where b = b(x) is the width of the area B normal to x. Combining these two
equations, we get

cs
Ava+brs=0 | (4.15)
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Let us consider next the similar problem of a partially enclosed body with
inflow to and outflow from the body through one principal opening, channel,
or the like. Let us presume that there is a stratified flow of the incoming and
outgoing currents as shown in Fig. 4.3. Then Egs. (4.8) to (4.12) apply.

Fig. 4.3

So far we have assumed that there has been complete mixing. We shall
now be interested in examining the mixing processes themselves. We shall
first look at a phenomenon known as diffusion. For our purposes, diffusion
is defined as the dispersion of a property of the fluid, such as salinity, without
any net mass transfer of the fluid itself. In physical oceanography, we can
recognize diffusive transfer due to molecular motion of the water particles,
in which case it is referred to as molecular diffusion, and due to the turbulence
of the water masses, in which case it is referred to as eddy diffusion. The
corresponding dispersion of a property of the fluid due to the mass transfer
of the fluid is known as advection.

Consider the diffusion across a unit cross section normal to the Z axis
as shown in Fig. 4.4. Due to the turbulence or molecular motion, we shall
have a mass of fluid m,(z) passing down through the cross section per unit
time for fluid above the plane z = 0, and a corresponding mass of fluid
m,(z) passing up through the cross section per unit time for fluid below the
plane z = 0. Since there is no net transfer of fluid, we can write

f  m2)dz = f _ mz)dz 4.16)

where the first integral is taken for negative values of z and the second for
positive values of z. The salt flux S or salt mass per unit area per unit time
progressing in the positive z direction will then be

S = f_ my(2)s(z) dz — f . my(2)s(z) dz 4.17)
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Fig. 4.4

Since these integrals will have appreciable values only in the neighborhood
of the plane z = 0, we can write for s(z)

0
5(2) = 5 + — 2 (4.18)
0z
Substituting Eq. (4.18) into Eq. (4.17) with the use of Eq. (4.16) and assuming
ds/0z to be constant over the range of integration, we obtain

[ msoese [ emora]
S = - zm(z) dz + zmy(z) dz | —
- + 0z

S= -9 o 4.19)
0z
where we have made the substitution 5 for the expression in the brackets.
The quantity » is known as the coefficient of diffusion. Given a particular
m (z) and m,(z) for molecular or turbulent motion, the coefficient of diffusion
can be evaluated in terms of other physical quantities. Equation (4.19) states
that the diffusive salt flux in a given direction is proportional to the salinity
gradient in that direction. In general, the flux of any conservative quantity
will be proportional to the concentration gradient in the same direction.
If the coefficient of diffusion 7 is a constant with respect to the space
coordinates, which is generally the case for molecular diffusion but not for

eddy diffusion, Eq. (4.19) may be generalized to
S = —7Vs (4.20)
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If » is not a constant, it is generally more convenient to use the three scalar
relations

os os os

—y, — = —n, — = —n, — 4.21
T o Sy s S, 75, 4.21)

S, =
rather than considering 7 in its tensor form, since usually for such cases the
eddy coefficient of diffusion is appreciable for only one coordinate direction
and can be neglected for the other two. _

As in Section 3.3 we can express the diffusive flux of salt in terms of a
diffusion velocity w as

S = psw 4.22)

similar to Eq. (3.20). The equation of continuity applies equally well to salt
diffusion so that, if p is a constant, we have from Eq. (3.21)

os
= =V(w (4.23)
or
P = —v(S) (4.24)
ot

If Eq. (4.20) applies, we shall then have from Eq. (4.24)

os n_,
— =~ 4.25
A Vis (4.25)
which is the same as the heat conduction equation. If Eq. (4.20) does not
apply, we shall have from Eqs. (4.21)

os 1[0 os ] s d os -I
Ced S )= (=) + = (e 4.26
& [ax (’7" 8x> o (’“ 6y) * % (’7’ 62) ] (4.26)

For most problems in physical oceanography, the coefficient of eddy diffusion
is much larger than the coefficient of molecular diffusion, so that we are
usually concerned with an equation of the form of Eq. (4.26). If we were
dealing with a nonconservative quantity, instead of the salinity s, or with a
problem involving sources or sinks for either a conservative or noncon-
servative quantity, we should have to alter the equation of continuity, and
consequently Eq. (4.25) or (4.26) for such spatial or time variations, much
as was done in Section 2.7. The coefficients of eddy diffusion 7,, My 7, are
sometimes referred to as the exchange coefficients. Since, to the first order,
p is equal to unity, it is often omitted from Egs. (4.25) and (4.26) in physical
oceanographic problems.

We shall now derive the equation for eddy diffusion through an alter-
native method, which will provide us with a different relation for the eddy
diffusion coefficients. Consider a medium in which there is small turbulence.
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The instantaneous velocity v may be taken as equal to a mean velocity ¥
and a velocity deviation v’. We shall assume that the velocity deviation is
sufficiently well behaved across its zero position, so that the mean values of
the derivatives with respect to the independent variables defining it are also
zero. We may then write

Uy = Dytv, vy = Dytv, U, = 0,40, (4.27)

and

and similarly for the partial derivatives with respect to v, and v;. Substituting
the relations (4.27) into the equation of continuity (3.18) for p a constant
and taking the mean value, we have

or ov, b
_x _y “Z2=0
ox + oy + 0z
or
Vi=0 (4.28)

From Egs. (4.28) and (3.18) we then have also
v, v, Ov,
ox oy oz

or
Vv =0 (4.29)

Equations (4.28) and (4.29) may be considered the equations of continuity
for the mean velocity and for the velocity deviation, respectively. We may
take in the same way the instantaneous salinity s to be equal to a mean
salinity § and a salinity deviation s’ with similar relations to Eqgs. (4.27).
Substituting into the equation of continuity for salt mass [Eq. (3.22)] and
taking the mean value we have, using the relation (4.29),

o J—
— 4+ VVi+v Vs =0

at

05

5+st+V v)=0 (4.30)
or
o5 _ 065 _6s'+_3' — — o
a—t+vxa+vy5; 52+*(sv)+—(sv)+~(sv)—0 (4.31)
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If we now define the functions 7,, 7, n, by

__pSuy  _ _psyy  _ ps'y] 4.32
T PrI P PR (432)
ox oy oz

Eq. (4.31) becomes

s 1| ¢ cs 0 cs 0 0§
i) 505) 2 0-2)
oS 05 cs
—@a—gé—za 4.33)

which is the same as Eq. (4.26) with the addition of the advection term
v-Vs. Equation (4.33) states that the local time rate of change of salinity
¢5/¢t within a small volume is equal to the diffusion into the volume minus
the advection out of the volume.

To summarize, the diffusion equation, Eq. (4.25) or (4.26), is the same
form as the heat conduction equation. When for a given physical oceano-
graphic problem the coefficient of eddy diffusion can be taken as a constant,
which is sometimes the case of one-dimensional diffusion, the solutions of
Section 2.6 for the heat conduction equation apply directly. Further, when
the equation including the advection term, Eq. (4.33), under stationary
conditions with the coefficient of eddy diffusion again a constant applies,
the one-dimensional solutions of the heat conduction equation of Section 2.6
again apply. The derivations in the preceding sections have been taken for
the salinity, but they apply equally well to any other conservative quantity
such as the concentration of some other dissolved substance, biological
organisms, and temperature for such problems where these quantities can
be considered conservative. We could also have derived a coefficient of eddy
viscosity in analogy to the coefficient of molecular viscosity discussed in
Section 3.6. In the mixing process, there is a change of momentum just as
there is a change in concentration. The rate of change of momentum, or
stress terms, will be pv?, pv;, pv.v. for the X, Y, Z stress acting on a surface
normal to the X axis. By analogy with Section 3.6, equating these stress
terms to the time rate of change of strain will give the apparent coefficients of
eddy viscosity.

Problem 4.2(a) Northerly winds produce a water transport offshore of
10 cm/sec from an east-west oriented coast in a surface layer 100 m thick
out to a distance of 100 km offshore. What must be the net vertical velocity
to maintain continuity ?

Ans. 0.01 cm/sec
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Problem 4.2(b) For the Irish Sea, the average salinity at the southern
entrance is 34.839%, and at the nothern exit 34.339%,. If the average depth and
surface area of the Irish Sea are 60 m and 18,600 km?, the per unit area
excess of rainfall and fresh water inflow over evaporation 61 cm/yr, and the
cross-sectional area of the northern exit 7.14 km?, determine the flushing
time and the volume transport and velocity across the exit section.

Ans. 1.4 yr, 790 km3/yr, 0.35 cm/sec

Problem 4.2(c) For the Arctic Sea, the principal salt water inflow is
through the Faroe-Shetland channel to the east of Iceland and the major
outflow through the Denmark strait to the west of Iceland. The mean salinity
of the entering salt water is 35.3%, and that of the exiting salt water 32.5%,.
If the rate of volume transport through the Faroe-Shetland channel is
3 x 10 m3/sec, determine the volume transport through the Denmark strait
and the net rate of influx of fresh water to the Arctic Sea.

Ans. 3.26 x 10 m3/sec, 2.6 x 10° m?3/sec

Problem 4.2(d) The mean depth and surface area of the Mediterranean
Sea are 1400 m and 2,500,000 km?. The water flowing into the Mediterranean
from the Atlantic has a mean salinity of 36.25%, and that flowing out a mean
salinity of 37.75%,. The rate of volume transport of water from the Atlantic
to the Mediterranean through the Straits of Gibraltar is estimated to be
1.75x10° m3/sec. Determine the rate of volume transport out of the
Mediterranean, the rate of influx of fresh water to the Mediterranean, and
the flushing time.

Ans. 1.68 x 10° m?/sec, —7 x 10* m3/sec, 66 yr

Problem 4.2(e) The mean depth and surface area of the Black Sea are
1200 m and 420,000 km?. The rate of volume transport into the Black Sea
through the Bosporus is estimated to be 6100 m>/sec and that out through
the Bosporus from the Black Sea to be 12,600 m?/sec. Determine the rate of
influx of fresh water to the Black Sea and the flushing time.

Ans. 6.5x10% m3/sec, 1300 yr

Problem 4.2(f) Compare and discuss the results of Problems 4.2(d) and
4.2(e).

4.3 Ocean Mixing

The investigations of ocean mixing phenomena have been largely descrip-
tive and empirical. We shall follow that lead in the theoretical discussion
presented here.
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One can recognize several major current systems throughout the deep
ocean areas of the world, such as the subtropical lower water, subantarctic
intermediate water, North Atlantic deep water, and so forth. These current
systems appear to be both permanent and stationary. Let us look at the
mixing by diffusion between currents in a direction normal to the current
flow, that is, essentially in the vertical Z direction. Since the currents are
stationary, we shall presume that each current at a particular location can
be characterized by a particular temperature and salinity. We shall also
presume that the diffusion itself is sufficiently well behaved that the co-
efficients of diffusion for both the temperature and salinity mixing are the
same. These, of course, are rather gross assumptions. Then for the mixed
water we shall have

T =q,T +q,T, (4.34)
and
S = qlsl +q232 (4.35)
where
ql +q2 = 1 (4.36)

and where T, s5,, and T}, s, are the temperatures and salinities of the two

original masses of water, respectively, and ¢, and ¢, are the mixing ratios.

Combining these three equations, we obtain

T,-T. T8, ~T;s
1 2s + 291 192

Sl _Sz Sl _SZ

T =

@.37)

We see then that under these assumptions, temperature and salinity are not
independent quantities and that a plot of T versus s will provide a linear
relation with end points 7', s, and T, s, irregardless of the degree of mixing.
For two original water masses with temperatures and salinities as shown in
Fig. 4.5(a) and (b) and with possible degrees of mixing as shown by the
dotted lines, the T—s plot will be the same line as shown in Fig 4.5(c) for
any degree of mixing. If there were three masses of water involved in the

Fig. 4.5
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mixing, the relations would be as shown in Fig. 4.6(a), (b) and (c). In this
latter case, if the degree of mixing has progressed sufficiently far to effect the
core of the intermediate water mass, the acute angle at B on the T'—s plot
would be rounded off. It is found that within a given area when the tem-
peratures and corresponding salinities are plotted against each other, the
points generally fall on a well-defined curve, which can be approximated
by a series of straight lines, and further that repeated measurements for a

Fig. 4.6

particular station location produce the same curve. These results indicate
that our simple assumptions as to the similarity of the temperature and
salinity mixing and the stationary nature of the currents are valid. The
T—s plot has proved to be a useful empirical method for identifying and
delineating the characteristics of major current systems of the deep ocean
areas.

Let us now look at the diffusion process in somewhat more detail. We
shall assume that the conditions are stationary, that the diffusion is in a
vertical direction only, and that the advection due to the current flow is
in a horizontal direction only. Equation (4.33) then reduces to

os 0 os
0y — = —\n,—

Px o = ool (4.38)
where we have omitted the bar for the average salinity and horizontal
velocity. Equation (4.38) again is simply a statement of the continuity of
salt mass that the diffusion in a vertical direction is equal to the advection

in a horizontal direction. If either &7,/9z or 2s/2z is equal to zero, Eq. (4.38)
reduces to

os %

o =T (439)

POy
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or
os
7, Cox

z_ T 4.40

v, & (4.40)
oz°

which permits us to calculate 7,/v, from vertical measurements at selected
stations in the direction of the current. Since, in general, é»,/2z is not zero,
we are restricted in the application of Eq. (4.39) to depths in the vicinity of
salinity maxima or minima. From Fig. 4.6 we see that such maxima and
minima occur at depths corresponding to the vertices on the 7—s plot.

Although it is perhaps superfluous to mention and not necessarily
informative, we see that for those cases in which there is diffusion in only
one direction, either normal to, transverse to, or along the current direction,
and the coefficient of diffusion is constant, Eq. (4.39) will apply, which is
exactly the one-dimensional heat conduction equation whose solutions are
given in Section 2.6. We see from Eq. (2.69) that the form of variation of
salinity will be exponential along the current direction and sinusoidal in the
direction of diffusion.

Problem 4.3(a) Construct the T—s diagram for an ocean section, where
there are the five following currents—subtropical lower water, subantarctic
intermediate water, North Atlantic deep water, North Atlantic bottom
water, and Antarctic bottom water—whose characteristic temperatures and
salinities are, respectively, 18.0°C, 35.93%; 3.25°C, 34.15%,; 4.0°C, 35.00%,;
2.5°C, 34.90%,; and 0.4°C, 34.67%,.

Problem 4.3(b) Compute the quantity »,/v, for the salinity minimum of
the Antarctic intermediate current at succeeding pairs of stations 1000 km
apart in the direction of the current for which the values in the vicinity of the
minimum are as given in the table below.

Station A B C D E

zo—200m 34.20%, 34.27 3440 34.45 34.51
34.18 3421 3429 34.34 34.38
Zp+200m 34.22 3428 34.44 3449 34.54

4.4 Estuary Mixing

Mixing phenomena in an estuary generally tend to be more complex
than those discussed in the preceding section because of the addition of two
parameters. One, there is usually a substantial influx of fresh water to the
estuary from the major river draining into it. Two, there is substantial
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longitudinal mixing due to the tidal flow into and out of the estuary. The
salinity then will vary in a longitudinal direction from zero at the entrance
of the fresh water to the estuary to sea water salinity at the ocean end of the
estuary. It may also be a function of depth if, for example, the salt water
movement is principally shoreward at depth and the fresh water movement
principally seaward at the surface. It may also be a function of the coordinate
transverse to the estuary if there are differences in circulation and mixing
from one side of the estuary to the other. The same sort of variation con-
ditions will also apply to a chemical pollutant introduced into the estuary.
We shall consider here a couple of simplified examples of estuary mixing
that are amenable to direct solution.

Consider an estuary with rectangular sides as shown in Fig. 4.7 with the

=
Y

Fig. 4.7

x coordinate longitudinal to the estuary. We shall assume that the conditions
are stationary and the mixing is complete for any section normal to x. Then
the salinity will be a function of x only, s = s(x). We shall take, as our
boundary conditions at the entrance of the river water to the estuary,

s=0

ds
= (x=0) 4.41)

and at the seaward end of the estuary
S =0 (x == h) (4.42)

where o is the salinity of the sea water. If D is the volume discharge of the
river, then the mean velocity of the water in the channel, »,, due to the
river is
D
v

= (4.43)

where w and H are the width and depth of the estuary, respectively. If the
length of the channel is small compared with the wavelength of the tide,
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which is the usual case, we may consider the tide to be simultaneous and
uniform over the entire estuary and the tidal height above mean sea level to
be given by

h = hgycos wt (4.44)

where o is the angular frequency of the tide. From consideration of mass
continuity across two adjacent sections normal to x, as shown in Fig. 4.8,

— = =70

| h

pu H

Fig. 4.8

we see that the tidal current u, is given in terms of the tidal height by
Aph) _ _ puH)

ot ox
or
oh u
— = - = 4.45
ot H ox ( )

where we have taken the density p to be a constant. Substituting Eq. (4.44)
into Eq. (4.45) and integrating, we obtain

h
", = “’};’x sin wt (4.46)

The total displacement ¢ can then be obtained by integrating Eq. (4.46)
with respect to time, giving

h
£=— %x cos wt 4.47)

The constants of integration for both Egs. (4.46) and (4.47) are zero since,
when the tidal height is at a maximum, the tidal velocity is zero and the tidal
displacement a maximum in the negative x direction.

For steady state and a density of unity, the equation of continuity of
salt mass, Eq. (4.33), reduces to

cs 0 os 4.48
v,—=—\|7n,—
*ox  ox\ ™ ox (4.48)
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Since s is a function of x only, this may be integrated to

d
b5 =, d—i (4.49)

where from the boundary conditions [Eqs. (4.41)], the constant of integration
is zero. We are now interested in arriving at an approximate value for 7,
so that we may solve Eq. (4.49) for s. We shall assume that the tidal mixing
is such that in an isolated experiment, there would be complete mixing
over a tidal period 7 = 27/w for the maximum tidal displacement 2¢,.

For an original linear gradient, we would then have from Eq. (4.20) and
Fig. 4.9

Original
//o S,

13
Final
2&,
sil _ =
Fig. 4.9
ds
S = >
Nx dx
2 [fos,—s, $2—5;
- = xdx = —n,
Tjo 2¢, 28,
¢o
T
or from Eq. (4.47)
wh02x2
Tx = 5T (4.50)

Substituting Eqgs. (4.50) into (4.49) and integrating, we obtain
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_ whoz x2 ds
U= 2nH? Y dx
ds _ 2mv,H*dx
S - w/‘l02 x2
270 H? 1
logs = — —x
OBs why? x ¢

Substituting in the boundary condition [Eq. (4.42)], we obtain for C

2mv H?
C= log o+ m
and finally for s
s = oef 1D (4.51)

where we have made the substitution of the dimensionless parameter

X
A= T (4.52)
and where
Fe 2mv, H? .53
why?L '

Equation (4.51) defines a set of curves that are asymptotic to s = 0 for
large values of F and asymptotic to s = o for small values of F.

Understandably, the simplification of Fig. 4.9 is often inappropriate to a
particular problem. In such cases, the measured values of s = s(x) can be
used to determine numerically the values of 7, = %,(x). Multiplying Egq.
(4.49) by the area A = A(x), where in this case the area need not be a con-
stant, we shall have

ds
Ds = Ay, 2
§ Mx dx
or
D
e = —;j; (4.54)
A -
dx

under the conditions to which Eq. (4.49) applies. From a knowledge of the
volume discharge of the river and the cross section area of the estuary, the
measured values of salinity, and the determined values of the horizontal
salinity gradient, the value of the horizontal diffusion coefficient 7, can be
determined sequentially down the estuary from Eq. (4.54).

Let us presume that 7, has been determined by some such a procedure
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as Eq. (4.54). Then we may determine, in a simple manner, the horizontal
distribution of a pollutant in the estuary provided that its coefficient of
diffusion is the same as that for salt, which is a reasonable assumption under
most conditions. Let us also consider that the pollutant is nonconservative
and that in an isolated state, it will decrease exponentially in the fashion
¢ = coe” ™. Then its time derivative will be dc/dt = — ac so that the equation
of continuity for pollutant following the particle motion, instead of being
equal to zero as given in Eq. (3.23), will be given by

D
b‘j = —ac (4.55)

The total seaward flux of pollutant C(x) past any cross section A(x) of the
estuary will be the sum of the horizontal advection and diffusion terms or
from Eq. (4.20)

dc
C = Av.c—An, —
UXC nxdx
dc
= Dc—An, — 4.56
¢—dns (4.56)

If the pollutant were conservative and if there were no tidal diffusion, C
would be a constant downstream of the outfall of the pollutant and zero
above it. For a nonconservative pollutant with tidal diffusion under steady-
state conditions, taking p equal to unity, we shall have from Egs. (4.55) and
(4.56)
dc
dx

= —aC

or

dc

d
p (Dc—Anx E) +ac=0 4.57)

At the outfall, Eq. (4.57) will be replaced by

d dc

| De—An. = = .
dx< ¢ nxdx) +oac =1 (4.58)
where ¢ is the rate of supply of pollutant at the outfall. From Egs. (4.57)
and (4.58), the distribution of the pollutant ¢(x) can be determined numeric-
ally.

In more complex cases in which there may be stratified longitudinal
flow with both horizontal and vertical advection and both horizontal and
vertical diffusion, the same concepts of continuity of water mass and salt
mass can usually be used in conjunction with observations of currents and
salinity to distinguish the magnitudes of each of the distribution factors.
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4.5 Equation of Motion and Circulation Theorem

For physical oceanographic problems, the water motion is subject to the
force of gravity and the effects due to the rotation of the earth. From Eq.
(1.248) we have that the force per unit mass for motion relative to the earth
is given by

f=g-2wxyv 4.59)
where g is the gravitational force per unit mass and —2w x v the Coriolis

force per unit mass, w being the angular velocity of the earth’s rotation and v
the water particle velocity. Substituting Eq. (4.59) into Eq. (3.30), we have

~

1
g+v-Vv=g—2wxv - -V (4.60)
ot P

Equation (4.60) is the hydrodynamic equation for a water particle relative
to the earth. For some problems we may also want to add a term for a
driving force and for a frictional resistance.

Y North

East

Z | Down

Fig. 4.10

The custom in physical oceanographic problems has unfortunately been
to use a left-handed coordinate set with X axis to the east, the Y axis to the
north, and the Z axis down as shown in Fig. 4.10. We shall follow this
custom. The net effect of this change is to alter the signs of the components
[Eq. (1.12)] of the vector product of two vectors so that the sign of the
vector product, when expanded into component form with respect to a
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left-handed coordinate system, is the negative of what it would be for a
right-handed coordinate system. With reference to Fig. 4,10, the components
of w will be

=wCoSp w, = —wsing 4.61)

w, =0 o,

where ¢ is the latitude. From Egs. (4.61) and for the coordinate system of
Fig. 4.10, we obtain for Eq. (4.60)

ov, ov, 4 ov, i ov, 5 in o+ 2wp. ¢ 1 op

— — — —= = sin v, COSp — — —

ot 0 ox oy Pz 52 @Oy SI @ owp; COS @ p 0x

ov ov ov ov laop

=y it - — = —DJwp_sing — -~ — 4.62
(’)t+v"6x+vy8y+vzay wv, SIn @ o Gy (4.62)
ov, + ov, + ov, 4 ov, 9 1 op

- — — +0,— =8g—2wr, COsSp — — —

ar T rox T W oy 2y TR COSY p oz

For most problems we are concerned only with horizontal motion. Further,
the Coriolis term in the third of Eq. (4.62) is always much smaller than the
gravitational term. Equations (4.62) then reduce to

o, + ov, + v, 5 . 1 op
—= 4y, —== sinp — ——
o T T oy @by S e p ox
2 @ 2 18 (463
v, v, v, ) p
-y =y it i
o + v, o + v, P wv, Sin @ ooy
and the simple and familiar relation
P
72 = pg (4.64)
z

Since only the gravitational portion of the force term [Eq. (4.59)] is
derivable from a potential, Kelvin’s circulation theorem, Eq. (3.41), will not
apply. Instead, we shall have from Egs. (3.39), (3.40), and (4.60)

DK 1
= —§2wxv-8)\—§;3p (4.65)
We have included the second term on the right-hand side of Eq. (3.40)
since, in the physical oceanographic problems we shall consider, the density
is not a single function of the pressure. In other words, the surfaces of con-
stant pressure, isobaric surfaces, do not coincide with the surfaces of constant

density, isoteric or isopycnal surfaces. For horizontal motion where v is given
by
V= iv.+jv, (4.66)

and the effective Coriolis force terms by Eqs. (4.63) or
—2wxv = 2w sin g(iv, — jv,) (4.67)
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Y

\

Fig. 4.11

Eq. (4.65) becomes, taking the circulation loop in a horizontal plane,

DK . 1
Dr = 2w sin @ Sf; (v, dx—v,dy) — §;dp

1
= 2wsin g f{; lvxdA| — f{; ~dp (4.68)
p

remembering the cross product relations for a left-handed coordinate system.
From Fig. 4.11 we see that the integrand of the first term on the right hand
is v sin o dX and the integral the rate at which the area A of the circulation
loop is increasing, giving

DK . dA 1
E = 2w Sln(})}’— — §;dp (4.69)

Equation (4.69) is referred to as the Bjerknes circulation theorem.

4.6 Pressure Gradient and Geostrophic Effects

We shall examine, in this section, the water motion under the conditions
of steady state when following this motion, that is, Dv/Dt = 0. We may
consider that this is equivalent to steady-state local time conditions,
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ov/ot = 0, and no expansion effects, v-Vv = 0. The equations of motion
(4.63) then reduce to

. 1op
2 =-=
w?y SIn @ pox
4.70
. 1op (4.70)
—2wv, Sinp = — —
p oy
or
14
2wsing = -2 @.71)
pdn

where v is the magnitude of the current, and » is a coordinate direction at
right angles to v with its positive direction to the right of v.

We see that under these conditions, the force term related to the Coriolis
effect is balanced by the force term related to the horizontal pressure gradient.
We also note that neither of these terms represents the driving force. We
have included no driving force term nor frictional resistance term in Eq.
(4.63). We have assumed frictionless motion. The Coriolis force is the
result of the constant water velocity motion. The pressure gradient term is a
necessary resultant from the equations of motion to preserve the assumed
steady-state conditions. In physical oceanography, the Coriolis acceleration,
or force per unit mass, is referred to as the geostrophic acceleration, or force
per unit mass.

If we consider such a current extending to the sea surface, we see that
the sea surface itself will not be a level surface, coincident with the horizontal
surface of our coordinate system, for this case of a dynamic system of an
ocean current, as it is for the static case of gravity determinations. We may
show these relations diagrammatically in Fig. 4.12 for the northern hemisphere

Sea surface

Horizontal pressure

e
Geostrophic force

gradient force

Fig. 4.12

for a current directed into the page with the geostrophic force to the right
and the horizontal pressure gradient force to the left. For the southern
hemisphere, the force relations would be reversed. Currents of this type are
known as geostrophic currents.

If we further consider that the atmospheric pressure at the sea surface is
constant, we may obtain from Fig. 4.13 the following relation for the
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Fig. 4.13

horizontal pressure gradient in terms of the inclination of the sea surface,
or any other isobaric surface,

dj
P _ gptan 0 @“.72)
dn
Substituting Eq. (4.72) into Eq. (4.71), we obtain for the current velocity
0
p = 120 @.73)
2w sin ¢

Equation (4.73) provides us with a convenient means of determining the
velocities of the major ocean current systems from physically measurable
quantities. Let us take two oceanographic stations a distance L apart at
right angles across a current as shown in Fig. 4.14. We shall assume that the
isobaric surfaces produce linear traces on a vertical section between these
two stations and shall be interested in computing the heights of these isobaric
surfaces above a level surface of no motion at some depth. We cannot state
a priori at what depth no motion will occur, so that we shall actually be
computing current velocities relative to the velocity at this depth. From Fig.
4.14 we shall have

glhg—hy)

tan 6 =
gtan 3

4.749)

Fig. 4.14
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From Eq. (4.64) we shall have, for the incremental change in geopotential,
1
gAh = — -Ap = —alAp 4.75)
p

where « is the specific volume, from which we obtain
po
gh = [ " adp (4.76)

where p, is the pressure at the depth of no motion and p the pressure at
the depth at which the current is to be determined. Substituting Eqs. (4.74)
and (4.76) into Eq. (4.73), we obtain finally

1 po
v = 5ol sn <PJ',, (ag—oy) dp 4.77)
Equation (4.77) is referred to as the Helland-Hansen formula. The quantity
gh of Eq. (4.76) is referred to as the dynamic height. In the application of
Eq. (4.77), the integral is determined numerically from values of « determined
empirically from measurements of salinity and temperature at each oceano-
graphic station as a function of depth. The incremental pressure intervals Ap
are taken to a sufficient approximation to be given by gAz. where Az is the
depth interval. It is apparent that a plot of dynamic heights for a number of
stations in a given area will, in itself, be a measure of the current structure,
the direction of the current being parallel to the dynamic height contours and
its magnitude being proportional to the gradient of the contours.

For many of the deep ocean current systems, the current transport will
bring waters of different physical properties in contact, and a density dis-
continuity surface, or a zone of rapid change in density, will occur between
the overlying current water mass and the underlying still water mass. We shall
be interested in determining the relation between the slope of this discontinuity
surface and the current velocity. In Fig. 4.15 we have two bodies of water of
homogeneous densities p’ and p, separated by a discontinuity surface whose
trace in a vertical plane normal to it is given by PQ. The inclinations of the
respective isobaric surfaces in the two bodies of water are given by the
angles ¢’ and 6. Now, if the density discontinuity surface is to remain
stationary, the increase in pressure from P to Q must be the same in both
water bodies,

pgSQ = p'gPS’
p(SR+RQ) = p'(PR'+R'S")
pPR(tan 6+tany) = p’R’Q(tan y+ tan 8")
or since PR is equal to R'Q,
ptan 8—p' tan 6’
P'—p

tany = (4.78)
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Fig. 4.15

In the usual case, p” > p and p tan 6 > p’ tan @', so that y will be positive.
This means that when the isobaric surfaces slope upward, the density dis-
continuity surface slopes downward. If in the left-hand body of water the
isobaric surfaces are level, that is, still water, we shall have

ptan 8

tany = (4.79)

p'—p
For the northern hemisphere, for a current into the page for the right-hand
body of water, the density discontinuity surface will be as shown in Fig. 4.15.
For the southern hemisphere, the same would be true for a current out of
the page. Considering Eq. (4.78) in the limit, for a zone of rapid change in
velocity, we shall have

0
tany = — — (ptan 6) (4.80)
p

where the trace PQ now represents isopycnal surfaces. For most physical
oceanographic problems, the quantity p/(p’—p) will be large of the order
of 10® and the quantity tan 6 very small of the order of 107,

Substituting Eq. (4.73) into Eq. (4.78), we obtain

2 . — 1,7
tany = “’Sm"’(””, ””) 4.81)
g p'—p

Corresponding to Eqs. (4.79) and (4.80), we obtain, respectively,

e i
tany = cosne (__IP_U_) (4.82)
g p—p
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and

i 0
_ 2wsing 9 (o) (4.83)
g op

These relations provide us with a means of determining the slope of the
density discontinuity surface in terms of the current velocity. Equation (4.81)
is often referred to as Margules® equation.

tany =

Problem 4.6(a) Obtain the Helland-Hansen formula directly from the
Bjerknes’ circulation theorem.

Problem 4.6(b) The equatorial counter current is an east-going current
lying in the northern hemisphere. At 120°E longitude and 10°N latitude,
its average velocity in August is 24 nmi/day. Determine the direction and
magnitude of the slope of the isobaric surfaces.

Ans. Slope upward toward the south, 0.133 x 1073

Problem 4.6(c) Determine the direction of inclination and magnitude of
the slope of the lower boundary of the East Greenland current at 73°N
latitude. Assume the current to consist of water of density 1.0271 g/cm?
flowing southerly with a velocity of 20 cm/sec overlying still water of density
1.0281 g/cm3.

Ans. Inclination is downward to the west; slope is 2.92 m/km.

Problem 4.6(d) For the gulf stream, p increases and pv decreases in a
downward direction. The changes in density are largely determined by
changes in temperature, increasing with decreasing temperature. On the left
boundary of the gulf stream, the changes in density are so great as to approach
a discontinuity surface. Sketch on a section normal to the gulf stream the
isopycnal and isothermal contours and discuss.

4.7 Inertia Effects

A rather simple type of current is one in which there are no frictional
effects and no pressure gradient effects. The equations of motion (4.63)
reduce to

Dv, .
D= 2wv, sin ¢
Dy, .
Dr = — 2w, sin ¢ (4.84)
or
Dv .
— = n, 2wt sin g (4.85)

Dt
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where n, is a unit vector normal to v, with its positive sense to the right of v.
Resolving components of the acceleration Dv/Dt normal to and tangential
to the velocity, as given, for example, by Eq. (6.6), we have

D 2
t, —D-'l’ +n ”7 = 0,200 sin @ (4.86)

or

v 4.87)

r = "
2w sin ¢

The motion will be circular with a radius r given by Eq. (4.87). The time T
for one complete revolution of the circle will be
_ 2ar _om

T=—=—
v  wsing

(4.88)

In the northern hemisphere, the circulation motion will be clockwise, and
in the southern hemisphere, counterclockwise. Currents of this type are
known as inertia currents.

Problem 4.7(a) Determine the period for a circle of inertia at the poles,
latitude 30°, and at the equator.

Ans. 12 hr, 24 hr,

Problem 4.7(b) Determine the radius of an inertia current of velocity
15 cm/sec and period 14 hr.

Ans. 1.2 km

4.8 Equation of Motion with Internal Friction

In Section 3.6 we derived an expression, the Navier-Stokes equation,
for the motion of a fluid under the effects of a viscous, or internal frictional,
resistance. For most oceanographic problems, the ocean may be considered
sufficiently incompressible that the first viscous resistance term of Eq. (3.49)
may be considered small with respect to the second, We may then write for
Eq. (3.50)

Dv ¢v

_ _p_1 ko
Dt—at+vVv—F—;Vp+;V Vv (4.89)

where the internal frictional resistance term is

R = ’—;V-Vv (4.90)
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The frictional resistance R will be numerically a negative quantity. Following
the derivation of Section 4.5, the equation of motion for physical oceano-
graphic circulation under the influence of viscosity will then be

N VW = g—20xy — 2 Vp + V.V @.91)
ot P P

We must now, however, make a distinction between molecular viscosity
and eddy viscosity, similar to the distinction that was made in Section 4.2
in the discussion of diffusion. The coefficient of molecular viscosity will be
small and can be neglected with respect to the coefficient of eddy viscosity.
The coefficient of eddy viscosity will not be a constant but a tensor, depend
on the particular current system considered, and, in general, be a function
of the coordinates themselves. We shall restrict ourselves here to problems in
which the motion is essentially horizontal, and the vertical velocity gradients
in the direction of motion are small. From Eq. (4.90) and Section 3.6 we
may then write, for the frictional resistance components,

R_la ov, +18 ov,
*T poy "'ay p oz =

Lo o\ 14/[ o,
R‘v = ;5} (,U-, ”a;) + ; E (‘u.z 3_2) 4.92)

where p, and p, are the eddy coefficients of lateral and vertical viscosity. In
many problems we can neglect the eddy coefficient of lateral viscosity, Egs.

(4.92) becoming
10 ov
R, =——[p =
p 0z (Mz 62)

X

10 ov,
R, = ;5} 2 (4.93)
R, =0

If the coeflicient 1, may be considered a constant with respect to the z co-
ordinate, Egs. (4.93) reduce further to

%
R, =%
p 0z
B 80
R="%2 4.94)
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Under the conditions for which the relations (4.94) apply, Egs. (4.91)
reduce to Eq. (4.64) and to

¢ c ov ] 1¢ . %,
chvx + vx—& + v,—= = 2wp,sing — “P e 3
ot ox oy pox p 0z
) (4.95)
v, v, v, ) lép p, 0%,
— — — = —2wu,SiNp — ~— + — —
ot Ty Th ey @Ox SN pdy p 6z°

similar to Eqs. (4.63) with the addition of the frictional resistance term. For
steady-state conditions Dv/Dt = 0, Egs. (4.95) reduce to

) 1o v
ZwaSln(p———p &*zi‘=
pox p 0z
, (4.96)
19 ‘v
— 2wy, sinp — . +HB=% o

poy  p oz

Currents that do not include pressure gradient effects but only geostrophic
and friction effects, the first and third terms of Eqs. (4.96), are referred to as
drift currents. Currents that include pressure gradient effects as well as
frictional and geostrophic effects, all three terms of Eqs. (4.96), are referred
to as gradient currents.

4.9 Friction and Geostrophic Effects
For a drift current under steady-state conditions, the equations of motion

(4.96) reduce to

v, 2pw sin ¢
T Lk )

0z i
, o 4.97)

% _ 2pw sin ¢ »
oz* pe o

If we assume that », and v, are functions of z only and let the complex

variable w be defined by

w = v, +iv, (4.98)
we obtain, multiplying the second of Egs. (4.97) by i and adding,
d*w  2ipw sin ¢
i *—l“z w 4.99)
The form of solution of this ordinary differential equation is simply

w = et(1+haz (4.100)
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where

2

printp
o = —

4.101)
Mz
Since we shall want the velocity components to vanish for large values of z,

the desired solution will be
w = Ae (1*Dez (4.102)
We shall assume that the steady-state drift current is maintained by a

wind directed in the positive Y direction at the sea surface. Such a wind will
produce a tangential stress 7T in the ocean at the sea surface given by

T= _F'zf&
oz
(z=0) (4.103)
0= ov,
- Kz 32
In terms of w, this boundary condition becomes
—iT =p, @ (z=0) (4.104)
dz
Substituting Eq. (4.104) into Eq. (4.102), we obtain
T 1+H)T
T _ 4D (4.105)
(I+0)ap,  2op,
or
1+i)T .
w= LT i (4.106)
2ap,
Separating into real and imaginary parts, we then have
v, = e~ %% (cos az+sin az)
2oy,
T —az Tr
T2 o e s\ ==
o™
= vg e **cos <Z - az) 4.107)
and
T _ .
v, = e” % (cos az—sin az)

= vge **sin (g - az) (4.108)
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where v, is given by

T T

C e, Qppwsing)'l?
We see then that at the sea surface, the velocity of a drift current has a

magnitude », and is directed at 45° to the right of the wind direction in the

northern hemisphere. With increasing depth, the angle of deflection increases,

and the magniude of the velocity decreases. We may show this diagram-

matically in Fig. 4.16, which, when drawn to scale, is known as the Ekman

spiral.

(4.109)

Vo

Fig. 4.16

It is sometimes useful to write the results [Egs. (4.107) and (4.108)] in
terms of the parameter D rather than «, where D is defined by *

k (273 1z
D=-=7—1— (4.110)
a pw SN @
The results [Eqgs. (4.107) and (4.108)] become
= - =z/D jd - Zf
v, = Vg€ cos (4 D) 4.111)

and

b, = voe™**P sin (Z - %z) 4.112)
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At the depth, z = D, the current is in a direction = to the current at the
surface and of a magnitude e~ ™ = J} of its surface value. The quantity D,
then, is a convenient index of the effective depth of a drift current and is

referred to as the frictional depth.

Problem 4.9(a) Show that the total mass transport per unit column of a
drift current is to the right of the wind direction in the northern hemisphere
and is given by T/2w sin ¢ per unit area of a vertical column.

4.10 Friction, Geostrophic, and Pressure Gradient Effects

The conditions that lead to a simplification of the steady-state equations
to Egs. (4.97) usually do not exist in the ocean. The frictional force is usually
small in comparison with the geostrophic and pressure gradient forces. A
better approximation in many cases is to consider the frictional force of a
gradient current as a perturbation on the geostrophic current of Section 4.6.
For such a current, the geostrophic and pressure gradient forces are at right
angles to the current direction. The frictional resistance will be in the opposite
direction to the current flow and will be balanced in the aggregate in terms of
the work done in overcoming the friction by the driving force in terms of the
energy input in the direction of the current flow.

We may carry this reasoning a step further and obtain an approximate
solution for a gradient current under the assumption of a geostrophic current
as a first-order approximation to the gradient current. Taking a geostrophic
current in the positive X direction, the pressure gradient &p/ox will be zero;
the geostrophic current velocity U in the X direction will be, from Egs.
(4.70),

-1 op

U= i ——
2pw sin ¢ 0y

(4.113)

which will be assumed to be a constant. Substituting Eq. (4.113) into the
equations of motion (4.96), we obtain

%, _ 2pwsing »
oz* pe
4.114
azvy _ 2pw sin ¢ U ¢ )
oz2 - (vx_ )

z

Making the same change of variable to w of Eq. (4.98), we obtain

d’w  2ipwsin
P :_.U_(W—U) 4.115)

z



Physical Oceanography—Circulation 9§ 137

whose solution is simply
w—U = Aelt*P27 4 Be~=(1 +iaz (4.116)

where « is as given before by Eq. (4.101).
For this example, we shall take boundary conditions that there is no
wind stress at the ocean surface, or
v, 0D

= yzgv—vz
iz éz dz

0 ==0 4.117)
and that in consideration of the internal frictional effects, there is no motion
at the bottom, or
o,=0,=w=0 (z=4d) (4.118)
Substituting Eq. (4.116) into the first boundary condition, we obtain
A=2B
and into the second boundary condition,

-U
4= e(l+i)ad+e—(l+i)ad

from which the final solution will be

(1+i)az -(1+iaz
w==U(1 ¢ te ) 4.119)

- e(l+|‘)ad+e-(l+i)ad

Separating into real and imaginary parts, and after some reduction, we
have for v, and v,,

v, = (1-pU (4.120)
and

v, = yU (4.121)
where

h — (d+2) (d—2z)+cosh — (d —(d+
—_ z _ — —_ —
CcoS cos V4 COoS Z) CoS ( Z)

¢ = NS (4.122)
COS B +COSB

and where ¢ is the same as ¢ with cosh and cos replaced by sinh and sin in
the numerator and where D is the same frictional depth as defined by Eq.
(4.110).

From Eq. (4.122) we see that for values of d substantially greater than D
that ¢ and ¢ will have appreciable values only in the range from z = d
to z = d— D. At distances from the bottom greater than D, there is practically
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Fig. 4.17

a uniform velocity at right angles to the pressure gradient. This result, of
course, is entirely to be expected on the basis of the assumptions made in
the solution. For a value of d/D = 1.5, the plots of v, and v, versus depth
are as shown in Fig. 4.17. In terms of an Ekman spiral diagram similar to
Fig. 4.16, the current velocity will remain essentially constant in magnitude
and direction down to a depth z = d— D and then turn around in a counter-
clockwise direction, in the northern hemisphere, with decreasing amplitude as
the bottom is approached.

In a general way, we may think of the current system in a homogeneous
ocean as comprised of three parts, as illustrated in Fig. 4.18. The deep
current is the geostrophic portion of the gradient current. The bottom current
is the portion of the gradient current affected by internal friction under the
assumption of no motion at the bottom. The surface current is the resultant
of the deep current and the drift current generated by the wind. If the geo-
strophic current velocity of the deep current and the net wind stress are in the
same direction, the vector relations of the current will be as shown diagram-

Ocean surface

D’ Surface current

D" Bottom current

Ocean bottom

Fig. 4.18
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Fig. 4.19

matically in Fig. 4.19. If, in addition, we have the condition that the net mass
transport is in the direction of the deep current, the mass transport of the
surface current to the right of the deep current will be balanced by the mass
transport of the bottom current to the left of the deep current.

Problem 4.10(a) Carry through the reduction of Eq. (4.119) to Egs.
(4.120) and (4.121).

Problem 4.10(b) Show that the combined mass transport per unit column
in the positive X direction, east, for an eastward-moving geostrophic current
extending down to a depth z = d, at which the current falls to zero and a
surface drift current is

1 oP
M, = —\T, — —
2wsin ¢ dy

where T, is the wind stress in the Y direction, and P is given by the integral

P=J-Zpdz

4.11 Wind-driven Ocean Circulation

The wind system over the oceans is generally considered to be the driving
force for the major surface and near-surface ocean currents. It is of interest
to derive some simple and approximate relations between the wind stress
field and the oceanographically measurable quantities of current mass trans-
port and pressure gradients.

For steady-state conditions, we may write Egs. (4.96) as

) . op 0 v, 0
vwsing — — + — ) =
pU,w SIN @ ax+32 1 2z
; (4.123)
c 0
—2pv,wsin g — Tp + —<;Lz —U!) =0
cy oz 0z
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We shall want to integrate these equations from the surface down to a
depth d at which the current falls to zero. At the surface, the tangential
stress components due to the wind are given by

T oo,

x — TH a—z
(z=0) 4.124)

T - ov,

y = Mz oz

similar to Egs. (4.103), and at the depth d, these stress components vanish.
Integrating Eqgs. (4.123), we thus obtain

. opP
2wM, sinp — P +7T,=0
X
(4.125)

a

. oP
—2wM,singp — —+T,=0
&y

where M, and M, are the mass transports per unit column of the current
in the X and Y directions, respectively, given by

M, = j‘; pv, dz
(4.126)

d
M, = fo pv, dz
and where P is given by

d
P= fopdz (4.127)

We also have, from the equation of continuity (3.14) under steady-state
conditions, the relation

oM oM, _

e 0 (4.128)

We have three equations, Eqs. (4.125) and (4.128), for the three oceano-
graphic variables M,, M, P in terms of the surface wind stress components
T, T,

Let us apply these equations to the equatorial currents of the Pacific
Ocean. We may eliminate P by differentiating the first of Eqs. (4.125) with
respect to y and the second of these equations with respect to x and subtract-
ing. Remembering that the latitude ¢ is a function of y only and using
Eq. (4.128), we obtain

oT.

X

8y_3_x

T, 2w
+ M,cosp =0 (4.129)
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where A is a constant given by
== (4.130)

the variation of the north coordinate distance with respect to latitude. For
the trade wind belt of the equatorial currents, it is possible to put ¢7,/éx = 0
reducing Eq. (4.129) to

—-A @
= o (4.131)
¥ 2wcos¢ oy
From Egs. (4.128) and (4.131) we also have
0 eT, o?
ik S ol PANEE 4.132)
ox 2w cos ¢ \ Oy oy

If we consider some distance x = x, at the eastern end of the equatorial
currents where the currents themselves are negligible so that we have
M, = 0, we may integrate Eq. (4.132) with respect to x, obtaining approxi-
mately e L
- T, &*T,
x = pal bl (0, * tan @+ A — 2") (4.133)
2w cos @ \ ¢y oy
From Eqgs. (4.125) and (4.131) we have

P T, aTx)ﬂt 4.134
—8_—x~ x ay an‘P ( . )

Equations (4.133) and (4.134) are relations for M, and ¢P/éx as a function
of latitude, or y coordinate distance, in terms of the wind stress field.

Using the average wind stress distribution obtained from the wind field
data given in climatological charts, Eq. (4.133) correctly predicts the west-
ward-flowing north and south equatorial currents and the eastward-flowing
counter equatorial current, located between the two westward-flowing
currents. The theoretical calculations of Eqs. (4.133) and (4.134) agree well
with the experimentally observed oceanographic quantities of (¢P/éx) and
M., where M_ is calculated from the result of Problem 4.10(b).

As a final example, let us look, in a general way, at the effect of the
variation of the Coriolis parameter, 2w sin g, with latitude on large-scale
ocean circulation. We shall want to include the effects of internal friction
transverse and longitudinal to the current. Including these terms from Section
4.8 in Eq. (4.123), we shall obtain similar to Egs. (4.125)

. cP
2wM, sinp — . +T,+H . =0
X
4.135
‘ op (4.135)
—2wM, sin ¢ — P +T,+H, =0
y



142 9 Thermodynamics and Hydrodynamics

where H, and H, are the integrals of the horizontal friction terms. Equation
(4.129) will then become

oT, & oH, oH,
<8x 6y> B y+<3x oy ( )
where 8 is simply
2
B = —:—’cow 4.137)

Since the wind stress vector T has components T,, T, only and is not a
function of z, we see that the first term of Eq. (4.136) is the scalar magnitude
of the curl of the vector T, or

(4.138)

or, oT,
ox oy

1'=V><T=k<—

The vector 7 is referred to as the vortex vector of the wind stress. A similar
relation holds for the frictional vector H. Equation (4.136) is referred to as a
vorticity equation and the second term as the planetary vorticity.

Let us now consider a large ocean area, such as the North Atlantic.
We shall consider a clockwise anticyclonic wind system over the whole ocean
of constant vorticity. We see immediately that we cannot have a uniform
current vortex with horizontal frictional resistance H unless the second
term of Eq. (4.136) is zero, which is not the case. For a right-handed co-
ordinate system with the X axis to the east and the Y axis north, the wind
stress vorticity is a negative number and the frictional resistance vorticity a
positive number. On the western side of the ocean, the transport will be to
the north with BM, positive, and on the eastern side of the ocean, to the
south with BM, negative. Designating the wind, resistance, and planetary
vorticities by the numerically positive quantities a, b, c, respectively, we shall
have from Eq. (4.136), for the western side of the ocean,

¢c=b—ua
and for the eastern side of the ocean
c=a-b

Since we have assumed a to be constant, we see that if these relations are to
hold, b must be larger than a on the western side; or the current, and con-
sequent frictional resistance effect, must be intensified on the western side
of the ocean with respect to the eastern side. These general considerations
correctly predict the westward intensification to the formation of the

gulf stream in the North Atlantic and the Kuroshio current in the North
Pacific.



Physical Oceanography—Circulation € 143

In
References

Arons, A. B, and H. Stommel. 1951. “A mixing-length theory of tidal flushing,”
Am. Geophys. Un., Trans., vol. 32, pp. 419-421.

Defant, A. 1961. Physical Oceanography, vol. 1. New York: Pergamon.

Eckart, C. 1960. Hydrodynamics of Oceans and Atmospheres. New York : Pergamon.

Hill, M. N,, ed. 1962. The Sea, vol. 1, Physical Oceanography. New York: Wiley.

Neumann, G. 1968. Ocean Currents. Amsterdam: Elsevier.

Proudman, J. 1953. Dynamical Oceanography. New York: Wiley.

Sverdrup, H. U., M. W. Johnson, and R. H. Fleming. 1942. The Oceans. Englewood
Cliffs, N.J.: Prentice-Hall.



CHAPTER 5§

PHYSICAL OCEANOGRAPHY—WAVES AND
TIDES

5.1 Tidal Waves

In this chapter, we are concerned principally with the motion of the free
surface of the ocean and with one of the main forces causing such motion
—that of the gravitational attraction of the moon and the sun. It is convenient
theoretically to divide the discussion of the motion of the ocean surface into
two parts: that for which the wavelength of the motion is large compared
with the ocean depth and that for which it is not. The former motion is
variously referred to as tidal or long waves and the latter as surface, gravity,
or short waves.

The description of tidal waves, as the name implies, is applicable to the
wave motion produced by the tide generating forces of the gravitational
attraction of the moon and the sun. The basic assumption in the theory of
tidal waves is that the wavelengths are so long in comparison with the ocean
depth that the water particle motion is mainly horizontal and is essentially
the same for all particles in a given vertical plane. The vertical accelerations
may then be neglected, and the pressure at any depth taken to be the hydro-
static pressure. We shall assume that the fluid is incompressible and for the
first derivation that the particle motion is sufficiently small that the time
derivative D/Dt may be replaced by ¢/ct.

Let us consider one-dimensional wave motion with the X axis in the
direction of wave motion, the Z axis vertical upward, and the origin at the
bottom of the ocean as shown in Fig. 5.1. Let the displacements of the ocean
surface away from its horizontal, neutral position be denoted by ¢, 7,
respectively, in the X and Z directions, and let the depth of the ocean be 4.
Then the hydrostatic pressure at any depth will be directly proportional to
the overlying column of water, and the horizontal pressure gradient will be
given by

- =pg (5.1
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p——» <——a— h
P
p+ a—xdx
X
dx .
Fig. 5.1

The horizontal force per unit volume in the positive X direction will be the
negative of Eq. (5.1) so that the equation of motion in the X direction will
be simply

0%¢ én

= - (52)

P ot ax

The continuity conditions may be obtained by considering the net volume
of water that has entered the column shown in Fig. 5.2 in a time ¢. The net
displacements ¢ and 7 in the X and Z directions will be the integrals of their
respective velocity components so that we shall have, for continuity of an
incompressible fluid,

2
7= —h% (5.3)

Combining Egs. (5.2) and (5.3), we obtain

a*¢ *¢
wi = e (54
n
I S
—_— — - h
¢ ¢
£+ -é;dx

dx

Fig. 5.2
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which is simply the one-dimensional wave equation of section 1.10. The
elimination of ¢ from Egs. (5.2) and (5.3) gives, as expected, the same wave
equation for 7. We see then that the wave motion is propagated with a

velocity ¢, given by
c=./gh (5.5)

and with all the other characteristics as described in Section 1.10. If we were
to take a simple harmonic wave for ¢ of the form

2
¢ = Acos Tﬂ (x—ct) (5.6)
we would have from Eq. (5.3) for 7,
2l 2
0 = %’ Asin = (x=cn) .7)

showing that when / is much smaller than A, the displacement, velocity,
and acceleration in the vertical direction are small compared with those in
the horizontal direction. In general, the solution to the wave equation (5.4)
for a wave propagating in the positive X direction will be of the form

¢ = F(x—ct) (5.8)

From Egs. (5.8) and (5.3) we then have, for the ratio of the water particle
velocity ¢ to the wave velocity c,

£ (5.9)
c

The ratio £ to c is the same as the ratio of the wave height 5 to the water
depth A. At a wave crest, the horizontal particle velocity is in the direction
of wave propagation; at a wave trough, the horizontal particle velocity is
opposite to the direction of wave propagation.

We may arrive at these same conclusions with regard to the value of the
wave velocity and the ratio of the particle velocity to wave velocity through
an interesting alternative approach, which we shall refer to as the Rayleigh
method. Let us consider a tidal wave propagating in the negative X direction
and impose on it a mass movement of the whole ocean with a constant
velocity equal and opposite to that of the wave velocity, as shown in Fig. 5.3.
Then the motion becomes steady. The ocean surface becomes stationary,
while the forces acting on the water particles remain the same as before.
Equation (3.37) will then apply, and we shall have

P D ghtn)—102 (5.10)
p

where D is a constant, and v is the particle velocity, taken as before to be
principally in the X direction. Our continuity condition now becomes that
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Fig. 5.3

the volume transport of water v(h+7) through any vertical section of height
(h+m) must be a constant. Considering the wave motion height gradually
reduced to zero, the volume transport through a section of vertical height A
will be ch. The equation of continuity then becomes

v(h+7) = ch (5.11)
Substituting Eq. (5.11) into Eq. (5.10), we obtain

212
(h+n)?

If the ocean surface is to remain stationary, the pressure along this surface
must be a constant. This will be achieved if p'(y) is zero. From Eq. (5.12)
we shall then have

1
;P(n) = D—gh+n)—-1% (5.12)

1 c*h?
—pn’ = — + —_—— = 0

or

3
¢ =gh (1+ z) (5.13)

To a first-order approximation for infinitesimal values of 7, this will be simply
c=co=/gh (5.19)

the same as Eq. (5.5). To a second-order approximation for small values

of 7, this will be
39
c=cy l+§}—' (5.15)

In this second approximation, we see that the wave velocity is not a constant.
A wave of this type, with finite amplitudes of wave height, cannot be pro-
pagated without a change in profile since the wave velocity is a function of
the wave height. From Eq. (5.11) we also have a first approximation that

b= c(l— g) (5.16)
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Subtracting the imposed mass velocity ¢, we see that the ratio of particle
velocity in the undisturbed state to the wave velocity is the same as that
given by Eq. (5.9) in the direction of propagation.

We should now like to examine briefly, in a more formal manner, tidal
waves of finite amplitude. In this case, we cannot make the substitution of
¢/ct for D/Dt. The equation of motion then is

ov ov ¢
o= —g ] (5.17)
ot ox ox

where the symbol v, is used for the particle velocity in the X direction instead
of £. To this next order of approximation, we see from Fig. 5.4 that equating

v,dx

L

(h+n), (h+n)o.+ % [(h+ 7o, Jdx

dx’
Fig. 5.4

the rate of mass transport into and out of the vertical column for an in-
compressible fluid gives, for the continuity relation,

1% oy
_— h = — = —_— .
- [( +n)vx] b= (5.18)
This may be rewritten as
31] 31] ov
! L= _x
Fy +v, e (h+7) . (5.19)

Let us now make a change of the independent variable from 7 to ¢, where

¢ is defined by
7 1/2
$(n) = 2¢, [( 1+ Z) - 1] (5.20)
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¢, being given by Eq. (5.14). We shall then have, for the partial derivative of
with respect to x in terms of the partial derivative of » with respect to x,

1/2
3_1/; = @d_l/’ = L ﬁ' (5.21)
ox  ox dy h+7 éx

Substituting Eq. (5.21) and the similar relation with respect to ¢ into Egs.
(5.17) and (5.19), we obtain

i S B (5.22)
ct cx ox
and
& o) év
— — = -qg-7 5.23
ct + o ox ex (5.23)
where a is given by
1/2
a = [gh+n)]'"? = ¢, (1 + 7’1’) (5.24)
Adding and subtracting Eq. (5.22) from Eq. (5.23), we get
¢ ¢
[n + (v,+a) ~] W+v) =0 (5.25)
ct ox
and
¢ ¢ =0 5.26
éTt"'(”x a)a @-0v) = (5.26)

The differential in the brackets of Egs. (5.25) and (5.26) is in the form of the
total time differential D/Dt of Eq. (3.3), following the motion of the fluid.
Thus, Eq. (5.25) states that the quantity (¢ +v,) is constant for a point moving
with the velocity (v, +a). Similarly, Eq. (5.26) states that the quantity ($—v,)
is constant for a point moving with the velocity (v, —a).

These equations enable us to understand, in a general way, the nature of
the motion. Consider an initial disturbance confined between the planes
x = xy and x = x, so that for x < x, and x > x,, both ¢ and v, are zero.
The region within which ($+wv,) is variable will advance in the positive
direction, and the quantity (¢ —v,) will recede in the opposite direction. After
a time, these regions will separate, leaving between a region for which both
quantities are zero so that = 0 and 4 = 0, or v, = 0, that is, the fluid at
rest and at its normal elevation. The original disturbance has been split into
two progressive waves travelling in opposite directions. In the advancing
wave, y—v, = 0sothaty = v,, and we have from Eq. (5.25) that the disturb-
ance is propagated with the velocity

1/2
¢c=v.+a=yg+a= c0[3 (1+ Z) —2] (5.27)
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where we have substituted for ¢ and a from Egs. (5.20) and (5.24). In the
receding wave, we have ¢+, = 0 so that 4y = —v,, and we obtain the same
result from Eq. (5.26) for a wave propagating in the negative x direction with
the velocity

c=v,—a= —(+a) (5.28)

The first-order approximation for Eq. (5.27) gives the same result, {Eq. (5.15)],
as we had obtained previously. Since the wave velocity increases with the
vertical displacement, it appears that in a progressive wave, the slopes will
become continually steeper in front and more gradual behind until a state is
reached in which we are no longer justified in neglecting vertical accelerations.

Problem 5.1(a) Obtain Eq. (5.2) directly from the hydrodynamic equations
of motion.

Problem 5.1(b) Obtain Eq. (5.3) directly from the hydrodynamic equation
of continuity.

Problem 5.1(c) Derive the expressions for ¢ and » in simple harmonic
form as a function of depth. Show that the water particle motion is elliptical
with the vertical displacement decreasing with depth so that the motion along
the bottom is linear horizontally.

Problem 5.1(d) Using the concepts of wave fronts and rays, discuss the
refraction of tidal waves propagating into a shoaling region.

5.2 Driven Tidal Waves

We shall now consider some of the characteristics of driven tidal wave
motion. To do this, we shall want to include in the equation of motion an
external force per unit mass X. In particular, we shall choose X to be of a
form f(x— Ut) corresponding to the gravitational attractive, tide-producing
force of the moon. To a first approximation for an equatorial canal, the
velocity U will be simply the circumference of the earth divided by one lunar
day. In this discussion, we shall become aware of the distinction, common in
the discussion of the motion of many mechanical and electrical systems,
between free waves or oscillations, in which the propagation velocity is that
determined by the system itself, ¢ of Eq. (5.5), and forced waves or oscillations,
in which the propagation velocity is that of the driving force U.

From Egs. (5.2), (5.3), and (5.5) we shall have for the equation of motion

2 02
oE_ 2
o> ox?

+ X (5.29)
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or from the hydrodynamic equations of motion

TE_pft 1 (5.30)

c
ét? oxt  pox

where p is here the pressure on the ocean surface of the driving force X. Let
us consider our solution ¢ to be composed of two parts given as

f=§1+§2 (531)

where ¢, is a general solution of the differential equation (5.4) of the form of
Eq. (5.8), consisting of two arbitrary functions representing waves propagating
in the positive and negative x directions with the velocity ¢, and where ¢, is a
particular solution of Eq. (5.29). Adding the two differential equations for
£, and £, will give Eq. (5.29) for £. We may then be sure that such a solution
is a complete solution and may now proceed to look for a particular solution
of &, satisfying Eq. (5.29). The solution £, represents the free waves, and the
solution ¢, represents the forced waves.

Anticipating the resultant form of the tide-producing force, we shall take
X to be given by a simple harmonic function

X = —Asin [k(x—Un)] (5.32)

We shall look for a particular solution for ¢, corresponding to this of the
form

&, = asin [k(x— Ur)] (5.33)
Substituting Eqgs. (5.32) and (5.33) into Eq. (5.29), we obtain
ak*U? = ak*c*+ A

or
A
1T RU-)
so that
A .
& = m sin [k(x—Ut)] (5.34)

From Egs. (5.34) and (5.3) we then have for the surface elevation

n__ A4 _
e KE—U%) cos [k(x—Ut)]

and from Egs. (5.29), (5.30), and (5.32) for the surface pressure

p A
Falab cos [k(x—Ut)]
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1§

so that

P (5.35)
h o p(c?=U?
We see then that for a positive surface pressure of the driving force, the forced
wave will have a depression, negative »,, if ¢ > U. The driving surface pressure
and the resultant surface motion are said to be in phase. However, if ¢ < U,
then a positive surface pressure corresponds to a surface elevation, and the
two are said to be out of phase.

For the tidal motion produced by the moon’s gravitational attraction,
the tides are said to be direct when high tide is in phase with the moon, and
inverted when low tide is in phase with the moon. For the actual relative motion
of the moon about the earth and ordinary ocean depths, ¢ will be small
compared with U, so that the normal tides will be inverted for an equatorial
canal.

Added to this particular solution of the equation of motion, which repre-
sents the forced waves due to the attraction of the moon, we may also have
solutions representing free waves such as were discussed in the preceding
section. If we had included a frictional resistance, damping, term in the equa-
tion of motion, we would have found that the free wave solution contained a
time-dependent damping factor. They would represent an initial, transient
effect which, in comparison with the steady-state motion produced by the
moon attraction, could be neglected.

5.3 Seiches

One of the simpler examples of free tidal wave motion is that of seiches.
Seiches are oscillations of a body of water, such as a lake, that depend only on
the dimensions of that body of water and that, when once set in motion by
some external force, will continue for some time. The external forces causing
such oscillations are usually either a change in atmospheric pressure or the
relaxation resulting from a piling of water mass at one end of the body of
water caused by the wind. The force is a transient phenomenon; the oscilla-
tions are a free wave, resonant motion.

Let us consider the one-dimensional oscillations of a rectangular body of
water closed at both ends. The boundary conditions are that £ = O at x = 0 and
at x = [. This problem is exactly the same as the vibrating string problem of
Section 7.1. We may then take a solution of the wave equation (5.4) in the
form of Eq. (7.3),

&€ = [A sin (kx)+ B cos (kx)] cos (kct) (5.36)
where c is given by Eq. (5.5). The first boundary condition gives B = 0, and
the second gives the relation

kl = nm
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or
21 21

ne n\/gh

where n is an integer corresponding to the first, second, and so on, modes of
oscillation, and P is the period. The expression Eq. (5.37) is sometimes referred
to as Merian’s formula in physical oceanography. Since the vertical displace-
ment 7 is given by Eq. (5.3) in terms of ¢, we see that whereas each end of the
body of water is a node for &, it is an antinode, or maximum displacement, for 7.
For the fundamental, or first, mode, the nodal line for » will be at x = //2.

We may also have resonant oscillations for a body of water open at one
end, such as a bay. In this case, the open end is approximated as a free boundary,
or a maximum for ¢. The secondary boundary condition then gives

P=

(5.37)

o™
K= @n-1)3

or
po_ M 4
C@n=lec  (2n-1)J/gh

(5.38)

The open end of the body of water is here a nodal line for 7.

Let us consider next the related problem of forced oscillation in a rect-
angular body of water open at one end, such as a bay or gulf. In this case, the
generating force is that of the tide. The forced wave motion within the bay or
the gulf is referred to as a tidal cooscillation. This problem is the analogy of
the vibrating string driven at one end. We may solve it simply by taking as
our boundary condition at the open end x = / the tide amplitude

7 = acos (wt) = acos (%’) (5.39)

where T is the period of the tide. From Egs. (5.36) and (5.3) we shall have
for 7 in the bay

n = [—khA cos (kx)+khB sin (kx)] cos (kct) (5.40)
The boundary condition at x = 0 gives B = 0 as before. The boundary
condition at x = / gives

~khA cos (kl) cos (kct) = acos (2—;}) (5.41)

For this to hold for all values of time, we see that £ must be given by

2n
k=z‘7-,,
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as expected, from which we then get

f=_ "9
"~ khcos (k)
or
p=a (kx) o (27 (5.42)
cos (ki) T

We see that there will be large amplitudes, or resonance, in the bay under the
conditions for which the denominator of Eq. (5.42) approaches zero. This
gives

ki = (2n—1)127 (5.41)

or from Eq. (5.41)
_ 2n—1)cT

1 (5.43)

/

We see, as expected, that resonance occurs when the length of the bay is
equal to one quarter the natural wavelength ¢7T. For / < }cT, the vertical
displacements in the bay will all be in phase. For | > kT, there will be a
nodal line in the bay.

Problem 5.3(a) For Loch Earn in Scotland, the average length is 10 km
and depth 60 m. Calculate the fundamental period of the seiches.

Ans. 14 min

Problem 5.3(b) For Lake Baikal in Siberia, the average length is 665 km
and depth 680 m. Calculate the fundamental period of the seiches.

Ans. 4.5 hr

Problem 5.3(c) The tides in the Bay of Fundy exhibit resonance. The
length of the bay is 270 km and average depth 75 m. Calculate the ratio of

the vertical displacement amplitude at the head of the bay to that at the bay
entrance.

Ans. 6.4

5.4 Geostrophic Effects on Tidal Waves

Let us now look at the effect of the Coriolis force on tidal wave motion.
From Eqs. (4.63) and (5.1) the two-dimensional equations of motion including
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the geostrophic term will be

oy 2w, sin on
gt JU YN = —g2
ot ofySI® = T8k
(5.44)
ov . ¢
e—t’ + 2wov, sinp = —g;;

where, as before, we have assumed that the motion is sufficiently small that
the differential D/Dt may be replaced by ¢/¢r and where, for convenience,
we have used w,, for the angular frequency of the earth’s rotation to distinguish
it from w representing the angular frequency of the wave motion. The two-
dimensional equation of continuity in terms of the velocity components,
corresponding to Eq. (5.3), will be

oy ov, ¢v
e —p 4 5.45
ct (Ex + 6‘y) (5.45)

For the case of simple harmonic wave motion, the time factor being given
by e ', the vertical displacement 7 may be represented in the form

7(x, y, 1) = n(x, y) e (5.46)

and similarly for the velocity components v, and v,. Equations (5.44) and
(5.45) then become

: . in
iwv+2wop, Sinp = g o
(5.47)
i , n
fwb,—2wov, Sinp = g 6’
and
a 0
iwn = (5”;" + a—vy’) (5.48)
Solving Egs. (5.47) for v, and v,, we obtain
—g . oy . cn
vy = 55— — =2 —
* w?—4wy?sin? ¢ (Iw ox @o S ® 6y>
(5.49)

-8 ] . Oq
v, ——————|iw — + 2w, sinp —
¥ w?—4w,? sin? ® ( dy woS? 3x)

Substituting these values of v, and v, into Eq. (5.48), we then obtain the
differential equation for 7

3_27) + &y + w?—4wy?sin® ¢ 0
ox? " oyt gh =
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or
2 2 in2
Vg + w_”_“ﬁ’o_ﬂ_"’,) =0 (5.50)
gh
where V2 is the two-dimensional Laplacian operator.

We shall next consider a few rather simplified applications of these
equations to gain some understanding of the geostrophic effect on tidal wave
motion. Let us take first the case of wave motion in which the velocity com-
ponent in the Y direction, v,, is zero. This may be considered to correspond
to the case of an infinitely long, straight canal. Equations (5.47) and (5.48)
reduce to

. o
lwy, = g'a-.;
. on
—2w01)x Sine = gg (551)
o
iom =h —a;x

From the second of these equations, we see that the y dependent term will be
in the form of an exponential, so that we can correctly assume a solution of
the form

n = aei(kx—ct)+my (552)

Substituting Eq. (5.52) into the first of Egs. (5.51), we obtain
v, =, (5.53)
(4

from which we then obtain from the second and third equations

2w, sin @

m= - (5.54)
and the familiar relation of Eq. (5.5)
2 =gh (5.55)
Our solution for 4 is then expressed in real form,
n = ae” C@0sin®/ cog [k(x—ct)] (5.56)

The wave velocity is unaffected by the earth’s rotation, but the. wave height is
not everywhere the same in a section normal to the wave motion. The variation
in wave amplitude, and consequently from Eq. (5.53) the horizontal particle
velocity, is greater to the right of the wave motion than to the left for the
northern hemisphere. In a section normal to the direction of propagation, the
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wave height slopes down from right to left facing the direction of propagation
at a wave crest, or high water, and slopes down from left to right at a wave
trough, or low water. These results are in accordance with what would be
expected for the geostrophic effect from the discussion of Section 4.6. As
given by Eq. (5.53) and illustrated in Fig. 5.5, the water particle velocity is in

Y

/S

the direction of wave motion at a wave crest and opposite to the direction of
wave motion at a wave trough. Such geostrophic wave motions are sometimes
referred to in physical oceanography as Kelvin waves.

Consider now the interference effect of two simple harmonic Kelvin
waves of equal amplitude progressing in opposite directions. From Eq. (5.56)
their combined effect may be represented by

7 = ae” ™ cos [k(x—ct)]—ae™ cos [k(x+ct)] (5.57)

Fig. 5.5

where we have taken the origin such that the Y axis would have been a nodal
line for two such interfering waves without the geostrophic term. As we watch
this steady-state wave motion as a function of time, the crests of the waves, or
high water, are defined by the relation &y/2t = 0, which from Eq. (5.57) gives

e~ ™ sin [k(x—ct)]+e™ sin [k(x+ct)] = 0
sinh (my) cos (kx) sin (wt)+cosh (my) sin (kx) cos (wt) = 0

tanh () _ ot (o) (5.58
tan (kx) cot (wr)  (5:58)
For locations near the origin, this reduces to
kx
y = —_-cot (wt) (5.59)

Equation (5.59) defines a straight line centered at the origin, which rotates
counterclockwise about the origin with the angular frequency w. Such lines
of equal tidal phase, in this case high tide, are referred to as cotidal lines. If
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0 hr

Fig. 5.6

instead of free tidal waves, the interference effect is that of a tidal cooscillation,
the period of the rotation will be that of the lunar dirunal tide, or approxi-
mately 12 hr. For such a case, the time of high tide will progress counter-
clockwise in a regular manner around the bay as illustrated in Fig. 5.6. Instead
of having nodal lines of no motion, we are now reduced to a central region,
referred to as an amphidromic region, of no motion at the origin. The inter-
ference effect of two geostrophically controlled simple harmonic waves is to
change the observed wave pattern from that of a linear standing wave to a
rotary wave.

As a final example, we shall consider the somewhat fictitious one in which
the quantities 7, v,, v, are independent of y. In some manner the wave crests
and troughs are maintained as horizontal lines in the Y direction. The equa-
tions of motion (5.44) and the equation of continuity (5.45) reduce to

ov, . on
5 2wep, sing = —ggy—c
(5.60)
ov, .
ot + 2wov, sing = 0
and

on o

- Px_ o )

o + h o (5.61)
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Assuming a simple harmonic wave propagating in the positive X direction,
we will have 7 of the form

7 = acos [k(x—ct)] (5.62)

From the second of Egs. (5.60) and from Eq. (5.61) we then obtain, respectively
for v, and v,,

ac

v, 5 Cos [k(x—ct)] (5.63)
and
b, = 220N G k(x—en)] (5.64)
wh

Substituting Egs. (5.62), (5.63), and (5.64) into the first of Egs. (5.60), we then
obtain, for the conditional relation defining the wave velocity

we  dwylcsin’e  wg
h wh c
or

h
=8 5.65
. 4wyt sin? ¢ (>69)

w2

We see from Eqgs. (5.63) and (5.64) that the wave motion is such that the
particle velocities, or currents, rotate in a clockwise sense in the northern
hemisphere with a ratio of the maximum v, to maximum v, components of
2w, sin g/w. If the tidal wave motion is that of the diurnal tide, w is approxi-
mately equal to 2w, and this ratio reduces to sin ¢. For this latter condition,
the velocity of wave propagation of Eq. (5.65) becomes

c=(gh)'*seco (5.66)

5.5 Internal Tidal Waves

We should next like to consider some of the simpler aspects associated
with tidal wave motion in two superposed liquids of constant, but different
densities in which the density of the upper liquid is less than that of the lower
liquid. Two solutions will result, one simply a direct extension of the surface
tidal wave motion of Section 5.1, the other a tidal wave motion associated with
and dependent on the internal boundary. This latter motion is referred to as
an internal seiche, free tidal wave, or forced tidal wave, as the case may be.

Let » represent the vertical displacement of the upper, free surface and »’
that of the internal boundary, as shown in Fig. 5.7. Let p and p’ be their respec-
tive densities, 4 the thickness of the upper layer, A’ the thickness of the lower
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Fig. 5.7

layer measured from the internal boundary to the bottom, z the depth
measured from the undisturbed free surface in the upper layer, and z’ the
depth measured from the undisturbed internal boundary in the lower layer.
From Eq. (3.30) the one-dimensional equation of motion, assuming no
external forces and that the displacements are sufficiently small that D/Dt
may be replaced by 0/0t and neglecting the geostrophic term, will be

ov, 1 op

— = - - 5.67

ot p ox (567)
The hydrostatic pressures in the upper and lower fluids will be given, respec-
tively, by

P = patgp(n+z) (5.68)
and
P =p.ree(n+z—n")+gp'(n’'+2) (5.69)
where p, is the atmospheric pressure, from which we obtain
op o
i 8P % (5.70)
and
p_ o . p\éon’
Pl gp e + gp (1 - ;) . (5.71)

Substituting these values into Eq. (5.67), we then have for the equations of
motion in the upper and lower fluids, respectively,

oo, on
ot g o (5.72)
ov;

* p o p\ o’
=T _ol1-F
il s g( P,) o (5.73)



Physical Oceanography— Waves and Tides 9§ 161

With reference to Fig. 5.2, we obtain for the equation of continuity in the
upper and lower fluids, respectively,

avx a ’
h8_x+5t(n_n)_0 (574)
o, on
h—=4+ — = 5.75
ox + ot 0 (5.75)

similar to Eq. (5.3).
We shall look for a simple harmonic solution of the usual form for 7 as

n = A cos [k(x—ct)] (5.76)
From Eq. (5.72) we then have for v,

A
b, = g? cos [k(x—ct)] (5.77)
from Eq. (5.74) for »’
, gh
7 =(1- e A cos [k(x—ct)] (5.78)
and from Eq. (5.75) for v,
A
ol = <1 - ‘i—’z’) Ch— cos [k(x—ct)] (5.79)

Substituting these values of 9, v,, 3’, and v, into the fourth of the differential
equations, Eq. (5.73), we obtain the conditional equation for ¢?,

gh\ ¢* p p gh
l-=S)==g— + 1—-=){1-=
(-2)i g 2) (- )
P o X

ct—gh+h)c*+ (1 - ﬁ,) gihh' =0
P
whose solution is
= %[g(h+h’) + \/gz(h+h’)2—4(1 - ﬁ,) gzhh’] (5.80)
P

Since the density contrast between the two fluids, (p’ — p)/p, is usually small,
we may approximate Eq. (5.80) by

? = %{g(h+h’) + [g(h+h')—2(1 - f)h—gf—_’% + ]} (5.81)
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from which we obtain the two possible values of ¢?, corresponding, respectively,
to the plus and minus signs in Eq. (5.81)

co? = g(h+h') (5.82)

2 = <1 - ﬁ,) ﬁh;,' (5.83)
p

We may then write for the ratios of the vertical displacements and Fhe
horizontal particle velocities from Egs. (5.76), (5.77), (5.78), and (5.79), using
Eqgs. (5.82) and (5.83),

no _co'—gh _ K

and

To - 5.84
7)0 C02 h+h' ( )
’ 2 __
UxO _ Co gh — 1 (585)
/N gh'
and
’ 2__ ’ ’
n_sog_ A (586)
;i ¢ (p'—p)h
v, c¢2—gh h
=== = - 5.87
Uy gh' h' (5-87)

where the latter two expressions are approximations for a small density
contrast between the two fluids, so that ¢;? is small compared with gh.

We see that the first solution, represented by Eqs. (5.82), (5.84), and (5.85),
is simply a direct extension to two fluid layers of the solution of Section 5.1
for a single layer. The velocity of wave propagation is given in terms of the
total depth A +A’ from the free surface to the bottom. The vertical displace-
ment amplitude of the wave on the internal boundary is diminished in direct
ratio to the ratio of its distance above the bottom to the total depth, as would
be anticipated from the results of Problem 5.1(c), and the horizontal particle
velocities of the wave motion at the two surfaces are in phase and of equal
magnitude.

The second, or internal wave, solution, represented by Eqs. (5.83), (5.86),
and (5.87), is a considerably different type of motion. Since the density con-
trast between the two fluids is small, the velocity of wave propagation will be
small. For a given wavelength in the two cases, the period of the internal wave
will be much longer than that of surface tidal wave. The vertical displacement
amplitude of the wave on the internal boundary will be large compared to the
vertical displacement amplitude of the wave on the free surface and will be
out of phase with it. Further, the horizontal particle velocities will be out of
phase and their ratio inversely proportional to the thicknesses of the two fluid
layers.
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For the first solution, the primary wave motion is at the free surface
and that at the internal boundary a continuation of this motion downward.
For the second solution, the primary wave motion is at the internal boundary
and that at the free surface a continuation of this motion upward. For driven
tidal wave motion, the relative excitation of each of these types of motion
will depend substantially on the closeness of the velocity of the driving force
to the free velocities of the two motions.

Problem 5.5(a) Derive the relation for seiches for this example corre-
sponding to Eq. (5.37).

5.6 Surface Waves

In Section 5.1 we discussed surface wave motion subject to the force of
gravity for which the wavelength was very great compared to the water depth.
Now we shall direct our attention to shorter wavelength gravity waves, for
which now the horizontal motion will not be essentially the same throughout
a vertical column. In particular, the vertical accelerations can no longer be
neglected. We shall assume as before that the fluid is incompressible. We
shall also assume that the motion is irrotational; this is a reasonable assump-
tion in consideration of Kelvin’s circulation theorem and the fact that we are
only considering an external force, gravity, derivable from a potential. We shall
further assume as before that the particle motion is sufficiently small that the
time derivative D/ Dt may be replaced by &/ot.

As before, we shall treat the specific problem of one-dimensional wave
motion for an ocean of constant depth 4. We shall here expand the definitions
of the horizontal and vertical displacements ¢ and % to include motion any-
where in the ocean as well as at the free surface.

As the motion is irrotational, a velocity potential ® exists, and the particle
velocity components may be given by

_Df_i)f_ o0

=D T a T ax (5-88)
and
Dy on od
=TT 89
2=t oz (5-89)

The equation of continuity (3.19), defining the motion, assumes the form
b2l I ) 0
P + P (5.90)

for the two-dimensional problem under consideration.
The wave motion will be subject to the boundary conditions that at the
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bottom, the vertical particle velocity component is zero and that at the free
surface, the pressure is zero, or a constant atmospheric pressure. Taking
coordinates as shown in Fig. 5.1 with the origin at the bottom, the X axis in
the direction of the wave propagation, and the Z axis vertically upward, the
first boundary condition in terms of the velocity potential is simply

o0
- =

v, = 0 (=0 (5.91)
For the upper boundary condition, we have from Eq. (3.35), for the pressure
in an incompressible medium,
o0

P2 _a-pr+60)

P ot
The additive function G(f) may be included in the time derivative of the
velocity potential. As the water particle velocities are small, we can neglect
terms in v2. For our coordinate system, the gravitational potential is simply
g(z+7) so that we have

p 00
—=——g(z+n) (5.92)
p Ot
or
100 P
=-— -z = 5.93
T g 124 e

Taking the time derivative of Eq. (5.93), we then have for our second boundary
condition
o 1220 o®
Uz—a—tzg‘s}z‘:——a'z— (Z=h) (5.94)
where to the first order of small quantities, we have approximated the free
surface by the plane z = A.

To find a wave motion solution of the equation of continuity satisfying
these boundaries, we may make the assumption of a simple harmonic wave
propagating in the X direction with an as yet undetermined z dependence. If an
adequate solution can be found, it can then be applied to the more general case
of arbitrary initial conditions through the use of the Fourier integral theorem.
Let us try, then,

® = f(z) cos [k(x—ct)] (5.95)
Substituting into Eq. (5.90), we obtain the ordinary differential equation
a’f
i Kf=0 (5.96)
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whose solution is simply
f = A cosh (kz)+ B sinh (kz) (5.97)

From the first boundary condition, Eq. (5.91), we see that the coefficient B
must vanish so that our solution will be

® = A cosh (kz) cos [k(x—ct)] (5.98)

Substituting Eq. (5.98) into the second boundary condition, Eq. (5.94), we
obtain the conditional relation for the wave propagation velocity

2.2

'% — k tanh (kk)

or

28 — & fann (2"
¢t = % tanh (kh) = o tanh( 3 (5.99)

For the case of the wavelength long compared with the depth, Eq. (5.99)
reduces to

¢ =gh (5.100)

the same result as obtained in Section 5.1. For the case of the wavelength
short compared with the depth, Eq. (5.99) reduces to

2 _ i - g—: (5.101)
Substituting Eq. (5.98) into Egs. (5.88) and (5.89), the particle velocity and
displacement components are then simply

v, = kA cosh (kz) sin [k(x—ct)]

v, = —kA sinh (kz) cos [k(x—ct)]

c

(5.102)

and

&= g cosh (kz) cos [k(x—ct)]
) (5.103)
n= sinh (kz) sin [k(x—c?)]

The particle motion is seen to be elliptical in character. As the hyperbolic
sine and cosine approach the same limiting value for large values of the argu-
ment, the ellipse becomes a circle near the surface of deep water. As the hyper-
bolic sine approaches zero for small values of the argument, the ellipse reduces
to linear horizontal motion at the bottom.

We see from Eq. (5.99) that the velocity of wave propagation is here also
a function of the wave number k. From the discussion of Section 7.2, we then
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know that in the generalized case we shall have a dispersive wave train and
that ¢ will now represent the phase velocity. For the case of short wavelengths,
Eq. (5.101), the corresponding group velocity will be given by Eq. (7.37) as

dc ghl 1
AT T 22 2€ (5104
For the more general case of Eq. (5.99), we obtain, after some reduction,
2kh
=defl + ———— 5.105
v 70[ * ginh (2kh):l (5.103)

Problem 5.6(a) Obtain the equation of the ellipse £, » of the fluid particle
motion. Sketch and discuss the fluid particle motion as a function of depth
and wavelength.

Problem 5.6(b) Carry through the reduction for Eq. (5.105).

5.7 Permanent Waves

We saw in Section 5.1 on tidal waves that when finite amplitude wave
motion was considered, the wave velocity became a function of wave height.
A simple harmonic wave could not be considered to be propagated without a
change in shape. We should like to examine here finite amplitude wave motion
for gravity waves and to see if we can determine a permanent wave shape,
that is, a wave shape for finite amplitude waves which, in the case of steady-
state motion, does not change its profile. In effect, such a solution will be the
finite amplitude counterpart of sinusoidal wave motion for infinitesimal
amplitude.

Changing, for convenience, our origin to the ocean surface, we may
rewrite the velocity potential of Eq. (5.98) as

cosh [k(z+ h)]
cosh (kh)

For wavelengths short compared with the depth, the normal case for deep
ocean waves, Eq. (5.106) reduces to

@ = ae** cos [k(x—ct)] (5.107)

cos [k(x—ct)] (5.106)

Using the method of Rayleigh from Section 5.1, we see that our potential
function will be given by

o I8

= —x+ Be** sin (kx) (5.108)

representing by the second term a periodic wave motion of the form of Eq.
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(5.107) superimposed on a uniform current velocity c, represented by the first
term. From the results of Problem 3.2(c), we have that the corresponding
stream function is

o I

= —z+ Be** cos (kx) (5.109)

For the profile of the free surface to represent a permanent wave shape,
it must be a streamline. We shall take it to be the line ¢ = 0. Its form, then,
is given by

z = Be** cos (kx) (5.110)
By successive approximations to the expression
z = B(l +kz+3k*z%+ - - -) cos (kx)
we obtain to terms of the order g3
z = Bcos (kx)+kpB? cos® (kx)+3k*B3 cos® (kx) (5.111)

Consider next the trochoid traced out by the circular disk, shown in
Fig. 5.8, of unit radius rolling on the upper surface and with a tracing arm of

Fig. 5.8

length B. The equation of the trochoid will be given implicitly by the para-
metric equations

z=fcos¥d x=60-8sind (5.112)

Making a Taylor series expansion in terms of 8 to terms of the order 83, we
obtain for z in terms of x

z = —B+(B—3B%) cos x+B% cos? x+383 cos® x (5.113)
Adjusting the Z origin to eliminate the constant term, making the substitution
a=p-38°

so that @*> = B* and a® = B° to terms of the third order, and choosing a
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circular disk of radius 1/k so that the trochoid wavelength becomes A, we
obtain

z = acos (kx)+ka? cos? (kx)+3k*a> cos® (kx) (5.114)

the same as expression (5.111). To terms of the third order, the wave shape is
that of a trochoid, steeper at the crests and flatter in the troughs than a sinu-
soidal wave. If the expansions of Egs. (5.111) and (5.114) were carried to
fourth-order terms, they would not be the same; the trochoid is an approxi-
mate and not an exact solution.

We still have to show, as in the similar discussion of Section 5.1, that the
condition of uniform pressure along this streamline can be satisfied by a
suitably chosen value of the wave velocity ¢. From Eq. (5.108) we shall have
that the particle velocity v is given by

op 2
(%)

o 2
v? =0l+0} = (3_(;) +

= c?[1 —2kBe** cos (kx)+k*p*e**?] (5.115)

Substituting Egs. (5.115) and (5.110) into Eq. (5.10) and expanding the final
term of the resultant expression to terms of the order 8°, we obtain

1 p(z) = const—gz—3c?[1 —2kPe** cos (kx)+ k*B2e**7]
’ = const+ (kc? —g)z— 3k*cp2e**
= const+(kc*>—g)z— 3k c?B*(1 +2kz+ - - +)
= const+ (k¢ —g—k3c2B%)z (5.116)

Hence, the condition for a stationary free surface is met if the coefficient of
the second term of Eq. (5.116) is zero, or

kc>—g—k3c*B2 =0
which gives for ¢, to the same order of approximation in 3,
= %(1+k2,92) G.117)
This determines the velocity of progressive waves of permanent type. It shows
that it is a constant for a given trochoidal wave and that it does increase

somewhat with the amplitude coefficient B of the wave.

Problem 5.7(a) Carry through the successive approximations to obtain
expression (5.111).

Problem 5.7(b) Carry through the Taylor series expansion of Egs. (5.112)
to obtain Eq. (5.113).
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Problem 5.7(c) Show that to the same order of approximation, expression
(5.113) may be written as

= b cos (kx)+ 3kb? cos (2kx)+3k?b> cos (3kx)

5.8 Waves Due to a Local Disturbance

Up to this point we have considered only steady-state motion. We should
now like to consider the wave motion that will result from and be propagated
out from a local initial disturbance. This will necessitate the use of some of the
concepts of Chapter 7, namely, phase and group velocities, dispersion, and
stationary phase. Some of the features of the resultant wave motion will be
similar to those obtained for steady-state motion; many others, understand-
ably, will not be similar. A physical understanding of these differences is
essential to the consideration of more complex wave propagation problems.

We shall wish to consider gravity wave propagation in deep water produced
by a local disturbance. This problem is sometimes referred to as the Cauchy-
Poisson problem. We shall take our origin in the ocean surface with the
approximation of infinitesimal amplitudes. Further, we shall take only one-
dimensional propagation; our source then is a line source along the Y axis.
The velocity potential then will be of the form of Eq. (5.107). For convenience
here, we shall take a potential given by one term of the sin [k(x — ct)] expansion,
or

@ = ae** sin (wt) cos (kx) (5.118)

where from Eq. (5.101) we have for the wave propagation velocity ¢, or
phase velocity, in terms of any two of the quantities g, k, w,

o (g\'"* g
c_k_(k) =2 (5.119)

We shall wish to consider only the displacement of the ocean surface 7,,
which from Eq. (5.93) is given in terms of ¢ as

1(29) _12g,
N0 = g(3t>0 =g e (5.120)
Further, we shall want to have a unit amplitude displacement for 5, so that
a = g/lo. From Egs. (5.120) and (5.118) we then have

7o = cos (wt) cos (kx) (5.121)
and
sin (wt)

o =g cos (kx) (5.122)

Let us take as initial conditions an initial elevation of the sea surface
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without initial velocity. The initial conditions may then be written as
10 = f(%)
9o =0

With reference to the discussions of Sections 1.9 and 7.2, let us generalize
7o and ¢, of Egs. (5.121) and (5.122) in order to meet these initial conditions
by the following integrations with respect to the dummy variables & and ¢,
where we have also made the substitution x— ¢ for x,

(t = 0) (5.123)

"= f " cos (w1) dk f " fOcoskx-plde (5.124

mJo
and

po="2 j inen) g J S cos kx-]dE (5125
Kk 0 w -

The result of an integration with respect to the variables k and £, which do not
enter into the original differential equation, will also, of course, be a solution
of that equation. We see that at ¢ = 0 Eq. (5.125) reduces to zero and from the
Fourier integral theorem, Eq. (1.161), that Eq. (5.124) reduces to f(x), the
initial conditions. Taking an initial elevation confined to the immediate
neighborhood of the origin such that f(x) vanishes for all but infinitesimal
values of x in such a way that

f f§dé =1 (5.126)
expression (5.125) for g, further reduces to
Po = gf SN (@) o5 (k) dik (5.127)
™ 0 w

We may now proceed to evaluate this integral. Making a change in the
variable of integration from k to w, we have from Eq. (5.119)

2 © 2
Po = — J sin (wt) cos (w—f) dw
TJo g
1 (® . [w*x ©  fwix
=— sin{ — + ot | dw — sin|{ — — wt ) dw [(5.128)
Tl Jo g 0 g

Making a further change of variable from w to o, where o is defined by

or (5.129)
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we shall have, using the positive sign for the first integral of Eq. (5.128) and
the minus sign for the second,

gl/2 © o
Po =12 [_[f sin (o? = %) do — JL,Sin (e*—1?) da]

X
= — %j_i J sin (62 — 72) do (5.130)
0
where 7 is defined by
= ‘%j (5.131)

From Eq. (5.120) we shall then have for 7,

gl/Zt T
Mo = ~312 cos (02 — 7'2) do
X 0

gl/lt T T
= [cos 2 f cos o2 do+sin 72 J sin o? da:) (5.132)

7Tx3/2 0 0

The two integrals of Eq. (5.132) are a tabulated form; they differ from the
Fresnel integrals by a constant multiplier. When 7 is large, the upper limit of
each integral may be approximated by infinity, the value of each integral then
being 7'/2/23/2_ For = large, then, Eq. (5.132) reduces to

1/2 2 2
g gt gt
No = —23—/~2—_1r1/2x3/2 [:COSK -+ Sin E

1/2 2
gt gt T
= 172,312 €08 (4x - :1> (5.133)

The expressions (5.132) and (5.133) define a wave motion that is quite
different from what we are familiar with from steady-state conditions. For
small values of r, expression (5.132) is not subject to any direct, simple inter-
pretation. For large values of =, we can get some insight into the characteristics
of the motion from an examination of Eq. (5.133). We see that we have a series
of oscillations of slowly varying amplitude and wavelength. The motion is
essentially repeated for an increase of the argument by 2=, or

t2
A <§x) = 2n (5.134)

If we were to hold x constant, we would find the period of the oscillation P
from Eq. (5.134) as
2gt

= At =2
4x i
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or
p=ar= (5.135)
gt
Similarly, if we were to hold ¢ constant, we would find the wavelength of the
oscillation A from Eq. (5.134) as

gr?

—EEAX=27T

or

A= ~-Ax =

o (5.136)

Further, if were to follow a particular phase of the motion, we would find the
wave, or phase, velocity ¢ from Eq. (5.133) as

gt? 2gt
— 8 Ax+ A=
42 ™ + 4x
or
Ax  2x gA\!/?
& T (2_") .137)

where the last term is obtained by substituting from Eq. (5.136). We see, as
we should have expected, that the phase velocity here is the same as the wave
propagation velocity [Eq. (5.101)] for the steady-state case. If we should next
concentrate on a group of waves having approximately the same wavelength
A, we would find for their velocity of propagation U from Eq. (5.137)

x 1/ g\ 1
the same as obtained for the group velocity in Eq. (5.104).
We could also have approached this problem by the approximation of

the method of stationary phase, discussed in Section 7.2. From Eq. (7.33)
we would have following the formulation of Eq. (7.28)

B 21/2”1/2 g(k)
Mo = 172 ldzw/dzkll/z

ei(kx—wt? n/4) (5139)

From the results of Problems 1.9(c) and 1.9(d) and following the formulation
of Eq. (7.26), g(k) will be given by

1
gk) = 5- (5.140)

The stationary phase condition corresponding to Eq. (7.34) will be

L 5.141
x— = (5.141)
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From Egs. (5.141) and (5.119) we then obtain

g
x—tzw =0
gt
w=>- (5.142)
X
and
2 2
k= “’E - % (5.143)
and
dw _ _g‘ 3 g1/2
dk 20 2k
d*w g!/? 2x3

— == s = = — 5.144

dk? 4532 gt? ( )
Substituting Eqgs. (5.140), (5.142), (5.143), and (5.144) into Eq. (5.139) and
taking the real value, we obtain

1/2 2
gt gt ™
No = ——2”1/2)(3/2 Ccos (E — Z) (5.145)
the same as the approximation (5.133).

Problem 5.8(a) Carry through the derivation for an initial impulse without
initial elevation.

5.9 Equilibrium Theory of the Tides

In this preliminary investigation of tidal action, we shall neglect the effect
of the rotation of the earth on its axis. We shall, however, want to make use
of the concept of gravitational potential, and the reader may wish to refer to
Section 8.1 to review these general relations between force per unit mass and
potential. Let O be the center of the earth, C the center of the moon, P the
position of a particle on the surface of a spherical earth, 8 the polar angle
measured from the line OC as axis, a the radius of the earth, R the distance
between O and C, and r the distance between P and C, all as shown in Fig. 5.9.
The acceleration, or gravitational force per unit mass, f,, of a particle P on the
surface of the earth relative to axes fixed in an inertial system is equal to the
sum of the acceleration g of the center of the earth and the acceleration f of P
relative to the center of the earth, that is,

fo = p+f (5.146)
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Fig. 5.9

as was shown in Section 1.13. If K, is the force that the moon exerts on the
earth as a whole, we shall have
. ME .
K, =iy R = Ep
where M is the mass of the moon and E that of the earth and where the X axis
has been taken along the line OC so that the gravitational attraction per unit
mass g is then given in terms of its gravitational potential Q, by

. .YM .9 yM
p=l’F= —15; —Fx = ‘VQO (5147)
We then have for Q,
M yM
Qo=—%x=—?acos0 (5.148)

Now the gravitational potential at P due to the moon’s attraction is

Q= ™M _ _ yM
’ R\/1—2%00s0+%22
= —%[1—%(—2%0050+%§) +%<4%2500520+-“>+'--:|
- - %4[1 + %cos 0—%;:—2(1—3 cos? 0)] (5.149)

carrying out the expansion to terms of the order a?/R>.

A particle at P is subject to the force of earth gravity as well as the gravita-
tional attraction of the moon. If the potential due to the earth’s gravitational
field is denoted by ¥, the total force due to both causes is —V(Q+¥). There-
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fore, the equation of motion of a particle at P not subject to constraints and
with reference to a fixed inertial system is

f, = -VQ-V¥
and the acceleration f of P relative to a nonrotating earth is
f=1f—p=-V(Q-Qu+Y¥) (5.150)

Consequently, a particle at P has the same motion relative of the earth as if the
earth were fixed and the particle acted upon by a field of potential

Q =0-0,+¥

2
- -%[1-%%(1—%%2 o)]+w (5.151)
If the earth is covered with water, the surface of the liquid must be an equi-
potential surface for equilibrium to exist; for if it were not, there would be a
tangential force on the surface due to the effective field. The potential due to
gravity is ¥' = g{, where { is the elevation of the water above mean sea level.
Therefore, the equation of the equilibrium surface is

yMa?®
2R3

(1-3cos? O)+gL{ =C

where C is a constant since the first term in the brackets of Eq. (5.151) is a
constant; or the elevation above sea level is

yMa? C

= 20—-1) + —
4 2R3 (3 cos )+ p

As the mass E of a spherical earth is a®g/y, this may be written as

M (a\? C
= %f <1_2) a(3cos? —1) + . (5.152)
Since { is the elevation above mean sea level, the average value of { over the
surface of the earth must vanish. Therefore,

fo {2ra® sin 6d6 = 0

Substituting the value of { above and integrating it, it is seen that C is zero.
Therefore, Eq. (5.152) becomes

3
(= %%{(ER) a3 cos? 6—1) (5.153)

The tide should be high, then, at H and H’ and low at points on the great
circle perpendicular to HH'. Actually, however, the tide is nearly low at H
and H'. While the equilibrium theory accounts for two tides daily as actually
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observed, it gives a wrong phase to the tides. A closer approximation is given
by the dynamical theory to be developed in the next section.

Problem 5.9(a) Show that the potential [Eq. (5.151)] is the same as if the
earth were at rest in an inertial system and two equidistant moons of mass
M each were located at C and C’ in Fig. 5.9.

Problem 5.9(b) On the equilibrium theory of the tides, find the elevation
at high tide and depression at low tide from mean sea level. The ratio of the
masses of the earth to moon is 80, and the ratio of the distance of the moon
from the center of the earth to the radius of the earth is 60.

Ans. 1.22 ft, 0.61 ft

Problem 5.9(c) What is the ratio of the height of the solar tide to that of
the lunar tide ? The ratio of the masses of sun to earth is 332,000, and the ratio
of the distance of the sun from the earth to the radius of the earth is 23,200.
Ans. 0.46

5.10 Dynamical Theory of the Tides

On the dynamical theory, the tides are attributed to a wave motion pro-
duced by the attraction of the moon. We shall not consider an earth covered
with water, but shall limit ourselves to the simpler case of a canal with perfectly
smooth walls encircling the earth at the equator. As the centrifugal force due
to the rotation of the earth is taken account of in the measured value of g and
as the Coriolis force is negligible for the small relative velocities involved, we
may consider the earth to be without rotation and consider the moon revolving
around it in a little more than a day. The field acting on the water particles is
then derivable from the potential function of Eq. (5.151). Let O and C be the
centers of the earth and moon respectively, ¢ the longitude of a point P
measured in the equatorial plane of the moon’s orbit, and w the westward
angular velocity of the moon relative to a meridian fixed on the earth, all as
shown in Fig. 5.10. As so defined, w is the excess of the eastward angular
velocity of the earth relative to an inertial system over that of the moon. As

0=owttep
the tangential force on a unit mass of water at P will be

6 W 3yMa

wtp - " ate~ "2 g Sn20
3yMa

= -S> sin [2(wt+¢)] (5.154)



Physical Oceanography— Waves and Tides ¢ 177

I East
West

Fig. 5.10

from Eq. (5.151), as the term ¥ gives rise to a radial force only. This force
has to be substituted for the external driving force on the right-hand side of
Eq. (5.29), giving for the equation of motion

B¢, o

— = —— — fsin[2 5.155

212 4 a*og? Ssin [2(wt +¢)] ( )

where adgp has been put for the horizontal element of distance dx and where f
is given by
3yMa
= 5.156
r=35 (5.156)
The forced wave due to the moon motion is given by a particular solution
of this differential equation having the same frequency as the driving force due
to the moon’s attraction. Substituting a solution of the form
& = Csin [2(wt+¢)]

into Eq. (5.155), we see that the differential equation is satisfied provided

2

—402C = —423 c—f
or

eyt
* Pt —wa®
giving then for the horizontal displacement £

2
¢ = —%—2% sin [2(?+¢)] (5.157)
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From Eq. (5.3) we then have for the vertical displacement 7

o0& ah
77=—h—_% zf

e = ;—:;—2;5 cos [2(w?+ )] (5.158)

These equations show that the frequency of the tides is double that of the
apparent revolution of the moon. Therefore, there are two tides a day, in
agreement with the equilibrium theory. As we have discussed before, if ¢? is
greater than w?a?, the tides are direct but if ¢? is less than w?a?, the tides are
inverted. For the actual ocean depths, ¢? is small compared with w?a?; the
normal tide is inverted. Also as discussed previously, added on to the particular
solution of the equation of motion, which represents the forced waves due to
the attraction of the moon, we may have solutions representing free waves.

Problem 5.10(a) Find the amplitudes of the horizontal and vertical dis-
placements due to lunar tides in an equatorial canal of 2-mi depth.

Ans. 165 ft, 0.16 ft

Problem 5.10(b) Find the depth at which the inverted tide would change
to a direct tide.

Ans. 13 mi
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Part Three

Seismology, Gravity, and
Magnetism



CHAPTER 6

SEISMOLOGY—RAY THEORY

6.1 Dynamics

We shall restate here for review purposes some of the basic relations in
the dynamics of particles, rigid bodies, and elastic bodies that will be of use
to us.

In Cartesian coordinates, the unit vectors defining the position of a
particle are fixed so that the velocity v and acceleration f are given simply by

Vvei— +j= +k— (6.1)

and
L L 6.2)
=i—s +j—5 — .
ar? "V dt?
whose position vector is given by r = ix+jy+kz. In spherical coordinates,
however, the position vectors r,, 0, ¢, change in direction, and v and f will
now be given by
dr do ., dp
V=T +61r~‘71 +<plrsm0E (6.3)

d*r ag\*> . dp\?
f=r, [Zf? ——r(a) —r sin? 0(;17) ]
drdd  d*6 dp\?
o rS —rsinfcos 8=
+0, [2 a @ +r 7 —rsin 0 cos (dt)]

. drdy db dp . d%
0—— +2 0— — 0— .
+¢, [2 sin 0=~ +2r cos @ dt +rsin i (6.4)

and

where the position vector is now given by r = r,r. Resolving components
tangent and normal to the path of the particle, we obtain

V=1t (6.5)
181
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and

dv v?
f=t¢t —+n — 6.6
1 dt 1 p ( )
where t, and n, are the unit vectors tangential and normal to the path and
where p is the radius of curvature of the path.
For the motion of a particle of mass m under the action of a force F,
we have the familiar relation that

ym? —gmo? = |  (Fudx+ Fydy+ F.dz) (6.7)

where the left-hand side is the change in kinetic energy, and the right-hand
side is the work done on the particle. If the components of the force are
functions of the coordinates only, such that F.dx+ F,dy+ F.dz is an exact
differential —dV, the force field is said to be conservative. In this case, the
right-hand side, —(V'— V), represents the change in potential energy, and
Eq. (6.7) then states that the sum of the kinetic and potential energies remain
unchanged during the motion.

For a group of particles, our dynamic equation of motion states that the
motion of the center of mass r defined by

S |

r= Y. mx, (6.8)
is the same as if all the mass were concentrated at that point and all the
external forces applied there, or

d*r

m-— = Fi = F 6.9

dt? z (69)

We also have that the resultant of the external forces acting on the group of

particles is equal to the time rate of increase of linear momentum, or

_ G 6.10
where the linear momentum G of the group of particles is defined by
G =) my 6.11)

And we also have that the resultant of the external torques is equal to the
time rate ot increase of angular momentum, or

dH

L=—

dt

where the angular momentum H of the group of particles is defined by

H=Y mrxv) (6.13)

(6.12)
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Equation (6.12) applies equally well whether computed about a fixed
point or about the moving center of mass.

For a rigid body, the translation of the center of mass is given by
expression (6.9) and the rotation of the rigid body by Eq. (6.12). From the
definition of angular momentum, we can easily obtain a vector relation
between H and the angular velocity of rotation of the rigid body w, which is

H=9%w (6.14)

where the momental dyadic ® is given by

® = f (r*I-rr)p dr

ii [ (7 +29p dr—ij [ xpp dr—ik [ xzp dr

—ji [ yxpdrtii [ (2+xp dr—ik [ yzo dr (6.15)
—ki frsz df—kj J“rzyp d7-+kk fr(xz +y2)P dr

The elements

A=[*+)pdr

B= j (@ +xVpdr (6.16)
C= [ (+y)pdr

are known as the moments of inertia of the body about the axes X, Y, Z,
respectively, and the elements

D= LyZp dr
E= | zxpdr (6.17)
F= f xppdr

as the products of inertia. As the dyadic ® is symmetric, it is always possible
to orient the axes X YZ attached to the rigid body, so that products of inertia
vanish, and the dyadic is reduced to its principal axis form, the quantities
A, B, C then being referred to as the principal moments of inertia. Using
Eq. (1.241), Eq. (6.12) then becomes, for a set of axes rotating with the body
with origin at a fixed point in the body or at the center of mass,

dH
L=— +wxH (6.18)
dr
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If the fixed axes are also the principal axes, Eq. (6.18) reduces down to
L= i[A‘;’x + (C—' B)wywz] +j[Bwy + (A - C)wzwx]
+k[Cw, +(B—A)w,w,] 6.19)

which is known as Euler’s equation.

For elastic bodies, we must be concerned with the concepts of stress and
strain. Stress is defined as force per unit area. Usually, the stress is resolved
into components normal and tangential to a reference plane in the elastic
medium. The former is designated as a tension or tensional stress if positive,
or a pressure or compressive stress if negative; the latter is known as a shearing
stress. Since stress refers a vector force to a vector surface, we must consider
it as a dyadic in the form

¥ = iio,, +ijo,, +iko,,
+ji0'xy +jj0'” +jka'zy
+ Kkio,, +Kjo,, +kko,, (6.20)

which is known as the stress dyadic. In each case, the first subscript of the
component terms indicates the direction of the stress, and the second, the
direction of the positive normal to the surface on which it acts. It can be
shown that the stress dyadic is symmetric, which leads to the fact that it can
be reduced to a principal axis form. When the shearing stresses are all zero
and the tensional stresses are all equal and negative, the stress distribution
is known as a Aydrostatic pressure.

For an elastic medium that has undergone deformation, a point P whose
position is given by P = ix+jy+kz will undergo a displacement, which we
may designate by s = iu+jv+kw, so that the differential displacement of
neighboring points with respect to P will be simply to first-order terms

os os ds
ds = — — 2 dz = dr- ]
s Bxdx+ P dy+ P dz = dr-Vs 6.21)
where Vs is given by
ou ov ow
Vs =i % 15 g v
s =1 ox +1) ox +ik ox

+ii ou i ov +ik ow
J 7 3] 2 ) %
ou ov ow
ki— +kj— +kk — .
+ e + "Bz + 7 6.22)

and is known as the strain dyadic. The theory developed using only the first-
order terms above is known as infinitesimal strain theory. Each of the strain
components represents a deformation per unit length. The diagonal com-
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ponents represent elongations per unit length and are known as extensions
if positive, and contractions if negative. The other components represent
sidewise distortions and are known as shears. The dyadic Vs may be written
as the sum of a symmetric dyadic

D = }{Vs+(Vs),] (6.23)

and a skew-symmetric dyadic

0 = 3{Vs—(Vs).] (6.24)

The dyadic O represents a rotation only without distortion or change in
volume and is known as the rotation dyadic. The dyadic ® is known as the
pure strain dyadic. A useful strain relation is that of dilatation A, defined as
the increase in volume per unit volume; it can be shown to be given by
ou ov ow
A—Vs_5c+3y+az (6.25)
In practice, it is observed that within certain limits, the strains produced
in an elastic body are directly proportional to the applied stresses. This is
known as Hooke’s law. Its generalized form states that each of the six inde-
pendent components of stress at any point in a body will be a linear function
of the six independent components of pure strain. For an isotropic body,
that is, one whose properties are the same in all directions, these 36 co-
efficients relating the stress components to the strain components, known as
the elastic constants, reduce down to two independent constants. The stress-
strain relations, then, reduce to in vector form

¥ = MI+2u® = AV-s/+2u0 (6.26)

where 7/ is the idemfactor. The coefficients A and p are known as the Lamé
constants.

Other elastic constants that are often used for an isotropic solid are
Young’s modulus, Poisson’s ratio, and the bulk modulus. Young’s modulus
E is defined as the ratio of the longitudinal stress on a cylinder to the longi-
tudinal extension produced, all other stresses being zero, and Poisson’s ratio
o as the ratio of the resultant lateral contraction to the longitudinal extension.
Both are given in terms of the Lamé constants by

O _ #(3A+2p)

- dulox  A+p (627)
and
ow[oz ov/dy A
= - = — = 6.28
oulox oufox  2(A+p) (6.28)

The bulk modulus or incompressibility k is defined as the ratio of the hydro-
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static pressure on a body to the resultant fractional change in volume and is
given by

P 3A+2p
-A 3

k= (6.29)

The shear modulus or rigidity is defined as the ratio between an applied shear
stress and the resultant shear strain and is seen from expression (6.26) to be
simply the Lamé constant u. In some few problems, it is convenient to
assume that A = p. This relation, known variously as Poisson’s or Cauchy’s
relation, produces the following simple relations among the several constants

A=p o=} k=3 E=3u (6.30)
Problem 6.1(a) DeriVe the expressions (6.3) and (6.4).
Problem 6.1(b) Derive the expression (6.6).
Problem 6.1(c) Derive the relation (6.25).

Problem 6.1(d) Derive the relations for Young’s modulus, Poisson’s
ratio, and the bulk modulus in terms of the Lamé constants of Eq. (6.26).

6.2 Bodily Elastic Waves

We are interested in deriving and solving the equations of motion for a
homogeneous, isotropic solid. The equations of motion are obtained as
usual from Newton’s second law of motion, equating the products of density
and acceleration in a given direction to the net forces acting per unit volume
in that direction. Referring to Fig. 6.1, it is seen that there are stresses acting
in the x direction on each of the six faces of the rectangular parallelopiped,
the stress on a back face being increased by the appropriate amount (8/or)ér
to the front face. The total force in the x direction is then

do, 8°'xy
Oyt ox 8x ) 8y8z—o,,8ydz+ | 0, + oy 8y | dx8z—0,,8x82
Jdo Jo oo Jdo
Xz _ = XX xy xy
+ (a,, + = sz> 8x8y —a,,8x8y < o o + —az)3x3y32

Newton’s second law then gives

d?u _ 00, 60'xy do,,

Parr = ox ay 0z

+pX
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P L4
o+ Gf’xz 8z )_.h - Oxx
ox v
Y
Ty " 4
<« p mars
; oxy+ Oy Sy
8z _{1
aaxx ‘—
Ot 7% 8x v [ .
dx
Sy
X
Fig. 6.1
and similarly
d%v co ‘o co
yx »y yz
A T R B 6 6.31
Par? ox 2y oz F ©.31)
2
d'w  bo, do, + do,, +Z

Parr = Tex ey 0z
for the y and z directions, where X, Y, Z are the body forces per unit mass. In
elastic wave propagation, the body forces, such as gravity, can usually be
neglected. In addition, for small displacements and velocities, which is usually
the case in elasticity but not, for example, in hydrodynamics, the differential
d/dt can be replaced by é/¢t. Equations (6.31) then reduce to

@ 00, oy, 0oy,
Ptz = ox oy |z

Paz_v = 09y 93&” % (6.32)
or? ox oy oz

2w Jo,, 30'zy do,,

a? ox oy oz
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For an isotropic solid, we can substitute for the stress components in terms
of the displacements by Eq. (6.26) with the aid of Egs. (6.20) and (6.23). For
a homogeneous solid, the coefficients A and p are constants with respect
to x, y, and z. For the first of Eq. (6.32), we obtain

82u_ 8 M+2 ou N ] 8v+3u
Pot? ™ ox Hox dy H\ox dy

0 ow  du 6.33
+5;,u'a;+5‘z'>] (6.33)

which reduces to

%u oA
— =(A — 2
P o (A+p) o TEVu
and similarly
2% oA 5
2w _ o oA )

for the second and third equations. We may write these equations in vector
form by multiplying the first by i, the second by j, and the third by k and
adding, obtaining
o%s )
Pz = A+w)VA+uV3s
= (A+p)V(V:8)+uV3s
= (A4+2u)V(V-s)—uVxVxs (6.35)

with the aid of Egs. (6.25) and (1.37).
Let us assume for the moment that the displacement s is irrotational.
Then, by definition, V x s vanishes, and we shall have from Eq. (1.37)

VxVxs =V(V:s)—V-Vs =0

or
V(V's) =V-Vs
Substituting into Eq. (6.35), we obtain
o%s
Py = (A+2u)V3s (6.36)

From the discussion of Section 1.10, we see that this is simply the wave
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equation and that it defines a displacement propagating through the medium

with a velocity « given by
A4-2u\/2
«= <_+_") (6.37)
P
Let us next assume that the displacement s is solenoidal. Then, by defini-
tion, V-s vanishes and we shall have for Eq. (6.35)

o%s
p oz = Vs (6.38)

Again, this is simply the wave equation defining a displacement propagating
through the medium with a velocity B given by

B = (ﬁ)m (6.39)

This reduction gives a complete description of wave propagation in a
homogeneous, isotropic solid, for we have stated in Section 1.1 that any
vector displacement may be represented by an irrotational and a solenoidal
component. The first type of wave, propagated with the higher velocity o,
is variously known as the dilatational, irrotational, or P (primary) wave; the
second type of wave traveling with the slower velocity B is variously known
as the distortional, equivoluminal, rotational, or S (secondary) wave.

The two different types of propagation can be illustrated in a simple
manner by consideration of plane wave propagation. Let us assume a plane
wave propagated in the x direction. Then the displacement components ,
v, w will be functions of x and ¢ only. The equations of motion (6.34) reduce to

*u o*u o%u 2%u
Ay Y il o (A2 2
P o A+p) at TE o A+ “)axz
2% )
ot =g (640
2w 2w
Parz =Ho2

The displacement in the direction of propagation or longitudinal vibration is
propagated with the P velocity «; the displacements at right angles to the
direction of propagation or fransverse vibration are propagated with the S
velocity B.

For a perfect liquid, » = 0, the equations of motion reduce to

oA
p T = kV2A (6.41)
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This again is the wave equation, the dilatation being propagated with the

velocity
1/2
c= (I—c) (6.42)
p

Problem 6.2(a) Derive the equation of motion (6.35) directly from the
vector expressions of stress and strain.

Problem 6.2(b) Obtain the dilatational and rotational wave equations
from the scalar equations of motion (6.34).

Problem 6.2(c) Derive Eq. (6.41).

Problem 6.2(d) Show from the scalar equations of motion (6.34) that the
inclusion of a body force term derivable from a potential, such as gravity,
will affect only the dilatational waves and not the rotational waves.

6.3 Reflection and Refraction of Elastic Waves

Let us next investigate the effect on elastic wave propagation of an
interface between two media. Consider two homogeneous, isotropic media
M and M, in welded contact separated by a plane boundary, as shown in
Fig. 6.2. If we were to have a P wave incident on the boundary from the lower
medium, we might expect, in the most general case, that both a P and an S
wave would be returned back to the lower medium from the boundary
and that both a P and an .S wave would be transmitted to the upper medium.
The waves returned to the lower medium are known as reflections, and the
waves transmitted to the upper medium are known as refractions. For an
incident S wave, we would expect again both the two reflected and the
two refracted P and S waves.

Let us take an incident P wave. We shall assume, for simplicity, that it
1s a simple harmonic plane wave. The normal to the incident plane wave is
shown by the incident arrow line in Fig. 6.2 and the normals to the four
resultant waves as indicated. We shall also assume, for convenience, that the
incident wave front is normal to the XZ plane, so that there is no propagation
dependence on the y coordinate, and we shall assume that the boundary
between the two media is coincident with the XY plane. From Eq. (1.197) the
incident P wave may be represented by

P = Aoei(kxx—k,z—wt)

=4 0eiu(x- Z tan e—c?) (6.43)
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Fig. 6.2

where « has been used for k, for convenience and, from Egs. (1.199),
(1.189), and (6.37), is given by

2w cose cos e

k=k, = =kcose=w—— (6.44)
A «
where from Eq. (1.199), k, is given by
k,=2msine _, osine e (6.45)
A cose

e being the angle between the normal to the incident wave and the boundary
and A in Eqgs. (6.44) and (6.45) being the wavelength, and where from Egs.
(1.189), (1.186), and (6.37) c is given by

wak_akx_a

C = — = — =

K K K COS e cos e

(6.46)

We see from Eqgs. (6.43) and (6.46) that ¢ is the velocity of propagation of the
incident wave front along the horizontal boundary between the two media.
Along this boundary z = 0, and the argument of the exponential in Eq.
(6.43) will reduce to x(x—ct). It is apparent that we could write down
expressions similar to Eq. (6.43) for the two reflected and the two refracted
waves involving terms in e, f, ey, f}, «, B, «;, and B,. In all of these expressions,
we can obtain an argument of the exponential of the form «(x —ct) for z = 0.
If our solutions involving these five waves are to satisfy the boundary con-
ditions for all x and ¢, the argument for all five terms must be the same
along the plane z = 0. From this condition and Eqs. (6.46) and (6.44), we
have
cose cosf cose  cosf;

1
a B ay B1 - E (6'47)
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This expression tells us that the angle of the reflected P wave is the same as
the angle of the incident P wave and that the angles of reflection and refrac-
tion of the other waves are as given by Eq. (6.47) in terms of the angle of the
incident P wave. If we had considered an incident S wave, we would have
obtained the same expressions in terms of an angle of incidence f of the S
wave.

We shall want to obtain solutions for the characteristics of the reflected
P and S waves, or for quantities related to them, rather than attempt to
obtain solutions for the vector displacements s or it components u, v, w, all
of which will, in general, be a combination of both P and S type motions.
We may do this through the introduction of the concept of displacement
potential. The displacement potentials, similar to gravitational potentials,
give the desired displacement components in terms of combinations of their
space derivatives and are, in themselves, solutions of the wave equations.
For a given problem, we are at some liberty in the definition of these poten-
tials. For our present problem of a plane, horizontal boundary and for wave
motion independent of , it is convenient to define two potentials, ¢ and , by

_op W op o
u—5;+az v=v W= 27 ox (6.48)

Substituting Eqgs. (6.48) into the equations of motion (6.34), we obtain for
the first and third equations

o (tp o o
hy 2 2
Por? <8x * 82) A+, V iV (a * 82)

o (e o ) op o)
P ot (32 ax) (”")_V PHEV? (’52_5)

remembering that all derivatives with respect to y are zero. These equations
will be satisfied if ¢ and ¢ satisfy the wave equations

2

P ) = (A+p)V3p (6.49)
and
%Y
PoZ = pVY (6.50)

as can be seen by substituting Eqs. (6.49) and (6.50) back into these two
equations. The second of Egs. (6.34) reduces simply to
%

p—

57 = BV (6.51)

We see that the displacement potential ¢ defines the P wave and that the
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displacement potential  defines an .S wave. We also see that the displacement
component v is an .S wave only. It is useful to distinguish between these two
types of S motion. For S motion that is parallel, or horizontal, to the
boundary, that is, the v displacement component, we shall designate the
motion by SH. For S motion that is normal, or vertical, to the boundary,
that is, the ¢ displacement potential, we shall designate the motion by SV.

We shall consider, as our first example, a reflection at a free surface. In
such case, there is no upper medium M,, and the boundary conditions
become simply that the stress components must vanish over the surface
z = 0. If the stress components did not vanish, there would be an infinite
acceleration in the negative z direction across the boundary. From Egs.
(6.26), (6.20), and (6.23), these boundary conditions are

/]
0= M+2u 2 =0
0z
ow Ou
Oy = P (a + E) =0 (6.52)

_ ow o -0
ayz—p, 3y+3_z =

Substituting from Egs. (6.48), we obtain

32<p azu/:
AV2 — —-—]=
Vep+2u (322 axaz) 0 (6.53)
%p ?y N
o 6.5
b = (6.55)

We see that ¢ and ¢ are involved only in the first two equations and » only in
the third. We may conclude then that an incident SH wave will only provide
a reflected SH wave and that an incident P or SV wave will only produce
reflected P and SV waves. As we shall see later, this relation also applies
to the refracted waves when we have an upper medium M, across the
boundary.

For an incident P wave against a free surface, we may then write, for ¢
in terms of the incident and reflected P waves and for ¢ in terms of the
reflected SV wave,

P = Aoeix(x—-z tan e—cr)+Aeix(x+z tan e—ct) (656)
l/l = Beix(x+z tan f—ct) (657)
where Ay, A, and B are the amplitudes of the incident P, reflected P, and
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reflected SV waves, respectively. Substituting Egs. (6.56) and (6.57) into
Egs. (6.53) and (6.54) we obtain

MAo+A)(1+ tan? e)+2u(Ay,+A) tan> e—2uBtanf = 0  (6.58)
—2(Ao—A) tan e+ B(tan’ f—1) = 0 (6.59)

The equations can be solved numerically for the ratios of the amplitudes of
the reflected waves 4 and B to the amplitude of the incident wave 4, as a
function of e. Such ratios are referred to as reflection coefficients or, in the
case of a refracted wave, as refraction coefficients.

From Eq. (6.47) we can determine some of the general characteristics of
the reflected wave directions. Since B < «, cos e < cos f; there will always be
a reflected SV direction for all incident P directions. For e = n/2, f = w/2;
for e = 0, f = cos™! (B/x). The reflected SV wave directions are confined
between these two angles as the incidence P wave direction varies from
normal incidence, e = #/2, to grazing incidence, e = 0.

Using Egs. (6.37), (6.39), and (6.47), we may rewrite Egs. (6.58) and
(6.59) as

Ag+A4 = 6.60
) otd =05 1 (6.60)
and
tan? f—1
Ag— 6.61
0 2tane (6.61)
or combining the two,
_ 2 r 1\2
Ao—A4 _ (tan®f=1) 6.62)

Ao+A  4tanetanf

We see that A, = A4 only if tan f = 1. Such values of fare usually not possible
for earth, elastic materials. We see that 4, = — A4 for tan e = 0, tan f = 0,
or tan f = co. The first and third conditions correspond to grazing and
normal incidence, respectively. The second solution is an impossibility. We
see then that there will be a reflected SV wave except at grazing and normal
incidence. Using specific elastic medium constants, one generally finds that
the amplitude of the reflected S¥ is appreciable over all angles of incidence
except those near grazing and normal incidence.

From Eqgs. (6.48), (6.56), and (6.57) the surface movement along the
plane z = 0 is given by, where the ix multiplier is included in the constants,

u = (Ado+ A+ B tan f)eix= <D (6.63)
and
w = —[(4o—A) tan e+ Ble™**>~¢<) (6.64)
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We can speak of an apparent angle of emergence, or incidence, &, given in
terms of the ratios of the displacement components, as

tané = — — (6.65)
u

remembering that the direction of Z axis is down in Fig. 6.2. Substituting
from Egs. (6.60) and (6.61), we obtain
tan? f—1

tane+1
(Ap—A)tane+B  2tane

tané = A,+A+Btanf _M+tanf
tan? f—1
tan? f— 1
~ = — cot2
e cot2f
or
N Zf—g (6.66)

Equation (6.66) gives us a relation between the measured quantity e and the
propagation angle f, or e.

For an incident SV wave against a free surface, the expressions for ¢ and
¢ will be

= Boel¥x=ztan f=ct) | Boix(x+z tan £=ct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>