Linear dispersive wave equations

The effect of dispersion

Linear PDEs and useful notions

- Consider a differentiable scalar function u(x,t), a partial differential operator L, and the PDE: L[u] = 0
 - Let u_1 and u_2 two different solutions of the PDE; the latter is said to be linear iff: $L[u_1+u_2] = L[u_1] + L[u_2] = 0$
- **Dispersive wave equations**: existence of **plane waves**:

 $u(x,t) = u_0 \exp(i\theta), \ \theta = kx - \omega t, \ k, \ \omega \in \mathbb{R}$

• Temporal period: $T=2\pi/\omega$.

• Spatial period (wavelength): $\lambda = 2\pi/k$

- Long waves: correspond to small k
- Short waves: correspond to large k

Dispersion relation

Substituting $u = u_0 \exp[i(kx - \omega t)]$ into the PDE we can find that u_0 factors out (because the equation is linear), while k and ω should be related by an equation of the form:

 $D(\omega,k) = 0$ or $\omega = \omega(k)$ Dispersion relation

so that the plane wave satisfies L[u] = 0

Examples

Transport equation	$u_t + cu_x = 0$	\mapsto	$D(\omega,k) = \omega - ck = 0$
2 nd -order wave equation	$u_{tt} - c^2 u_{xx} = 0$	\mapsto	$D(\omega,k) = \omega^2 - c^2 k^2 = 0$
Schrödinger equation	$iu_t + u_{xx} = 0$	\mapsto	$D(\omega,k) = \omega - k^2 = 0$
Linearized KdV equation	$u_t + u_{xxx} = 0$	\mapsto	$D(\omega,k) = \omega + k^3 = 0$

Phase and group velocities

Given the dispersion relation $\omega = \omega(k)$ we can find:

• Phase velocity: $v_p = \omega/k$

[Plane wave: $u(x,t) \sim \exp(i\theta)$, $\theta = kx - \omega t = k[x - (\omega/k)t] = k(x - v_p t)$]

• Group velocity: $v_g = \partial \omega / \partial k \equiv \omega'(k)$

Let a pulse-shaped wave be represented as a sum of Fourier harmonics, with the dispersion relation $\omega = \omega(k)$. In the case of two harmonics with close wavenumbers and frequencies:

$$u(x,t) = a\cos\left[\left(k_0 - \frac{1}{2}\Delta k\right)x - \left(\omega_0 - \frac{1}{2}\Delta\omega\right)t\right] + a\cos\left[\left(k_0 + \frac{1}{2}\Delta k\right)x - \left(\omega_0 + \frac{1}{2}\Delta\omega\right)t\right] \Rightarrow$$
$$u(x,t) = 2a\cos\left[(\Delta k)x - (\Delta\omega)t\right]\cos(k_0x - \omega_0t)$$

$$\omega_{0} = \omega(k_{0}),$$
$$\Delta \omega = \frac{d\omega}{dk} \Big|_{k=k_{0}} \Delta k,$$
$$\Delta k \ll k_{0}$$

Wave's envelope

The sum of the two harmonics has the form of a modulated wave:

$$u(x,t) = 2a\cos[(\Delta k)x - (\Delta \omega)t]\cos(k_0 x - \omega_0 t)$$

The **envelope function** $A(x,t) = 2a\cos[(\Delta k)x - (\Delta \omega)t]$ propagates with the group velocity: $v_g = \Delta \omega / \Delta k$

Generalization: arbitrary wavepacket with narrow spectrum of k' s:

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(k) \exp[i(kx - \omega(k)t)] dk$$

Wave's envelope and group velocity

Rewrite
$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(k) \exp[i(kx - \omega(k)t)] dk$$
 as:
 $u(x,t) = \exp[i(k_0x - \omega_0 t) \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(k) \exp[i(k - k_0)x - (\omega(k) - \omega_0)t)] dk$

and taking into account that the spectrum is narrow, expand the frequency in powers of $(k-k_0)$: $\omega(k) - \omega_0 \approx \omega'(k_0)(k-k_0) + ...$

Then: $u(x,t) = \exp[i(k_0x - \omega_0 t) \frac{1}{2\pi} \int_{-\infty}^{+\infty} A(k) \exp[i(k - k_0)(x - \omega'(k_0)t)] dk$

$$= \exp[i(k_0 x - \omega_0 t)A(x - \omega'(k_0)t)]$$

which means that the envelope function *A*(*x*,*t*) propagates with the group velocity

$$=\frac{d\omega}{dk}\bigg|_{k=k_0}=\omega'(k)\big|_{k=k_0}$$

Phase and group velocities – an example

An example of an envelope (blue) and a carrier wave (red). The envelope moves with the group velocity c_g , while the carrier inside it moves with the phase velocity c_p .

The **red square** moves with the **phase velocity**, and the **green circles** propagate with the **group velocity**.

Dispersive and non-dispersive PDEs

- Recall: Phase velocity: $v_p = \omega/k$ Group velocity: $v_g = \partial \omega / \partial k \equiv \omega'(k)$
- If $\omega(k) \in \mathbb{R}$ and $\omega''(k) \neq 0$ or $v_p \neq v_g$: the PDE/wave: **Dispersive**

Examples

Transport equation \rightarrow Non-dispersive equation

$$u_t + cu_x = 0 \quad \mapsto \ \omega = ck \Rightarrow v_p = v_g = \omega/k, \ \omega''(k) = 0$$

2nd-order wave equation \rightarrow **Non-dispersive equation** $u_{tt} - c^2 u_{xx} = 0 \mapsto \omega^2 = c^2 k^2 \Rightarrow v_p = v_g = \pm \omega/k, \ \omega''(k) = 0$

Schrödinger equation → Dispersive equation

$$iu_t + u_{xx} = 0 \quad \mapsto \ \omega = k^2 \Rightarrow v_p = k \neq v_g = 2k, \ \omega''(k) \neq 0$$

Linearized KdV equation \rightarrow Dispersive equation

$$u_t + u_{xxx} = 0 \quad \mapsto \ \omega = -k^3 \Rightarrow v_p = -k^2 \neq v_g = -3k^2, \ \omega''(k) \neq 0$$

A physical example: gravity water waves

As an example of a <u>dispersive</u> <u>wave system</u>, consider **surface water waves (WWs)**. If the surface of water is disturbed, then the gravity force will try to restore the equilibrium, which leads to the emergence of the surface water wave.

Dispersion relation: $\omega(k) = \sqrt{gk} \tanh(kh)$

Two physically relevant regimes:

• Shallow WWs: $\lambda >> h \Rightarrow kh <<1$ • Deep WWs: $\lambda << h \Rightarrow kh >> 1$

Shallow WWs – dispersionless case (I)

For shallow WWs, *kh* <<1, the dispersion relation reduces to:

 $\omega(k) = \sqrt{gk} \tanh(kh) \approx \sqrt{gh} k$ (Lagrange formula)

Then, the phase of the plane waves is: $\theta = kx - \omega t = k(x - \sqrt{gh} t)$ and the water's free surface (1D) is: $\eta(x,t) = A\cos(k(x - \sqrt{gh} t))$

Thus, ALL plane waves have the same phase velocity: $v_p = \sqrt{gh}$

NOTE: The shallow WWs regime is relevant to **tsunamis** that may result from earthquakes in the oceans. In this case, for ocean depth h = 4 km, and g = 10 m/s², one obtains:

$$v_p = \sqrt{gh} = 200 \, m \, s = 720 \, km \, h \, (!)$$

Shallow WWs – dispersionless case (II)

Since ALL plane waves have the same phase velocity, a wavepacket composed by these harmonics also has the same velocity; hence, any initial disturbance **propagates undistorted.** To show this , we will derive a PDE for $\eta(x,t)$ and solve the IVP.

Recall that using : $\partial_t \mapsto -i\omega$, $\partial_x \mapsto ik \Rightarrow \mathsf{PDE} \to \omega = \omega(k)$ Reversely, $\omega \mapsto i\partial_t$, $k \mapsto -i\partial_x \Rightarrow \omega = \omega(k) \to \mathsf{PDE}: Q(i\partial_t, -i\partial_x)u = 0$

Thus:
$$\omega(k) = \sqrt{ghk} \mapsto \eta_t + c \eta_x = 0, \ c = \sqrt{gh}$$

Let the initial disturbance $\eta(x,0) = \eta_0(x)$ presented as a sum of of its Fourier harmonics: $\eta(x,0) = \eta_0(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{\eta}_0(k) e^{ikx} dk$. Then:

$$\hat{\eta}_t + c\,\hat{\eta} = 0 \Longrightarrow \hat{\eta}(k,t) = \hat{\eta}_0(k)e^{-ict} \Longrightarrow \eta(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{\eta}_0(k)e^{i(kx-ct)}dk = \eta_0(x-ct)$$

Shallow WWs – dispersive case (I)

Take into regard two terms in the Taylor series expansion of the dispersion relation (for shallow WWs with kh << 1):</p>

$$\omega(k) = \sqrt{gk} \tanh(kh) \approx \sqrt{gh} k \left(1 - \frac{1}{6} (hk)^2 \right)$$

Thus, the phase velocity now becomes k-dependent:

Harmonics with shorter wavelengths (longer waves) propagate faster \rightarrow DISPERSION

Shallow WWs – dispersive case (II)

In the dispersive case, each harmonic:

$$\eta = A(k) \exp\left(i\left(kx - \omega(k)t\right)\right)$$

satisfy the dispersion relation: $\omega(k) = \sqrt{gh} k \left(1 - \frac{1}{6} (hk)^2 \right)$

and, hence, using again $\omega \mapsto i\partial_t$, $k \mapsto -i\partial_x$ they satisfy:

$$\eta_t + \sqrt{gh} \left(\eta_x + \frac{1}{6} h^2 \eta_{xxx} \right) = 0$$

Using: $x \mapsto (6^{1/3}/h)(x - \sqrt{gh} t), t \mapsto \sqrt{g/h} t$ we obtain:

equation

$$u_t + u_{xxx} = 0 \mapsto \omega(k) = -k^3$$
 Linearized KdV

The Fourier Transform method (I)

Consider the IVP:
$$\begin{aligned} u_t &= F(u, u_x, u_{xx}, \ldots) = \sum_{j=0}^{\infty} c_j \partial_x^j u_j, \\ u(x, 0) &= u_0(x) \quad -\infty < x < +\infty, \ t > 0, \end{aligned}$$

 \mathbf{N}

1) Use the Fourier Transform $\hat{u}(k,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-ikx) dx$

and obtain:
$$\hat{u}(k,0) = \int_{-\infty}^{+\infty} u_0(x,0) \exp(-ikx) dx$$

2) Find the time evolution of $\hat{u}(k,0)$, i.e., $\hat{u}(k,t)$ via the PDE:

$$\hat{u}_t(k,t) = -i\omega(k)\hat{u}(k,t), \quad \omega(k) = i\sum_{j=0}^N c_j(ik)^j$$

This equation gives: $\hat{u}(k,t) = \hat{u}(k,0) \exp[-i\omega(k)t]$

The Fourier Transform method (II)

3) Use the Inverse Fourier Transform and derive the solution:

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{u}(k,t) \exp(ikx) dk = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{u}(k,0) \exp\{i[kx - \omega(k)t]\} dk.$$

The Fourier Transform Method can be described as follows:

The above scheme can be generalized to **certain nonlinear PDEs INVERSE SCATTERING TRANSFORM METHOD**

Shallow WWs in the presence of dispersion

We will use the Fourier Transform method to solve the IVP:

$$u_t + u_{xxx} = 0$$

 $u(x, 0) = u_0(x)$ Linearized KdV equation

Taking into account that the **dispersion relation** is:

$$\omega(k) = -k^3$$

we find: $u(x,t) = \int_{-\infty}^{\infty} A(k) \exp[i(kx+k^3t)] \frac{dk}{2\pi}$

where Fourier amplitudes are given by:

$$A(k) = \int_{-\infty}^{\infty} u_0(x') e^{-ikx'} dx'$$

The Green function

Substituting A(k) into the solution, we obtain:

$$u(x,t) = \int_{-\infty}^{\infty} u_0(x')G(x-x',t)\,dx',$$

where G(x,t) is the **Green function** of the linearized KdV:

$$G(x,t) = \int_{-\infty}^{\infty} e^{i(kx+k^3t)} \frac{dk}{2\pi} = \frac{1}{\pi} \int_{0}^{\infty} \cos(kx+k^3t) dk$$

Then, taking into regard that the Airy function is defined as:

$$\operatorname{Ai}(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{1}{3}k^{3} + xk\right) dk$$

we can express $G(x,t)$ as:

$$G(x,t) = \frac{1}{(3t)^{1/3}} \operatorname{Ai}\left(\frac{x}{(3t)^{1/3}}\right)$$

The effect of dispersion (I) Decay of a step-like pulse

Consider an initial condition in the form of a **step-like pulse**:

$$u_0(x) = \begin{cases} 1, & x \le 0, \\ 0, & x > 0. \end{cases}$$

Then, the pulse profile, at time t, is given by:

$$u(x,t) = \frac{1}{(3t)^{1/3}} \int_{-\infty}^{0} \operatorname{Ai}\left(\frac{x-x'}{(3t)^{1/3}}\right) dx' = \int_{x/(3t)^{1/3}}^{\infty} \operatorname{Ai}(z) dz$$

Courtesy: Anatoly Kamchatnov 0.2 1.2 0.4 0.4 0.2 1.2 1.2 1.2 0.4 0.2 1.2 1.2 1.2 1.2 0.2 $5 = x/(3t)^{1/3}$

The dispersion leads to generation of oscillations at the edge of the pulse

Courtesy: Dmitry Pelinovsky

Exercises

1) Consider the Klein-Gordon (KG) equation:

$$u_{tt} - c^2 u_{xx} + m^2 u(x, t) = 0.$$

which is a relativistic wave equation occurring in the description of weak interaction (in this case, *m* is the boson mass), in plasmas (with *m* being the plasma frequency), in waveguides (in this case, *m* plays the role of the cutoff frequency of the waveguide), etc.

a) Derive the dispersion relation $\omega = \omega(k)$ and plot it. Then, identify bands and gaps, where propagation may, or not, be possible.

b) Determine the **phase and group velocity**, v_p and v_g . Show that $v_p > c$ and $v_g < c$, and provide a *geometrical interpretation* of this result, using the plot of $\omega = \omega(k)$. Show that $v_p v_g = c^2$.

c) Use the Fourier Transform method to solve the initial value problem for the KG equation:

$$\begin{split} u_{tt} &- c^2 u_{xx} + m^2 u(x,t) = 0, \\ u(x,0) &= f(x), \qquad u_t(x,0) = g(x). \end{split}$$

Show that in the special case: $u(x, 0) = \delta(x)$ and $u_t(x, 0) = 0$, one obtains:

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(kx) \cos[\omega(k)t] dk.$$

2) Quasi-1D Bose-Einstein condensates (BECs) are described by the Gross-Pitaevskii equation (GPE):

$$i\hbar\psi_t = -\frac{\hbar^2}{2m}\psi_{xx} + g|\psi|^2\psi,$$

where \hbar is the Planck's constant, *m* is the atomic mass, and *g* is the interaction coefficient. Let g > 0 (for repulsive interactions).

a) Show that the GPE possesses the solution (BEC's ground state):

$$\psi = \sqrt{\rho_0} \exp(-i\mu t/\hbar)$$

where μ is the chemical potential. Show that: $\mu = \rho_0 g$.

b) We seek the dispersion relation for linear waves propagating on top of the ground state. To derive this, follow this procedure:

Substitute into the GPE the ansatz:

$$\psi = \left(\sqrt{\rho_0} + \rho\right) \exp\left(-i(\mu/\hbar)t + i\varphi\right)$$

where $\rho = \rho(x,t)$ and $\varphi = \varphi(x,t)$ are small perturbations ($\rho, \varphi \ll 1$).

Separate real and imaginary parts, and linearize the resulting two equations with respect to ρ , φ . Show that, this way, the following linear system can be derived:

$$\rho_t = -(\hbar^2/2m)\sqrt{\rho_0} \,\varphi_{xx}, \quad \hbar\sqrt{\rho_0} \,\varphi_t + 2\mu\rho = (\hbar^2/2m)\rho_{xx}$$

Seek solutions of the above system in the form:

 $\rho = \tilde{\rho} \exp[i(kx - \omega t)], \quad \varphi = \tilde{\varphi} \exp[i(kx - \omega t)]$

and derive a linear homogeneous system for the unknown amplitudes $\tilde{\rho}, \tilde{\varphi}$. This will lead to the desired, so-called, **Bogoliubov dispersion relation**.

c) Derive the (same of course!) dispersion relation as follows: Eliminate ρ, from the above mentioned linear system for ρ and φ; derive a PDE for φ, and show that it has the form of a linearized Boussinesq equation, namely:

$$u_{tt} - c^2 u_{xx} + \beta u_{xxxx} = 0, \quad \beta > 0$$

Then determine the dispersion relation of this model.

d) Once the dispersion relation is found, consider right-going waves, and show:

- > For long waves, the dispersion relation reduces to $\omega = kc$. Determine c (this is usually called the "speed of sound").
- ▶ In the absence of interactions (g=0), the dispersion relation reduces to the so-called de Broglie form: $E=p^2/2m$, where $E=\hbar\omega$, $p=\hbar k$.