
Quasi-linear PDEs (I)

Method of characteristics and 
introduction to shock waves



First-order PDEs and useful notions
Consider a first-order linear PDE, in two variables, which 
can generally be expressed as: 

This equation is called homogeneous if

More generally, functions A, B, C1 may depend on u; in 
this case, the first-order PDE of the form:

is called quasi-linear (in two variables).

Remark:
Every linear PDE is also quasi-linear, because we can set:



A prototypical -physically significant- example:
Transport (advection) equation

0)(

),(),(

0),(

0

=+

=+

=+

=+

xt

xt

xt

xt

uucu

txhutxcu

utxcu

cuu
Linear & homogeneous PDEs

Quasi-linear PDE
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Hopf (Riemann / inviscid Burgers) equation



Method of characteristics
Consider the Cauchy problem for the quasi-linear PDE:

• Introduce a curve Γ defined as:




==

==


0)0(),(

)0(),(
:

trtt

sxrxx

• Assume that, on Γ: u(x,t) = u(x(r), t(r)), and differentiate wrt r:
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•Then, on Γ, the quasi-linear PDE is reduced  to the ODE: c
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•The equations:

are called the characteristics of the quasi-linear PDE.

c

du

b

dx

a

dt
c

dr

du
b

dr

dx
a

dr

dt
===== ,,



• The normal vector N to the surface z=u(x,t) is: N=(ux, ut, -1)

Geometrical interpretation
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Consider again the Cauchy problem for the quasi-linear PDE:

• Let u(x,t) a solution of the PDE, and its graph z = u(x,t), which   
is a surface in the xtu-space. The initial data which define a  
curve γ in the xt-plane (e.g., if u(x,0)=f(x) then γ is the x-axis, 
etc) provides a space curve Γ that lies on the graph.

• Let F=(a, b, c) the vector field defined by PDE’s coefficients  

• If u(x,t) a solution of the PDE then
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The graph of the solution can be constructed by finding 
the stream lines of F that pass through the initial curve Γ.



1. Transport equation with const. velocity

Simplest linear 1st-order problem: 
transport (advection) equation

➢Method of characteristics
Reduce the problem to an ODE along 
some curve Γ: x=x(t) such that du/dt=0





General solution: 

ω=ck, ω’’(k) = 0
Non-dispersive system



Solution of the transport equation
The IC, F(x), is simply translated without changing shape

J. D. Logan, Applied Mathematics

F(x)



2. Transport equation with non const. velocity
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Consider the Cauchy problem:
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On Γ: x=x(t) we have du/dt=0:

This leads to:  +=== 2)()0(,2 ttxxt
dt

dx

Also, on Γ:
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3. A boundary-value problem 

Consider the BVP:
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On Γ: t=t(x) we have:
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On Γ: t=t(x) we have: and thus:

and we choose: +== 32
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3. A nonlinear problem: Hopf equation
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On Γ: x=x(t) we have: du/dt=0: 0=+=
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 Characteristics are 
again straight lines

Implicit solution of the Hopf equation



An explicit solution of the Hopf equation
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S. Chandrasekhar found (1943) an explicit solution of the following IVP: 

We have found: 

and thus: 
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a > 0: the solution flattens as t→

a < 0: the solution steepens as t→

For t=tB=-1/a the 
solution blows up

Rarefaction wave

Shock wave



What can we learn from the explicit solution?

Rarefaction wave

Shock wave

Positive slope

Negative slope

t=tB



Breaking time
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Consider the general problem: 

We have found: 

If f ’(ξ) > 0 x then the solution is finite t → rarefaction wave
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We wish to determine the breaking time tB occurring when 
the profile of the solution develops an infinite slope:

If f ’(ξ) < 0 the solution breaks up at the earliest critical time: 

𝑡𝐵 = min𝜉>0 −1/𝑓′ 𝜉 ȁ𝑓′(𝜉) < 0



What happens before the breaking time tB

Using                                   we found: )1()( tfx  +=
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Similarly: 

𝑢𝑡 + 𝑢𝑢𝑥 = −
𝑓(𝜉)𝑓′(𝜉)

1 + 𝑓′(𝜉)𝑡
+ 𝑓(𝜉)

𝑓′(𝜉)

1 + 𝑓′(𝜉)𝑡
= 0

Hence, from (2)-(3), and for t < tB, 
the solution remains single-valued
and satisfies the Hopf equation:

✓ .



What happens for times t  tB :
Characteristics intersect
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=The slope of a characteristic passing (x0, t0) is: 

(x0, t0) 

Here, c = c(u) is a strictly increasing function:

Let f be a strictly decreasing function; 
then, c(f) is also strictly decreasing:
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At the intersection point, the solution u(x,t) becomes 
multi-valued because it takes both values )(,)( 0
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An example 
R),()0,(,0 ==+ xxfxuuuu xtConsider the IVP: 
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An example (cont.) - characteristics 
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Characteristics intersect at t = 1: the 

shock wave emerges and the solution 
becomes multi-valued for t > 1



An example (cont.) – breaking time
How to determine the breaking time tB:
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f and hence tB = 1

𝑡𝐵 = min𝜉 −1/𝑓′(𝜉)ȁ𝑓′(𝜉) < 0

Here, we have:

Recall that: 

Alternatively, recall that we found: 
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and so characteristics intersect at (x,t)=(2,1)

All other characteristics in 
this interval pass (x,t) = (2,1)



An example (cont.) – shock formation 
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Solution:



Exercises – linear problems
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1) Use the method of characteristics to solve the IVPs: 

R,)()0,(,2 ===+ xxxfxuuuxtu xt1.2)

2)  Use the method of characteristics to show that the 
solution of the IVP:
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In all cases confirm, by direct substitution, that the 
solution you found satisfies the corresponding PDE.



3)  Use the method of characteristics to solve the Hopf
equation:
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Exercises – nonlinear problems

in the following cases:

In both cases:
a)    Draw the characteristics in the xt-plane
b)   Write down the solution and draw some  characteristic 

snapshots of the solution at different time instants
c)    Determine the breaking time (when relevant)


