Quasi-linear PDEs (I)

Method of characteristics and introduction to shock waves

First-order PDEs and useful notions

Consider a first-order linear PDE, in two variables, which can generally be expressed as:

$$
A(x, y) \frac{\partial u}{\partial x}+B(x, y) \frac{\partial u}{\partial y}+C_{1}(x, y) u=C_{0}(x, y)
$$

This equation is called homogeneous if $C_{0} \equiv 0$.
More generally, functions A, B, C_{1} may depend on u; in this case, the first-order PDE of the form:

$$
A(x, y, u) \frac{\partial u}{\partial x}+B(x, y, u) \frac{\partial u}{\partial y}=C(x, y, u)
$$

is called quasi-linear (in two variables).

Remark:

Every linear PDE is also quasi-linear, because we can set:

$$
C(x, y, u)=C_{0}(x, y)-C_{1}(x, y) u .
$$

A prototypical -physically significant- example: Transport (advection) equation

$u_{t}+c u_{x}=0$
$u_{t}+c(x, t) u_{x}=0$
Linear \& homogeneous PDEs
$u_{t}+c(x, t) u_{x}=h(x, t)$
Linear \& inhomogeneous PDE
$u_{t}+c(u) u_{x}=0 \quad$ Quasi-linear PDE
Remark:

$$
\left.\begin{array}{l}
u_{t}+c(u) u_{x}=0 \Rightarrow c^{\prime}(u) u_{t}+c(u) c^{\prime}(u) u_{x}=0 \\
c^{\prime}(u) u_{t}=c_{t}, \quad c(u) c^{\prime}(u) u_{x}=c c_{x}
\end{array}\right\} \Rightarrow
$$

$c_{t}+c c_{x}=0 \quad$ Hopf (Riemann / inviscid Burgers) equation

Method of characteristics

Consider the Cauchy problem for the quasi-linear PDE:

$$
a(x, t, u) u_{t}+b(x, t, u) u_{x}=c(x, t, u), \quad u(x, 0)=f(x)
$$

- Introduce a curve Γ defined as: $\Gamma: \begin{cases}x=x(r), & x(0)=s \\ t=t(r), & t(0)=0\end{cases}$
- Assume that, on $\Gamma: u(x, t)=u(x(\mathrm{r}), t(r))$, and differentiate wrt r :

$$
\left.\frac{d u}{d r}=\frac{\partial u}{\partial t} \frac{d t}{d r}+\frac{\partial u}{\partial x} \frac{d x}{d r} \right\rvert\, \quad \text { Next, require: } \frac{d t}{d r}=a, \frac{d x}{d r}=b
$$

-Then, on Γ, the quasi-linear PDE is reduced to the ODE:
-The equations: $\frac{d t}{d r}=a, \frac{d x}{d r}=b, \frac{d u}{d r}=c \Rightarrow \frac{d t}{a}=\frac{d x}{b}=\frac{d u}{c}$ are called the characteristics of the quasi-linear PDE.

Geometrical interpretation

Consider again the Cauchy problem for the quasi-linear PDE:

$$
a(x, t, u) u_{t}+b(x, t, u) u_{x}=c(x, t, u), \quad u(x, 0)=f(x)
$$

- Let $u(x, t)$ a solution of the PDE, and its graph $z=u(x, t)$, which is a surface in the xtu-space. The initial data which define a curve γ in the xt-plane (e.g., if $u(x, 0)=f(x)$ then γ is the x-axis, etc) provides a space curve Γ that lies on the graph.
- Let $\mathbf{F}=(a, b, c)$ the vector field defined by PDE's coefficients
- The normal vector \mathbf{N} to the surface $\mathbf{z}=\mathbf{u}(\mathrm{x}, \mathrm{t})$ is: $\mathbf{N}=\left(u_{\mathrm{x}}, u_{\mathrm{t}},-1\right)$
- If $u(x, t)$ a solution of the PDE then

$$
\mathbf{F} \cdot \mathbf{N}=a u_{t}+b u_{x}-c=0 \Leftrightarrow \mathbf{F} \perp \mathbf{N} \Leftrightarrow \mathbf{F} \text { tangent to } z=u(x, t)
$$

The graph of the solution can be constructed by finding the stream lines of \mathbf{F} that pass through the initial curve Γ.

1. Transport equation with const. velocity

- Simplest linear 1st-order problem: transport (advection) equation
$>$ Method of characteristics
Reduce the problem to an ODE along some curve Γ : $x=x(t)$ such that du/dt=0

$$
\begin{aligned}
& u_{t}+c u_{x}=0, \\
& u(x, 0)=F(x)
\end{aligned}
$$

$$
\omega=c k, \omega^{\prime \prime}(k)=0
$$

Non-dispersive system
$\frac{d u(x(t), t)}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial t} \frac{d t}{d t}=\underbrace{\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}\left(\frac{d x}{d t}\right)}_{t}=0 \quad \frac{d x}{d t}=c$

$$
\begin{aligned}
& \Rightarrow \frac{d x}{d t}=c \Rightarrow x(t)=c t+\xi \\
& \Rightarrow \frac{d u}{d t}=0 \Rightarrow u(x, t)=u(\xi, 0)=F(\xi)
\end{aligned}
$$

$$
\text { General solution: } u(x, t)=F(x-c t)
$$

Solution of the transport equation

The IC, $F(x)$, is simply translated without changing shape

J. D. Logan, Applied Mathematics

2. Transport equation with non const. velocity

Consider the Cauchy problem:

$$
\begin{aligned}
& u_{t}+2 t u_{x}=0 \quad(c=2 t) \\
& u(x, 0)=f(x)=\exp \left(-x^{2}\right)
\end{aligned}
$$

On $\Gamma: x=x(t)$ we have $d u / d t=0$:

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t} \frac{d t}{d t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=u_{t}+\frac{d x}{d t} u_{x}=0
$$

This leads to: $\frac{d x}{d t}=2 t, x(0)=\xi \Rightarrow x(t)=t^{2}+\xi$ Also, on 「:

$$
d u / d t=0 \Rightarrow u(x, t)=\text { const. }
$$

$t=0: \quad u(x, t)=u(\xi, 0)$

$$
\Rightarrow u(x, t)=f(\xi)=\exp \left[-\left(x-t^{2}\right)^{2}\right]
$$

J. D. Logan, Applied Mathematics

3. A boundary-value problem

Consider the BVP: $\left\{\begin{array}{l}\sqrt{x^{2} u_{t}+u_{x}+t u=0, x>0, t \in \mathrm{R}} \\ \mathrm{BC} \text { at } x=0: u(0, t)=f(t)\end{array}\right.$
On $\Gamma: t=t(x)$ we have: $\frac{d u}{d x}=\frac{\partial u}{\partial t} \frac{d t}{d x}+\frac{\partial u}{\partial x} \frac{d x}{d x}=\frac{d t}{d x} u_{t}+u_{x}$
and we choose: $\frac{d t}{d x}=x^{2} \Rightarrow t=\frac{1}{3} x^{3}+(\tau) \longrightarrow$ our ξ in this case
On $\Gamma: t=t(x)$ we have: $\frac{d u}{d x}=-t u \Rightarrow \frac{d u}{d x}=-\left(\frac{1}{3} x^{3}+\tau\right) u$ and thus:

$$
\frac{d u}{u}=-\left(\frac{1}{3} x^{3}+\tau\right) d x \Rightarrow \int_{f(\tau)}^{u} \frac{d u}{u}=\int_{0}^{x}-\left(\frac{1}{3} x^{3}+\tau\right) d x \Rightarrow
$$

$$
u=f(\tau) \exp \left(-\frac{1}{12} x^{4}-\tau x\right)=f\left(t-\frac{1}{3} x^{3}\right) \exp \left(-\frac{1}{4} x^{4}-x t\right)
$$

3. A nonlinear problem: Hopf equation

$$
u_{t}+u u_{x}=0, \quad u(x, 0)=f(x), \quad x \in \mathrm{R}, t>0
$$

On $\Gamma: x=x(t)$ we have: $d u / d t=0: \frac{d u}{d t}=\frac{\partial u}{\partial t} \frac{d t}{d t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=u_{t}+\frac{d x}{d t} u_{x}=0$

As before:

$d u / d t=0 \Rightarrow u(x, t)=$ const.
$d x / d t=u, \quad x(0)=\xi \quad \Rightarrow \quad x(t)=u t+\xi$
Since:

$$
\left.\begin{array}{rl}
u(x, 0) & =f(x) \Rightarrow u(\xi, 0)=f(\xi) \\
u(x, t)=u(\xi, 0)=f(\xi) \\
\xi=x-u t
\end{array}\right\} \Rightarrow u=f(x-u t) \text { }, ~ l
$$

Characteristics are again straight lines

Implicit solution of the Hopf equation

An explicit solution of the Hopf equation

S. Chandrasekhar found (1943) an explicit solution of the following IVP:

$$
u_{t}+u u_{x}=0, \quad u(x, 0)=f(x)=a x+b
$$

We have found: $\quad u=f(x-u t)$
and thus: $u=a(x-u t)+b \Rightarrow u=\frac{a x+b}{1+a t}$
$a>0$: the solution flattens as $t \rightarrow \infty$

Rarefaction wave

Shock wave
For $t=t_{B}=-1 / a$ the
$a<0$: the solution steepens as $t \rightarrow \infty$ solution blows up

What can we learn from the explicit solution?

Positive slope

Rarefaction wave

Negative slope

Shock wave

Breaking time

Consider the general problem: $u_{t}+u u_{x}=0, u(x, 0)=f(x)$
We have found: $\left.\begin{array}{l}x=u t+\xi \\ u=f(\xi)\end{array}\right\} \Rightarrow x=\xi+f(\xi) t \quad(1)$
We wish to determine the breaking time t_{B} occurring when the profile of the solution develops an infinite slope:
$u_{x}=\frac{\partial u}{\partial x}=\frac{d u}{d \xi} \frac{\partial \xi}{\partial x}=f^{\prime}(\xi) \xi_{x}$

If $f^{\prime}(\xi)>0 \forall x$ then the solution is finite $\forall t \rightarrow$ rarefaction wave If $f^{\prime}(\xi)<0$ the solution breaks up at the earliest critical time:

$$
t_{B}=\min _{\xi>0}\left\{-1 / f^{\prime}(\xi) \mid f^{\prime}(\xi)<0\right\}
$$

What happens before the breaking time t_{B}

Using $x=\xi+f(\xi) t$ (1) we found: $u_{x}=\frac{f^{\prime}(\xi)}{1+f^{\prime}(\xi) t}$
Similarly:

$$
u_{t}=\frac{\partial u}{\partial t}=\frac{d u}{d \xi} \frac{\partial \xi}{\partial t}=f^{\prime}(\xi) \xi_{t}
$$

$$
\begin{equation*}
u_{t}=-\frac{f(\xi) f^{\prime}(\xi)}{1+f^{\prime}(\xi) t} \tag{3}
\end{equation*}
$$

Hence, from (2)-(3), and for $t<t_{B}$, the solution remains single-valued and satisfies the Hopf equation:

$$
u_{t}+u u_{x}=-\frac{f(\xi) f^{\prime}(\xi)}{1+f^{\prime}(\xi) t}+f(\xi) \frac{f^{\prime}(\xi)}{1+f^{\prime}(\xi) t}=0
$$

What happens for times $t \geq t_{B}$: Characteristics intersect

The slope of a characteristic passing $\left(x^{0}, t^{0}\right)$ is: $\frac{d x}{d t}=c\left(f\left(x^{0}\right)\right)$ Here, $\boldsymbol{c}=\boldsymbol{c}(\boldsymbol{u})$ is a strictly increasing function:
$u_{t}+c(u) u_{x}=0, c(u)=u \Rightarrow c^{\prime}(u)=1>0$ Let f be a strictly decreasing function; then, $c(f)$ is also strictly decreasing:
$x_{1}^{0}<x_{2}^{0} \rightarrow c\left(f\left(x_{1}^{0}\right)>c\left(f\left(x_{2}^{0}\right)\right.\right.$
and, hence, characteristics passing through $\left(x_{1}^{0}, 0\right),\left(x_{2}^{0}, 0\right)$ intersect!

At the intersection point, the solution $u(x, t)$ becomes multi-valued because it takes both values $f\left(x_{1}^{0}\right), f\left(x_{2}^{0}\right)$

An example

Consider the IVP: $\quad u_{t}+u u_{x}=0, \quad u(x, 0)=f(x), \quad x \in \mathrm{R}$

$$
f(x)= \begin{cases}2, & x<0 \\ 2-x, & 0 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

We have found: $\left.\begin{array}{l}x=u t+\xi \\ u=f(\xi)\end{array}\right\} \Rightarrow x=\xi+f(\xi) t$
Characteristics:

$$
f(\xi)=\left\{\begin{array}{ll}
2, & \xi<0 \\
2-\xi, & 0 \leq \xi \leq 1 \\
1, & \xi>1
\end{array} \quad x= \begin{cases}\xi+2 t, & \xi<0 \\
\xi+(2-\xi) t, & 0 \leq \xi \leq 1 \\
\xi+t, & \xi>1\end{cases}\right.
$$

An example (cont.) - characteristics

An example (cont.) - breaking time

 How to determine the breaking time t_{B} :Recall that: $t_{B}=\min _{\xi}\left\{-1 / f^{\prime}(\xi) \mid f^{\prime}(\xi)<0\right\}$
Here, we have: $f(\xi)=\left\{\begin{array}{ll}2, & \xi<0 \\ 2-\xi, & 0 \leq \xi \leq 1 \\ 1, & \xi>1\end{array}\right.$ and hence $t_{B}=1$
Alternatively, recall that we found: $x=\xi+(2-\xi) t, \quad 0 \leq \xi \leq 1$
and so $\left.\frac{\xi=0:}{\xi=1:} \begin{array}{ll}\xi=2 t \\ \xi=1+t\end{array}\right\} \Rightarrow$ characteristics intersect at $(x, t)=(2,1)$

All other characteristics in this interval pass $(x, t)=(2,1)$

An example (cont.) - shock formation

Solution: $u(x, t)= \begin{cases}2, & x<2 t \\ \frac{2-x}{1-t}, & 2 t \leq x \leq t+1 \\ 1, & x>t+1\end{cases}$

Exercises - linear problems

1) Use the method of characteristics to solve the IVPs:
1.1) $u_{t}+u_{x}+u=0, \quad u(x, 0)=f(x)=\cos x, \quad x \in \mathrm{R}$
1.2) $u_{t}+2 x t u_{x}=u, \quad u(x, 0)=f(x)=x, \quad x \in \mathrm{R}$
2) Use the method of characteristics to show that the solution of the IVP:

$$
u_{t}+c u_{x}=h(x, t), \quad u(x, 0)=f(x), \quad x \in \mathrm{R}
$$

is: $\quad u(x, t)=f(x-c t)+\int_{0}^{t} h\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) d t^{\prime}$
In all cases confirm, by direct substitution, that the solution you found satisfies the corresponding PDE.

Exercises - nonlinear problems

3) Use the method of characteristics to solve the Hopf equation:

$$
u_{t}+u u_{x}=0, \quad u(x, 0)=f(x)
$$

in the following cases:
3.1) $f(x)=\left\{\begin{array}{rr}0, & x<0 \\ x, & 0 \leq x \leq 1 \\ 1, & x\end{array} \quad\right.$ 3.2) $\quad f(x)= \begin{cases}0, & x<0 \\ -x, & 0 \leq x \leq 1 \\ -1, & x>1\end{cases}$

In both cases:
a) Draw the characteristics in the xt-plane
b) Write down the solution and draw some characteristic snapshots of the solution at different time instants
c) Determine the breaking time (when relevant)

