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Perturbation theory using series expansions and the Riccati equation

N. Bessis and G. Bessis
Laboratoire de Physique des Lasers, U.R.A. 282 du C.N.R.S., UnivBeigNord, avenue J.B. Clement,
93430 Villetaneuse, France

(Received 29 March 1995; accepted 17 May 1995

An algebraic procedure is proposed for the analytical solution of Samger equations that can be
viewed as a factorizable equation with an adequately chosen perturbation. This procedure relies on
the solution of the Riccati equation associated with the given eigenequation and the use of power
series of suitable functions which are specific to each factorization type. As illustrative examples,
analytical solution of the symmetric anharmonic oscillator, perturbed Morse oscillator and singular
anharmonic oscillator equations are carried out. Further applications are pointed di®950
American Institute of Physics.

I. INTRODUCTION equation associated with the given E@) and the use of
) . power series of suitable functions which are specific to each
In many problems of current interest in quantum me-actorizable type of Table I. For any given state, this proce-
chanics, particularly in atomic and molecular physics, ONgjre provides the analytical solution of eigenequatian
requires analytical solutions of wave equations which, inyithout having either to get analytical expressions of the
most cases, are not exactly solvable equations. Nevertheleggqired matrix elements between unperturbed functions and
very often, at many stages of the physical modelization, aftefnanage with the many summations of the Rayleigh—

exact or approximate separation of variables, it is possible t%chr"cdinger method, or to perform the successive integra-
manage in order to deal with the solution of equations whichions of the logarithmic method, or to solve the finite-

are, or are amenable to be exactly solvable eigenequatiopfiterence equations of the perturbed ladder operator method.
with an additional perturbation. After appropriate transfor- — sger giving the main features of the method, it is shown

mations of variable and function, these equations can bgat provided the perturbatiovi(x) is conveniently chosen,
written in the standard form the present procedure works well for all the unperturbed po-

2 tential U(®)(x,m) belonging to Table | and, for any given
W+U(°)(x,m)+V(x)+A ¥(x)=0, (1)  state, one can obtain analytical expressions of the perturbed
eigenfunctions and eigenvalues by merely using algebraic

whereV(x) is a perturbation anth=mg, my+1,my+2,...is  operations(Sec. I). As illustrative examples, analytical ex-

a quantum number which takes successive discrete valu@sessions of the symmetric anharmonic-oscillator, perturbed
labeling the eigenfunctions. Morse-oscillator, and singular anharmonic-oscillator energies
Actually, the potential functiong(o)()(,m) leading to an and eigenfunctions are carried o@ec. Ill). Further appli-
exactly solvable eigenequation are comparatively few andgations of the method are pointed dec. 1V).

mostly, can be related to a Infeld and Hiflictorizable equa-
tion (see Table )L If we restrict ourselves to bound states, ||. METHOD
analytical expressions of the unperturbed eigenvalues are

readily obtained from the knowledge of the factorization : h \ g A ]
tion (1) is readily transformed into the following Riccati

When settingdW/dx=F(x)¥(x), the given eigenequa-

function, i.e., -
B equation
A(0)=L(O)(j), 2 dE
¥ ¥ . — 4 2,y + +A=0.
wherej=m+uv+1 (or j=m-—v) according to the class of dx [FOOTHUT06m) + V() +A=0 &)

factorization, i.e., according to whethef®(m) is an in-
creasingor a decreasingunction ofm; v=0,1,2,... is a non
negative integer.

Closed-form expressions of the eigenfunctions have V(x)= VI (x)+ 72V (x)+---,
been obtainedand involve classical orthogonal polynomials

Let us assume that(x) as well asA can be expanded in a
perturbation series of a parametgiand let us set

— A(0) (1) 2A(2) 4 ...
(see Table)l The whole set of unperturbed eigenvalues and A=ATH+ A+ AT+ ! )
eigenfunctions being known, one can resort to the usual per- RO(x)+ 7RO (x) + 2R (x) + -+
turbation theories such as the traditional Rayleigh— F,(x)=

(0) (D 2a(2) L
Schralinger framework. One can also use the logarithmic S, 0+ 2S00+ 7S, () +

perturbation method, or the perturbed ladder operator where theR(N(x) and S(N)(x) functions have to be found

method! and obtain analytical expressions of the perturbedor each state .

eigenvalues and perturbed eigenfunctions showing their de- Since the unperturbed functiorF(?)(x) =R (x)/

pendence in the quantum numbensanduv. SOx)=[1/PD(x)](d¥?/dx) is solution of the zeroth-
In the present paper, a straightforward procedure is proerder Riccati equation, when substituting fé(x), F,(x),

posed which is based on the solution of the perturbed Riccatind A from Eg. (4) into Eq. (3), at each ordeN of the
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N. Bessis and G. Bessis: Perturbation theory and the Riccati equation 3007

TABLE |I. Infeld—Hull exact factorizable eigenequatiorss +1 and]: m+v+1 (ore=—1 and~j: m—uv) according to whether the factorization function
LO(m) is an increasingor a decreasingunction ofm. P{*#) (), L% () andH, () are, respectively, a Jacobi, Laguerre and Hermite polynomial of degree
U.

Type u©@(x,m) PO)(x) Parameters LO(m)
2 2 at+l/2 B+12 — +d+l/2)
A afm(m+1)+d“+(2m+1)d cosax] AN,( L ax (@) a=em 22m?
_ <7 \sm 5 cos 5 P, " (cosax) B=e(m—d+1/2)
a=—2¢]
B —a%d%e?®+a?(2m+1)de?* ~exd %( aax— Be™)|LY(Be™) f= *25{1 —a?m?
m+ 2 =¢e(m+1/2)
C m( )—bzx 2+b(2m+1) ~x*ti/2 exp{— —ﬁ; )Ly(ﬁxz) g:e_(Eb ) —4bm
D —b2>+b(2m+1) Bz B=(—eb)12 —2bm
~exp — —~ |H[Ax] €
a’m(m+1) ) _ i . a=—¢] o
E B ~(sinax)™* exp(—eBx)P{* 1A a"1A(—j cotax ~ 2R 2
7 2adcotax ( ) p(—€eBX)Py ( ) B=—ql] a?m? =
q2
mm+1) 2q Bx) a=2m+1 -=
F _ 7 ~ +1 "« ~
2 " XML ex 2 )LU(BX) p=—24/; e

perturbation, the quadratic character of the original Riccati d (p) +1 ‘1

equation is blown off and the resulting equations to be solved gy, Po “Py)=3v+a+B+1)PIH A Ny,
. : : y

are linear equations. At the successive orddfs1,2,..) of

the perturbation, we get

d d
— LAy)=—L%Hy), = H,(y)=2vH,_1(y).
(1) 0) v v v v
drRY _ dS dy dy

s R +ZR(O)R(1)+23(0)3(1)[U(0)+A(0)]
U dX 1 dx U v v U We get
+(8”)2 VP +AM=0, 5 1 dg,
(2) (1) 2) 1) &, dx
g0 di+s(1) de = S’ S’ +2R(0)R(2) ¢ v+ a v+ B
dx dx dX d a(v+a+18+1)2;)—6|.(_1)t+1(v_t_1)( ¢ )u2t+1
FRM)ZH[28,87+ ()2 + A ] - o a (07 B
+2808 U VD + AW+ (S9)2[ V@ + A )] o) ( ) t )
=0...and so on (6) (type A); (8
where, at each ordéy under consideration, tHe{"(x) and
SiM(x) functions of the preceding orders0,1,..N=1) dé, BV (— 1)H1( )[(Bu)‘/t']
are known. ax
For each factorization type, the unperturbed functlon¢” v (=)t a)[(/gu)t/t!]
FOx)=RO(x)/S(x) is easily obtained in closed form -t
from the knowledge of its counterpa#t®)(x) which is so- :
. : . v t B, C, and F 9
lution of a factorizable equation. We get (types and F; ©
O oy, 1 dd, 1dg, B VA(-D(Bw M w—2t-1)!]
Fv (X)ZF (X)+C}TUW' (7) ¢v dx - EE(:”O/ZJ(—1)t[(,8u)”_2t/t!(v—2t)!]
whereF @ (x)=F(?(x) is the ground staté =0) function (type D); (10)
and®,=® (x) is the polynomial which is involved in the
expression of the unperturbed functidfgo)(x) of Table I. whereu=tan(ax/2) for type A, u=e®* for type B,u=x for

Since these polynomial®,(x) are either Jacobi, associ- types C, D, F andi=cotax for type E. The expressio(9)
ated Laguerre or Hermite polynomials, the second term irhas to be multiplied by a factoa()) for type B and a factor
the expressior(7) of the unperturbed functionEf)O)(x) is  (2u) for type C.[v/2] denotes the integer part of2.

easily obtained, for any value of, by using, together with Briefly stated, as a consequence of the expresSipof
the already known expressions of the polynomials, the folF(?(x)=R{®(x)/S{?(x), the unperturbed functiorR{®)(x)
lowing relations andS{®(x) are both already known polynomials of u(x)
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TABLE II. The unperturbed functions{?(x) = R((x)/S(9(x) in terms ofu=u(x).

Type u(x) v=0 v=1
A o™ al(at b8+ a[(2a+1)(a+1)—(4aB+T7(a+B)+ 10);12+(ZB+1)(,8+1)U4]
2 — 4 (a+Du—(B+1u7]

B e a Al a(a+1)—(2a+3)Bu+ BU7]

z(a=pu 2at1-pu)
c X (a+3)— B2 (2a+1)(a+1)—(4a+7)puP+2pu"

ETE— 2u(a+1—Bud)
D X -Au 1- AR

u
E  cotax —aau-p a(at+1)— B2+ B(1+a—aa)u+a(at 122
B—(a+1)u
F X a+1-Bu (a+12—2(a+2)pu+ A7
2u 2u(a+1—pu)

(see Table I, fow =0,1). Moreover, we remark that, for each obvious for factorization types B, C, D, and F. For types A
of the six factorization types, the unperturbed potentialand E, it is easily checked that the unperturbed potentials
U©@(x,m) involves only powers of the same=u(x) as the U (x,m) can be conveniently written again.

unperturbed functiorF{?)(x) (see Tables | and )i This is For type A,

a’[(m+d+1)(m+d)+2(d*+m(m+1))u+(m—d+1)(m—d)u?]

UO(x,m)=— o ,  where u=tan(ax/2). (11)
|
For type E A. Symmetric anharmonic-oscillator eigenvalues and
eigenfunctions
UQ(x,m)=—a’m(m+1)(1+u? —2aqu;
As a first example, let us consider the anharmonic-
u=cotax. (120 oscillator eigenequation, that is the perturbed type D
Now, let us assume that, at each oréleof the pertur-  €igenequatiorf—oo<x<+)
bation, the given perturbation can be expanded in power se- d2
ries ofu=u(x), i.e., that the perturbation term¥™(x) can T b?x2+b(2m+1)+V(X)+A (¥ (x)=0, (15
be written X
Sy where V(x) is a symmetric perturbation with perturbation
V(N)(X)=2 b(SN)us (13) terms
s=1

VN (x) =bNx2+ b x4+ bV X+ -+
and let us set
When V(x) =0, this eigenequatioril5) reduces to an
R(N)(x)zZ cNys: S(N)(x)zE dNys, (14) exact type D factorizable equatideee Table)l Let us as-

v s ° v s sumeb>0:° The factorization function.(”)(m) = —2bmis a
decreasing function ofn so thate=—1 andj=m-uv. The
unperturbed eigenvalue 8©=L®(m-v)=-2b(m-v)
and we find again the expected expression of the un-
perturbed harmonic-oscillator energieg©, ie., 2E©
=b(2m+1)+A@=2b(v+13).

Let us now consider the perturbed eigenequatitb)
and, in order to avoid writing down too much extensive ex-
. ILLUSTRATIVE EXAMPLES pressions, let us consider the* anharmonic-oscillator

) ) ) . . eigenequation
Since the main purpose of this paper is to illustrate the

. .. . d2
simplicity of the procedure rather than to give new results or [ bx2— 29X+ 2E | W(x)=0, (16)

then, at each ordeM of the perturbation, the solution of the
original Eq.(3), i.e., the determination of the perturbed ei-
genvalueA!N) and of the expansion coefficiert§"” andd{)

of the RN (u), and SN (u) functions to be found, amounts
to the solution of a linear system of equations.

extensive tables, we limit ourselves to some test examples. dx?

J. Chem. Phys., Vol. 103, No. 8, 22 August 1995
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where the perturbation reduces to When substituting this expression into E§) and mul-
tiplying both sides by(u+ 7S{"+..)? we obtain relations
=2V (x)= — 1
VOO =7ViE(x) 27gx’. (7 leading to the following solution
When dealing with the ground state =0), since the

unperturbed type D function B{®)=R{)=—2p%u; SP=1 Elzl A= 3b 2 g 152 g 16? g 39185
(see Table I, we set 2 4b 8b 16b
Fo(X)=—2p8%u+ 7R+ 7°RP + n°RP + 7*R(Y , 520485
(18) -7'g* 128piL (22)
where

Fl(X)= Rl/S].’
RV =cMu+cul+cdMus+ -

7x? ,22x* . 551x?
When substituting foF ¢(x) from Eg. (18) and forV(x), A =1-bx*- g 262 +7°g° s 7 g° 2b°
from Egs.(17) and(4) into Eq.(3), and then equating to zero
the coefficients ofy successively foN=1 to N=4, we get 44 29822%2
four linear systems of equations allowing the determination t7g 64b1l (22)
of the expansion coefficients{N) of RJ) and of the per-
turbed eigenvaluea™). Solving successively these systems S X_3+ 5 5 3_><5 N 33x3
and settinqu=x, °=—eb=b, we get 1= X709 2 TGN 53 T g5
b 3 21 333 5x’ 53x° 899x°
343
Eo= ZAO 2+7794b2 779 8b5 779 16b° —’r]g(ﬁ'f-w'f'w)
gt 30885 19 35x° 1117 812%° 6236%°
128p™ *7'9" gpr * Tepe t 1ot T 32pl
x3  3x x> 11x® 21x When dealina wi i
e 2 X g with the second excited state=2), we
FolX)==bx= 7| 5+ 757 | + 70| 353 + Zp +4b5) set
aqf X' 21x°> 45 333| , ,/5x° 2b%u®-5bu+ 7RY + 2R +
- n°g® + + + +7'9% 57 Fa(x)= 1 2
7S 125" ab® T 2b7 T 8be 8b 1-2bu2+ 7S+ PSP+
163x” 115%° 866%° 30885 and we get
T 160" T 1eb® T 3zbl ' eaptt ) (20
5b 39 615 3 20079
When dealing with the first excited state=1), owing Bo=—5+79 75277 ?g? 8ps "7 g° 16b°%
to the expression of the unperturbed functisee type D in
Table Il), we set 3576255 5.5 191998593
S g TTY geen 0
. 1-bu?+ 77R(11)+ anf)—i—-'-
1= u+ 7/8(11)4— 7728(12)+~-- ' Fa(X)=Ry/S,,
where theR™) and S(V) are polynomials iru=x where
|
R.— 2b?— Ebx+ 28x? 1699x+ 33 70 117% 4 1375 411(4_ - 760 529 014
2= X*n9 2z =7 *g? a5 79 8b° 79 64b1T 779 1280

S,=1-2bx?+ 59 3g°

+7°g

2x*  10x2 19)

G 3x® 34x* 577x% 611 5x8 91x8 2934
b p? 2B

b3 b*  4b°  4p° IS T

11641x* 12 571 aa 35x10 223x® 42 37%5 293 94%* 282 70*® 242815
+ - |~ 70 7+t g—t 0t Tt 2
4b 4b 4b b 16b 16b 4b 32b

63x12 208%1° 132 05x® 1287 36%° 16 439 69k* 62 324 97%%> 264 159 05
0% T Tap™ T iep™ T 16z T 32018 ' 32T 12801

+7°g°

(29)

It is easily checked that the expressidf$), (21), and(23) of E,, E;, andE, give again already known resulfts.

J. Chem. Phys., Vol. 103, No. 8, 22 August 1995
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With the help of a general software system, such a$3. Perturbed Morse-oscillator eigenvalues and
Mathematicé® the computation can be performed up to eigenfunctions
_h|gher_order$\|_ of the perturbanor_l, higher eXC|t_ed statesand,  \ye consider the perturbed type B equation
if required, with a more extensive perturbatidf{x) than q
expr_e55|or_1(17), without any other spemal d|ff|c_ulty than — 220262+ a2d(2m+ 1)e¥+ V(X) + A | W (x) =0
dealing with more and more extensive expressions. Moret dX

over, the procedure provides simultaneously the energies and (29
the perturbed eigenfunctiond, (x) ~exp [F,(x)dx, which  and assume that the given perturbation is, withe® (see
are solutions of the original eigenequaticib). type B in Table 1)

Let us remark that, when comparing the above expres-
sions of the first-order energies with their counterparts within ¥ (X)= V()= 7a(gau+gou+gau+gau?). (26)
the traditional Rayleigh—Schdinger framework, we get, as Sincedu/dx=au, the Riccati equation to be solved is
a byproduct, the expressions of the diagonal matrix elements
(x% between the unperturbed harmonic oscillator functions  au — +[F(u)]2+U©@+V+A=0. (27)
WO)(x) of Table | du
When dealing with the ground state=0) eigenvalues

(v=0|x*v=0)= iz; (v=1|x*v=1)= 1_52; and eigenfunctions, after picking up the expression of the
4b 4b unperturbed function from Table Il, we set
39 a
(v=2|x*v=2)= Tk Fo(u)=3 (a—pBu)+ PR+ 7?RE + -
This is in accordance with the known expressionAfter substituting this expression into ER7), we readily
(wx*v)=(3/2bH)[ (v+3)>+13. obtain the following results:
91 92 03 O4
— _A2m2_ a2
Ao a‘m-—a 77( 2d (2m)+( 20)? (2m+1),+ 2d)3 (2m+2)5+ 2d)° (2m+3)4J
B 91 9192 40103 2 40104 3 2
27]&{@24‘@3‘(4 m+1)+ (2d)4 (6m +6m+1)+ (2d>5 (16m°+36m —I—22m+3)
; 49,93 40,9,

+ (29sz)4 (16m?+10m+1)+ 247 (24m3+36m?+14m+1)+ 247 (64m*+184m>+168m?+52m+3)

2

(2gd)6 (36m*+90me+74m?+21m+1)+ (23?? (96m°+384m*+560m°+354m?+85m+3);+---, (298
Fo(W=a(m-du)+an o=+ -2 (om+1)+ —2, (2m+2),+ —2 7 (2m+3),
0 7 2d7 (2d)? (2d)3 (2d)*
92 93 94 93 94 02 94
+ 2d+ﬁz(2m+2)+(—)g(2m+3)2 u+ 2dJr(—)z(2m+1) +2du +oe (29

For the sake of brevity, but only the expression of the first-a=2m—2, 8=2d, we readily obtain the{¥ andd{\) coef-
order perturbed eigenfunction is reproduced. It has been aficients of theR(lN) and S(l'\‘) functions and the perturbed ei-
sumed that &” is a real constant so that we have=2(m  genvalue

—-v)=2m, pB=2d. (n),=n(n—1)...n—k+1) is a
generalized factorial.

91
— _ a2 —_1)2 Pt —
When dealing with the first excited state=1), we set Ay=—ai(m=1)"+7 2d (2m=2)+

(ng)z (2m+1)

Fa(u) X (2m— 2)+(2gd)34m(m 1)(2m+5)
_ala(atl)- (2a+3)Bu+ pu+ nR(1)+ PR +--+] .
2(a+1—Bu+nSP+ySH+---) +(2d4)4 Am(2m+1)(10m?—22m+3); +
After substituting this expression into E(R7) and setting (30

J. Chem. Phys., Vol. 103, No. 8, 22 August 1995
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With the help ofMathematica the computation can be present perturbed type B results in order to obtain analytical
carried out up to higher orders and higher excited stateexpressions of the perturbed Morse-oscillator energies and
without any other difficulty than dealing, of course, with eigenfunctions. Particularly, one can introduce for the rota-
more and more cumbersome expressions. tional term ¢./r)? a rather extensive expansion and obtain

Then, these type B results can be used in order to obtaialaborate expressions of the diatomic rotation—vibration en-
analytical expressions of the perturbed Morse-oscillator energies, or one can extract the internuclear distance depen-
ergies and eigenfunctions. When introducing the dimensiondence of diatomic structure constan{§ine structure,
less coordinatex=(uw/#)?(r—r,), the vibrational con- A-doubling, spin-rotation constants),.from the experimen-
stant w.=(2DJ/u)?8 and the harmonicity constants tal centrifugal datd®
{o=hwJ4D,, the perturbed Morse-oscillator eigenequation
(0=sr<x)

h? d? —B(r—r N2 _ C. Singular anharmonic-oscillator energies and
_ﬂWJFDe(l_e @)U (r)=ED(r), eigenfunctions

In order to test the capabilities of the procedure when

dealing with a singular potential and as a last example, let us

U(r)=DeE by(1—e AU To)t cpnsider the solution of the spiked anharmonic-oscillator
T eigenequation

=x< d? A
becomes {r <x<) [—z—bz 2_7+E B(x)=0. 34
d2 1 —2(2¢ )1/2X —(2¢ )l/ZX . .
o 228 +zee ¢ Nt Z+V(X)+hweE As already pointed odt the solution of Eq.(34) can be
obtained via the solution of a perturbed type C eigenequation

X¥(x)=0, (B (0sx<x)
1 d> m(m+1
V(X)= =— > by(1—e 2"yt (32 {2 mm=-1) > ) b2 bomes 1)+V(X)+A [ ¥(x)=0,
de t dx X
(35)
WhenV(x) =0, the eigenequatiof81) reduces to an ex- where
act type B factorizable equation where
V()= VP (x)=n(gx 2 +gx"?). (36)
a=—(2)Y% d=-—;
(2Ze) 57,
(33 When V(x) =0, this eigenequation reduces to an exact
type C factorizable equation of Table I. Assuming.0, the
1 1 2E@ 1 factorization functionL{®)(m)=—4bm is an increasing
224 hwe | 240 function of m, the wunperturbed eigenvalue is
A9=—4b(m+v+1) and we get the expression of the un-
perturbed  energy, ie., E©®m)=b(2m+1)+A®
Since a=—(2£,)? is a real constantL(@(m)=—-a?m? =-—b(4v+2m+3).
(see Table ) is a decreasing function ofm and Let us now consider, for instance, the ground state

A9=—-a%(m-v)2 Settingm=—1/2+1/2¢,, we get the =0) of the perturbed eigenequati¢85). We set(see Table
expected expression of the unperturbed Morse energh)
EO=nw][v+3—Z(v+3)?]. Note that, as usually done, it
is implicitly assumed that the Ter Haar approximatibnlds,
i.e., that a sufficiently close approximation of the solution of . (a+3)—Bx*+ pREY+ p?REP + -+
eigenequatiori31) is obtained when taking the rangesofo o(X)= X+ 7]5<01>+ 7725§)2)Jr .
be )—oo,+oo(.

When giving to the type B parameters their actual values
(33), setting@=2(m—v); B=2d and introducing suitable When substituting this expression into ), multiplying
expressions for the, expansion coefficients of the given both sides byx+ 7;881)+---)2 and settingr=m-+ 3%, 8=—Db,
perturbation(32) in a series ofe™*V?Ze, one can use the we obtain relations leading to the following solution

J. Chem. Phys., Vol. 103, No. 8, 22 August 1995
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Eq(m)=—-b(2m+3)+ 5

29:b 4g,b? .| 2dib . 169:0.b7
2m+1 2m+1)2m—1)| 7| 2m+1)3 " 2m+1)3(2m—1)2

16g3b%(8m?—6m—1) .| gib 4g7g,b?(16m?—2m+1)
~(2m+1)3(2m-1)3(2m-3) +4n 2m+1)°  (2m+1)5%2m—1)3

169,95b%(80m*—168m°—80m?+ 6m+5)
(2m+1)%(2m—1)%2m—3)?

gsb%(4096m°—14 080Mn*+13 312m3—2176m?—1024m—3698) 3
B (2m+ 1)5(2m—1)5%(2m—3)%(2m—5) e 37
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Folx)= ——+bx= ’7[(2m—1) Eloamr1 T emrnem—n) x| "7 | 2m-DZ2m=3) X
2019 2g5b(6m—5) 1 o N 16g;9,bm
2m+1)(2m—-1)?2 (2m+1)(2m-1)32m-3)/ x* "\ (2m+1)®  (2m+1)3(2m—1)?
8g2b%(8m>—6m—1) o3 1 -
em+1¥em-1)7 BT (38
|
These expression37) and (38) can be used in order to Although only three illustrative examples have been
obtain an analytical solution of the spiked anharmonic-worked out, the range of application of the method is rather
oscillator equation (34) when setting g;=m(m+1), large. Indeed, the use of perturbed model equations enables

0,=—\. Moreover, in order to deal with a core potential one to tackle many real problems encountered in quantum
conveniently adapted to the perturbation, that is an unpemhysics. Among unperturbed functions of current interest in
turbed potential virtually induced by the singular potentialatomic and molecular calculations, let us briefly mention that
(Klauder effect?), the values of can be chosen so that they the WignerD!") (¢,0,¢) or the symmetric top functions,

. . ey . m'm’
Comaml'lm addition, a dependence upon the coupling conthe associated spherical harmonic function8(6,¢), the
stant. Paschl-Teller functions, and more generally, the Gauss hy-

pergeometric functions can be directly related to type A
eigenfunctions while the Morse-oscillator functions and con-
IV. CONCLUSION fluent hypergeometric functions belong to the family of type

Finally, the present procedure allows an analytical solu-B functions. Type C and type D factorization play a central
. y: present p . y . role for harmonic-oscillator problems while type(&r type
tion of perturbed eigenequations by means of very S|mpleE

; ! : . . é factorizations serve for problems involving Coulomb in-
algebraic operations, provided these eigenequations can li)

: . . . . eractions in the usual Euclidean Sp4oein a curved three
conveniently described by a factorizable equation with an : . o e
. .'space with constant curvatyreither within the Schrdinger
adequately chosen perturbation. Moreover, when using a~ .

. or within the Dirac framework. Moreover, the use of an
software system such adathematicaor else, for any re- . X
. . . . xactly solvable equation together with an adequate pertur-
quired state, analytical expressions of the perturbed eigenval-_.. : : . ;
. ) : ation may also be of interest in order to obtain approximate
ues and perturbed eigenfunctions can be obtained up t0

: : analytical solutions of equations involving several other
ra_lther high ord_er$\l of the perturbation. Neyertheless, t_he model potentials such as the Hulthpotential, the screened
given perturbation/(x) has to be expanded in power series

: .13 2 2 14
of the functionsu(x) which are specific to each factorization Coulombic potential? the \x*/(1+gx’) potentiat® or the

. o : Gaussian potentidP Hence, in many cases, the present pro-
type. This necessary condition is not at all fortituous or SUr.odure can be used as a preliminary approach to an analytical
prising. Within the perturbed ladder operator framewbrk,

this is a necessary condition for building up perturbed laddef Pression of the eigenvalues and eigenfunctions which are

. . . involved in the physical modelization, before tackling a more
operators associated wili(x) and allowing the perturbed o : .
O : . . . elaborate and sophistical solution of the actual equations to
factorization of the given eigenequation. Briefly stated, th

. : : e considered.
present procedure provides, in a simple way, the results that

should be obtained from more elaboratelependent results

when giving tov its actual value. This way of doing may be

very useful since, in many cases, suciilependent results

may be at disposal but only for low orders of the perturba-:la lﬂfaetlj(ijnaz(er %eig;l F;?,\S gogégsfgﬁfy 1\2/&—,1 5&92?‘?- 716197
tion, or, even, are not at all_avallable.. Furthermorg, th(=T X531 Mo agnd,U..Sukhatr’ne, A . Ph@’ '140(1584%55 :
pressions of the perturbed eigenfunctions are obtained in they gessis and G. Bessis, Phys. Revi 1096(1990: 44, 5503 (1991:

same batch. 46, 6824(1992); 50, 4506(1994).
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