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a b s t r a c t

We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally
harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization.
The latter may form a prototype for regularized quantum field theory. We first generalize the method
of Bender–Wu, and derive exact recursion relations which allow the determination of the perturbative
wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we
implement these equations in an easy to use Mathematica R⃝ package we call BenderWu. Our package
enables quick home-computer computation of high orders of perturbation theory (about 100 orders in
10–30 s, and 250 orders in 1–2 h) and enables practical study of a large class of problems in Quantum
Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large
amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g.
WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the
package may be used as a teaching tool, providing an effective bridge between perturbation theory and
non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion
relation acquires a geometric character, and has a structure which allows parallelization to computer
clusters.
Program summary
Program Title: BenderWu
Program Files doi: http://dx.doi.org/10.17632/vpg2zsbryc.1
Licensing provisions: CC By 4.0
Programming language: Wolfram Mathematica
Nature of problem: In 1D quantum mechanics, a perturbative expansions are known to generically be
divergent. An analysis of such problems was so far limited to a case-by-case basis. The Mathematica
package presented here allows a quick computation and analysis of all such 1D quantum mechanical
problems.
Solution method: The program uses a general recursive relation, inspired by the works of Bender and Wu
[1], which allows quick computation of the perturbative data.
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1. Introduction

Time-independent perturbation theory in quantummechanics, developed by Erwin Schrödinger, is almost as old as quantummechanics
itself. Published in 1926 [1], the same year as the Schrödinger equation [2], it is a standard topic of any textbook of quantum mechanics.
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However the method is rooted in wave-mechanics and dates back to Lord Rayleigh and his 1877 textbook on The Theory of Sound [3]. For
this reason the theory is often referred to as The Rayleigh–Schrö dinger perturbation theory.

Little did these great minds know that had they been able to compute large orders of perturbation theory, for most systems they would
have come to a surprising revelation: the radius of convergence of the perturbation theory is zero. The reason for this is a factorial growth
of the coefficient of the expansion parameter, which we refer to here as ‘‘the coupling’’ and denote by g .

Rather than being a curse, it is now becoming increasingly clear that the perturbative expansion is intimately tied up with non-
perturbative physics. The analysis and study of such series, functions and theories goes under the name of Resurgence theory. Although the
resurgence idea is old [4], it has been the subject of recent rapid development, from one-dimensional integrals [5–7], through quantum
mechanics [8–13] to quantum field theory [14,15] and string theory, see e.g. [16–19].

The resurgence structures are mostly studied in Quantum Mechanics. However, to our knowledge, all publications to date deal with
case-by-case examples, and no practical general procedure of studying large orders of perturbation theory was published. In this work we
adapt themethod, developed originally by C.M. Bender and T. T.Wu [20] for the anharmonic oscillatorwith quartic term in the potential, to
a perturbative expansion of an arbitrary locally-harmonic potential around one of its harmonic minima.1 In addition we develop a workable
Mathematica R⃝ computer code which can easily compute many orders of perturbation theory (about ∼100 orders in ∼10–30 s, and
∼250 orders in 1–2 h on a modern home computer). The computation is done symbolically by default, so the result is an exact result in
perturbation theory without any numerical error. Furthermore, the potential can be allowed to depend on arbitrary symbolic variables,
allowing the study of the parametric dependence of the perturbation theory.

To be more specific, the code presented here allows a perturbative treatment of a one-dimensional systems with a Hamiltonian in the
coordinate representation given by

H = −
h̄2

2m
∂2

∂X2 + V(X), (1.1)

whereV(X) is an arbitrary non-singular potential. Such a potential is typically characterized by some length scale a characterizing its spatial
variation, and a frequency scale of the harmonic motion around one of its minima.2 On dimensional grounds we can write in general

V(x) = mω2a2v(X/a), (1.2)

where v(X/a) is an arbitrary (dimensionless) function defining a non-trivial potential. The perturbation theory is defined by an expansion
of the potentialV(X) = mω2a2v(X/a) around one of its localminima,which coincidewith theminima of v(X/a).Without loss of generality,
we will take that one such minimum is at x = 0, and construct the perturbation theory around it. A dimensionless combination of
parameters is given by3 g =

√
h̄

mωa2
, which is made small when either ω, a or m is made large. A time-independent perturbation series is

therefore an expansion of the wave-function and energy in this small coupling, by an expansion of the potential v(X/a) in powers of X/a,
treating non-quadratic terms as a perturbation of a Harmonic oscillator.

To make this more explicit, let us go to a dimensionless spatial coordinate4 x = X/(ag). Then the Hamiltonian becomes

H =
h̄2

ma2g2

[
−

1
2
∂2

∂x2
+
v(xg)
g2

]
. (1.3)

Finally, we define a reduced Hamiltonian given by

h =
ma2g2

h̄2 H = −
1
2
∂2

∂x2
+
v(xg)
g2 . (1.4)

We wish to construct the perturbative solution to the Schrödinger equation by expanding the potential v(xg) for small g around one of its
minima, taken to be at x = 0,

v(xg)
g2 =

v(0)
g2 +

1
2
v′′(0)x2 +

g
3!
v′′′(0)x3 + · · · . (1.5)

It is clear that the higher terms aremade arbitrarily small by taking g arbitrarily small.We can therefore treat all terms, except the quadratic
term, as a perturbation, and solve the reduced Schrödinger equation

hψ(x) = ϵψ(x) (1.6)

for ψ(x) and ϵ as a power series

ψ(x) = ψ0(x) + ψ1(x)g + ψ2(x)g2
+ · · · (1.7)

and5

ϵ = ϵ0 + ϵ1g + ϵ2g2
+ · · · . (1.8)

1 The procedure discussed here is most likely applicable to any system where the leading order of the potential can be computed analytically. An interesting practical
system to adapt to this method would be to the case of a Coulomb potential, which is of importance in atomic physics and chemistry.
2 The frequencymay be different at individualminima, but the rate of the particle oscillations around them is set only by a single frequency scaleω. Note that in subsequent

sections we will define ω to be the dimensionless number specifying the coefficient of the quadratic term of the v(X/a).
3 The square root is inserted for convenience, because, as we shall see, the wave-function is in general an expansion in g defined in this way. The energy eigenvalue,

however, will be an expansion in g2 .
4 The factor of g is inserted for convenience.
5 Notice that if v(0) ̸= 0, then there will be a 1/g2 energy contribution. We will almost entirely ignore this classical shift, and even suppress its output by default in the

BenderWu package.
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Note however that ϵ2n+1 = 0 (see 2.3) for the potential at hand. To do this we will apply the Bender–Wumethod, originally developed for
an anharmonic oscillator with the gx4 perturbation [20]. As we shall see, however, it is possible to generalize this method to an arbitrary
potential, as long as its minima are harmonic and non-singular.

We will also be interested in a more general problem with the reduced Hamiltonian

h = −
1
2
∂2

∂x2
+ V (x) (1.9)

where V (x) is given by

V (x) =
v0(xg)
g2 + v2(xg). (1.10)

The term v2(x) is clearly suppressed by a power of g2 compared to the first term, and is important in the definition of supersymmetric
quantum mechanics, as well as some quasi exactly solvable models which were an initial motivation for this work. Studies of these
problems is the topic of a separate publication [21]. Note however that such potentials cannot be classical in nature, and must come
from some quantum effects.

Although we will not implement it in the Mathematica R⃝ package which accompanies this work, we also give BenderWu recursion
relations for the potential of the form

V (x) =
1
g2

N∑
m=0

gmvm(xg) (1.11)

for an arbitrary integer N . This potential is of some interest in the literature (see for example an elegant book [22]).
Finally we also note the multi-variable (many-body) Schrödinger problem(

−

N∑
i=1

1
2
∂2i +

1
g2 v(gx1, gx2, . . . , gxN )

)
ψ = ϵψ, (1.12)

is possible to treat by ourmethods in principle. This problem, although anatural generalization of the one-variable problem, is not pertinent
to the rest of the paper. Nevertheless, given the importance of such a problem for higher dimensional and multi-particles QM problems,
as well as its extensions to quantum field theory,6 we felt compelled to derive the recursion relations for (1.12) and explain how they
are solved, at least in principle. We also restrict the discussion to non-degenerate perturbation theory only, leaving the study of general
degenerate case for the future. The efficacy of this approach in the multi-dimensional problem above is also left for future work.

The paper is organized as follows: In Section 2 we generalize the method of Bender–Wu to the arbitrary potential in 1D quantum
mechanics. In Section 3, we sketch how the discussion generalizes to the multi-variable quantum mechanics, and briefly discuss the
geometric structure which arises there. Section 4 is dedicated to the explanation of the BenderWuMathematica R⃝ package. The content
of this section is largely independent of the rest of the paper, and the user interested in learning how to run and use the package is invited
to go there immediately. We conclude in Section 5.

Comments on the literature

We dedicate this small section to briefly comment on the literature available and the application of the Bender–Wumethod. Following
the original publication the vast application of the method was used to analyze the anharmonic oscillator. A notable exception is [23],
which attempted to generalize the method to a Mathieu potential, but encountered a numerical instability of the recurrence relations for
level numbers ν > 1. Ref. [24] applied the method to the supersymmetric version of the double-well potential. In [25] the method was
applied to a PT symmetric potential x2 + igx3, while in [26] the complex Hénon–Heiles potential was analyzed. All of these results, save
the last one,7 are easily reproduced by the BenderWu function of our package, within seconds.

2. The Bender–Wumethod for arbitrary locally harmonic potentials in one dimension

In this section wewill develop the recursion relations which will allow us to compute the perturbative expansion of the wave-function
and energy. The method goes under the name of Bender–Wu who first invented it to study the quartic potential problem in quantum
mechanics [20]. Here we adapt the method for a general classical potential with the structure v(gx)/g2, and some of its generalization to
quantum effective potentials. It is important to realize that the potential can even be a periodic function, or, indeed, any function with a
harmonic minimum at x = 0, and infinitely differentiable at x = 0. In the next section we will also consider adding the potential of the
form (1.11).

The contents of this section are not important for understanding how to use the BenderWu package and its functions. A reader who
is not interested in details of the generalized Bender–Wu method is encouraged to proceed to Section 4 as well as to the installation and
exampleMathematica R⃝ notebooks accompanying this work.

2.1. The classical 1D potential

Consider the Schrödinger equation

−
1
2
ψ ′′(x) +

1
g2 v(gx)ψ(x) = ϵψ(x). (2.1)

6 Quantum field theory can be thought of as quantum mechanics where the number of degrees of freedom is sent to infinity.
7 The potentials considered in [26] involve two and three dimensional potentials, which are currently not implemented in the BenderWu package. See however Section 3

however.



276 T. Sulejmanpasic, M. Ünsal / Computer Physics Communications 228 (2018) 273–289

We wish to construct a perturbative expansion around a harmonic minimum which, without loss of generality we take to be located at
x = 0 and set8 v(0) = 0. We first set

ψ(x) = u(x)e−
ωx2
2 , (2.2)

where9

ω2
= v′′(0), (2.3)

which reduces the Schrödinger equation to

− u′′(x) + 2ωxu′(x) +
2
g2 ṽ(gx)u(x) = 2

(
ϵ −

ω

2

)
u. (2.4)

Here we defined

ṽ(gx)/g2
= v(gx)/g2

−
ω2

2
x2. (2.5)

Now let us write a formal expansion of u(x) in powers of g .

u(x) =

∞∑
l=0

ul(x)g l. (2.6)

Further we expand

ṽ(gx)/g2
=

∞∑
n=1

vngnxn+2, vn =
1

(n + 2)!
V (n+2)(0). (2.7)

Now we formally write an expansion for ϵ

ϵ =

∞∑
n=0

ϵngn. (2.8)

Plugging these into Eq. (2.4) and equating the powers of g , we have

− u′′

l (x) + 2ωxu′

l(x) + 2
l∑

n=1

vnxn+2ul−n(x) = 2
l∑

n=0

(ϵn − δn0ω/2)ul−n(x). (2.9)

Notice that the leading order contribution is given by l = 0, for which

− u′′

0(x) + 2ωxu′

0(x) = 2(ϵ0 − ω/2)u0(x), (2.10)

which is the Hermite equation, so that u0(x) = Hν(x) and ϵ0 − ω/2 = νω, where ν is the level number. This in turn gives the leading order
energy10

ϵ0 = ω

(
ν +

1
2

)
, (2.11)

as expected.
Now let us expand ul(x) in powers of x

ul(x) =

Kl∑
k=0

Ak
l x

k, (2.12)

where Kl is the maximal power of x that can appear at order l. The upper bound of Kl is given by an expression11

Kl ≤ ν + 3l, (2.13)

where the equality holds if v1 ̸= 0. Plugging into (2.9) and equating powers of x, we have

− (k + 2)(k + 1)Ak+2
l + 2ωkAk

l − 2ωνAk
l = 2

l∑
n=1

(
ϵnAk

l−n − vnAk−n−2
l−n

)
(2.14)

8 This corresponds to a classical shift in energy and can simply be reinstated by introducing a contribution ϵ−2 = v(0).
9 Note the difference between the definition of ω here and the introduction.

10 Keep in mind that in principleψ, ϵ, and therefore ul(x) and ϵl also depend on ν, which defines the level number. To avoid unnecessary clutter, wemake this dependence
implicit, setting ν to a fixed integer.
11 The exact expression for Kl is given by (A.1) in Appendix A, which clearly obeys this inequality. The upper bound however will suffice for solving the recursion relations.
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Eqs. (2.14) can now be solved recursively for Ak
l and ϵl. We proceed in the following way. First notice that if k = ν, rearranging (2.14)

we have

2ϵlAν0 = −(ν + 2)(ν + 1)Aν+2
l − 2

l−1∑
n=1

ϵnAνl−n + 2
l∑

n=1

vnAν−n−2
l−n . (2.15)

So we can determine the energy ϵl as long as we have all A-coefficients with order smaller than l and as long as we find the coefficient
Aν+2
l . Further we choose

Aν0 = 1, Aνl = 0,∀l > 0 (2.16)

as a normalization,12 so that (2.15) becomes

ϵl = −
1
2
(ν + 2)(ν + 1)Aν+2

l +

l∑
n=1

vnAν−n−2
l−n . (2.17)

Next we rearrange Eq. (2.14) to read

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l + 2
l∑

n=1

ϵnAk
l−n − 2

l∑
n=1

vnAk−n−2
l−n

]
. (2.18)

We are now in a position to use (2.18) and (2.17) to solve for all Ak
l and ϵl recursively. The steps are as follows:

• Consider Eq. (2.18) first for13 k > ν and l > 0, giving

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l + 2
l−1∑
n=1

ϵnAk
l−n − 2

l−1∑
n=1

vnAk−n−2
l−n

]
.

We emphasize that the ϵl does not appear on the right hand side because in (2.18) it multiplies a coefficient Ak
0, which is zero

for k > ν. Furthermore, since AKl+2
l = 0, by taking k = Kl we can compute AKl

l , as well as AKl−1
l if we know all coefficients and

energies of order < l. Now that we know AKl
l and AKl−1

l , we can compute Ak
l , k = Kl, Kl − 1, Kl − 2, . . . , ν + 1. Notice that an

overestimate in Kl does not invalidate this procedure, so, by (2.13), we may as well start with k = ν + 3l and solve in sequence for
k = ν + 3l, ν + 3l − 1, . . . , ν + 1.

• Now that all Ak
l , k > ν are known, and in particular Aν+2

l is known, use (2.17)

ϵl = −
1
2
(ν + 2)(ν + 1)Aν+2

l +

l∑
n=1

vnAν−n−2
l−n .

to compute ϵl.
• Finally, now that we know ϵl we use (2.18) again to obtain the remaining Ak

l with k < ν (recall that Aνl = 0, l > 0 by our
normalization).

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l + 2
l∑

n=1

ϵnAk
l−n − 2

l−1∑
n=1

vnAk−n−2
l−n

]
.

Next we will discuss the generalized problem (1.9) with V (x) given by (1.10).

2.2. Adding the quantum effective action

The discussion so far only considered classical potentials, not containing powers of the Planck constant. However, as was mentioned in
the introduction,we are also interested in describing supersymmetric problems, aswell as so-calledQuasi-Exactly Solvable (QES) problems
which are of the form(

−
1
2
∂2x + V (x)

)
ψ = ϵψ, (2.19)

with

V (x) =
1
g2 v0(gx) + v2(gx). (2.20)

12 This just fixes the coefficient of xν in the wave-function to be unity. Other normalizations will give the same result for all physical observables.
13 Recall that for l = 0 Ak

l = 0 for k > ν as the polynomials u0(x) are just Hermite polynomials.
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Further if we define v0n and v2n as coefficients of expansion

ω =

√
v′′

0 (0), (2.21)

v0(gx)/g2
− ω2x2/2 =

∞∑
n=1

gnxn+2v0n, vbn =
v
(n+2)
0 (0)
(n + 2)!

(2.22)

v2(gx) =

∑
n=0

gnxnv2n, vfn =
v
(n)
2 (0)
n!

(2.23)

Most of the previous discussion remains unchanged, but relation (2.14) now becomes

− (k + 2)(k + 1)Ak+2
l + 2ωkAk

l − 2ωνAk
l =

l∑
n=1

(
2ϵnAk

l−n − 2vbnA
k−n−2
l−n − 2vfnA

k−n
l−n

)
(2.24)

while (2.17) and (2.18) become

2ϵlAν0 = −(ν + 2)(ν + 1)Aν+2
l − 2

l−1∑
n=1

ϵnAνl−n + 2
l∑

n=1

(vbnA
ν−n−2
l−n + vfnA

ν−n
l−n ) (2.25)

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l +

l∑
n=1

2ϵnAk
l−n − 2

l∑
n=1

(vbnA
k−n−2
l−n + vfnA

k−n
l−n )

]
. (2.26)

In particular we will choose the normalization which sets the coefficient of xν to unity, so that Aν0 = 1 and Ak
0 = 0, k ̸= ν. This turns

(2.25) into

ϵl = −
1
2
(ν + 2)(ν + 1)Aν+2

l +

l∑
n=1

(vbnA
ν−n−2
l−n + vfnA

ν−n
l−n ). (2.27)

The procedure for solving the recursion relations at order l is identical to that described below (2.18), however, considering its centrality
to the procedure and adhering to an adage repetitio est mater studiorum, it is repeated here for convenience and clarity:

• Starting from k = ν + (3 + L)l solve

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l +

l−1∑
n=1

2ϵnAk
l−n − 2

l∑
n=1

(vbnA
k−n−2
l−n + vfnA

k−n
l−n )

]
for all k = ν + (3 + L), ν + (3 + L) − 1, . . . , ν + 1 in terms of wave-function coefficients Ak

l′ and ϵl′ with l′ < l which are already
known.

• Solve for ϵl using (recall that Aνl = 0 for l ̸= 0 by normalization)

ϵl = −
1
2
(ν + 2)(ν + 1)Aν+2

l +

l∑
n=1

(vbnA
ν−n−2
l−n + vfnA

ν−n
l−n )

• Finally solve for Ak
l with k = ν − 1, ν − 2, . . . , 0 (notice the dependence on ϵl which was found in the previous step)

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l +

l∑
n=1

2ϵnAk
l−n − 2

l∑
n=1

(vbnA
k−n−2
l−n + vfnA

k−n
l−n )

]
.

It is this algorithm that is the essence of the BenderWu function contained in the BenderWuMathematica R⃝ package. Next we discuss the
recursion relations for the general case of (1.9) with the potential (1.11). Although the Mathematica R⃝ package does not implement this
generalization at the moment, since it is of some importance in the literature [22], and since its implementation is a trivial generalization
of what has been discussed so far, we dedicate a brief statement of the recursion relations.

2.2.1. The generalization of the recursion relations to an arbitrary effective potential
Although we will not implement it in the Mathematica R⃝ code which accompanies this work, we also generalize the Bender–Wu to

the potential of the form(
−

1
2
∂2x + V (x)

)
ψ = ϵψ, (2.28)

with

V (x) =
1
g2

N∑
m=0

gmvm(xg), (2.29)
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and define

ω =

√
v′′

0 (0), (2.30)

v0(gx)/g2
− ω2x2/2 =

∞∑
n=1

gnxn+2v(0)n , v(0)n =
v
(n+2)
0 (0)
(n + 2)!

(2.31)

vm(gx) =

∑
n=0

gnxnv(m)
n , v(m)

n =
v
(n)
m (0)
n!

(2.32)

while the recursion relations, appearing in the itemized list under Eqs. (2.18) and (2.27) become

2ϵlAν0 = −(ν + 2)(ν + 1)Aν+2
l − 2

l−1∑
n=1

ϵnAνl−n + 2
l∑

n=1

N∑
m=0

v(m)
n Aν−n−2+m

l−n (2.33)

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l +

l∑
n=1

2ϵnAk
l−n − 2

l∑
n=1

N∑
m=0

v(m)
n Ak−n−2+m

l−n

]
. (2.34)

2.3. The symmetries and the form of the perturbation series

Wehave alreadymentioned in the introduction that the corrections odd in g of the energy series vanish. This in fact holds if the potential
is symmetric under a simultaneous interchange of x → −x, g → −g , which we will call g-parity.

Consider the reduced Schrödinger equation (1.6)

h(x, g)ψ(x, g) = ϵ(g)ψ(x, g), (2.35)

where we made explicit the dependence of x and g of h, ϵ and ψ . By a g-parity transformation x → −x, g → −g , the above equation
maps to

h(x, g)ψ(−x,−g) = ϵ(−g)ψ(−x,−g). (2.36)

Therefore, ψ(−x,−g) is also an eigenfunction of x, g with an eigenvalue ϵ(−g). However, consider the overlap∫
dx ψ(−x,−g)∗ψ(x, g). (2.37)

If the above overlap is zero, then the two states ψ(x, g), ψ(−x,−g) are distinct states. This however cannot be, as making an expansion
in small coupling ψ(−x,−g) = ψ0(−x) + ψ1(−x)g + · · · , where ψ0(−x) is proportional to the harmonic oscillator wave-function, and
is therefore even. To leading order, the overlap is therefore nonzero. Since the two states ψ(x, g) and ψ(−x,−g) are the same to leading
order in g, they must be so to sub-leading orders as well, therefore we have

E(g) = E(−g) (2.38)
ψ(x, g) = C(g)ψ(−x,−g). (2.39)

Notice that while the first equation implies that E(g) is an even function of g , the wave-function in general gets multiplied by a constant
which is g dependent. However, we can always choose C(g) to be ±1. The choice is arbitrary and it is purely a normalization issue.

In any event, while this consideration implies that the power series of energy is always in even powers of g , the wave-function can
always be normalized so that it contains only powers g lxk, such that l + k is even (i.e. C(g) = 1) or l + k is odd (i.e. C(g) = −1).

We have derived (2.26) and (2.27) with the normalization Aν0 = 1 and Aνl = 0, which sets C(g) = 1 if ν is even and C(g) = −1 if ν is
odd. The consequence of g-parity is that Ak

l = 0 if l + k + ν is odd and ϵl = 0 if l is odd. Indeed we can see that if we assume that Ak
l′ = 0

when k+ l′ + ν, and ϵl′ = 0 when l′ is odd for all l < l′, we can see that (2.26) implies that all Ak
l will be zero if l+ k+ ν is odd. To see that

note that if we set l+ k+ ν to an odd number, sums on the RHS of (2.26) involve only coefficients Ak
l−2p, A

k−n−2
l−n and Ak−n

l−n , for integer p and
n. However, if l + k + ν is odd, it is easily seen that all of these coefficients vanish.14 Hence Ak

l must vanish if l + k + ν is odd. Taking l-odd
in (2.27), we see that the RHS contains terms Aν+2

l , Aν−ν−2
l−n and Aν−νl−n , all of which vanish for l-odd. Hence ϵl = 0 with l–odd

3. Multi-variable case

Although this work is mostly about the one-dimensional quantum mechanics, we wish to present a generalization to multi-variable
case. The content of this section is not implemented in the BenderWu package, and can be skipped entirely without affecting the
understanding of the remainder of the paper. Nevertheless the study of this case is important for multiple reasons, some of which we
emphasize here

• The study of higher dimensional quantum mechanics systems,
• The study of many-body systems,
• The study of quantum-field theories as a limit when number of degrees of freedom goes to infinity.

14 This is because when l + k + ν is odd, then l − 2p + k + ν, l − n + k − n − 2 + ν and l − n + k − n + ν are all odd, and so Ak
l−2p , A

k−n−2
l−n and Ak−n

l−n vanish by assumption.
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Wewish to emphasize the final point that the discussion contained in this sectionmay have direct application to quantum field theory,
and the role of resurgence there. A skeptical reader may have doubts that the limiting process of infinitely many degrees of freedom
may invalidate all of the resurgence structure that is believed to hold in quantum mechanics. Indeed for a long time it was commonly
believed that the IR renormalon singularities, first discussed by t’ Hooft [27], cannot be fixed by any resurgence-like perturbative/non-
perturbative interplay.15 Our perspective is that the difference between quantum mechanics and quantum field theory is not a major
obstacle. Regularized QFT with the UV and IR cutoffs can be interpreted as a many-body quantummechanics. In this respect, our proposal
is similar to lattice field theory, andmay provide an alternative thereof. In lattice field theory, in which Euclidean space–time is discretized
in a finite volume, with the use of stochastic perturbation theory [32–34], one can in principle extract the large-order asymptotic growth
of perturbation theory, and try to find connections with the IR renormalon singularities and resurgence structure.

Therefore, under the assumption that resurgence is a phenomenon present in all Quantum Mechanical systems16 one is forced either
to concede that the resurgence is operative in both quantummechanics and quantum field theories, or that the IR and UV regularization of
quantum field theories completely change the nature of the theory in question. Since there is much evidence the latter cannot be correct,
(namely, the very existence and success of lattice field theory is a numerical evidence that the UV and IR regularization does not alter
nature of a QFT dramatically), we strongly suspect that the resurgence structure is bound to be present in quantum field theories as well.

Since in our formalism, time is already continuous, and recursion relations happen to have a geometric (and parallelizable) structure,
in the long run, we hope that the formalism presented below can be used to determine the connection between perturbation theory and
non-perturbative physics in QFT. It is worthwhile checking how efficient is this formalism compared to the conventional path-integral
perturbation theory via Feynman diagrams. This is, however, beyond the scope of the present work.

The reduced Hamiltonian we consider is of the form

h = −

N∑
i=1

1
2
∂2i +

1
g2 v(gx1, gx2, . . . , gxN ), (3.1)

with the Schrödinger equation

hψ = ϵψ. (3.2)

Further, we will assume that

v(gx1, gx2, . . . , gxN )
g2 =

∑
i

ω2
i x

2
i

2
+ ṽ(gx1, gx2, . . . , gxN ). (3.3)

Using an ansatz

ψ = u({xi})e−
1
2
∑N

i=1 ωix2i , (3.4)

we have
N∑
i=1

[
−∂2i u + 2xiωi∂iu

]
+

2
g2 ṽ({gxi})u = 2

(
ϵ − 2

1
g2 (0) −

∑
ωi

2

)
u. (3.5)

Upon writing

u({xi}) =

∑
l

ul({xi})g l (3.6)

and expanding ṽ

ṽ{gxi} =

∑
∑

i ni>2

vn1,n2,...nN g
n1+n2···+nN−2xn11 xn22 . . . x

nN
N , (3.7)

vn1,...nN =
1

n1!n2! . . . nN !

∂n1

∂yn11
. . .

∂nN

∂ynNN
ṽ({yi})

⏐⏐⏐⏐⏐
{yi=0}

(3.8)

and

ϵ =

∑
n

gnϵn. (3.9)

we obtain from (3.5)
N∑
i=1

[
−∂2i ul + 2xiωi∂iul

]
+ 2

∑
∑

i ni>2

vn1,n2,...,nN ul−(n1+n2···+nN−2) × xn11 xn22 . . . x
nN
N = 2

l∑
n=0

ϵnul−n. (3.10)

The equation for l = 0

− ∂2i u0 + 2xiωi∂iu0 = 2ϵ0u0, (3.11)

15 A progress in this direction is provided in 2d and 4d QFTs [14,28,29], also see [30,31].
16 There is currently ample evidence indicating that this is true, see the examples [11,12,21]. However, theworking of the resurgence for quantum systemswhose associated
classical mechanics is a higher genus Riemann surface is currently an open problem.
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with a solution

u0 = Hν1 (x1)Hν2 (x2) . . .HνN (xN ) (3.12)

ϵ0 = ν1 + ν2 + · · · + νN , (3.13)

which is just the multi-dimensional Harmonic oscillator solution. Finally we take

ul =

∑
k1,...,kN

Ak1,...,kN
l xk11 xk22 . . . x

kn
N , (3.14)

and, upon equating powers of xi, obtain

N∑
i=1

[
−(ki + 2)(ki + 1)Ak1,...,ki+2,...,kN

l + 2ωi(ki − νi)A
k1,...kN
l

]
+ 2

∑
∑

i ni>2

Ak1−n1,k2−n2,...,kN−nN
l−(n1+n2+···−2) vn1,n2,...,nN = 2

∑
n

ϵnA
k1,k2,...,kN
l−n . (3.15)

To solve the recursion relation, we will assume that all the leading order harmonic oscillator states are non-degenerate,17 so that the
only solution of the equation is∑

i

ωi(ki − νi) = 0 ⇒ ki = νi. (3.16)

This allows us to set ki = νi into Eq. (3.15) and obtain

ϵlA
ν1,ν2,...,νN
0 =

N∑
i=1

[
−

1
2
(νi + 2)(νi + 1)Aν1,...,νi+2,...,νN

l −

l−1∑
n=0

ϵnA
ν1,ν2,...,νN
l−n +

∑
∑

i ni>2

Aν1−n1,ν2−n2,...,νN−nN
l−(n1+n2+···−2) vn1,n2,...,nN

]
. (3.17)

By choosing the coefficient of xν11 xν22 . . . x
νN
N to be unity, we may set

Aν1,ν2,...,νN0 = 1, Aν1,ν2,...,νNl = 0,when l ̸= 0, (3.18)

giving

ϵl =

N∑
i=1

[
−

1
2
(νi + 2)(νi + 1)Aν1,...,νi+2,...,νN

l +

∑
∑

i ni>2

Aν1−n1,ν2−n2,...,νN−nN
l−(n1+n2+···−2) vn1,n2,...,nN

]
. (3.19)

To find an energy correction ϵl we need to have all ϵl′<l and Ak1,...,kN
l′<l , as well as Aν1,...,νi+2,...,νN

l . On the other hand if at least one kj ̸= νj for
some j ∈ {1, . . . ,N}, from (3.15) we obtain

Ak1,...kN
l =

1∑
i ωi(ki − νi)

[
N∑
i=1

1
2
(ki + 2)(ki + 1)Ak1,...,ki+2,...kN

l −

∑
ni>2

Ak1−n1,k2−n2,...,kN−nN
l−(n1+n2+···−2) vn1,n2,...,nN +

l∑
n=1

ϵnA
k1,k2,...,kN
l−n

]
. (3.20)

To show a way to solve these equations, let us first introduce some notation. Let all the indices k1, k2, . . . , kN be grouped into a vector
of integers

k⃗ = (k1, k2, . . . , kN ). (3.21)

Further, let the basis vectors be

e⃗1 = (1, 0, . . . , 0)

e⃗2 = (0, 1, 0, . . . , 0)
...

e⃗N = (0, . . . , 0, 1).

Now, let the vector K⃗l be the maximum power vector at the order l

K⃗l = (K 1
l , K

2
l , . . . , K

N
l ), Kl ∈ N+, (3.22)

meaning that

Ak⃗
l = 0, if ∃⃗i such that e⃗i · k⃗ > K i

l . (3.23)

17 The degenerate case is more subtle, and we postpone it for future work.
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Fig. 1. A recursion diagram showing how all coefficients Ak⃗
l can be found using (3.20) and (3.19) in the case of the two-variable system. The white circles denote the vector

k⃗ for which the coefficients Ak⃗
l do not a priori vanish. The red-shading indicates the coefficient Ak⃗

l of the same class labeled by the integer nk⃗ . The black line with an arrow
indicates a particular order in which the coefficients Ak⃗

l can be solved. The two red circles indicate the value of k⃗ for the coefficients Ak⃗
l which appear in Eq. (3.19) for ϵl . The

shaded area indicates the values of k⃗ for which coefficients Ak⃗
l using (3.20) can be found only if ϵl is known. The blue arrows indicate that for a coefficient Ak⃗

l to be found, the

knowledge of Ak⃗+2e⃗1
l and Ak⃗+2e⃗2

l is required.

To abbreviate notation, we will denote the condition above

k⃗ > K⃗l (3.24)

to mean that at least one component of the vector k⃗ is larger than the vector s. Note that the ordering of this inequality is important, and we
have not defined the relation k⃗ < s⃗. Notice also that, since the leading order coefficients Ak⃗

0 are of order no higher than ν1, ν2, . . . , νN in
the coordinates x1, . . . , xN , the K⃗0 is given by

K⃗0 = (ν1, . . . , νN ) = ν⃗. (3.25)

We can write any vector k⃗ as

k⃗ = K⃗l − s⃗. (3.26)

Further, we classify values of k⃗, uniquely determined by the s⃗, by the value of the integer

nk⃗ =

N∑
i=1

sn. (3.27)

We now claim that we can successively solve for the coefficients Ak⃗
l for the classes

nk⃗ = 0, 1, 2, . . . nν⃗ (3.28)

using Eq. (3.20). Indeed notice that since for a given k⃗ in a fixed class labeled by the integer n⃗, the RHS of (3.20) contains only coefficients
Ak⃗+2e⃗i
l , i = 1, . . . ,N which are in the class nk⃗ − 2. Since we assume that we know all the coefficients Ak⃗′

l such that nk⃗′ < nk⃗, we can solve
for all the coefficients Ak⃗

l . However, in order to ensure that ϵl does not appear in the RHS of (3.20), we must restrict ourselves for the
coefficients of classes nk⃗ ≥ nν⃗ .

Notice that if we know all Ak⃗
l with nk = 0, 1, 2 . . . , nν⃗ , we in particular know the class nν⃗+2e⃗1 . This allows us to use (3.19) to solve for

ϵl. Now that ϵl is known, we can solve for the classes nk⃗ < nν⃗ .
To illustrate this procedure, let us explain how the recursion relations can be solved in the case of the two-variable problem. Then

k⃗ = (k1, k2), and a particular recursion procedure can be presented graphically. We illustrate it in Fig. 1. Starting from the vector k⃗ = K⃗l,
we can follow the arrowed path to determine the coefficients Ak⃗

l . Note (3.20) requires the knowledge of the previous coefficients Ak⃗+e⃗1
l and
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Ak⃗+e⃗2
l (denoted by blue arrows). These coefficients are clearly always located at positions in the diagram for which the A-coefficients were

already determined.18

4. The BenderWuMathematica R⃝ package

In this section we describe how the Mathematica R⃝ BenderWu package is used and what are its abilities. However rather than
explaining its features in detail, we will mostly focus on working out a particular example. Many more examples are found in an example
file accompanying this work, and the reader is encouraged to refer to it.

Installing and loading the BenderWu package

To install the BenderWu package, open the accompanying installationMathematica R⃝ notebook under the name

BenderWu_Installation.nb

which allows one to easily copy the BenderWu package into your computers repository. Once complete, use the command

In[1]:= Needs["BenderWu‘"]

or

In[1]:= <<"BenderWu‘"

to load the package. This loads the package content, which comprises the functions: BenderWu function, BWProcess function and
BWLevelPolynomials. We briefly describe their application.

The BenderWu function

The integral part of a BenderWu package is the function of the same name. The BenderWu takes in four essential arguments and a
number of options. The function is called with the following basic syntax

BenderWu[V[x],x,(Level Number), (Order),Options]

The arguments above are:

• The potential which has a local minimum at x = 0 (e.g. xˆ2+3xˆ7)
• The argument of the potential (e.g. x)
• The level number for which one wishes to compute (e.g. 3)
• The order of g2 to which one wishes to compute the energy and the wave-function (e.g. 30).
• After fourth argument is called, a number of options can be called. These are discussed in Section 4.2

Notice the order of g2, and not g which is specified in our normalization.19
The first argument, ’ can be input in two basic forms: either by just writing the potential, in which case the entry specifies the classical

potential only discussed in Section 2.1, or it can be entered as

BenderWu[{V0[x],V2[x]},x,(Level Number), (Order),Options]

where V0[x] and V2[x] are the classical and the quantum effective potentials v0(x) and v2(x) discussed in Section 2.2.
It is important to remember that the code assumes that the potential v0(x) is at a local minimum when the argument is equal to zero.

This means that the perturbative analysis will be carried out assuming that v′

0(x) = 0. Also it must hold that v′′

0 (0) ̸= 0. To do an expansion
around a minimum at x=x0, one can use a syntax

BenderWu[{V0[x0+x],V2[x0+x]},x,(Level Number), (Order),Options]

The BWProcess function

The BWProcess function serves as a processing function for the output of the BenderWu function. It helps to format the output and
present it in a way that is most useful to the user. It allows for a number of options which control how the output is formatted. The basic
syntax is

BWProcess[(output of BenderWu), Options]

18 Note that the successive recursion patternwe show here is not unique. In fact to solve for any coefficient Ak⃗
l in the same class nk⃗ , we need only to know all the coefficients

in the class labeled by nk⃗ + 2. This fact allows for the recursion algorithm to be parallelized.
19 This labeling is done to be consistent with most of the literature where the order refers to the order of h̄ ∝ g2 . See the definition of g in the introduction.
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BWLevelPolynomial function

The BenderWu function allows only for the insertion of the integer values for the level number, and cannot directly compute the
analytical level-number dependence. The BWLevelPolynomial function, however, allows for the reconstruction of the level-number
dependence by computing the perturbative data for multiple values of the level-number. The details of how to use this function are found
in Section 4.3.

To illustrate how the function BenderWuand and BWProcess work we will go through an example of the potential v(gx)/g2
=

x2
2 + g2x4 explicitly and demonstrate how some of the basic functions and options work. The discussion of the use of the usage of the
function BWLevelPolynomial is postponed to Section 4.3. In addition more examples have been worked out in the Mathematica R⃝

notebook Examples.nb accompanying this work. The reader is strongly encouraged to refer to this supplemental material.

4.1. An example

Let us consider an example where the BenderWu function is used to compute the first 100 corrections of the perturbation for the third
excited state for the potential v(xg)/g2

=
x2
2 + g2x4, where g is treated as an expansion parameter:

In[2]:= BW=BenderWu[x^2/2+x^4,x,3,100];

Upon execution of the above command, a progress monitor will appear indicating some basic information about the progress of the
computation. An example of the progress monitor is given below:

Computing order: 67

Computing polynomial power: 53

CPU time per order: 0.175167

Memory in use: 65.1391 MB

Total time elapsed: 0 minutes and 4 seconds.

The progress monitor gives the information about:

• The order of g2 it is currently computing, the CPU time it needs per order,
• The power of x (which we labeled as ‘‘k’’ in Section 2) it is currently computing ,
• The CPU time it takes for each order,
• The total memory in use,
• The total time elapsed since the beginning of the computation.

In certain situations it may be desirable to turn off the Progress Monitor. To do that use the option Monitor->False, e.g.

In[1]:= BW=BenderWu[x^2/2+x^4,x,3,100,Monitor->False];

Once the computation is done, the symbol BW is assigned an array with three elements. The elements of the array are, in order: energy
corrections ϵl, wave-function coefficients Ak

l and a list of
The first element of the variable BW gives a series of coefficients.

In[4]:= BW[[1]]

Out[4]= {7
2
,
75

4
,-

1575

8
,
66825

16
,-

15184575

128
,
1024977375

256
,

-
155898295875

1024
,
12977225578125

2048
,-

9294825375966375

32768
,...

where we indicated with dots that we have trimmed the output as it is too long at this order. The second element, BW[[2]] outputs a
matrix Ak

l where rows are associated with index l (the order of g) and k is associated with the index k (the power of x). Since this output is
large and not very illuminating, we will not show it here. We will see in a moment how one can use post-processing function BWProcess
in order to generate a more convenient output.

The function BWProcess takes in the default output of the function BenderWu. It allows the raw data generated by the call to of
BenderWu function to be post-processed into an output which is most suitable for the user. If called without any options it returns the
energy eigenvalues.

In[5]:= BWProcess[BW]

Out[5]= {7
2
,
75

4
,-

1575

8
,
66825

16
,-

15184575

128
,
1024977375

256
,

-
155898295875

1024
,
12977225578125

2048
,-

9294825375966375

32768
,...
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However, to change the output into a series in g , we can simply use the option OutputStyle->"Series"

In[6]:= BWProcess[BW,OutputStyle->"Series"]

Out[6]=
7

2
+
75 g2

4
-
1575 g4

8
+
66825 g6

16
-
15184575g8

128
+
1024977375 g10

256
+...

where again we indicated with dots that we have trimmed the output because it is too large. Indeed, often the full output is too long to be
illuminating, and one is most interested in the first few orders. To generate an output which only contains data up to a specific order, one
can use the option Order->n, where n specifies the order (of g2) at which to trim the output, e.g.

In[7]:= BWProcess[BW,OutputStyle->"Series",Order->2]

Out[7]=
7

2
+
75 g2

4
-
1575 g4

8

We can also output the wave-function series u(x) =
∑

l,kA
k
l g

lxk by utilizing the option Output->"WaveFunction". This gives

In[8]:= BWProcess[BW,OutputStyle->"Series",Order->2,Output->"WaveFunction"]

Out[8]= -
3 x

2
+ x3 + g2

⇣225 x
16

-
15 x5

8
-

x7

4

⌘
+

g4
⇣
-
35 775 x

128
+

315 x5

16
+

135 x7

32
+

115 x9

192
+

x11

32

⌘

Note that the options Output and OutputStyle of the BWProcess function are also the options of BenderWu. This is also true for many
other options, discussed in the next section. Therefore, the last output we generated could have equally been generated by calling the
BenderWu function like so

In[9]:= BenderWu[x^2/2+x^4,x,3,2, Output->"WaveFunction",

OutputStyle->"Series"]

Out[9]= -
3 x

2
+ x3 + g2

⇣225 x
16

-
15 x5

8
-

x7

4

⌘
+

g4
⇣
-
35 775 x

128
+

315 x5

16
+

135 x7

32
+

115 x9

192
+

x11

32

⌘

Note finally that the potential can also contain an arbitrary non-numerical parameter, i.e.

In[10]:= BenderWu[x^2/2 + x^4 + a x^3, x, 0, 2, Simplify -> True,

Output -> "Energy", OutputStyle -> "Series"]

Out[10]=
1

2
+

1

8
(6 - 11 a^2)g2 -

3

32
(28 - 228 a2 + 155 a4) g4

Notice that we also used the option Simplify->True. This option simplifies the analytical expressions at each step, often resulting in
faster evaluation and a simplified result when non-numerical symbols are used, aswell aswhen irrational factors appear in the calculation.

4.2. The options

The BenderWu function can be calledwithout only the four essential arguments. The output is then given as an arraywith three entries.
The first entry is an array of perturbative corrections to the energies ϵk. The second entry is a matrix Ak

l of the wave-function coefficients.
The third entry passes arguments x, ν, lmax as well as a variable evenwhich determines whether the function is even or not. The purpose
of the third entry in the output array is to allow the post-processing by the function BWProcesswhich uses these values.

The basic evaluation options which can be specified in the BenderWu function are given in Table 1, as well as a brief description.
TheBenderWu also allows for a number of optionswhich determine theway the data is output. These options are options of the function

BWProcesswhich takes in a single argument
The options are called with the standardMathematica R⃝ syntax:

(Option)->(Option Value)

The table of options as well as their description is given in Tables 1 and 2.

4.3. The polynomials in level number and the BWLevelPolynomial function

In this section we describe another function of the package BenderWuwhich allows one to compute the functional form of the energy
correction ϵ2n (recall that we call n the order) on the level number ν , assuming that it is in the polynomial form. In other words we will
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Table 1
The evaluation options of the BenderWu function.

Option Values Description

Evaluation "Analytical" (default) Use symbolic calculation
"Numerical" Evaluate numerically (good if irrational constants appear in the potential or harmonic oscillator frequency)

WorkingPrecision MachinePrecision (default) Use hardware machine precision for numerical evaluation (recommended)
Non-negative integer The number of digits used for internal computations

MaxTime Infinity (default) Perform a computation to the specified order, regardless of the length of time it takes.
Number> 0 Specifies the maximal number of seconds used for a computation of a single order

TotalMaxTime Infinity (default) Perform a computation to the specified order, regardless of the length of total time it takes.
Number> 0 Specifies the maximal number of minutes used for an entire computation

Simplify False (default) or True If True then the function Simplify is used in each step of the evaluation.

Monitor True (default) Turns on the monitor during the computation
False (default) Turns off the monitor during the computation

Table 2
The output formatting options of the BenderWu and the BWProcess function. All of the options, save for the option Order are shared between the two functions. Notice
that if no options are called in the BenderWu function, or only evaluation options of Table 2 are called, the default output is in terms of raw data which serves as an input
to the BWProcess function.

Option Values Description

Output "Energy" (default for {BWProcess}) Outputs the energy data ϵl
"WaveFunction" Outputs the wave-function coefficients Ak

l

OutputStyle "Array" (default) Outputs the data as an array
"Series" Outputs the data as a series using ‘‘g’’ as the series coefficient (see also option

Coupling and SeriesOutput)
"MatrixForm" Outputs the data as a matrix
"Ratio" Affects only the ‘‘Energy’’ output. Generates a list of ratios of the series coefficients

an+1/an .
"RatioPlot" Affects only the ‘‘Energy’’ output. Generates a ListPlot of the ratios of the

coefficients an+1/an .

SeriesOutput "Coupling" (default) If series output is used the terms are grouped according to the coupling
"Argument" If series output is used, the terms are grouped according to the argument x

Coupling g (default) Specifies a symbol used for the coupling in the series output

Order (BWProcess only) 0 (default) or n ∈Integer If called with integer other than zero, then it truncates the data to the order n.
{nmin, nmax} It produces an output from order nmin to order nmax . The order nmin can take values

−1, 0, 1, . . . . If nmin = −1 the classical shift is included in the output for the energy.

assume that

ϵ2n = a0n + a1nν + a2nν2 + · · · + app
nνp(n) (4.1)

where p is the highest power of ν that appears. Notice that p depends on n in general.
To determine the polynomial form we must

• Assume that at the maximal order nmax we are interested in, the highest power of the polynomial in ν is pmax = p(nmax).
• Use the BenderWu function to compute the energy corrections up to the order nmax and for values of ν = 0, 1, 2, . . . , νmax, where
νmax ≥ pnmax .

• Use the data to fix the coefficients ain (n = 0, 1, . . . , nmax, i = 0, 1, . . . , p(n)) of a polynomial in ν.

The function BWLevelPolynomial does precisely that. It takes a two-dimensional array, with first-level entries of the energy series
coefficients ϵ2n up to some order nmax, for various level numbers ν, and returns an array of the polynomials in ν corresponding to each
order of n = 0, . . . , nmax.

In other words, by taking νmax = 4 and pmax = 3 we can simply generate a table

In[11]:= Levels = Table[BenderWu[x^2/2+x^4,x,nu,3,

Output->"Energy"],{nu,0,4}];

which produces a two dimensional array, or a matrix e2n(ν), where n index is the column index and ν is the row index. This matrix can be
forwarded to the function BWLevelPolynomial to produce an output

In[12]:= BWLevelPolynomial[Levels]

Out[12]= {1
2

+ ⌫ ,
3

4
+

3 ⌫

2
+

3 ⌫2

2
, -

21

8
-

59 ⌫

8
-

51 ⌫2

8
-

17 ⌫3

4
}
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returning the polynomial form of the three orders which we computed. Notice that the leading order is just the usual Harmonic Oscillator
term,while the rest correspond to the Bohr–Sommerfeld quantization terms. The levels function can also take an optional argumentwhich
is used as a symbol for ν.

In[13]:= BWLevelPolynomial[Levels,n]

Out[13]= {1
2

+ n ,
3

4
+

3 n

2
+

3 n2

2
, -

21

8
-

59 n

8
-

51 n2

8
-

17 n3

4
}

Note that, although technically we can have νmax = pmax, since pmax is not a priori known for the function BWLevelPolynomial to be
able to check that the returned polynomials are correct, it needs extra data. Therefore it is necessary that νmax > pmax. Running the same
steps, except taking νmax = 3 results in a warning and a truncated result

In[14]:= Levels = Table[BenderWu[x^2/2+x^4,x,nu,3,Output->"Energy"],{nu,0,3}];

In[15]:= BWLevelPolynomial[Levels]

The polynomial form could not be established for the last 1 orders.

Out[15]= {1
2

+ ⌫ ,
3

4
+

3 ⌫

2
+

3 ⌫2

2
}

returning only the results which were computed reliably.

5. Conclusion

We have presented the generalization of the Bender–Wu recursion relations treating all locally harmonic potentials uniformly. In
addition we considered various effective action forms, and derived generalizations for them.

Additionally we have developed a Mathematica R⃝ package incorporating these relations for an easy computation of the perturbative
expansions in 1D quantummechanics. Although the method of Bender–Wu is well known in the literature, the application seems to have
been focused on a case-by-case basis. It is our hope that the unified treatment, and simplicity of the Mathematica R⃝ package introduced
here will stimulate a more fervent development of the resurgence program, as well as bring the program closer to a wider audience. We
further hope to adapt the package into a Wolfram demonstration project, accessible to students and researchers who currently do not
have access to aMathematica R⃝ license.

We also hope to develop the package to include new, as well as incorporate already known methods of processing and analyzing
the resurgence data. Some immediate obvious generalizations are incorporations of arbitrary effective actions, ability to easily change
the initial harmonic oscillator ansatz incorporating an analytically resummed subclass (see [35]), and generalizations to multi-variable
Schrödinger equation. The last generalization is of potentially vital importance in the attempt to connect resurgence ideas to quantum
field theories.
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Appendix A. The highest power for v1 = v2 = · · · = vL−1 = 0 and vL ̸= 0

Here we prove the formula

Kl =

⎧⎨⎩
νδl0 for 0 ≤ l < L

ν + (L + 2)
⌊
l
L

⌋
+ (lmod L) for l ≥ L. (A.1)

Wewill give two proofs. The first one ismore intuitive and uses the standard textbookmethods of Rayleigh–Schrö dinger, while the second
one is using the Bender–Wu recurrence relations.

A.1. The Rayleigh–Schrö dinger proof

Consider the Schrödinger equation

(h0 + vI ) |ψ⟩ = ϵ |ψ⟩ (A.2)

where we separated the Hamiltonian of (2.1) into the harmonic oscillator part h0 and the ‘‘interaction’’ terms

h0 = −
1
2
∂2x +

1
2
ω2x2 (A.3)

vI =
ṽ(gx)
g2 = v1gx3 + v2g2x4 + · · · . (A.4)
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Now write ϵ = ϵ0(ν) + ϵ̃. The Schrödinger equation (A.2) can be formally rewritten as

|ψ⟩ = |ν⟩ +
1

h0 − ϵ0(ν)
P(ϵ̃ − vI ) |ψ⟩ (A.5)

where |ν⟩ is the harmonic oscillator state at level ν, and P is the projector onto the subspace orthogonal to |ν⟩. Notice that when vI → 0
then ϵ̃ → 0 and |ψ⟩ → |ν⟩, as it should.

Now we can iterate the above equation by plugging in the LHS to the RHS. We then get

|ψ⟩ = |ν⟩ +
1

h0 − ϵ0(ν)
P(−vI ) |ν⟩ +

1
h0 − ϵ0(ν)

P(ϵ̃ − vI )
1

h0 − ϵ0(ν)
P(−vI ) |ν⟩ + · · · (A.6)

We can now insert complete set of Harmonic oscillator states, and obtain that the kth power contribution of vI is of the form

ψ (k)(x) ∝

∑
{ni}

Hn1 (x)e
−
ωx2
2
vn1n2

ϵn1n2

vn2n3

ϵn2n3
. . .

vnkν

ϵnknν
(A.7)

where we specified to the coordinate basis, and where

vnini+1 = ⟨ni| vint |ni+1⟩ , ϵnini+1 = ϵ0(ni) − ϵ0(ni+1). (A.8)

The Hn(x) are Hermite polynomials of order n. If v1 ̸= 0 in (A.4), then by replacing vI with its leading term20 v1gx3 would allow n1 at
order gk to be at most max[n1] = ν + 3k, because each power of vI would contribute an x3 term, and change the harmonic oscillator level
number by 3. This confirms (A.1) for L = 1.

Now if vi = 0, i < L and vL ̸= 0 then the lowest power of g in the potential vI is gLvLxL+2, so that there is no contribution to the
wave-function until order gL. Therefore all Kl = 0 for l = 1, 2, . . . , L− 1. Now for order gL, it is easy to see KL = K0 + L+ 2 = ν+ L+ 2. At
order gL+1 we can take the term in vI proportional to vL+1gL+1xL+3, and get KL+1 = ν + L+ 3. Continuing one can show that formula (A.1)
is indeed valid.

A.2. The proof by the recurrence equations

The proof is by induction. First notice that if we take l < L then the formula (2.18) becomes

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

l + 2ϵ1Ak
l−1 + 2ϵ2Ak

l−2 + · · · 2ϵlAk
0

]
(A.9)

while (2.17) becomes

ϵl = −
1
2
(ν + 2)(ν + 1)Aν+2

l . (A.10)

It is easy to convince oneself that these two equations imply ϵl = 0 and Ak
l = 0 for l < L. This just means that there is no corrections to

the Harmonic oscillator states and energies up to order gL, which is the first order at which the potential gives a non-trivial contribution.
This translates into

Kl = 0, for 0 < l < L. (A.11)

So the first contribution comes at order l = L. Plugging that into (2.18), we get

Ak
L =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

L − 2vLAk−L−2
0

]
. (A.12)

Since Ak−L−2
0 = 0 for k > K0 + L + 2 = ν + L + 2, then it must follow that

KL = ν + L + 2. (A.13)

Now consider l = L + 1. Then (2.17) becomes

Ak
L+1 =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

L+1 − 2vLAk−L−2
1 − 2vL+1Ak−L−3

0

]
. (A.14)

The two last terms vanish if both k > K1 + L + 2 = 2(L + 2) and k > K0 + L + 3 = ν + (L + 2) + 1, so

KL+1 = ν + L + 3. (A.15)

Now for L ≤ l < 2L, we have

Ak
l =

1
2ω(k − ν)

[
(k + 2)(k + 1)Ak+2

L+1

+ 2ϵLAk
l−L + 2ϵL+1Ak

l−L−1 + · · · + 2ϵlAk
0

− 2vLAk−L−2
l−L − 2vL+1Ak−L−3

l−L−1 · · · − 2vl−1Ak−l−1
1 − 2vlAk−l−2

0

]
. (A.16)

20 It can be shown by staring at the equations that this term maximizes the power of x at order gk .
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Now notice that all the terms, except the first on the RHS vanish if k > K0 + l + 2 = ν + l + 2, so that

Kl = ν + (l + 2), L ≤ l < 2L, (A.17)

which agrees with (A.15) when l = L + 1.
Now that we have proven that the formula (A.1) is valid for l < 2L, let us assume that it is valid for all l < l̃. Now notice that the formula

(A.1) implies

Kl̃ ≥ Kl̃−1 + 1. (A.18)

Now taking l = l̃, the last term in the square bracket of (2.18)

vLAk−L−2
l̃−L

+ vL+1Ak−L−3
l̃−L−1

+ vL+2Ak−L−4
l̃−L−2

+ · · · vl̃−1A
k−l̃−1
1 + vl̃A

k−l̃−2
0 (A.19)

will dictate the maximum k for which Ak
l̃
does not vanish. In other words, in order for Ak

l to vanish, all terms above must vanish as well. It
is clear that in order for this to be fulfilled, we must have that[

k > Kl̃−L + (L + 2)
]
&
[
k > Kl̃−L−1 + (L + 3)

]
&
[
k > Kl̃−L−2 + (L + 4)

]
&

. . . &
[
k > K1 + (l̃ + 1)

]
&
[
k > K0 + (l̃ + 2)

]
(A.20)

However, notice that because (A.18) holds for all l < l̃, all of the above conditions are fulfilled if the first one is fulfilled. Therefore

Kl̃ = Kl̃−L + (L + 2) = ν + (L + 2)

(
1 +

⌊
l̃ − L
L

⌋)
+ (l̃mod L) = ν + (L + 2)

⌊
l̃
L

⌋
+ (l̃mod L) (A.21)

which implies that formula (A.1) is also true for l = l̃. This finally proves (A.1) for all l.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cpc.2017.11.018.
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