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The Borel sum of  the perturbation expansion o f  any eigenvalue of  the double-well oscillator p2 + x 2 + 2gx 3 + g2x4 ' 
g > 0, is proved to represent a complex eigenvalue o f  the non self-adjoint operator eilr/3(p 2 + e-2 icr /3x  2 + 2ge-Si~r/6x 3 
+ g2e-i~rx4). This result makes the Zinn-Justin conjecture equivalent to the coincidence between the I = 0 eigenvalues of  
the two-dimensional oscillator 10p12 + Ixl 2) 4-g2 ixl 4 and those of  the complex double well p2 + x 2 + 2ge-br/2x3 
+ g2e- i r rx4 . 

It is well known that the simplest example of vacu- 
um instability, where perturbation theory fails to re- 
cover the solution through the Borel summability, is 
the standard double-well anharmonic oscillator 

H(g)=p 2+x  2 +2g'x 3 +g2x4 ,  g > 0 .  (1) 

This problem has received much attention in recent 
times (see, e.g. the overview by Simon [1] ; subsequent 
investigations include refs. [2,3]) also in connection 
with the so-called Zinn-Justin conjecture, to be re- 
called later. 

The results of the Saclay group [4,5] on the large-n 
behaviour of the coefficients A/n of the Rayleigh- 
Schr6dinger perturbation expansion (hereafter RSPE) 
of any eigenvalue Ei(g ) of (1) clearly indicate that its 
Borel sum, if any, has to be a complex quantity forg 
real. Therefore it cannot represent an eigenvalue of 
the self-adjoint operator H(g) and its relation to the 
problem has to be clarified. 

The main idea in trying to identify the Borel sum 
of the RSPE of (1) is first to generate through complex 
scaling a non self-adjoint, "single-well" problem having 
the same RSPE, and then to prove the stability of its 
eigenvalues with respect to the unperturbed ones, to- 

gether with the estimates on the remainder of the 
RSPE in some sector of the complex g plane needed 
to establish analyticity and Borel summability. 

We will indeed see that the operator H 1 defined as 
the realization in L2(R) of the differential expression 
(here a = rr/3 + 20/3), 

Hl(Igl,  0) = eia(p 2 + e -2 i ax  2 

+ 2lgl e-5in/6-2i°/3x3 + Igl 2 e- i r rx4) ,  

-Sir  < 0 = argg < ¼rr, (2) 

admits for each eigenvalue Xi(lgl, 0), i = 0, 1 ..... a 
Borel summable RSPE coinciding with the RSPE of 
the eigenvalue Ei(g ) of H(g). The eigenvalues o f H  1 (.) 
are in turn related to the original problem much in the 
same way as resonances are in standard dilation analytic 
problems. For a discussion on this point see ref. [6], 
where the same result was obtained for any triple-well 
oscillator of the type 

Hm(g  ) = p 2  + x  2 _ 2g2mx2m+2 + g4mx4m+2 , 

m > l ,  m E Z .  (3) 

Hm(g ) reduces indeed to (1) for m = 1/2 (our results 
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hold for any half-integer m > 0: we omit  the details); 
however the present arguments are completely differ. 
ent because of  an essential technical difficulty to be 
described later. 

We now come to the Zinn-Justin conjecture which 
is based on the numerical computat ion of the RSPE 
coefficients [7] and can be stated as follows: let 
~n=0 Aing 2n be the RSPE of  the eigenvalue Ei(g ) of  
(1), and 2;n= 0 B i g  2n the RSPE of  the eigenvalue Pi(g) 
of  the 1 = 0 two-dimensional anharmonic oscillator 
K(g) = ½(p2 + ixl 2) +g21x14" Then: 

A / n = ( - 1 ) n B  / ( i , n ) = 0 , 1 , 2  . . . . .  (4) 

Avron and Seller [8] proved (4) for n = 0, 1, ..., 9 and 
all i. 

Now the RSPE for Pi(g) is Borel summable [9]. 
I f (4 )  is true, it coincides with the RSPE for the eigen- 
value ~,i(Igl, -zr /2)  o f H  1 (Igl, - I r /2) :  hence by the 
present result the Zinn.Justin conjecture yields: 

~. i(Igl ,-1r/2)  = lai(g), i =  0, 1 . . . . .  (5) 

because the eigenvalues are uniquely determined by 
their RSPE through the Borel summability. I f  (4), and 
hence (5), holds, the limit Igl ~ =* provides a particu- 
larly simple consistency check, and will be discussed 
at the end of the paper, where a numerical computa- 
tion will also be reported supporting the validity of  
the Zinn-Justin conjecture in the form (5). 

We now formalize the results outlined above. 
Proposition 1. Letg = Ig[ e i° , -STr < 0 < ~Tr, [g[ 

> 0, and let/-/1 (Igl, 0) be the differential operator in 
L 2 defined as: 

H t ( ' )  = eia(P 2 + e -2 iax2  

+ 21gl e -5i¢r/6- 2i0/3 x 3 + Igl 2 e - i r r x 4 ) ,  

D ( H I ( ' ) )  = C 2 (3 L 2 . (6) 

Then H 1 ( . )  is closable. Its closure H 1 ( . )  has discrete 
spectrum. 

Remarks. (i) This statements extends theorem 1 of  
ref. [6], but through a different argument, since the 
numerical range OfHl( Ig l ,  0) is the whole complex 
plane, so that its closability has to be proved. 

(ii) It will appear below that Hl([gl  , O) is the real- 
ization in L 2 through Complex scaling of  the eigen- 
value problem (p2 + x 2 + 2g.x 3 + g2x4 ) ~(x,  g) = ~.(g') 
X ~k(x, g), g E 8, looking for eigenfunctions vanishing 
along the direction arg(-+x) = -+7r/6 as Ixl ~ 0% In this 

respect it resembles a single-well problem, and further 
insight is provided by the Herbs t -S imon example [10] 
~ ( g )  = p 2  + x2(g.x + 1)2 _ 2gx - 1: the function 
~(x,  g) = e x p ( - x 2 / 2  - gx3/3), g > 0, vanishes as Ixl 

oo only if arg(+x) = +-rr/6 and solves H(g)  if(x, g) 
= 0 for all g t> 0: hence the eigenvalue 0 of  H(g)  is 
stable only if the L 2 conditions are imposed along the 
complex direction arg(+x) = -+zr/6. 

Proof. Set, for z complex: 

P(x, Igl, 0, z) = e - 2 i a x  2 + 21gl e -5in[6-2iO/3x3 

+ Igl 2 e-iTrx 4 - e - i ~ z  . (7) 

Note that for z f'Lxed P ( - )  ~ 0 for aU 0 i fz  = Izl 
X e i(a+~r), Izl large enough. By well-known WKB esti- 
mates (see, e.g. Sibuya [ 11 ], par. 13,19) there are two 
solutions o 1 (x, Igl, 0, z) of  the ODE H I (Igl, 0) o = zo 
which are entire functions o f x  and have the following 
asymptotic behaviours (here we take the positive 
branch of the square root) 

Ol, 2(x, Igl,O,z) 

ix l P(x, . ) -1 /4  exp - f eCv, . ) , /2  dy , (8) 

XO 

asx  ~ + ~  for Vl,X -~ _oo for v2, respectively. These 
behaviours hold both for x +oo respectively, z f'Lxed, 
and Izl -~ oo, z = Izl e i(c~+~r), x fixed, uniformly in 0, 

5 1 -~ l r  + r/~< 0 ~< ~Tr - r/, ~7 > 0. o1( ' )  and 02(. ) are 
linearly independent. To see this, rescale x ~ [gl 1/3 
X e -br/6 so that [ H I ( ' )  - z] o transforms into the 
equation 

(p2 +g-4/3x2 + 2g-213x2 + x  4) o = g - 2 / 3  zo ,  

then apply theorem 26.4 of  Sibuya yielding the non- 
vanishing of  the wronskian of  its two solutions ap- 
proaching zero as Ixl ~ 0* in the sectors largxl <~ ~Ir 
and l a rgx  2 1 - ~rrl ~< grr, respectively, and finally rescale 
back to conclude that l'/(Igl, 0, z )q :  0, I¢(.) the 
wronskian of  o1(.) ,  o2(0 ,  z large enough. For z fixed 
the behaviours (8) can be made explicit with respect 
t o x  (ref. [11], par. 6,21,24) 

Ol,2(x, Igl ; O , z) ~ Ixl-l l2(e-ialglx + I )  -1/2  

X exp(lgl e-i~r/2x3/3 - e - i " x 2 / 2 ) ,  (9) 

as x ~ +o~ for Vl, x ~ _o .  for o 2, respectively. Further. 
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more (ref. [11], par. 21) there are constants Cl,2(Igl , 
0, z) such that: 

Vl,2(x, Igl; 0, z) 

Cl,2(.)lxl-1/2(e-i~lglx + 1)-1/2 

X exp(lgl e-i~/2x3/3 + e-iax2/2), (10) 

asx  ~ +oo for Ol,X ~ - ~  for o2, respectively. Hence, 
if we define the integral kernel 

G(x,y; [g[, 0, z) = W(Igl, 0, z) -1Ul(X, .) o2(y , . ) ,  

y<~x , 

= W(Igl, O, z) -1 o2(x , ") Ol(y , - ) ,  

x<~y , 
(11) 

an easy computation shows that 

f f IG(x,y;')l 2 dx dy < + ~  
- - ~  - - e r a  

uniformly with respect to 0. Hence G(.)  is a Hi lber t -  
Schmidt kernel and generates a compact operator 
T(!g[, 0, z) in L 2. Since the ODE [ H I ( ' )  - z] u = 0 
admits for some z E C two linearly independent solu- 
tions, one of  which is L 2 at +,~ and the other L 2 at 
_o% standard ODE arguments (see, e.g. Hellwig [ 12], 
par. V.2) show that H I ( ' )  - z is invertible, maps 
C (2) N L 2 into C(0) N L 2 one-to-one, and [ / t1( ' )  
- z ] - I  agrees with T( ' ,  z) on C(0) tq L 2. Since C (0) 
N L 2 is dense in L 2, and T( ' )  is bounded, the closure 
of  its restriction to C (0) N L 2 exists and is T(.)  itself. 
Now the inverse of  the closure is the closure of  the 
inverse: hence HI  ( ' )  - z, and thus / t l  ( ' ) ,  are closable, 
and [Hl(Igl , 0) - z ] - I  = T(Igl, 0, z). This proves 
proposition 1. 

Proposition 2. Let g, O,Hl (Igl, O) be as above. Then: 
(i) Any eigenvalue Ei(O ) = hi(0 ) = (2i + 1), i = 0, 1, 

.... of  the unperturbed operator Ho(O ) = e2i~(p 2 
+ e -4 i~x2)  is table for Igl > 0 small, i.e. given e(i) 
> 0 there is 5 (0  > 0 such that H I ( .  ) has one and only 
one eigenvalue in any circle Iz - hi(0)l = e(i) if Igl 

5 < 5(i), e(i), 8(i) independent of  0, - ~ r  + 77 ~< 0 
~ < ¼ 7 r - r / , r / > 0 .  

(ii) There is B(i) > 0 such that any eigenvalue 
hi(Igl, 0) is an analytic function o f g  in the sector 
0 <  Ig l<B( i ) ,  s 1 - ~ n < 0  <~rr .  

(iii) The RSPE of  any hi (g  ) can be written as h i (g  ) 
"~n=0V** ~nAi s-2n, is uniformly asymptotic to hi(g ) in 
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s +7/<~20~<~r r/, and is Borel sum- any sector -~rr  
mable to Xi(g) = Xi(Igl, 0) in any sector -2r r  + r/1 
<~ arg(g 2) = 20 < -r /1 , r/1 > 0, Igl 2 < B ( i )  2. 

(iv) I fH(g)  is the Standard double-well operator 
family, self-adjoint fo rg  real (see, e.g. Reed-Simon 
[13], XII.4) the RSPE of  any eigenvalue Ei(g ) of H(g) 
coincides with the RSPE of  Xi(g). 

Remarks. (1) I f0  = - l r /2 ,  i .e.g = - i  Ig], the RSPE 
of  Xi(g) is real by (iii). Thus by the Borel summability 
hi(Igl, - l r /2 )  is real for all i. Moreover if (4) holds the 
above RSPE coincides with the Borel summable series 
of  the eigenvalue i.ti(g ) of the l = 0 two-dimensional 
oscillator 

g(g) = ~(p2 + ixl 2) +g2lxl41l=O, g> O. 

Therefore Xi(Igl, - l r /2 )  =/li(Igl), i.e. (4) implies (5). 
(2) Not only Xi(Igl, - l r /2 )  is real, but Xi(Igl, 0) is 

reflection symmetric about - r r /2 ,  Xi(Igl, 0) = 
Xi(Igl, -Tr - 0). Setting indeed 0 = 0' - n/2, we have 

Hl(Igl ,  0) = e2iO'/3(p 2 + e-4io'/3x 2 

+ 2 Igl e i~r/2- 2i0'/3 x 3 + igl 2 e-i~rx4), 

unitarily equivalent to 

e2iO'/3(p 2 + e-4io'/3x2 + 21gle-i~r/2-2io'/3x 3 

+ Igl2e-i~rx 4) 

l - -  _ _ 0  I underx~-x.  HenceXi(lg[,O -Tr/2)-hi(lgl, - lr/2), 
i.e. hi(lg[, 0) = hi(lgl, - I t  - 0). When 0 = 0 or 0 = rr, 
i.e. arg(g 2) = 0 or 2~r, h i is still determined by the RSPE 
through Borel summability in -Tr + r / < 0  < -7 /and ana- 
lytic continuation up to r/= 0. Hence we can say that the 
RSPE of  any eigenvalue Ei(g ) ifH(g),g > 0, sums to 
hi(Igl, 0) which is complex because otherwise the 
RSPE would be convergent, hi(g ) has thus a branch 
cut at Im g = 0, i.e. arg(g 2) = 0, and the discontinu- 
ity across the cut is by the reflection symmetry 2i 
Im hi(Igl, 0). This function is exponentially small, i.e. 
i t  has zero asymptotic series, because the RSPE is real. 

(3) The eigenvalues hi(Igl, 0) appear to be the nat- 
ural notion of  resonance in this type of problems (for 
details, see ref. [6]). lm hi(Igl, 0) is of course related 
to the WKB penetration formula through the barrier 
between the two wells and to the instanton calculus 
(see specifically Harrell [14], Zinn-Justin [2], Bogo- 
molny [15] and Simon [1] for the connection with 
the Bender-Wu formula and the asymptotics of  the 
RSPE coefficients). 
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Proof. (iv) follows by a simple scaling argument 
given the analyticity of  the unperturbed eigenfunc- 
tions. By well-known arguments of  perturbation theory 
(see specifically Simon [16]) (i) and (ii) are true if 
[n l ( Ig[ ,  0) - z ]  -1 tends to [H0(0 ) - z ]  -1  in norm 
as Igl ~ 0 for some z E C, uniformly in 0, - s r r  + 77 
<~ 0 ~< ¼rr - r/, r / >  0. If G(x,y; O, z) denotes the Green 
function of  H0(0),  z 4= (2 i  + 1 }i**__ 0, i.e. the integral 
kernel of  [H0(0 ) - z ] - l ,  it is o f  course enough to 
prove 

f f IG(x,y;Ig[;O,z)-G(x,y;O,O,z)l 2 dx dy 
_ c c a  - -  e e J  

-~ 0 ,  (12) 
Ig l  ~ 0 

for some z E C, with the stated uniformity in 0. Now, 
once more by a result in Sibuya [11] (Ch. 3; actually 
some purely algebraic modifications are needed to 
account for the fact that here the perturbation is a 
polynomial instead of  a monomial, we omit the details) 

lim Ol,2(x, Igl, 0, z) = ol,Z(0, Igl, 0, z) 
Igl ~ 0 

uniformly on compacts in (0, z), z, R, 0 as above. 
Hence 

tim W(Igl, 0, z) = W(0, 0, z ) ,  
igl --}0 

with the stated uniformity and therefore W(lgl, 0, z) 
is bounded uniformly in ([gl, 0, z), [gl small, 0 as above, 
z away from {2i + 1}7= 0. Now by (9) and (10) it is 
easy to check that given e > 0 there is M(e) > 0 inde- 
pendent of  (Igl, 0) such that 

ff IG(x,y;Igl,O,z)l 2 dx dy <e , 
R2/M'(e) 

A being the square of  side M(e) centered in the origin. 
By the continuity of  ol,2(x , Igl, ") as Igl -+ 0, 

fflG(x,y; Igl, ") - G(x,y, O, .)12 dx dy --} 0 
A 

as Igl -+ 0. This proves (12) and hence (i) and (ii). To 
see (iii), first note that the RSPE contains only even 
powers o f g  because of  the symmetry x -+ - x ,  x ~ - g .  
To prove the Borel summability, given the analyticity 
of  hi(g ) by the Watson theorem (see e.g. ref. [13], 

XII. 5) we have only to verify a strong asymptotic 
condition of  the type 

IR~(lgl, 0)l = )~i(Igl, 0) - Ainlgl2ne 2in° 

<~ ADNN! Igl 2N (13) 

5 for some A > 0, D > 0 independent of  0, - ~ n  + 77 
0 ~< ~Tr - r/, r / >  0. By the norm convergence of  

[n l ( Ig l ,  0) - z ] -1  to In0(0 ) - z] -1 , [ n l  (Igl, 0) 
- z ] - I  is bounded uniformly with respect to (Igl, 
0, z), lgl suitably small, 0 as above, z on the circum- 
ference IX(0) - zl = r, r > 0 suitably small. Hence we 
can repeat word by word the argument of  ref. [6], 
theorem 2, to establish (13). This proves proposition 2. 

Let us now consider the [gl -'} ~ limit OfHl( lgl ,  0). 
Performing first the rescaling x ~ Igl-1/3x and then 
the unitary translation x -+ x + 13 we can instead con- 
sider the operator Ig[ 2/3 ei~r/3H~(Igl, 0) where 

n2O(lgl, 0) = [p2 + ig1-4/3 e-2ni/3(x +/3)2 

+ 21gl-2/3 e-5ilr/6(x +/3)3 + e-i~r(x +/3)4] , (14) 

realized as in proposition 1. The above differential ex- 
pression makes of  course sense also/3 complex. Pro- 
ceeding as in proposition 1 it is not difficult to see 
that, since the asymptotic behaviours (9) and (10) are 
/3-independent for -¼ Igl-2/3 < Im/3, the resolvent 
[H2O(- ) - z ]  -1 exists for some z E C and is represented 
by an integral kernel which is a L2(R2)-valued holo- 
morphic function of/3 for - [g[  -2/3 < Im/3. Hence 
H~2(Igt, 0) is by definition a translation analytic family 
of  operators in L 2 (for this notion, see Avron-Herbst  
[17]) so that its eigenvalues do not depend on/3, Im/3 
> - Ig l -2 /3 .  

On the other hand for Im/3 > 0 (the choice of  
sign(Im/3) is immaterial: we take Im/3 > 0 to be con- 
sistent with Im/3 > -¼ tgl-2/3 in H2~(Igl, 0) at the 
limit Ig[ ~ ~') we can explicitly realize the differential 
expression p2 + e-i~r(x + i/3)4 as the discrete-spectrum 
operator H~ defined as the inverse of  the integral op- 
erator of  kernel 

G~(x,y) = n-lHt~)3(~(x + i/3~3~ H (2) ¢1-t" + i/3) 3) ., j 1/3~a~-r 

y<~x , 

x<~y . (15) 
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H (1)'(2) are the Hankel functions of  order v = 1/3, 
which is easily seen to be Hilbert-Schrnidt. I f  G~2(x, 
y ;  Igl) denotes the Green function of  H2~(.), i.e. the 
integral kernel of  [H2(Igl, -~Tr) - z ] - I  Iz=o, by a 
known continuity result on solutions of  ODE with 
polynomial coefficients (see, e.g. ref. [11] or ref. [16] ; 
note that here the vanishing parameter multiplies the 
subdominant terms) and the same e,M(e) argument of  
proposition 2 we have 

Table 1 

N 22/a kN(~) computed ~i(~) exact 

0 0.234482907285 × 101 0.234482907274 × 101 
1 0.952978138419 × 101 0.952978138401 × 10 ~ 
2 0.187351955048 x 102 0.187351955047 x 102 
3 0.293015482292 x 102 0.293015482287 × 102 
4 0.409419183539 x 102 0.409419183538 x 102 
5 0.534863353215 x 102 0.534863353214 x 102 
6 0.668197546416 × 102 0.668197546415 × 102 

o o  o o  

f f IG~2(x,y;[g[)-G~(x,y)[ 2 dx dy-~O 
- - c o  - - o o  

as [g[ ~ ~ .  Therefore the eigenvalues of  H2#(-) converge 
to the eigenvalues ofH~*, which are thus/~-indepen- 
dent. (Note that the present realization o f p  2 + e-brx4 
through a complex translation differs from the realiza- 
tion by analytic continuation X(p 2 + X-3x 4) through 
the complex scaling h = e br/3 starting from the self- 
adjoint realization o f p  2 + x 4 in L2.) 

Rescaling x -> Igl-l/3x in K(g) = ~(p2 + ix[2) 
+ gZ ixl 4 we can consider K2(g ) = ~p2 + ~ ig1-4/3 ixl 2 
+ Ix[ 4 since K l ( g  ) = Ig12/3K2(g) has the same eigen- 
values of  K(g). It is known [16] that K2(g ) converges 
in norm resolvent sense t o K 2 ( ~  ) = ~p2 + Ixl4 as Igl 

~ .  I f  (4) holds, we have hi(lgl,  0) = lai(g ) for all i. 
Hence: 

Proposition 3. Let the Zinn-Just in  conjecture to 
be true. Then the operators Ko(oo)lt_ 0 = _~p2 + ixl41t=0 
and H2~(,~,) =p2  + e-i+r(x +/~)~, I m / ~ >  0, have the 
same eigenvalues. 

The above form of  the conjecture is the most con- 
venient to submit to a numerical test. By the rescaling 
x ~ 21/6x the eigenvalues o fK2(~) l l=  0 are 2 -2 /3  
X/ai(oo ),/ai(*o ) the eigenvalues o f p  2 + Ixl4ll=O, com- 
puted up to 28 exact figures in ref. [18]. Setting/~ 
= 3,/2, 3, > 0,/i = 3 , -3 /2  and rescaling x ~ 3,1/2x the 
eigenvalues Xi(oo) ofH~(oo) are those of  

a 2 _ ~ 2x4 H~(oo) = 5-2/3 [p2 + ~x _ ~ 5 - 2  

- 2Rix 3 - ( 2 i 6 ) - l x ]  . (16) 

Therefore we must have 22/3 Xi(~°) = /a i (~  ). In table 1 
we list the "first 7 eigenvalues 22/3 Xi(~), computed 
through the standard Rayleigh-Ritz  procedure diago- 
nalizing the 40 X 40 matrix [I (ei, H89(°°) ek)[[i, k = 1 ..... 40, 
(ei}i**= 1 the Hermite functions, ~ = 0.1458, against the 

first 7 eigenvalues/ai(~ ). The imaginary part of  each 
computed Xi(~o) is always smaller than 10 -11 and 
hence omitted. We see that 22/3 Xi(oo) and #i(o0) agree 
at least up to the 10th figure. 

References 

[1] B. Simon, Proc. of the Sanibel Workshop 1981, Intern. 
J. Quantum Chem. 21 (1982) 3. 

[2] J. Zinn-Justin, Saclay preprint DPH-T/81-34 (1981). 
[3] J.M. Combes, P. Duclos and R. Seller, Marseille preprint 

CPT/P.1365 (1982). 
[4] E. Brezin, J. Le Guillou and J. Zinn-Justin, Phys. Rev. 

D15 (1977) 1544. 
[5] E. Brezin, G. Parisi and J. Zinn-Justin, Phys. Rev. D16 

(1977) 408. 
[6] L. Benassi, S. Graffi and V. Grecchi, Phys. Lett. 82B 

(1979) 229. 
[7] R. Seznec and J. Zinn-Justin, J. Math. Phys. 20 (1979) 

1398. 
[8] J. Avron and R. Seller, Phys. Rev. D23 (1981) 1316. 
[9] S. Graffi, V. Grecchi and B. Simon, Phys. Lett. 32B 

(1970) 631. 
[10] l.W. Herbst and B. Simon, Phys. Lett. 78B (1978) 304. 
[ 1 i] Y. Sibuya, Global theory of a second order linear ordi- 

nary differential equation with a polynomial coefficient, 
North-Holland Mathematical Studies 18 (North-Holland, 
Amsterdam, 1975). 

[ 12] G. HeUwig, Differential Operatoren der mathematischen 
Physik (Springer, Berlin, 1964). 

[ 13] M. Reed and B. Simon, Methods of modern mathematical 
physics, Vol. 4 (Academic Press, New York, 1978). 

[14] E.M. HarreU, Commun. Math. Phys. 60 (1978) 73; 
75 (1980) 197; 

[15] E.B. Bogomolny, Phys. Lett. 91B (1980) 431. 
[16] B. Simon, Ann. Phys. 57 (1970) 79. 
[17] J. Avron and 1. Herbst, Commun. Math. Phys. 52 (1977) 

239. 
[18] V. Grecchi, Atti Sem. Mat. Fis. Univ. Modena 28 (1979) 

220. 

414 


