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Eigenvalues from the Riccati equation 
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Abstract. A non-perturbative approach for obtaining the eigenvalues of the Schrodinger 
equation is proposed. The method is based on the Riccati equation for the logarithmic 
derivative of the wavefunction. Results are shown for the anharmonic oscillator. 

1. Introduction 

The logarithmic perturbation theory proves to be useful in large-order calculations 
because it leads to closed quadrature expressions for the terms of the perturbation 
series (Aharonov and Au 1979, Eletsky and Popov 1980, Privman 1981 and references 
therein). However, in most cases these expansions are found to be asymptotic divergent 
and a resummation technique is required to obtain accurate eigenvalues (Seznec and 
Zinn-Justin 1979, Killingbeck 1981, Arteca et al 1984, Maluendes et a1 1984, see also 
the issue 1982 Internafionul Journal of Quantum Chemistry 21 no 1). When the 
eigenvalues exhibit two asymptotic expansions (say about A = O  and 1 / A  = 0 )  the 
resummation technique is often chosen so that it matches them smoothly (Seznec and 
Zinn-Justin 1979, Arteca et ul 1984, Maluendes et a1 1984). An example of this is the 
anharmonic oscillator 

H = p’ + x ’  + A x ‘  p = -id/dx ( 1 )  

whose eigenvalues E ( A  ) obey 

The former series is asymptotic divergent whereas the latter has a finite convergence 
radius (Simon 1970). 

Silva and Canuto (1982, 1984a, b)  developed an interesting non-perturbative 
approach based on a similarity transformation proposed by Hall (1977). They showed 
that the Hall method compares favourably with the perturbation series (Silva and 
Canuto 1982) and obtained the first perturbation corrections numerically (Silva and 
Canuto 1984b). In fact, i t  is not difficult to prove that the Hall method leads to the 
Riccati equation from which one can actually obtain all the perturbation corrections 
exactly. 
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Some time ago, we developed a method closely related to the logarithmic derivative 
algorithm in order to deal with bounded quantum mechanical systems (Fernandez and  
Castro 1981). However, instead of solving the resulting differential equation by per- 
turbation theory, we resorted to a systematic truncation of the Taylor series for the 
logarithm of the wavefunction which is similar to that performed by Silva and Canuto 
(1982, 1984a, b).  (An interesting alternative approach was discussed by Killingbeck 
(1978)) 

The above-mentioned procedure is further investigated in this paper. For the sake 
of simplicity the anharmonic oscillator (1) is considered as an  illustrative example. 
The main equations are obtained in D 2, analytical expressions for the eigenvalues are 
developed in 0 3 and numerical results are shown in D 4. Finally, further comments 
and  conclusions are found in 5 5. 

2. The method 

In this paper we restrict ourselves to the Schrodinger equation in one dimension 

V " X )  = q ( x p P ( x )  (4) 

where q ( x )  = V ( x ) -  E. Multidimensional systems will be discussed elsewhere. I f  the 
eigenfunction 9 ( x )  is written F ( x ) @ ( x ) ,  ( 2 )  becomes 

F" - 2f F'+ ( f 2  - f ' ) F  = qF ( 5 )  

where f = -(ln Q)'. It is worth noticing that if F = Y o  is an  eigenfunction of a 
Hamiltonian operator Ho then ( 5 )  can be rewritten as a Hall equation for L'= f (Hall 
1977). If all the zeroes of 9 are taken into account in F ( x )  then f ( x )  is found to be 
a regular function. 

The first two states of a model with a parity-invariant potential can be easily treated 
by choosing F = x', where s = 0 or 1 for the ground or first excited state, respectively. 
In this case (5) becomes 

( 6 )  

All the perturbation corrections for the anharmonic oscillator (1) can be obtained from 
(6) by expanding both f and E in power series of A and then solving the resulting 
equations in a hierarchical manner (Aharonov and Au 1979, Eletsky and  Popov 1980, 
Privman 1981). However, we find i t  more suitable to expand f in powers of x, i.e. 

f ' = f ? - 2  s f l x  - 9. 

The Taylor coefficients J ( j  = 0 , 1 , .  . .) obey 

J = (2 j  + 2s + 1 ) - I  f; k ,  -, - 1 + E6,O - 8, I - AS,, (8) (::: 
and are therefore found to be polynomial functions of A and E. 

ansatz q0 = x s @  is obtained which is an eigenfunction of 
If only the first N + 1 terms in (7) are kept andf, > 0, then a quadratically integrable 

H o = p z +  V, (9) 
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with eigenvalue fo. The potential Vo is given by 

V o = V + R  

where 
2N 

R rJX2J+' N = 1,2,  . 
j = N  

and 

The coefficients J;  ( j  = 1 , 2 , .  . .) are given by (8) as functions of f o  and A .  
It follows immediately that 

f o  - E = Ro (11) 
where Ro = (W 1 RPo) / (W IWo) depends on f o .  Obviously, f o  will be an  upper (lower) 
bound to E provided Ro is positive (negative). The closest approach is obtained when 
f o  leads to the smallest R i  value. Although we cannot calculate Ro ,  we can reasonably 
estimate its sign as follows. Since WPo tends to zero quite quickly as 1x1 increases 
we assume that the sign of Ro is determined by the behaviour of R near the 
origin which is approximately given by R ( 2 N  + 2 s  + 3 ) f N + 1 ~ 2 Y + r +  
[ (2N+2s+5)fk+Z-2fOfN+I]~2N+4.  For this reason the roots ofJV+, = O  are expected 
to be upper or  lower bounds to E provided J%+2 is positive or  negative, respectively. 
Since there is only one root for each N value that leads to the proper perturbation 
series the choice is unique. In the same way increasingly accurate lower bounds are 
expected from the negative minima of This assumption is confirmed in 5 4. 

To illustrate what was said above let us consider the first coefficients A :  
f i  = ( f i -  1 ) / (2s  + 3)  

h = (2fofi + f :  )/ ( 2  s $- 7). 

f i= (2 fo f i -A) / (2s+5)  
(12) 

When N = 1 R becomes (2s+5)f2x4+f:x6. Therefore, if f 2 = 0  then R > O  for all x 
values and fo  > E. For N = 2 and fi = 0 we obtain fi < 0 and R = 2f,f2x8 SfSx" < 0 if 
x is small enough. The argument above suggests that f o <  E which can be readily 
verified. 

Rigorous upper bounds are obtained from the variation principle that leads to 

f o  - (Wo 1 RWu)/(Wo 1 y o )  3 E. (13) 
In this case f o  is chosen so that the LHS of (13) is as small as possible. A variant of 
this last procedure was tried by Killingbeck (1978). 

3. Analytical expressions for the eigenvalues 

Let us first consider the ground state of the anharmonic oscillator. I f  we set f ;  = 0 
( j  = 2 , 3  and 4) in (8) we have (for the sake of simplicity we use E instead offo from 
now on)  

E'- E - 3 A / 2 = 0  (14a)  
E4  - 22 E'/ 17 - 18A E/  17 + 5 /  17 = 0 (14b) 

E5-50E3/31  -39AE2/31+19E/31+21A/31 = O .  ( 1 4 ~ )  
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On expanding E in power series of A in these equations we obtain the actual energy 
perturbation series up to first, second and third order respectively. ( In  general there 
is only one root offN = 0 that leads to the ( N  - 1)th-order perturbation expansion and 
we choose it in our calculation.) Therefore, the solutions of (14) must agree with the 
corresponding truncated perturbation expansions for small enough A values. In addi- 
tion to this, the approximate eigenvalues can be expanded in power series of A - 2 ’ 3  as 
in (3). Although (14) fail to yield the actual coefficients e, they are expected to improve 
the perturbation series largely because in some way they are matching both the large- 
and small-A expansions. It is worth noting that the series in powers of A for the 
approximate energies have finite convergence radii which is not the case of the 
eigenvalues of H. 

As shown in table 1, (146) and ( c )  yield lower and upper bounds, respectively, to 
the accurate eigenvalues obtained by Banerjee (1978). (Equation (14a) is found to 
lead to less accurate upper bounds.) The agreement is remarkable in the whole range 
of A values. Similar accuracy is obtained for the first excited state. 

Table 1. Lowest eigenvalue of the anharmonic oscillator obtained from (146)  and ( 1 4 ~ ) .  

A Equation ( 146) Equation ( 1 4 ~ )  Exact (Banerjee 1978) 

lo - ’  1.065 00 1.065 33 1.065 286 
1.380 8 1.396 72 1.392 352 

10 2.384 0 2.478 7 2.449 174 
1 OZ 4.821 5.082 4.999 417 
10’ 10.23 10.83 10.639 789 
1 oJ 21.98 23.27 22.861 608 

1 

When dealing with excited states this approach becomes rather cumbersome because 
the zeros of the wavefunction have to be taken into account explicitly (Aharonov and 
Au 1979). However, we can obtain analytical expressions for all the states easily from 
a straightforward generalisation of (14). Let us illustrate the procedure with (14a). 
We write 

E ~ + A , E + A ~ A  = o  ( 1 5 ~ )  

and require that the Taylor expansion for E about A = 0 yields the first two perturbation 
corrections exactly. I t  follows immediately that 

A,=-E , ’ ,  A ,=-2E:E , .  (15b) 

E ~ + B , E ’ + B , A E + B , = o  ( 1 6 ~ )  

In the same way (15b) leads to 

where 

Results for A = 0.1 and several values of the quantum number n are shown in table 2 .  
It is interesting that (15) and (16) yield upper and lower bounds, respectively, for all 
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Table 2. Eigenvalues of the anharmonic oscillator with A =0.1 for several values of the 
quantum number n obtained from (15) and (16). 

n Equations (15) Equations (16) Exact (Banerjee 1978) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
100 

1000 

1.0679 
3.3215 
5.782 
8.416 

11.20 
14.1 
17.2 
20.3 
23.6 
26.9 
30.4 

523 
10 759 

1.065 00 
3.305 11 
5.743 2 
8.344 

11.08 
13.95 
16.92 
20.00 
23.18 
26.44 
29.19 

500 
10 176 

1.065 286 
3.306 872 
5.741 959 
8.352 678 

11.098 596 
13.969 926 
16.954 195 
20.043 863 
23.229 552 
26.505 555 
29.866 525 

504.896 937 
10 294.061 323 

the eigenvalues of the anharmonic oscillator. As expected, the larger the quantum 
number the smaller the accuracy of the present formulae since the perturbation becomes 
more important. 

Equations (15) and (16) also enable one to obtain upper and  lower bounds, 
respectively, to the eigenvalues of the quartic oscillator ( V = x4). They are given by 
the leading coefficient of the large-A expansion (3). A straightforward calculation 
shows that 

Present results suggest a systematic way of improving the anharmonic oscillator 
perturbation series. We first build a function P(A ,  E )  that can be factorised as 
P(A ,  E )  = Q(A)U(A-”’,  A”’E) so that the roots of P(A, E )  = O  can be expanded in 
power series of A or K2’’ as in ( 2 )  or (3),  respectively. Then the adjustable parameters 
in P are set so that the former expansion agrees with the energy perturbation series 
up to the desired order. Owing to the nearly correct large-A behaviour of the roots of 
P = 0 they are expected to be much more accurate than the perturbation series. This 
idea has recently been exploited by Fernindez e f  a1 (1984) in order to obtain analytic 
expressions for the eigenvalues of the anharmonic oscillator from semiclassical con- 
siderations. 

4. Large-order calculations 

A question now arises about the convergence of the method just described. Since it 
is closely related to perturbation theory, as argued above, one expects it to be asymptotic 
divergent. Our numerical results confirm this assumption. We have calculated the first 
two energy levels of the anharmonic oscillator for several A values, finding the same 
behaviour in all cases. When A = 1, for instance, the chosen root of 1; = 0 oscillates 
about the actual eigenvalue as N increases from N = 3 to N = 20 giving rise to upper 
and lower bounds when N is even or odd, respectively (table 3). The amplitude of 
the oscillation decreases, reaches a minimum value and then increases. When N > 20 
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Table 3. Root of fN = 0 for the ground state of the anharmonic oscillator with A = 1 

N E N E N E 

3 1.381 9 1.3919 15 
4 1.397 10 1.3927 16 
5 1.390 11 1.3920 17 
6 1.394 12 1.3927 18 
7 1.3916 13 1.3920 19 
8 1.3929 14 1.3927 20 

21 
22 
23 

1.3919 
1.3927 
1.3922 
1.3927 
1.3926 
1.3927 
1.3843 
1.3864 
1.3878 

Table 4. Root of a&/JE = 0 for the ground state of the anharmonic oscillator with A = 1 
and A = 10. 

A = l  A = 10 

N E N E 

25 
26 
27 
28 
29 
30 
31 

Exact 
(Banerjee 1978) 

1.392 343 
1.392 346 
1.392 348 
1.392 349 
1.392 350 
1.392 351 
1.392 351 

1.392 352 

18 
19 
20 
21 
22 
23 
24 
25 
26 

2.4484 
2.4488 
2.4488 
2.4491 
2.4490 
2.4492 
2.4490 
2.4493 
2.4490 

2.449 174 

random results are obtained though they remain quite close to the true eigenvalue. 
Although divergent the present method is still useful because it certainly improves the 
perturbation series largely matching the exact series in powers of A with an  approximate 
large-A expansion. The most accurate result is obtained from the N value correspond- 
ing to the smallest oscillation amplitude. 

Table 4 shows that there is a root of a f N / a E  = 0 that approaches the exact eigenvalue 
from below as discussed in 0 2. It is clear from the results for A = 10 that the procedure 
becomes oscillatory divergent for large enough N values. However, the root for the 
largest N value before the oscillation takes place is a quite accurate estimate of the 
eigenvalue. Such an  accuracy cannot be obtained from the perturbation series. 

5. Further comments and conclusions 

We have shown that the eigenvalues of quantum mechanical systems can be approxi- 
mately obtained from the Riccati equation for the logarithmic derivative of the 
wavefunction. Rigorous upper and  lower bounds are obtained provided the sign of 
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Ro can be determined which does not seem to be at present possible. Approximate 
eigenvalues come from the roots of fN = 0 and afN/aE = 0. 

As argued before, the present method can also be applied to excited states. For 
instance, in order to deal with the second excited state of the anharmonic oscillator 
one can choose F =  x2-a ’  in ( 5 ) .  In this way the wavefunction will have two zeros 
at x = * a .  As a result the coefficients J ;  will depend on both a and E and two 
independent conditions will be necessary to determine them. A reasonable choice is 

A similar situation is found in the case of potentials which are not parity invariant. 
For example, when V = x2 + ax3  + px4 the coefficient fo (f =fo+f,x + fix2 + . . .) remains 
undetermined and an  additional condition is required to calculate it. 

The strategy discussed in 8 3 to obtain analytical expressions for all the eigenvalues 
from the corresponding ground-state formula can be developed further. Let us illustrate 
this point by means of the Zeeman effect in hydrogen. The part of the Hamiltonian 
operator in atomic units that is relevant to our discussion is (Garstang 1977) 

H = --;A- l / r+QB2(x2+y2).  (18) 

It is obviously much simpler to deal with the Riccati equation for the spherical model 

H = -;A- l/r+{B’r2. (19) 

The analytical expressions for the eigenvalues of (19) can be used in approaching 
those of (18) by introducing appropriate adjustable parameters which lead to the 
proper perturbation series as discussed in $ 3. 

f N - ,  = f N  = 0. 
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