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This paper is concerned with the nature of perturbation theory in very high order. Specifi-
cally, we study the Rayleigh-Schrodinger expansion of the energy eigenvalues of the anharmon. -
ic oscillator. We have developed two independent mathematical techniques (%KB analysis and

difference-equation methods) for determining the large-n behavior of A ~, the nth Rayleigh-
SchrMinger coefficient for the Kth energy level. We are not concerned here with placing
bounds on the growth of An+ as n, the order of perturbation theory, gets large. Rather, we

consider the more delicate problem of determining the precise asymptotic behavior of An+

as n -~ for both the Wick-ordered and non-Wick-ordered oscillators. Our results are in
exact agreement with numerical fits obtained from computer studies of the anharmonic oscil-
lator to order 150 in perturbation theory.

I. INTRODUCTION

with the associated boundary condition

lim ()}(x)=0.

The boundary condition selects out a discrete set
of energy eigenvalues Er(A. ), K=0, 1,2, . . . , whose
perturbation expansions take the form

(1.3)

We refer to Eq. (1.3) as the Rayleigh-SchrMinger
series and A,„as a Rayleigh-Schrodinger coeffi-
cient. We investigate the behavior of A~ as n, the
order of perturbation theory, becomes large.

The anharmonic oscillator is also expressible
as a (}}.y'), quantum field theory. ' The Hamiltonian
for the theory may be written as

Q = —,f'+-,'m'p'+ A.f4,
where

(1.4)

This paper reports an intensive study of the be-
havior of perturbation theory in very high order
for the anharmonic oscillator. ' We give a detailed
treatment of the new mathematical techniques we
have developed to obtain this behavior and we dis-
cuss the related physical ideas.

The quantum anharmonic oscillator is described
by the time-independent Schrodinger equation

d' x'
~ +—+ E(x) (I}(x)-=0

The energy levels E~(x) are the eigenvalues of H:

Hiff) =Er(~) Iff).

For all m, the field-theoretic perturbation series
takes the form

One can recover Eq. (1.3) by setting m = 1 in Eq.
(l.7).

Viewing the anharmonic oscillator as a quantum
field theory, we can express A~ in terms of Feyn-
man diagrams. ' A„' is the sum of all connected
diagrams having n vertices and no external legs.
A~ is the E-particle pole of the 2K-point Green's
function. Thus, the problem of determining the
large-n behavior of A~ corresponds to studying
diagrams with many vertices. There has already
been an intensive study of the properties of many-
vertex diagrams in higher-dimensional quantum
field theory as well as in the anharmonic oscilla-
tor. ' However, these studies give only bounds on the
growth of the Rayleigh-Schrodinger coefficients
and do not reveal much about the mathematical
and physical nature of these theories. In this pa-
per we completely by-pass the problem of obtain-
ing bounds. Instead, we solve here the much
more formidable problem of determining the pre-
cise asymptotic behavior of A~ for large n.

This paper will conform to the following outline:
In Sec. II we use dispersion techniques to derive
an exact relation between the nth Rayleigh-Schrod-
inger coefficient and the lifetimes of the unstable
states of a negatively coupled anharmonic oscilla-

1620



ANHARMONIC OSCILLATOR. II. A STUDY 0 F. . . 1621

tor (A. = -e, e &0). Section III contains a WKB
derivation of approximate lifetimes for small &.

In Sec. IV we combine the results of Secs. II and
III to find the leading behavior of A~ for large n.
In Sec. V we discuss the relation between the WKB
analysis of Sec. III and other WKB results we ob-
tained in a previous paper. Then we compute the
corrections (of order n ') to the leading behavior
of A~ given in Sec. IV. A completely independent
derivation of the results of Sec. IV for the two
lowest energy levels is given in Sec. VI. This
derivation uses difference-equation and generat-
ing-function methods. Finally, in Sec. VII we de-
fine and discuss the large-order perturbation be-
havior of the Wick-ordered version of the Hamil-
tonian in Eq. (1.4). The Appendix gives a short
and physically intuitive derivation of the material
in Sec. III.

The results of this paper may be summarized in
two equations. For large n,

-1)""12rv 6

1 95 29K 17Kx 1-- 72+ 12
+

12
+O(n ')

and

A„, 1+3K ~+ 31K+23K'

(1.9)

where B~ is a Rayleigh-SchrMinger coefficient
for the Wick-ordered perturbation series. These
results have been verified: On a computer we
have carried out perturbation theory to order
n = 150 (the limiting factor is the amount of avail-
able core memory), performed numerical fits, '
and obtained spectacular agreement.

In this paper we have established an easily gen-
eralized mathematical framework for determining
the large-order behavior of perturbation theory
for more complicated models. Three such models
have already been successfully investigated: The
anharmonic oscillator with a Ag" perturbation, '
the anharmonic oscillator with an arbitrary poly-
nomial interaction of the form'

II. DISPERSION RELATION FOR E+(X)

F'(~) -=[E'(~) -Z —-'] ~-'

In the cut A plane, Fr(g) is analytic and

(2.1}

In this section we use a once-subtracted disper-
sion integral to establish an exact relation between

P„, the nth Rayleigh-SchrMinger coefficient for
the Kth energy level, and the lifetime of the Kth
(unstable) state of a negatively-coupled anharmonic
oscillator. This relation follows from three rigor-
ous properties of Zr(a) in the cut x plane (cut
along the real A. axis from -~ to 0): (a) ~E(X)

~-
~
a ~~' a.s

~
w ~- ~; (b} E(A.) is analytic; and (c)

the series in Eq. (1.3) is asymptotic. Property
(a) is a consequence of a simple scaling argument
known as the Symanzik transformation applied to
Eq. (1.1}." Property (b} is a profound result ob-
tained by Loeffel and Martin. " Property (c}was
established by Loeffel, Martin, Simon, and Wight-
man"

Properties (b) and (c) were originally established
heuristically by us." They follow directly from a
study of Eqs. (1.1) and (1.2) in the complex x plane.
The boundary condition Eq. (1.2) holds in a pair
of sectors of angular opening —3n centered about
the real x axis. As A. rotates into the complex A.

plane (arga increases from 0), the sectors rotate
clockwise. (A full description of the rotating sec-
tors is given in BW.} The distant turning points'
at x, -+iA. ~' rotate clockwise and faster than the
sectors rotate. The turning points enter the sec-
tor when argA. = v (A. is negative). When argx & v

WKB methods' give the asymptotic series in Eq.
(1.3). When arga &w the WKB results are complete-
ly different' and predict nonanalyticity (branch
points at which level crossing occurs) of Er(x) in
the a plane. Thus, at argX= x (and -v}, the dis-
tant turning point which enters the sector marks
the edge of the region in the A. plane where the
series in Eq. (1.3}is asymptotic and where the
nonanalyticity of E(A.) appears. While not rigorous,
these are strong arguments for the truth of proper-
ties (b) and (c}.

We proceed to derive the dispersion relation.
Properties (a), (b), and (c) motivate the definition

a(x'"+ax'" '+bx'" '+cx'" '+ ~ ~ ~ ) lim AF(A. ) =0,
i~ j-0 (2.2)

and the N-mode problem (N-coupled anharmonic
oscillators). ' This last problem involves applying
WEB methods to partial differential equations and
is thus far more difficult and profound than the
problem considered here. We hope to extend
these methods to infinite-mode problems and there-
by obtain results for higher -dimensional quantum
field theories.

IFr(~)l-f~J "' as (2.3)

Fg( )
( )d2' x —A.C

(2.4)

Equation (2.2) is a consequence of property (c).
Since Fr(A. ) is analytic in the cut X plane, we

use the Cauchy theorem to write
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FIG. 2. Comparison of potentials having positive and
negative anharmonic terms.

FIG. 1. Change of contour in the x plane used to derive
the dispersion relation in Eq. (2.5).

The contour C may be shifted to the contour D=D,
+D +D, +D, (see Fig. 1). Letting R, -O and R, —~,
the contributions from the curves D, and D, vanish
as a consequence of Eq (2.2) .and (2.3). Thus,

(2.5)

where

ImE(e. ) is very small and is related to the lifetime
of the state which is very long. Equation (2.7)
relates the Rayleigh-Schrodinger coefficients of
the perturbation expansion of E(A.) to the inverse
moments of ImE(e).

Equation (2.7) is the basis for most of the ap-
proximations used in this paper. When n is very
large, the contribution to the integral in Eq. (2.7)
comes entirely from the region near g=0. Thus,
it is necessary to compute approximately ImE(e)
for small ~. This will be done in the next section
using %'KB techniques.

D" (x) =lim[F (x+ie) -F (x —ie)]. (2.6}
III. WKB ZEROTH ORDER AT arik=m

Equation (2.5) is the once-subtracted dispersion
relation we have sought.

Finally, we insert the identity

into Eq. (2.5), compare the resulting series in
powers of X with that in Eq. (1.3), and obtain

(2.7)

Equation (2.7) is an exact and rigorous result. '4

Physically, the relation in Eq. (2.7) may be
understood by comparing two potentials with posi-
tive and negative anharmonic terms:

These potentials are shown on Fig. 2. The first
potential has bound states. The second potential
has only unstable states (having complex energy).
If & is very small, the real part of the energy of
an unstable state of V', is approximately equal to
the energy of the corresponding bound state of py.

In the previous section it was shown that the
large-order behavior of the perturbation series
for Ex(L} depends on the imaginary part of the en-
ergy for negative coupling constant. In this sec-
tion we use WKB techniques to calculate ImEx(e)
to lowest order in powers of e, where

e= -X &0. (3.1)

Until now, WKB approximations to E(X) have been
given for every value of argA. except for argA. = n.~

Well-known technical problems, such as the phe-
nomenon of subdominance, associated with trans-
mission through a potential barrier, "make this
calculation an order of magnitude more difficult
than all previous ones. However, we will show
how, with extreme care, one may avoid the am-
biguities of this transmission problem.

Ex(e) is defined by the differential equation

-„,+
4

-e
4 -Ex(e))C(x)=O. (3.2}

Equation (3.2) describes a particle in a potential
well in a slightly unstable state (very long half-
life). As e becomes smaller, the lifetime of the
state increases because the particle must pass
through a higher potential barrier to escape. Thus

EImE (e), which goes as the reciprocal of the life-
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time, is extremely small.
The wave function 4(x}-satisfies two boundary

conditions. At the origin,

C (0) =0 for odd-parity states,

@'(0)= 0 for even-parity states .

(S.Sa)

(3.3b)

At z =+~, the boundary conditions are somewhat
complicated because at first glance they seem to
be undefined. It would appear that any linear com-
bination of outgoing waves and incoming waves,
exp(sic 'x'j6}, would suffice. However, we re-
call that the analytic continuation of the energy
levels into the complex A. plane is accomplished by
simultaneously rotating x into the complex x
plane. ' When argA, = m, the sector in which the
boundary condition, lim~, ~ „g(x)=0, applies is
given by ——,'v &arg(+x) &0. Thus it is necessary
to pick that asymptotic behavior which vanishes
exponentially if the argument of x lies between 0
and -60'. Hence, 4(x) must obey the boundary
condition

A. 4, in RegjonA

In region A, we approximate Eil. (3.6a) by

(
d' x' 1

4
+—-Z-- e =0 (3 7)

to lowest order in e T.he solution to Eq. (3.7)
which decreases for increasing x (see Fig. 3} is"

e,„=D,(x}, (3.6)

where we have chosen the normalization of 4»
without loss of generality. Note that"

D«(x) =2 «t'e "t'H«(xlW2) (3 9)

satisfies Eq. (3.3). When x is large" (x approach-
es region B)

'C)'gg X 8 (3.10}

axis into four regions (see Fig. 3): region A,
where xa(4K+2)~'=O(1); region B, where x
»(4K+2)i" but x «e v', region C, where xs e v',
region D, where g-e ~'.

e(x)- e " * t' as x-+~.COnSt Itt 2 3 (3.4) B. C~ in Region B

For small q the real part of E«(e) is approxi-
mately Ã+-,' while the imaginary part is very
small. Thus, to prevent ImE«(e) from being
eclipsed, it is necessary to separate Eq. (3.2)
into its real and imaginary parts. For this pur-
pose we let

In regions B and C we approximate 4, using
lowest-order WKB:

4,~s=C, (x' —ex' —4K -2) V'

r
xexp ——,

' P - &f'-4Z —2 ~'dt, 3.11
Xp

where
B«(e}—

E(~«) + iE«(e)

-K + —,
' +i Ei«(e),

C (x) = C, (x)+i@,(x) .

(3.5a)

(3.5b)

x, = (4K+2)«'

" fc, (x)l

(3.12)

Furthermore, for sufficiently large x in the range
0 &x & e r ', C (x) consists of an increasing and a
decreasing part (see Fig. 3). We choose the phase
of 4 (x), without loss of generality, such that the
decreasing part ispurely 'real [We will .see that
the decreasing part behaves like D«(x) in regions
A and B, below. ] From these considerations we
have

ex4
4 4

-Re E(e)
=X

g4

4 4, +——e —-K- —4 (x)=0 (3.6a) xo=O(I)

and

(
X4

, +
4

—e
4

-K —
2 C, (x) = Z,4, (x) . (3.6b)

REGION A

REGION 8
REGION C

REGION 0
In Etl. (3.6a) we have neglected Ei@, compared with
E,4, (see Fig. 3).

Our procedure will be to solve for 4, approxi-
mately using Eq. (3.6a} and then to use this result
to solve Eq. (3.6b} for C, and ultimately E,. Our
approximation scheme is based on dividing the g

FIG. 3. Relative sizes of )4&(x)[ and )C»g)), which are
exponentially decreasing and increasing functions of x.
Regions A, B, C, and D and turning points at x=xp and
~ = ~& are indicated.
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In Eq. (3.11) we have only taken the decreasing
exponential term (see Fig. 3). We will use the in-
creasing exponential when we approximate 42.

When x is near region B, we perform the integral
in Eq. (3.11) approximately and get

Bi(-p)-w ~'p ~'cos(-', p"'+ —,'w), (8.19b)

as p-+~. However, 4D must have only decreas-
ing phase as x- ~ [Eq. (3.4}]. From this require-
ment we obtain

42s-C, e * ~'x exp(2(K+-,')[I -In(K+22)]}.

(3.13}

D = -iD =-iD.2

Thus,

(3.20)

Comparing Eqs. (3.10}and (3.13) gives

C, = exp[-,'(K + -', )[ln(K + -,') —1]}. (3.14)

4222(x) = D[-i Ai(r) + Bi(r)] . (3.21)

When x-0, y-+~, and we consult the formulas"

C. 4, in Region C

When x is near the distant turning point at x„

Ai(p)- —', w ~'p ~'exp(--', p'~'),

Bi(p) - w ~ 'p W exp( —,p'~ ),

(8.22a)

(3.22b)

Equation (3.11}gives"

(8.16)
as p-+~. Recall that 4 „ the real part of 4, is
decreasing as x.0- x,. We thus take D real and
identify the decreasi, ng and increasing solutions
with the real and imaginary solutions:

4,c(x)-(2x, —2x) V'e~'

x exp[-,' W2 e V '(x, —x)& '
42222(x) = DBi(r),

4„(x)=DAi(r).
(3.23a)

(3.23b)

- I/6e —(-',K+-', ) ln(-,'e}],

where we have used Eq. (3.14).

D. 41 and +2 in RegionD

(3.16) Moreover, Eqs. (3.23a), (3.22b), and (3.16) enable
us to match 4,c and 4» asymptotically and thus
to determine that

D = e "ww '2 w ' exp[-I/6s - -,'(K +-,') In(-,' e)] .

In region D we substitute

r= (x, —x)(2&&) ~'

into Eq. (3.2). Note that in region D we treat 4,
and 42 at the same time —they are the same order
of magnitude (see Fig. 3). In terms of r, Eq. (3.2)
is approximately

(3.24)
Now that D is known, we easily calculate the

asymptotic behavior of 4, in region D for large z
(that is, for x (x2):

4,22--s~'2 e'(xt-x) ~'

xexp[--'2&2 e ~'(x, -x}"'
d2„,-r 4, r)=0, (3.17)

—I/6e —(-,'K+-,') ln(-,' e)] . (3.25)

42 (x) = D, Ai(r) + D, Bi(r ) . (8.18)

When we allow x-+~, that is, y- -~, we con-
sult the formulas"

Ai(-p)-w W'p &'sin( —,'pv2+-,2w), (3.19a}

which is the Airy equation. " Two linearly inde-
pendent solutions to Eq. (3.17) are Ai(r) and Bi(r).
Thus,

E. 4& in Region C

In regions I3 and C we neglect 824, compared
with E,4, in Eq. (3.6b). Thus, the WKB approxi-
mation to 4, that applies in these regions is the
same as that given for 42, in Eq. (3.11). However,
we choose a new constant C2 and change the sign
in the exponential because 4, is an increasing func-
tion (see Fig. 3):

(3.26}

In region C, we approximate Eq. (3.26) by

42,c-C,e '(2x, —2x) 'exp{-—,'v2 s '(x, —x) '+I/6s —(~K+~)[1 —In(~e) —In(K+~)]}.

Comparing this result with Eq. (3.25) gives

C, = ——,
' e ' "exp (-(K + w') [ln(~ s ) —

2 + -,' ln(K + ~ )]}.

(3.27)

(3.28)
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F. 42 in Region8 Demanding that Eqs. (3.35) and (3.29) agree to
lowest order in & and E, gives the result

Now that C2 is known, we use Eq. (3.26} again to
determine the asymptotic behavior of 42 in region
B. We find that

gE+ 1/2
1/36 ~

-g 1/2' Klutz~
' (3.36)

l/3E -(E+ Q2) hi&/ &)+X /4~-E-1-28 (3.29)

G. 42 in RegionA

In region A, we must not neglect E2@1 compared
with E,42. However, we do neglect —,'&x' com-
pared with —,'x'. Thus, we must solve the differ-
ential equation

(-d'/dx + —,
' x' -K —2)4,„(x)= E24,„(x), (3.30)

for the eigenvalue E,. The boundary conditions on

4» at x=0 are those given in Eq. (3.3). The large-
x behavior of 4,„is given in Eq. (3.29).

To solve Eq. (3.30) we reduce it to a homogene-
ous equation as follows: Recall that E, is very
small, and that 4» is exponentially small com-
pared to 4, in region A. Then consider a perturba-
tion expansion in powers of E, of the form

Equation (3.36) is the result we have sought. Note
that E, is exponentially small, which justifies a
posteriori our neglecting of E241 compared with
E14 2 in part E of this calculation. In the next sec-
tion we use Eq. (3.36) and the dispersion integral
of Sec. II to determine the large-order behavior of
perturbation theory. In the appendix we give a
very short and intuitive derivation of Eq. (3.36).

IV. LOWEST-ORDER WKB RESULTS

In this section we show how to use Eq. (3.36),
the result of the lowest-order WKB calculation,
to obtain the dominant large-n behavior of the
Rayleigh-SchrMinger coefficients.

First, we compute D»(x) by combining Eqs. (2.1)
and (2.6) with (3.6). We find that to lowest order
in x (x is small and negative)

4(x)=4 +E ")+'''.@2%
lg 2 E2

(3.31) 4E+ l~
D»(X) e1/ xx( X}-»-2(2

K l(2»)2" (4.1)

4)(x) solves the equation

(-d'/dx' -K --,' E2+-,' x2)-4(x) =0. (3.32)

To verify Eq. (3.32), observe that to lowest order
in E„ it reduces to Eq. (3.7}; to next order in E,
it is precisely Eq. (3.30).

The even- (and odd-) parity solutions of Eq. (3.32)
[those obeying Eq. (3.3)] are"

To compute the discontinuity D in Eq. (4.1), it is
necessary to use a well-known property of E»()(.},
namely, '

E»()) ) —E» 2(g x) (4.2)

Next we substitute Eq. (4.1) into Eq. (2.7) and ob-
tain for large n

4(x) = —'[D, (x)+(-1) D, (-x)]. (3.33) 4E~ dXX-xeV»( X)-»-&2
K tw2 (4.3)

The factor of —,
' comes from comparing Eq. (3.33)

with the result for lowest order in E,. That is, if
we let E, =0 in Eq. (3.33), the expression reduces
to (p(x) (E,=4»(x) = D»(x), which agrees with Eq.
(3.9).

To next order in E, we get

[D», E (x)+(-1)»D», E (-x)]
B2=0

(3.34)

E, will be determined by demanding that as x- ~,
Eqs. (3.34) and (3.29) agree. The dominant large-
r behavior of 4», which comes from the second
term in Eq. (3.34), is"

'~E 8 (2»)v 2

2 &E, I'(-K —E,)

)( e(»+Ex) xiX (»+»2+1)ex /4 -(3 35)
g =Q

Performing the integral in Eq. (4.3) exactly gives
the leading larger behavior of A„(see Ref. 22):

(-I}""12»v6A» = +2 3"I'(n +K+ 2)[1+0(1/n)] .K le

(4.4)

We have indicated that the corrections to Eq.
(4.4) are of order n '. This is verified in the next
section, where we derive the next-higher-order
WKB results. We emphasize here that lourest-
order WKB is sufficient to give the precise leading
behavior ofA» for large n Success. ively higher-
order WKB approximations to ImE»()(. ) do not
change the results in Eq. (4.4); rather, they give
the successive coefficients of inverse powers of n
which multiply the leading behavior in Eq. (4.4).
Equation (4.4) is the first term of a series in pow-
ers of n ' (which may be asymptotic).
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V. FIRST-ORDER W|!'8 RESULTS

In this section we obtain the O(n ') corrections
to Eq. (4.4). We could, of course, accomplish
this task by carrying out the WKB calculations of
Sec. III to order &, plugging those results into Eq.
(2.7}, and evaluating the integral. Instead of pre-
senting this extremely tedious and unenlightening
calculation, we will rely on previous WEB calcula-
tions, ' and, with a minimum of work, determine
the O(n ') corrections. Our procedure will be to
(A) compare the results of Sec. III with previous
zeroth-order WKB calculations, and (B}use this
comparison to find the first-order WEB result cor-
responding to Eq. (3.36).

A, Discussion of Zeroth-Order WKB

ImE" (X) = 0. (5.4)

More care must be taken with Eq. (5.2). Con-
sider first the even-parity energy levels,

separately because, as seen from Eq. (5.3), for

~
argX

~

= w, the imaginary part is exponentially
small compared with the real part. Consider the
real part first. Equation (5.3a) agrees trivially
with Eq. (5.1}for !arga~=w. Furthermore, for
arga= w, the right-hand sides of Eqs. (5.2a) and

(5.2b) are exponentially small and hence may be
neglected. Accordingly, we get Eq. (5.3a) once
again from Eqs. (5.2a} and (5.2b).

It is much more interesting to compare the imagi-
nary parts. If Eq. (5.1) is assumed to hold for
~arg!(.

~

= w, then, since the coefficient of every
power of A. is real, we must conclude that

In Ref. 2 the approximate A. dependence of the en-
ergy levels Ew(!(.) was discovered through the use
of WKB techniques. When ~/(.

~
is small and )argx)

&7r,

(5.1)

Thus, as argX increases from 0 to n, the energy
eigenvalues stay very near the points K+-,' on the
positive real axis. As argA. increases from w to
3w/2, the eigenvalues move abruptly to the ImE
axis. These trajectories in the complex E plane
are governed by

=24+-, +sE, , (5.5)

r( j+-,')r( j+1)sin(w j+wiE, /2)

where E, is assumed to be exponentially small (of
order eV", for /(. negative real). We approximate
the left-hand side of Eq. (5.2a) as follows":

I'(-,'+ ',Ew) —1 5wi
(-- xp

&
~

4
-z ( (-,'a)), (((.2al

I'~4 —z E
iV w 2 "-'E (-I-)"'(2 j)!. (5.6)

for even-parity energy levels (K even), and

r(-,*+-,'Ew) 1 5'=sxy —— -R ( (-', 'll), (5.2b)

for odd-parity energy levels.
As we emphasized in Sec. II, Eq. (5.1) is valid

when
~ argX )

& w, and Eq. (5.2} is valid when w

& )argk~ ~2w. When ~argx)=w, the point at which
the distant turning point enters the sector in the
complex x plane where the boundary condition
lim!, ! „()((x)=0 holds, we have from Sec. III

(5.3a)

where we have chosen that branch of the ln func-
tion for which Ini=-,'iw. Combining Eqs. (5.6) and

(5.'I) gives

/2 424'+7/2
eV3A( !() 2z v 2

jw (2j}!
By an analogous procedure, we have

(5 8)

The right-hand side of Eq. (5.2a) is approximately

y' 3P 5ff 1/4/ I ~ 8& E& ln( 3)

&eV3x &5((i/4( lg)-2J-V2 e(2J+V 2)h(i
2

eV3x( l)z+(( &/() 2z (/2 (5 7)

and

4E+7/2
ImEw(!() =s, v, eV "(-!()w V'[1+O(!()],

(5.3b)

~242~. y2
eV3x( !)-2z-V2

vw (2j+1) r

for odd-parity energy levels of the form

EE, E2J+ I

(5.9)

where the + corresponds to argA. = an.
We raise the following question: What do we get

from Eqs. (5.1) and (5.2) if they are assumed to be
valid at argA. = +m? For this purpose, we must con-
sider the real part and the imaginary part of Ew(a)

=24+-', +iE2.

Equations (5.8) and (5.9) verify the assumption
that E, is exponentially small.

Finally we combine Eqs. (5.8) and (5.9) into one:
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2 4~+
lmzr(1)- ev'"(-/i. )

r v'
&&K!

(5.10)

Again we observe a disagreement with Eq. (5.3b)
—the imaginary part of the energy in Eq. (5.10) is
too large by a factor of 2. Specifically, this fac-
tor arises from the equations for the asymptotic
behavior of the Airy functions [see Eqs. (3.19) and

(3.22)]. However, factors of 2 appear quite gen-
erally in Stokes' related discontinuous phenomena.
In our case the discontinuity occurs when the dis-
tant turning point crosses a Stokes line of the
asymptotic expansion of i!i(x) for large x. The
Stokes line is the edge of the sector in which
i!i(x)-0 for large x.

A simple example illustrating this discontinuous
phenomenon is a contour integral in the complex
plane where the contour is shifted so that it passes
through a simple pole. When the pole lies on the
contour there is a discontinuity in the value of the
integral which may be obtained by the principal-
parts method. If we average the integrals for the
pole lying inside and outside the contour, we ob-
tain the principal-parts result.

Keeping these comments in mind, we are now
not surprised to observe that Eq. (5.3b) is pre-
cisely the average of Eqs. (5.4) and (5.10). This
averaging phenomenon is quite general. We will
use it in Sec. VB to determine Er(t), /i. &0, to
first order in A. by averaging the first-order ver-
sions of Eqs. (5.4) and (5.10).

Finally, we point out one further way of under-
standing this averaging. With reference to Sec. II,
suppose we take the cut not along the argA, = 180
direction, but at argX= 179 . Then the discontinu-
ity is given by

Er(arg!i = 179') -Er (argX = -181') .

The first term can be computed from Eq. (5.1) and
the second from Eq. (5.2). Some contributions
such as &+-,' cancel and we get the sum of Eqs.
(5.4) and (5.10) after analytically continuing the
discontinuity to 180'.

Equation (5.11) follows from a straightforward
application of Rayleigh-Schrodinger perturbation
theory to Eqs. (1.1) and (1.2). The first-order
analog of Eq. (5.2a) is"

Z'(-'+ —', v) 1 5vi= exp —+ —(v+ —,) 1n(ziA. ) +!i/t + XBE'

(5.12)

where

i/= E ——,
' ——3/i. (E' + —,') /2 . (5.13)

The values of A and B in Ref. 2 are incorrect.
Their correct values are

A=~, B=~. (5.14)

Equations (5.13) and (5.1) imply that for the Jth
even-parity energy level,

(5.15)

where g is at most of order ~. %'e insert this re-
sult into Eq. (5.12) and find that (as in Sec. VA) the
left-hand side reduces to g times a constant while
the right-hand side is of order e~'~. Thus, for
negative real /i. , r) is smaller than any power of /i,

Noting this result, we return to Eq. (5.13) and
iterate it once to get an approximate expression
for E'(!i.) = E"(!~)~

E'~= 2J'+ —'+ —'!i(LT'+ AT + 1) + g[1+—' Z(1+@i)].

(5.16)

Equation (5.16), the first-order version of Eq.
(5.4), contains a twice. Apparently, the real and
the imaginary parts of E (q is imaginary, as will
be seen shortly) express their higher-order cor-
rections in separate and independent power series
in A. .

Next, we use Eqs. (5.12), (5.15), and (5.16) to
evaluate i!. The left-hand side of Eq. (5.12) reduces
to

B. First-Order V(KB Results i( l )~+~(~) iq (5.17)
The first-order analog of Eq. (5.1) is

Er(ii) =K+ 2 + ', (2K +2K+1)X+0(—X') . (5.11)
following the procedure of Eq. (5.5). The right-
hand side of Eq. (5.12) is approximated by

V&x e5&i/&[1 +/i(/1 +ZE2)] e (27+v 2)+(i&/&)- eV&&&[1 +/i(A +flz&)]( i/i) 27-V2( 1)~+i

Combining Eq s. (5.17) and (5.18) gives

42/+ j//' 2
eV'"(-/ ) "-V'[1+!(A+az')].

(5.18)

(5.19)

Next, we combine Eq. (5.19) with (5.16):
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i W2 4"+ }(2
E2~ = ~+}+3Z(6J'+47+1)+2 4 tw (2Z) }

e i'"(-a} ' ~'[I +a[2+ M +A +B(2J+2}'j}.

Finally, we replace LT in Eq. (5.20) with K and have for all energy levels

(5.20)

&24»'~2
Er =K+ 2+ —'A(2K'+2K +I)+ e~3"(-X) 4"'(I +X[ 2+3K -A —B(K+2)2g.

1

(5.21)

(-1)""12«})(6 3„,)fl g )A+2

72+ 12K+12K' +0 n ) (5.23)

This is the desired result which was stated in Sec.
I. It is a generalization to all K of Eq. (4) in Ref. 1.

We conclude with two remarks. First, recall
that in Ref. 2 there is a numerical fit of the first
75 Rayleigh-Schr5dinger coefficients for the
ground-state energy (K =0)." There, the coeffi-
cient ofn ' is given as

-1.319453 .
The decimal equivalent of -L», the exact answer
in Eq. (5.23}, is

-1.319444 ~ . ~ .

This agreement strongly testifies to the power of
WKB analysis.

Second, recall that as pointed out in Sec. IV, A»
will in general be given by the result in Eq. (4.4)
[and Eq. (5.23)] followed by a series in inverse
powers of 22. [This must be so berause the correc-
tions to the discontinuity De(«), in Eq. (5.22), for
example, are a power series in «. ] The series

The imaginary part of Eq. (5.21}is the first-order
generalization of Eq. (5.10). Note that the real
parts of Eqs. (5.21) and (5.11) are identical and

that only Eq. (5.21) has a nonzero imaginary part
(as was true of the zeroth-order counterparts of
these equations).

As in Sec. VA we can now average the expres-
sions in Eqs. (5.11) and (5.21) to obtain the true
value of Er(X} for X &0. This true value differs
from Eq. (5.21) in that the vY is in the denominator.
From this result we obtain the discontinuity which
was defined in Eq. (2.6):

4»+ 1i
Dr(«) el/32( «) « 3(2-

K }(2w)~2

X [1+«(P4+~4K+~4K2)], (5.22)

where we have substituted the values of A and B
given in Eq. (5.14).

We can now compute the 0(33 ') corrections to
Eq. (4.4). Following the procedure of Sec. IV, we
insert Eq. (5.22) into Eq. (2.'I), perform the inte-
gral, and obtain for large n

for A„' will thus take the form

A„'-(-0"" „,1( ~ -', )3 (}—I -t).
j=1

(5.24)

VI. INDEPENDENT DERIVATION

We exhibit below a new and independent deriva-
tion of Eq. (4.4) for the ground-state (K=O) energy.
At the end of this section, we generalize these re-
sults to the first energy level. Our methods here
are far more direct, although somewhat more in-
volved, than those of Secs. II, III, and IV. We will
find a Linear difference equation which for large n
asymptotically approximates the nonlinear differ-

We would not be surprised if the series in Eq.
(5.24) is asymptotic. In fact, we would not even
be surprised to find that the coefficients g,. are all
positive, rational fractions. We have calculated
numerically some of the coefficients a,. and have
obtained the following results":

—Rk
1 727

e2 10366 (= 1 9 6 60 Q}7901234) l

15 422 651
3 2 198 748 '

These values for Q1 Q2 and g3 were of course
originally computed as decimals; afterward, we
guessed the above fractional representations of
which we are extremely confident. Note that the
denominators are all products of powers of 2 and
3.

We have also computed these additional coeffi-
cients:

g4 = 40.118943 1,
g5 = 305.5223,

g6 = 2808.09,

a7 = 0.2995 x 10',

g8=0 365x10'

g9 = 0.44 x 10',

a1o =1 x10'.
It is not yet possible to determine the fractional
representations for the above coefficients because
they are not known to a sufficient number of signifi-
cant figures.
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g'(x)-e " j' 1+ -A.)" (-,'x')fC„ f
n=& f =1

(6.2)

into the differential equation in Eq. (1.1). Collect-
ing powers of x and X gives the desired difference
equation":

2 jC„ f
= (j+1)(2j+1)Cg f +

h 1

ence equation [Eq. (6.3)j which generates nth-order
perturbation theory. We then solve this linear
difference equation. Our methods are nonrigorous;
nonetheless, we feel that this analysis is extreme-
ly worthwhile because it clarifies the rather subtle
and intricate perturbative structure of the anhar-
monic oscillator model.

We obtain the nonlinear difference equation which
generates the ground-state energy perturbation
series by substituting

E'(x) - —,
' —P (-x)"C„ (6.1)

n =1

and

o J.=.O
II
C

N
II ~
C

J=2 j=4
I

j=6 j=8 j = IQ j =l2
I I

j=l4 j=l6 j=l8
I I I

II —~
C

II —~

~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I 0 ~ ~ ~ ~ ~ ~ ~

~ e ~ ~ ~ ~ ~ Oo ~

Our problem is to find the large-n behavior of C„„
the entries in the first column of the matrix.

FIG. 4. Schematic representation of Eq. (6.3). The dots
represent the nonzero values of C„ f. The dot in the
circle is the value of C„ f to be computed; the underlined
dots are the values of C„, which Eq. (6.3) requires for
this computation. The arrows indicate those pairs of
C„ f which are multiplied together.

+Cn i, I-n Q Cn icn I, I,
p=l

(6.3)
A. Linearization of Eq. (6.3)

where C„=C„,and C, ,=1. The C„are related to
the Rayleigh-Schrodinger coefficients A.„by the
formula

Ao = ( 1)n+ (6.4)

The minus signs in Eqs. (6.1) and (6.2) are chosen
so that the C„ f are all positive.

Figure 4 illustrates schematically how Eq. (6.3)
iterates. The dots represent the nonzero entries
in the matrix C„ f. The dot in the circle repre-
sents the value of C„ f to be computed, that is, the
left-hand side of Eq. (6.3). The underlined dots
are the values of C„, on the right-hand side of Eq.
(6.3).

A glance at Fig. 4 indicates several general
properties of Eq. (6.3). Each C„ i depends on all
numbers above and to the right of it. Thus, the
matrix in Fig. 4 must be filled out from right to
left for fixed n, after each row is completed, n,
the order of perturbation theory, is increased by
unity. As is typical in perturbation theory, each
new order is increasingly difficult to compute be-
cause it depends on all previous orders. Note,
however, that it is easy to find exact formulas for
the entries on the right-hand side of the matrix:

The positivity of C„ f implies that the summation
on the right-hand side of Eq. (6.3) is small com-
pared with the other two terms. This suggests
that Eq. (6.3) may be replaced by a sequence of
linear equations, the Nth equation having the sum-
mation in

n-1
—g CI, ,C„

p=1

replaced by Pn, and g " '„„,where N = 0 means
no sum is performed, and where the actual nu-
merical values of Cp f, 1 «p «N are calculated
and then inserted into the summation. One would
expect that as N increases one obtains a better
approximation to C„,. This has been verified to
order 150 on a computer where we found that

C„,/C„, (N = 0) -1+O(1/n),

C„,/C„, (N = 1)-1+0(1/n'),

C„,/C„, (N = 2) -1+0(1/n ), etc.

We now demonstrate analytically that the N =0
linear equation

1
n, 2n 4nn.

4n+5
n, nn-l 3 4n(

(6.Sa)

(6.5b)

2j C„,= (j +1)(2j +1)C„,„+C„»„ C, ,=1

(6.6)

16n'+ 64n + 87
n. nn-2 16 4n(n 2) I

(6.5c)

gives the same leading behavior of C„, for large
n as in Eq. (4.4). The N & 1 equations have still
not been solved analytically.
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8. Approximation of the Linear Equation C. Conversion to a Partial Differential Equation

Equation (6.6) may be further approximated. De-
tailed inspection of computer output shows that
for large n,

To solve Eq. (6.14) we define the generating
functions

(j +1)(2j+1}C„&+,»C„,
& 2, for j=O(1)

(6.7a)

(j +1)(2j+I)C„&+,«C„,
& „ for j =O(2n).

(6.7b)

Equation (6.6} suggests the substitution

eo

F( ) g n 1

n =1

where

(6.15a)

(6.15b)

D„,=jr (j+,')C„„- (6.8) G(x, 0) = G(0, y)=0. (6.16)

which gives

+ —+n j n /+1 2 8
~ 16 Dn-l, g-a ' (6.9)

Then we multiply Eq. (6.14b) by y"' and sum over
j, multiply by x" '/(n —1) } and sum over n, and use
Eq. (6.15) to convert the result into the partial
differential equation

For large n, the term 3(8j —16) ' can be dropped
because for large j it is small compared with —,'j
and for small j Eq. (6.Va) shows that contribution
from the D„,~, term is negligible. Thus, we
approximate Eq. (6.9) by

1 ~

n, f n f+ a~ n- .f- (6.10)

However, this approximation is only good for
large s. Furthermore, Eq. (6.10) is homogeneous
(multiples of solutions are solutions). Therefore,
we calculate the initial value Ep 0 by demanding
that E„~ approximate D„~ for large n. It is sim-
plest to require that

—G(x, y)+ —G(x, y) = [y' —F(x)]
a y4 8 y'

sx ' 2(1 —y) sy '
y —1

(6.17)

dY
d( 2(1 —y)

(6.18}

Integrating Eq. (6.18) gives

Note that unknowns appear on both sides of this
equation

To solve Eq. (6.17) we introduce a new variable
$, where

lim " =1.
n-- Dn, 2n

(6.11) ( )
3y —2

(6.19)

E = lim ' =(2/w)~'.0.0 4n( ) }2 (6.12}

D„,„ is obtained from Eqs. (6.5a) and (6.8). It is
easy to see that E„,„=E, ~ t. Thus, g(y} is plotted on Fig. 5. Note that for $ &0, g(y)

has a two-valued inverse. The inverse functions
g, ($) and g, (g) are plotted on Fig. 6. In terms of
x and t' the solution of Eq. (6.17) is

Having established Eq. (6.12), we expect that
for large n,

D, l
ll, l F(3}

(6.13)

Finally, for convenience we define a new func-
tion F„~ which is a multiple of E„~ and obeys the
equations

l

2

3
4=0

I(=-——
2

y=l

2
y= 3

I

y=2

g(y) =

3y

yx3
=y

Fo 0=1,

n, j n, /+1 &~ n-l, g-a &

2~2
nl

m
nl

(6.14a)

(6.14b)

(6.14c) FIG. 5. Graph of E (y) = (3y —2)/3y showing the two-
valued inverse of $(y) for (&0.
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gi(~) s ~

g2(e) f

(6.25a)

(6.25b)

]

-2 -2 Q ( I

p 1X=3-E', X =3 —E (6.26)

Equation (6.25) indicates that as x approaches —,',
the right-hand side of Eq. (6.24) becomes singular.
We are thus motivated to identify the leading sin-
gularity in F(x) which causes the equivalent diver-
gence of the left-hand side. To this end, we sub-
stitute

FIG. 6. Graph of the two inverse functions y = g&($)
and y = g2($) which solve the equation $ (y) = (sy -2)/Sy . into Eq. (6.24). The resulting approximate inte-

gral equation is

O„,(x, ~)= dx', "g, ,'(g —x+x')
1-g, , ] -x+x ) r e' F( ' —e')—

1 —g~(g+E —e )

where

x [F(x' ) —g, ,'(( —x +x') ], (6.20)
g2 (3+E —E ) 1

1 —g2(~ +f —f') E

G, .(x, () = G(x, g, , ,(&)). (6.21) (6.27)

Note that Eq. (6.16) allows us to eliminate an arbi-
trary solution p(x —t) of the homogeneous equa-
tion from Eq. (6.20).

The integral in Eq. (6.20) can be simplified by
using Eq. (6.18) as follows:

g, ,'(] -x +x')
1 -g, ,(] —x+x')

X
= -2 dx'g, ,(t —x+x')

0

d$ -2(1 —y)dy .

Equation (6.28) integrates to

(6.28)

(6.29)

Thus, using Fig. 6 to guide the choice of sign,

Next we approximate the expression in square
brackets in Eq. (6.27). Figure 6 shows that g, ,(

—', )
=1. When $ is near —,

'
(y near unity) we can replace

the differential equation in Eq. (6.18) by

= -g, '(&)+g, ,'(t' -«). (6.22) 1 —g~(g+E —e ) (e -e)

1 -g, (3'+ ~ —~') —-(~' —~)v'.

(6.30a)

(6.30b)
D. Conversion to an Integral Equation for F(x)

From Fig. 6 observe that g, (-', ) =g, (-,'). Hence,
using Eq. (6.21), we find that

From Eq. (6.30), we conclude that Eq. (6.27) may
be further approximated by

G, (x, —,') = G,(x, —,') . (6.23) (6.31)

Combining Eqs. (6.20) and (6.23) then eliminates
all reference to G and gives the following singular
integral equation for I'

The leading singularity in F which causes the
divergence of the right-hand side for small e clear-
ly has the form

f g, '(-,' -x+x') g, '(-,
' -x+x')

1' 1-g,(-, -x+x') 1-g,(-, -x+x') F(3' —e') (6.32)

=g, '(5 —«) -g, '(k —x) .

(6.24)

E. Approximate Solution of the Integral Equation

Figure 6 shows that for small g, g, ($) is singular
while g, (t') is finite. Indeed, Eq. (6.19) implies
that for small e,

The substitution e' = ~/z yields k = —,
' and the equa-

tion

F(x)--,'(-'-x) "' (6.33)

dz 1
„(1-z)~' 2a

'

Letting ~ —0 gives a = —,'. Hence, the leading singu-
la.rity of F(x) is given by
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F. ReCOVery Of Cn 1 fOr Large n

The actual behavior of F(x) as given by Eq. (6.24)
has the form

F(x)--,'(-,' -x) V'+9(-,' -x) V'+P(-,' -x)~'+ ~ ~ ~ .

(6.34)

However, when F(x) is expanded into a power
series in x, the dominant contribution to the co-
efficient of the y" term for large n comes from
the most singular term in Eq. (6.34). Thus, the
analysis we have carried out is just sufficient to
obtain the leading behavior of C„ for large n.
Hence, using the binomial theorem to get the nth
term in the expansion of ~(—, —x) V' and combining
this result with Eqs. (6.15a) and (6.14c) gives the
desired result

It would now appear that applying Eq. (6.39) to
Eq. (6.20} is a far simpler way to eliminate the
unknowns G, , in favor of F. In fact, this proce-
dure leads to a tautology —the resulting equation
for F reduces to an identity. The apparently new
and independent condition in Eq. (6.39) is already
contained in Eq. (6.20). Thus, we are forced to
follow the procedure of Sec. VD.

H. First Energy Level (K=1)

It is easy to repeat these techniques for the first
energy level. We list below some intermediate
K= 1 results, which correspond with the K=0 re-
sults given above.

The linearized difference equation which corre-
sponds with Eq. (6.6) is

or

C„,— „,3"I (n+-,')&6
(6.35)

2j C„,. = (j +1)(2j+3)C„...+C„

where C, ,= 1 and

'=3

(6.40)

(6.41)

~0 ( I)".i 3.F(N+~), W6
(6.36) To derive Eq. (6.40) we have dropped the convolu-

tion term
which agrees with the result in Eq. (4.4) when
Z =O.

n-l
-3 Q C(, , C„(, ,

G. Discussion

We discuss below one subtle aspect of this deri-
vation. At first glance it might appear that the
delicate and intricate use of the multivaluedness
of y as a function of g to eliminate the unknown
generating functions G, and G, in Sec. VD was not
necessary. It would seem that a more straight-
forward approach would use the relation

from the right-hand side. The substitution

D. , =jr(j+-')C. ,
[see Eq. (6.8)] and some approximations give

F„q = F„...+ ~(j+2)F„

where F, ,= 1 and

A'= (-1)n'' Fn n, l

(6.42)

( ) 1
1eG(xy)
2 Bp y= 1

(6.37)

This identity may be proved by differentiating G
in Eq. (6.15b) and letting y= 1. The result is

[see Eq. (6.14)].
Instead of solving Eq. (6.42) let us consider a

one-parameter family of such equations. Let M
be arbitrary and Fp p 1 Then we solve

1 BG + 2" j+21+—— = I ++ —,g F„,2 ~p
I f=1

F)) g
= F)) y+ i + 2 (j +~)F))-x g-2

by introducing the generating functions

(6.43)

2n+2

1 +g P (Fvvy) i F&vt pic)

(6.38) and

( =g („1),n=l
(6.44a}

v'(*)=)+ ); (-' —()v* '*' '

)
~G tx, ~)

gags ag
(6.39)

where we have shifted the j index and substituted
Eq. (6.14b). The j summation in Eq. (6.38) collaps-
es. Comparing with Eq. (6.15a) verifies Eq. (6.37).

Converting the identity to one involving the z and
( variables gives

2n

G(x, y) = —P y'""F„,
n= n j l

The analog of Eq. (6.17) is

(6.44b}

s y' 8 y"" M+2—o(v. v)' —Gt*, y)=
' v'-v'(*)j.

&x ' 2(1 —y) sy '
y —1 2

(6.45)
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I' [-,' (M + 3)]
2v )t I'[2(M+2)] (6.46)

Following the analysis of Secs. VC-VD, we ob-
tain

Equation (V.3) allows us to express Wick-ordered
quantities simply in terms of non-Wick-ordered
ones, to wit:

1 (7.4a)

which is the generalization of Eq. (6.33). Finally,
we repeat the work of Sec. VF and find that ~ 4 ~ 4 3 2

m
&"4m2 (7.4b)

3"'"" 'I'[tt+-'(M+I)]F 2

2&tt I'[-,'(M+2)] (6.47) (7.4c}

The particular case M= 2 in Eq. (6.42) reduces Eq.
(6.47} to

gt —
( 1)"+ ' 3"I (tt + —')12&6

fl
1r

' (6.48)

which is precisely the case K = 1 in Eq. (4.4).

VII. LARGE-ORDER BEHAVIOR OF WICK-
ORDERED PERTURBATION THEORY

(2ttt )- 2t(/t- tsmt (+ ttTel%t)

()~ )I/2( ~ e-imt + ~ 't tmt)

Then, in terms of a and a, His
H= ttt(a~a+ t}+g(2m} (a+ a~)' .

(V.la}

(7.1b)

(7.2)

The standard way to Wick-order H in Eq. (V.2) is
to place all creation operators to the left of all an-
nihilation operators.

To elucidate this definition we use the commuta-
tion relation

[a, a~] =1 . (7.3)

It is necessary to Wick-order the Hamiltonian
of a multidimensional field theory. Wick-ordering
removes the divergence associated with the zero-
point energies of the infinitely many degrees of
freedom. Correspondingly, in perturbation theory,
Wick-ordering removes those (divergent) diagrams
having self-loops (lines with both ends connected
to the same vertex}. Because the anharmonic os-
cillator is a field theory having only one degree of
freedom, "it is not necessary to Wick-order the
Hamiltonian H in Eq. (1.4). In addition, the non-
Wick-ordered diagrams in this field theory are
finite and need not be eliminated. Nevertheless,
to make a stronger connection with higher-dimen-
sional field theory, we investigate the large-order
behavior of the Wick-ordered perturbation series.

We begin by Wick-ordering the Hamiltonian in
Eq. (1.4). To do this, we express the fields in the
interaction picture in terms of creation and anni-
hilation operators:

m'-m (1—6x/m ),
E-E- —,'m +-,'ma/m'.

(7.6a)

(7.6b)

From Eqs. (7.6) and (1.7), it follows that we can
immediately express the perturbation series for
the Kth energy level of the Wick-ordered Hamil-
tonian in terms of the Rayleigh-Schrodinger coef-
ficients for the non-Wick-ordered Hamiltonian:

E N;,„-)- -', m + -', m A+ m (K+ -', )(I —6A)' '

+ tttQ /1'A" (1 —6A)'"-'"'
n=1

where A=A. m '.
Using the binomial expansion,

(7.7)

( ), /, ,„/, p (6A)ti"(-,'tt- —,'+ j)
q!N ,'tt —,')-—(7.8)

we simplify Eq. (7.7} to read"

E„;,„-mK+ 2K(K-1)mA+mQ A" H„, (7.9)
fl -2

where

E &, ,6 I'(hatt —t 2 —2)
81'(ks - ki 2}-

[In Eq. (V.10), A, =K+-,'.] Equations (V.9) and
(7.10) are exact.

We proceed to compute the large-order behavior
of B„. To do this, we observe that for large n,
the dominant contribution to the sum in Eq. (V.10)
comes from the small-j terms. We thus approxi-
mate'

We now use Eq. (7.4) to rewrite the Wick-ordered
Hamiltonian: H: as a new non-5'ick-ordered Ham-
iltonian:

4 6A, m Q 3A.:H:=-,f +-,m f ——,m+Af —, +
m 2 4m

(7.5)

Comparing Eq. (7.5) with Eq. (1.4) shows that
Wick-ordering is equivalent to the replacement

I'(m —-'j ——,') (, & 2)((+1) j(j 1)( j~ 1)))2(j ~ ()-,
)r(-,s- —,q- —,) 3&

3 3 ) 2s +
54n' +01n' (7.11)
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As will be seen, it is most productive to compute the large-n behavior of the ratio A„/B„. Equations (7.10)
and (V.il) give

19 (9 )' A„,. 2j(j~ 1) j(j—1)(12j+ 11)(j 1),
)54n'

Next, we refer to Eq. (5.23) and determine' that for large n

(v. i2)

A 1 j' —2j jj —j(~~ 58(( 34((') j(j~ ()(12jj'—(2jjj~ 3j' ~ 1 —1)
( j,)A» (-3n) j 2n 24n'

Note that even though we have only determined the large-n behavior of A„up to terms of order 1/n' we can
still calculate the ratio in Eq. (V.13) up to terms of order I/n'. This is the reason why we have chosen to

approximate the ratio.
Finally, we combine Eqs. (7.12) and (7.13) and allow the summation index to run from zero to ~ to obtain

B ~ (-3)j j +4j+6Kj, 3 j + 8j —48 j-338 —522K-306K'+36Kj(j+1)+108K (j+1)
216n'

+0 1 n')

(7.14)

By repeatedly shifting the summation index, we
do the indicated sums in Eq. (7.14) exactly. We

obtain

I 47~~= e' 1 ———— 2+ 0(1/n')
n 24n2

(v. i6)

We have calculated the ratio Ao/B'„ to 74th order
in perturbation theory on a computer and find that

= 19.80655 . (V.lV)

The agreement between the theoretical result in
Eq. (7.16}and the computer output in Eq. (7.1V) is
most impressive:

B 3 1+3K ~»+ 31K+23K

A„ n 4n

(v. i5)

This is the desired result which was also given in
Sec. I.

To compare this prediction with our numerical
results, we let K=O in Eq. (V.15), take the recip-
rocal, and get"

(X(I5)'"), and (:A. (())'":), theories has now been solved
and will be published elsewhere. '

APPENDIX

ImE = E, =J (x (Al)

We give below a derivation of Eq. (3.36) which
is less careful than that given in Sec. III, but
which clarifies the physical ideas and minimizes
the mathematical detail. In Sec. III we took pains
to show how to deal with the subdominant contri-
bution to the wave function [the exponentially de-
creasing C, (x}]. Now that 43, (x} is comfortably
under control, we cavalierly rederive ImE(X)
without regard to subdominance. In a future paper,
where we generalize to the much more complicat-
ed and difficult problem of many coupled oscillators,
we will follow the techniques of this appendix
rather than those of Sec. III.

First, we use a well-known relation" between
the imaginary part of the energy of an unstable
state of a real potential and the probability current
4 (x):

e' = 20.085 537,
e'(1- 74 ') = 19.814111,
e'[1- 74 '-4V ~ 24 ' ~ 74 ']=19.806928 .

(V.iga}

(7.18b)

(7.18c)

where

A(*)= -9"(*)—9(*)"5(*)—9'(2)) (A2)=-1 d d
2i dx dx

Despite the excellent results of Eq. (7.15) we
point out that our derivation does not generalize to
Wick-ordered (ip'") field theories with N&2. For
these theories there is no replacement equivalent
to that in Eq. (7.6). However, the general prob-
lem of finding the large-n behavior of the ratio of
the Hayleigh-Schrodinger coefficients in the per-
turbation series for the energy levels of the

Equation (Al) is trivially derived by multiplying
Eq. (3.2}by 48'(x), subtracting the complex con-
jugate of this result, integrating from -x to x,
where x &x„and using the invariance of the po-
tential under reflections x- -x. (We integrate
past x„ the distant turning point, so that there
is no point between x and ~ where the current will
be reflected back toward x=0. Thus the amount
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of outward probability current flow is a measure
of the decay rate of the unbound state. ) Note that
by conservation of probability current the right-
hand side of Eq. (Al) does not depend on x.

Second, we approximate the denominator of Eq.
(Al) as follows: For x&x„we can replace 4 in
the integral with He@ because Im4 is small, as
was shown in Sec. III. Moreover, we can approxi-
mate Re4 by 4,„=Dr(x) [see Eq, (3.8)], because
Re@ and 4» differ only in the shape of their ex-
ponentially small tails. Finally, we extend the
range of integration to all positive x. Thus, "

r 4+(x')C(x')dx'- [D (x')] dx'=( v) K! .
0 0

(A3)

Third, we evaluate J (x) in Eq. (A2). We will do
this in two distinct ways.

Method 1

We follow the approach of Sec. III until Eqs.
(3.21), (3.22), and (3.24) have been established.
These equations together imply the following be-
havior for the wave function 4(x) when x&x, :

C(x) 2-u4exs~(x x )-x&4exp[-$iw-(Ik} ~-$(K+/)luge -$i v 2e '~ (x-x, )~~~]. (A4)

The expression in Eq. (A4) is then inserted in Eq.
(A2) giving

E+ 1/2
g (x) 1 e 1/sE (A5)

Method 2

xexp —~ x -ex -4K-2 '"dx
XQ

(A6)

x, and C, are given in Eqs. (3.12) and (3.14}. C,
is determined by asymptotically matching 4vK~ (x)
in Eq. (A6) to Dx(x) at the boundary of regions A
and 8, as was done in Sec. IIIB, We would now
like to allow x, the upper endpoint of the WKB in-
tegral, to be larger than x, . But, of course, this
expression for the WKB wave function is no longer
valid as we pass the turning point at x, To avoid
this difficulty we approach the point x along a path

Here we use a trick to circumvent the asymptotic
matching at the distant turning point x, . We thus
reduce the problem to just one asymptotic connec-
tion. We follow Sec. 111 until Eqs. (3.11), (3.12),
and (3.14) have been established. Equation (3.11)
is the %KB approximation to 4 in region B:

4(x) -C, (x-'-~x4-4K-2) "4

(A7)

We evaluate the integral in Eq. (A7) (Ref. 17) to
obtain the same result as in Eq. (A5).

Finally, we combine Eqs. (A3) and (A5) as in-
dicated in Eq. (A 1) and get

ImE = E2

g&+1 /0
e~l/36 ~ & 1/2

Kf(2v)'" (A8)

which agrees with Eq. (3.36}.

which goes around x,: The path goes up the real
axis, circles x, counterclockwise, and continues
up the real axis until it reaches x. Along this
contour, WKB gives a good approximation to C.

Fortunately, the integraE in the WKB wave func-
tion depends only on the endpoint. Thus, for sim-
plicity it may be taken entirely along the real axis.
We then break the integral into two parts: (a) the
portion below x, which is real and factors out of
J'(x) as a constant, and (b) the portion above x,
which is imaginary. To leading order [neglecting
O(x ') & O(e) compared with O(1)], J(x) is a real
constant which we easily simplify to

aXg

Z(*)=&C,'exp — (x -a*"—4lC-2) i'dx') .
0
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