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Towards the deformed shell model

We learnt in the previous lecture that residual pairing interactions in
nuclei couple nucleons of the same kind occupying the same orbitals
into pairs of zero spin and positive parity.

We also said that residual proton-neutron interaction leads to
configuration mixing and drives a nucleus towards deformation.

The data supports this hypothesis, we considered the systematics of
the energy of the first excited state in nuclei near Z=50 as an
evidence, another one comes from a complete failure of the spherical
shell model in predicting spins of nuclei far from the magic numbers.

Therefore, let us analyze impact of the deformation on a nuclear
system and develop tools to deal with non-spherical shapes and shells.

We will start with a non-spherical infinitely deep potential well which
captures all important feature of a deformed shell model.
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Infinitely deep potential well in one dimension

If the well is infinitely deep the Schrödinger equation requires that the
wave function vanishes on the boundaries.
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Infinitely deep potential well in one dimension

For the well on the graph

 (0) = 0  (L) = 0 =)  (x) = A sin(
n⇡

L
x)

But at the same time

 (x) = A sin(kx) ~k =
p
2mE

This leads to

k =
1

~
p
2mE =

n⇡

L
or

E = n2
⇡2~2
2mL2

= n2E1 E1 =
h2

8mL2

Note that the wave function for the ground state is symmetric with
respect to the middle of the well (has positive parity), for the next
state the wave function is asymmetric (has negative parity) etc.
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Infinitely deep potential well in three dimensions

In a Cartesian space the coordinates x , y and z are independent of
each other.

Therefore we can think about a three-dimensional infinitely deep
potential well as about three independent wells constraining particle
motion along each of the independent coordinate.

A consequence of that fact is separation of variables in the
Schrödinger equation, the three-dimensional equation can be split
into three one-dimensional equations.

The wave function is a product of three one-dimensional wave
function, each being a solution for the one-dimensional equation for
each of the coordinates.

The energy is the sum of three energies corresponding to the solution
for the one-dimensional equation for each of the coordinates.
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Separation of variables

For the potential

V (x , y , z) = V (x) + V (y) + V (z) (1)

For the wave function

 (x , y , z) =  (x) (y) (z) (2)

For the equation

E (x , y , x) =

⇢
� ~2
2m

✓
@2

@x2
+

@2

@y2
+

@2

@z2

◆
+ V (x , y , z)

�
 (x , y , z) =

=  (y) (z)

✓
� ~2
2m

d2

dx2
+ V (x)

◆
 (x) +

 (x) (z)

✓
� ~2
2m

d2

dy2
+ V (y)

◆
 (y) +

 (x) (y)

✓
� ~2
2m

d2

dz2
+ V (z)

◆
 (z) (3)
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Infinitely deep potential well in three dimensions

Let us denote the dimensions of the well along the x , y and z
coordinates as Lx , Ly and Lz .

The wave functions are

 nx ,ny ,nz (x , y , z) =  nx (x) ny (y) nz (z) =

= sin(nx⇡
x

Lx
) sin(ny⇡

y

Ly
) sin(nz⇡

z

Lz
) (4)

Note that nx > 0, ny > 0 and nz > 0 otherwise  nx ,ny ,nz = 0.

The energies are

Enx ,ny ,nz =
⇡2~2
2m

n2x
L2x

+
⇡2~2
2m

n2y
L2y

+
⇡2~2
2m

n2z
L2z

=

=
⇡2~2
2m

 
n2x
L2x

+
n2y
L2y

+
n2z
L2z

!
(5)
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Spherical infinitely deep potential well in three dimensions

Spherical infinitely deep potential well in three dimensions

Note that for Lx = Ly = Lz = L the well has spherical symmetry.

The energies are

Enx ,ny ,nz =
⇡2~2
2mL

�
n2x + n2y + n2z

�
= E0

�
n2x + n2y + n2z

�
(6)

with E0 =
⇡2~2
2mL

Let us denote a state with a set of quantum numbers nx , ny and nz
as (nx , ny , nz).

For the ground state nx = ny = nz = 1 the label is (1, 1, 1) and
energy is E(1,1,1) = 3E0.

Next there are three excited state of the same energy with quantum
numbers (1, 1, 2), (1, 2, 1) and (2, 1, 1). The energies are
E(1,1,2) = E(1,2,1) = E(2,1,1) = 6E0
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Spherical infinitely deep potential well in three dimensions

Degenerate states

Let us have a closer look at the three states at energy E = 6E0.

The quantum numbers (1, 1, 2), (1, 2, 1) and (2, 1, 1) indicate that
they have a di↵erent quantum numbers, thus, they have di↵erent
wave functions.

Di↵erent wave functions indicate di↵erent states. But for
Lx = Ly = Lz = L the energy E = E0(n2x + n2y + n2z) is the same for
all three states. States of di↵erent wave function but the same energy
are called degenerate states.

The level of degeneracy is the number of states at a given energy. For
states at the energy E = 6E0 the level of degeneracy is three.

Note that the next level is also degenerate with the level of
degeneracy of three, quantum numbers (2, 2, 1), (2, 1, 2) and (1, 2, 2)
and energy E = 9E0.
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Spherical infinitely deep potential well in three dimensions

Spherical infinitely deep potential well in three dimensions

Here are the parameters of low-energy states in spherical infinitely
deep potential well in three dimensions

Energy Degeneracy Quantum numbers

3E0 1 (1, 1, 1)
6E0 3 (1, 1, 2), (1, 2, 1), (2, 1, 1)
9E0 3 (2, 2, 1), (2, 1, 2), (1, 2, 2)
11E0 3 (1, 1, 3), (1, 3, 1), (3, 1, 1)
12E0 1 (2, 2, 2)

In this model the energies are the energies of the major shells, the
degeneracy defines the number of particles or occupancy of the shell.

The most important consequence of the deformation is a change in
energy and the level of degeneracy of shells.

The deformation destroys spherical shell gaps and open new gaps and
di↵erent magic numbers.
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Axial infinitely deep potential well in three dimensions

Deformed shapes

The simplest deviation from spherical symmetry is for one dimension
of the well to be di↵erent of the other two, with the other two being
equal.

This corresponds to axially symmetric potential well with the
non-equal dimension being along the symmetry axis, and the other
two dimension being perpendicular to the symmetry axis.

Traditionally, the symmetry axis is taken as the z axis of the
coordinate frame Lz 6= Lx = Ly .

We can distinguish two cases of axial deformation, prolate
Lz > Lx = Ly and oblate Lz < Lx = Ly .

These are the cases we are going to analyze. There is also the triaxial
case Lz 6= Ly 6= Lx which is absolutely legitimate, but we have no
time to analyze it.
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

Let us define Lx = Ly = L.

For convenience it is also good to define a single parameter ↵ which
measures how di↵erent is the Lz from L. Let us do it in this way

✓
L

Lz

◆2

= 1� ↵ (7)

Here is why. The energy for the axially deformed well is

Enx ,ny ,nz =
⇡2~2
2m

n2x
L2x

+
⇡2~2
2m

n2y
L2y

+
⇡2~2
2m

n2z
L2z

=

=
⇡2~2
2mL

 
n2x + n2y + n2z

✓
L

Lz

◆2
!

= (8)

= E0(n
2
x + n2y + n2z(1� ↵)) = E0(n

2
x + n2y + n2z � n2z↵)
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

Note that the energy for the deformed well is a sum of the energy ES

for the spherically symmetric well plus the deformation energy ED

which depends on the parameter ↵

Enx ,ny ,nz = E0(n
2
x + n2y + n2z � n2z↵) = ES + ED

ES = E0(n
2
x + n2y + n2z)

ED = = �↵n2zE0 (9)

For ↵=0 the energy sequence of the spherically symmetric well is
recovered

For ↵ 6= 0 the degeneracy of levels is changed.

Consider the (1, 1, 2), (1, 2, 1), (2, 1, 1) states degenerate at 6E0 for
spherical symmetry. The deformation term will impact the (1, 1, 2)
di↵erently than the (2, 1, 1) and (1, 2, 1) states as the nz quantum
number is di↵erent for the (1, 1, 2) than for (2, 1, 1) and (1, 2, 1)
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions
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Axial infinitely deep potential well in three dimensions

Why does the energy change?

Recall that the energy is directly proportional to the frequency of the
wave function or inversely proportional to the wave length.

The wave function has nodes at the boundaries of the well, thus the
wave length is define by the size of the well.

If the well gets larger the wave length of the wave function increases,
the frequency decreases and energy is reduced.

In a contrary, if the well size decreases the wave length decreases, the
frequency increases and the energy increases.

Recall that

Lz = L
1p

1� ↵
⇡ L(1 +

1

2
↵) (10)

thus for positive ↵ the well becomes prolate, the Lz increases and
energy decreases, while for the negative ↵ Lz decreases and energy
increases.
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Axial infinitely deep potential well in three dimensions

Why atoms do not deform?

If deformation reduces energy of a system why atoms do not deform?
Indeed, all atoms are found to be spherical, but the deformed shell
model features we investigated are generic. Should they be applicable
to atoms as well?

The answer is in the central role and tiny size of a nucleus.

Since the force bounding atom comes from the nucleus and this force
dominates any other forces, if this force has spherical symmetry the
whole atom does.

Object of any shape when looked from afar looks point-like. A point
has the same symmetry as a sphere.

This is the case for nucleus in atoms. Even if deformed it is separated
by electrons by a large distance, so the impact of the nuclear
deformation on the shape of an atom is minimal. However, there is an
impact on the structure of the atomic levels (hyperfine structure).
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Axial infinitely deep potential well in three dimensions

Why atoms do not deform?

The size of the atom is ⇠0.1 [nm] the size of a nucleus
⇠1 [fm]=10�4 [nm]. Thus electrons are separated from a nucleus by
a distance which is ⇠10000 times larger than the nucleus.

Nuclear deformation is not larger than the size of a nucleus.

On average for an electron to see a nucleus deformed it is similar for a
human being to see a deformation of a soccer ball (1 foot in
diameter) from a plane being 10000 feet above the ground.

Good luck.
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Axial infinitely deep potential well in three dimensions

What is wrong with what we have done so far?

We obtained a very nice and hopefully reasonably easy to understand
figure showing the change of magic numbers as a function of
deformation parameter ↵.
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But is this figure right?

The answer is negative. We have forgotten a very important point:
the volume conservation.
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Axial infinitely deep potential well in three dimensions

Volume conservation

In previous lectures we discussed incompressibility of nuclear matter.

This implies that nuclear deformation has to conserve volume.

The deformation we considered so far made one of the dimensions of
the well longer or shorter while keeping the other two together.

This deformation does not conserve the volume.

To conserve the volume when axially deforming the well we need to
make the dimensions perpendicular to the symmetry axis shorter when
the dimension along the axis gets longer, or the other way around.

This implies that all three axes need to change the length while
deformation occurs.

Change of the axes length has a direct impact on state energies.
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Axial infinitely deep potential well in three dimensions

Volume conservation

The volume of the well is

Vx ,y ,z = Lx ⇤ Ly ⇤ Lz (11)

Let us take as a reference the volume of the undeformed sphere

V = L3 (12)

this is the volume to be conserved.

Let us define the length of the dimensions parallel and perpendicular
to the deformation axis

Lk = Lz

L? = Lx = Lz (13)
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Axial infinitely deep potential well in three dimensions

Volume conservation

The volume conservation calls for

Vx ,y ,z = Lx ⇤ Ly ⇤ Lz = L2? ⇤ Lk = L3 = V (14)

Since
✓

L

Lk

◆2

=

✓
L

Lz

◆2

= 1� ↵ or
L

Lk
=

p
1� ↵ (15)

the volume conservation implies

L?
L

=

s
L

Lk
= 4

p
1� ↵ (16)
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Axial infinitely deep potential well in three dimensions

Volume conservation

The energies including volume conservation conditions are

Enx ,ny ,nz =
⇡2~2
2m

n2x
L2x

+
⇡2~2
2m

n2y
L2y

+
⇡2~2
2m

n2z
L2z

=

=
⇡2~2
2mL

 
n2x

✓
L

L?

◆2

+ n2y

✓
L

L?

◆2

+ n2z

✓
L

Lk

◆2
!

=

= E0

✓
(n2x + n2y )

1p
1� ↵

+ n2z(1� ↵)

◆
(17)

Volume conservation changes the diagram, in particular, the energies
as a function of deformation are not linear any more.

Things get complicated, but for a reason.
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

without volume conservation
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

with volume conservation
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Axial infinitely deep potential well in three dimensions

Axes ratio

The deformation parameter ↵ which we used may not be the most
intuitive to think about (although it was useful).

Something more intuitive is the axes ratio.

Let us express the axes ratio as a function of ↵

L

Lk
=

p
1� ↵

L?
L

= 4
p
1� ↵

L?
Lk

=
p
1� ↵ 4

p
1� ↵ = 4

q
(1� ↵)3

Lk
L?

=
1

4
p
(1� ↵)3

(18)
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Axial infinitely deep potential well in three dimensions

Axes ratio as a function of ↵
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Axial infinitely deep potential well in three dimensions

Axial infinitely deep potential well in three dimensions

with volume conservation as a function of axis ratio
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The Nilsson model

The Nilsson model

What we have done for the three dimensional potential well has been
done with a great success for nuclear harmonic oscillator potential in
3 dimensions including the flat bottom correction and spin-orbit terms
to model deformed nuclear potential

The deformed shell model he developed is often referred to as the
Nilsson model.

As for the three dimensional potential well the Nilsson model predicts
that shells and shell gaps are modified by the deformation.

The main achievement of the Nilsson model is correct explanation of
ground state spins and parities of a large number of nuclei, as well its
ability to be expanded into a model for rotation of deformed
odd-mass nuclei (later this week).
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The Nilsson model

Three dimensional deformed harmonic oscillator

Note: without volume conservation, flat bottom or spin-orbit splitting.
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The Nilsson model

The total angular momentum in Nilsson model

One of the consequence of deformation is configuration mixing. For
example the d5/2 and the d3/2 states which are separate for the
spherical shell model mix in the Nilsson model.

As a consequence of mixing the total angular momentum does not
have a well defined value in a deformed shell model, for example for a
mixture of d5/2 and the d3/2 states the total angular momentum is a

mixture of j = 5
2 and j = 3

2

However, in the axially-symmetric Nilsson model deformation the
projection of the total angular momentum on the symmetry axis
(analogues to the magnetic m-quantum number) has a well defined
half-integer value.

This quantum number in the Nilsson model is referred to as ⌦.
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The Nilsson model

The ⌦ quantum number

The ⌦ quantum number defines the overlap of the orbital with the
deformed core.

Since the potential is attractive large overlap results in energy gains
(lowering of state energy) small overlap results in increased energy.
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The Nilsson model

Nilsson model energy splitting
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The Nilsson model

The Nilsson diagram
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The Nilsson model

The Nilsson diagram
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Single particle vs. collective behaviour

Nuclear single-particle behaviour

Spherical and deformed shell models view nucleus as a collection of
fermions occupying single-particle states in a potential well.

These models can successfully predict properties of nuclear states
with configuration dominated by a single nucleon, or, to some extend,
by relatively small number of nucleons.

We discussed example application of these models in predicting spins,
parities, magnetic, and quadrupole moments of states with a single
nucleon, or a pair of nucleons outside an even-even core.

Nuclear properties which are determined by a single nucleon are often
referred to as the single-particle properties.

In numerous cases nuclear behaviour can be described in therms of
the single particle properties, however, in equally numerous examples
the single particle description is far from being adequate.
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Single particle vs. collective behaviour

Nuclear collective behaviour

Experimental data suggest that in many nuclei ground states or
low-energy excitations involve a coordinated, large-amplitude motion
of many nucleons.

Nuclear properties which are determined by such a coordinated,
large-amplitude motion of many nucleons are often referred to as
collective properties.

Surprisingly, collective properties are often quite simple to describe in
terms of deformation of nuclear surface.

Examples are provided by nuclear vibrations around spherical shape or
nuclear rotation of a deformed shape.

Note, however, that explaining nuclear collective phenomena in terms
of the single-particle motion can be very complicated, if at all possible.
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Single particle vs. collective behaviour

Comments on collective and single-particle behaviour

Nuclear surface or nuclear potential are good examples of a collective
behaviour in itself.

Indeed, we discussed the nuclear potential as resulting from averaged
two-body interactions of all nucleons in nuclei.

Nuclear surface, in turn, results from a superposition of density
distribution of all nucleons in a nucleus.

Both are in principle very complicated if addressed in terms of the
superposition of single-particle properties but have simple and
intuitive interpretation in terms of the collective properties.

Nuclei provide numerous examples of emergence of simple patterns in
complex systems which is an active part of research in nuclear science.
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Deformation of a sphere

Spherical shell

Let us first consider a spherical shell.

The shell is defined by a constant radius.

A spherical shell is easily defined in the spherical coordinate system by

R(✓,�) = R0 = const. (1)
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Deformation of a sphere

Deformed shell

Let us now deformed the shell by changing the radius slightly with
respect to R0.

This, in principle, can be a complicated task since now the radius
becomes a function of the polar and azimuthal angles ✓ and �.

Any deformation of the spherical shell can be represented as a series
of spherical harmonics which are functions of the polar and azimuthal
angles ✓ and �.

The spherical harmonics are the same functions which represent the
orbital motion in the shell model. Recall that they have a rank l and
m Yl ,m(✓,�) and spherical harmonics of di↵erent rank are di↵erent
functions of the polar and azimuthal angle.

In the shell model the rank l and m defined the orbital angular
momentum and the magnetic quantum number. Here, the rank
defines di↵erent deformation of the shell.
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Deformation of a sphere

Deformed shell

The deformed shell as a function of the polar and azimuthal angles is
defined by

R(✓,�) = R0 [1+

↵1,�1Y1,�1(✓,�) + ↵1,0Y1,0(✓,�) + ↵1,1Y1,1(✓,�) +

↵2,�2Y2,�2(✓,�) + ↵2,�1Y2,�1(✓,�) +

↵2,0Y2,0(✓,�) + ↵2,1Y2,1(✓,�) + ↵2,2Y2,2(✓,�) + ...]

= R0

"
1 +

1X

l=1

lX

m=�l

↵l ,mYl ,m(✓,�)

#
(2)

In this expansion coe�cient ↵l ,m is the amplitude of the deformation
defined by the spherical harmonics of the rank l ,m. For applet
showing deformations of a particular rank this link
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Deformation of a sphere

Nuclear deformation

The expansion of the deformed shape into spherical harmonics is used
in many field of science and can be done for gravity, electromagnetic
fields, liquid drop, as well as for deformed nuclear shapes.

In the nuclear case the important factor is the incompresibility of the
nuclear matter which implies volume conservation.

Moreover the nuclear deformation should not change the position of
the centre of mass of a nucleus.

As we argued in an example given in lecture 3 for small deformations
the rank l = 1 (dipole) deformation shifts the centre of mass without
changing the shape.

Thus, the amplitudes which define independent deformations are
these for rank l = 2 (quadrupole) and higher.

The coe�cients for the dipole deformation are adjusted to ensure the
constant volume and position of the centre of mass.
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Surface vibrations

Time dependent amplitudes

Let us consider the case of small deformations with time dependent
amplitudes ↵l ,m(t).

The conservation of nuclear volume imposes conditions on these
amplitudes. There is a restoring force preventing these amplitudes to
grow large and driving the shape of a nucleus towards sphericity.

This is completely analogues to the surface vibration of the droplet of
a liquid around the spherical shape.

In the nuclear case the restoring force can be estimated based on the
liquid drop model by calculating change in the energy associated with
surface deformation at a constant volume.

In the lowest order approximation time-dependent amplitudes describe
harmonic oscillations of the nuclear surface around the spherical
shape.
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Surface vibrations

Harmonic vibrations of various ranks

This applet shows harmonic surface vibrations of various ranks,
starting with

1 l = 0 (monopole breathing mode) violating volume conservation
2 l = 1 (dipole) shifting centre of mass
3 l = 2 (quadrupole)
4 l = 3 (octupole)
5 l = 4 (hexadecupole)

Vibrational mode of surface at a given rank is called a phonon of a
given rank (for example quadrupole phonon or octupole phonon).

Phonon of a given rank carries angular momentum l and parity (�1)l

defined by its rank.

Low energy excitations in vibrational nuclei are define by the number
of excited phonons and coupling of their angular momenta.
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Surface vibrations

The phonon model

The phonon model explains low-energy collective excitations of nuclei
as resulting from surface vibrations.In this model there is an energy
associated with an excitation of a phonon.

The ground state at zero energy is the zero-phonon state.

The first excited state is the one-phonon state. The excitation energy
of this state is equal to the excitation energy of the phonon. The spin
and parity of that state is the rank and parity of the phonon.

For example for a quadrupole vibrator the first excited state has spin
2 and parity (�1)2 = +1. For a quadrupole vibrator the first excited
state has spin 3 and parity (�1)3 = �1.

The next group of excited states are the two-phonon states.
Excitation energy is twice of the first excited state. Spins/parity of
these states are defined by the coupling of two phonon angular
momenta, in general from 0+ to 2l+.
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Surface vibrations

The phonon model
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Surface vibrations

The phonon model

In general, the energy of the phonon grow with its rank. Therefore
the energy of a quadrupole phonon is smaller than the energy of a
octupole phonon, etc.

In the simplest version the phonon model predicts that the energy for
a multi-phonon state is the number of phonons times the energy of a
single phonon.

This is true for non-interacting phonons. If phonons interact,
multiphonon states of di↵erent spin are shifted in various degree by
the interactions.

These shifts are evidence of non-harmonicity in the phonon model.

Data on vibrational nuclei indicate large degree of anharmonicity.
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Surface vibrations

Anharmonicity in 112Cd

NUCS 342 (Lecture 9) February 2, 2011 15 / 34



Surface vibrations

The phonon model

The phonon model predicts existence of electromagnetic transitions
between the ground state and excited states.

On the absorption of a photon by a vibrational nucleus the photon
energy is converted into the phonon energy (phonon excitation). The
energy of the photon has to be equal to the energy of the phonon
plus recoil energy of the nucleus.

A phonon state can also de-excite with an emission of a photon. The
number of phonons in the deexcitation decreases by one, the energy
of the photon is the energy of the phonon less the recoil energy of the
nucleus.

Note that electromagnetic transitions can change the number of
phonons by one only. Transitions changing the number of phonons by
more or less then one are forbidden.
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Static deformation

Static deformation

Let us come back to the expansion of the radius in terms of spherical
harmonics

R = R0

"
1 +

1X

l=1

lX

m=�l

↵l ,mYl ,m(✓,�)

#
(3)

If we fix the axis of the coordinate frame and if the amplitudes ↵ are
constant in time we have a case of static deformation.

Static deformations of a globe with fixed axes were shown by the
applet we discussed earlier.

We also discussed in Lecture 3 that an object with static deformation
defines a coordinate system in space.

In particular we have discussed the system with ellipsoidal
(quadrupole) deformation.
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Euler angles

Euler angles

For a deformed object we can distinguish two reference frames

1 Ours, which we will referred to as the lab reference frame.

2 Objects, which we will referred to as the intrinsic or the body-fixed
reference frame.

For example, for a triaxial potential well the intrinsic reference frame
is defined by the three axes of the well. The same is true for triaxial
ellipsoidal deformation.

It is important to recognize that for nuclei the intrinsic reference
frame can have any orientation with respect to the lab reference
frame as we can hardly control orientation of nuclei (although it is
possible in some cases).
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Intrinsic reference frame

Intrinsic (body-fixed) and lab-fixed referenced frames
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Intrinsic reference frame

The Euler angles

It is important to recognize that for nuclei the intrinsic reference
frame can have any orientation with respect to the lab reference
frame as we can hardly control orientation of nuclei (although it is
possible in some cases).

One way to specify the mutual orientation of two reference frames of
the common origin is to use the Euler angles.
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Intrinsic reference frame

The Euler angles

Here are the steps to define Euler angles between the (x , y , z) axes of
the lab frame (red) and the (x 0, y 0, z 0) axes of the intrinsic frame
(blue).

1 Define the line of nodes (green) as ~N = ~z ⇥ ~z 0, this line is
perpendicular to the plane defined by the z and the z

0 axes of both
coordinate frames.

2 Angle ↵ is between the x
0 axis and the line of nodes.

3 Angle � is the angle between the z
0 and z axis.

4 Angle � is the angle between the line of nodes and the x axis.

Rotation by angle ↵ about the z
0 axis, � about the x

0 axis and �
about the z

0 axis (which at the time of this rotation overlaps with the
z axis) brings the intrinsic frame onto the lab frame.

NUCS 342 (Lecture 9) February 2, 2011 21 / 34



Intrinsic reference frame

The Euler angles
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Nuclear rotor

Quadrupole rotor vs. nuclear vibrator

For simplicity, let us concentrate on the first independent deformation
which is of rank 2 (quadrupole).

Remember that the dipole is not independent as it moves the centre
of mass and changes volume.

In the nuclear rotor model the Euler angles become time dependent
coordinates while the deformation parameters in the intrinsic system
are static. See this applet.

This should be contrasted with the vibrator model in which the
deformation parameters are time-dependent but the intrinsic frame
and Euler angles can not be defined. See this applet.
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Quadrupole deformation parameters

Quadrupole deformation parameters

Let us try to estimate how many parameters are needed to describe
static quadrupole deformation.

Let us start with the number of amplitudes: there are five coe�cients
for the deformation of rank 2: ↵2,�2, ↵2,�1, ↵2,0, ↵2,1, ↵2,2

These coe�cients are in principle complex, implying 10 coe�cients.

But the surface is real. This fact imposes a conditions for the
amplitudes reducing the number of independent coe�cients to five.

Furthermore, there is a relation between these five amplitudes and
three Euler angles defining the orientation of the intrinsic coordinate
frame.

For quadrupole only two amplitudes are truly independent. Thus two
parameters fully define quadrupole deformation in the intrinsic
reference frame.
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Quadrupole deformation parameters

Bohr-Wheeler parametrization

The two parameters of static quadrupole deformation in the intrinsic
system are often chosen as the Bohr-Wheeler parameters � and �.

The deformed surface in terms of these parameters is defined as

R(✓,�) = R0(1 + � cos �Y2,0(✓,�) +
1p
2
� sin �(Y2,2(✓,�) + Y2,�2(✓,�))) (4)

The axes lengths of the ellipsoid in the intrinsic reference frame are

Rx 0 = R0(1 +

r
5

4⇡
� cos(� � 120�))

Ry 0 = R0(1 +

r
5

4⇡
� cos(� + 120�))

Rz 0 = R0(1 +

r
5

4⇡
� cos(�))
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Quadrupole deformation parameters

Axial quadrupole deformation

In the Bohr-Wheeler parametrization the parameter � defines the
elongation along the z

0 axis in the intrinsic reference frame.

The parameter � defines the length di↵erence between the x
0 and the

y
0 axes of the quadrupole-deformed shape in the intrinsic frame.

Thus the parameter � defines the triaxiality of the shape.

Let us consider the special case of � = 0�). For � = 0� Rx 0 = Ry 0 and
the shape is axially symmetric with the z

0 axis being the axis of
symmetry.

For the axial case of � = 0� positive values of � correspond to the
prolate deformation while negative values of � correspond to the
oblate deformation.
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Quadrupole deformation parameters

Axial quadrupole deformation

Quadrupole deformation (Left) oblate, � < 0 (Right) prolate, � > 0
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Quadrupole deformation parameters

Axial rotor

So far everything looks dandy. Something must be wrong!

Some of you may, and all of you should feel uncomfortable by now
due to the fact that there is no clear way to define the intrinsic
system for an axial rotor.

The z
0 axis is fine, this is the symmetry axis of the deformation.

But what about the x
0 and y

0 axes? For an axially symmetric
deformation there is no clear way to define the direction of the x

0 and
the y

0 axes.

As a matter of fact there is an infinite number of ways to do it,
anyone of them equivalent to any other.

This has a profound consequences for the rotor.
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Quadrupole deformation parameters

Quantum quadrupole axial rotor

The first consequence for an axial rotor in quantum mechanical
description is the observation that rotation around the symmetry axis
does not result in a new state.

Truly, the rotation around the symmetry axis changes the phase factor
of the wave function only.

Since the energy of a state does not depend on the phase factor
(depends on the wave function squared) all the states which are
related by rotation around the symmetry axis have the same energy.

This means that there are no quantum mechanical excitations related
to rotation about the symmetry axis.

The excitation must then involve rotation about the axis
perpendicular to the symmetry axis.
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Quadrupole deformation parameters

Quantum quadrupole axial rotor

The property of the quantum axial rotor defined in the previous slide
is sometimes expressed by stating that “quantum mechanics” forbids
rotation around a symmetry axis.

This is clearly wrong, the rotation is allowed it generates the phase
factor but does not generate excitations.

In fact, rotations shown in this applet, this applet, and this applet in
quantum mechanics correspond to the same single state and the same
energy, independent of rotational frequency.

In contrast, the rotation show in this applet corresponds to di↵erent
energy states if the rotational frequency is di↵erent.
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Quadrupole deformation parameters

Quantum quadrupole axial rotor

From now we rotate perpendicular to the symmetry axis.

The next property of the quantum quadrupole axial rotor to be
recognized is a symmetry with respect to the rotation by 180� about
the axis perpendicular to the symmetry axis.

In quantum mechanics there is no distinction between a quantum
quadrupole axial rotor and a quantum quadrupole axial rotor rotated
by 180� around the symmetry axis.
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Quadrupole deformation parameters

EI =
~2
2J

I (I + 1) (6)
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Quadrupole deformation parameters

Quantum quadrupole axial rotor

Rotational excitations energies of a quantum quadrupole axial rotor
are

I is the angular momentum (spin) of the state, J is the moment of
inertia.

As a consequence of the 180� symmetry with respect to rotation
about the axis perpendicular to the symmetry axis only even values of
I are allowed for excited levels.

Consequently the energy levels are

Spin I 0 2 4 6 8

Energy E 0 6 ~2
2J 20 ~2

2J 42 ~2
2J 72 ~2

2J
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Quadrupole deformation parameters

Analogy with di-atomic molecules

Rotational spectra for nuclear quantum quadrupole axial rotor are
analogues to the rotational spectra of di-atomic molecules with both
atoms being of the same kind, like for example H2.

In the di-atomic molecules with both atoms of the same kind there is
the same restriction for rotation only about the axis perpendicular to
the symmetry axis, and the symmetry of rotation by 180� around the
axis perpendicular to the symmetry axis.

Consequently, the di-atomic molecules of this type have the excitation
spectra as defined on the previous slide with even-spin states only.
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Quadrupole deformation parameters

Analogy with di-atomic molecules

Rotational excitation spectra are di↵erent for di-atomic molecules
with two atoms of a di↵erent kind, like for example HCl .

The energies are still given by

EI =
~2
2J

I (I + 1) (7)

For HCl , however, there is no symmetry between the rotation by 180�

about the axis perpendicular to the symmetry axis, since this rotation
exchanges H with Cl

Consequently, odd-spin state are allowed and present in excitation
spectrum of HCl .

Nuclear analog of HCl is a rotor with axial octupole deformation.
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