ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ

#### Π. Παπαγιάννης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ 2021 - 2022

#### Single Photon Emission Computed Tomography (SPECT)

- Αρχή Λειτουργίας της γ-Camera
- Ιδιότητες του Κατευθυντήρα (Διαπερατότητα, PSF)
- Προβολικές Λήψεις, Ανακατασκευή Τομογραφικής Εικόνας

#### Positron Emission Tomography (PET)

- Αρχή Λειτουργίας, Γεωμετρία Διάταξης
- Ανακατασκευή Τομογραφικής Εικόνας
- Time of Flight (ToF) PET

#### Ραδιοφάρμακα

Ανίχνευση γ Ακτινοβολίας



#### From the Anger Camera to Position Sensitive Photomultiplier Tubes (PSPMTs)



#### Anger Camera

H. Anger: "A new instrument for mapping gamma-ray emitters", Biol. Med. Quart. Rep. UCRL (1957) 3653

#### Η συστοιχία των PMTs αντικαθίσταται από ένα πολυανοδικό πλέγμα.



Προσδιορισμός της θέσης σε χωρικά ευαίσθητους ανιχνευτές







- $\mathbf{X}_{\mathbf{i}}$ : Οριζόντια θέση ανοδικού καλωδίου
- Y<sub>i</sub> : Κατακόρυφη θέση ανοδικού καλωδίου
- **Q**<sub>i</sub> : Ένταση μετρούμενου σήματος (φορτίο)

#### Μέθοδος του κέντρου βάρους ή τύπος του Anger

#### Scintillator Technology

|                            | Nal  | BGO  | GSO  | LSO  | LYSO | LGSO | LuAP | YAP  | LaBr <sub>3</sub> |
|----------------------------|------|------|------|------|------|------|------|------|-------------------|
| Light yield<br>10³ph/MeV   | 38   | 9    | 8    | 30   | 32   | 16   | 12   | 17   | 60                |
| Primary<br>decay time      | 250  | 300  | 60   | 40   | 41   | 65   | 18   | 30   | 16                |
| ∆E/E (%) at<br>662 keV     | 6    | 10   | 8    | 10   | 10   | 9    | 15   | 4.4  | 3                 |
| Density<br>(g/cm³)         | 3.67 | 7.13 | 6.71 | 7.35 | 7.19 | 6.5  | 8.34 | 5.5  | 5.08              |
| Effective Z <sub>eff</sub> | 50   | 73   | 58   | 65   | 64   | 59   | 65   | 33   | 46                |
| 1/µ@511keV<br>(mm)         | 25.9 | 11.2 | 15.0 | 12.3 | 12.6 | 14.3 | 11.0 | 21.3 | 22.3              |
| PE (%)@511 keV             | 18   | 44   | 26   | 34   | 33   | 28   | 32   | 4.4  | 14                |

Πίνακας των κυριότερων υλικών που χρησιμοποιούνται σαν σπινθηριστές στην ανίχνευση γ-ακτινοβολίας.

NuPECC Nuclear Physics for Medicine (2014)

#### Τεχνολογική εξέλιξη χωρικά ευαίσθητων φωτοπολλαπλασιαστών



First Generation HAMAMATSU R2486 (crossed wire anode) Second Generation HAMAMATSU R8520 (crossed plate anode) Third Generation HAMAMATSU H13700 (multi anode structure)

#### Silicon Photo-Multipliers SiPMs



|                                                 | PMT             | APD             | SiPM     |
|-------------------------------------------------|-----------------|-----------------|----------|
| Photon detection<br>efficiency (PDE)<br>in blue | 20%             | 50%             | 20–70%   |
| Gain                                            | 10 <sup>6</sup> | 100             | $10^{6}$ |
| Bias voltage (V)                                | $\sim 1,000$    | $\sim \!\! 400$ | <100     |
| Sensitivity in<br>magnetic field                | Yes             | No              | No       |
| Rise time (ns)                                  | $\sim 1$        | $\sim 5$        | $\sim 1$ |

Πλεονεκτήματα φωτοδιόδων και SiPM έναντι των συμβατικών φωτοπολλαπλασιαστών.

#### New Generation of SPECT-CT Systems



Cadmium-Zinc-Telluride (CZT) Gamma Ray Detector Module



- Room temperature operation.
- Gamma ray energy measurement up to 350keV or 700keV.
- <=6% FWHM energy resolution at 122keV.
- 256 pixels, each 1.6 x 1.6mm

#### Κατευθυντήρες / Collimators



| Total Area                         | $59.5 \times 60.4 mm^2$ |
|------------------------------------|-------------------------|
| Thickness                          | 26.8 mm                 |
| Radius R of Circumscribed Circle   | 0.75 mm                 |
| Septum (Pb)                        | 0.25 mm                 |
| Total Number of Holes along X (Nx) | 32                      |
| Total Number of Holes along Y (Ny) | 23                      |

Η χρήση των κατευθυντήρων καθίσταται αναγκαία για την ευθυγράμμιση των γ-φωτονίων, δεδομένου ότι αυτά δεν διαθλώνται (n~1)

Γεωμετρική Διαπερατότητα (Transmission) Κατευθυντήρα



D: Διάμετρος οπής S: Διαχωριστική απόσταση (Septum) HOL: Απόσταση δύο διαδοχικών οπών

<u>Γεωμετρική Διαπερατότητα</u>

Είναι ό λόγος του εμβαδού της επιφάνειας των οπών προς την συνολική μετωπική επιφάνεια του κατευθυντήρα







Point Spread Function (PSF)



$$\frac{R}{F+T} = \frac{D}{T} \implies R = \frac{D}{T} \cdot (F+T)$$

D: Διάμετρος οπής T: Πάχος κατευθυντήρα F: Απόσταση σημειακής πηγής από την μετώπη του κατευθυντήρα

Η σημειακή πηγή απεικονίζεται διάχυτα σαν κύκλος ακτίνας R





$$\stackrel{99m}{43}Tc \xrightarrow{\gamma \ 141 \ \text{keV}}_{6 \ \text{h}} \stackrel{99}{43}Tc \xrightarrow{\beta^{-} \ 249 \ \text{keV}}_{211 \ 000 \ \text{y}} \stackrel{99}{44}Ru$$



Ιχνηθέτηση με ραδιοφάρμακο <sup>99m</sup>Tc



Παραγωγή <sup>99m</sup>Tc από την έκλουση <sup>99</sup>Mo και ενδοφλέβια χορήγηση.



(a)

(b)

(a) γ-Camera καθώς και scanner τύπου SPECT δύο κεφαλών.

(b) Σύστημα τριών ανιχνευτικών κεφαλών. Η δυνατότητα περιστροφής της γ-Camera γύρω από τον ασθενή εξασφαλίζει τομογραφικές λήψεις SPECT.



<sup>99m</sup>Tc-MDP προβολική λήψη με γ-Camera διπλής κεφαλής. Το μέγεθος του ανιχνευτή είναι περίπου 40cm × 50 cm. Οι ολόσωμες εικόνες ελήφθησαν με βραδεία μετακίνηση της κλίνης του ασθενούς. Η ουσία MDP συσσωρεύεται στα οστά, δίδοντας εικόνες αυξημένου μεταβολισμού. Λόγω της εξασθένησης, η σπονδυλική στήλη είναι καλύτερα ορατή στην κατώτερη, οπίσθια εικόνα.

# SPECT / CT Dual Modality





Mouse with AA-amyloidosis (left). Note the enlarged spleen and discoloration of the liver. Pseudo-colored SPECT image overlaid on top of co-registered CT image (top, right) and surfacerendered skeleton CT image (bottom, right). Bright object (high specific activity) is splenic amyloid, while cloudy object represents liver deposits.

# Small Animal SPECT







Technetium-labeled Diethylene-Triamine-Penta-Acetic ( $^{99m}$ Tc-DTPA) agent was administrated in a small mice and imaged with the high resolution  $\gamma$ -Camera system at SPECT-Lab, Athens, in order to evaluate the function of kidneys.

L. Koutsantonis, PhD Thesis (2018) The Cyprus Institute

### Small Animal SPECT



<sup>99m</sup>Tc - Macro-Aggragate-Alubim Imaging of Lungs





#### Two ex-vivo studies:

#### A. Tc<sup>99m</sup> – Macro Aggregated Albumin (MAA) Imaging:

- Lung perfusion imaging
- Dose: 20 μCi
- 24 projections in the full angular range
- Imaged 12h post injection

#### B. Tc<sup>99m</sup> - Diethylene Triamine Penta Acid (DTPA) Imaging:

- Kidneys renal functionality
- Dose: 30 μCi
- 24 projections in the full angular range

Imaged 2h post injection





Radioactive derivative of the 2-deoxy-D-glucose labelled with the  $\beta$ + isotope <sup>18</sup>F.



Positron emission and positron-electron annihilation







The two 511-keV γ-rays are emitted back-to-back

Gamma ray detectors



# The finite positron range and the non-collinearity of the annihilation photons give rise to an inherent positional inaccuracy.

| Radionuclide     | Half-life<br>(minutes) | Radiotracer                     | Clinical applications                     |
|------------------|------------------------|---------------------------------|-------------------------------------------|
| <sup>18</sup> F  | 109.7                  | <sup>18</sup> FDG               | oncology, inflammation, cardiac viability |
| <sup>11</sup> C  | 20.4                   | <sup>11</sup> C-palmitate       | cardiac metabolism                        |
| <sup>15</sup> O  | 2.07                   | H <sub>2</sub> <sup>15</sup> O  | cerebral blood flow                       |
| <sup>13</sup> N  | 9.96                   | <sup>13</sup> NH <sub>3</sub>   | cardiac blood flow                        |
| <sup>82</sup> Rb | 1.27                   | <sup>82</sup> RbCl <sub>2</sub> | cardiac perfusion                         |

| Radionuclide     | $E(\beta^{+})_{max}$ [keV] |  |  |
|------------------|----------------------------|--|--|
| <sup>18</sup> F  | 635                        |  |  |
| <sup>11</sup> C  | 970                        |  |  |
| <sup>13</sup> N  | 1190                       |  |  |
| <sup>15</sup> 0  | 1720                       |  |  |
| <sup>82</sup> Rb | 3180                       |  |  |





Line of Response (LoR)

Η ευθεία που ενώνει δύο συσχετισμένα στοιχεία του ανιχνευτή όπου έχουν καταγραφεί τα δύο φωτόνια της εξαΰλωσης (511keV).





Γεγονότα χαρακτηρισμένα σαν FALSE coincidence σε PET scanner

 $R^{acc} = 2\tau R_1 R_2$ 

2τ Coincidence Time-Window

R<sub>i</sub> Detection Rate



Δημιουργία ηλεκτρονικού σήματος σύμπτωσης.

Η αντιδιαμετρικότητα του γεγονότος (εξασφάλιση ότι βρίσκεται σε ευθεία / LoR) μπορεί άμεσα να ελεγχθεί με την διαφορά  $|N_1-N_2| \simeq N/2$ .

Στο παράδειγμα του σχήματος είναι: N<sub>1</sub>=2, N<sub>2</sub>=10 και N=16.

#### 2D direct planes



#### 2D direct and cross planes



3D





Ολόσωμη απεικόνιση PET με <sup>18</sup>F-FDG, όπου διακρίνονται ηπατικές μεταστάσεις του όγκου του παχέος εντέρου.



#### <u>RatCAP</u>

Μικροσκοπικός τομογράφος ΡΕΤ για εγκεφαλικές απεικονίσεις ποντικού σε εγρήγορση.

C. Woody et al., Brookhaven National Laboratory



PET / CT dual-modality scanner and image fusion.



PET / CT dual-modality scanner and image fusion.

#### 18F-Fluoride-PET

99mTc-MDP



#### Planar

SPECT

Comparison of [18F]Fluoride-PET with 99mTc-MDP planar and SPECT scintigraphy in a patient with numerous bone metastases. [18F] Fluoride-PET detects more lesions compared to conventional bone scan. (Grant et al. 2008).

Stathis STILIARIS, UoA 2022



#### Without ToF Information

In conventional PET the position of the annihilated positron lies **anywhere** along the Line of Response (LoR).



Uniform probability along the Line of Response (LoR)

S. Gundacker, MEDAMI (2016)



#### Improvement in the image Signal-to-Noise Ratio (SNR)



$$\frac{\mathrm{SNR}_{\mathrm{ToF}}}{\mathrm{SNR}_{\mathrm{non}}} = \sqrt{\frac{2\mathrm{D}}{\mathrm{c}\cdot\mathrm{CTR}}}$$

- **D:** Diameter of the Field of View (FoV)
- c: Speed of Light in Vacuum CTR: Coincidence Time Resolution

#### Improve the Coincidence Time Resolution!

#### Improvement in the image Signal-to-Noise Ratio (SNR)





# $$\label{eq:D} \begin{split} D &\simeq 40 cm \\ \text{for a whole body PET} \end{split}$$

| CTR<br>(ps) | Position<br>Resolution (cm) | SNR Gain |
|-------------|-----------------------------|----------|
| 1000        | 15.0                        | 1.63     |
| 500         | 7.5                         | 2.31     |
| 100         | 1.5                         | 5.16     |

Improvement in the image Signal-to-Noise Ratio (SNR) as a function of the Coincidence Time Resolution for different diameters of the scanner Field-of-View (FoV)



#### **Clinical Evaluation**

#### Gemini TF (Philips Healthcare) – LYSO ~ 600ps Non-ToF



ToF

Images from measurement of a 35 cm diameter phantom (representing a heavy patient) with **two cold spheres** (28 and 37 mm) and **four hot spheres** (10, 13, 17 and 22 mm) with 6:1 contrast.

#### **Clinical Evaluation**

#### Astonish TF (Philips Healthcare) – LYSO ~ 495ps



tio for both liver and cardiac images with better

Improved signal-to-noise ratio for both **liver** and **cardiac** images with better lesion detection / more clear background.

#### ToF

Non-ToF

#### **Clinical Evaluation**

#### SIGNA ToF-PET / MR (GE Healthcare) – LSO ~ 400ps

OSEM

#### **OSEM+TOF**



#### *OSEM: Ordered Subset Expectation Maximization* Male patient with **liver metastases** from pancreatic cancer.

#### Time of Flight (ToF) PET Scanners



A timing resolution of 500 ps corresponds to a spatial resolution of ~7.5 cm. Therefore, it would appear that ToF PET offers no advantages over conventional PET since the latter already has a spatial resolution of the order of several millimetres. However, being able to constrain the length of the LOR from its value in conventional PET to 7.5 cm reduces the statistical noise inherent in the measurement.

# ΓΙΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ

Ραδιοφάρμακα στην Μονοφωτονική Τομοσπινθηρογραφία (SPECT)

| Radiotracer       | Half-life<br>(hours) | γ-ray energy<br>(keV) | Clinical application |
|-------------------|----------------------|-----------------------|----------------------|
| <sup>99m</sup> Tc | 6.0                  | 140                   | various              |
| <sup>67</sup> Ga  | 76.8                 | 93, 185, 300, 394     | tumour detection     |
| <sup>201</sup> TI | 72                   | 167, 68–82 (X-rays)   | myocardial viability |
| <sup>133</sup> Xe | 127.2                | 81                    | lung ventilation     |
| <sup>111</sup> In | 67.2                 | 171, 245              | inflammation         |

$${}^{99}_{42}\text{Mo} \xrightarrow{\tau_{1/2} = 66 \text{ hours}} {}^{0}_{1}\beta + {}^{99m}_{43}\text{Tc} \xrightarrow{\tau_{1/2} = 6 \text{ hours}} {}^{99g}_{43}\text{Tc} + \gamma.$$

#### ΠΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ



# ΓΙΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ



#### Η γεννήτρια Τεχνητίου 99mTc



$${}^{99}_{42}\text{Mo} \xrightarrow{\tau_{1/2} = 66 \text{ hours}} {}^{0}_{1}\beta + {}^{99m}_{43}\text{Tc} \xrightarrow{\tau_{1/2} = 6 \text{ hours}} {}^{99g}_{43}\text{Tc} + \gamma.$$

# ΓΙΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ

Η γεννήτρια Τεχνητίου <sup>99m</sup>Tc

$$Q_{2} = \lambda_{2}N_{2} = \frac{\lambda_{1}\lambda_{2}N_{0}}{\lambda_{2}} - \frac{\lambda_{1}\lambda_{2}N_{0}}{\lambda_{2} - \lambda_{1}} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t}\right)$$

### ΠΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ

#### Η γεννήτρια Τεχνητίου 99mTc



# ΓΙΑΡΑΓΩΓΉ ΡΑΔΙΟΦΑΡΜΑΚΩΝ

| Ραδιοϊσότοπα για SPECT |                     |               |  | Ραδιοϊσότοπα για ΡΕΤ |                            |                 |  |
|------------------------|---------------------|---------------|--|----------------------|----------------------------|-----------------|--|
| Isotope                | Ε(γ) [keV]          | Half-Life [h] |  | Isotope              | $E(\beta^{+})_{max}$ [keV] | Half-Life [min] |  |
| <sup>99m</sup> Tc      | 140                 | 6.0           |  | <sup>18</sup> F      | 635                        | 109.7           |  |
| <sup>123</sup> I       | 127                 | 13.1          |  | <sup>11</sup> C      | 970                        | 20.4            |  |
| 201TJ                  | 167                 | 73.1<br>78    |  | <sup>13</sup> N      | 1190                       | 9.96            |  |
| 67 <b>C</b> a          | 152                 |               |  | <sup>15</sup> 0      | 1720                       | 2.07            |  |
| Ua .                   | (93, 185, 288, 394) |               |  | <sup>82</sup> Rb     | 3180                       | 1.27            |  |

#### Πυρηνικές Αντιδράσεις Παραγωγής

| Radionuclide  | Half-life | Reaction                                                                                                                                           |      |          |                                                            |
|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------------------------------------------------|
| Tc-99m        | 6.0 h     | <sup>100</sup> Mo(p, 2n)                                                                                                                           | C-11 | 20.3 min | $^{14}N(p, \alpha)$                                        |
| I-123         | 13.1 h    | ${}^{124} Xe(p, 2n)^{123} Cs$ ${}^{124} Xe(p, pn)^{123} Xe$ ${}^{124} Xe(p, 2pn)^{123} I$ ${}^{123} Te(p, n)^{123} I$ ${}^{124} Te(p, 2n)^{123} I$ | F-18 | 110 min  | $^{18}O(p, n)$<br>$^{20}Ne(d, \alpha)$<br>$^{nat}Ne(p, X)$ |
| <b>T1-201</b> | 73.1 h    | $^{203}\text{Tl}(p, 3n)^{201}\text{Pb} \rightarrow ^{201}\text{Tl}$                                                                                |      |          |                                                            |

# ΕΦΑΡΜΟΓΉ ΠΟΛΛΑΓΙΛΩΝ ΤΈΧΝΙΚΩΝ

#### SPECT / CT



# ΕΦΑΡΜΟΓΉ ΠΟΛΛΑΓΙΛΩΝ ΤΈΧΝΙΚΩΝ

PET / CT



Stathis STILIARIS, UoA 2022

# ΕΦΑΡΜΟΓΉ ΠΟΛΛΑΓΙΛΩΝ ΤΕΧΝΙΚΩΝ

#### Αρχή Λειτουργίας της Compton Camera



# ΕΦΑΡΜΟΓΉ ΠΟΛΛΑΓΙΛΩΝ ΤΈΧΝΙΚΩΝ

#### **Compton Camera - Image Reconstruction**



#### Προβολική Εικόνα

Προκύπτει από τις τομές των κωνικών επιφανειών (γεωμετρικός τόπος) με το προβολικό επίπεδο, παράλληλα προς τον σκεδαστή-απορροφητή.

$$\theta = a\cos\left[1 + m_0 c^2 \left(\frac{1}{E_0} - \frac{1}{E_1}\right)\right]$$

# ΕΦΑΡΜΟΓΉ ΠΟΛΛΑΓΙΛΩΝ ΤΈΧΝΙΚΩΝ

#### **Compton Camera - Image Reconstruction**

Ομοίωμα με τρεις ομοεπίπεδες σημειακές πηγές





Με βάση τη γεωμετρική αυτή ανακατασκευή, η θέση, η ένταση και τα γεωμετρικά χαρακτηριστικά των πηγών εξάγονται από την κατανομή της πυκνότητας των τομών ανά pixel.