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PREFACE TO THE THIRD ENGLISH EDITION 

THis book continues the series of English translations of the revised £!nd 
augmented volumes in the-Course of Theoretical Physics, which have been 
appearing in Russian since 1973. The English translations of volumes 2 
(Classical Theory of Fields) and 3 (Quantum ·Mechanics) will shortly both 
have been published. l'nlike those two, the present volume 1 has not 
required any considerable revision, as is to be expected in such a well­
established branch of theoretical physics as mechanics is. Only the final 
sections, on adiabatic invariants, have been revised by L. P. Pitaevskii 
and myself. 

The Course of Theoretical Physics was initiated by Landau, my teacher 
and friend. Our work together on these books began in the late 1930s and 
continued until the tragic accident that befell him in 1962. Landau's work 
in science was always such as to display his striving for clarity, his effort to 
make simple what \\"as complex and so to reveal the laws of nature in their 
true simplicity and beauty. It was this aim which he sought to instil into his 
pupils, and which has determined the character of the Course. I. have tried 
to maintain this spirit, so far as I was able, in the revisions that have had 
to be made without Landau's participation. It has been my good fortune to 
find a colleague for this work in L. P. Pitaevskii, a younger pupil of Landau's. 

The present edition contains the biography of Landau which I wrote in 
1969 for the posthumous Russian edition of his Collected Works. I should 
like to hope that it will give the reader some slight idea of the personality 'lf 
that remarkable man. 

The English translations of the Course were begun by Professor 
I\1. Hamermesh in 1951 and continued by Dr. ]. B. Sykes and his colleagues. 
~o praise can be too great for their attentive and careful work, which has 
contributed so much to the success of our books in the English-speaking 
world. 
Institute of Physical Problems E. M. LIFSHITZ 

[ ·.s.S.R. Academy of Sciences 
Jloscow 1976 
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LEV DAVIDOVICH LANDAU (1908-1968)t 

YERY little time has passed since the death of Lev Davidovich Landau on 
1 April 1968, but fate wills that even now we view him at a distance, as it 
were. From that distance we perceive more clearly not only his greatness as 
a scientist, the significance of whose work becomes increasingly obvious 
with time, but also that he was a great-hearted human being. He was 
uncommonly just and benevolent. There is no doubt that therein lie the 
roots of his popularity as a scientist and teacher, the roots of that genuine 
love and esteem which his direct and indirect pupils felt for him and which 
were manifested with such exceptional strength during the days of the 
struggle to save his life following the terrible accident. 

To him fell the tragic fate of dying twice. The first time it happened was 
six years earlier on 7 January 1962 \Vhen on the icy road, en route from 
~loscow to Dubna, his car skidded and collided with a lorry coming from 
the opposite direction. The epic story of the subsequent struggle to save 
his life is primarily a story of the selfless labour and skill of numerous 
physicians and nurses. But it is also a story of a remarkable feat of solidarity. 
The calamitous accident agitated the entire community of physicists, 
arousing a spontaneous and instant response. The hospital in which Landau 
lay unconscious became a centre to all those his students and colleagues -
who stro,·e to make whatever contributions they could to help the physicians 
in their desperate struggle to sa,·e Landau's life. 

"Their feat of comradeship commenced on the wry first day. lllustr:ous 
scientists who, however, had no idea of medicine, academicians, correspond­
ing members of the scientific at:ademies, doctors, candidates, men of the 
same generation as the 54-year-old Landau as \\·ell as his pupils and their 
still more youthful pupils - all volunteered to act as messengers, chauffeurs, 
intermediaries, suppliers, secretaries, members of the watch and, lastly, 
porters and labourers. Their spontaneously established headquarters was 
located in the office of the Physician-in-Chief of Hospital ="Jo. 50 and it 
became a round-the-clock organizational centre for an unconditional and 
immediate implementation of any instruction of the attending physicians. 

t By E. :\1. Lifshitz; written for the Ru"ian edition of L.mdau's Collected Papers, and 
first published in Russian in Usp,·khi fi:::ichcskikh llaul< 97, 169-183, 1969. This translation 
is by F. Bergm.m (first publ"hed in Sv.-iet Physics Cspekhi 12, 135-143, 1969), with minor 
modifications, and is reprinted hy kind pennission of the American Institute of Physics. 
The reference numbers corresponcl to the ntunbering in the Collected Papers of L. D. La11dau 
(Pergamon Press, o,.furd 1965). 

1"\. 



X Lev Davido·vich Landau 

"Eighty-seven theoreticians and experimenters took part in this voluntary 
rescue team. An alphabetical list of the telephone numbers and addresses of 
any one and any institution with which contact might be needed at any 
instant was compiled, and it contained 223 telephone numbers! It included 
other hospitals, motor transport bases, airports, customs offices, pharmacies, 
ministries, and the places at which consulting physicians could most likely 
be reached. 

"During the most tragic days when it seemed that 'Dau is dying' - and 
there were at least four such days - 8-10 cars could be found waiting at 
any time in front of the seven-storey hospital building .... 

"When everything depended on the artificial respiration machine, on 
12 January, a theoretician suggested that it should be immediately con­
structed in the workshops of the Institute of Physical Problems. This was 
unnecessary and naive, but ho'h amazingly spontaneous! The physicists 
obtained the machine from the Institute for the Study of Poliomyelitis 
and carried it in their own hands to the ward where Landau was gasping 
for breath. They saved their colleague, teacher, and friend. 

"The story could be continued without limit. This was a real fraternity 
of physicists .... "t 

And so, Landau's life was saved. But when after three months he re­
gained consciousness, it was no longer the same man whom we had known. 
He was not able to recover from all the consequences of his accident and 
never again completely regained his abilities. The story of the stx years 
that followed is only a story of prolonged suffering and pain. 

* * * 
Lev Davidovich Landau was born on 22 January 1908 in Baku, in the 

family of a petroleum engineer who worked on the Baku oil-fields. His 
mother was a physician and at one time had engaged in scientific work on 
physiology. 

He completed his school course at the age of 13. Even then he already 
was attracted by the exact sciences, and his mathematical ability manifested 
itself very early. He studied mathematical analysis on his own and later he 
used to say that he hardly remembere""d a time when he did not kno\\ 
differentiation and integration. 

His parents considered him too young to enter a university and for a 
year he attended the Baku Economic Technicum. In 1922 he enrolled at 
Baku C niversity where he studied simultaneously in two departments: 
Physico-mathematical and Chemical. Subsequently he did not continue 
his chemical education but he remained interested in chemistry throughout 
his life. 

In 1924- Landau transferred to the Physics Department of Leningrad 

t F , . . G (Literary Gazette), 21 July 1962 rom D. Dantn, "Comradeship", Lzteraturnaya azeta • 
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University. In Leningrad, the main centre of Soviet physics at that time, 
he first made the acquaintance of genuine theoretical physics, which was 
then going through a turbulent period. He devoted himself to its study with 
all his youthful zeal and enthusiasm and worked so strenuously that often 
he became so exhausted that at night he could not sleep, still turning over 
formulae in his mind. 

Later he used to describe how at that time he was amazed by the in­
credible beauty of the general theory of relativity (sometimes he even 
would declare that such a rapture on first making one's acquaintance with 
this theory should be a characteristic of any born theoretical physicist). 
He also described the state of ecstasy to which he was brought on reading 
the articles by Heisenberg and Schrodinger signalling the birth of the new 
quantum mechanics. He said that he derived from them not only delight in 
the true glamour of science but also an acute realization of the power of 
the human genius, whose greatest triumph is that man is capable of appre­
hending things beyond the pale of his imagination. And of course, the 
curvature of space-time and the uncertainty principle are precisely of this 
kind. 

In 1927 Landau graduated from the university and enrolled for post­
graduate studv at th6 Leningrad Physicotechnical Institute where even 
earlier, in 1926, he had been a part-time research student. These year:; 
brought his first scientific publications. In 1926 he published a theory of 
intensities in the spectra of diatomic molecules [1 ],t and as early as 1927, 
a study of the problem of damping in quantum mechanics, which first 
introduced a description of the state of a system with the aid of the density 
matrix. 

His fascination with physics and his first achievements as a scientist were, 
however, at the time beclouded by a painful diffidence in his relations with 
others. This trait caused him a great deal of suffering and at times - as he 
himself confessed in later years - led him to despair. The changes which 
occurred in him with the years and transformed him into a bu-oyant and 
gregarious individual were largely a result of his characteristic self-discipline 
and feeling of duty toward himself. These qualities, together with his sober 
and self-critical mind, enabled him to train himself and to evolve into a 
person with a rare ability - the ability to be happy. The same sobriety of 
mind enabled him always to distinguish between what is of real value in 
life and what is unimportant triviality, and thus also to retain his mental 
equilibrium during the difficult moments which occurred in his life too. 

In 1929, on an assignment from the People's Commissariat of Education, 
Landau travelled abroad and for one and a half years worked in Denmark, 
Great Britain and Switzerland. To him the most important part of his trip 
was his stay in Copenhagen where, at the Institute of Theoretical Physics, 

t He did not k.~0"'• hov.ever, at the time that these results had been already published a 
year earlier by Honl and London. . 
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theoretical physicists from all Europe gathered round the great Niels Bohr 
and, during the famous seminars headed by Bohr, discussed all the basic 
problems of the theoretical physics of the time. This scientific atmosphere, 
enhanced by the charm of the personality of Bohr himself, decisively 
influenced Landau in forming his own outlook on physics and subsequently 
he always considered himself a disciple of Niels Bohr. He visited Copen­
hagen two more times, in 1933 and 1934. Landau's sojourn abroad was 
the occasion, in particular, of his work on the theory of the diamagnetism 
of an electron gas [4] and the study of the limitations imposed on the 
measurability of physical quantities in the relativistic quantum region (in 
collaboration with Peierls) [6]. 

On his return to Leningrad in 1931 Landau worked in the Leningrad 
Physicotechnical 1'\lstitute and in 1932 he moved to Khar'kov, where he 
became head of the Theoretical Division of the newly organized Ukrainian 
Physicotechnical Institute, an offshoot of the Leningrad Institute. At the 
same time he headed the Department of Theoretical Physics at the Physics 
and Mechanics Faculty of the Khar'kov Mechanics and Machine Building 
Institute and in 1935 he became Professor of General Physics at 'Khar'kov 
University. · 

The Khar'kov period was ~or Landau a tirne of intense and varied 
research activity.t It was there that he began his teaching career and estab­
lished his own school of theoretical physics. 

Twentieth-century theoretical physics is rich in illustrious names of 
trail-blazing creators, and Landau was one of these creators. But his 
influence on scientific progress was far from exhausted by his personal 
contribution to it. He was not only an outstanding physicist but also a 
genuinely outstanding educator, a born educator. In this respect one may 
take the liberty of comparing Landau only to his own teacher- Niels Bohr. 

The problems of the teaching of theoretical physics as well as of physics 
as a whole had first attracted his interest while still quite a young man. It 
was there, in Khar'kov, that he first began to work out programmes for the 
"theoretical minimum"- programmes of the basic knowledge in theoretical 
physics needed by experimental physicists and by those who wish to devote 
themselves to professional research work in theoretical physics. In addition 
to drafting these programmes, he gave lectures on theoretical physics to 
the scientific staff at the Ukrainian Physicotechnical Institute as well as to 
students of the Physics and Mechanics Faculty. Attracted by the ideas of 
reorganizing instruction in physics' as a whole, 1he accepted the Chair of 
General Physics at Khar'kov State' University \{and subsequently, after 

t The extent of L&ndau's scientific activities at the time can be graspt'd from the list of 
studies he completed during the year 1936 alone: theory of second-order phase t_ransitions 
[29], theory of the intermediate state of superconductors [30], the tr~nsport equatron i_n the 
case of Coulomb interaction [24] the theorv of unimolecular reactrons [2J], _propertres of 

• - . · and absorption of so d metals at very low temperatures [25], theo_ry of the drspersron un 
[22, 28], theory of photoelectric effects in semiconductors [21J-
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the war, he continued to give lectures on general physics at the Physico­
technical Faculty of Moscow State University). 

It was there also, in Khar'kov, that Landau had conceived the idea and 
began to implement the programme for compiling a complete Course of 
Theoretical Physics and Course of General Physics. All his life long, Landau 
dreamed of writing books on physics at every level - from school textbooks 
to a course of theoretical physics for specialists. In fact, by the time of his 
fateful accident, nearly all the volumes of the Course of Theoretical Physics 
and the first volumes of the Course of General Physics and Physics for 
Everyone had been completed. He also had drafted plans for the compilation 
of textbooks on mathematics for physicists, which should he "a guide to 
action", should instruct in the practical applications of mathematics to 
physics, and should be free of the rigours and complexities unnecessary to 
this course. He did not have time to begin to translate this programme into 
reality. 

Landau always attached great importance to the mastering of mathemati­
cal techniques by the theoretical physicist. The degree of this mastery 
should be such that, insofar as possible, mathematical complications would 
not distract attention from the physical difficulties of the problem - at least 
whenever standard mathematical techniques are concerned. This can be 
achieved only by sufficient training. Yet experience shows that the current 
style and programmes for university instruction in mathematics for physi­
cists often do not ensure such training. EJfperience also shows that after a 
physicist commences his independent research activity he finds the study 
of mathematics too "boring". 

Therefore, the first test which Landau gave to anyone who desired to 
become one of his students was a quiz in mathematics in its "practical" 
calculational aspects. t The successful applicant could then pass on to the 
study of the seven successive sections of the programme for the "theoretical 
minimum", which includes basic knowledge of all the domains of theoretical 
physics, and subsequently take an appropriate examination. In Landau's 
opinion, this basic knowledge should be mastered by any theoretician 
regardless of his future specialization. Of course, he did not expect anyone 
to be as universally well-versed in science as he himself. But he thus 
manifested his belief in the integrity of theoretical physics as a single 
science with unified methods. 

At first Landau himself gave the examination for the "theoretical 
minimum". Subsequently, after the number of applicants became too large, 
this duty was shared with his closest associates. But Landau always re-

t The requirements were: ability to evaluate any indefinite integral that can be expressed 
in terms of elementary functions and to solve any ordinary differential equation of the standard 
type, knowledge of vector analysis and tensor algebra as well as of the principles of the theory 
of functions of a complex variable (theory of residues, Laplace method). It was assumed that 
such fields as tensor analysis and group theory would be studied together with the fields of 
theoretical physics to which they apply. 
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served for himself the first test, the first meeting with each new young 
applicant. Anyone could meet him - it was sufficient to ring him up and 
ask him for an interview. 

Of course, not every one who began to study the "theoretical minimum" 
had sufficient ability and persistence to complete it. Altogether, between 
1934 and 1961, 43 persons passed this test. The effectiveness of this selec­
tion can he perceived from the follmYing indicative facts alone: of these 
persons 7 already have become members of the Acadenw of Sciences and 
an additional 16, doctors of sciences. · 

In the spring of 1937 Landau moved to l\loscow ''"here he became head 
of the Theoretical Division of the Institute of Physical Problems which-had 
not long before been established under the direction of P. L. Kapitza. 
There he remained to the end of his life; in this Institute, which became a 
home to him, his varied activity reached its full flowering. It was there, in a 
remarkable interaction with experimental research, that Landau created 
what may be the outstanding accomplishment of his scientific life - the 
theory of quantum fluids. 

It was there also that he received the numerous outward manifesta!ions 
of the recognition of his contributions. In 1946 he \Yas elected a full :\I ember 
of the USSR Academy of Sciences. He was awarded a number of orders 
(including two Orders of Lenin) and the honorific title of Hero of Socialist 
Labour - a reward for both his scientific accomplishments and his contribu­
tion to the implementation of important practical State tasks. He was 
awarded the State Prize three times and in 1962, the Lenin Prize. There 
also was no lack of honorific awards from other countries. As far back as 
1951 he was elected member of the Danish Royal Academy of Sciences 
and in 1956, member of the Netherlands Royal Academy of Sciences. In 
1959 he became honorary fellow of the British Institute of Physics and 
Physical Society anCl in 1960, Foreign Member of the Royal Society of 
Great Britain. [n the same year he was elected to membership in the~ ational 
Academy of Sciences of the United States and the Ameri:can Academy of 
Arts and Sciences. In 1960 he became recipient of the F. London Prize 
(United States) and of the Max Planck Medal (West Germany). Lastly, in 
1962 he was awarded the Nobel Prize in Physics "for his pioneering theories 
for condensed matter, especially liquid helium". 

Landau's scientific influence was, of course, far from confined to his own 
disciples. He was deeply democratic in his life as a scientist (and in his life 
as a human being, for that matter; pomposity and deference to titles always 
remained foreign to him). Anyone, regardless of his scientific merits and 
title, could ask Landau for counsel and criticism (which were invariably 
precise and clear), on one condition only: the question must be busine~slike 
instead of pertaining to what he detested most in scien~e: _empty p~Ilo_so­
phizing or vapidity and futility cloaked in pseudo-sCie~ufic sophistnes. 
He had an acutely critical mind; this quality, along with h•s approach from 
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the standpoint of profound physics, made discussion with him extremely 
attractive and useful. 

In discussion he used to be ardent and incisive but not rude; witty and 
ironic but not caustic. The nameplate which he hung on the door of his 
office at the Ukrainian Physicotechnical Institute bore the inscription: 

L. LANDAU 
BEWARE, HE BITES! 

With years his character and manner mellowed somewhat, but his 
enthusiasm for science and his uncompromising attitude toward science 
remained unchanged. And certainly his sharp exterior concealed a scientifi­
cally impartial attitude, a great heart and great kindness. However harsh 
and unsparing he may have been in his critical comments, he was just as 
intense in his desire to contribute with his advice to another man's success, 
and his approval, when he gave it, was just as ardent. 

These traits· of Landau's personality as a scientist and of his talent 
actually elevated him to the position of a supreme scientific judge, as it 
were, over his students and colleagu~s.t There is no doubt that this side of 
Landau's activities, his scientific and moral authority which exerted a 
restraining influence on frivolity in research, has also markedly contributed 
to the lofty level of our theoretical physics. 

His constant scientific contact with a large number of students and 
col!eagues also represented to Landau a source of knowledge. A unique 
aspect of his style of work was that, ever since long ago, since the Khar'kov 
years, he himself almost never read any scientific article or book but never­
theless he was always completely au courant with the latest news in physics. 
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t This position is symbolized In A_ A_ Yuzefovich's well-known fnendly cartoon, "Dau 
said", reproduced here. 
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He derived this.knowledge from numerous discussions and from the papers 
presented at the seminar held under his direction. 

This seminar was held regularly once a week for nearly 30 years, and in 
the last years its sessions became gatherings of theoretical physicists from 
all :\loscow. The presentation of papers at this seminar became a sacred 
duty for all students and co-workers, and Landau himself was extremely 
serious and thorough in selecting the material to be p_resented. He was 
interested and equally competent in every aspect of physics and the partici­
pants in the seminar did not find it easy to folio"· his train of thought in 
instantaneously s"·itching from the discussion of, say, the properties of 
''strange" particles to the discussion of the energy spectrum of electrons in 
silicon. To Landau himself listening to the papers was ne,·er an empty 
formality: he did not rest until the essence of a stL .iy was completely 
elucidated and all traces of "philology" - unprm·ed statements or proposi­
tions made on the principle of "why might it not"- therein were eliminated. 
As a result of such discussion and criticism many studies were condemned 
as ''pathology" and Landau completely lost interest in them. On the other 
hand, articles that really contained new ideas or findings were included in 
the so-called "gold fund" and remained in Landau's memory for ever. 

In fact, usually it was sufficient for him to know just the guiding idea of 
a study in order to reproduce all of its findings. As a rule, he found it easier 
to obtain them on his own than to follow in detail the author's reasoning. 
In this way he reproduced for himself and profoundly thought out most of 
the basic results obtained in all the domains of theoretical physics. t This 
probably also was the reason for his phenomenal ability to answer practically 
any question concerning physics that might be asked of him. 

Landau's scientific style was free of the - u:1fortunately fairly wide­
spread - tendency to complicate simple things (often on the grounds of 
generality and rigour which, however, usually turn out to be illusory). He 
himself always strove towards the opposite - to simplify complex things, to 
uncover in the most lucid manner the genuine simplicity of the laws under­
lying the natural phenomena. This ability of his, this skill at "trivializing" 
things as he himself used to say, was to him a matter of special pride. 

The striving for simplicity and order was an inherent part of the structure 
of Landau's mind. It manifested itself not only in serious matters but also 
in semi-serious things as well as in his characteristic personal sense of 
humour.! Thus, he liked to classify everyone, from women according to 
the degree of their beauty, to theoretical physicists according to the signifi-

t Incidentally, this explains the absence of certain needed references in Landau's papers 
v.hich usually was not intentional. However, in some cases he could leave out a reference on 
purpose, if he considered the question too trivial; and he did have his m' n rather high stan-
dards on that matter. · h 

· · · h" · h b"t f Landau m IS, so to speak :t It IS charactenstrc, however, that t IS tratt was not a a I o d " f d. • 
. . . . . II ate an a zone o lsorder" everyday outSide hfe, m whrch he was not at all pedantlca y accur 

would quite rapidly arise around him. 
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cance of their contribution to science. This last classification was based on a 
logarithmic scale of five: thus, a second-class physicist supposedly accom­
plished 10 times as much as a third-class physicist ("pathological types'' 
were ranked in the fifth class). On this scale Einstein occupied the position L 
while Bohr, Heisenberg, Schrodinger, Dirac and certain others were 
ranked in the first class. Landau modestly ranked himself for a long tim{' 
in class 2~ and it \\as only comparath·ely late in his life that he promoted 
himself to the second class. 

He always worked hard (ne,·er at .1 desk, usually reclining on .1 di\"an at 
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home). The recognition of the results of one's work is to a greater or lesser 
extent important to any scientist; it ,vas, of course, also essential to Landau. 
But it can still be said that he attached much less importance to questions of 
priority than is ordinarily the case. And at any rate there .is no doubt that 
his drive for work was inherently motivated not by desire for fame but by 
an inexhaustible curiosity and passion for exploring the laws of nature in 
their large and small manifestations. He never omitted a chance to repeat 
the elementary truth that one should never work for extraneous purposes, 
work merely for the sake of making a great discovery, for then nothing 
would be accomplished anyway. 

The range of Landau's interests outside physics also was extremely wide. 
In addition to the exact sciences he loved history and was well-versed in it. 
He was al3o passionately interested in and deeply impressed by every genre 
of fine arts, though with the exception of music (and ballet). 

Those who had the good fortune to be his students and friends for many 
years knew that our Dau, as his friends and comrades nicknamed himt, did 
not grow old. In his company boredom vanished. The brightness of his 
personality never grew dull and his scientific power remained strong. All 
the more senseless and frightful was the accident which put an end to his 
brilliant activity at its zenith. 

* * * 
Landau's articles, as a rule, display all the features of his characteristic 

scientific style: clarity and lucidity of physical statement of problems, the 
shortest and most elegant path towards their solution, no superfluities. 
Even now, after many years, the greater part of his articles does not require 
any revtswns. 

The brief review below is in~nded to provide only a tentative idea of the 
abundance and diversity of Landau's work and to clarify to some extent 
the place occupied by it i~ the history of physics, a place which may not 
always be obvious to the contemporary reader. 

A characteristic feature of Landau's scientific creativity is its almost 
unprecedented breadth, which encompasses the whole of theoretical 
physics, from hydrodynamics to the quantum field theory. In our century, 
which is a century of increasingly narrow specialization, the scientific paths 
of his students also have been gradually diverging, but Landau himself 
unified them all, always retaining a truly astounding interest in everything. 
It may be that in him physics has lost one of the last great universalists. 

Even a cursory examination of the bibliography of Landau's works shows 
that his life cannot be divided into any lengthy periods during which he 
worked only in some one domain of physics. Hence also tJ:e su.rvey of his 
works is given not in chronological order but, insofar as posstble, m thematic 

t Landau himself liked to say that this name originated from the French spelling of his 
name: Landau = L'line Dau (the ass Dau). 
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order. We shall begin with the works devoted to the general problems of 
quantum mechanics. 

These include, in the first place, several of his early \VOrks. In the course 
of his studies of the radiation-damping problem he was the first to introduce 
the concept of incomplete quantum-mechanical description accomplished 
with the aid of quantities which were subsequently termed the density 
matrix [2]. In this article the density matrix was introduced in its energy 
representation. 

Two articles [7, 9] are devoted to the calculation of the probabilities of 
quasiclassical processes. The difficulty of this problem stems from the fact 
that, hy virtue of the exponential nature (with a large imaginary exponent) 
of the quasiclassical wave functions, the integrand in the matrix elements 
is a rapidly fluctuating quantity; this greatly complicates even an estimate 
of the integral; in fact, until Landau's work all studies of problems of this 
kind were erroneous. Landau was the first to provide a general method for 
the calculation of quasiclassical matrix elements and he also applied it to 
a number of specific processes. 

In 1930 Landau (in collaboration with R. Peierls) published a detailed 
study of the limitations imposed by relativistic requirements on the quantum­
mechanical description [6]; this article caused lively discussions at the time. 
Its basic result lies in determining the limits of the possibility of measuring 
the particle momentum within a finite time. This implied that in the rela­
tivistic quantum region it is not feasible to measure any dynamical variables 
characterizing the particles in their interaction, and that the only measurable 
quantities are· the momenta (and polarizations) of free particles. Therein 
also lies the physical root of the difficulties that arise when methods of 
conventional quantum mechanics, employing concepts which become 
meaningless in the relativistic domain, are applied there. Landau retuned 
to this problem in his last published article [100], in which he expressed his 
conviction that the 1,11-operators, as carriers of unobservable information, 
and along with them the entire Hamiltonian method, should disappear 
from a future theory. 

One of the reasons for this conviction was the results of the research into 
the foundations of quantum electrodynamics which Landau carried out 
during 1954-1955 (in collaboration with A. A. Abrikosov, I. M. Khalatnikov 
and I. Ya. Pomeranchuk) [78-81, 86]. These studies were based on the 
concept of the point interaction as the limit of "smeared" interaction when 
the smearing radius tends to zero. This made it possible to deal directly with 
finite expressions. Further, it proved possible to carry out the summation 
of the principal terms of the entire series of perturbation theory and this 
led to the derivation of asymptotic expressions (for the case of large momen­
ta) for the fundamental quantities of quantum electrodynamics- the Green 
functions and the vertex part. These relations, in their own turn, were used 
to derive the relationship between the true charge and mass of the electron, 
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on the one hand, and their "bare" values, on the other. Although these 
calculations proceeded on the premise of smallness of the "bare" charge, it 
was argued that the formula for the relation between true and bare charges 
retains its validity regardless of the magnitude of the bace charge. Then 
analysis of this formula shows that at the limit of point interaction the 
true charge becomes zero - the theory is "nullified". t (A review of the 
pertinent questions is provided in the articles [84, 89]). 

Only the future will show the extent of the validity of the programme 
planned hy Landau [100] for constructing a relativistic quantum field 
theory. He himself was energetically working in this direction during the 
last few years prior to his accident. As part of this programme, in particular, 
he !'tad worked out a general method for_ determining the singularities of 
the quantities that occur in the diagram technique of quantum field 
theory [9~]. 

In response to the discovery in 1956 of parity nonconservation in weak 
interactions, Landau immediately proposed the theory of a neutrino with 
fixed helicity ("two-component neutrino'') [92]!, and also suggested the 
principle of the conservation of "combined parity", as he termed the 
combined application of spatial inversion and charge conjugation. Accord­
ing to Landau, the symm~try of space would in this way be "saved" -
the asymmetry is transferred to the particles themselves. This principle 
indeed proved to be more widely applicable than the law of parity conserva­
tion. As is known, however, in recent years processes not conserving 
combined parity have also been discovered; the meaning of this violation 
is at present still unclear. 

A 1937 study [31] by Landau pertains to nuclear physics. This study 
represents a quantitative embodiment of the ideas proposed not long 
before by Bohr: the nucleus is examined by methods of statistical physics 
as a drop of "quantum fluid". It is noteworthy that this study did not make 
use of any far-reaching model conceptions, contrary to the previous practice 
of other investigators. In particular, the relationship between the mean 
distance between the levels of the compound nucleus and the width of the 
levels was established for the first time. 

The absence of model conceptions is characteristic also of the theory of 
proton-proton scattering developed by Landau (in collaboration with 
Ya. A. Smorodinskii) [55]. The scattering cross-section in their study was 
expressed in terms of parameters whose meaning is not restricted by any 
specific assumptions concerning the particle interaction potential. 

The study (in collaboration with Yu. B. Rumer) [36] of the cascade 

t In connection with the search for a more rigorous proot of th_is statement,_ the article 
[100] contains the assertion, characteristic of Landau, that "the brevitY of hfe ~?es not allow 
us the luxury of spending time on problems which will lead to no nbw r~:rlts · d 

1 Simultaneously and independently, this theory was proposed Y am an by Lee 
and Yang. 
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theory of electron showers in cosmic rays is an example of technical 
virtuosity; the physical foundations of this theory had been earlier formula­
ted by- a number of investigators, but a quantitative theory was essentially 
lacking. That study provided the mathematical apparatus which became the 
basis for all subsequent work in this domain. Landau himself took part in 
the further refinement of the shower theory by contributing two more 
articles, one on the particle angular distribution [ 43] and the other on 
secondary showers [44]. 

Of no smaller virtuosity was Landau's work dealing with the elaboration 
of Fermi's idea of the statistical nature of multiple particle production in 
collisions [74]. This study also represents a brilliant example of the metho­
dological unity of theoretical physics in which the solution of a problem is 
accomplished by using the methods from a seemingly completely different 
domain. Landau showed that the process of multiple production includes 
the stage of the expansion of a "cloud" whose dimensions are large com­
pared \Yith the mean free path of particles in it; correspondingly, this stage 
should be described by equations of relativistic hydrodynamics. The solu­
tion of these equatir>ns required a number of ingenious techniques as well 
as a thorough analysis. Landau used to say that this study cost him more 
effort than any other problem that he had ever solved. 

Landau always ,yillingly responded to the requests_ and needs of the 
experimenters, e.g. by publishing the article [56] which established the 
energy distribution of the ionization losses of fast particles during passage 
through matter (previously only the theory of mean energy loss had existed). 

Turning now to Landau's work on macroscopic physics, we begin with 
several articles representing his contribution to the physics of 
magnetism. 

According to classical mechanics and statistics, a change in the pattern of 
movement of free electrons in a magnetic field cannot result in the appear­
ance of new magnetic properties of the system. Landau \vas the first to 
elucidate the character of this motion in a magnetic field for the quantum 
case, and to show that quantization completely changes the situation, 
resulting in the appearance of diamagnetism of the free electron gas 
("Landau diamagnetism" as this effect is now termed) [4]. The same study 
q~~litatively predicted the periodic dependence of the magnetic suscepti­
btltty on the intensity of the magnetic field when this intensity is high. 
At the time ( 1930) this phenomenon had not yet been observed by anyone, 
and it was experimentally discovered onlv later (the De Haas-Van Alphen 
effect); a quantitath·e theory of this effect was presented by Landau in a 
later paper [38]. 

A short article published in 1933 [12] is of a significance greatly tran­
scending the problem stated in its title - a possible explanation of the field 
dependence of the magnetic susceptibility of a particular class of substances 
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at low temperatures. This article was the first to introduce the concept of 
antiferromagnetism (although it did not use this terrn) as a special phase of 
magnetic bodies differing in symmetry from the paramagnetic phase; 
accordingly, the transition from one state to the other .must occur at a 
rigorously definite point. t This article examined the particular model of a 
layered antiferromagnet with a strong ferromagnetic coupling in each 
layer and a weak antiferromagnetic coupling between the layers; a quantita­
tive investigation of this case was carried out and the characteristic features 
of magnetic properties in the neighbourhood of the transition point were 
established. The method employed here by Landau was based on ideas 
which he subsequently elaborated in the general theory of second-order 
phase transitions. 

Another paper concerns the theory of ferromagnetism. The idea of the 
structure of ferromagnetic bodies as consisting of elementary regions 
spontaneously magnetized in various directions ("magnetic domains," as 
tlie modern term goes) was expressed by P. \Veiss as early as in 1907. 
However, there was no suitable approach to the question of the quantitative 
theory of this structure until Landau (in collaboration with E. M. Lifshitz) 
[18] showed in 1935 that this theory should be constructed on the basis 
of thermodynamic considerations and determined the form and dimensions 
of the domains for a typical case. The same study derived the macroscopic 
equation of the motion of the domain magnetization vector and, with its 
aid,-developed the principles of the theory of the dispersion of the magnetic 
permeability of ferromagnets in an alternating magnetic field; in particular, 
it predicted the effect now known as ferromagnetic resonance. 

A short communication published in 1933 [10] expressed the idea of the 
possibility of the "autolocalization" of an electron in a crystal lattice within 
the potential well produced by virtue of the polarization effect of the electron 
itself. This idea subsequently provided the basis for the so-called polaron 
theory of the conductivity of ionic crystals. Landau himself returned once 
more to these problems in a later study (in collaboration with S. I. Pekar) 
[67] dealing with the derivation of the equations of motion of the polaron 
in the external field. 

Another short communication [14] reported on the results obtained by 
Landau (in collaboration with G. Placzek) concerning the structure of the 
Rayleigh scattering line in liquids or gases. As far back as the early 1920s 
Brillouin and :\landel'shtam showed that, owing to scattering by sound 
vibrations, this line must split into a doublet. Landau and Placzek drew 
attention to the attendant" necessity of the existence of scattering by entropy 

t Roughly a year earlier Nee I (whose work was unknown t':' Landau). had pre~icted the 
possibility of existence of substances which, from the magnetiC standpomt, con~al•st of two 

· · · "' ' 1 h d"d t assume that a spec1 state of sublattlces v.·1th opposite moments .. P .. ee, o'"·ever, 1 no ·"th .. 
· · 1 h h h t a paramagnet "' a positive matter is involved here, and mstead he s1mp Y t oug t t a · t" f 

d II . tructure cons1s mg o several exchange integral at low temperatures gra ua y turns mto a s 
magnetic sublattices. 
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fluctuations, not accompanied by any change in frequency; as a result, a 
triplet should be observed instead of a doublet. t 

Two of Landau's works pertain to plasma physics. One of these two 
[24] was the first to derive the transport equation with allowance for Coulomb 
interaction between particles; the slowness of decrease of these forces 
rendered inapplicable in this case the conventional methods for constructing 
transport equations. The other work [61], dealing with plasma oscillations, 
showed that, even under conditions when collisions between particles in the 
plasma can be disregarded, high-frequency oscillations will still attenuate 
("Landau damping").! 

His work to compile one of the successive volumes of the Course of 
Theoretical Physics was to Landau a stimulus for a thorough study of 
hydrodynamics. Characteristically, he independently pondered and derived 
all the basic notions and results of this branch of science. His fresh and 
original perception led, in particular, to a new approach to the problem of 
the onset of turbulence and he. elucidated the basic aspects of the process 
of the gradual d"evelopment of unsteady flow with increase in the Reynolds 
number following the loss of stability by laminar motion and predicted 
qualitatively various alternatives possible in this case [52]. On im·estigating 
the qualitative properties of supersonic flow around hodies, he arrived at 
the unexpected discovery that in supersonic flow there must exist far from 
the body not one - as had been the conventional assumption - but two 
shock waves, one following the other [60]. Even in such a "classical" field 
as the jet theory he succeeded in finding a new and previously unnoticed 
exact solution for an axially symmetric "inundated" jet of a viscous in­
compressible fluid [51]. 

In Landau's scientific creative accomplishments an eminent position is 
occupied - both from the standpoint of direct significance and in terms of 
the consequent physical applications - by the theory of second-order phase 
transitions [29]; a first outline of the ideas underlying this theory is already 
contained in an earlier communication [17].11 The concept of phase transi­
tions of various orders had first been introduced by Ehrenfest in a purely 
formal manner, with respect to the order of the thermodynamic deri,·atiYes 
which could undergo a discontinuity at the transition point. The question of 
exactly which of these transitions can exist in reality, and what is their 

t No detailed exposition of the conclusions and results of this study was ever published in 
article form. It is partly presented in the book by Landau and Lifshitz, Electrodynamics of 
Continuous 1\fedia, Pergamon, Oxford 1960, §96. 

1 It is interesting that this work was carried out by Landau as his response to the "philo­
logy" present, in his opinion, in previous studies dealing with this subject (e.g.; the unjustified 
replacement of divergent integrals b) their principal values). It was to prove his rightness 
that he occupied himself with this question. 

II Landau himself applied this theory to the scattering of X-rays b~ crystals [32] and - in 
collaboration with I. l\1. Khalatnikov- to the absorption of sound in the neighbourhood of the 
transition point [82]. 
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physical nature, had remained open, and previous interpretations had been 
fairly vague and unsubstantiated. Landau was the first to point to the 
profound connection between the possibility of existence of a continuous 
(in the sense of variation in the body's state) phase transitton and the jump­
like (discontinuous) change in some symmetry property of the body at the 
transition point. He also showed that far from just any change in symmetry 
is possible at that transition point and provided a method which makes it 
possible to determine the permissible types of change in symmetry. The 
quantitative theory developed by Landau was based on the assumption of 
the regularity of the expansion of thermodynamic quantities in the neigh­
bourhood of the transition point. It is now clear that such a theory, which 
fails to allow for possible singularities of these quantities at the transition 
point, does not reflect all the properties of phase transitions. The question 
of the nature of these singularities was of great interest to Landau and 
during the last years of his activity he worked a great deal on this difficult 
problem without, however, succeeding in arriving at any definite conclusions. 

The phenomenological theory of superconductivity developed in 1950 
by Landau (in collaboration with V. L. Ginzburg) [73] also \Vas constructed 
in the spirit of the theory of phase transitions; subsequently it became, in 
particular, the basis for the theory of superconducting alloys. This theory 
invokes a number of variables and parameters whose meaning \Vas not 
completely clear at the time it \Vas originally developed and became under­
standable only after the appearance in 1957 of the microscopic theory of 
superconductivity, which made possible a rigorous substantiation of the 
Ginzburg-Landau equations and a determination of the region of their 
applicability. In this connection, the story (recounted hy Y. L. Ginzburg) 
of an erroneous statement contained in the original article hy Landau and 
Ginzburg is instructi,·e. The hasic equation of the theory, defining the 
effecti,·e wave function !Jf of su perconducting electrons, contains the field 
yector potential A in the term 

- -lll v - -- 7. ' 
1 ( ., e*A) 1/f 
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which is completely analogous to the corresponding term in the Schrodinger 
equation. It might be thought that in the phenomenological theory the 
parameter e* should represent some effective charge which does not have 
to he directly related to the charge of the free electron e. Landau, however, 
refuted this hypothesis by pointing out that the effective charge is not 
uni,Trsal and would depend on yarious fa~tors (pressure, composition of 
specimen, etc.); then in an inhomogeneous specimen the cha~ge e~ would 
be a function of coordinates and this would disturb the gauge mvanance of 
the theon. Hence the article stated thdt " ... there is no reason to consider 
the charge e* as different from the electronic charge"· \Ve 00'' know that 
· 1· - · 'd · h h h f h c per electron pair 1' e Ill rea tty e* cotnct es wit t e c arge o t e oo • · ., 
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e* = 2e and not e. This value of e* could, of course, have been predicted 
only on the basis of the idea of electron pairing which underlies the micro­
scopic theory of superconductivity. But the value 2e is as universal as e and 
hence Landau's argument in itself was valid. 

Another of Landau's contributions to the physics of superconductivity 
was to elucidate the nature of the so-called intermediate state. The concept 
of this state was first introduced by Peierls and F. London ( 1936) to account 
for the observed fact that the transition to the superconducting state in a 
magnetic field is gradual. Their theory was purely phenomenological, 
however, and the question of the nature of the intermediate state had 
remained open. Landau showed that this state is not a new state and that in 
reality a superconductor in that state consists of successive thin layers of 
normal and superconducting phases. In 1937 Landau [30] considered a 
model in which these layers emerge to the surface of the specimen; using 
an elegant and ingenious method he succeeded in completely determining 
the shape and dimensions of the layers in such a model. t In 1938 he proposed 
a new variant of the theory, according to which the layers repeatedly branch 
out on emerging to the surface; such a structure should be thermodynami­
cally more favourable, gi,·en sufficiently large dimensions of the specimen.! 

But the most significant contribution that physics owes to Landau is his 
theory of quantum liquids. The significance of this new discipline at present 
is steadily growing; there is no doubt that its development in recent decades 
has produced a revolutionary effect on other domains of physics as well -
on solid-state physics and even on nuclear physics. 

The su perfluidity theory was created by Landau during 1940-1941 soon 
after Kapitza's discO\·ery towards the end of 1937 of this fundamental 
property of helium II. Prior to it, the premises for understanding the 
physical nature of the phase transition observed in liquid helium had been 
essentially lacking and it is not surprising that the previous interpretations 
of this phenomenon now seem e\·en naive. II The completeness with which 
the theory of helium II had been constructed by Landau from the very 
beginning is remarkable: already his first classic paper [46] on this subject 
contained practically all the principal ideas of both the microscopic theory 
of helium II and the macroscopic theory constructed on its basis - the 
thermodynamics and hydrodynamics of this fluid. 

Underlying Landau's theory is the concept of quasiparticles (elementary 
excitations) constituting the energy spectrum of helium II. Landau was in 
fact the first to pose the question of the energy spectrum of a macroscopic 

t Landau himself wrote concerning th1s matter that "amazingly enough an exact determi­
nation of the shape of the layers pro,·es to be possible" [30] 

1 A detailed description of this work was published in 19-B [49]. 
II Thus, Landau himself in his work on the theory of phase transitions [29] considered 

whether helium II is a liquid crystal, even though he emphasized the dubiousness of this 
assu1nption. 
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body in such a very general form, and it was he, too, who discovered the 
nature of the spectrum for a quantum fluid of the type to which liquid 
helium (He 4 isotope) belongs -or, as it is now termed, of the Bose type. 
In his 1941 work Landau assumed that the spectrum of elementary excita­
tions consists of two branches: phonons, with a linear dependence of energy 
e. on momentum p, and "rotons", with a quadratic dependence, separated 
from the ground state by an energy gap. Subsequently he found that such 
a form of spectrum is not satisfactory from the theoretical standpoint 
(as it would be unstable) and careful analysis of the more complete and 
exact experimental data that had by then become available led him in 1946 
to establish the now famous spectrum containing only one branch in 
which the "rotons" correspond to a minimum on the curve of e(p). The 
macroscopic concept's of the theory of superfluidity are widely known. 
Basically they reduce to the idea of two motions simultaneously occurring 
in the fluid - "normal" motion and "superfluid" motion, which may be 
visualized as motions of two "fluid components".t Normal motion is 
accompanied by internal friction, as in conventiona! fluids. The determina­
tion of the viscosity coefficient represents a kinetic problem which requires 
an analysis of the processes of the onset of an equilibrium in the "gas of 
quasiparticles"; the principles of the theory of the viscosity of helium II 
were developed by Landau (in collaboration with I. M. Khalatnikov) in 
1949 [69, 70]. Lastly, yet another investigation (carried out in collaboration 
with I. Ya. Pomeranchuk) [64] dealt with the problem of the behaviour of 
extraneous atoms in helium; it was shown, in particular, that any atom of 
this kind will become part of the "normal component" of the fluid regard­
less of whether the impurity substance itself does or does not display the 
property of superfluidity - contrary to- the incorrect view previously held 
in the literature. 

The liquid isotope He 3 is a quantum liquid of another type - the Fermi 
type as it is now termed. Although its properties are not as.striking as the 
properties of liquid He4, they are no less interesting from the standpoint of 
basic theory. A theory of liquids of this kind was developed by Landau and 
presented by him in three papers published during 1956-1958. The first two 
of these [90, 91] established the nature of the energy spectrum of Fermi 
liquids, considered their thermodynamic properties and established the 
kinetic equation for the relaxation processes occurring in these liquids. His 
study of the kinetic equation led Landau to predict a special type of vibra-

t Some of the ideas of the ''two-component" macroscopic description of li~l_'id helium 
were introduced independently of Landau by L. Tisza (although without pro~·,dmg a clear 

- · - ) H. d ·1 d - 1 bl' hed m France m 19+0 was phvs1cal mterpretat10n of them . 1s etm e art•c e pu •s b . f • 
·- - -- - - h ··ssR '11943 and the ne note of 1938 o'"·•ng to \\·arttme conditions. not received In t e L unt1 I _ 

- d • - d S · had unfortunate Y remamed un in the Comptes rendus of the Pans Aca em1e es c1ences . d d b. I d _ -
. - fT. ' h r'-T '\\·as pro\ I ~ \ ... an au •n noticed. A criticism of the quant1t;:;t1Ye aspects o 1sza s t eo J • 

the article [66]. 
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tional process in liquid He 3 in the neighbourhood of absolute zero, which 
he termed zeroth sound. The third paper [95] presented a rigorous micro­
scopic substan~iation of the transport equation, whose earlier derivation had 
contained a number of intuitive assumptions. 

Concluding this brief and far from complete survey, it only remains to be 
repeated that to physicists there is no need to emphasize the significance of 
Landau's contribution to theoretical physics. His accomplishments are of 
lasting significance and will for ever remain part of science. 





CHAPTER I 

THE EQUATIONS OF MOTION 

§1. Generalised co-ordinates 
ONE of the fundamental concepts of mechanics is that of a particle. t By this 
we mean a body whose dimensions may be neglected in describing its motion. 
The possibility of so doing depends, of course, on the conditions of the prob­
lem concerned. For example, the planets may be regarded as particles in 
considering their motion about the Sun, but not in considering their rotation 
about their axes. 

The position of a particle in space is defined by its radius vector r, whose 
components are its Cartesian co-ordinates x, y, z. The derivative v = drfdt 
of r with respect to the time t is called the velocity of the particle, and the 
second derivative d2rfdt2 is its acceleration. In what follows we shall, as is 
customary, denote differentiation with respect to time by placing a dot above 
a letter: v = r. 

To define the position of a system of N particles in space, it is necessary to 
specify N radius vectors, i.e. 3N co-ordinates. The number of independent 
quantities which must be specified in order to define uniquely the position of 
any system is called the number of degrees of freedom; here, this number is 
3N. These quantities need not be the Cartesian co-ordinates of the particles, 
and the conditions of the problem may render some other choice of co­
ordinates more convenient. Any s quantities q1, q2, .... qs which completely 
define the position of a system with s degrees of freedom are called generalised 
eo-ordinates of the system, and the derivatives qt are called its generalised 
velocities. 

\Vhen the values of the generalised co-ordinates are specified, however, 
the "mechanical state" of the system at the instant considered is not yet 
determined in such a way that the position of the system at subsequent 
instants can be predicted. For given values of the co-ordinates, the system 
can have any velocities, and these affect the position of the system after an 
infinitesimal time interval dt. 

If all the co-ordinates and velocities are simultaneously specified, it i3 
known from experience that the state of the system is completely determined 
and that its subsequent motion can, in principle, be calculated. Mathematic­
ally, this means that, if all the co-ordinates q and velocities q are gh·en at 
some instant, the accelerations ij at that instant are uniquely defined.~ 

t Sometimes called in Russian a material point. 
t For brevity, we shall often conventionally denote by 9 the set of all the co-ordinate> 

91, 92, ... , 9•, and similarly by q the set of all the velocities. 
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2 The Equations of .11 otion §2 

The relations between the accelerations, velocities and co-ordinates are 
called the equations of motion. They are second-order differential equations 
for the functions q(t), and their integration makes possible, in principle, the 
determination of these functions and so of the path of the system. 

§2. The principle of least action 

The most general formulation of the law goYerning the motion of mech­
anical systems is the principle of least action or Hamilton's principle, according 
to which every mechanical system is characterised by a definite function 
L(qt, q2, ... , q8 , qt, q2 ••.. , q8 , t), or briefly L(q, q, t), and the motion of the 
system is such that a certain condition is satisfied. 

Let the system occupy, at the instants It and t2, positions defined by two 
sets of values of the co-ordinates, tjl> and q2l. Then the condition is that the 
system moves between these positions in such a way that the integral 

t2 

s = I L(q, q, t) dt (2.1) 
tl 

takes the least possible value.t The function L is called the Lagrangz"an of 
the system concerned, and the integral (2.1) is called the action. 

The fact that the Lagrangian contains only q and q, but not the higher 
derivatives ij, lj, etc., expresses the result already mentioned, that the mech­
anical state of the system is completely defined when the co-ordinates and 
velocities are given. 

Let us now derive the differential equations which solve the problem of 
minimising the integral {2.1 ). For simplicity, we shall at first assume that the 
system has only one degree of freedom, so that only one function q(t) has to 
be determined. 

Let q = q(t) be the function for which Sis a minimum. This means that S 
is increased when q(t) is replaced by any function of the form 

q(t) + Sq(t), (2.2) 

where Sq(t) is a function which is small everywhere in the interval of time 
from t1 to t2; Sq(t) is called a variation of the function q(t). Since, fort = t1 
and fort = t2, all the functions (2.2) must take the values q<U and q<2> respec­
tively, it follows that 

(2.3) 

t It should be mentioned that this formulation ofthe principle of least action is not always 
valid for the entire path of the system but only for any sufficiently short segm~nt of the path. 

. . ' but not necessarily a rn· · The mtegral (2.1) for the entire path must have an extremum, h . •mmum. 
· · · h d · ation oft e equations of t' Th1s fact, however, IS of no Importance as regards t e env mo •on, 

since only the extremum condition is used. 
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The change in S when q is replaced by q+ Sq is 

t2 t2 

J L(q+ Sq, q+ Sq, t) dt- J L(q, q, t) dt. 

When this difference is expanded in powers of Sq and Sq in the integrand, the 
leading terms are of the first order. The necessary condition for S to have a 
minimum( is that these terms {called the first variation, or simply the varia­
tion, of the integral) should be zero. Thus the principle of least action may 
be written in the form 

t2 

ss = s I L(q, q, t) dt = 0, (2.4) 

tl 

or, effecting the variation, 

'
2 

oL oL I (-Sq+-_ sq) dt = o. 
oq oq 

tl 

Since Sq = dSqjdt, we obtain, on integrating the second term by parts, 

t2 

[
oL ]t2 J( oL d oL) SS = -_ Sq + -----_ Sqdt = 0. 
oq t

1 
oq dt oq , 

tl 

{2.5) 

The conditions (2.3) show that the integrated term in {2.5) is zero. There 
remains an integral which must vanish for all values of Sq. This can be so only 
if the integrand is zero identically. Thus we have 

:t( ~~)- ~~ = 0. 

When the system has more than one degree of freedom, the s different 
functions qi(t) must be varied independently in the principle of least action. 
We then evidently obtains equations of the form 

~(oL)- oL = o (i = 1,2, ... ,s). (2.6) 
dt oqi oqi 

These are the required differential equations, called in mechanics Lagrange's 
equations.t If the Lagrangian of a given mechanical system is known, the 
equations (2.6) give the relations between accelerations. velocities and co­
ordinates, i.e. they are the equations of motion of the system. 

t Or, in general, an extremum. 
t In the calculus of variations they are Euler's equations for the formal problem of deter­

mining the extrema "of an integral of the form (2.1). 
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Mathematically, the equations {2.6) constitute a set of s second-order 
equations for s unknown functions qi(t). The general solution contains 2s 
arbitrary constants. To determine these constants and thereby to define 
uniquely the motion of the system, it is necessary to know the initial conditions 
which specify the state of the system at some given instant, for example the 
initial values of all the co-ordinates and velocities. 

Let a mechanical system consist of two parts A and B which would, if 
closed, have Lagrangians LA and LB respectively. Then, in the limit where 
the distance between the parts becomes so large that the interaction between 
them may be neglected, the Lagrangian of the whole system tends to the value 

(2.7) 

This additivity of the Lagrangian expresses the fact that the equations of mo­
tion of either of the two non-interacting parts cannot involve quantities per­
taining to the other part. 

It is evident that the mdtiplication of the Lagrangian of a mechanical 
system by an arbitrary constant has no effect on the equations of motion. 
From this, it might seem, the following important property of arbitrariness 
can be deduced: the Lagrangians of different isolated mechanical systems 
may be multiplied by different arbitrary constants. The additive property, 
however, removes this indefiniteness, since it admits only the simultaneous 
multiplication of the Lagrangians of all the systems by the same constant. 
This corresponds to the natural arbitrariness in the choice of the unit of mea­
surement of the Lagrangian, a matter to which we shall return in §4-. 

One further general remark should be made. Let us consider two functions 
L'(q, tj, t) and L(q, tj, t), differing by the total derivative with respect to time 
of some function f (q, t) of co-ordinates and time: 

d 
L'(q,q,t) = L(q,tj,t)+-f(q,t). 

dt 

The integrals (2.1) calculated from these two functions are such that 

t2 t2 t2 

(2.8) 

S' =I L'(q,tj,t)dt =I L(q,tj,t)dt+ I ~dt = S+j(q!2l,f2)-f(qll,tl), 

t.e. they differ by a quantity which gives zero on variation, so that the condi­
tions SS' = 0 and SS = 0 are equivalent, and the form of the equations of 
motion is unchanged. Thus the Lagrangian is defined only to .within an 
additive total time derivative of any function of co-ordinates and ttme. 

§3. Galileo's relativity principle 
· · necessary to h In order to consider mechanical phenomena tt IS . . c oose a 

f . · general different Ill form f frame of reference. The laws o motion are m or 
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different frames of reference. \Vhen an arbitrary frame of reference is chosen, 
it may happen that the laws governing even very simple phenomena become 
very complex. The problem naturally arises of finding a frame of reference 
in which the laws of mechanics take their simplest form. 

If we were to choose an arbitrary frame of reference, space would be in­
homogeneous and anisotropic.- This means that, even if a body interacted 
with no other bodies, its various positions in space and its different orienta­
tions would not be mechanically equivalent. The same would in general be 
true of time, which would likewise be inhomogeneous; that is, different in­
sta~ts would not be equivalent. Such properties of space and time would 
evidently complicate the description of mechanical phenomena. For example, 
a free body (i.e. one subject to no external action) could not remain at rest: 
if its velocity were zero at some instant, it would begin to move in some direc­
tion at the next instant. 

It is found, however, that a frame of reference can always be chosen in 
which space is homogeneous and isotropic and time is homogeneous. This is 
called an inertial frame. In particular, in such a frame a free body which is at 
rest at some instant remains always at rest. 

\Ve can now draw some immediate inferences concerning the form of the 
Lagmngian of a particle, moving freely, in an inertial frame of reference. 
The homogeneity of space and time implies that the Lagrangian cannot con­
tain explicitly either the radius vector r of the particle or the time t, i.e. L 
must be a function of the velocity v only. Since space is isotropic, the Lagran­
gian must also be independent of the direction of v, and is therefore a func­
tion only of its mag!litude, i.e. of v2 = v2: 

L = L(v2). (3.1) 

Since the Lagmngian IS independent of r, we have oLJor = 0, and so 
Lagrange's equation ist 

~(oL) = 0 
dt Ov ' 

whence oLjov = constant. Since oLfov is a function of the velocity only, it 
follows that 

v = constant . (3.2) 

. Thus we conclude that, in an inertial frame, any free motion takes place 
With a velocity which is constant in both magnitude and direction. This is 
the law of inertia. 
. If we ~nsider, besides the inertial frame, another frame moving uniformly 
In a stra1ght line relative to the inertial frame, then the laws of free motion in 

t The derivative of a scalar quantity with respect to a vector is defined as the vector whose 
components are equal to the derivatives of the scalar with respect to the corresponding 
components of the vector. 
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the other frame will be the same as in the original frame: free motion takes 
place with a constant velocity. 

Experiment shows that not only are the laws of free motion the same in 
the two frames, but the frames are entirely equivalent in all mechanical re­
spects. Thus there is not one but an infinity of inertial frames moving, relative 
to one another, uniformly in a stmight line. In all these frames the properties 
of space and time are the same, and the laws of mechanics are the same. This 
constitutes Galileo's relativity principle, one of the most important principles 
of mechanics. 

The above discussion indicates quite clearly that inertial frames of refer­
ence have special properties, by virtue of which they should, as a rule, be 
used in the study of mechanical phenomena. In what follows, unless the con­
trary is specifically stated, we shall consider only inertial frames. 

The complete mechanical equivalence of the infinity of such frames shows 
also that there is no "absolute" frame of reference which should be preferred 
to other frames. 

The co-ordinates r and r' of a given point in two different frames of refer­
ence K and K', of which the latter moves relative to the former with velocity 
V, are related by 

r = r' + Vt. (3.3) 

Here it is understood that time is the same in the two frames: 

t = t'. (3.4) 

The assumption that time is absolute is one of the foundations of classical 
mechanics. t 

Formulae (3.3) and {3.4) are called a Galilean transformation. Galileo's 
relativity principle can be formulated as asserting the invariance of the mech­
anical equations of motion under any such transformation. 

§4. The Lagrangian for a free particle 
Let us now go on to determine the form of the Lagrangian, and consider 

first of all the simplest case, that of the free motion of a particle relative to 
an inertial frame of reference. As we have already seen, the Lagrangian in 
this case can depend only on the square of the velocity. To discover the form 
of this dependence, we make use of Galileo's relativity principle. If an inertial 
frame K is moving with an infinitesimal velocity E relative to another inertial 
frame K', then v' = v +E. Since the equations of motion must have the same 
form in every frame, the Lagmngian L(v2) must be con~erted by this trans­
formation into a function L' which differs from L(v2), 1f at all, only by the 
total time derivative of a function of co-ordinates and time (see the end of 
§2). 

d • 1 · · t• mechanics. t This asswnption does not hold goo m re atiVIS IC 

I 
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We have L' = L(v'2) = L(v2+2v • E+e2). Expanding this expression in 
powers of E and neglecting terms above the first order, we obtain 

oL 
L(v'2) = L(v2)+-2v• E. 

ov2 

The second term on the right of this equation is a total time derivative only 
if it is a linear function of the velocity v. Hence oLfov2 is independent of the 
velocity, i.e. the Lagrangian is in this case proportional to the square of the 
velocity, and we write it as 

L - lmv2 - 2 • (4.1) 

From the fact that a Lagrangian of this form satisfies Galileo's relativity 
principle for an infinitesimal relative velocity, it follows at once that the 
Lagrangian is invariant for a finite relative velocity V of the frames K and K'. 
For 

L' = !mv'2 = ~m(v+ V)2 = ~mv2+mv· V +!mV2, 
or 

L' = L+d(mr· V+!mV2t)fdt. 

The second term is a total time derivative and may be omitted. 
The quantity m which appears in the Lagrangian (4.1) for a freely moving 

particle is called the mass of the particle. The additive property of the Lagran­
gian shows that for a system of particles which do not interact we havet 

L = L)111ava2· (4.2) 

It should be emphasised that the above definition of mass becomes mean­
ingful only when the additive property is taken into account. As has been 
mentioned in §2, the Lagmngian can always be multiplied by any constant 
without affecting the equations of motion. As regards the function (4.2), such 
multiplication amounts to a change in the unit of mass; the ratios of the masses 
of different particles remain unchanged thereby, and it is only these ratios 
which are physically meaningful. 

It is easy to see that the mass of a particle cannot be negative. For, according 
to the principle of least action, the integral 

2 

S = J !mv2dt, 
1 

has a minimum for the actual motion of the particle in space from point 1 to 
point 2. If the mass were negative, the action integral would take arbitrarily 
large negative values for a motion in which the particle rapidly left point 1 
and rapidly approached point 2, and there would be no minimum.t 

t \Ve shall use the suffixes a, b, c, .•• to distinguish the various particles, and i, k, l, ..• to 
distinguish the co-ordinates. 

t The argument is not affected by the point mentioned in the first footnote to §2; for 
m < 0, the integral could not have a minimwn even for a short segment of the path. 

I 



8 The Equations of .llotion §5 

It is useful to notice that 

v2 = ( dlf dt)2 = ( d1)2, ( dt)2. (4.3) 

Hence, to obtain the Lagrangian, it is sufficient to find the square of the ele­
ment of arc dl in a given system of co-ordinates. In Cartesian co-ordinates, 
for example, d[2 = dx2+dy2+dz2, and so 

L = !m(x2+j2+z2). (4.4) 

In cylindrical co-ordinates d[2 = dr2 + r2 drf>2 + dz2, whence 

L = !m(f2+r2~2+z2). 

In spherical co-ordinates d[2 = dr2+ r2 d02+r2 sin20 drf>2, and 

L = !m( f2 + y2{j2 + r2~2 sin20). 

§5. The Lagrangian for a system of particles 

(4.5) 

(4.6) 

Let us now consider a system of particles which interact with one another 
but with no other bodies. This is called a closed system. It is found that the 
interaction between the particles can be described by adding to the Lagran­
gian (4.2) for non-interacting particles a certain function of the co-ordinates, 
which depends on the nature of the interaction. t Denoting this function 
by - U, we have 

L = ,LJma~·a2 - U(rt,r2, ... ), (5.1) 

where r a is the radius vector of the ath particle. This is the general form of 
the Lagrangian for a closed system. The sum T = ~ !mava2 is called the 
kinetic energy, and U the potential energy, of the system. The significance 
of these names is explained in §6. 

The fact that the potential energy depends only on the positions of the 
particles at a given instant shows that a change in the position of any particle 
instantaneously affects all the other particles. We may say that the inter­
actions are instantaneously propagated. The necessity for interactions in 
classical mechanics to be of this type is closely related to the premises upon 
which the subject is based, namely the absolute nature of time and Galileo's 
relativity principle. If the propagation of interactions were not instantaneous, 
but took place with a finite velocity, then that velocity would be different in 
different frames of reference in relative motion, since the absoluteness of 
time necessarily implies that the ordinary law of composition of velocities is 
applicable to all phenomena. The laws of motion for interacting bodies would 
then be different in different inertial frames, a result which would contradict 
the relativity principle. 

In §3 only the homogeneity of time has been spoken of. '!'he fo~m of the 
Lagrangian (5.1) shows that time is both homogeneous and tsotroptc, i.e. its 

• . R 1 t"vistic mechanics is not cons·d d t This statement is valid in class1cal mechamcs. e a 1 1 ere 
in this book. 
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properties are the same in both directions. For, if tis replaced by - t, th~ La­
grangian is unchanged, and therefore so are the equations of motion. In other 
words, if a given motion is possible in a system, then so is the reverse motion 
(that is, the motion in which the system passes through the same states in 
the reverse order). In this sense all motions which obey the laws of classical 
mechanics are reversible. 

Knowing the Lagrangian, we can derive (the equations. of motion: 

d oL oL 
(5.2) 

Substitution of (5.1) gives 

{5.3) 

In this form the equations of motion are called _Vewton's equations and form 
the basis of the mechanics of a system of interacting particles. The vector 

F = - oUJora (5.4) 

which appears on the right-hand side of equation (5.3) is called the force on 
the ath particle. Like U, it depends only on the co-ordinates of the particles, 
and not on their velocities. The equation {5.3) therefore shows that the acceler­
ation vectors of the particles are likewise functions of their co-ordinates only. 

The potential energy is defined only to within an additive constant, which 
has no effect on the equations of motion. This is a particular case of the non­
uniqueness of the Lagrangian discussed at the end of §2. The most natural 
and most usual way of choosing this constant is such that the potential energy 
tends to zero as the distances between the particles tend to infinity. 

If we use, to describe the motion, arbitrary generalised co-ordinateti q, 
instead of Cartesian co-or~inates, the following transformation is needed to 
obtain the new Lagrangian: 

£ ( ) • ""' ofa . Xa = Ja qt. q2, ... , qs , Xa = L -qk, etc. 
k oqk 

Substituting these expressions in the function L = !~ma(xa2 + ya2 + za2)- U, 
we obtain the required Lagrangian in the form 

(5.5) 

where the a~,k are functions of the co-ordinates only. The kinetic energy in 
generalised co-ordinates is still a quadratic function of the velocities, but it 
may depend on the co-ordinates also. 

Hitherto we have spoken only of closed systems. Let us now consider a 
system A which is not closed and interacts with another system B executing 
a given motion. In such a case we say that the system A moves in a given 
external field (due to the systef!'l B). Since the equations of motion are obtained 
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from the principle of least action by independently varying each of the co­
ordinates (i.e. by proceeding as if the remainder were given quantities), we 
can find the Lagmngian LA of the system A by using the Lagrangian L of 
the whole system A+ B and replacing the co-ordinates qB therein by given 
functions of time. 

Assuming that the system A+ B is closed, we have L = T A(qA, qA) + 
+ T B(q-B, tiB)- U(qA, qB), where the first two terms are the kinetic energies of 
the systems A and B and the third term is their combined potential energy. 
Substituting for qB the given functions of time and omitting the term 
T[qB(t), qB(t)] which depends on time only, and is therefore the total time 
derivative of a function of time, we obtain LA = T A(qA, qA)- U[qA, qB(t)]. 
Thus the motion of a system in an external field is described by a Lagrangian 
of the usual type, the only difference being that the potential energy may 
depend explicitly on time. 

For example, when a single particle moves in an external field, the general 
form of the Lagrangian is 

L = }moz:2- U(r, t), 

and the equation of motion is 

mv = -oUJor. 

(5.6) 

(5.7) 

A field such that the same force Facts on a particle at any point in the field 
is said to be uniform. The potential energy in such a field is evidently 

U= -F·r. (5.8) 

To conclude this section, we may make the following remarks concerning 
the application of Lagrange's equations to various problems. It is often 
necessary to deal with mechanical systems in which the interaction between 
different bodies {or particles) takes the form of constraints, i.e. restrictions on 
their relative position. In practice, such constraints are effected by means of 
rods, strings, hinges and so on. This introduces a new factor into the problem, 
in that the motion of the bodies results in friction at their points of contact, 
and the problem in general ceases to be one of pure mechanics (see §25). In 
many cases, however, the friction in the system is so slight that its effect on 
the motion is entirely negligible. If the masses of the constraining elements of 
the system are also negligible, the effect of the constraints is simply to reduce 
the number of degrees of freedom s of the system to a value less than 3N. To 
determine the motion of the system, the Lagrangian {5.5) can again be used, 
with a set of independent generalised co-ordinates equal in number to the 
actual degrees of freedom. 

PROBLEMS 

Find the Lagrangian for each of the following systems when placed in a uniform gravita­
tional field (acceleration g). 
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PROBLEM 1. A coplanar double pendulum (Fig. 1). 

FIG. 1 

SoLUTION. We take as co-ordinates the angles t/>1 and t/>2 which the strings II and 12 make 
with the vertical. Then we have, for the particle mt, Tt = !mtii2.f,t2, U = -mtgii cos ¢1. In 
order to find the kinetic energy of the second particle, we express its Cartesian co-ordinates 
X2, Y2 (with the origin at the point of support and they-axis vertically downwards) in terms 
of the angles t/>1 and t/>2: X2 = II sin ¢1 +l2 sin ¢2, Y2 = II cos t/>1 +12 cos ¢2. Then we find 

T2 = !m2(X:!2+.Y22) 

= !m2[lt2.f,t2 +l22.f,22 + 21t12 cos( ¢1-¢2).f,t.f,2] · 

Finally 
L = J.(nu +m2)II2.f,t2 +!m21~.f,22 +m2ltl2.f,t.f,2 cos(,Pt-t/>2) +(mt +m2)gii cos .Pt +m2g12 cos ¢2. 

PRoBLEM 2. A simple pendulum of mass m2, with a mass mt at the point of support which 
can move on a horizontal line lying in the plane in which m2 moves (Fig. 2). 

X 

FIG. 2 

SoLUTION. Using the co-ordinate x of m1 and the angle .p between the string and the 
vertical, we have 

L = J.(m1 +m2)x2+lma(l2.f,2+21x.f, cos ,P)+m~1 cos .p. 

PROBLEM 3. A simple pendulum of mass m whose point of support (a) moves uniformly 
on a v~rtical circle with constant frequency y (Fig. 3), (b) oscillates horizontally in the plane 
?f motion of the pendulum according to the law x = a cos yt, (c) oscillates vertically accord­
Ing to the law y = a cos yt. 

SoLUTION. (a) The co-ordinates of mare x = a cos yt+l sin¢, y = -a sin yt+l cos¢. 
The Lagrangian is 

L = iml".P"+mla-y2 sin(,P-yt)+mgl cos¢; 

here terms depending only on time have been omitted, together with the total time derivative 
of mlay cos(¢-yt). 
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. (b) The co~ord_inates of mare x =a cos yt+l sin</>, y = l cos</>. The Lagrangian is (omit­
ting total denvattves) 

(c) Similarly 
L = !ml2tf,2 +mlar cos yt sin t/>+mgl cos</>. 

FIG. 3 

PROBLEM 4. The system shown in Fig. 4. The particle n12 moves on a vertieal axis and the 
whole system rotates about this axis with a constant angular velocity 0. 

A 

FIG. 4 

SoLUTION. Let (J be the angle between one of the segments a and the vertical, and r/> the 
•ngle of rotation of the system about the axis; t/> = 0. For each particle m1, the infinitesrmal 
displacement is given by dlt2 = a 2 d82+a2 sin2 (J drf>2• The distance of m2 from the point 
of suppart A is 2a cos 8, and so dl2 = -2a sin 8 dB. The Lagrangian is 

L = m1a2(1l2+ 0 2 sin28)+2n12a21)2 sin28+2(ml +m2)ga cos 8. 



CHAPTER II 

CO:-.JSERVATION LAWS 

§6. Energy 
DliRING the motion of a mechanical system, the 2s quantities qi and q, 
(i = 1, 2, ... , s) which specify the state of the system vary with time. There 
exist, however, functions of these quantities whose values remain constant 
during the motion, and depend only on the initial conditions. Such functions 
are called integrals of the motion. 

The number of independent integrals of the motion for a closed mechanical 
system with s degrees of freedom is 2s-1. This is evident from the following 
simple arguments. The general solution of the equations of motion contains 
2s arbitrary constants (see the discussion following equation (2.6}). Since the 
equations of motion for a closed system do not involve the time explicitly, 
the choice of the origin of time is entirely arbitrary, and one of the arbitrary 
constants in the solution of the equations can always be taken as an additive 
constant to in the time. Eliminating t +to from the 2s functions qi = qi(t +to, 
Ct, C2, ... , C2s-I}, qi = qi(t +to, C1, C2, ... , Czs-1}, we can e:ll..-press the 2s-1 
arbitrary constants Ct, c2, ... , C2s-I as functions of q and q, and these functions 
will be integrals of the motion. 

Not all integrals of the motion, however, are of equal importance in mech­
anics. There are some whose constancy is of profound significance, deriving 
from the fundamental homogeneity and isotropy of space and time. The 
quantities represented by such integrals of the motion are said to be conserved, 
and have an important common property of being additive: their values for a 
system composed of several parts whose interaction is negligi,ble are equal 
to the sums of their values for the individual parts. -

It is to this additivity that the quantities concerned owe their especial 
importance in mechanics. Let us suppose, for example, that two bodies 
interact during a certain interval of time. Since each of the additive integrals 
of the whole system is, both before and after the interaction, equal to the 
sum of its values for the two bodies separately, the conservation laws for these 
quantities immediately make possible various conclusions regarding the state 
of the bodies after the interaction, if their states before the interaction are 
known. 

Let us consider first the conservation law resulting from the homogeneity 
of time. By virtue of this homogeneity, the Lagrangian of a -' "JSed system 
does not depend explicitly on time. The total time derivative of the Lagran­
gian can therefore be written 

dL oL cL 
dt = ~ oqi l'Ji+ ~ cqi qj. 

l • 

13 
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If L depended explicitly on time, a term oLJot would have to be added on 
the right-hand side. Replacing oLfoq~,, in accordance with Lagrange's equa­
tions, by (dfdt) oLfoq~,, we obtain 

or 

Hence we see that the quantity 

(6.1) 

remains constant during the motion of a closed system, i.e. it is an integral 
of the motion; it is called the energy of the system. The additivity of the 
energy follows immediately from that of the Lagrangian, since (6.1) shows 
that it is a linear function of the latter. 

The. law of conservation of energy is valid not only for closed systems, but 
also for those in a constant external field (i.e. one independent of time): the 
only property of the Lagrangian used in the above derivation, namely that 
it does not involve the time explicitly, is still valid. Mechanical systems whose 
energy is conserved are sometimes called conservative systems. 

As we have seen in §5, the Lagrangian of a closed system (or one in a 
constant field) is of the form L = T(q, tj)- U(q), where T is a quadratic 
function of the velocities. Using Euler's theorem on homogeneous functions, 
we have 

Substituting this in (6.1) gives 

E = T(q;q)+ U(q); (6.2) 

in Cartesian co-ordinates, 

E = L)mava2 + U(r1, r2, ... ). (6.3) 
a 
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Thus the energy of the system can be written as the sum of two quite different 
terms: the kinetic energy, which depends on the velocities, and the potential 
energy, which depends only on the co-ordinates of the particles. 

§7. Momentum 
A second conservation law follows from the homogeneity of space. By virtue 

of this homogeneity, the mechanical properties of a closed system are un­
changed by any parallel displacement of the entire system in space. Let us 
therefore consider an infinitesimal displacement E, and obtain the condition 
for the Lagrangian to remain unchanged. 

A parallel displacement is a transformation in which every particle in the 
system is moved by the same amount, the radius vector r becoming r+ E. 

The change in L resulting from an infinitesimal change in the co-ordinates, 
the velocities of the particles remaining fixed, is 

oL CL 
SL = L:-· Sru = E·L:-,. , 

Ora ora 
a a 

where the summation is over the particles in the system. Since E is arbitrary, 
the condition SL = 0 is equivalent to 

'))Lfcra = 0. (7.1) 
a 

From Lagrange's equations (5.2) we therefore have 

d oL d oL L dt Ova = dt L Ova = O. 
a a 

Thus we conclude that, in a closed mechanical system, the vector 

(7.2) 
a 

remains constant during the motion; it is called the momentum of the system. 
Differentiating the Lagrangian ( 5.1 ), we find that the momentum is given in 
terms of the velocities of the particles by 

(7.3) 
a 

The additivity of the momentum is evident. Moreover, unlike the energy, 
the momentum of the system is equal to the sum of its values Pa = mav a for 
the individual particles, whether or not the interaction between them can be 
neglected. 

The three components of the momentum vector are all conserved only in 
the absence of an external field. The individual components may be conserved 
even in the presence of a field, however, if the potential energy in the field does 
not depend on all the Cartesian co-ordinates. The mechanical properties of 



16 Conserv.:ation Laws §8 

the sy~tem are_ evidently unchanged by a displacement along the axis of a 
co-ordmate whtch does not appear in the potential energy, and so the corre­
sponding component of the momentum is conserved. For example, in a uni­
form field in the z-direction, the x and y components of momentum are 
conserved. 

The equation (7.1) has a simple physical meaning. The derivative 
oLfora = - oUJora is the force Fa acting on the ath particle. Thus equation 
(7.1) signifies that the sum of the forces on all the particles in a closed system 
ts zero: 

:LFa = 0. (7.4) 
a 

In particular, f9r a system of only two particles, F1 + F2 = 0: the force exerted 
by the first particle on the second is equal in magnitude, and opposite in direc­
tion, to that exerted by the second particle on the first. This is the equality 
of action and reaction {1\r ewton' s third law). 

If the motion is described by generalised co-ordinates qi, the derivatives 
of the Lagrangian with respect to the generalised velocities 

(7.5) 

are called generalised momenta, and its derivatives with respect to the general­
ised co-ordinates 

(7.6) 

are called generalised forces. In this notation, Lagrange's equations are 

Pi = Fi. (7.7) 

In Cartesian co-ordinates the generalised momenta are the components of the 
vectors Pa· In general, however,- the Pi are linear homogeneous functions of 
the generalised velocities qi, and do not reduce to products of mass and velo­
city. 

PROBLEM 

A particle of mass m moving with velocity v1leaves a half-space in which its potential energy 
is a constant U1 and enters another in which its potential energy is a different constant U2. 
Determine the change in the direction of motion of the particle. 

SoLUTION. The potential energy is independent of the co-ordinates whose axes are parallel 
to the plane separating the half-spaces. The component of momentum in that plane is 
therefore conserved. Denoting by 01 and 02 the angles between the normal to the plane and 
the ,.·elocities VI and V2 of the particle before and after passing the plane, we have V1 sin 01 

= V2 sin 02. The relation between "VI and t'2 is given by the law of conservation of energy, 
and the result is 

§8. Centre of mass 
- h d"fferent values in The momentum of a closed mechamcal system as 1 . h 1 . 

. . . f f f f K' ves w1t ve OCtty V dtfferent (merttal) frames o re erence. I a rame rno 
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relative to another frame K, then the velocities va' and Va of the particles 
relative to the two frames are such that Va = va' + V. The momenta P and P' 
in the two frames are therefore related by 

P = '2.,rnaVa = L11laVa' + V '2.,ma, 
a a a 

or 

P = P'+V '2.,ma. (8.1) 
a 

In particular, there is always a frame of reference K' in which the total 
momentum is zero. Putting P' = 0 in (8.1), we find the velocity of this frame: 

(8.2) 

If the total momentum of a mechanical system in a given frame of reference 
is zero, it is said to be at rest relative to that frame. This is a natural generali­
sation of the term as applied to a particle. Similarly, the velocity V given by 
(8.2) is the velocity of the "motion as a whole" of a mechanical system whose 
momentum is not zero. Thus we see that the law of conservation of momen­
tum makes possible a natural definition of rest and velocity, as applied to a 
mechanical system as a whole. 

Formula (8.2) shows that the relation between the momentum P and the 
velocity V of the system is the same as that between the momentum and velo­
city of a single particle of mass fL = ~ma, the sum of the masses of the particles 
in the system. This result can be regarded as expressing the additivity of mass. 

The right-hand side of formula (8.2) can be written as the total time deriva­
tive of the expression 

(8.3) 

\Ve can say that the velocity of the system as a whole is the rate of motion in 
space of the point whose radius vector is (8.3). This point is called the centre 
of mass of the system. 

The law of conservation of momentum for a closed system can be formu­
lated as stating that the centre of mass of the system moves uniformly in a 
straight line. In this form it generalises the law of inertia derived in §3 for a 
single free particle, whose "centre of mass" coincides with the particle itself. 

In considering the mechanical properties of a closed system it is natural 
to use a frame of reference in which the centre of mass is at rest. This elimi­
nates a uniform rectilinear motion of the system as a whole, but such motion 
is of no interest. 

The energy of a mechanical system which is at rest as a whole is usually 
called its internal energy Et. This includes the kinetic energy of the relative 
motion of the particles in the system and the potential energy of their inter­
action. The total energy of a system moving as a whole with velocity V can 
be written 

(8.4) 
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Although ~his formula is fairly obvious, we may give a direct proof of it. 
The energtes E_ and E' of a mechanical system in two frames of reference K 
and K' are related by 

E =! '.Lmava2 + U 
a 

=! '.Lma(va' + V)2 + U 
a 

= ifLV2+ V · '.Lmava' +! '.Lmava'2 + U 
a a 

(8.5) 

This formula gives the law of transformation of energy from one frame to 
another, corresponding to formula (8.1) for momentum. If the centre of mass 
is at rest inK', then P' = 0, E' = E,, and we have (8.4). 

PROBLEM 

Find the law of transformation of the actionS from one inertial frame to another. 

SoLUTION. The Lagrangian is equal to the difference of the kinetic an'd potential energies, 
and is evidently transformed in accordance with a formula analogous to (8.5): 

L = L' +V • P' +!tLV2• 

Integrating this with respect to time, we obtain the required law of transformation of the 
action: 

where R' is the radius vector of the centre of mass in the frame K'. 

§9. Angular momentum 

Let us now derive the conservation law which follows from the isotropy of 
space. This isotropy means that the mechanical properties of a closed system 
do not vary when it is rotated as a whole in any manner in space. Let us there­
fore consider an infinitesimal rotation of the system, and obtain the condition 
for the Lagrangian to remain unchanged. 

\Ve shall use the vector Sc~> of the infinitesimal rotation, whose magnitude 
is the angle of rotation Scf>, and whose direction is that of the axis of rotation 
(the direction of rotation being that of a right-handed screw driven along Sc~> ). 

Let us find, first of all, the resulting increment in the radius vector from 
an origin on the axis to any particle in the system undergoing rotation. The 
linear displacement of the end of the radius vector is related to the angle by 
!Sri = r sine Scf> (Fig. 5). The direction of Sr is perpendicular to the plane 
of r and Sc~>. Hence it is clear that 

Sr = Set> xr. (9.1) 
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\Vhen the system is rotated, not only the radius vectors but also the velocities 
of the particles change direction, and all vectors are transformed in the same 
manner. The velocity increment relative to a fixed system of co-ordinates is 

8v = 84> xv. (9.2) 

0 

FIG. 5 

If these expressions are substituted in the condition that the Lagrangian is 
unchanged by the rotation: 

(
oL oL ) 

8L = L -· 8ra+-· 8va = 0 
Ora Ova 

a 

and the derivative oLf8va replaced by Pa• and oLfora by Pa• the result is 

L(Pa•84>Xra+Pa•84>Xva) = 0 
a 

or, permuting the factors and taking 84> outside the sum, 

d 
84> L(raXPa+vaXPa) = 84>· dt L:raXPa = 0. 

a a 

Since 84> is arbitrary, it follows that (dfdt) ~ra Xpa = 0, and we conclude 
that the vector 

(9.3) 
a 

called the angular momentum or moment of momentum of the system, is con­
served in the motion of a closed system. Like the linear momentum, it is 
additive, whether or not the particles in the system interact. 

There are no other additive integrals of the motion. Thus every closed 
system has seven such integrals: energy, three components of momentum, 
and three components of angular momentum. 

Since the definition of angular momentum involves the radius vectors of 
the particles, its value depends in general on the choice of origin. The radius 
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vectors r a and r a' of a given point rdative to origins at a distance a apart are 
related by ra = ra' +a. Hence 

M = '.LraXPa 
a 

- '.Lra' Xpa+a X LPa 
a a 

= M' +axP. (9.4) 

It is seen from this formula that the angular momentum depends on the 
choice of origin except when the system is at rest as a whole (i.e. P = 0). 
This indeterminacy, of course, does not affect the law of conservation of 
angular momentum, since momentum is also conserved in a closed system. 

\Ve may also derive a relation between the angular momenta in two inertial 
frames of reference K and K', of which the latter moves with vdocity V 
rdative to the former. We shall suppose that the origins in the frames K and 
K' coincide at a given instant. Then the radius vectors of the particles are the 
same in the two frames, while their velocities are related by va = va' + V. 
Hence we have 

M = '.LmaraXVa = '.LmaraXva'+ '.LmaraxV. 
a a a 

The first sum on the right-hand side is the angular momentum M' in the 
frame K'; using in the second sum the radius vector of the centre of mass 
(8.3), we obtain 

M = M' +fLR xV. (9.5) 

This formula gives the law of transformation of angular momentum from one 
frame to another, corresponding to formula (8.1) for momentum and (8.5) 
for energy. 

If the frame K' is that in which the system considered is at rest as a whole, 
then V is the velocity of its centre of mass, fL V its total momentum P relative 
to K, and 

M = M'+RxP. (9.6) 

In other words, the angular momentum M of a mechanical system consists 
of its ''intrinsic angular momentum" in a frame in which it is at rest, and the 
angular momentum R x P due to its motion as a whole. 

Although the law of conservation of all three components of angular 
momentum (rdative to an arbitrary origin) is valid only for a closed system, 
the law of conservation may hold in a more restricted form even for a system 
in an external fidd. It is evident from the above derivation that the component 
of angular momentum along an axis about which the field is symmetrical is 
always conserved, for the mechanical properties of the system are unaltered 

· · h 1 omentum must of by any rotatton about that runs. Here t e angu ar .m • 
course, be defined relative to an origin lying on the axts. 
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The most important such case is that of a centrally symmetric field or central 
field, i.e. one in which the potential energy depends only on the distance from 
some particular point (the centre). It is evident that the component of angular 
momentum along any axis passing through the centre is conserved in motion 
in such a field. In other words, the angular momentum l\11 is conserved pro­
vided that it is defined with respect to the centre of the field. 

Another example is that of a homogeneous field in the z-direction; in such 
a field, the component Nlz of tbe .. angUlar momentum is conserved, whichever 
point is taken as the origin. 

The component of angular momentum along any axis (say the z-a.•ds) can 
be found by differentiation of the Lagrangian: 

cL 
Mz= L:-·, 

N>a a 

(9.7) 

where the co-ordinate cf> is the angle of rotation about the z-axis. This is 
e\·ident from the above proof of the law of conservation of angular momentum, 
but can also be proved directly. In cylindrical co-ordinatt:s r, cf>, z we have 
(substituting X a = r a cos cf>a, Ya = r a sin c/>a) 

.TVlz ""' 2 ma(XaYa- )'a.Xa) 
a 

(9.8) 

The Lagrangian is, in terms of these co-ordinates, 

L = ! 2ma(ia2 +ra2<}a2 +za2}- U, 
a 

and substitution of this in (9. 7) gives (9.8). 

PROBLEMS 

PROBLEM 1. Obtain expressions for the Cartesian components and the magnitude of the 
angular momentum of a particle in cylindrical co-ordinates r, r/>, z. 

SOLUTION. A1x = m(r:i:-zr) sin r/>-mrzJ, cos r/>, 
My= -m(rz-zr) cos q,-,;rzJ, sin r/>, 
!VIz = mr2f, ' 
1\12 = m2r2,62(r2 +z2)+m2(rz-zf)2. 

PRODLE:.\1 2. The same as Problem 1, but in spherical co-ordinates r, 0, rf>. 
SOLUTION. lt4x = -mr2((j sin rf>+~ sin 0 cos 0 cos r/>), 

!Vly = mr2(1i cos .P-~ sin 0 cos 0 sin r/>), 
i'\.Iz = mr2~ sin20, 
.'~12 = m2r4(fP +¢2 sin20). 

PROBLEM 3. V.Thich components of momentum P and angular momentum Mare conserved 
in motion in the following fields? 

(a) the field_of a'! infinite homogene~ms plane, (b) that of an infinite homogeneous cylinder, 
(c) that of an mfimte homogeneous pnsm, (d) that of two ppints, (e) that of an infinite homo­
geneous half-plane,, (f) that of a homogeneous cone, (g) that of a homogeneous circular torus, 
(h) that of an infimte homogeneous cvlindrical helix. 
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~OLUTI<;>N. (a) Px,_ Pu, l'.fz (if _the plane is the xy-plane), (b) Mz, Pz (if the axis of ~he 
cylmder Is the z-ax1s), (c) P. (1f the edges of the prism are parallel to the z-ax1s), 
(d) Mz (if the line joining the points is the z-axis), (e) p 11 (if the edge of the half­
plane is the y-axis), (f) Mz (if the axis of the cone is the z-axis), (g) Mz (if the axis 
of the torus is the z-axis), (h) the Lagrangian is unchanged by a rotal;ion through an angle 
8rf> about the axis of the helix (let this be the z-axis) together with a translation through a 
distance h8rf>f27T along the axis (h being the pitch of the helix). Hence 8L = 8z oL/oz+ 
+8r/> C!Lfor/> = 8rp(hP./2TT+Mz) = 0, so that Mz+hP./2TT = constant. 

§10. Mechanical similarity 
Multiplication of the Lagrangian by any constant cleany does not affect 

the equations of motion. This fact {already mentioned in §2) makes possible, 
'in a number of important cases, some useful inferences concerning the pro­
perties of the motion, without the necessity of actually integrating the equa­
tions. 

Such cases include those where the potential energy is a homogeneous 
function of the co-ordinates, i.e. satisfies the condition 

U(()(rt, ()(r2, ... , ()(rn) = ()(kU(rt, r2, ... , rn), (10.1) 

where ()( is any constant and k the degree of homogeneity of the function. 
Let us carry out a transformation in which the co-ordinates are changed by 

a factor()( and the time by a factor {1: ra-+ ()(ra, t-+ {Jt. Then all the velocities 
Va = dra/dt are changed by a factor ()(/{1, and the kinetic energy by a factor 
()(~/{12. The potential energy is multiplied by ()(k. If ()( and {1 are such that 
()(2ff12 = ()(k, i.e. f1 = ()(1-fk, then the result of the transformation is to multiply 
the Lagrangian by the constant factor ()(k, i.e. to leave the equations of motion 
unaltered. 

A change of all the co-ordinates of the particles by the same factor corre­
sponds to the replacement of the paths of the particles by other paths, geometri­
cally similar but differing in size. Thus we conclude that, if the potential energy 
of the system is a homogeneous function of degree k in the {Cartesian) co­
ordinates, the equations of motion permit a series of geometrically similar 
paths, and the times of the motion between corresponding points are in the 
ratio 

t' /t = (l' fl)l-lk, (10.2) 

where l'fl is the ratio of linear dimensions of the two paths. Not only the times 
but also any mechanical quantities at corresponding points at corresponding 
times are in a ratio which is a power of l'fl. For example, the velocities, 
energies and angular momenta are such that 

v'Jv = (l'fl)lk, E'JE = (l'fl)k, M'JM = (l'jl)l+lk. (10.3) 

The following are some examples of the foregoing. 
As we shall see later, in small oscillations the potential energy is a qua?ratic 

function of the co-ordinates (k = 2). From (10.2) we find that the penod of 
such oscillations is independent of their amplitude. 
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In a uniform field of force, the potential energy is a linear function of the 
co-ordinates (see (5.8)), i.e. k = 1. From (10.2) we have t' ft = vU' fl). 
Hence, for example, it follows that, in fall under gravity, the time of fall is as 
the square root of the initial altitude. 

In the Newtonian attraction of two masses or the Coulomb interaction of 
two charges, the potential energy is inversely proportional to the distance 
apart, i.e. it is a homogeneous function of degree k = - 1. Then t' ft 
=(I' f [)3i2, and we can state, for instance, that the square of the time of revolu­
tion in the orbit is as the cube of the size of the orbit (Kepler's third la'W). 

If the potential energy is a homogeneous function of the co-ordinates and 
the motion takes place in a finite region of space, there is a very simple relation 
between the time average values of the kinetic and potential energies, known 
as the ·Dirial theorem. 

Since the kinetic energy Tis a quadratic function of the velocities, we have 
by Euler's theorem on homogeneous functions l:,va·2Tfi3va = 2T, or, put­
ting oTfova = Pa• the momentum, 

2T = 2:Pa• Va = ~(LPu• ru}- 2:ra• Pu· (10.4} 
u dt u a 

Let us average this equation with respect to time. The average value of any 
function of time f (t) is defined as 

T 

f = lim~ Jt(t) dt . 
.,. -700 'T 

0 

It is easy to see that, ifj(t) is the time derivative dF(t)fdt of a bounded func­
tion F(t), its mean value is zero. For 

T 

f = Iim~f dF dt = lim F(T)-F(O) = 0. 
'T->OO T dt 'T->OO T 

0 

Let us assume that the system executes a motion in a finite region of space 
and with finite velocities. Then l:,pa. ra is bounded, and the mean value of 
the first term on the right-hand side of (10.4) is zero. In the second term we 
replace Pa by - oUjora in accordance with Newton's equations (5.3), obtain­
ingt 

2T = 2:ra· oUjvra. (10.5) 
a 

If the potential energy is a homogeneous function of degree k in the radius 
vectors ra, then by Euler's theorem equation (10.5) becomes the required 
relation: 

2T = kO. (10.6) 

t The expression on the right of (10.5) is sometimes called the virial of the system. 
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Since T + 0 = E = E, the relation (10.6) can also be expressed as 

0 = 2E,'(k+2), T = kE/(k+2), (10.i) 

which express 0 and T in terms of the total energy of th~system. 
- In particular, for small oscillations (k = 2) we have T = 0, i.e. the mean 

values of the kinetic and potential energies are equal. For a Newtonian inter­
action (k = - 1) 2T = - 0, and E = - T, in accordance with the fact that, 
in such an interaction, the motion takes place in a finite region of space only 
if the total energy is negati\re (see §15). · 

PROBLEMS 

PROBLEM 1. Find the ratio of the times in the same path for particles having different 
masses but the same potential energy. 

SoLUTION. t'/t = v(m'/m). 

PROBLEM 2. Find the ratio of the times in the same path for particles having the same mass 
but potential energies differing by a constant factor. 

SOLUTION. t'/t = y(U/U'). 



CHAPTER III 

INTEGRATION OF THE EQUATIONS OF MOTION 

§11. Motion in one dimension 

THE motion of a system having one degree of freedom is said to take place 
in oue dimension. The most general form of the Lagrangian of such a system 
in fixed external conditions is 

L = !a(q)q2- U(q), (11.1) 

where a(q) is some function of the generalised co-ordinate q. In particular, 
if q is a Cartesian co-ordinate (x, say) then 

L = !m.i2- U(x). (11.2) 

The equations of motion corresponding to these Lagrangians can be inte­
grated in a general form. It is not even necessary to write down the equation 
of motion; we can start from the first integral of this equation, which gives 
the law of conservation of energy. For the Lagrangian {11.2) {e.g.) we have 
!m.X2+ U(x) = E. This is a first-order differential equation, and can be inte­
grated immediately. Since dxfdt = v/{2[ E- U(x)]/m}, it follows that 

I dx 
t = v(!m) +constant. 

vi[E- U(x)] 
(11.3) 

The two arbitrary constants in the solution of the equations of motion are 
here represented by the totaf energy E and the constant of integration. 

Since the kinetic energy is essentially positive, the total energy always 
exceeds the potential energy, i.e. the motion can take place only in those 
regions of space where U(x) < E. For example, let the function U(x) be 
of the form shown in Fig. 6 (p. 26). If we draw in the figure a horizontal 
line corresponding to a given value of the total energy, we immediately find 
the possible regions of motion. In the example of Fig. 6, the motion can 
occur only in the range AB or in the range to the right of C. 

The points at which the potential energy equals the total energy, 

U(x) = E, (11.4) 

give the limits of the motion. They are turning points, since the velocity there 
is zero. If the region of the motion is bounded by two such points, then the 
motion takes place in a finite region of space, and is said to be finite. If the 
region of the motion is limited on only one side, or on neither, then the 
motion is infinite and the particle goes to infinity. 

25 
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A finite motion in one dimension is oscillatory, the particle moving re­
peatedly back and forth between two points (in Eig. 6, in the potential well 
AB between the points x1 and x2). The period T of the oscillations, i.e. the 
time during which the particle passes from x1 to x2 and back, 'is twice the time 
from x1 to x2 (because of the reversibility property, §5) or, by (11.3), 

x2J(El dx 
11E = 12m 

( ) " ( ) vi[E- U(x)]' 
Xt(El 

(11.5) 

where x1 and x2 are roots of equation {11.4) for the given value of E. This foF--­
mula gives the period of the motion as a function of the total energy of the 
particle. 

u 

x, X 

FIG. 6 

PROBLEMS 

PRoDLE.\1 1. Determine the period of oscillations of a simple pendulum (a particle of mass 
111 suspended by a string of length l in a gravitational field) as a function of the amplitude of 
the oscillations. 

SOLUTIO:-!. The energy of the pendulum is E = /;:ml2~2-mgl cos ¢-:- -· mgl cos r/>o, where 
r/> is the angle \Jetween the string and the vertkal, and r/>o the maximum value of rf>. Calculating 
the ger,i.od as· t~.time required to go from r/> = 0 to r/> = r/>o, multiplied by four, v.e find 

~0 

T = 4 j_!_ I __ __:d"'~-
" 2g v(cos r/>-cos r/>o) 

0 

~0 

= 2 '~I dr/> II/ g v(sin2/;:r/>o-sin2/t4>) 
0 

The substitution sin [=sin !r/>/sin /;:r/>o converts this to T = 4v(l/g)K(sin !r/>o), where 

I" 

I d[ 
K(k) = v(1-k2 sin2[) 

0 

is the complete elliptic integral of the first kind. For sin !<Po ~ !<Po~ 1 (small oscillations), 
an expansion of the function K gives 

T = 27Ty(l/g)(1 + -h</>o2 + ... ). 
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The first term corresponds to the familiar formula. 

PROBLEM 2. Determine the period of oscillation, as a function of the energy, when a 
particle of mass m moves in fields for which the potential energy is 

(a) U = Alxln, (b) U = -Uo/cosh2ax, -Uo < E < 0, (c) U = Uo tan2ax. 

SOLUTION. (a): 

0 

I 

/
2m (E )1/n I dy 

= 
2 ... E. A v(1-yn} 

0 

By the substitution yn = u the integral is reduced to a beta function, which can be expressed 
in terms of gamma functions: 

T = ~ / 2mn . (E )1/n _!J1/n) . 
nlto/ E A _rc!+tfn) 

The dependence of T on E is in accordance with the law of mechanical similarity (10.2), 
(10.3). 

{b) T = (7TMvC2m!IEI>. 
(c) T = (7r/a)v [2m!(E+Uo)]. 

§12. Determination of the potential energy from the period of 
oscillation 

Let us consider to what extent the form of the potential energy U(x) of a 
field in which a particle is oscillating can be deduced from a knowledge of the 
period of oscillation T as a function of the energy E. Mathematically, this 
involves the solution of the integral equation (11.5), in which U(x) is regarded 
as unknown and T(E} as known. 

We shall assume that the required function U(x) has only one minimum 
in the region of space considered, leaving aside the question whether there 
exist solutions of the integral equation which do not meet this condition. 
For convenience, we take the origin at the position of minimum potential 
energy, and take this minimum energy to be zero (Fig. 7). 

u 

FIG. 7 
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In the integral (11.5) we regard the co-ordinate x as a function of U. The 
function x( U) is two-valued: each value of the potential energy corresponds 
to two different values of x. Accordingly, the integral (11.5) must be divided 
into two parts before replacing dx by (dxfdU) dU: one from.'\'= .'\'1 to x = 0 
and the other from x = 0 to x = x2. We shall write the function x( U) in 
these two ranges as x = x1( U) and x = xz( U) respectively. 

The limits of integration with respect to U are evidently E and 0, so that 
we have 

E 0 

I dx2(U) dU I dx1(U) dU 
T(E} = v(2m) dU vi(E- U) + '\1(2m) dU '\/(E- U) 

0 E 

If both sides of this equation are divided by v(()(- E), where()( is a parameter, 
and integrated with respect toE from 0 to()(, the result is 

a a E 

I T(E)dE = vl(2m) I I [-dx_2 __ dx_'l] __ d_U_d_E __ 
v(()(-E) dU dU ,1[(()(-E)(E- U)] 

0 0 0 

or, chang;ng the order of integration, 

f
a T(E) dE fa [ dx2 d:'-'1] fa dE 

v(()(-E) = v(Zm) dU- dU dU v[(()(- E)(E- U)]' 
0 0 u 

The integral over E is elementary; its value is TT. The integral over U is 
thus trivial, an~ we have 

a 

I T(E)dE 
= TTy{2m)[x2(()()-xl(z)], -vc()(-E> 

0 

since x2{0) = x1{0) = 0. Writing U in place of ()(, we obtain the final result: 

u 
1 I T(E)dE 

x2(U}-xl(U) = TTy(Zm) '\I(U-E). 
0 

(12.1) 

Thus the known function T(E) can be used to determine the_ di~erence 
x2(U)-x1(U). The functions ~2(U) and x 1(U) ~he~selves r;::11~1 tndeter­
minate. This means that there IS not one but an tnfintty <>f cu U(x) 
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which give the prescribed dependence of period on energy, and differ in such 
a way that the difference between the two values of x corresponding to each 
value of U is the same for every curve. 

The indeterminacy of the solution is removed if we impose the condition 
that the curve U = U(x) must be symmetrical about the U-axis, i.e. that 
x2{U) = -x1(U) = x(U). In this case, formula {12.1) gives for x(U) the . . 
umque expresston 

u 
1 IT(E)dE 

x(U) = . 
27T'\1(2m) vi( U- E) 

0 

§13. The reduced mass 

(12.2) 

A complete general solution can be obtained for an extremely important 
problem, that of the motion of a system consisting of two interacting particles 
{the two-body problem). 

As a first step towards the solution of this problem, we shall show how it 
can be considerably simplified by separating the motion of the system into 
the motion of the centre of mass and that of the particles relative to the centre 
of mass. 

The potential energy of the interaction of two particles depends only on 
the distance between them, i.e. on the magnitude of the difference in their 
radius vectors. The Lagrangian of such a system is therefore 

L = !m1f12 +lm2f22- U(!r1-r2!). (13.1) 

Let r = r1- r2 be the relative position vector, and let the origin be at the 
centre of mass, i.e. m1r1 + m2r2 = 0. These two equations give 

r1 = mzr/(ml +m2), 

Substitution in (13.1) gives 

L = !mf2- U(r}, 

"·here 

(13.2) 

(13.3) 

m = 11li11l'!./(ml +m2) (13.4) 

is called the reduced mass. The function (13.3) is formally identical with the 
Lagrangian of a particle of mass m moving in an external field C(r) which is 
symmetrical about a fixed origin. 

Thus the probl~m of the motion of two interacting particles is equivalent 
to that of the motton of one particle in a given external field U(r). From the 
solution r = r(t) of this problem, the paths r 1 = r 1(t) and r 2 = r 2(t) of the 
two particles separately, relative to their common centre of mass, are obtained 
by means of formulae (13.2). 
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PROBLEM 

A system consists of one particle of mass M and 11 particles with equal masses m. Eliminate 
the motion of the centre of mass and so reduce the problem to one invoh·ing n particles. 

SOLUTION. Let R be the radius \'ector of the particle of mass 1\1, and Ra (a= 1, 2, ... , 11) 
those of the particles of mass m. We put ra = Ra-R and take the origin to be at the centre 
of mass: 1\1R+m~Ra = 0. Hence R ~ -(mfp{':Era, where p.=J,f + mn; Ra = R + ra. 
Substitution in the Lagrangian L = ~JJR2+!mLRa2- U gin~s 

a a 

The potential energy depends only on the distances between the particles, and so can be 
written as a function of the ra. 

§14. Motion in a central field 

On reducing the two-body problem to one of the motion of a single body, 
we arrive at the problem of determining the motion of a single particle in an 
external field such that its potential energy depends only on the distance r 
from some fixed point. This is called a ce11tral field. The force acting on the 
particle is F = -oC(r),'cr = -(dC,dr)rrr; its magnitude is likewise a func­
tion of r only, and its direction is everyw·here that of the radius vector. 

As has already been shown in §9, the angular momentum of any system 
relative to the centre of such a field is conserved. The angular momentum of a 
single particle is M = r X p. Since M is perpendicular to r, the constancy of 
M shows that, throughout the motion, the radius vector of the particle lies 
in the plane perpendicular to M. 

Thus the path of a particle in a central field lies in one plane. Using polar 
co-ordinates r, cf> in that plane, \Ye can \\·rite the Lagrangian as 

(14.1) 

see ( 4.5). This function does not involve the co-ordinate ~ explicitly. Any 
generalised co-ordinate qi which does not appear explicitly in the Lagrangian 
is said to be cyclic. For such a co-ordinate we have, by Lagrange's equation, 
(d,dt) cL,'ciJi = oDoqi = 0, so that the corresponding generalised momen­
tum P·i = oL,'cq.i is an integral of the motion. This leads to a considerable 
simplification of the problem of integrating the equations of motion when 
there are cyclic co-ordinates. 

In the present case, the generalised momentum p9 = mr2J is the same as 
the angular momentmn 11!~ = Jf (see (9.6)}, and we return to the known law 
of conservation of angular momentum: 

.11 = mr?.J = constant. (14.2) 

This law has a simple geometrical interpretation in the plane motion of a single 
particle in a central field. The expression ir • rdf is the area of /h~ sector 
bounded by two neighbouring radius vectors and an dcn,ent 0 t e path 
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(Fig. 8). Calling this area df, we can write the angular momentum of the par­
ticle as 

M = 2mj, (14.3) 

where the derivative j is called the sectorial velocity. Hence the conservation 
of angular momentum implies the constancy of the sectorial velocity: in equal 
times the radius vector of the particle sweeps out equal areas (Kepler's second 
law}.t 

FIG. 8 

The complete solution of the problem of the motion of a particle in a central 
field is most simply obtained by starting from the laws of conservation of 
energy and angular momentum, without writing out the equations of motion 
themselves. Expressing~ in terms of M from (14.2) and substituting in the 
expression for the energy, we obtain 

(14.4) 

Hence 

dr 
r = -= 

dt J{ 2 112} -[E- U(r)]--·-
m m2r2 

(14.5) 

or, integrating, 

t = I drjj{~[E- U(r)]- M
2 

}+constant. 
m m2r2 

(14.6) 

Writing (14.2) as clef> = 111 dtjmr2, substituting dt from (14.5) and integrating, 
we find 

I 
Mdrfr2 

c/> = +constant. 
y{2m[ E- C(r)]- M2,'r2} 

(14. 7) 

Formulae (14.6) and (14.7) give the general solution of the problem. The 
latter formula gives the relation between r and cf>, i.e. the equation of the path. 
Formula (14.6) gives the distance r from the centre as an implicit function of 
time. The angle f, it should be noted, always varies monotonically with time, 
since (14.2) shows that c/> can never change sign. 

t The law of conservation. of angular momentum for a particle moYing in a central field 
is sometimes called the area zntegral. 
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The expression (14.4) shows that the radial part of the motion can be re­
garded as taking place in one dimension in a field where the "effective poten­
tial energy" is 

Uerr = U(r) + Jl;f2,'2mr2. (14.8) 

The quantity M 2f2mr2 is called the centrifugal energy. The values of r for which 

U(r}+M2f2mr2 = E (14.9) 

determine the limits of the motion as regards distance from the centre. 
When equation (14.9) is satisfied, the radial velocity i is zero. This does not 
mean that the particle comes to rest as in true one-dimensional motion, since 
the angular velocity ~ is not zero. The value i = 0 indicates a turning point 
of the path, where r(t} begins to decrease instead of increasing, or vice versa. 

If the range in which r may vary is limited only by the condition r ~ rmtn, 

the motion is infinite: the particle comes from, and returns to, infinity. 
If the range of r has two limits rmtn and rmax, the motion is finite and the 

path lies entirely within the annulus bounded by the circles r = rmax and 
r = rmtn· This does not mean, however, that the path must be a closed curve. 
During the time in which r varies from rmax to rmtn and back, the radius 
vector turns through an angle !1rf which, according to (14.7), is given by 

Tmax 

1li drfr2 
(14.10) 

The condition for the path to be closed is that this angle should be a rational 
fraction of 27T, i.e. that 11cfo = 27Tmjn, where m and n are integers. In that case, 
after.n periods, the radius vector of the particle will have made m complete 
revolutions and will occupy its original position, so that the path is closed. 

Such cases are exceptional, however, and when the form of U(r) is arbitrary 
the angle 11cfo is not a rational fraction of 27T. In general, therefore, the path 
of a particle executing a finite motion is not closed. It passes through the 
minimum and maximum distances an infinity of times, and after infinite time 
it covers the entire annulus between the two bounding circles. The path 
shown in Fig. 9 is an example. 

There are only two types of central field 'in which all finite motions take 
rlace in closed paths. They are those in which the potential energy of the 
particle varies as 1/r or as r2. The former case is discussed in §15; the latter 
is that of the space oscillator (see §23, Problem 3). 

At a turning point the square root in (14.5), and therefore the integrands 
in (14.6) and (14.7), change sign. If the angle cP is measured from the direc­
tion of the radius vector to the turning point, the parts of the p_ath on each 
side of that point differ only in the sign of 4> for each valu~ of r, t.e. the path 
· · 1 b h 1· .1.. 0 S · f potnt where r = r IS symmetnca a out t e me 'f' = . tartmg, say, rom a . . h max 

f oint wit r = r the particle traverses a segment of the path as ar as a P mtn, 
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then follows a symmetrically placed segment to the next point where r = Ymax. 

and so on. Thus the entire path is obtained by repeating identical segments 
forwards and backwards. This applies also to infinite paths, which consist of 
two symmetrical branches extending from the turning point (r = Ymtn) to 
infinity. 

FIG. 9 

The presence of the centrifugal energy when M =ft 0, which becomes 
infinite as 1 fr2 when r -+ 0, generally renders it impossible for the particle to 
reach the centre of the field, even if the field is an attractive qne. A "fall" of 
the particle to the centre is possible only if the potential energy tends suffi­
ciently rapidly to - oo as r -+ 0. From the inequality 

!mr2 = E- U(r)- M2f2mr2 > 0, 

or r2U(r) + 1VJ2f2m < Er2, it follows that r can take values tending to zero 
only if 

[r2U(r)]r ... o < - M 2,'2m, (14.11) 

i.e. U(r) must tend to - oo either as - cx/r2 with ex > Jf2j2m, or proportionally 
to -ljrn with n > 2. 

PROBLEMS 

PROBLEM 1. Integrate the equations of motion for a spherical pendulum (a particle of mass 
m moving on the surface of a sphere of radius I in a gravitational field). 

SOLUTION. In spherical co-ordinates, with the origin at the centre of the sphere and the 
polar axis vertically downwards, the Lagrangian of the pendulum is 

iml2(82+¢2 sin•O)+mgl cos 8. 
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The co-ordinate r/> is cyclic, and hence the generalised momentum P.;,, which is the same as the 
z-component of angular momentum, is conserved: 

mf24> sin2e = Alz = constant. (1) 

The energy is 

E = ~mF( {}"1 +4>2 sin2e) -mgl cos e 
= ~m[202 +!J1z2 'm/2 sin2e -mgl cos e. (2) 

Hence 

I de 
t = v { 2 [ E _·----,[-!e-rr-( il:-)c:-] ,:--n--:11":-:--}' 

(3) 

where the "effective potential energy" is 

Uerr(e) = !1~1z2 'mf2 sin2e-mr:l cos e. 
For the angle rf> we find, using (1), 

-liz I ue 
r/> = lv(2m) sin2 ti\'[E-Ueu(e)] · 

(+) 

The integrals (3) and (4) lead to elliptic integrals of the first and third kinds respecti,·ely. 
The range of e in which the motion takes place is that where E > Uerr, and its limits 

are gh·en by the equation E = Ucn- This is a cubic equation for cos e, hm·ing two roots 
between -1 and + 1; these define two circles of latitude on the sphere, between which the 
path lies. 

PROBLE~I 2. Integrate the equations of n>otion for a particle moving on the surface of a 
cone (of vertical angle 2:x) placed vertically and with ,·ertex downwards in a gra,·itational 
field. 

SOLUTIO~. In spherical co-ordinates, with the ongm at the vertex of the cone and the 
polar axis vertically upwards, the Lagrangian is !m{r2 +r2.f,2 sin2cc) -mg1· cos cc. The co­
ordinate rf> is cyclic, and ]11, = mr24> sin2o: is again consen·ed. The energy is 

E = !mr2+!-W,2,'mr2 sin2:x+mgr cos a. 

By the same method as in Problem 1, we find 

t = f ' dr ' 
• ~ {2[£- Uerr(r)] 111} 

J,], f dr 

~1(2m) sin2:x. r2\ '[E-L'cff(r)]' 

Corr(r) o 

111,2 

------ +mgr cos):. 
2mr2 sin2cc 

The conditionE= L'err(r) is (if J,1, or= 0) a cubic equation for r, ha,·ing two positi,·e roots; 
these define two horizontal circles on the cone, between which the path lies. 

PROBLE~I 3. Integrate the equations of motion for a pendulum of mass m2, with a mass 1111 

at the point of support which can mo,·e on a horizontal line lying in the plane in which mz 
mO\'eS (Fig. 2, §5). 

SOLlTIO:-:. In the Lagrangian deri\'ed in §5, Problem 2, the co-ordinate .>: is cyclic. The 
generalised momentum Px, which is the horizontal component of the total momentum of the 
system, is therefore conser,·ed: 

(1) 

The system may always be taken to be at rest as a whole. Then the constant in (l) is zero 
and integration gi,·es 

(m1 +m2).\:+m2l sin rf> = constant, . (2) 
not mm·e honzontall 

which expresses the fact that the centre of mass of the system docs y. 
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Using (1), we find ~he energy in the form 

(3) 

Hence 

J nz2 fJ 1111 +m2 sin2
<f> 

t = l 2(m1 +m2) • E +n12gl cos j, drf>. 

Expressing the co-ordinates -"2 = x +l sin r/>, y = l cos r/> of the particle m2 in terms of r/> 
by means of (2), we find that its path is an arc of an ellipse with horizontal semi­
axis lm1/(111I +1112) and vertical semi-axis l. As nz1 ~ oo we return to the familiar simple pen­
dulum, which mo,·es in an arc of a circle. 

§15. Kepler's problem 

An important class of central fields is formed by those in which the poten­
tial energy is inversely proportional tor, and the force accordingly inversely 
proportional to 1·2. They include the fields of Newtonian gravitational attrac­
tion and of Coulomb electrostatic interaction; the latter may be either attrac­
tive or repulsive. 

Let us first consider an attractive field, where 

U = -CI./r 
with C/. a positive constant. The "effective" potential energy 

C/. 1lf2 
Uefl = ·--+--

r 2mr'2. 

(15.1) 

(15.2) 

is of the form shown in Fig. 10. As r -+ 0, Uerr tends to + oo, and as r -+ oo 
it tends to zero from negative values; for r = 1Vf2jm7. it has a minimum value 

Uefl. min = - Tll'Y.212.'lf2. (15.3) 

FIG. 10 

It is seen at once from Fig. 10 that the motion is finite forE < 0 and infinite 
forE > 0. 
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The shape of the path is obtained from the general formula (14.7). Substi­
tuting there [' = - o: r and effecting the elementary integration, we haYe 

(Jlfr)- (nw}1i) 
cp = cm;-l____ -·+constant. 

J(2mE+ m2:~.2·) 
Iii:! , 

Taking the origin of cp such that the constant is zero, and P';ltting 

p = Jf'!·/mCJ., e = y[l + (2EJJ!!:m:x2)], 

we can write the equation of the path as 

pjr = 1 + e co~ cp. 

(15.-t) 

(15.5) 

This is the equation of a conic section with one focus at the origin; 2p is called 
the latus rectum of the orbit and e the eccentricity. Our choice of the origin of cp 
is seen from (15.5) to be such that the point where cp = 0 is the point nearest 
to the origin (called the perihelion). 

In the equivalent problem of two particles interacting according to the law 
(15.1 ), the orbit of each particle is a conic section, with one focus at the centre 
of mass of the two particles. 

It is seen from (15.4) that, if E < 0, then the eccentricity e < 1, i.e. the 
orbit is an ellipse (Fig. 11) and the motion is finite, in accordance with \Vhat 
has been said earlier in this section. According to the formulae of analytical 
geometry, the major and minor semi-axes of the ellipse arc 

a= p/(1-e2) = :x/ZJEJ, (15.6) 

2b 

j_j_ _____ _ 
I r<--20-

FIG. 11 

The least possible value of the energy is (15.3), and then e = 0, i.e. the ellipse 
becomes a circle. It may be noted that the major axis of the ellipse depends 
only on the energy of the particle, and not on its angular momentum. The 
least and greatest distances from the centre of the field (the focus of the 
ellipse) arc 

Ymin = p/(1 +e) = a(l- e), l'max = P:'(l- e) = a(l +e). (15./) 

These expressions, with a and e given by (15.6) and (15.4), can, of course, 
also be obtained directly as the roots of the equation Uerr(r) = E. 
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The period T of revolution in an elliptical orbit is conveniently found by 
using the law of conservation of angular momentum in the form of the area 
integral (14.3). Integrating this equation with respect to time from zero to 
T, we have 2mf = TM, where f is the area of the orbit. For an ellipse 
f = 7Tab, and by using the formulae (15.6) we find 

T = 27Ta312y'(mfC1.) 

= 7TC1.'\ 1(m/21Ej3). (15.8) 

The proportionality between the square of the period and the cube of the 
linear dimension of the orbit has already been demonstrated in §10. It may 
also be noted that the period depends only on the energy of the particle. 

ForE ;:;;. 0 the motion is infinite. If E > 0, the eccentricity e > 1, i.e. the 
the path is a hyperbola with the origin as internal focus (Fig. 12). The dis­
tance of the perihelion from the focus is 

Tmin = P/(e+ 1) = a(e-1), (15.9) 

where a = pf(e2-1) = -x.!2E is the "semi-axis" of the hyperbola. 

X 

FIG. 12 

If E = 0, the eccentricity e = 1, and the particle moves in a parabola with 
perihelion distance Ymtn = fp. This case occurs if the particle starts from rest 
at infinity. 

The co-ordinates of the particle as functions of time in the orbit may be 
found by means of the general formula (14.6). They may be represented in a 
convenient parametric form as follows. 

Let us first consider elliptical orbits. With a and e given by (15.6) and (15.4) 
\\·e can write the integral (14.6) for the time as 

J m I rdr 1 
= ZIEI V[ -r2 +(C1./IEI)r-(M2/2miEI}] 

Jma J rdr 
= -;- '\/[a2e2- (r- a)2] · 
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The obvious substitution r- a = - ae cos g converts the integral to 

J
ma3 I Jma3 

t = --;- ( 1 - e cost) dg = -;Ct- nin t) +constant. 

If time is measured in such a way that the constant is zero, we have the 
following parametric dependence of r on t: 

r = a(1-ecost), t = ,'(ma3,':x}(t-e~in.t}, (15.10) 

the particle being at perihelion at t = 0. The Cartesian co-ordinates 
x = r cos cfo, y = r sin cP (the x andy axes being respectively parallel to the 
major and minor axes of the ellipse) can likewise be expressed in terms of 
the parameter g. From (15.5) and (15.10) we have 

ex= p-r = a(1-e3 )-a(1-e cost)= ae(cost-e); 

y is equal to y(r2- x3). Thus 

x = a(cost-e), y = a\ (1- e2) sing. (15.11) 

A complete passage round the ellipse corresponds to an increase of g from 0 
to 27T. 

Entirely similar calculations for the hyperbolic orbits give 

r = a(e cosht-1}, t = \l(ma3fa:}(e sinht-t}, 

x = a( e- cosh t}, 

where the parameter g varies from - oo to + oo. 
Let us now consider motion in a repulsive field, where 

U = a:/r (ex > 0). 

Here the effective potential energy is 

a: M2 
Uerr = -+-­

r 2mr2 

(15.12) 

(15.13) 

and decreases monotonically from + oo to zero as r varies from zero to 
infinity. The energy of the particle must be positive, and the motion is alwa) s 
infinite. The calculations are exactly similar to those for the attractive field. 
The path is a hyperbola: 

pfr = -1 +e coscfo, (15.14) 

where p and e are again given by (15.4). The path passes the centre of the 
field in the manner shown in Fig. 13. The perihelion distance is 

Ymin = pj(e-1) = a(e+ 1). (15.15) 

The time dependence is given by the parametric equations 

r = a(e cosht+ 1), t = v(ma3fcx)(e sinht+~). 
x = a(cosht+e), y =-· av'(e2-l)sinhg. 

(15.16) 
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To conclude this section, we shall show that there is an integral of the mo­
tion which exists only in fields U = cxfr (with either sign of o:). It is easy to 
verify by direct calculation that the quantity 

v xM+cxr/r (15.17) 

rs constant. For its total time derivative is v x M + cxvfr- cxr(v · r)fr3 or, 
since M = mr xv, 

mr(v· v}-mv(r· v)+cxv/r-cxr(v· r),'r3. 

Putting mv = o:rfr3 from the equation of motion, "·e find that this expression 
vanishes. 

y 

0 
X 

FIG. 13 

The direction of the conserved vector (15.17) is along the major axis from 
the focus to the perihelion, and its magnitude is o:e. This is most simply 
seen by considering its value at perihelion. 

It should be emphasised that the integral (15.17) of the motion, like M and 
E, is a one-valued function of the state (position and velocity) of the particle. 
We shall see in §50 that the existence of such a further one-valued integral 
is due to the degeneracy of the motion. 

PROBLEMS 

PROBLEM 1. Find the time dependence of the co-ordinates of a particle with energy E = 0 
moving in a parabola in a field U = -rt.fr. 

SOLUTION. In the intell'ral 

J rdr 
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The parameter '1 varies from - oo to + oo. 

PROBLEM 2. Integrate the equations of motion for a particle in a central field 

(rx > 0). 

SOLUTION. From formulae (1+.6) and (14.7) we have, if r/> and tare appropriately measured, 

(a) forE> 0 and l'vf2/2m > rx, ~ = f 
2
mE cos[r!>J ( 1-

2
m")], 

r II/ 1'vf2 -2m :x M2 

1 J 2mE [ J ( 2mrx )] (b) forE> 0 and M 2/2m < rx, - = sinh r/> ---1 , 
r 2mrx-l'.f2 M2 

1 J 2miEI [ J( 2m:x )] (c) for E .::: 0 and ."fj,f2f2m < oc, - = cosh r/> ---1 . 
r 2m :x-M"2 1'vf2 

In all three cases 

In cases (b) and (c) the particle "falls" to the centre along a path which approaches the 
origin as rf> ->- oo. The fall from a given value of r takes place in a finite time, namely 

PROBLEM 3. When a small correction 8U(r) is added to the potential energy U = -rx/r, 
the paths of finite motion are no longer closed, and at each revolution the perihelion is dis­
placed through a small angle 8¢. Find 8rf> when (a) 8U = f3/r 2, (b) 8U = yfr3. 

SOLUTION. \Vhen r varies from rmin to rmax and back, the angle r/> varies by an amount 
(14.10), which we write as 

in order to avoid the occurrence of spurious divergences. We put U = -rxfr+8U, and 
expand the integrand in powers of 8U; the zero-order term in the expansion gives 27T, and 
the first-order term gives the required change 8rf>: 

(1) 

where we have changed from the integration over r to one over rp, along the path of the "un­
perturbed'' motion. 

In case (a), the integration in (1) is trivial: 8rf> = -27Tf3m/l'vf2 = -27Tf3/rxp, where 2p (15.4) 
is the latus rectum of the unperturbed ellipse. In case (b) r28U = y/r and, with 1/r~given by 
(15.5), we have 8rf> = -61rrxym2/M4 = -6wy/rxp2. 
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COLLISIONS BETWEEN PARTICLES 

§16. Disintegration of particles 
IN many cases the laws of conservation of momentum and energy alone can 
be used to obtain important results concerning the properties of various mech­
anical processes. It should be noted that these properties are independent of 
the particular type of interaction between the particles involved. 

Let us consider a "spontaneous" disintegration (that is, one not due to 
external forces) of a particle into two "constituent parts", i.e. into two other 
particles which move independently after the disintegration. 

This process is most simply described in a frame of reference in which the 
particle is at rest before the disintegration. The law of conservation of momen­
tum shows that the sum of the momenta of the two particles formed in the 
disintegration is then zero; that is, the particles move apart with equal and 
opposite momenta. The magnitude Po of either momentum is given by the 
law of conservation of energy: 

Po2 Po2 

Ei = E1,+-+E2i+-; 
Zm1 Zm2 

here m1 and m2 are the masses of the particles, EH and E2t their internal 
energies, and Et the internal energy of the original particle. If E: is the "dis­
integration energy", i.e. the difference 

(16.1) 

which must obviously be positive, then 

E: = f.Po2(~ +2_) - P2mo2, (16.2) 
m1 m2 

which determines Po; here m is the reduced mass of the two particles. The 
velocities are v1o = Po/m1, v2o · Po/m2. 

Let us now change to a frame of reference in which the primary particle 
moves with velocity V before the break-up. This frame is usually called the 
laboratory system, or L system, in contradistinction to the centre-of-mass 
system, or C system, in which the total momentum is zero. Let us consider 
one of the resulting particles, and let v and vo be its velocities in the L and 
the C system·respectively. Evidently v = V +vo, or v - V = vo, and so 

(16.3) 

where e is the angle at which this particle moves relative to the direction of 
the velocity V. This equation gives the velocity of the particle as a function 
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of its direction of motion in the L system. In Fig. 14 the velocity vis repre­
sented by a vector drawn to any point on a circlet of radius vo from a point 
A at a distance V from the centre. The cases V < v 0 and V > v0 are shown 
in Figs. 14a, b respectively. In the former case e can have any value, but in 
the latter case the particle can move only forwards, at an angle e which does 
not exceed emax• given by 

sin emax = 'l.,'o/V; (16.4) 

this is the direction of the tangent from the point A to the circle. 

(b)V>Vo 

FIG. 14 

The relation between the angles e and eo in the L and C systems is evi­
dently (Fig. 14) 

tane = vosineof(v0 coseo+V). (16.5) 

If this equation is solved for cos eo, we obtain 

cos eo = - V sin2e ± cos e j(1 -V2 
sin2e). 

vo vo2 
(16.6) 

For vo > V the relation between eo and e is one-to-one (Fig. 14a). The plus 
sign must be taken in (16.6), so that eo = 0 when e = 0. If 'VO < V, however, 
the relation is not one-to-one: for each value of e there are two values of eo, 
which correspond to vectors vo drawn from the centre of the circle to the 
points Band C (Fig. 14b), and are given by the two signs in (16.6). 

In physical applications we are usually concerned with the disintegration 
of not one but many similar particles, a-nd this raises the problem of the 
distribution of the resulting particles in dire<;tion, energy, etc. ~ e shall 
assume that the primary particles are randomly oriented in space, I.e. iso­
tropically on average. 

. . f h' h Fig. 14 shows a diam t 1 t More precisely, to any pomt on a sphere of radms vo, o w 1c e ra 
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In the C system, this problem is very easily solved: every resulting particle 
(of a given kind) has the same energy, and their directions of motion are 
isotropically distributed. The latter fact depends on the assumption that the 
primary particles are randomly oriented, and can be expressed by saying 
that the fraction of particles entering a solid angle element doo is proportional 
to do0, i.e. equal to doo/47T. The distribution with respect to the angle eo is 
obtained by putting doo = 27T sin eo deo, i.e. the corresponding fraction is 

! sin eo deo. (16.7) 

The corresponding distributions in the L system are obtained by an 
appropriate transformation. For example, let us calculate the kinetic energy 
distribution in the L system. Squaring the equation v = vo + V, we have 
v2 = v02+ V2+2"L·oV cos eo, whence d(cos eo)= d(v2)/2voV. Using the 
kinetic energy T = fmv2 , where m is m1 or m2 depending on which kind of 
particle is under consideration, and substituting in (16.7), we find the re­
quired distribution: 

(1j2m"L·oV) dT. (16.8) 

The kinetic energy can take values between T min = tm( vo- V)2 and 
T max= ~m(vo + V)2. The particles are, according to (16.8), distributed 
uniformly over this range. 

\\"hen a particle disintegrates into more than two parts, the laws of con­
servation of energy and momentum naturally allow considerably more free­
dom as regards the velocities and directions of motion of the resulting particles. 
In particular, the energies of these particles in the C system go not have 
determinate values. There is, however, an upper limit to the kinetic energy 
of any one of the resulting particles. To determine the limit, we consider 
the system formed by all these particles except the one concerned (whose 
mass is m1, say), and denote the "internal energy" of that system by El. 
Then the kinetic energy of the particle m1 is, by (16.1) and (16.2), 
Tw = Po2f2ml = (M-ml)(Ei-Eli-Et')JM, where M is the mass of the 
primary particle. It is evident that T1o has its greatest possible value 
when E/ is least. For this to be so, all the resulting particles except m1 
must be moving with the same velocity. Then E/ is simply the sum of their 
internal energies, and the difference Ei- Eli- Ei' is the disintegration 
energy E. Thus 

PROBLEMS 

• PR_<JBLEM 1. Fin? the relation between the angles OI, 02 (in the L system) after a disintegra­
tiOn mto two particles. 

So~uriON. In the C ~ystem, the corresponding angles are related by 010 = 7T-020, Calling 
010 simply Oo and us~ng formula (16.5) for each of the two particles, we can put 
V +v1o cos Oo = VIo sin fkr cot 01, V -v2o cos Oo = V2o sin Oo cot 02. From these two 
equations we must eliminate Oo. To do so, we first solve for cos Oo and sin Oo, and then 
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form the sum of their squares, which is unity. Since v1o/v20 = m2/m1, we have finally, using 
(16.2), 

(m2/m1) sin202+(m1/m2) sin201-2 sin 01 sin 02 cos(01 +02) 

2E 
= sin2(01 +02). 

(m1+m2)V2 

PROBLEM 2. Find the angular distribution of the resulting particles in the L system. 

SOLUTION. When vo > V, we substitute (16.6), with the plus sign of the radical, in (16.7), 
obtaining 

. o[ V 1 +(V2/vo2
) cos 20 ] ! sm 0 d 2- cos 0+--,--'----'--'-----

vo v[1-(V2/vo2) sin20) 
(0 .;;; 0 .;;; rr). 

When vo < V, both possible relations between Oo and 0 must be taken into account. Since, 
when 0 increases, one ·value of Oo increases and the other decreases, the difference (not the 
sum) of the expressions d cos Oo with the two signs of the radical in (16.6) must be taken. 
The result is 

(0 .;;; 0 .;;; Omax). 

PROBLEM 3. Determine the range of possible values of the angle 0 between the directions 
of motion of the two resulting particles in the L system. 

SOLUTION. The angle 0 = 01 +02, where 01 and 02 are the angles defined by formula (16.5) 
(see Problem 1), and it is simplest to calculate the tangent of 0. A consideration of the extrema 
of the resulting expression gives the following ranges of 0, depending on the relative magni­
tudes of V, vw and v2o (for definiteness, we assume v2o > v1o): 0 < 0 < 7T if vw < V < v2o, 
rr-Oo < 0 < 7T if V < v1o, 0 < 0 < Oo if V > v2o. The value of Oo is given by 

sin Oo = V(vw+V2o)f(V2 +vwv2o). 

§17. Elastic collisions 
A collision between two particles is said to be elastic if it involves no change 

in their internal state. Accordingly, when the law of conservation of energy 
is applied to such a collision, the internal energy of the particles may be 
neglected. 

The collision is most simply described in a frame of reference in which the 
centre of mass of the two particles is at rest (the C system). As in §16, we 
distinguish by the suffix 0 the values of quantities in that system. The velo­
cities of the particles before the collision are related to their velocities v1 and 
v2 in the laboratory system by VlO = m2v/( m1 + m2), v2o = - m1v/( m1 + m2). 
where v = v1-v2; see (13.2). 

Because of the law of conservation of momentum, the momenta of the two 
particles remain equal and opposite after the collision, and are also unchanged 
in magnitude, by the law of conservation of energy. Thus, in the C system 
the collision simply rotates the velocities, which remain opposite in direction 
and unchanged in magnitude. If we denote by no a unit vector in the direc­
tion of the velocity of the particle m 1 after the collision, then the velocities 
of the two particles after the collision (distinguished by primes) are 

v10' = m:tt•no,'(mi + m2), V2o' = -mrlJnof(mi + m2). (17.1) 
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In order to return to the L system, we must add to these expressions the 
velocity V of the centre of mass. The velocities in the L system after the 
collision are therefore 

v1' = m2vno/(m1 +m2)+(m1v1 +m2v2)/(m1 + m2), 

v2' = - m1vnoj( m1 + m2) + ( m1v1 + m2v2)/( m1 + m2)· 
(17.2) 

No further information about the collision can be obtained from the laws 
of conservation of momentum and energy. The direction of the vector no 
depends on the law of interaction of the particles and on their relative position 
during the collision. 

The results obtained above may be interpreted geometrically. Here it is 
more convenient to use momenta instead of velocities. Multiplying equations 
(17.2) by m1 and m2 respectively, we obtain 

P1' = mvno + m1(P1 +P2)/(ml + m2), 
(17.3) 

P2' = -mvno+m2(p1 +p2)/(m1 +m2), 

where m = m1m2/(m1 +m2) is the reduced mass. We draw a circle of radius 
mv and use the construction shown in Fig. 15. If the unit vector no is along 
OC, the vectors AC and CB give the momenta p1' and p2' respectively. 
When p1 and p2 are given, the radius of the circle and the points A and B 
are fixed, but the point C may be anywhere on the circle. 

oc~ mv 

FIG. 15 

Let us consider in more detail the case where one of the particles (m2, say) is 
~t rest before the c?llisi?n. In t.hat case the distance OB = m2p1f(m1 +m2) = mv 
IS equal to the radms, I.e. B hes on the circle. The vector AB is equal to the 
momentum Pl of the particle m1 before the collision. The point A lies inside 
or outside the circle, according as m1 < m2 or m1 > m2. The corresponding 
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diagrams are shown in Figs. 16a, b. The angles 01 and 02 in these diagrams 
are the angles between the directions of motion after the collision and the 
direction of impact (i.e. of Pl)· The angle at the centre, denoted by x, which 
gives the direction of no, is the angle through which·the direction of motion 
of ml is turned in the c system. It is evident from the figure that el and e2 
can be expressed in terms of x by 

m2smx 
tan el = , 

m1+m2 cosx 
(17.4) 

(o) m1 <mz (bl fTIJ>mz 

XBop
1 

; AO/OBo fTIJ/mz 

FIG. 16 

We may give also the formulae for the magnitudes of the velocities of the 
two particles after the collision, likewise expressed in terms of x: 

I 
'Vl = 

v(ml2+m22+2mlm2 cosx) 
v, (17.5) 

The sum 81 + 82 is the angle between the directions of motion of the 
particles after the collision. Evidently 81 + 82 > irr if m1 < m2, and Bt + 82 < !rr 
if m1 > m2. 

When the two particles are moving afterwards in the same or in opposite 
directions (head-on collision), we have x = rr, i.e. the point C lies on the 
diameter through_ A, and is on OA (Fig. 16b; p1' and p2' in the same direc­
tion) or on OA produced (Fig. 16a; p1' and p2' in opposite directions). 

In this case the velocities after the collision are 

m1-m2 
Vt' = V, (17.6) 

m1+m2 

1 · d and the maximum This value of v 2' has the greatest possib e magmtu e, 
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energy which can be acquired in the collision by a particle originally at rest 
is therefore 

1 
_ 1 1 2 _ 4mlm2 

E2 max - 2m2v2 max - E1, 
(m1 +m2)2 

(17.7) 

where £ 1 = }m1v12 is the initial energy of the incident particle. 
If m1 < m2, the velocity of m1 after the collision can have any direction. 

If m1 > m2, however, this particle can be deflected only·through an angle 
not exceeding Bmax from its original direction; this maximum value of 01 

corresponds to the position of C for which AC is a tangent to the circle 
(Fig. 16b ). Evidently 

(17.8) 

The collision of two particles of equal mass, of which one is initially at 
rest, is especially simple. In this case both Band A lie on the circle (Fig. 17). 

Then 
FIG. 17 

e1 = lx. 
'L'l

1 

= v cos tx. 
e2 = l(rr-x). 

v2
1 

= v sinh. 

After the collision the particles move at right angles to each other. 

PROBLEM 

(17.9) 

(17.10) 

Express the velocity of each particle after a collision between a moving particle (mt) and 
another at rest (m2) in terms of their directions of motion in the L system. 

SOLUTION. From Fig. 16 we have P2
1 = 20B cos 02 or V2

1 = 2v(m/m2) cos 02. The momen-
tum Pt 1 

= AC is given by OC2 = A02+pt'2-2AO. Pt' cos Ot or 

( 
Vt' ) 2 2m Vt

1 mt -m2 
- --- COSOt+ = 0. 

v m2 v m1+m2 
Hence 

v 

for mt > m2 the radical may have either sign, but for m2 > mt it must be taken positive. 
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§18. Scattering 

As already mentioned in §17, a complete calculation of the result of a 
collision between two particles (i.e. the determination of the angle x) requires 
the solution of the equations of motion for the particular law of interaction 
involved. 

We shall first consider the equivalent problem of the deflection of a single 
particle of mass m moving in a field U(r) whose centre is at rest (and is at 
the centre of mass of the two particles in the original problem). 

As has been shown in §14, the path of a particle in a central field is sym­
metrical about a line from the centre to the nearest point in the orbit (OA 
in Fig. 18). Hence the two asymptotes to the orbit make equal angles (c/>o, 
say) with this line. The angle x through which the particle is deflected as it 
passes the centre is seen from Fig. 18 to be 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

X = lrr- Zr/>ol· 

\ A 
I _,. 
I _,. 

X I / 

---------~~~---------1~-------------
________ e:_~~----------- -------------

FIG. 18 

The angle cf>o itself is given, according to (14. 7), by 

c/>o= 

00 

I (Mfr2)dr 

v{2m[E- U(r)]-M2fr2}' 
Tmtn 

(18.1) 

(18.2) 

taken between the nearest approach to the centre and infinity. It should be 
recalled that rmtn is a zero of the radicand. 

For an infinite motion, such as that considered here, it is convenient to 
use instead of the constants E and ]1,1 the velocity 'L'oo of the particle at infinity 
and the impact parameter p. The latter is the length of the perpendicular 
from the centre 0 to the direction of voo, i.e. the distance at which the particle 
would pass the centre if there were no field of force (Fig. 18) .. !he energy 
and the angular momentum are given in terms of these quanttttes by 

n = !nn>oo2, jlJ = mp<t'ro, (18.3) 
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and formula (18.2) becomes 

00 

f 
(pfr2)dr 

4>o = . 
y[l- (p2fr2)- (2U/mvoo2)] 

(18.4) 

Tmtn 

Together with (18.1), this gives x as a function of p. 
In physical applications we are usually concerned not with the deflection 

of a single particle but with the scattering of a beam of identical particles 
incident with uniform velocity voo on the scattering centre. The different 
particles in the beam have different impact parameters and are therefore 
scattered through different angles X· Let dN be the number of particles 
scattered per unit time through angles between x and x+dx. This number 
itself is not suitable for describing the scattering process, since it is propor­
tional to the density of the incident beam. We therefore use the ratio 

dO" = dNfn, (18.5) 

where n is the number of particles passing in unit time through unit area of 
the beam cross-section (the beam being assumed uniform over its cross­
section). This ratio has the dimensions of area and is called the effective 
scattering cross-section. It is entirely determined by the form of the scattering 
field and is the most important characteristic of the scattering process. 

We shall suppose that the relation between x and p is one-to-one; this is 
so if the angle of scattering is a monotonically decreasing function of the 
impact parameter. In that case, only those particle's whose impact parameters 
lie between p(x) and p(x) + dp(x) are scattered at angles between x and 
x+dx. The number of such particles is equal to the product of n and the 
area between two circles of radii p and p + dp, t.e. dN = 2TTp dp . n. The 
effective cross-section i~ therefore 

dO" = 27Tp dp. (18.6) 

In order to find the dependence of dO" on the angle of scattering, we need 
only rewrite (18.6) as 

dO" = 27Tp(x)ldp(x)/dxl dx. (18.7) 

Here we use the modulus of the derivative dpfdx, since the derivative may 
be (and usually is) negative. t Often dO" is referred to the solid angle element 
do instead of the plane angle element dx. The solid angle between ~ones 
with vertical angles x and x+dx is do= 27T sinx dx. Hence we have from 
(18.7) 

dO" = P_(x) ldpl do. 
stnxdx 

(18.8) 

t If the funcltlionh p(bx} is mh anyf-val~d, we must obviously take the sum of such expressions 
as (18.7} over a t e ranc es o thiS function. 
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Returning now to the problem of the scattering of a beam of particles, not 
by a fixed centre of force, but by other particles initially at rest, we can say 
that ( 18. 7) gives the effective cross-section as a function of the angle of 
scattering in the centre-of-mass system. To find the corresponding expression 
as a function of the scattering angle e in the laboratory system, we must 
express x in (18.7) in terms of e by means of formulae (17.4). This gives 
expressions for both the scattering cross-section for the incident beam of 
particles (x in terms of 81) and that for the particles initially at rest (x in terms 
of 82)-

PROBLEMS 

PROBLEM 1. Determine the effective cross-section for scattering of particles from a perfectly 
rigid sphere of radius a (i.e. when the interaction is such that U = oo for r < a and U = 0 
for r >a). 

SOLUTION. Since a particle moves freely outside the sphere and cannot penetrate into it, 
the path consists of two straight lines symmetrical about the radius to the point where the 
particle strikes. the sphere (Fig. 19). It is evident from Fig. 19 that 

p =a sin r/>o = a sin !{1r-x) = a cos !x-

FIG. 19 

Substituting in (18.7) or (18.8), we have 

da = !1ra2 sin X dx = !a2 do, (1) 

i.e. the scattering is isotropic in the C system. On integrating da over all angles, we find that 
the total cross-section a = 1ra2, in accordance with the fact that the "impact area" which the 
particle must strike in order to be scattered is simply the cross-sectional area of the sphere. 

In order to change to the L system, X must be expressed in terms of Ot by (17.4). The 
calculations are entirely similar to those of §16, Problem 2, on account of the formal resemb­
lance between formulae (17.4) and (16.5). For mt < m2 (where mt is the mass of the particle 
and m2 that of the sphere) we have · 

[ 
1 +(mt/m2)2 cos 20t ] 

dat = !a2 
· 2(1izt/m2) cos Ot +. '[

1 
( / )• . 20 ] dot, 

V - mt 1n2 - Sill I 

where dot = 27T sin Ot dOt. If, on the other hand, m2 < mt, then 

1 +(mt/m2)2 cos 20t d 
dat =!a ot. 

V[1-(mt/m2)2 sin20] 
bt ·ned directly by sub­For mt = m2, we have dot = a 2 icos Otl dot, which can also be o 31 

stituting x = 201 from (17.9) in (1). 
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For a sphere originally at rest, x = TT-202 in all cases, and substitution in (1) gives 

PROBLEM 2. Express the effective cross-section (Problem 1) as a function of the energy € 
lost by a scattered particle. 

SOLUTION. The energy lost by a particle of mass m1 is equal to that gained by the sphere of 
mass m2. From (17.5) and (17.7), € = E2' = [2mi2m2/(m1+m2)2) V0} sin2!x = €max sin2!x. 
whence d€ = ~€max sin x dx; substituting in (1), Problem 1, we have do = Trq2 d€/€max- The 
scattered particles are uniformly distributed with respect to € in the range from zero to 
Emax. 

PROBLEM 3. Find the effective cross-section as a function of the velocity Voo for particles 
scattered in a field U ,._ rn. 

SOLUTION. According to (1 0.3), if the potential energy is a homogeneous function of order 
·k = -n, then similar paths are such that p ,._ v-2 /n, or p = voo-2 fnJ(x), the angles of deflec­
_tion X being equal for similar paths. Substitution in (18.6) gives da ,._ voo-4 fn do. 

PROBLEM 4. Determine the effective cross-section for a particle to "fall'' to the centre of 
a field U = -cr./r2• 

SOLUTION. The particles which "fall" to the centre are those for which 2cr. > mp2voo2 (see 
(14.11)), i.e. for which the impact parameter does not exceed pmax = y(2cr.fmvoo2). The 
effective cross-section is therefore a = 7rpmax2 = 2TTcr.,'mvoo2• 

PROBLEM 5. The same as Problem 4, but for a field U = -cr.{rn (n > 2, a> 0). 

SOLUTION. The effective potential energy Uerr = mp2voo2/2r2 -cr./rn depends on r in the 
manner shown in Fig. 20. Its maximum value is 

Uerr,max = Uo = !(n-2)cr.(mp2voo2/rm)"/(n-2l. 

£{, .. 

FIG. 20 

The particles which "fall'' to the centre are those for which Uo < E. The condition Uo = E 
gives Pmax, whence • 

o = Trn(n-2)!2-n)fn(cr./mvoo2)2/n. 

PROBLEM 6. Determine the effective cross-section for particles of mass m1 to strike a sphere 
of mass m2 and radius R to which they are attracted in accordance with Newton's law. 

SoLuTION. The condition for a particle to reach the sphere is that rmtn < R where r 1 
is the point on the path which is nearest to the centre of the sphere. The grea'test posstbl: 
value of p is given by rmtn = R; ~his is equivalent to Uerr(R) = E or lm1v002Pmax2fR2- cr.JR 
=lm1voo2, w~ere "' = ym1m2 (y beu~g the gravitational constant} and we have put m ~ m1 on 
the assumption that ma ~ m1. Solvtng for Pmax2, we fin.ally obtain a= TTR2(1 +2,m2/Rvoo2). 
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\Vhen voo ->- oo the effective cross-section tends, of course, to the geometrical cross-section 
of the sphere. 

PROBLEM 7. Deduce the form of a scattering field U(r), given the effective cross-section 
as a function of the angle of scattering for a given ener~ E. It is assumed that U(r) decreases 
monotonically with r (a rep•.llsive field), with U(O) > E and U( oo) = 0 (0. B. Fmsov 1953). 

SOLUTION. Integration of da with respe-ct to the scattering angle gives, according to the 
formula 

7T 

f (do/dx) dx = 7Tp2, 
X 

the square of the impact parameter, so that P(X) (and therefore x(p)) is known. 
We put 

s = 1/r, zu = vr1 -<UJE)J. 

Then formulae (18.1), (18.2) become 

where so(x) is the root of the equation :~:ru2(so)-so2 = 0. 

(1) 

(2) 

(3) 

Equation (3) is an integral equation for the function w(s), and may be solved by a method 
similar to that used in §12. Dividing both sides of (3) by v( a-x) and integrating with respect 
to x from zero to a:, we find 

<X 

J
. TT-x(x) . dx 

2 v(o:-;") 
ij 

a so(x) 

J
. j" ds dx 

= v[(xzu2 -s2)(a-x)] 
0 0 

so(o:) a 

I I 
0 x(so) 

dxds 

so(o:) 
• ds 

= 7T J --;--· 
0 

or, integrating by parts on the left-hand side, 

a so(a) 

J
. dx j' ds 

7T\1a- \l(a-x)- dx = 7T -. 

dx • ru 
0 0 

This relation is differentiated with respect to a:, and then so( a) is replaced by s simply; 
accordingly a is replaced by s2fzu 2, and the result is, in differential form, 

or 

s12w2 x'(x) dx 
7T d(s/w) -!d.(s2fw2) _,.::....~-- = (TT/zu) ds 

v[(s2/zc2)-x] 
0 

s2fzc2 

-TT d log zu = d(s/rv) J 
0 

x'(.\:) dx 

. . . . ation 0 n the right-hand 
This equation can be integrated nnmedJately 1f the order of mte~ C e. v = 0), we hav 
side is inverted. Since for s = 0 (i.e. r--+ co) we must have w = '· e, 
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on returning to the original variables rand p, the following two equivalent forms of the final 
result: 

00 

w = exp{ ~ J cosh-1(p/rw) (dx/dp) dp} 

rw 

( 
1 Ioo x(p) dp } 

- exp --
- 7T ;V (p2- r2w2) • 

rw 

(4) 

This formula determines implicitly the function w(r) (and therefore U(r)} for all r > rmtn, 
i.e. in the range of r which can be reached by a scattered particle of given energy E. 

§l9. Rutherford's formula 

One of the most important applications of the formulae derived above is 
to the scattering of charged particles in a Coulomb field. Putting in (18.4) 
U = cxfr and effecting the elementary integration, we obtain 

cxfmvoo2p 
c/>o = cos-1 , 

v[1 +(o:/mvoo2p)2] 

whence p2 = (cx2fm2v004) tan2cf>0, or, putting c/>o = Hrr- x) from (18.1), 

p2 = (CJ.2jm2~'oo4) cot~x- (19.1) 

Differentiating this expression with respect to x and substituting in (18.7) 
or (18.8) gives 

(19.2) 

or 

da = ('Y./2m'Doo2)2do/sin4ix· (19.3) 

This is Rutherford's formula. It may be noted that the effective cross-section 
is independent of the sign of o:, so that the result is equally valid for repulsive 
and attractive Coulomb fields. 

Formula (19.3) gives the effective cross-section in the frame of reference 
in which the centre of mass of the colliding particles is at rest. The trans­
formation to the laboratory system is effected by means of formulae (17.4). 
For particles initially at rest we substitute x = rr- 202 in (19.2) and obtain 

da2 = 2rr(o:,'mi·oo2)2 sin 02 d02/cm;302 

= ( o:fmvoo2)2 do2jcos302. (19.4) 

The same transformation for the incident particles leads, in general, to a very 
complex formula, and we shall merely note two particular cases. 

If the mass m2 of the scattering particle is large compared with the mass 
m1 of the scattered particle, then X ~ 01 and m ~ tn1, so that 

da1 = (o:/4EI)2 do1/sin4J;.OI, (19.5) 

where £ 1 = !m1voo2 is the energy of the incident particle. 
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If the masses of the two particles are equal (m1 = m2, m = !m1), then by 
(17.9) x = 201, and substitution in (19.2) gives 

da1 = 2r.(cx./El)2 cos81d81/sin301 

(19.6) 

If the particles are entirely identical, that which was initially at rest c.annot 
be distinguished after the collision. The total effective cross-section for all 
particles is obtained by adding dol and dcr2, and replacing eland e2 by their 
common value e: 

da = (cx/El)2( . 
1 

+--
1
-) cos Odo. 

sm40 cos40 
(19.7) 

Let us return to the general formula (19.2) and use it to determine the 
distribution of the scattered particles with respect to the energy lost in the 
collision. When the masses of the scattered (m1) and scattering (m2) particles 
are arbitrary, the velocity acquired by the latter is given in terms of the angle 
of scattering in the C system by v2' = [2ml/(ml + m2)]~·oo sin tx; see (17.5). 
The energy acquired by m2 and lost by m1 is therefore E = }m2v2'2 
- (2m2fm2)voo2 sin2h. Expressing sin lx in terms of E and substituting 
in (19.2), we obtain 

(19.8) 

This is the required formula: it gives the effective cross-section as a function 
of the energy loss E, which takes values from zero to Emax = 2m2voo2/m2. 

PROBLEMS 

PRODLE~l 1. Find the effectiYe cross-section for scattering in a field U = afr2 (a > 0). 

SOLUTL0::-1. The angle of deflection is 

The effecti,·e cross-section is 
2TT2J.. 

da = ---
11lt':x:2 

7"(-x 

x2(2Tr-x)2 

do 
··--

Sill X 

PROBLEM 2. Find the effectiYe cross-section for scattering by a spherical "potential well" 
of radius a and "depth" Uo (i.e. a field with U = 0 for r > a and U = -Uo for r <a). 

SOLUTIO:-\. The particle mo\'es in a straight line which is "refracted" on entering and leav­
ing the well. According to §7, Problem, the angle of incidence a and the angle of refraction 
f3 (Fig. 21) are such that sin a'sin {3 = 11, where 11 = "\1(1 +2Uo/mvoo2). The angle of deflection 
is X= 2(a-{3). Hence 

sin(a-h) . 1 
. = cos !x-cot "'sm !x = -. 

sm a 11 

Eliminating a from this equation and the relation a sin a = p, which is evident from the 
diagram, we find the relation between p and x: 

n2 sin2 lx 
p2 = a2'--=---:--c-=--.=.:.:..--:­.,2+ l-2n cos lx 
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Finally, differentiating, we have the effecti,·e cross-section: 

a 2n2 (n cos !x-l)(n-cos !x) 
da= --- do. 

4cos!x (n2 +1-2ncos!x)2 

The angle X varies from zero (for p = 0) to Xma" (for p =a), where cos !xmax = 1/n. 
The total effective cross-section, obtained by integrating da over all angles within the cone 

X < xma", is, of course, equal to the geometrical cross-section TTa2. 

FIG, 21 

§20. Small-angle scattering 
The calculation of the effective cross-section is much simplified if only 

those collisions are considered for \Yhich the impact parameter is large, so 
that the field U is weak and the angles of deflection are small. The calculation 
can be carried out in the laboratory system, and the centre-of-mass system 
need not be used. 

We take the x-axis in the direction of the initial momentum of the scattered 
particle m1, and the xy-plane in the plane of scattering. Denoting by p1' the 
momentum of the particle after scattering, we evidently have sin e1 = Plv'/Pl'· 
For small deflections, sin e1 may be approximately replaced by e1, and Pl' in 
the denominator by the initial momentum P1 = 1lll'l'cc: 

e ~ p I' / ~· 1 ~ ly :II !LCC• (20.1) 

Next, since py = Fy, the total increment of momentum in they-direction is 

Plv' = I Fydl. (20.2) 
-00 

The force Fy = -cUfoy = -(dUfdr)ctjoy = -(dUfdr)yfr. 
Since the integral (20.2) already contains the small quantity U, it can be 

calculated, in the same approximation, by assuming that the particle is not 
deflected at all from its initial patl1, i.e. that it moves in a straight line y = p 
with uniform velocity '<'oo. Thus we put in (20.2) Fy = -(dU/dr)p,r, 
dt = dxfvcc. The result is 
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Finally, we change the integration over x to one over r. Since, for a straight 
path, r2 = x2+p2, when x varies from - oo to + oo, r varies from oo to p 
and back. The integral over x therefore becomes twice the integral over r 
from p to oo, and dx = r dr/y(r2 -p2). The angle of SGattering el is thus 
given byt 

(20.3) 

and this is the form of the function OI{p) for small deflections. The effective 
cross-section for scattering (in the L system) is obtained from (18.8) with 81 
instead of x. where sin el may now be replaced by el: 

da = ~~~ p(Ol) do1. (20.4) 
de1 e1 

PROBLEMS 

PROBLEM 1. Derive formula (20.3) from (18.4). 

SoLUTION. In order to avoid spurious divergences, we write (18.4) in the form 

R 

</>o= _!.._ I '[1- p2- 2U ]dr, 
op II/ r 2 mvoo2 

rmln 

and take as the upper limit some large finite quantity R, afterwards taking the value as R -->- oo. 
Since U is small, we expand the square root in powers of U, and approximately replace 
rmtn by p: 

The first integral tends to !1r as R-->- oo. The second integral is integrated by parts, giving 

00 

=r- 2p I dU dr 
mvoo2 dr v(r2-p2) 

p 

This is equivalent to (20.3). 

PROBLEM 2. Determine the effective cross-section for small-angle scattering in a field 
U = a./r" (n > 0). 

t If the above derivation is applied in the C system, the expression obtained for ~is the 
same with m in place of mt, in accordance with the fact that the small angles 8• an X are 
related by (see (17.4)) e.= m2x/(ml +m2). 
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SOLUTION. From (20.3) we have 

00 

2pxn I dr e.=----'---
mlv,2 ,.n+Iy'(r2-p2) • 

p 
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The substitution p2/r2 = u com·erts the integral to a beta function, which can be e"-"Pressed 
in terms of gamma functions: 

2'XVTT r(!nH) o. = . . 
7rllVoo2pn r(~n) 

Expressing p in terms of 81 and substituting in (20.4), we obtain 

1 [ 2 v'1rf(!n +!) "' ]2/n do = - - - . o~-2-2/n dol. 
n f(!n) m1voo2 



CHAPTER V 

SMALL OSCILLATIONS 

§21. Free oscillations in one dimension 

A VERY common form of motion of mechanical systems is what are called 
small oscillations of a system about a position of stable equilibrium. We shall 
consider first of all the simplest case, that of a system with only one degree 
of freedom. 

Stable equilibrium corresponds to a position of the system in which its 
potential energy U(q) is a minimum. A movement away from this position 
results in the setting up of a force - dUfdq which tends to return the system 
to equilibrium. Let the equilibrium value of the generalised co-ordinate 
q be qo. For small deviations from the equilibrium position, it is sufficient 
to retain the first non-vanishing term in the expansion of the difference 
U(q)- U(qo) in powers of q- qo. In general this is the second-order term: 
U(q)- U(qo) ::: }k(q- qo)2, where k is a positive coefficient, the value of the 
second derivative U"(q) for q = q0• We shall measure the potential energy 
from its minimum yalue, i.e. put U(qo) = 0, and use the symbol 

X= q-{jo 

for-the deviation of the co-ordinate from its equilibrium value. Thus 

U(x) = }kx2. (21.2) 

The kinetic energy of a system with one degree of freedom is in general 
of the form }a(q)q2 = !a(q)x2. In the same approximation, it is sufficient to 
replace the function a(q) by its value at q = qo. Putting for brevityt a(q0) = m, 
we have the following expression for the Lagrangian of a system executing 
small oscillations in one dimension :t 

or 

L = tmx2-!kx2. 

The corresponding equation of motion is 

mx+kx = 0, 

where 

w = -vl(kfm). 

t It should be noticed that m is the mass only if x is the Cartesian co-ordinate. 
! Such a system is often called a 011e-dimensional oscillator. 

58 

(21.3) 

(21.4) 

(21.5) 

(21.6) 
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Two independent solutions of the linear differential equation (21.5) are 
cos wt and sin wt, and its general solution is therefore 

x = c1 cos wt + c2 sin wt. (21.7) 

This expression can also be written 

x = a cos( wt + ()(). (21.8) 

Since cos( wt + ()() = cos wt cos ()(-sin wt sin ()(, a comparison with (21. 7) 
shOWS that the arbitrary constants a and ()( are related to Cl and C2 by 

(21.9) 

Thus, near a position of stable equilibrium, a system executes harmonic 
oscillations. The ~oefficient a of the periodic factor in (21.8) is called the 
amplitude of the oscillations, and the argument of the cosine is their phase; 
()( is the initial value of the phase, and evidently depends on the choice of 
the origin of time. The quantity w is called the angular frequency of the oscil­
lations; in theoretical physics, however, it is usually called simply the fre­
quency, and we shall use this name henceforward. 

The frequency is a fundamental characteristic of the oscillations, and is 
independent of the initial conditions of the motion. According to formula 
(21.6) it is entirely determined by the properties of the mechanical system 
itself. It should be emphasised, however, that this property of the frequency 
depends on the assumption that the oscillations are small, and ceases to hold 
in higher approximations. Mathematically, it depends on the fact that the 
potential energy is a quadratic function of the co-ordinate. t 

The energy of a system executing small oscillations is E = !m.X2 + !kx2 
= !m(x2 + w2x2) or, substituting (21.8), 

(21.10j 

It is proportional to the square of the amplitude. 
The time dependence of the co-ordinate of an oscillating system is often 

conveniently represented as the real part of a complex expression: 

x = re [A exp(iwt)], 

where A is a complex constant; putting 

A = a exp(i7.), 

(21.11) 

(21.12) 

we return to the expression (21.8). The constant A is called the complex 
amplitude; its modulus is the ordinary amplitude, and its argument is the 
initial phase. 

The use of exponential factors is mathematically simpler than that of 
trigonometrical ones because they are unchanged in form by differentiation. ----t It therefore does not hoi . . 

Order, i.e. u ~ .. n . d good 1f the functiOn U(x) has at + = 0 a minimum of · her ...... ''"ttl .,.. 
)llg 1 " > 2; sec §11, Problcn1 2(a). 
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So long as all the operations concerned are linear (addition, multiplication 
by constants, differentiation, integration), we may omit th~ sign re through­
out and take the real part of the final result. 

PROBLEMS 

PROBLEM 1. Express the amplitude and initial phase of the oscillations in terms of the 
initial co-ordinate xo and velocity vo. 

SoLuTION . . a= y(xo2+vo2/w2), tan a= -vo/wxo. 

PROBLEM 2. Find the ratio of frequencies w and w' of the oscillations of two diatomic 
molecules consisting of atoms of different isotopes, the masses of the atoms being m1, m2 and 

' ' m1, m2. 

SOLUTION. Sipce the atoms of the isotopes interact in the same way, we have k = k'. 
The coefficients m in the kinetic energies of the molecules are their reduced masses. Accord­
ing to (21.6) we therefon: have 

w' J •mm2(m1' +m2') 
-;:; = rn1'nt2'(•m +m2) · 

PROBLEM 3. Find the frequency of oscillations of a particle of mass m which is free to 
move along a line and is attached to a spring whose other end is fixed at a point A (Fig. 22) 
at a distance l from the line. A force F is required to extend the spring to length l. 

m X 

FIG. 22 

SoLuTION. The potential energy of the spring is (to within higher-order terms) equal to 
the force F multiplied by the extension 8[ of the spring. For X <·l we have 8[ = v(i2+x2) -l 
= x 2/2l, so that U = Fx2/2l. Since the kinetic energy is ~mx2, we have w = v(F/ml). 

PROBLEM 4. The same as Problem 3, but for a particle of mass m moving on a circle of 
radius r (Fig. 23). 

I 

' I 

,,,,--t--- --, 

Ftc. 23 
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SoLuTio:-;. In this case the extension of the spring is (if </> < 1) 

Ill= ,'[r2 +(l+r)2-2r(l+r) cos t/>]-l ~ r(l+r)t/>2/21. 

The kinetic energy is T = !mr2,p, and the frequency is therefore w = v[F(r+l)fmrl]. 

PROBLEM 5. Find the frequency of oscillations of the pendulum shown in Fig. 2 ( §5), 
whose point of support carries a mass m1 and is free to move horizontally. 

SOLUTIO:-/. For </> < 1 the formula derived in §14, Problem 3, gives 

T = ~•mm2l2,f,2/(m1 +m2), U = !rmglt/>2. 
Hence 

PROBLEM 6. Determine the form of a curve such that the frequency of oscillations of a 
particle on it under the force of gravity is independent of the amplitude. 

SoLuTIO:'<". The curve satisfying the given condition is one for which the potential energy 

of a particle moving on it is U = !ks2, where s is the length of the arc from the position of 
equilibrium. The kinetic energy T = !m.i2, where m is the mass of the particle, and the fre­
quency is then w = v(kfm) whatever the initial value of s. 

In a gravitational field U = mgy, where y is the vertical co-ordinate. Hence we have 
!ks2 = mgy or y = w~s2 '2g. llut ds2 = d.x2 +dy2, whence 

X= f, 1 [(ds/dy)L1) dy= Jv[(g/2,;,2y)-1) dy. 

The integration is conveniently effected by means of the substitution y = g(1-cos ~)f4w2, 
which yields ."C = g(~ +sin t),14w2• These two equations give, in parametric form, the equation 
of the required cun·e, which is a cycloid. 

§22. Forced oscillations 

Let us now consider oscillations of a system on which a variable external 
force acts. These arc called forced oscillations, whereas those discussed in 
§21 are free oscillations. Since the oscillations are again supposed small, it 
is implied that the external field is weak, because otherwise it could cause the 
displacement x to take too large values. 

The system now has, besides the potential energy !kx2, the additional 
potential energy Ue(x, t) resulting from the external field. Expanding this 
additional term as a series of powers of the small quantity x, we have 
Ue(x, t) ~ Ue(O, t)+x[oUe/ox]x=O· The first term is a function of time only, 
and may therefore be omitted from the Lagrangian, as being the total time 
derivative of another function of time. In the second term - [o Uefox]x=o is 
the external "force" acting on the system in the equilibrium position, and 
is a given function of time, which we denote by F(t). Thus the potential 
~nergy involves a further term -xF(t), ap.d the Lagrangian of the system 
lS 

L = ~m;~2-~·kx2 +xF(t). 

The Corresponding equation of motion is mxtkx = F(t) or 

x+ w2x = F(t}fm, 

(22.1) 

(22.2} 

where we haYe again introduced the frequency w of the free oscillations. 
The general soluti f h" "nh 1" d"rr · 1 • 

t on o t 1s 1 omogeneous tnear tuerentla equatton "th constan coefficie t · . . 
W1 11 s •s x = xo + x1 , where x0 1s the general solution of 
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the corresponding homogeneous equation and X1 is a particular integral of 
the inhomogeneous equation. In the present case xo represents the free 
oscillations "discussed in §21. 

Let us consider a case of especial interest, where the external force is itself 
a simple periodic function of time, of some frequency y: 

F(t) = fcos(yt+f3). (22.3) 

We seek a particular integral of equation (22.2) in the form x1 = b cos(yt + {3), 
with the same periodic factor. Substitution in that equation gives 
b = f/m(w2-y2); adding the solution of the homogeneous equation, we 
obtain the general integral in the form 

x =a cos(wt+ex)+[f/m(w2-y2)] cos(yt+f3). (22.4) 

The arbitrary constants a and ex are found from the initial conditions. 
Thus ·a system under the action of a periodic force executes a motion which 

is a combination of two oscillations, one with the intrinsic frequency w of 
the system and one with the frequency y of the force. 

The solution (22.4) is not valid when resonance occurs, i.e. when the fre­
quency y of the external force is equal to the intrinsic frequency w of the 
system. To find the general solution of the equation of motion in this case, 
we rewrite (22.4) as 

x = a cos( wt +ex)+ [f/m( w2- y2)][cos(yt + {3)- cos(wt +/3)], 

where a now has a different value. As y -+ w, the second term is indetermin­
ate, of the form OfO. Resolving the indeterminacy by L'Hospital's rule, we 
have 

x =a cos(wt+ex)+(ff2mw) t sin(wt+f3). (22.5) 

Thus the amplitude of oscillations in resonance increases linearly with the 
time (until the oscillations are no longer small and the whole theory given 
above becomes invalid). 

Let us also ascertain the nature of small oscillations near resonance, when 
y = w + E with E a small quantity. We put the general solution in the com­
plex form 

x = A exp(iwt) + B exp[i( w + E)t] = [A+ B exp(id)] exp(iwt). (22.6) 

Since the quantity A+ B exp(iEt} varies only slightly over the period 27Tjw 
of the factor exp(iwt), the motion near resonance may be regarded as small 
oscillations of variable amplitude. t Denoting this amplitude by C, we have 
C = lA + B exp(iEt} 1. Writing A and B in the form a exp(iex) and b exp(i/3) 
respectively, we obtain 

C2 = a2.+b2+2ab cos(d+f3-ex). (22. 7) 

t The "constant" terrn in the phase of the oscillation also varies. 
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Thus the amplitude varies periodically with frequency E between the limits 
Ia- b I ~ C ~ a+ b. This phenomenon is called beats. 1- 1 'J 

The equation of motion (22.2) can be integrated in a general form for an 
arbitrary external force F(t). This is easily done by rewriting the equation 
as 

d 1 
-(x+iwx)-iw(x+iwx) = -F(t) 
dt m 

or 
dgjdt-iwg = F(t)Jm, (22.8) 

,where 

g = x+iwx (22.9) 

is a complex quantity. Equation (22.8) is of the first order. Its solution when 
the right-hand side is replaced by zero is g = A exp(iwt) with constant A. 
& before, we seek a solution of the inhomogeneous equation in the form 
g = A(t) exp(iwt), obtaining for the function A(t) the equation A(t) 
= F( t) exp(- iwt)fm. Integration gives the solution of (22. 9): 

t 

g = exp(iwt){f ~F(t)exp(-iwt)dt+go }• 

0 

(22.10) 

where the constant of integration go is the value of g at the instant t = 0. 
This is the required general solution; the function x(t) is given by the imagin­
ary part of (22.10), divided by w. t 

The energy of a system executing forced oscillations is naturally not con­
served, since the system gains energy from the source of the external field. 
Let us determine the total energy transmitted to the system during all time, 
assuming its initial energy to be zero. According to formula (22.10), with 
the lower limit of integration - oo instead of zero and with g(- oo) = 0, 
we have for t -+ co 

00 

lg(co):2 = ~21 I F(t} exp(-iwt)dt r. 
-00 

The energy of the system is 

E = !m(x2 + w2x2) = ~-m!~i2. (22.11) 

Substituting It( co) 12, we obtain the energy transferred: 

00 " 

E= 2~1 1J F(t)exp(-iwt)dt~~; (22.12} 

----- -co t 'fhe force F(t) must f 
• 

0 course, be written in" real form. 
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it is determined by the squared modulus of the Fourier component of the 
force F(t) whose frequency is the intrinsic frequency of the system. 

In particular, if the external force acts only during a time short m com­
parison with 1fw, we can put exp( -iwt) ~ 1. Then 

00 

E = _!__( f F(t)dt t 
2m , 

-oo 

This result is obvious: it expresses the fact that a force of short duration 
gives the system a momentum f F dt without bringing about a perceptible 
displacement. 

PROBLEMS 

PR6BLEM 1. Determine the forced oscillations of a system under a force F(t) of the follow­
ing forms, if at time t = 0 the system is at rest in equilibrium (x = x = 0): (a) F = Fo, 
a constant, (b) F = at, (c) F = Fo exp(- at), (d) F = Fo exp(- at) cos {3t. 

SoLUTION. (a) x = (Fo/mw2)(1-cos wt). The action of the constant force results in a dis-
placement of the position of equilibrium about which the oscillations take place. 

(b) x = (a;mw3)(wt-sin wt). 

(c) x = [F0fm(w2+o:2)][exp(-at)-cos wt+(o:,'w) sin wt]. 

(d) x = Fo{-(w2+o:2-(32) cos wt+(rx/w)(w2+rx2+f32) sin wt+ 

+exp(- at)[( w2+ o:2-(32) cos {3t-2o:f3 sin {3t]}/m[( w2 + o:2-(32)2 +4o:2{32). 

This last case is conveniently treated by writing the force in' the complex form 

F = Fo exp[(- ex +i{3)t]. 

PROBLEM 2. Determine the final amplitude for the oscillations of a system under a force 
which is zero for t < 0, Fot/T for 0 < t < T, and Fo for t > T (Fig. 24), if up to time 
t = 0 the system is at rest in equilibrium. 

F 

FIG. 24 

SOLUTio!'!. During the interval 0 < t < T the oscillations are determined by the initial 
condition as x = (Fo/mTwB)( wt-sin wt). For t > T we seek a solution in the form 

x = c1 cos w(t-1)+c2 sin w(t-1)+Fo/mw2. 

The continuity of x and x at t = T gives Cl = -(FtJ/mTwB) sin wT, c2 = (Fo/mTw8 ) X 

X (1-cos w1). The amplitude is a= v(c12+c22) = (2Fo/mTw3) sin iwT. This is the smaller, 
the more slowly the force Fo is applied (i.e. the greater T). 

• ts {or a finite 
PRoBLEM 3. The same as Problem 2, but for a constant force Fo wh1ch ac 

time T (Fig. 25). 



§23 Oscillations of systems with more than one degree of freedom 65 

SoLUTioN. As in Problem 2, or more simply by using formula (22.10). Fort> T we have 
free oscillations about x = 0, and 

T 

~ = F~ exp(iwt)J exp( -iwt) dt 
1~l 

0 

= .F'' [1-exp( -iwT)] e:\:p(iwt). 
IW111 

F 

------L---4T----------t 

FIG. 25 

The squared modulus of g gives the amplitude from the relation lgl 2 = a 2 w2 • The result is 

a = {2Fo.'mw2) sin !wT. 

PRoBLEM 4. The same as Problem 2, but for a force Fot/T which acts betwee_n t = 0 and 
t = T (Fig. 26). 

F 

------~--~---------, T 

FIG. 26 

SOLUTI0::\1, By the same method we obtain 

a = fFo!Tmw3 )\1[ w2T~-2wT sin wT+2(1-cos w1)]. 

PRoBLEM 5. The same as Problem 2, but for a force Fo sin wt which acts between t = 0 
and t = T = 27Tf w (Fig. 27). 

F 

FIG. 27 

SoLUTION, Substituting in (22.10) F{t) = Fo sin wt = Fo[exp(iwt)-exp( -iwt)]!2i and 
integrating from 0 to T, we obtain a = FoTT.'mw2• 

§23. Oscillations of systems with more than one degree of freedom 
'fhe theory of free . I . f 'th d f f . osctl atmns o systems WI s egrees o reedom IS 

analogous to that given in §21 for the case s = 1. 
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Let the potential energy of the system U as a function of the generalised 
co-ordinates qi (i = 1, 2, ... , s) have a minimum for qi = qw. Putting 

Xi= qi-qiO (23.1) 

for the small displacements from equilibrium and expanding U as a function 
of the Xi as far as the quadratic terms, we obtain the potential energy as a 
positive definite quadratic form 

(23.2) 

where we again take the minimum value of the potential energy as zero. 
Since the coefficients !?ik and !?ki in (23.2) multiply the same quantity xix,,, 
it is clear that they may always be considered equal: kik = kki· 

In the kinetic energy, which has the general form !~aik(q)tiitik(see (5.5)), 
we put qi = qiO in the coefficients aik and, denoting aik(qo) by mtk, obtain 
the kinetic energy as a positive definite quadratic form 

(23.3) 

The coefficients 11lik also may always be regarded as symmetrical: mik. = Tllkt· 
Thus the Lagrangian of a system executing small free oscillations is 

L = l2(mikXiXk-kikXiXk)· (23.4) 
f,k 

Let us now derive the equations of motion. To determine the derivatives 
involved, we write the total differential of the Lagrangian: 

dL = t 2( miki.·i dxk + mikx,, dxi- kik:l.'i dxk- kikxkdxi)· 
i,k 

Since the value of the sum is obviously independent of the naming of the 
suffixes, we can interchange i and k in the first and third terms in the paren­
theses. Using the symmetry of mik and kik• we have 

dL = 2(mikXkdxi-ku,x~.:dxi)· 
Hence 

oLfoxi = 2 mikx,,, 
k 

Lagrange's equations are therefore 

2 mikXk + 2 kikXk = 0 
k k 

cLjcxi = - 2ki1,xk. 
k 

(i = 1, 2, ... ,s); (23.5) 

they form a set of s linear homogeneous differential equations with constant 
coefficients. 

As usual, we seek the s unknown functions Xk(t) in the form 

Xk = Ak exp(iwt), _{23.6) 

b d . d s b . . g (23.6) In th where Ak are some constants to e etermme . u stttutlfl e 
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equations (23.5) and cancelling exp(iwt), we obtain a set of linear homo­
geneous algebraic equations to be satisfied by the Ak: 

2,(- w2mik+ kik)Ak = 0. (23.7) 
k 

If this system has non-zero solutions, the determinant of the coefficients 
must vanish: 

(23.8) 

This is the clzaracten"stic equation and is of degree s in w2. In general, it has 
s different real positive roots wox2 (e<. = 1, 2, ... , s); in particular cases, some of 
these roots may coincide. The quantities wa thus determined are the clzarac­
ten"stic frequencies or eigenfrequencies o_f the system. 

It is evident from physical arguments that the roots of equation (23.8) are 
real and positive. For the existence of an imaginary part of w would mean 
the presence, in the time dependence of the co-ordinates Xk (23.6), and so 
of the velocities Xk, of an exponentially decreasing or increasing factor. Such 
a factor is inadmissible, since it would lead to a time variation of the total 
energy E = U + T of the system, which would therefore not be conserved. 

The same result may also be derived mathematically. Multiplying equation 
(23.7) by Ai* and summing over i, we have ~( -w2mik+kik)Ai*Ak = 0, 
whence w2 = ~kikAi* Ak/~mikAi* Ak. The quadratic forms in the numerator 
and denominator of this expression are real, since the coefficients kik and 
mtk are real and symmetrical: (~kikAi*Ak)* = ~kikAiAk* = ~kkiAtAk* 
= ~kikAkAi*· They are also positive, and therefore w2 is positive. t 

The frequencies wa having been found, we substitute each of them in 
equations (23.7) and find the corresponding coefficients Ak. If all the roots 
wa of the characteristic equation are different, the coefficients Ak are pro­
portional to the minors of the determinant (23.8) with w = wa. Let these 
minors be 11ka· A particular solution of the differential equations (23.5) is 
therefore Xk = 11,.aCa exp(iwat), where Ca is an arbitrary complex constant. 

The general solution is the sum of s particular solutions. Taking the real 
part, we write 

s 
Xk = re 2: /).kaCa exp(iwat) - _Ll1A·a0a, (23.9) 

tz=l a 

where 

0a = re[Ca exp(iwat)]. (23.10) 

Thus the time variation of each co-ordinate of the system is a super­
position of s simple periodic oscillations 01> 0 2, ... , 0 8 with arbitrary ampli­
tudes and phases but definite frequencies. 

t The fact that d • h h ffi . k . . . d fin. . fi . definitio (2 a qua ratic form Wit t e coe c1ents tk Is pos1t1ve e 1te IS seen rom 
the'[. :hty as a~+ ~b2) for real values of the variables. If the complex quantities A~: are written 
eXP( "" +ihk) = r.;

11
,";, we;~ve, again using the symmetry of ktk, :Ekt~:At* AT< = :Ekt~:(at -lbt) X 

:>< ak w,. h<kb,b,., which is the sum of two positive definite forms. 
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The question naturally arises whether the generalised co-ordinates can be 
chosen in such a way that each of them executes only one simple o3cillation. 
The form of the general integral (23.9) points to the answer. For, regarding 
the s equations (23.9) as a set of equations for s unknowns 0,., we can 
express 81, 82, ... , 0 8 in terms of the co-ordinates .'1:1, x2, ... , x8 • The 
quantities 0 a may therefore be regarded as new generalised co-ordinates, 
called normal co-ordinates, and they execute simple periodic oscillations, 
called normal oscillations of the system. 

The normal co-ordinates 0 a are seen from their definition to satisfy the 
equations 

(23.11) 

This means that in normal co-ordinates the equations of motion become s 
independent equations. The acceleration in each normal co-ordinate depends 
only on the value of that co-ordinate, and its time dependence is entirely 
determined by the initial \'alues of the co-ordinate and of the corresponding 
velocity. In other words, the normal oscillations of the system are completely 
independent. 

It is evident that the Lagrangian expressed in terms of normal co-ordinates 
is a sum of expressions each of which corrLsponds to oscillation in one dimen­
sion with one of the frequencies wa, i.e. it is of the form 

L = ,Lima(0a2 - wa20a2), (23.12) 
a 

where the ma are positive constants. Mathematically, this means that the 
transformation (23.9) simultaneously puts both quadratic forms-the kinetic 
energy (23.3) and the potential energy (23.2)-in diagonal form. 

The normal co-ordinates are usually chosen so as to make the coefficients 
of the squared velocities in the Lagrangian equal to one-half. This can be 
achieved by simply defining new normal co-ordinates Q x by 

(23.13) 

Then 

L = 1; ""(Q 2_ w 20 2). - L...; a a ,_,a 
a 

The above discussion needs little alteration when some roots of the charac­
teristic equation coincide. The general form (23.9), (23.10)·of the integral of 
the equations of motion remains unchanged, with the same number s of 
terms, and the only difference is that the coefficients !1k:x corresponding to 
multiple roots are not the minors of the determinant, which in this case 
vanish. t 

t Th · 'b· · f · h 1 · 1 h' h - rs of the time as e tmposst thty o terms 1n t e genera mtegra w 1c con tam po,~-c h ws that th 
well as the exponential factors is seen from the same argument as that whtch 8 0 

e 
· h ld · I h I f t' f energY-frequencies are real: sue terms ·wou v1o ate t e aw o conserva 1on o 
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Each multiple (or, as we say, degenerate) frequency corresponds to a number 
of normal co-ordinates equal to its multiplicity, but the choice of these co­
ordinates is not unique. The normal co-ordinates with equal w:< enter the 
kinetic and potential energies as sums ~Qa2 and ~Qa2 which are transformed 
in the same way, and they can be linearly transfo~:med in any manner which 
does not alter these sums of squares. 

The normal co-ordinates are very easily found for three-dimensional oscil­
lations of a single particle in a constant external field. Taking the origin of 
Cartesian co-ordinates at the point where the potential energy U(x, y, z) is 
a minimum, we obtain this energy as a quadratic form in the variables x, y, z, 
and the kinetic energy T = lm(x2+j2+z2) (where m is the mass of the 
particle) does not depend on th~ orientation of the co-ordinate axes. We 
therefore have only to reduce the potential energy to diagonal form by an 
appropriate choice of axes. Then 

(23.14) 

and the normal oscillations take place in the x, y and z directions with fre­
quencies Wl = v(kl/m), w2 = v(k2/m), wa = v(kafm). In the particular 
case of a central field (k1 = k2 = ka = k, U = lkr2) the three frequencies 
are equal (see Problem 3). 

The use of normal co-ordinates makes possible the reduction of a problem 
of forced oscillations of a system with more than one degree of freedom to a 
series of problems of forced oscillation in one dimension. The Lagrangian of 
the system, including the variable external force,s, is 

L = Lo + 2:Fk(t)xk, 
k 

(23.15) 

where Lo is the Lagrangian for free oscillations. Replacing the co-ordinates 
Xk by normal co-ordinates, we have 

(23.16) 
a a 

where we have put 

fa(t) = 2:Fk(t)t1ka/vma. 
k 

The corresponding equations of motion 

Qa+ Wa2Qa = fa(t) (23.17) 

each involve only one unknown function Qa(t). 

PROBLEMS 
PJ<OBLEM 1. Detennin h . . f · h f f do angian is L = l( .2 e. t e oscdlatlons o a system Wit two degrees o ree m whose 

~a~freQUency wo co~ 1;;~2)-lwo."(x2+y,+axy (two identical one-dimensional systems of 
e~ge P by an lnteractton-axy). 



70 Small Oscillatiotts §24 

SoLuTioN. The equations of motion are .~+wo2." = ay, .Y+wo2y = ax. The substitution 
(23.6) gives 

{1) 

The characteristic equation is (wo2-w2)2 = a2, whence w12 = wo2-a, w22 = wo2+a. For 
w = wt, the equations {1) give Ax= Ay, and for w = w2, Ax= -Ay. Hence :1e = 
(Qt+02)/v2, y = (Ql-Q2)/v2, the coefficients 1/v2 resulting from the normalisation 
of the normal co-ordinates as in equation (23.13). 

For ex ~ w0
2 (weak coupling) we: have w1 ~ w0 j- /;:cx/w0 , w2 ~ w0 ; + /;:cxfw0• The 

variation of x andy is in this case a superposition of two oscillations :with almost equal 
frequencies, i.e. beats of frequency w2 - w1 = cxfw0 (see §22). The amplitude of y is a 
minimum when that of'x is a maximum, and vice ·versa. 

PROBLEM 2. Determine the small oscillations o~ a coplanar double pendulum (Fig. 1, §5). 

SoLUTION. For small oscillations {r/>1 < 1, r/>2 < 1), the Lagrangian derived in §5, Problem 
1, becomes 

L = !{mt +m2)1Nt2 +/tm212~22 +m21tl2</>t~2-Hmt +nz2)gltr/>t2-}m2g12rp22• 

The equations of motion are 

(nz1 +m2)11~1 +m212~2+(m1 +m2)grp1 = 0, 

Substitution of {23.6) gives 

At(m1+m2){g-hw2)-A2w2m212 = 0, -A11tw2+A2(g-12w2) = 0. 

The roots of the characteristic equation are 

Wt,22 = g {(ml +nz2){h +12) ± v(mt +nl2)V[(nzl +m2){1t +12)2-4mtltl2]}. 
2mtltl2 

As m1->- oo the frequencies tend to the values y{g/1t) and y{g/12), corresponding to indepen­
dent osci!Iations of the two pendulums. 

PROBLEM 3. Find the path of a particle in a central field U = lkr2 {called a space oscillator). 

SOLUTION. As in any central field, the path lies in a plane, which we take as the :11y-plane. 
The variation of each co-ordinate ·"• y is a simple oscillation with the same frequency 
W = y(k/m): X= a cos(wt+a), y = b cos(wt+tl), or ,'\:=a COS rp, y = b Cos{rp+8) 
= b cos 8cos r/>-bsin 8sin r/>, where r/> = wt+a, 8 = fl-a.Solvingforcos r/> and sin r/>and 
equating the sum of their squares to unity, we find the equation of the path: 

x2 y2 2xy 
- + - - - cos 8 = sin28. 
a 2 b2 ab 

This is an ellipse with its centre at the origin.t When 8 = 0 or TT, the path degenerates to a 
segment of a straight line. 

§24. Vibrations of molecules 
If we have a system of interacting particles not in an external field, not all 

of its degrees of freedom relate to oscillations. A typical example is that of 
molecules. Besides motions in which the atoms oscillate about their positions 
of equilibrium in the molecule, the whole molecule can execute translational 
and rotational motions. 

Three degrees of freedom correspond to translational motion, and in general 
the same number to rotation, so that, of the 3n degrees of freedom of a mole­
cule containing n atoms, 3n- 6 correspond to vibration. An exception is formed 

t The fact that the path in a field with potential energy U = ikr" is a closed curve has 
already been mentioned in §14. 
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by molecules in which the atoms are collinear, for which there are only two 
rotational degrees of freedom (since rotation about the line of atoms is of no 
signiiicance), and therefore 3n- 5 vibrational degrees of freedom. 

In solving a mechanical problem of molecular oscillations, it is convenient 
to eliminate immediately the translational and rotational degrees of freedom. 
The former can be removed by equating to zero the total momentum of the 
molecule. Since this condition implies that the centre of mass of the molecule 
is at rest, it can be expressed by saying that the three co-ordinates of the 
centre of mass are constant. Putting ra = rao + Ua, where rao is the radius 
vector of the equilibrium po.sition of the ath atom, and Ua its deviation from 
this position, we have the condition ~mara = constant = ~marao or 

(24.1) 

To eliminate the rotation of the molecule, its total angular momentum 
must be equated to zero. Since ~he angular momentum is not the total time 
derivative of a function of the co-ordinates, the condition that it is zero can­
not in general be expressed by saying that some such function is zero. For 
small oscillations, however, this can in fact be done. Putting again 
ra = rao + Ua and neglecting small quantities of the second order in the 
displacements ua, we can write the angular momentum of the molecule as 

M = L mara 'Xva ~ L marao X ita = (djdt) L marao X Ua. 

The condition for this to be zero is therefore, in the same approximation, 

(24.2) 

in which the origin may be chosen arbitrarily. 
The normal vibrations of the molecule may be classified according to the 

corresponding motion of the atoms on the basis of a consideration of the sym­
metry of the equilibrium positions of the atoms in the molecule. There is 
a general method of doing so, based on the use of group theory, which we 
discuss elsewhere.t Here we shall consider only some elementary examples. 

If all n atoms in a molecule lie in one plane, we can distinguish· normal 
vibrations in which the atoms remain in that plane from those where they 
do not. The number of each kind is readily determined. Since, for motion 
in a plane, there are 2n degrees of freedom, of which two are translational 
and one rotational, the number of normal vibrations which leave the atoms 
in the plane is 2n- 3. The remaining (3n- 6)- (2n- 3) = n- 3 vibrational 
degrees of freedom correspond to vibrations in which the atoms move out 
of the plane. 

~or a linear molecule we can distinguish longitudinal vibrations, which 
o:amtain the linear form, from vibrations which bring the atoms out of line. 
Stnceh.ahinotion of n particles in a line corresponds to n degrees of freedom 
of W IC one is t I . . . . th , 
~ _ rans auonal, the number of vLbrations which leave e atoms 

t Sec Qunntr.n, •~ 
.. -l.t<~ech • 

anzcs7 §100, Pergamon Press, OxforU I97b. 
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in line is n -1. Since the total number of vibrational degrees of freedom of a 
linear molecule is 3n- 5, there are 2n- 4 which bring the atoms out of line. 
These 2n-4 vibrations, however, correspond to only n-2 different fre­
quencies, since each such vibration can occur in two mutually perp~cular 
planes through the axis of the molecule. It is evident from syn;nnetry that 
each such pair of normal vibrations have equal frequencies. 

PROBLEMSt 

PROBLEM: 1. Determine the frequencies of vibrations of a symmetrical linear triatomic 
molecule ABA (Fig. 28). It is assumed that the potential energy of the molecule depends 
only on the distances AB and BA and the angle ABA. 

3 {. 2 {. 

A B A 

(al 

{b) 

l t 
l {cl 

FIG. 28 

SOLUTIO!'!. The longitudinal displacements -"1, .'1::2, xs of the atoms are related, according 
to (24.1), by mA(-"1 +Xs)+mn-"2 = 0. Using this, we eliminate -"2 from the Lagrangian of the 
longitudinal motion 

L = !mA(X12+xa2)+lmnx22-lk1[(x1-X2)2 +(xa-X2)2), 

and use new co-ordinates Qa = X1 +xa, Q. = x1 -xa. The result is 

1-'mA • • mA • ktl-'2 k1 
L = --Q .. ·+ -Q.2- --Q .. 2- -Q.2, 

4mn 4 4mn2 , 4 

where 1-' = 2mA +mn is the mass of the molecule. Hence we see that Q,. and Q. are normal 
co-ordinates (not yet normalised). The cO-ordinate Q,. corresponds to a vibration anti­
symmetrical about the centre of the molecule {x1 = xa; Fig. 28a), with frequency 
Wa = y(k1fL/mAmB). The co-ordinate Qa corresponds to a symmetrical vibration (XI= -xs; 
Fig. 28b ), with frequency wn = v (k1/mA). 

The transverse displacements YI,Y2,Ys of the atoms are, according to (24.1) and (24.2), 
related by mA(y1 +Ys)+mny2 = 0, YI = Ys (a symmetrical bending of the molecule; Fig. 28c). 
The potential energy of this vibration ca.."'l be written as lk2l282, where 8 is the deviation of the 
angle ABA from the value TT, given in terms of the displacements by 8 = [(YI-Y2)+CYs -y2)]/l. 
Expressing y1, Ys, Ys in terms of 8, we obtain ~he Lagrangian of the transverse motion: 

L = !mA(Y12+.Ya2) +!mn;li22-!k2l282 

mAmB • 
= --1282 - 1 k2l282 4,.., l! • 

~hence the frequency is Wa2 = y(2k2fLfmAmB)• 

t Calculations ofthe vibrations of more complex molecules are given by M. V •. VoL'~Sli­
TEIN, M. A. EL'YASHEVICI:I and B. I. STEPANOV, Molecular Vibrations (Kokban:;;a nw ,I ul), 
Moscow 1949; G. HERZBERG, Mokcular Spectra and Molecular Structure: .l ra-re and 
Raman Spectra of Polyatomic Molecules, Van Nostrand, New York t94S. 
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PROBLEM 2. The same as Problem 1, but for a triangular molecule ABA (Fig. 29). 

JY 
I 

A I A 

--~----1 
8 

~b) 

FIG. 29 

SOLUTION. By {24.1) and (24.2) the x andy components of the displacements u of the 
atoms are related by 

mA(x• +x3) +mnX'2 = 0, 

mA(y1 +Y3) +mny2 = 0, 

{y1-Y3) sin ex -(x1 +X3) cos ex = 0. 

The changes t:1 and 812 in the distances AB and BA are obtained by taking the components 
along these lines of the vectors U!-U2 and U3-U2: 

8[} = (xl-X2) sin ex +b·l-J"2) cos ex, 

812 = -(x3-x2) sin ex+(J•3-y2) cos ex. 

The change in the angle ABA is obtained by taking the components of those vectors per­
pendicular to AB and BA: 

8 = ![{:"1-x2) cos ex-(yl-Y2) sin ex)+~[ -(xa-.Y2) cos ex-{ya-Y2) sin ex). 
l l . 

The Lagrangian of the molecule is 

L = !mA(i:at2+ila2) +!mni:a•2-lki(8h2+8122)-lk•1282. 

We use the new co-ordinates Qa = Xl +xa, qo1 = .Yl-Xa, qs2 = Yl +ys. The components 
of the vectors u are given in terms of these co-ordinates by :q = l(Qa +qal), xa = l(Q., -qa~), 
X'2 = -mAQa/mn, Yl = !(qs2+Qa cot ex), ya = l(q •• -Q .. cot ex), Y2 = -mAqa2/mn. The 
Lagrangian becomes 

(
2mA 1 ) . 1-'mA . 

L = tmA -- + . Qa2+tmAqs12+ --qs22 -
nzn sm2 ex 4mn 
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Hence we see that the co-ordinate Qa corresponds to a normal vibration antisymmetrical 
about they-axis (x1 = xa, Y1 = -ya; Fig. 29a) with frequency 

wa = ~ [ ~: ( 1 + :BA sin2a ) ]. 

The co-ordinates qsi, qs2 together correspond to two vibrations symmetrical about the 
y-axis (x1 = -xa, Y1 = ya; Fig. 29b, c), whose frequencies ws1, ws2 are given by the roots 
of the quadratic (in w2) characteristic equation 

w4-w~[!!_( 1 + 2mA cos2a) + 2k2 ( 1 + 2m A sin2a )] + 2p.ktk2 = 0. 
mA mn mA mn mA2mB 

\Vhen 2a = TT, all three frequencies become equal to those derived in Problem 1. 

PnoDLEM 3. The same as Problem 1, but for an unsymmetrical linear molecule ABC 
(Fig. 30). 

2 

c B A 

FIG. 30 

SoLuTION. The longitudinal (x) and transverse (y) displacements of the atoms are related 
by 

mA1tYl = mcl2.va. 

The potential energy of stretching and bending can be written as !k1( 8[})2 + !k1'( 812)2 + !k2i282, 
where 21 = 1t +12. Calculations similar to those in Problem 1 give 

k212 ( 1t2 12~ 412 ) 
w,2=-- --+--+--

1t2122 me mA mn 

for the transverse vibrations and the quadratic (in w2) equation 

w4-w2[k1(-
1 

+ _l ) +kt'(-
1 

+ _l )] + 
mA mn mn me 

=0 

for the frequencies wn, w12 of the longitudinal vibrations. 

§25. Damped oscillations 
So far we have implied that all motion takes place in a vacuum, or else that 

!he effect of the surrounding medium on the motion may be neglected. In 
reality, when a body moves in a medium, the latter exerts a resistance which 
tends to retard the motion. The energy of the moving body is finally dissipated 
by being converted into heat. 

Motion under these conditions is no longer a purely mechanical process, 
and allowance must be made for the motion of the medium itself and for the 
internal thermal state of both the medium and the body. In particular, we 
cannot in general assert that the acceleration of a moving body is a function 
only of its co-ordinates and velocity at the instant considered; that is, there 
are no equations of motion in the mechanical sense. Thus the problem of the 
motion of a body in a medium is not one of mechanics. 

There exists, however, a class of cases where motion in a medium can be 
approximately described by including certain additional terms in the 
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mechanical equations of motion. Such cases include oscillations with fre­
quencies small compared with those of the dissipative processes in the 
medium. When this condition is fulfilled we may regard the body as being 
acted on by a force of friction which depends (for a given homogeneous 
medium) only on its velocity. 

If, in addition, this velocity is sufficiently small, then the frictional force 
can be expanded in powers of the velocity. The zero-order term in the expan­
sion is zero, since no friction acts on a body at rest, and so the first non­
vanishing term is proportional to the velocity. Thus the generalised frictional 
force /rr acting on a system executing small oscillations in one dimension 
(co-ordinate x) may be written /rr = -()(X, where ()( is a positive coefficient 
and the minus sign indicates that the force acts in the direction opposite to 
that of the velocity. Adding this force on the right-hand side of the equation 
of motion, we obtain (see (21.4)) 

mx = -kx-()(x. (25.1) 

We divide this by m and put 

kfm = wo2, 0(/m = 2A; (25.2) 

wo is the frequency of free oscillations of the system in the absence of friction, 
and A is called the damping coefficient or damping decrement. t 

Thus the equation is 
(25.3) 

We again seek a solution x = exp(rt) and obtain r for the characteristic 
equation r2+2Ar+wo2 = 0, whence r1,2 = -A±y(A2-w02). The general 
solution of equation (25.3) is 

x = c1 exp(r1t) + cz exp(rzt). 

Two cases must be distinguished. If A < wo, we have two complex con­
jugate values of r. The general solution of the equation of motion can then 
be written as 

where A is an arbitrary complex constant, or as 

x = a exp(- At) cos( wt + ()(), (25.4) 

with w = v( wo2- A2) and a and ()( real constants. The motion described by 
these formulae consists of damped oscillations. It may be regarded as being 
harmonic oscillations of exponentially decreasing amplitude. The rate of 
decrease of the amplitude is given by the exponent A, and the "frequency" 
w is less than that of free oscillations in the absence of friction. For A <{ wo, 
the difference between w and w 0 is of the second order of smallness. The 
decrease in .frequency as a result of friction is to be expected, since friction 
retards motion. 

t The dimensionless produ , 
·ng decrement ct ,.y (where T = 21T/W is the period) is called the logarithmic 

damP• · 
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If ~ <{ wo, the amplitude of the damped oscillation is almost unchanged 
during the period 2TTfw. It is then meaningful to consider the mean values 
(over the period) of the squared co-ordinates and velocities, neglecting the 
change in exp(- ~t) when taking the mean. These mean squares are evidently 
proportional to exp(- Ut). Hence the mean energy of the system decreases 
as 

E = Eo exp( - ~t), (25.5) 

where Eo is the initial value of the energy. 
Next, let >. > wo. Then the values of r are both real and negative. The 

general form of the solution is 

X= Cl exp{- [~-y(~2 - wo2)]t}+c2 exp{- [~+ y(~2 -wo2)]t}. (25.6) 

We see that in this case, which occurs when the friction is sufficiently strong, 
the motion consists of a decrease in lxl, i.e. an asymptotic approach (as t --+ oo) 
to the equilibrium position. This type of motion is called aperiodic damping. 

Finally, in the special case where ~ = wo, the characteristic equation has 
the double root r -; - ~- The general solution of the differential equation is 
then 

x = (c1 + czt) exp(- ~t). (25.7) 

This is a special case of aperiodic damping. 
For a system with more than one degree of freedom, the generalised 

frictional forces corresponding to the co-ordinates .'t', are linear functions of 
the velocities, of the form 

frr,i = - L CXfkXk· (25.8) 
1: 

From purely mechanical arguments we can draw no conclusions concerning 
the. symmetry properties of the coefficients rxtk as regards the suffixes i and 
k, but the methods of statistical physicst make it possible to demonstrate 
that in all cases 

r1.ik = r1.ki· (25.9) 

Hence the expressions (25.8) can be written as the derivatives 

fir,, = - oFfO.i:, (25.10) 

of the quadratic form 

F = l 2: CXik·i:jXk, (25.11) 
i,k 

which is called the dissipative function. 
The forces (25.10) must be added to the right-hand side of Lagrange's 

equations: 
d (oL) oL oF 
dt ox, =ox,-ox,· 

(25.12) 

t See Statistical Physics, part 1, § 121, Pergamon Press, Oxford 1980. 
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The dtssipative function itself has an important physical significance: it 
gives the rate of dissipation of energy in the system. This is easily seen by 
calculating the time derivative of the mechanical energy of the system. We 
have ' 

:~ = :t (L:x, ~~ -L) 
f 

Since F is a quadratic function of the velocities, Euler's theorem on homo­
geneous functions shows that the sum on the right-hand side is equal to 2F. 
Thus 

dE/dt = -2F, (25.13) 

i.e. the rate of change of the energy of the system is twice the dissipative 
function. Since dissipative processes lead to loss of energy, it follows that 
F > 0, i.e. the quadratic form (25.11) is positive definite. 

The equations of small oscillations under friction are obtained by adding 
the forces (25.8) to the right-hand sides of equations (23.5): 

'Lmucxk+ LkikXk = - L CXtkXk· (25.14) 
k k k 

Putting in these equations Xk = Ak exp(rt), we obtain, on cancelling exp(rt), 
a set of linear algebraic equations for the constants Ak: 

L(mikr2+cxtkr+ktk)Ak = 0. 
k 

(25.15) 

Equating to zero their determinant, we find the characteristic equation, which 
determines the possible values of r: 

!mtkr2 +cxikr+ktk! = 0. (25.16) 

This is an equation in r of degree 2s. Since all the coefficients are real, 
its roots are either real, or complex conjugate pairs. The real roots must be 
negative, and the complex.roots must have negative real parts, since other­
wise the co-ordinates, velocities and energy of the system would increase 
exponentially with time, whereas dissipative forces must lead to a decrease. 
of the energy. 

§26. Forced oscillations under friction 
h The. theo.ry of forced oscillations under friction is entirely analogous to 

~ adt ~~et~ In §22 for oscillations without friction. Here we shall consider 
10 e e case of ape . d" f h" h . f "d bl . no 1c external orce, w 1C 1s o cons1 era e 1nterest. 
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Adding to the right-hand side of equation (25.1) an external forcefcos yt 
and dividing by m, we obtain the equation of motion: 

(26.1) 

The solution of this equation is more conveniently found in complex form, 
and so we replace cos yt on the right by exp(iyt): 

x+ 2..\x+ wo2x = (f/m) exp(iyt). 

We seek a particular integral in the form x = B exp(iyt), obtaining for B 
the value 

B = f/m( wo2 - y + 2M.y). (26.2) 

Writing B = b exp(iS), we have 

b = ffmv[( woz- y2)2 + 4A2y2], tanS = 2Ayf(y2- wo2). (26.3) 

Finally, taking the real part of the expression B exp( iyt) = b exp[i(yt + S)], 
we find the particular integral of equation (26.1); adding to this the general 
solution of that equation with zero on the right-hand side (and taking for 
definiteness the case wo > A), we have 

x = a exp( -At) cos( wt +ex)+ b cos(yt + S). (26.4) 

The first term decreases exponentially with time, so that, after a sufficient 
time, only the second term remains: 

x = b cos(yt + S). (26.5) 

The expression (26.3) for the amplitude b of the forced oscillation increases 
as y approaches wo, but does not become infinite as it does in resonance 
without friction. For a given amplitude f of the force, the amplitude of the 
oscillations is greatest when y = v( wo2- 2A2); for A <{ wo, this differs from 
wo only by a quantity of the second order of smallness. 

Let us consider the range near resonance, putting y = wo+E withE small, 
and suppose also that A <{ wo. Then we can approximately put, in (26.2), 
y2- wo2 = (y+ wo)(y- wo) ~ 2woE, 2iAy ~ 2iAwo, so that 

B = -f/2m(E-iA)w0 

or 
tanS= NE. 

(26.6) 

(26.7) 

A property of the phase difference S between the oscillation and the external 
force is that it is always negative, i.e. the oscillation "lags behind" the force. 
Far from resonance on the side y < wo, S ~ 0; on the side y > wo, S ~ -7T. 

The change of S from zero to -7r takes place in a frequency range near wo 
which is narrow (of the order of A in width); S passes through -}-rr when 
y = wo. In the absence of friction, the phase of the forced oscillation ch~nges 
discontinuously by 7r at y = wo (the second term in (22.4) changes stgn); 
when friction is allowed for, this discontinuity is smoothed out. 
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In steady motion, when the system executes the forced oscillations given 
by (26.5), its energy remains unchanged. Energy is continually absorbed by 
the system from the source of the external force and dissipated by friction. 
Let J(y) be the mean amount of energy absorbed per unit time, which depends 
on the frequency of the external force. By (25.13) we have J(y) = 2F, where 
F is the average value (over the period of oscillation) of the dissipative func­
tion. For motion in one dimension, the expression (25.11) for the dissipative 
function becomes F = !01:.X2 = >.:mx2. Substituting (26.5), we have 

F = Amb2y2 sin2(yt + S). 

The time average of the squared sine is !, so that 

J(y) = J..mb2y2. (26.8) 

Near resonance we have, on substituting the amplitude of the oscillation 
from (26.7), 

(26.9) 

This is called a dispersion-type frequency dependence of the absorption. 
The half-width of the resonance curve (Fig. 31) is the value of IE I for which 
J(E) is half its maximum value (E = 0). It is evident from (26.9) that in the 
present case the half-width is just the damping coefficient A. The height of 
the maximum is J(O) = f2/4mA, and is inversely proportional to A. Thus, 

///(Ol 

FIG. 31 

when the damping coefficient decreases, the resonance curve becomes more 
peaked. The area under the curve, however, remains unchanged. This area 
is given by the integral 

ro ro 

I l(y) dy = I I( E) dE. 
0 -w0 

Since J(E) diminishes rapidly with increasing lEI, the region where lEI is 
large is of no importance, and the lower limit may be replaced by - oo, and 
J(E) taken to have the form given by (26.9). Then we have 

f
ro j2"A fro dE 7Tj2 

J(E) dE = - = -. 
4m E2+A2 4m 

(26.10) 

-ro -ro 
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PROBLEM 

Determine the forced oscillations due to an external force f = /o exp(o:t) cos yt m the 
presence of friction. 

SOLuTloN. We solve the complex equation of motion 

x+2>.~+wo~X = {fo/m) exp(o:t+iyt) 

and then take the real part. The result is a forced oscillation of the form 

x = b exp( at) cos(yt+ 8), 
where 

b = /o!mv[(wo2 +o:2 -r+2o:>.)2+4r(o:+>.)2], 

tan 8 = -2'Y(o:+.\)/(w02-y2+o:2+2o:.\). 

§27. Parametric resonance 

There exist oscillatory systems which are not closed, but in which the 
external action amounts only to a time variation of the parameters. t 

The parameters of a one-din1ensional system are the coefficients m and k 
in the Lagrangian (21.3). If these are functions of time, the equation of 
motion is 

d 
-(mx)+kx = 0. (27.1) 
dt 

\\re introduce instead of t a new independent variable T such that 
dT = dtfm(t); this reduces the equation to 

d2xjdT2 +mkx = 0. 

There is therefore no loss of generality in considering an equation of motion 
of the form 

(27.2) 

obtained from (27.1) if m = constant. 
The form of the function w(t) is given by the conditions of the problem. 

Let us assume that this function is periodic with some frequency y and period 
T = 2TTfy. This means that w(t + T) = w(t), and so the equation (27.2) is 
invariant under the transformation t --+ t + T. Hence, if x(t) is a solution of 
the equation, so is x(t + T). That is, if x1(t) and x2(t) are two independent 
integrals of equation (27.2), they must be transformed into linear combina­
tions of themselves when t is replaced by t + T. It is possiblet to choose x1 

and xz in such a way that, when t --+ t + T, they are simply multiplied by 

t A simple example is that of a pendulum whose point of support executes a given periodic 
motion in a vertical direction (see Problem 3). 

t This choice is equivalent to reducing to diagonal form the matrix of the linear tran~­
formation of x:t(t) and x2(t), which involves the solution of the correspondin_g 'luadratJc 
secular equation, We shall suppose here that the roots of this equation do not come, de. 
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constants: x1(t + 7) = flllXl(t), x2(t + T) = fL2X2(t). The most general functions 
having this property are 

(27.3) 

where ll1(t), ll2(t) are purely periodic functions of time with period T. 
The constants /Ll and fL2 in these functions must be related in a certain way. 

Multiplying the equations .X1 + w2(t)x1 = 0, X2 +w2(t)x2 = 0 by x2 and x1 
respectively and subtracting, we have .X1x2- x2x1 = d(.X1x2- x1.X2)dt = 0, or 

(27.4) 

For any functions x1(t), x2(t) of the form (27.3), the expression on the left­
hand side of (27.4) is multiplied by fLlfL2 when t is replaced by t + T. Hence 
it is clear that, if equation (27.4) is to hold, we must have 

fLlfL2 = 1. (27.5) 

Further information about the constants fLl, /L2 can be obtained from the 
fact that the coefficients in equation (27.2) are real. If x(t) is any integral of 
such an equation, then the complex conjugate function x*(t) must also be 
an integral. Hence it follows that fLl, fL2 must be the same as fLl*, fL2*, i.e. 
either /Ll = fL2* or /Ll and /L2 are both real. In the former case, (27.5) gives 
fLl = 1/fLl*, i.e. lfL112 = ltL2I2 = 1: the constants fLl and fL2 are of modulus 
unity. 

In the other case, two independent integrals of equation (27.2) are 

(27.6) 

with a positive or negative real value of fL ( lfL I # 1 ). One of these functions 
(x1 or x2 according as lfL I > 1 or lfL I < 1) increases exponentially with time. 
This means that the system at rest in equilibrium (x = 0) is unstable: any 
deviation from this state, however small, is' sufficient to lead to a rapidly 
increasing displacement x. This is called·parametric resonance. 

It should be noticed that, when the initial values of x and x are exactly 
zero, they remain zero, unlike what happens in ordinary resonance (§22), 
in which the displacement increases with time (proportionally to t) even from 
initial values of zero. 

Let us determine the conditions for parametric resonance to occur in the 
important case where the function w(t) differs only slightLy from a constant 
value wo and is a simple periodic function: 

w2(t) = w02(1 + h cos yt), (27.7) 

where the constant h ~ 1 ; we shall suppose h positive, as may always be 
done. by suitably choosing the origin of time. As we shall see below, para­
m~tnc resHonance is strongest if the frequency of the function w(t) is nearly 
twice wo. ence we put y = 2w0 + £, where £ ~ wo. 
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The solution of equation of motioni" 

x+wo2[l+hcos(2wo-t;-£)t]x = 0 

may be sought in the form 

x = a(t) cos(w0 +~£)t+b(t) sin(wo+~£)t, 

§27 

(27.8) 

(27.9) 

where a( t) and b( t) are functions of time which vary slowly in comparison 
with the trigonometrical factors. This form of solution is, of course, not 
exact. In reality, the function x(t) also involves terms with frequencies which 
differ from wo+{E by integral multiples of 2wo+E; these terms are, how­
ever, of a higher order of smallness with respect to h, and may be neglected 
in a first approximation (see Problem 1). 

We substitute (27.9) in (27.8) and retain only terms of the first order in 
E, assuming that a ~ Ea, b ~ Eb; the correctness of this assumption under 
resonance conditions is confirmed by the result. The products of trigono­
metrical functions may be replaced by sums: 

cos( wo+}£)t. cos(2wo+ £)t = ~·cos 3( wo + !£)t + ~ cos( wo + ~£)1, 

etc., and in accordance with what was said above we omit terms with fre­
quency 3( w 0 + ~E). The result is 

-(2a+b£+!hwob)wo sin(wo+!£)t+(2b-a£+Yzwoa)wo cos(wo+{£)! = 0. 

If this equation is to be justified, the coefficients of the sine and cosine must 
both be zero. This gives two linear differential equations for the functions 
a(t) and b(t). As usual, we seek solutions proportional to exp(st). Then 
sa+ !( E + ~hwo)b = 0, ~( E- !hw0)a- sb = 0, and the compatibility condition 
for these two algebraic equations gives 

s2 = HWu.vo)2-£2]. (27.10) 

The condition for parametric resonance is that sis real, i.e. s2 > O.t Thus 
parametric resonance occurs in the range 

-!hwo < E < !hwo (27.11) 

on either side of the frequency 2wo.l1 The width of this range is proportional 
to h, and the values of the amplification coefficient s of the oscillations in the 
range are of the order of h also. 

Parametric resonance also occurs when the frequency y with which the 
parameter varies is close to any value 2w0Jn with n integral. The width of the 

t An equation of this form (with arbitrary y and h) is called in mathematical physics 
!IIathieu's equation. 

t The constant p. in (27.6) is related to s by p. = - exp(srrfwo); when t is replaced by 
t+2rr/2wo, the sine and cosine in (27.9) change sign. 

!I If we are interested only in the range of resonance, and not in the values of s in t~a.t 
range, the calculations may be simplified by noting that s = 0 at the ends of the range, • .. e. 
the coefficients a and bin (27.9) are constants. This gives immediately.:= ±~hwo as tn 

(27.11). 
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resonance range (region of instability) decreases rapidly with increasing n, 
however, namely as hn (see Problem 2, footnote). The amplification co­
efficient of the oscillations also decreases. 

The phenomenon of parametric resonance is maintained in the presence 
of slight friction, but the region of instability becomes somewhat narrower. 
As we have seen in §25, friction results in a damping of the amplitude of 
oscillations as exp(- At). Hence the amplification of the oscillations in para­
metric resonance is as exp[(s- A)t] with the positive s given by the solution 
for the frictionless case, and the limit of the region of instability is given by 
the equation s-A = 0. Thus, with s given by (27 .1 0), we have for the resonance 
range, instead of (27 .11 ), 

(27.12) 

It should be noticed that resonance is now possible not for arbitrarily 
small amplitudes h, but only when h exceeds a "threshold" value hk. When 
(27.12) holds, hk = 4Afw0• It can be shown that, for resonance near the fre­
quency 2w0Jn, the threshold hk is proportional to A11n, i.e. it increases with n. 

PROBLEMS 

PROBLEM 1. Obtain an expression correct as far as the term in lz2 for the limits of the region 
of instability for resonance near y = 2wo. 

SOLUTION. We seek the solution of equation (27.8) in the form 

x = ao cos(wo+!.:)t+bo sin(wo+!.:)t+m cos 3(wo+!.:)t+bl sin 3(wo+!.:)t, 

which includes terms of one higher order in h than (27.9). Since only the limits of the region 
of instability are required, we treat the coefficients ao, bo, a1, b1 as constants in accordance 
with the last footnote. Substituting in (27.8), we convert the products of trigonometrical 
functions into sums and omit the terms of frequency 5( wo+!.:) in this approximation. The 
result is · 

[ -ao( wo.: +!.:2) +!lzwo2ao+!lzwo2ai) cos( wo +!£)t+ 

+[ -bo(w0£+!.:2)-!Izwo2bo+!lzwo2bi] sin(wo+l.:)t+ 

+[!lzwo2ao-8wo2ad cos 3(wo+!.:)t+ 

+Wrwo2bo-8wo2bd sin 3(wo+!.:)t = 0. 

In the terms of frequency wo+!.: we retain terms of the second order of smallness, but in 
those of frequency 3( w0 + !.:) only the first-order terms. Each of the expressions in brackets 
must separately vanish. The last two give a1 = lzao/16, b1 = hbo/16, and then the first two 
give wo£± !lzwo2 +!.:2 -lz2wo2/32 = 0. 

Solving this as far as terms of order lz2, we obtain the required limits of.:: 

£ = ± !lzwo-h2 wof32. 

PROBLEM 2. Determine the limits of the region of instability in resonance near y = wo. 

SOLUTION, Putting y = wo+.:, we obtain the equation of motion 

x+wo2 [1 +lz cos(wo+.:)t]x = 0. 
Since the required I' · · . 

tmtttng values of £ ~ h2, we seek a solution In the form 
x = ao cos(wo+ ) • . , 

"t+bo sm(wo+.:)t+al cos 2(wo+.:)t+bl sm 2(wo+.:)t+ct, 
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which includes terms of the first t\vo orders. To determine the limits of instability, we again 
treat the coefficients as constants, obtaining 

[ -2womo+lhwo2al +hwo2cl] cos(wo+£)t+ 

+[ -2wo£bo+lhwo2bl] sin(wo+£)t+ 

+ [ -3 wo2at +!hwo2ao] cos 2(wo+£)t+ 

+ [ -3wo2bl +lhwo2bo] sin 2(wo+£)t+ [clwo2 +lhwo2ao] = 0. 

Hence a1 = hao,'6, b1 = hbo/6, c1 = -l'wo, and the limits aret £ = -Sh2 "'o/24, £ = h2wo/24. 

PROBLEM 3. Find the conditions for parametric resonance in small oscillations of a simple 
pendulum whose point of support oscillates vertically. 

SOLUTIO!'!. The Lagrangian derived in §5, Problem 3(c), gives for small oscillations 
(r/> < 1) the equation of motion :{> + wo2[1 +(4a/l) cos(2w0 +£)t)r/> = 0, where wo2 = gfl. 
Hence we see that the parameter h is here represented by 4a/l. The condition (27.11), for 
example, becomes 1£1 < 2ay(g/13). 

§28. Anharmonic oscillations 

The whole of the theory of small oscillations discussed above is based on 
the expansion of the potential and k~netic energies of the system in terms of 
the co-ordinates and velocities, retaining only the second-order terms. The 
equations of motion are then linear, and in this approximation we speak of 
linear oscillations. Although such an expansion is entirely legitimate when 
the amplitude of the oscillations is sufficiently small, in higher approxima­
tions (called anharmonic or non-linear oscillations) some minor but qualitatively 
different properties of the motion appear. 

Let us consider the expansion of the Lagrangian as far as the third-order 
terms. In the potential energy there appear terms of degree three in the co­
ordinates Xi, and in the kinetic energy terms containing products of velocities 
and co-ordinates, of the form XiXkXz. This difference from the previous 
expression (23.3) is due to the retention of terms linear in x in the expansion 
of the functions aik(q). Thus the Lagrangian is of the form · 

L = rz: (mtkXiXk- kikXiXk) + 
i,k 

+! L ntklXiXkXz-l L liklXiXkX[, (28.1) 
i,k.l i,k.l 

where nikl• likl are further constant coefficients. 
If we change from arbitrary co-ordinates Xi to the normal co-ordinates Qa. 

of the linear approximation, then, because this transformation is linear, the 
third and fourth sums in (28.1) become similar sums with Qa. and Qa. in place 

t Generally, the \vidth f.£ of the region of instability in resonance near the frequency 
2 wo/n is given by 

f.£= n2n-3J.nwof23!n-1J[(n-1)1)•, 
• • • n 3 132, 1957). 

11 result due toM. BELL (Proceedings of the Glasgow Mathemattcal Assoctatto ' 
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of the co-ordinates Xt and the velocities x1• Denoting the coefficients in these 
new sums by "-a.p-y and fLa.PJ'• we have the Lagrangian in the form 

L = f2:(Qa.2-wa.2Qa.2)+! L Aa.p-yQa.QpQy-l L fLa.p-yQa.QpQy· (28.2) 

\Ve shall not pause to write out in their entirety the equations of motion 
derived from this Lagrangian. The important feature of these equations is 
that they are of the form 

Qa.+ w~2Qa. = fa.(Q, Q, Q), (28.3) 

where fa. are homogeneous functions, of degree two, of the co-ordinates Q 
and their time derivatives. 

Using the method of successive approximations, we seek a solution of 
these equations in the form 

Q"' = Q,P>+Qa.<2>, (28.4) 

·where Qa. !2) ~ Qa. (1), and the Qa. U> satisfy the "unperturbed" equations 
Q)l>+wa.2Qa.<l) = 0, i.e. they are ordinary harmonic oscillations: 

Q a.<D = a a. cos( wa.t +()(a.). (28.5) 

Retaining only the second-order terms on the right-hand side of (28.3) in 
the next approximation, we have for the Qa.!2) the equations 

(28.6) 

where (28.5) is to be substituted on the right. This gives a set of inhomo­
geneous linear differential equations, in which the right-hand sides can be 
represented as sums of simple periodic functions. For example, 

Q}l>Qp> = aa.ap cos(wa.t+()(a.) cos(wpt+()(p) 

= !aa.a0{cos[( wa. + w0)t + Cl.a. + ()(p] +cos[( w"'- w0)t +()(a.- CJ.0 ]}. 

Thus the right-hand sides of equations (28.6) contain terms corresponding 
to oscillations whose frequencies are the sums and differences ~f the eigen­
frequencies of the system. The solution of these equations must be sought 
in a form involving similar periodic factors, and so we conclude that, in the 
second approximation, additional oscillations with frequencies 

(28.7) 

including the double frequencies 2wa. and the frequency zero (corresponding 
to a constant displacement), are superposed on the normal oscillations of the 
system. These are called combination j1·equencies. The corresponding ampli­
tudes ar~ proportional to the products aa.afl (or the squares aa.2) of the cor­
respon?mg normal amplitudes. 

In higher appr · · f h · 1 d d · . f h L o:x:.~ations, when urt er terms are me u e m the expan-
sio~ ~ff!r:nce~~:~~~~· t Combination frequencies occur which are the sums 
an han two wa; and a further phenomenon also appears. 
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In the third approximation, the combination frequencies include some which 
coincide with the original frequencies wa ( = wa + w p- w p)· When the method 
described above is used, the right-hand sides of the equations of motion there­
fore include resonance terms, which lead to terms in the solution whose 
amplitude increases with time. It is physically evident, however, that the 
magnitude of the oscillations- cannot increase of itself in a closed system 
with no external source of energy. 

In reality, the fundamental frequencies wa in higher approximations are 
not equal to their "unperturbed" values wa<o> which appear in the quadratic 
expression for the potential energy. The increasing terms in the solution 
arise from an expansion of the type 

cos(w <m + !1w )t ;;:; cos w W>t- t!1w sin w <o>t a a a a a ' 

which is obviously not legitimate when t is sufficiently large. 
In going to higher approximations, therefore, the method of successive 

approximations must be modified so that the periodic factors in the solution 
shall contain the exact and not approximate values of the frequencies. The 
necessary changes in the frequencies are found by solving the equations and 
requiring that resonance terms should not in fact appear. 

We may illustrate this method by taking the example of anharmonic oscil­
lations in one dimension, and writing the Lagrangian in the form 

L = !m.X2-!mwo2x2- !mO'.x3-im,Bx4. (28.8) 

The corresponding equation of motion is 

.X+ wo2x = - cxx2 - ,8x3. (28.9) 

We shall seek the solution as a series of successtve approximations: 
x = xU>+x<2>+x<3>, where 

x<ll = a cos wt 
' 

(28.10) 

with the exact value of w, which in turn we express as w = w0 + w<l) + w<2> + .... 
(The initial phase in x<l) can always be made zero by a suitable choice of the 
origin of time.) The form (28.9) of the equation of motion is not the most 
convenient, since, when (28.10) is substituted in (28.9), the left-hand side is 
not exactly zero. \Ve therefore rewrite it as 

:~
2 

x+ wo2x = -cxx2-,8x3- ( 1- :;
2 

).x. (28.11) 

Putting x = xU>+ x<2>, w = w0 + w<~> and omitting terms of above the 
second order of smallness, we obtain for xC2) the equation 

,X<2> + wo2:xf2> = - CJ.a2 cos2wt + 2wow<Da cos wt 

= -lza2 -lza2 cos 2wt + 2wowma cos wt. 

The condition for the resonance term to be absent from the ri~ht-hd~nd side 
• • J (1) Q • . h h d -rnat1on lSCUSsed IS stmp y w = , In agreement '.nt t e secon approx• 
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at the beginning of this section. Solving the inhomogeneous linear equation 
in the usual way, we have 

u.a2 u.a2 
x<2> = ---+-- cos2wt. 

2wo2 6w02 
(28.12) 

Putting in (28.11) .t' = x<1>+x<2>+x<3>, w = w0 +w<2 1, we obtain the equa­
tion for xC3> 

x<3) + wo2:xf3l = - 2a.x<ll.?..(2)- {3:\:(1)3 + 2wow<2>.?.,.(1} 

or, substituting on the right-hand side (28.10) and (28.12) and effecting a 
simple transformation, 

.XC3l +· w02x<3> = a3 [!f3- cx.
2 

] cos 3wt + 
6wo2 

ja'!f3] cos wt. 

Equating to zero the coefficient of the resonance term cos wt, we find the 
correction to the fundamental frequency, which is proportional to the squared 
amplitude of the oscillations: 

(
' 3{3 5a..2 ) 

w<2) = 8wo- 12wo3 a2. (28.13) 

The combination oscillation of the third order is 

!/3) cos 3wt. (28.14) 

§29. Resonance in non-linear oscillations 

\Yhen the anharmonic terms in forced oscillations 9f a system are taken 
into account, the phenomena of resonance acquire new properties. 

Adding to the right-hand side of equation (28.9) an external periodic force 
of frequency y, we have 

(29.1) 

here the frictional force, with damping coefficient A (assumed small) has also 
been included. Strictly speaking, when non-linear terms are included in the 
equation of free oscillations, the terms of higher order in the amplitude of 
the external force (such as occur if it depends on the displacement x) should 
also be included. \\'e shall omit these terms merely to simplify the formulae; 
they do not affect the qualitative results. 

Let Y 
1 

. wo +.,with ., small, i.e. y be near the resonance value. To ascertain 
the resu tmg tyPe of · · · · · · (2 1) . mot•on, tt ts not necessarv to constder equation 9. 
if we argue as follo·ws I h . · ". · · · · n t e hncar approxtmatton, the amphtude b ls gtven 
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near resonance, as a function of the amplitude f and frequency y of the 
external force, by formula (26.7), which we write as 

b2(E2+A.2) = f2/4m2wo2. (29.2) 

The non-linearity of the oscillations results in the appearance of an ampli­
tude dependence of the eigenfrequency, which we write as 

(29.3) 

the constant K being a definite function of the anharmonic coefficients (see 
(28.13)). Accordingly, we replace w 0 by w 0 + Kb2 in formula (29.2) (or, more 
precisely, in the small difference y-w0). With y-w0 = E, the resulting 
equation is 

(29.4) 

or 

E = Kb~ ± v[(f/2mwob)2 -A_2]. 

Equation (29.4) is a cubic equation in b2, and its real roots give the ampli­
tude of the forced oscillations. Let us consider how this amplitude depends 
on the frequency of the external force for a given amplitude f of that force. 

When f is sufficiently small, the amplitude b is also small, so that powers 
of b above the second may be neglected in (29.4), and we return to the form 
of b(E) given by (29.2), represented by a symmetrical curve with a maximum 
at the point E = 0 (Fig. 32a). As f increases, the curve changes its shape, 
though at first it retains its single maximum, which moves to positive E if 
K > 0 (Fig. 32b). At this stage only one of the three roots of equation (29.4) 
is real. 

When f reaches a certain value /k (to be determined below), however, the 
nature of the curve changes. For all f > /k there is a range of frequencies in 
which equation (29.4) has three real roots, corresponding to the portion 
BCDE in Fig. 32c. 

The limits of this range are determined by the condition db/dE = oo which 
holds at the points D and C. Differentiating equation (29.4) with respect to 
E, we have 

db/dE = (- Eb + Kb3)f( E2 + A_2- 4KEb2 + 3K2b4). 

Hence the points D and C are determined by the simultaneous solution of 
the equations 

(29.5) 

and (29.4). The corresponding values of E are both positive. The greatest 
amplitude is reached where dbjdE = 0. This gives E = Kb2, and from (29.4) 
we have 

bmax = JJ2mwo>..; (29.6) 

this is the same as the maximum value given by (29.2). 
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It may be shown (though we shall not pause to do so heret) that, of the 
three real roots of equation (29.4), the middle one (represented by the dotted 
part CD of the curve in Fig. 32c) corresponds to unstable oscillations of the 
system: any action, no matter how slight, on a system in such a state causes 
it to oscillate in a manner corresponding to the largest or smallest root (BC 
or DE). Thus only the branches ABC and DEF correspond to actual oscil­
lations of the system. A remarkable feature here is the existence of a range of 
frequencies in which two different amplitudes of oscillation are possible. For 
example, as the frequency of the external force gradually increases, the ampli­
tude of the forced oscillations increases along ABC. At C there is a dis­
continuity of the amplitude, which falls abruptly to the value corresponding 
to E, afterwards decreasing along the curve EF as the frequency increases 
further. If the frequency is now dimini9hed, the amplitude of the forced 
oscillations varies along FD, afterwards increasing discontinuously from D 
to B and then decreasing along BA. 

b 

b 

b 
(,cl 

FIG~ 3-2 

To calculate the value of /k, we notice that it is the value off for which 
the two roots of the quadratic equation in b2 (29.5) coincide; for f = /k, the 
section CD reduces to a point of inflection. Equating to zero the discriminant 

t The proof· · 
. Methods i 18 llven by, for example, N. N. BOGOLIUBOv andY. A. MITROPOLSKY, Asymp-

~~hi 1961. ., t e Theory of Non-Linear Oscillations, Hindustan Publishing Corporation, 
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of (29.5), we find E2 = 3/.2, and the corresponding double root is Kb2 = 2E/3. 
Substitution of these values of b and E in (29.4) gives 

(29.7) 

Besides the change in the nature of the phenomena of resonance at fre­
quencies y ~ wo, the non-linearity of the oscillations leads also to new 
resonances in which oscillations of frequency close to w 0 are excited by an 
external force of frequency considerably different from w 0• 

Let the frequency of the external force y ~ !w0 , i.e. y = !wo+E. In the 
first (linear) approximation, it causes oscillations of the system with the same 
frequency and with amplitude proportiomil to that of the force: 

x<D = ( 4ff3mwo2) cos(!wo + E )t 

(see (22.4)). When the non-linear terms are included (second approximation), 
these oscillations give rise to terms of frequency 2y ~ w 0 on the right-hand 
side of the equation of motion (29.1). Substituting xU> in the equation 

. t x<2J + 2A.X<2> + w02x(2l + ()(x<2>2 + ,Bx<2>3 = _ ()(x<l>2, 

using the cosine of the double angle and retaining only the resonance term 
on the rigl}.t-hand side, we have 

jf-2) + 2.\X(2l + w02x<2> + ()(x<2>2 + ,BJd-2>3 = - (8()(J2/9m2w04) cos( wo + 2E )t. 

(29.8) 

This equation differs from (29.1) only in that the amplitude f of the force is 
replaced by an expression proportional to J2. This means that rhe resulting 
resonance is of the same type as that considered above for frequencies 
y ~ w 0 , but is less strong. The function b(E) is obtained by replacing f by 
-8()(f2f9mwo4, and E by 2E, in (29.4): 

b2[(2E-Kb2)2+/.2] = 16x2f4f81m4wolO. (29.9) 

Next, let the frequency of the external force be y = 2wo +E. Jn the first 
approximation, we have x<ll = -(Jf3mwo2) cos(2wo+E)t. On· substituting 
x = x<1>+x<2> in equation (29.1), we do not obtain terms representing an 
external force in resonance such as occurred in the previous case. There is, 
however, a parametric resonance resulting from the third-order term pro­
portional to the product x<1>x<2>. If only this is retained out of the non-linear 
terms, the equation for x<2> is 

or 

.x<z> + 2,\X(2> + wo2x<2> = - 2()(x<llx<2> 

_x(2) + 2.\X<Z> + w02 [1 - 2
C!f cos(2w0 + E )t] x<2> = 0, 

3mwo4 
(29.10) 

t.e. an equation of the type (27.8) (including friction), which leads, as _we 
have seen, to an instability of the oscillations in a certain range of frequencies. 
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This equation, however, does not suffice to determine the resulting ampli­
tude of the oscillations. The attainment of a finite amplitude involves non­
linear effects, and to include these in the equation of motion we must retain 
also the terms non-linear in x<2>: 

(29.11) 

The problem can be considerably simplified by virtue of the following fact. 
Putting on the right-hand side of (29.11) x<2> = b cos[(wo+!E)t+S], where 
b is the required amplitude of the resonance oscillations and S a constant 
phase difference which is of no importance in what follows, and writing the 
,product of cosines as a sum, we obtain a term ( cxjb f3mwo2) cos[( w 0 + }E )t- S] 
of the ordinary resonance type (with respect to the eigenfrequency w 0 of the 
system). The problem thus reduces· to tha~ considered at the beginning of 
this section, namely ordinary resonance in a non-linear system, the only 
differences being that the amplitude of the external force is here represented 
by cxfbf3wo2, and E is replaced by !E. Making this change in equation (29.4), 
we have 

b2[(}E- Kh2)2 +/.2] = cx2f2b2f36m2wo6. 

Solving forb, we find the possible values of the amplitude: 

b=O , (29.12) 

(29.13) 

(29.14) 

·Figure 33 shows the resulting dependence of b on E for K > 0; for K < 0 
the curves are thereflections (in the b-axis) of those shown. The points B 
and c correspond to the values E = ± v{(cxff3mwo3)2-4/.2}. To the left of 
B, only the value b = 0 is possible, i.e. there is no resonance, and oscillations 
of frequency near w 0 are not excited. Between Band C there are two roots, 
b = 0 (BC) and (29.13) (BE). Finally, t9 the right of C there are three roots 
(29.12)-(29.14). Not all these, however, correspond to stable o!>cillations. 
The value b = 0 is unstable on BC, t and it can also be shown that the middle 
root (29.14) always gives instability. The unstable values of b are shown in 
Fig. 33 by dashed lines. 

Let us examine, for example, the behaviour of a system initially "at rest"t 
as the frequency of the external force is gradually diminished. Until the point 

"1: This segment corresponds to the region of parametric resonance (27.12}, and a com­
parh~shonthof <h29 ·10) and (27.8} gives lhl = 2rt.ff3mwo4 • The condition l2aj/3m,;,o3 l > 4.\ for 
\-V IC e p eno 

+ It should b rnenon can exist corresponds to h > hk. 
h• nomena are a;, recalled that only resonance phenomena are under consideration. If these 

~f ~requency y. sent, the system is not literally at rest, but executes small fc reed oscillations 
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C is reached, b = 0, but at C the state of the system passes discontinuously 
to the branch EB. As E decreases further, the amplitude of the oscillations 
decreases to zero at B. When the frequency increases again, the amplitude 
increases along BE. t 

b 

A 

FIG. 33 
• 

The cases of resonance discussed above are the principal ones which may 
occur in a non-linear oscillating system. In higher approximations, resonances 
appear at other frequencies also. Strictly speaking, a resonance must occur 
at every frequency y for which ny+mwo = wo with nand m integers, i.e. for 
every y = pwo/q with p and q integers. As the degree of approximation 
increases, however, the strength of the resonances, and the widths of the 
frequency ranges in which they occur, decrease so rapidly that in practice 
only the resonances at frequencies y ::::: Pwo/q with small p and q can be ob­
served. 

PROBLEM 

Determine the function b(£) for resonance at frequencies ')' ~ 3wo. 

SOLUTION. In the first approximation, x11l = -(f/8mwo2) cos(3wo+£)t. For the second 
approximation xC2l we have from (29.1) the equation 

_x(2J+2M(2J+wo2x(2J+ax(2)2+tJxC2J3 = -3,SxC1Jx(2J2, 

where only the term which gives the required resonance has been retained on the right-hand 
side. Putting x<2> = b cos[( roo +l~:)t+8J and taking the resonance term out of the product 
of three cosines, we obtain on the right-hand side the expression 

(3,Sb2J/32mwo2) cos[(wo+l£)t-28]. 

Hence it is evident that b(£) is obtained by replacing/by 3,Sb2J/32wo2, and£ by!£, in 
(29.4): 

b2[(!£-Kb2)2+.\2) = (9tl2J2f212m2wo6)b4 = Ab4. 

The roots of this equation are 

b = 0, 

Fig. 34 shows a graph of the function b(o:) for K > 0. Only the value b = 0 (the £-axis} and 
the branch AB corresponds to stability. The point A corresponds to£~: = 3(4K2.\2-A2)/4KA, 

t It must be noticed, however, that all the formulae derived here are valid onlY when the 
amplitude b (and also o:) is sufficiently small. In reality, the curves BE and CF n>eet, and at 
their point of intersection the oscillation ceases; thereafter, b = 0. 
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6~;2 = (4K2.\2+A2)/4K2A. Oscillations exist only for.:> £~;, and then b > b~;. Since the state 
b = 0 is always stable, an initial "push" is necessary in order to excite oscillations. 

The formulae given above are valid only for small£. This condition is satisfied if.\ is small 
and also the amplitude of the force is such that K.\2{ wo ~ A ~ Kwo. 

FIG. 34 

§30. Motion in a rapidly oscillating field 
Let us consider the motion of a particle subject both to a time-independent 

field of potential U and to a force 

/ = h coswt+f2sinwt (30.1) 

which varies in time with a high frequency w (/1,/2 being functions of the 
co-ordinates only). By a "high" frequency we mean one such that w ~ 1/T, 
where T is the order of magnitude of the period of the motion which the 
particle would execute in the field U alone. The magnitude off is not assumed 
small in comparison with the forces due to the field U, but we shall assume 

I 

that the oscillation (denoted below by g) of the particle as a result of this 
force is small. 

To simplify the calculations, let us first consider motion in one dimension 
in a field depending only on the space co-ordinate x. Then the equation of 
motion of the particle ist 

mx = -dUfdx+f. (30.2) 

It is evident, from the nature of the field in which the particle moves, that 
it will traverse a smooth path and at the same time execute small oscillations 
of frequency w about that path. Accordingly, we represent the function x(t) 
as a sum: 

x(t) = X(t) +g(t), (30.3) 

where g( t) corresponds to these small oscillations. 
The mean value of the function g(t) over its period 2TT/w is zero, and the 

function X(t) changes only slightly in that time. Denoting this average by a 
bar, we therefore have x = X(t), i.e. X(t) describes the "smooth" motion of 

t The CO-ordinat 
sarilY the mass of th x ne<:d not be Cartesian, and the coefficient m is therefore not neces-
asSumption, howevere J'artrcle, nor need it be constant as has been assumed in (30.2}. This 

' oes not affect the final result {see the last footnote to this section}. 
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the particle averaged over the rapid oscillations. vVe shall derive an equation 
which determines the function X( t). t 

Substituting (30.3) in (30.2) and expanding in powers of g as far as the 
first-order terms, we obtain 

.. dU d2 U of 
mX +mg = ---g-+f(X t)+g-. 

dx dx2 ' oX 
(30.4) 

This equation involves both oscillatory and "smooth" terms, which must 
evidently be separately equal. For the oscillating terms we can put simply 

mg =!(X, t); (30.5) 

the other terms contain the small factor g and are therefore of a higher order 
of smallness (but the derivative g is proportional to the large quantity w 2 

and so is not small). Integrating equation (30.5) with the function/ given by 
(30.1) (regarding X as a constant), we have 

g = -Jfmw2. (30.6) 

Next, we average equation ( 30.4) with respect to time (in the sense discussed 
above). Since the mean values of the first powers off and g are zero, the result 
IS 

dU of 
mX = ---+g-- = 

dU 
----

dX oX dX 

which involves only the function X(t). This equation can be written 

mX = - dUerr/dX, 

where the "effective potential energy" is defined ast 

' -Uerr = U +j2/2mw2 

= U +(JI2 +/22)/4mw2. 

(30.7) 

(30.8) 

Comparing this expression with (30.6), we easily see that the term added to 
U is just the mean kinetic energy of the oscillatory motion: 

(30. 9) 

Thus the motion of the particle averaged over the oscillations is the same 
as if the constant potential U were augmented by a constant quantity pro­
portional to the squared amplitude of the variable field. 

t The principle of this derivation is due to P. L. KAPITZA (1951). (JO 7 ! By means of somewhat more lengthy calculations it is easy to show that formulae · ) 
and (30.8} remain valid even if m is a function of x. 
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The result can easily be generalised to the case of a system with any number 
of degrees of freedom, described by generalised co-ordinates qi- The effective 
potential energy is then given not by (30.8), but by 

Uerr = 
1 -

U + --L a-1ik/i/k 
2w2 i,k 

- U + L laikflk. 
i,k 

(30.10) 

where the quantities a-lu, which are in general functions of the co-ordinates, 
are the elements of the matrix inverse to the matrix of the coefficients aik in 
the kinetic energy (5.5) of the system. 

PROBLEMS 

PROBLEM 1. Determine the positions of stable equilibrium of a pendulum whose point of 
support oscillates vertically with a high frequency 'Y ('}:> y(g/l)). 

SOLUTION. From the Lagrangian derived in §5, Problem 3(c), we see that in this case the 
variable force is I= -mlay2 cos yt sin r/> (the quantity x being here represented by the angle 
rf>). The "effective potential energy" is therefore Uen = mgl[ -cos r/>+(a2y2f4gl) sin2r/>]. The 
positions of stable equilibrium correspond to the minima of this function. The vertically 
downward position (r/> = 0) is always stable. If the condition a2y2 > 2gl holds, the vertically 
upward position ( r/> = w) is also stable. 

PROBLEM 2. The same as Problem 1, but for a pendulum whose point of support oscillates 
horizontally. 

SOLUTIO~- From the Lagrangian derived in §5, Problem 3(b), we find I= mlay2 cos yt 
cos r/> and Uen = mgl[ -cos rf>+(a2y2f4gl) cos2rf>]. If a2y2 < 2gl, the position r/> = 0 is stable. 
If a2y2 > 2gl, on the other hand, the stable equilibrium position is given by cos r/> = 2glfa2y2• 



CHAPTER VI 

MOTION OF A RIGID BODY 

§31. Angular velocity 
A rigid body may be defined in mechanics as a system of particles such that 
the distances between the particles do not vary. This condition can, of course, 
be satisfied only approximately by systems which actually exist in nature. 
The majority of solid bodies, however, change so little in shape and size 
under ordinary conditions that these changes may be entirely neglected in 
considering the laws of motion of the body as a whole. 

In what follows, we shall often simplify the derivations by regarding a 
rigid body as a discrete set of particles, but this in no way invalidates the 
assertion that solid bodies may usually be regarded in mechanics as continu­
ous, and their internal structure disregarded. The passage from the formulae 
which involve a summation over discrete particles to those for a continuous 
body is effected by simply replacing the mass of each particle by the mass 
p d V contained in a volume element d V (p being the density) and the sum­
mation by an integration over the volume of the body. 

To describe the motion of a rigid body, we use two systems of co-ordinates: 
a "fixed" (i.e. inertial) system XYZ, and a moving system x1 = x, x 2 = y, 
x3 = z which is supposed to be rigidly fixed in the body and to participate 
in its motion. The origin of the moving system may conveniently be taken 
to coincide with the centre of mass of the body. 

The position of the·body with respect to the fixed system of co-ordinates 
is completely determined if the position of the moving system is specified. 
Let the origin 0 of the moving system have the radius vector R (Fig. 35). 
The orientation of the axes of that system relative to the fixed system is given 
by three independent angles, which together with the three components of 
the vector R make six co-ordinates. Thus a rigid body is a mechanical system 
with six degrees of freedom. 

Let us consider an arbitrary infinitesimal displacement of a rigid body. 
It can be represented as the sum of two parts. One of these is an infinitesimal 
translation of the body, whereby the centre of mass moves to its final position, 
but the orientation of the axes of the moving system of co-ordinates is un­
changed. The other is an infinitesimal rotation about the centre of mass, 
whereby the remainder of the body moves to its final position. 

Let r be the radius vector of an arbitrary point P in a rigid body in the 
moving system, and t the radius vector of the same point in the fixed_ system 
(Fig. 35). Then the infinitesimal displacement dt of P consists of a d•s~lace­
ment dR, equal to that of the centre of mass, and a displacement <I>)( r 
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relative to the centre of mass resulting from a rotation through an infinitesimal 
angle c1p (see (9.1)): dr = dR+dcJ>xr. Dividing this equation by the time 
dt during which the displacement occurs, and puttingt 

dr/dt = v, 

we obtain the relation 

dRfdt = V, 

v = V+.Qxr. 

z 

FIG. 35 

dcj>ldt = .Q, 
' 

(31.1) 

(31.2) 

y 

The vector V is the velocity of the centre of mass of the body, and is also 
the translational 'L'elocity of the body. The vector .Q is called the angular 
velocity of the rotation of the body; its direction, like that of dcj>, is along the 
axis of rotation. Thus the velocity v of any point in the body relative to the 
fixed system of co-ordinates can be expressed in terms of the translational 
velocity of the body and its angular velocity of rotation. 

It should be emphasised that, in deriving formula (31.2), no use has been 
made of the fact that the origin is located at the centre of mass. The advan­
tages of this choice of origin will become evident when we come to calculate 
the energy of the moving body. 

Let us now assume that the system of co-ordinates fixed in the body is 
such that its origin is not at the centre of mass 0, but at some point 0' at 
a distance a from 0. Let the velocity of 0' be V', and the angular velocity 
of the new system of co-ordinates be .Q'. vVe again consider some point P 
in the body, and denote by r' its radius vector with respect to 0'. Then 
r = r' +a, and substitution in (31.2) gives v = V + .Q x a+ .Q x r'. The 
definition of V' and .Q' shows that v = V' + .Q' x r'. Hence it follows that 

V' = V +.Q xa, .Q' = .Q. (31.3) 
The second of these equations is very important. We see that the angular 

velocity of rotation, at any instant, of a system of co-ordinates fixed in 
the body is independent of the particular system chosen. All such systems 

t To avoid any mis d 
I city is sornewh t unb. erstanding, it should be noted that this way of expressing the angular 

ve o a ar ttrary· th ~A.. • 1 c "nfi · · 1 · for all finite rotations. · e vector "'I' extsts on y wr an 1 mtestma rotatiOn, and not 
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rotate with angular velocities .Q which arc equal in magnitude and parallel 
in direction. This enables us to call .Q the angular ulocity of the bolzv. The 
velocity of the translational motion, however, does not have this "absolute" 
property. 

It is seen from the first formula (31.3) that, if V and .Q are, at any given 
instant, perpendicular for some choice of the origin 0, then V' and .Q' are 
perpendicular for any other origin 0'. Formula (31.2) shows that in this case 
the velocities v of all points in the body arc perpendicular to .Q. It is then 
always possiblet to choose an origin 0' whose velocity V' is zero, so that the 
motion of the body at the instant considered is a pure rotation about an axis 
through 0'. This axis is called the instantaneous a\'is of rotation.:~ 

In what follows we shall always suppose that the origin of the moving 
system is taken to be at the centre of mass of the body, and so the axis of 
rotation passes through the centre of mass. In general hoth the magnitude 
and the direction of .Q vary during the motion. 

§32. The inertia tensor 

To calculate the kinetic energy of a rigid body, we may consider it as a 
discrete system of particles and put T = ~ ~ml'2, where the summation is 
taken over all the particles in the body. Here, and in what follows, we simplify 
the notation by omitting the suffix which dcnumerates the particles. 

Substitution of (31.2) gives 

T = L ~m(V +,Q xr)2 = L ~mV2+ L mV · .Q xr+ ~ 1m(.Q xr)2. 

The velocities V and .Q are the same for every point in the body. In the first 
term, therefore, tV2 can be taken outside the summation sign, and ~m is 
just the mass of the body, which we denote by fk· In the second term we put 
~mV · .Q x r = ~mr · V x .Q = V x .Q · ~mr. Since we take the origin of the 
moving system to be at the centre of mass, this term is zero, because ~mr = 0. 
Finally, in the third term we expand the squared vector product. The result 
lS 

(32.1) 

Thus the kinetic energy of a rigid body can be written as the sum of two 
parts. The first term in (32.1) is the kinetic energy of the translational motion, 
and is of the same form as if the whole mass of the body were concentrated 
:->.t the centre of mass. The second term is the kinetic energy of the rotation 
with angular velocity .Q about an axis passing through the contre of mass. 
It should be emphasised that this division of the kinetic energy into two parts 
is possible only because the origin of the co-ordinate system fixed in the 
body has been taken to be at its centre of mass. 

t 0' may, of course, lie outside the body. ch 
+ I h . I . . be osen so 
+ n t e general case where V and Q are not ~erpend~cu ar, the ~ngm ~ay uestion) of a 

as to make V and Q parallel, i.e. so that the motion cons1sts (at the mstant tn q 
rotation about some axis together with a translation along that axis. 
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We may rewrite the kinetic energy of rotation in tensor form, i.e. in terms 
of the componentsf X-t and 0-t of the vectors rand $2. We have 

Trot = ! L m(Oi2Xi2 - QiXinkxk) 

= ! L m(QiQkSikXl2- ninkXtXk) 

= ! nink L m(xl2Sik-XiXk). 

Here we have used the identity Qi = Siknk, where Sik is the unit tensor, 
whose components are unity for i = k and zero for i f= k. In terms of the 
tensor 

lik = L m(xl2Sik-XiXk) (32.2) 

we have finally the following expression for the kinetic energy of a rigid 
body: 

(32.3) 

The Lagrangian for a rigid body is obtained from (32.3) by subtracting 
the potential energy: 

(32.4) 

The potential energy is \n general a function of the six variables which define 
the position of the rigid body, e.g. the three co-ordinates X, Y, Z of the 
centre of mass and the three angles which specify the relative orientation of 
the moving and fixed co-ordinate axes. 

The tensor ltk is called the inertia tensor of the body. It is symmetrical, 
t.e. 

(32.5) 

as is evident from the definition (32.2). For clarity, we may gtve its com­
ponents explicitly: 

L m(y2+z2) 

-'.Lmyx 

-'.Lmzx 

-'.Lmxy 

L m(x2+z2) 

-'Lmzy 

- :Lmxz ] 
-'.Lmyz 

L m(x2+y2) 

(32.6) 

The components lxx, lyy, I zz are called the moments of inertia about the 
corresponding axes. 

The inertia tensor is evidently additive: the moments of inertia of a body 
are the sums of those of its parts. 

t In ~his chapter, the letters i, k, l are tensor suffixes and take the values 1, 2, 3. The 
summ~uo'; rule will always be used, i.e. summation signs are omitted, but sununation over 
theedva ueds m' 2 • 3 is implied whenever a suffix occurs twice in any expression. Such a suffix is 
call a 11 my sriffix F 2 · • h suffixe b. Or example, AtE• =_A • B, At2 = AzAz = A , etc. It IS obvwus t at 
dummY s can e repla d - . I d here in the exp - ce by any other hke suffixes, except ones wh•ch a rea y appear 
elseW resston concerned. 
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If the body is regarded as continuous, the sum in the definition (32.2) 
becomes an integral over the volume of the body: 

Ick = J p(xf-Stk-XtXk) dV. (32.7) 

Like any symmetrical tensor of rank two, the inertia tensor can be reduced 
to diagonaL form by an appropriate choice of the directions of the axes 
X1o X2, Xs. These directions are called the principal axes of inertia, and the 
corresponding values of the diagonal components of the tensor are called the 
pn"ncipal moments of inertia; we shall denote them by II, I2, Is. When the 
axes x1, x2, xs are so chosen, the kinetic energy of rotation takes the very 
simple form 

(32.8) 

None of the three principal moments of inertia can exceed the sum of the 
other two. For instance, 

{32.9) 

A body whose three principal moments of inertia are all different is called 
an asymmetrical top. If two are equal {II= I2 f= Is), we have a symmetrical 
top. In this case the direction of one of the principal axes in the x1x2-plane 
may be chosen arbitrarily. If all three principal moments of inertia are equal, 
the body is called a sphe-,:ical top, and the three axes of inertia may be chosen 
arbitrarily as any three mutually perpendicular axes. 

The determination of the principal axes of inertia is much simplified if 
the body is symmetrical, for it is clear that the position of the centre of mass 
and the directions of the principal axes must have the same symmetry as 
the body. For example, if the body has a plane of symmetry, the centre of 
mass must lie in that plane, which also contains two of the principal axes of 
inertia, while the third is perpendicular to the plane. An obvious case of this 
kind is a coplanar system of particles. Here there is a simple relation between 
the three principal moments of inertia. If the plane of the system is taken as 
the X1x2-plane, then xs = 0 for every particle, and soh = J:..mx22, I2 = J:..mx12, 
Is = J:..m(x12+x22), whence 

Is= h+h. (32.10) 

If a body has an axis of symmetry of any order, the centre of mass must lie 
on that axis, which is also one of the principal axes of inertia, while the other 
two are perpendicular to it. If the axis is of order higher than the second, 
the body is a symmetrical top. For any prin~ipal axis perpendicular to the 
axis of symmetry can be turned through an angle different from 180° about the 
latter, i.e. the choice of the perpendicular axes is not unique, and this can 
happen only if the body is a symmetrical top. 

A particular case here is a collinear system of particles. If the line 0~ the 
system is taken as the x3-axis, then x1 = x2 = 0 for every particle, an so 
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two of the principal moments of inertia are equal and the third is zero: 

h = I2 = 2: mxs2, Is = 0. (32.11) 

Such a system is called a rotator. The characteristic property which distin­
guishes a rotator from other bodies is that it has only two, not three, rotational 
degrees of freedom, corresponding to rotations about the X! and x2 axes: it 
is clearly meaningless to speak of the rotation of a straight line about itself. 

Finally, we may note one further result concerning the calculation of the 
inertia tensor. Although this tensor has been defined with respect to a system 
of co-ordinates whose origin is at the centre of mass (as is necessary if"the 
fundamental formula (32.3) is to be valid), it may sometimes be more con­
veniently found by first calculating a.similar tensor I' ik = ~m(x' z2Sik- x' 1x' A;), 
defined with respect to some other origin 0'. If the distance 00' is repre­
sented by a vector a, then r = r' +a, x, = x' i +a,; since, by the definition 
of 0, ~mr = 0, we have 

I' ik = ltk + p{ a2Stk- aiak ). (32.12) 

Using this formula, we can easily calculate Iik if l'ik is known. 

PROBLEMS 

PROBLEM 1. Determine the principal moments of inertia for the following types of mole­
cule, regarded as systems of particles at fixed distances apart: (a) a molecule of collinear 
atoms, (b) a triatomic molecule which is an isosceles triangle (Fig. 36), (c) a tetratomic 
molecule which is an equilateral-based tetrahedron (Fig. 37). 

SOLUTION. (a) 

FIG. 36 

It = l2 =; .L mamblab2, 

a .. b 

FIG. 37 

la = 0, 

where ma is the mass of the ath atom, lab the distance between the ath and bth atoms, and 
the summation includes one term for every pair of atoms in the molecule. 

For a diatomic molecule there is only one term in the sum, and the result is obvious: it is 
the product of the reduced mass of the two atoms and the square of the distance between 
them: h = I2 = mtmJ2j(mt +m2)-

(b) The centre of mass is on the axis of symmetry of the triangle, at a distance X2 = mw/,_, 
from its base (h being the height of the triangle). The moments of inertia are It= 2mtm2h2ffL, 
h = lmla2, Ia = I•+I •. 

(c) The c;;ntre _of mass is on the axis of symmetry of the tetrahedron, at a distance 
X 3 = m2h/P. rorn Its base (h being the height of the tetrahedron). The moments of inertia 
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are 1, = 12 = 3mlm2h2/p.+lm·a2, 1a = mw2. If 1nl = 1n2, h = v(2f3)a, the molecule is a 
regular tetrahedron and 1, = h = la = mw2. 

PROBLEM 2. Determine the principal moments of inertia for the following homogeneous 
bodies: (a) a thin rod of length l, (b) a sphere of radius R, (c) a circular cylinder of radius R 
and height h, (d) a rectangular parallelepiped of sides a, b, and c, (e) a circular cone of height 
h and base radius R, (f) an ellipsoid of semiru.es a, b, c. 

SOLUTION. (a) 1, = 12 = 1\p.l2, 1a = 0 (we neglect the' thickness of the rod). 
(b) h = 12 = la = fp.R2 (found by calculating the sum 1,+12+la = 2pfr2 dV). 
(c) h = h =. !JL(R2 +lh2), 1a = lp.R2 (where the xa-axis is along the axis of the cylinder). 
(d) 11 = np.(b2+c2), h = ].1~p.(a2+c2), 1a = ].\p.(a2+b2) (where the aXes XI, X2, X3 are 

along the sides a, b, c respectively). 
(e) We first calculate the tensor I'tk with respect to axes whose origin is at the vertex of 

the cone (Fig. 38). The calculation is simple if cylindrical co-ordinates are used, and the result 
is 1'1 = 1'2 = fp.(!R2+h2), I'a = ,'bp.R2. The centre of mass is easily shown to be on the 
axis of the cone and ·at a distance a = -ih from the vertex. Formula (32.12) therefore· gives 
1, = 12 = 1'1-p.a2 = i\rp.(R2+!h2), la = I' a = itp.R2. 

FIG. 38 

(f) The centre of mass is at the centre of the eilipsoid, and the principal axes of inertia are 
along the axes of the eilipsoid. The integration over the volume of the ellipsoid can be reduced 
to one over a sphere by the transformation x = af, y = b7J, z = c{, which converts the equa­
tion of the surface of the ellipsoid x 2fa2+y2fb2+z2fc2 = 1 into that of the unit sphere 
f2+7J2+{2 = 1. 

For example, the moment of inertia about the x-axis is 

1, = p Iff (y2+z2) dx dy dz 

= pabcfff (b27)2+c2 { 2) df d7J d{ 

= }abcl'(b2+c2 ), 

where I' is the moment of inertia of a sphere of unit radius. Since the volume of the ellipsoid 
is 4TTabcf3, we find the moments of inertia 1, = !p.(b2+c2), 12 = !p.(a2+c2), 1a = !p.(a2+b2). 

PROBLEM 3. Detennine the frequency of small oscillations of a compound pendulum (a 
rigid body swinging about a fixed horizontal axis in a gravitational field). 

SOLUTIO~. Let l be the distance between the centre of mass of the pendulum and the axis 
about which it rotates, and a:, {3, y the angles between the principal axes of inertia and ~he 
axis of rotation. We take as the variable co-ordinate the angle <P between th~~~:ttyicaJ 

I. h f 1 h · f · The -.e Of and a me throug the centre o mass perpendicu ar to t e axts o rotauon. the princip 1 the centre of mass is V = lt/>, and the components of the angular velocity along a 
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axes of inertia are </> cos ex, </> cos {3, </> cosy. Assuming the angle r/> to be small, we find the 
potential energy U = p.gl(l-cos r/>) ~ }pglrf>2• The Lagrangian is therefore 

L = !p.l2</>2 +HI. cos2 cx+J2 cos2f3+h cos2y).f,2 -!,<glrf>2. 

The frequency of the oscillations is consequently 

w 2 = pgl/(p.l2 +It cos2cx+h cos2{3+h cos2y). 

PROBLEM 4. Find the kinetic energy of the system shown in Fig. 39: OA and ABare thin 
uniform rods oflengthl hinged together at A. The rod OA rotates (in the plane of the diagram) 
about 0, while the end B of the rod AB slides along Ox. 

y 

A 

0 __ '1____________ ----x 
B 

FtG. 39 

SOLUTION. The velocity of the centre of mass of the rod OA (which is at the middle of 
the rod) is }l.f,, where rf> is the angle AOB. The kinetic energy of the rod OA is therefore 
T1 = f;p.l2.f>2+lf</>2, where p. is the mass of each rod. 

The Cartesian co-ordinates of the centre of mass of the rod AB are X = ~~ cos rf>, Y 
= }l sin rf>. Since the angular velocity of rotation of this rod is also .f,, its kinetic energy is 
T2 = !p.(X2+Y2)+lf</>2 = f;p.i2(1 +8 sin2 r/>)</>2+lf¢2. The total kinetic energy of this 
system is the~efore T = !p.l2(1 +3 sin2r/>)</>2, since I = 1\p.l2 (see Problem 2(a)). 

PROBLEM 5. Find the kinetic energy of a cylinder of radius R rolling on a plane, if the mass 
of the cylinder is so distributed that one of the principal axes of inertia is parallel to the axis 
of the cylinder and at a distance a from it, and the moment of inertia about that principal 
axis is I. 

SOLUTIO~. Let r/> be the angle between the vertical and a line from the centre of mass 
perpendicular to the axis of the cylinder (Fig. 40). The motion of the cylinder at any instant 

FIG. 40 

may be regarded as a pure rotation about an instantaneous axis which coincides with the 
line Where the cylinder touches t_he plane. The angular velocity of this rotation is <f,, sinee 
the angular velocity of rotation about all parallel axes is the same. The centre of mass is at a 
distance v!LI2 +_,R2 -2aR cos</>) from the instantaneous axis, and its velocity is therefore 
V = <f,·v(a·+R--2aR cos</>). The total kinetic energy is 

T = h•(a2 +R2 -2nR cos </>)r/>2 +!fc/>2• 
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PROBLEM 6. Find the kinetic energy of a homogeneous cylinder of radius a rolling inside 
a cylindrical surfas:e of radius R (Fig. 41). 

FIG. 41 

SoLUTION. We use the angle r/> between the vertical and the line joining the centres of the 
cylinders. The centre of mass of the rolling cylinder is on the axis, and its velocity is V = 
.f,(R -a). We can calculate the angular velocity as that of a pure rotation about an instantaneous 
axis which CGincides with the line of contact of the cylinders; it is f.!= Vfa = .f,(R-a)fa. 
If I a is the moment of inertia about the axis of the cylinder, then 

T = lp.(R-a)2t/>2+lfa(R-a)2rf>2fa2 = -ip.(R-a)2.f,2, 

la being given by Problem 2(c). 

PRoBLEM 7. Find the kinetic energy of a homogeneous cone rolling on a plane. 

SOLUTION. We denote by 8 the angle between the line OA -in which the cone touches the 
plane and some fixed direction in the plane (Fig. 42). The centre of mass is on the axis of the 
cone, and its velocity V = aO cos a:, where 2a: is the vertical angle of the cone and a the 

z 

y 

A 

FIG. 42 

distance of the centre of mass from the vertex. The angular velocity can be calculated as 
that of a pure rotation about the instantaneous axis OA: f.! = V{a sin a: = 0 cot a:. One of 
the principal axes of inertia (xs) is along the axis of the cone, and we take another (x2) perpen­
dicular to the axis of the cone and to the line OA. Then the components of the vector n 
(which is parallel to OA) along the principal axes of inertia are f.! sin a:, 0, f.! cos a:. The kinetic 
energy is thus 

= Jp./1202(1 +S cos2a:)/40, 

where his the height of the cone, and It, la and a have been given in Problem 2(e). 

PROBLEM 8. Find the kinetic energy of a homogeneous cone whose base rolls on a plane 
and whose vertex is fixed at a height a~ve the plane equal to the radius of the base, so that 
the axis ofthe cone is parallel to the plane. 

SOLUTION. We use the angle 8 between a fixed direction in the plane and the .Pr;j~t:o 
of the axis of the cone on the plane (Fig. 43). Then the velocity of the centre of mass ,s • 
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the notation being as in Problem 7. The instan.taneous axis of rotation is the generator OA 
which passes through the point where the cone touches the plane. The centre of mass is at a 
distance a sin a from this axis, and so f.! = Vfa sin a = Bfsin a. The components of the 
vector n along the principal axes of inertia are, if the x2-axis is taken perpendicular to the 
axis of the cone and to the line OA, f.! sin a = 0, 0, f.! cos a = 0 cot a. The kinetic energy 
is therefore 

T = i1La202+lft02+lfa02 cot2a 

= J,.h202(sec2a+5)/40. 

z 

Fm. 43 

y 

PROBLEM 9. Find the kinetic energy of a homogeneous ellipsoid which rotates about one 
of its axes (AB in Fig. 44) while that axis itself rotates about a line CD perpendicular to it 
and passing through the centre of the ellipsoid. 

SoLuTION. Let the angle of rotation about CD be 8, and that about AB (i.e. the angle 
between CD and the xt-axis of inertia, which is perpendicular to AB) be tf>. Then the com­
ponents of n along the axes of inertia are 0 cos </>, 0 sin 4>, .f,, if the xa-axis is AB. Si-nce the 
centre of mass, at the centre of the ellipsoid, is at rest, the kinetic energy is 

T =!(It cos2tf>+h sin2tf>)02+!Ja.f,2. 

FIG. 44 FIG. 45 

PROBLEM 10. The same as Problem 9, but for the case where the axis ABis not perpendicu­
lar to CD and is an axis of symmetry of the ellipsoid (Fig. 45). 

SOLUTION. The components of n along th~ axis AB and the other two principal axes of 
inertia, which are perpendicular to AB but otherwise arbitrary, are 0 cos a cos tf>, 0 cos ax 
x sin q,, .f>+O sin a. The kinetic energy is T = lft82 cos2a+ila(./>+O sin a)2. 

§33. Angular momentum of a rigid body 
The value of the angular momentum of a system depends, as we know, on 

the point with respect to which it is defined. In the mechanics of a rigid body, 



106 Motion of a Rigid Body §33 

the most appropriate point to choose for this purpose is the origin of the 
moving system of co-ordinates, i.e. the centre of mass of the body, and in 
what follows we shall denote by M the angular momentum so defined. 

According to formula {9.6), when the origin is taken at the centre of mass 
of the body, the angular momentum M is equal to the "intrinsic" angular 
momentum resulting from the motion relative to the centre of mass. In the 
definition M = ~mrxv we therefore replace v by .Qxr: 

M = 2mrx (.Qxr) = 'L;m[r2.Q-r(r·.Q)], 

or, in tensor notation, 

Mi = 2 m(xl2Qi-xixkQk) :--- Qk 2m(xl2Sik-XiXk)· 

Finally, using the definition (32.2) of the inertia tensor, we have 

Mi = JikQk· (33.1) 

If the axes XI, .x2, X3 are the same as the principal axes of inertia, formula 
(33.1) gives 

(33.2) 

In particular, for a spherical top, where all three principal moments of inertia 
are equal, we have simply 

M = J.Q , (33.3) 

i.e. the angular momentum vector is proportional to, and in the same direc­
tion as, the angular velocity vector. For an, arbitrary body, however, the 
vector M is not in general in the same direction as .Q; this happens only 
when the body is rotating about one of its principal axes of inertia. 

Let us consider a rigid body moving freely, i.e. not subject to any external 
forces. \Ve suppose that any uniform translational motion, which is of no 
interest, is removed, leaving a free rotation of the body. 

As in·any closed system, the angular momentum of the freely rotating body 
is constant. For a spherical top the condition M = constant gives .Q = con­
stant; that is, the most general free rotation of a spherical top is a uniform 
rotation about an axis fixed in space. 

The case of a rotator is equally simple. Here also M = J.Q, and the vector 
,Q is perpendicular to the axis of the rotator. Hence a free rotation of a rotator 
is a uniform rotation in one plane about an axis perpendicular to that plane. 

The law of conservation of angular momentum also suffices to determine 
the more complex free rotation of a symmetrical top. Using the fact that the 
principal axes of inertia x1, x2 (perpendicular to the axis of symmetry {x3) 
of the top) may be chosen arbitrarily, we take the x2-axis perpendicular to 
the plane containing the constant vector M and the instantaneous position 
of the X3-axis. Then M 2 = 0, and formulae {33.2) show that !22 = 0. This 
means that the directions of M, ,Q and the axis of the top are at every instant 
in one plane (Fig. 46). Hence, in turn, it follows that the velocity v = Qhxr 

f · h · · · d"cular to t at o every pmnt on t e ax1s of the top IS at every mstant perpen 1 
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plane. That is, the axis of the top rotates uniformly {see below) about the 
direction of M, describing a circular cone. This is called regular precession 
of the top. At the same time the top rotates uniformly about its own axis. 

Fm.46 

The angular velocities of these two rotations' can easily be expressed in 
terms of the given angular momentum M and the angle (} between the axis 
of the top and the direction of M. The angular velocity of the top about its 
own axis is just the component !23 of the vector .Q along the axis : 

(33.4) 

To determine the rate of precession Qpr, the vector .Q must be resolved into 
components along x3 and along M. The first of these gives no displacement 
of the axis of the top, and the second component is therefore the required 
angular velocity of precession. Fig. 46 shows that Dpr sin 0 = !21, and, since 
!21 = M1/h = {M/h) sin 0, we have 

(33.5) 

§34. The equations of motion of a rigid body 
Since a rigid body has, in general, six degrees of freedom, the general 

equations of motion must be six in number. They can be put in a form which 
gives the time derivatives of two vectors, the momentum and the angular 
momentum of the body. 

The first ~qu~tion is obtained by simply summing the equations p = f 
for each particle In the body, p being the momentum of the particle and f the 
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force acting on it. In terms of the total momentum of the body P = ~p = fi-V 
and total force acting on it F = ~f, we have 

dP/dt = F. (34.1) 

Although F has been defined as the sum of all the forces f acting on the 
various particles, including the forces due to other particles, F actually 
includes only external forces: the forces of interaction between the particles 
composing the body must cancel out, since if there are no external forces 
the momentum of the body, like that of any closed system, must be conserved, 
i.e. we must have F = 0. 

If U is the potential energy of a rigid body in an external field, the force 
F is obtained by differentiating U with respect to the co-ordinates of the 
centre of mass of the body: 

F = -oUfoR. (34.2) 

For, when the body undergoes a translation through a distance SR, the radius 
vector r of every point in the body changes by SR, and so the change in the 
potential energy is 

SU = 2_(oUfor) · Sr = SR · 2_oUfor = -SR · 2_ f = -F ·SR. 

It may be noted that equation {34.1) can also be obtained as Lagrange's 
equation for the co-ordinates of the centre of mass, (dfdt)oLfoV = oLfoR, 
with the Lagrangian (32.4), for which 

oLfoV = fi-V = P, oLJoR = - oUJoR = F. 

Let us now derive the second equation of motion, which gives the time 
derivative of the angular momentum M. To simplify the derivation, it is 
convenient to choose the "fixed" {inertial) frame of reference in such a way 
that the centre of mass is at rest in that frame at the instant considered. 

We have M = ( d/dt)~r x p = · ~r x p + ~r xp. Our choice of the frame of 
reference {with V = 0) means that the value of rat the instant considered is 
the same as v = t. Since the vectors v and p = mv are parallel, rxp = 0. 
Replacing p by the force f, we have finally 

dM/dt = K, (34.3) 

where 

K = 2_rxf. (34.4) 

Since M has been defined as the angular momentum about the centre of 
mass {see the beginning of §33), it is unchanged when we go from one inertial 
frame to another. This is seen from formula (9.5) with R = 0. We can there­
fore deduce that the equation of motion (34.3), though derived for a particular 
frame of reference, is valid in any other inertial frame, by Galileo~s relativity 
principle. 

Th · h ~ d K · the total e vector rxf IS called t e moment of the force ... , an so IS d L"k 
torque, i.e. the sum of the moments of all the forces acting on the bo Y· I e 
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the total force F, the sum (34.4) need include only the external forces: by 
the law of conservation of angular momentum, the sum of the moments of 
the internal forces in a closed system must be zero. 

The moment of a force, like the angular momentum, in general depends on 
the choice of the origin about which it is defined. In (34.3) and (34.4) the 
moments are defined with respect to the centre of mass of the body. 

When the origin is moved a distance a, the new radius vector r' of each 
point in the body is equal tor-a. Hence K = ~rxf= ~r'xf+~axfor 

K = K'+axF. (34.5) 

Hence we see, in particular, that the value of the torque is independent of 
the choice of origin if the total force F = 0. In this case the body is said to 
he acted on by a couple. 

Equation (34.3) may be regarded as Lagrange's equation (d/dt) oLfo!J. 
= oLfo.p for the "rotational co-ordinates". Differentiating the Lagrangian 
(32.4) with respect to the components of the vector !J., we obtain oLfoO.i 
= lu,O.k = Mi. The change in the potential energy resulting from an 
infinitesimal rotation S.p of the body is SU = - ~f.Sr = -~f.S.pxr 
= - S.p-~rxf = -K·S.P, whence 

K = - oUfo.p, (34.6) 

so that oLJo.p = - oU/o.P = K. 
Let us assume that the vectors F and K are perpendicular. Then a vector a 

can always be found such that K' given by formula (34.5) is zero and 

K = ax F. (34.7) 

The choice of a is not unique, since the addition to a of any vector parallel 
to F does not affect equation (34. 7). The condition K' = 0 thus gives a straight 
line, not a point, in the moving system of co-ordinates. When K is perpendi­
cular to F, the effect of all the applied forces can therefore be reduced to that 
of a single force F acting along this line. 

Such a case is that of a uniform field of forre, in which the force on a particle 
is f = eE, with E a constant vector characterising the field and e characterising 
the properties of a particle with respect to the field. t Then F = E~e, 
K = ~er x E. Assuming that ~e t= 0, we define a radius vector ro such that 

ro = 2erf2 e. (34.8) 

Then the total torque is simply 

K = rox F. (34.9) 

Thus, when a rigid body moves in a uniform field, the effect of th_e field 
reduces to the action of a single force F applied at the point whose radius 
vector is (34.8). The position of this point is entirely determined by the 

t For exa~pl~, in a uniform electric field E is the field strength and e the charge; in a 
uniform gravttatlOnal field E is the acceleration g due to gravity and e is the mass m. 
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properties of the body it-self. In a gravitational field, for example, it is the 
centre of mass. 

§35. Eulerian angles 
As has already been mentioned, the motion of a rigid body can be described 

by means of the three co-ordinates of its centre of mass and any three angles 
which determine the orientation of the axes x1, x2, X3 in the moving system of 
co-ordinates relative to the fixed system X, Y, Z. These angles may often be 
conveniently taken as what are called Eulerian angles. 

' ' \ 
' \ 
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FIG. 47 

Since we are here interested only in the angles between the co-ordinate 
axes, we may take the origins of the two systems to coincide {Fig. 47). The 
moving x1x2-plane intersects the fixed XY-plane in some line ON, called the 
line of nodes. This line is evidently perpendicular to both the Z-axis and the 
x3-axis; we take its positive direction as that of the vector product z x X3 
{where z and X3 are unit vectors along the Z and x3 axes). 

We take, as the quantities defining the position of the axes x1, x2, X3 
relative to the axes X, Y, z the angle (}between the z~and X3 axes, the angle c/> 

between the X-axis and ON, and the angle f between the x1-axis and ON. 
The angles cf> and if; are measured round the Z and x3 axes respectively in the 
direction given by the corkscrew rule. The angle (} takes values from 0 to TT, 

and c/> and if; from 0 to 2TT.t 

t The angles 8 and t/>-t>r are respectively the polar angle and azimuth of the direction 
xa with respect to the axes X, Y, Z. The angles 8 and lTT-1/l are respectively the polar angle 
and azimuth of the direction Z with respect to the axes Xl, x2, xs. 
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Let us now express the components of the angular velocity vector .Q along 
the moving axes x1. x2, X3 in terms of the Eulerian angles and their derivatives. 
To do this, we must find the components along those axes of the angular 
velocities 0, ~. ~- The angular velocity (j is along the line of nodes ON, and 
its components are 81 = 8 cos 1/J, 82 = -8 sin 1/J, 03 = 0. The angular velo­
city~ is along the Z-axis; its component along the x3-axis is ¢3 = ¢ cos e, and 
in the X1X2-plane ¢sin e. Resolving the latter along the. Xl and X2 axe~. we 
have ¢1 = cf> sin e sin 1/J, c/>2 = cf> sin e cos 1/J. Finally, the angular velocity ~ 
is along the x3-axis. 

Collecting the components along each axis, we have 

!21 =~sinOsinifi+Ocosifi, 

Q2 = ~ sine cos 1/1- e sin 1/J, 

!23 =~cosO+~. 
) (35.1) 

If the axes x1, x2, X3 are taken to be the principal axes of inertia of the body, 
the rotational kinetic energy in terms of the Eulerian angles is obtained by 
substituting (35.1) in (32.8). _ 

For a symmetrical top {h = h t= h), a simple reduction gives 

(35.2) 

This expression can also be more simply obtained by using the fact that the 
choice of directions of the principal axes x1, x2 is arbitrary for a symmetrical 
top. If the x1 axis is taken along the line of nodes ON, i.e. ifi = 0, the compo­
nents of the angular velocity are simply 

(35.3) 

As a simple example o{ the use of the Eulerian angles, we shall use them 
to determine the free motion of a symmetrical top, already found in §33. 
We take the Z-axis of the fixed system of co-ordinates in the direction of the 
constant angular momentum M of the top. The x3-axis of the moving system 
is along the axis of the top; let the x1-axis coincide with the line of nodes at 
the instant considered. Then the components of the vector M are, by 
formulae {35.3), M1 = hrl1 = hO, M 2 = hrl2 = h¢ sin e, M3 = hrl3 
=I 3( ¢ cos e + ~ ). Since the XI-axis is perpendicular to the Z-axis, we have 

.. M1 = 0, M2 = M sine, M3 = M cos e. Comparison gives 

h~ = M, h(~ cosO+~)= M cos e. (35.4) 

The first of these equations gives e = constant, i.e. the angle between the 
axis of the top and the direction of M is constant. The second equation gives 
the angular velocity of precession if> = Mfh, in agreement with {33.5). 
Finally, the ~ird equation gives the angular velocity with which the top 
rotates about Its own mcis: O;J = (Mfla) cos e. 
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PROBLEMS 

PROBLEM 1. Reduce to quadratures the problem of the motion of a heavy symmetrical 
top whose lowest point is fixed (Fig. 48). 

SoLUTION. We take the common origin of the moving and fixed systems of co-ordinates 
at the fixed point 0 of the top, and the Z-axis vertical. The Lagrangian of the top in:;~ gravita­
tional field is L = !(11 + ,..12) (02 +t/>2 sin20)+ lfa(.f,+.f> cos 0)2- p.gl cos 0, where p. is the mass 
of the top and l the distance from its fixed point to the centre of mass. 

z 

y 

FIG. 

The co-ordinates 1/J and </>are cyclic. Hence we have two integrals of the motion: 

P¢ = oLjO.f, = la(.f,+rf> cos 8) =constant= Ma 

M = oLfo.f>= (l't sin20+la.cos20)rf,+Jaif, cos 0 =constant= M,, 

(1) 

(2) 

where J'1 = h +p.l2; the quantities P¢ and p<l> are the components of the ro~ational angular 
momentum about 0 along the xa and Z axes respectively. The energy 

is also conserved. 
From equations (1) and (2) we find 

rf, = (M.-Ma cos 8)/1'1 sin20, 

.f, _ Ma _ 
0

M.-Ma cos 0 
- 13 cos 1'1 sin20 · 

Eliminating rf, and .f, from the energy (3) by rp.eans of equations (4) and (5), we obtain 

E' = !1'102 + Uen(B), 

where 

Ma2 
E' = E- -- -ngl 

2Js " ' 

(M,-.Ma cos 8)2 
Uen = . -p.gl(l-cos ll). 

2I'1 stn2ll 

(3) 

(4) 

(5) 

(6) 
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Thus we have 

I dO 

t = v{2[E'- Ucn(0)]/1'1}; 
(7) 

this is an elliptic integral. The angles 1/J and tf> are then expressed in terms of 0 by means of 
integrals obtained from equations (4) and (5). 

The range of variation of 0 during the motion is determined by the conditionE' ~ Ue11(0). 
The function Uen(O) tends to infinity(if Ma #- Mz) when Otends to 0 or1r, and has a minimum 
between these values. Hence the equation E' = Uen(O) has two roots, which determine the 
limiting values 01 and 02 of the inclination of the axis of the top to the venical. 

When 0 varies from Ot to 02, the derivative tf, changes sign if and only if the difference 
M,-Ms cos 0 changes sign in that range of 0. If it d0es not change sign, the axis of the top 
precesses monotonically about the vertical, at the same time oscillating up and down. The 
latter oscillation is called nutation; see Fig. 49a, where the curve shows the track of the axis 
on the surface of a· sphere whose centre is at the fixed point of the top. If tf, does change sign, 
the direction of precession is opposite on the two limiting circles, and so the axis of the top 
describes loops as it moves round the venical (Fig. 49b). Finaily, if one of Ot, 02 is a zero of 
Mz-Ms cos 0, tf, and 0 vanish together on the corresponding limiting circle, and the path 
of the axis is of the kind shown in Fig. 49c. 

(a) (b) (cl 

FIG. 49 

PROBLEM 2. Find the condition for the rotation of a top about a vertical axis to be stable. 

SOLUTION. For 0 = 0, the xs and Z axes coincide, so that M 3 = Mz, E' = 0. Rotation 
about this axis is stable if 0 = 0 is a minimum of the function Uen(O). For small 0 we have 
Uen ~ (Ma2/81'1-lp.gl)02, whence the condition for stability is Ma2 > 41'1p.gl or Oa2 

> 4l'zp.glfla2• 

PROBLEM 3. Determine the motion of a top when the kinetic energy of its rotation about 
its axis is large compared with its ene~y in the gravitational field (called a ''fast" top). 

SOLUTION. In a first approximation, neglecting gravity, there is a free precession of the 
axis of the top about the direction of the angular momentum M, corresponding in this case 
to the nutation of the top; according to (33.5), the angular velocity of this precession is 

(1) 

In the next approximation, there is a slow precession of the angular momentuf"!l M about 
the vertical (Fig. ?0). To determine the rate of this precession, we average the exact equation 
of motion (34.3) dM/dt = K over the nutation period. The moment of the force of gravity 
on the top is K=,.Jnaxg, where 113 is a unit vector along the axis of the top. It is evident 
from synunetry that the result of averaging K over the "nutation cone" is to replace na by 
its component (M/M) cos ex in the direction of M, where cx is the angle between M and the 
axis of the top. Thus we have dM/dt = -(p.l/M)gx M cos cx. This shows that the vector M 
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precesses about the direction of g (i.e. the vertical) with a mean angular velocity 

Slpr = -(p./'J.J)g COS a: (2) 

which is small compared with S1nu· 

, ............ -------
' 

FIG. 50 

In this approximation the quantities M and cos a: in formulae (1) and (2) are constants, 
although they are not exact integrals of the motion. To the same accuracy they are related 
to the strictly conserved quantities E and M3 by M3 = M cos a:, 

§36. Euler's equations 

The equations of motion given in §34 relate to the fixed system of co­
ordinates: the derivatives dPfdt and dMfdt in equations (34.1) and {34.3) 
are the rates of change of the vectors P and M with respect to that system. 
The simplest relation between the components of the rotational angular 
momentum M of a rigid body and the components of the angular velocity 
occurs, hmvever, in the moving system of co-ordinates whose axes are the 
principal axes of inertia. In order to use this relation, we must first transform 
the equations of motion to the moving co-ordinates x1, x2, xs. 

Let dA/dt be the rate of change of any vector A with respect to the fixed 
system of co-ordinates. If the vector A ddcs not change in the moving system, 
its rate of change in the fixed system is due only to the rotation, so that 
dAJdt = QxA; see §9, where it has been pointed out that formulae such as 
(9.1) and (9.2) are valid for any vector. "In the general case, the right-hand 
side includes also the rate of change of the vector A with respect to the moving 

system. Denoting this rate of change by d' Afdt, we obtain 

dA d'A (36 
- = -+QxA. .1) 
dt dt 
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Using this general formula, we can immediately write equations (34.1) and 
(34.3) in the form 

d'P 
-+S'2xP = F, 
dt 

d'M 
--+S'2xM = K. 

dt 
{36.2) 

Since the differentiation with respect to time is here performed in the moving 
system of co-ordinates, we can take the components of equations {36.2) along 
the axes of that system, putting (d'P/dt)! = dP1/dt, ... , {d'Mfdt)! = dM1fdt, 
... , where the suffixes 1, 2, 3 denote the components along the axes x1, x2, x3• 

In the first equation we replace P by fLV, obtaining 

fL( d;
1 

+ f!2Vs- f!sV2) = F1, l 

fL(d;
2 

+f!sV1-f!1Vs) = F2, 

fL(d;s +f!1V2-n2v1) = Fs. J 

(36.3) 

If the axes x1, x2, xs are the principal axes of inertia, we can put M1 = hf!1, 
etc., in the second equation {36.2), obtaining 

h df!1/dt+(ls-h)f!2f!s = K1. 

/2 df!2/dt + (h- ls)f!sf!l = K2, 

Is df!sjdt+(h-h)f!1f!2 = Ks. 

These are Euler's equations. 

} 
In free rotation, K = 0, so that Euler's equations become 

df!1/dt+{Is-h)f!2f!s/h = 0, 

df!2/dt+(h-ls)f!sf!1/h = 0, 

df!s/dt+(l2-h)f!1f!2/ls = 0. 
} 

(36.4) 

(36.5) 

As an example, let us apply these equations to the free rotation of a sym­
metrical top, which has already been discussed. Putting h = h, we find from 
the third equation 0 3 = 0, i.e. !13 = constant. We then write the first two 
equations as nl = -wf!2, Q2 = wf!l, where 

w = f!s(ls-h)/h (36.6) 

is a constant. Multiplying the second equation by i and adding, we have 
d(f!1 + i0.2)jdt = iw(f!1 + if!2), so that !11 + if!2 = A exp(iwt), where A is a 
constant, which may be made real by a suitable choice of the origin of time. 
Thus 

fl1 =A coswt 0.2 =A sin wt. (36.7) 
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This result shows that the component of the angular velocity perpendicular 
to the axis of the top rotates with an angular velocity w, remaining of constant 
magnitude A = y(012 + 022). Since the component Os along the axis of the 
top is also constant, we conclude that the vector n rotates uniformly with 
angular velocity w about the axis of the top, rel'\laining unchanged in magni­
tude. On account of the relations M1 = ftOl, M2 = h02, lVls = fsOs be­
tween the components of n and M, the angular momentum vector M evidently 
executes a similar motion with respect to the axis of the top. 

This description is naturally only a different view of the motion already 
discussed in §33 and §35, where it was referred to the fixed system of co­
ordinates. In particular, the angular velocity of the vector M (the Z-axis in 
Fig. 48, §35) about the xs-axis is, in terms of Eulerian angles, the same as 
the angular velocity - ~- Using equations (35.4), we have 

Mcose. (1 1) 
1/J = c/> cosO= M cosO --- , 

Is Is h 

or-~= O.s{ls-h)/h. in agreement with (36.6). 

§37. The asymmetrical top 
\Ve shall now apply Euler's equations to the still more complex problem 

of the free rotation of an asymmetrical top, for which all three moments of 
inertia are different. \Ve assume for definiteness that 

Is> h >ft. (37.1) 

Two integrals of Euler's equations are known already from the laws of 
conservation of energy and angular momentum: 

/1012 +hfi22+IsOs2 = 2E, 
(37.2) 

where the energy E and the magnitude M of the angular momentum are given 
constants. These two equations, written in terms of the components of the 
vector M, are 

:.'lf12 Jh2 _V/s2 
---+--+-- = 2£, 

h h. Is 
Jl12 + -'l/22 + Jfs2 = M 2• 

(37.3) 

(37.4) 

From these equations \Ye can already draw some conclusions concerning 
the nature of the motion. To do so, we notice that equations (37.3) and (37.4), 
regarded <lS involving co-ordinates J/1, 1112, ills, are respectively the equation 
of an ellipsoid with semiaxes y{2Eh), y{2EI2), y{2E/g) and that of a sphere 
of radius Jl. \Yhen the vector M moves relative to the axes of inertia of the 
top, its terminus moves along the line of intersection of these t,vo 5':rfac~s. 
Fig. 51 shows a number of such lines of intersection of an ellipsmd Wlth 
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spheres of various radii. The existence of an intersection is ensured by the 
obviously valid inequalities 

2Eh < M2 < 2Els, (37.5) 

which signify that the radius of the sphere (37.4) lies between the least and 
greatest semiaxes of the ellipsoid (37.3). 

x, 

FIG. 51 

Let us examine the way in which these "paths"·;· of the terminus of the 
vector M change as M varies {for a given value of E). When M2 is only slightly 
greater than 2Eh, the sphere intersects the ellipsoid in two small closed curves 
round the x1-axis near the corresponding poles of the ellipsoid; as M2 -+ 2Eh, 
these curves shrink to points at the poles. \Vhen M2 increases, the curves 
become larger, and for M2 = 2Eh they become tv.ro plane curves (ellipses) 
which intersect at the poles of the ellipsoid on the x2-axis. When M2 increases 
further, two separate closed paths again appear, but now round the poles on 
the x3-axis; as M2 -+ 2Els they shrink to points at these poles. 

First of all, we may note that, since the paths are closed, the motion of the 
vector M relative to the top must be periodic; during one period the vector 
M describes some conical surface and returns to its original position. 

Next, an essential difference in the-nature of the paths near the various 
poles of the ellipsoid should be noted. Near the x1 and xs axes, the paths lie 
entirely in the neighbourhood of the corresponding poles, but the paths which 
pass near the poles on the x2-axis go.elsewhere to great distances from those 
poles. This difference corresponds to a difference in the stability of the rota­
tion of the top about its three axes of inertia. Rotation about the Xl and xs 
axes (corresponding to the least and greatest of the three moments of inertia) 

t T he corresponding cur . . h · h ,..... "es descnbed by t e termtnus oft e vecwr .:o~ are called po/hodes. 
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is stable, in the sense that, if the top is made to deviate slightly from such a 
state, the resulting motion is close to the original one. A rotation about the 
x2-axis, however, is unstable: a small deviation is sufficient to give rise to a 
motion which takes the top to positions far from its original one. 

To determine the time dependence of the components of Q (or of the com­
ponents of M, which are proportional to those of Q) we use Euler's equations 
(36.5). We express 01 and Os in terms of 0 2 by means of equations (37.2) 
and (37.3): 

012 = [(2E/s-M2)-h(ls-h)022]/h(ls-h), 

Os2 = [(M2-2Eh)-h(h-h)022],'ls(ls- h), 

and substitute in the second equation (36.5), obtaining 

d02/dt = (ls-h)010s/h 
= y{[(2E/s-M2)-h(ls-h)022] x 

x [(M2..:..._2Eh)-h(h-h)022]}/hv(Itls). 

(37.6) 

(37.7) 

Integration of this equation gives the function t(02) as an elliptic integral. 
In reducing it to a standard form we shall suppose for definiteness that 
M2 > 2Eh; if this inequality is reversed, the suffixes 1 and 3 are interchanged 
in the following formulae. Using instead of t and 02 the new variables 

-r ~ ty[(ls-h)(M2-2Eh)/h1Js], 

s = 02y[h(ls-h)/(2E/s-M2)], 

and defining a positive parameter k2 < 1 by 

k2 = (h-h){2Els-M2)/(13 -/2)(M2-2Eh), 
we obtain 

s 

f ds 

T = y[(1-s2)(1-k2s2)]' 
0 

(37.8) 

(37.9) 

the origin of time being taken at an instant when 02 = 0. When this integral 
is inverted we have a Jacobian elliptic function s = sn -r, and t~is gives 0 2 
as a function of time; 01(t) and Os(t) are algebraic functions of 0 2(t) given 
by (37.6). Using the definitions en -r = y{1-sn2-r), dn -r = -v'(l-k2 sn2-r), 
we find 

01 = v[(2E/s-M2)/h(ls-h)] cn-r, ) 

02 = v[(2Els-M2)/h(ls-h)] sn-r, 

Os = v[(M2-2Eh)/ls(ls-h)] dn-r. 

(37.10) 

These are periodic functions, and their period in the variable -r is 4K, 
where K is a complete elliptic integral of the first kind: 

J

1 
ds Jh du 

K = v[(l-s2)(1-k2s2)] = y(l-k2 sin2u) 
0 0 

(37.11) 
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The period in t is therefore 

T = 4Kv[hhls,'(ls-h)(M2-2Eh)]. (37.12) 

After a time T the vector Q returns to its original position relative to the 
axes of the top. The top itself, however, does not return to its original position 
relative to the fixed system of co-ordinates; see below. 

For h = / 2, of course, formulae (37.10) reduce to those obtained in §36 
for a symmetrical top: as h --+ /2, the parameter k2 --+ 0, and the elliptic 
functions degenerate to circular functions: sn -r --+sin -r, en r --+cos -r, 
dn -r --+ 1, and we return to formulae {36.7). 

When M 2 = 2Els we have 01 = 02 = 0, Os = constant, i.e. the vector Q 
is always parallel to the xs-axis. This case corresponds to uniform rotation of 
the top about the xs-axis. Similarly, for 1112 = 2Eh (when -r = 0) we have 
uniform rotation about the x1-axis. 

Let us now determine the absolute motion of the top in space (i.e. its 
motion relative to the fixed system of co-ordinates X, Y, Z). To do so, we 
use the Eulerian angles if, c/>, e, between the axes Xl, X2, Xs of the top and the 
axes X, Y, Z, taking the fixed Z-axis in the direction of the constant vector M. 
Since the polar angle and azimuth of the Z-axis with respect to the axes 
x1, x2, x3 are respectively e and J_7r-if (see the footnote to §35), we obtain on 
taking the components of M along the axes x1, x2, xs 

M sine sin if= M1 = h01, Jl 

M sine cos if = M2 = h02, 

M cose = Ms = fsOs. 

(37.13) 

Hence 

cose = lsOsfM, (37.14) 

and from formulae (37.10) 
~ 

cose = '\![ls(M2-2Eh)/1112(ls-h)] dn-r, 

tanif = v[h(/s-h)/h(ls-h)] cnrfsnr, 
(37.15) 

which give the angles e and if as functions of time; like the components of the 
vector Q, they are periodic functions, with period (37.12). 

The angle cf> does not appear in formulae (37.13), and to calculate it we 
must return to. formulae ( 35.1 ), which express the components of Q in terms 
of the time derivatives of the Eulerian angles. Eliminating e from the equa­
t~ons 01 = ~ sin e sin if+ e cos if, !22 = J sin e cos if- e sin if, we obtain 
c/> = (Olsinif+02cosif)fsin e, and then, using formulae (37.13), 

dcf>/dt = (hil12, + h022)M/(ft2012 + / 22!122). (37.16) 

The functio~ </.>(t) is obtained by integration, but the integrand involves 
elliptic functions in a Complicated way. By means of some fairly complex 
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transformations, the integral can be expressed in terms of theta functions; 
we shall not give the calculations, t but only the final result. 

The function q,(t) can be represented (apart from an arbitrary additive 
constant) as a sum of two terms: 

(37.17) 

one of which is given by 

exp[wp1(t)] = &01(~ -icx) j &01(~ +icx ). (37.18) 

where &01 is a theta function and cx a real constant such that 

sn(2icxK) = iv[ls(M2 - 2Eh)/ h(2Els- M2)]; (37.19) 

K and Tare given by (37.11) and (37.12). The function on the right-hand side 
of (37.18) is periodic, with period !T, so that q,1(t) varies by 27T during a time 
T. The second term in (37.17) is given by 

1 M 
q,2(t) = 2TTtjT', 

l &01'(icx) 
(37.20) -=-----

T' TTT &01(icx) 

This function increases by 27T during a time T'. Thus the motion in ¢> is a 
combination of two periodic motions, one of the periods ( T) being the same 
as the period of variation of the angles if and e, while the other (T') is incom­
mensurable with T. This incommensurability has the result that the top does 
not at any time return exactly to its original position. 

PROBLEMS 

PROBLEM 1. Determine the free rotation of a top about an axis near the xa-axis or the 
x1-axis. 

SOLUTION. Let the xa-axis be near the direction of M. Then the components M1 and Ms 
are small quantities, and the component Ma = M (apart from quantities of the second and 
higher orders of smallness). To the same accuracy the first two Euler's equations (36.5) can 
be written dM1/dt = floM2(1-la/12), dM2/dt = f.loMl(la/JI-1), where flo= Mila. As 
usual we seek solutions for M1 and M2 proportional to exp(iwt), obtaining for the frequency w 

(1) 

The values of M1 and Ms are 

M1 = MaJ e: -1) cos wt, M2 = Maj ( ~: -1) sin wt, (2) 

where a is an arbitrary small constant. These formulae give the motion of the vector.M 
relative to the top. In Fig. 51, the terminus of the vector M describes, with frequency w, 
a small ellipse about the pole on the xa-axis. , 

To determine the absolute motion of the top jn space, we calculate its Eulerian angles. 
In the present case the angle 8 between the x3-axis And the Z-axis (direction of M) is small, 

• • • s of Particle~ t These are given by E. T. WHITTAKER, A Treatise on the Analyttcal DynanJ'c 
and IUgid Bodin, 4th ed., Chapter VI, Dover, New York 1944. 
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and byformulae(37.14) tan W, = M1/M2, 02 z 2(1-cos 0)- 2(1-MafM) z (M12+Ms2)/M2; 
substituting (2), we obtain 

tan 1/J = v'[II(la-12)/12(la-II)] cot wt, 

02 = a2[( ~: -1) cos2wt+ e: -1) sin2 wt]. 

(3) 

To find 4>, we note that, by the third formula (35.1), we have, for 0 < 1, no z na z .f,+.f>. 
Hence 

(4) 

omitting an arbitrary constant of integration. 
A clearer idea of the nature of the motion of the top is obtained if we consider the change 

in direction of the three axes of inertia. Let DI, n2, ·na be unit vectors along these axes. The 
vectors n1 and n2 rotate uniformly in the XY-plane with frequency flo, and at the same time 
execute small transverse oscillations with frequency w. These oscillations are given by the 
Z-components of the vectors: · 

mz z M1/M = av'(la/12-1) cos wt, 
mz Z M2/M = av'(la/li-1) sin wt. 

For the vector na we have, to the same accuracy, naz z 0 sin tf>, nay z -8 cos tf>, naz z 1. 
(The polar angle and azimuth of na with respect to the axes X, Y, Z are 8 and tf>-!rr; see 
the footnote to §35.) We also write, using formulae (37.13), 

naz = 8 sin( f.lot-1/l) 

Similarly 

= 0 sin not cos 1/J-0 cos not sin 1/J 
= (M2/M) sin not-(MI/M) cos not 

= aJ ( ~: -1) sin not sin wt-aJ ( ~: -1) cos not cos wt 

-la[ J (~: -1 )+ J (~: -1 )] cos(no+w)t+ 

+la[ J ( ~: -l )-J ( ~: -1)] cos(no-w)t. 

nay= -!a[J ( ~: -1 )+ J (:: -1)] sin(no+w)t+ 

+la[J ( ~: -1 )~ J e: -1)] sin(no-w)t. 

From this we see that the motion of na is a superposition of two rotations about the Z-axis 
with frequencies no± w. 

PROBLEM 2. Determine the free rotation of a top for which M 2 = 2Els. 

SOLUTION. This case corresponds to the movement of the terminus of M along a curve 
through the pole on the x2-axis (Fig. 51). Equation (37.7) becomes ds/dT = 1-s•, 
7' = tv'[(ls-ll)(ls-ls)/I!ls)no, s = nz/no, where no= M/ls = 2E/M. Integration of 
this equation and the use of formulae (37.6) gives 

n1 = nov'(J2(Ja-Js)/Jl(Ja-l!)) sech T, 

n2 = no tanh .,., 

!13 = !lov'[h(ls-1!)/la(ls-1!)] sech .,._ 
} (1) 

To describe th~ abs_olut~ motion of the top, we use Eulerian angles, defining 8 as the angle 
between the ~7";6') (dr~tron ofl\{) and the X2-axis (not the x3-axis as previously). In formulae 
(37.14) and · 'w ch relate the components of the vector n to the Eulerian angles, we 
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must cyclically permute the suffixes 1, 2, 3 to 3, 1, 2. Substitution of (1) in these formulae 
then gives cos 0 =tanh T, tf> = f.lot+constant, tan 1/J = ,I[Ia(I2-11)fl1(Ia-12)]. 

It is seen from these formulae that, as t -->- oo, the vector Q asymptotically approaches the 
x2-axis, which itself asymptotically approaches the Z-axis. 

§38. Rigid bodies in contact 

The equations of motion (34.1) and (34.3) show that the conditions of 
equilibrium for a rigid body can be written as the vanishing of the total force 
and total torque on the body: 

(38.1) 

Here the summation is over all the external forces acting on the body, and r 
is the radius vector of the "point of application"; the origin with respect to 
which the torque is defined may be chosen arbitrarily, since if F = 0 the 
value of K does not depend on this choice (see (34.5)). 

If we have a system of rigid bodies in contact, the conditions (38.1) for 
each body separately must hold in equilibrium. The forces considered must 
include those exerted on each body by those with which it is in contact. These 
forces at the points of contact are called reactions. It is obvious that the mutual 
reactions of any two bodies are equal in magnitude and opposite in direction. 

In general, both the magnitudes and the directions of the reactions are 
found by solving simultaneously the equations of equilibrium (38.1) for all the 
bodies. In some cases, howeYer, their directions are given by the conditions 
of the problem. For example, if two bodies can slide freely on each other, the 
reaction between them is normal to the surface. 

If two bodies in contact are in relative motion, dissipative forces of friction 
arise, in addition to the reaction. 

There are two possible types of motion of bodies in contact-sliding and 
rolling. In sliding, the reaction is perpendicular to the surfaces in contact, 
and the friction is tangential. Pure rolling, on the other hand, is characterised 
by the fact that there is no relative motion of the bodies at the point of 
contact; that is, a rolling body is at every instant as it were fixed to the point 
of contact. The reaction may be in any direction, i.e. it need not be normal 
to the surfaces in contact. The friction -in rolling appears as an additional 
torque which opposes rolling. 

If the friction in sliding is negligibly small, the surfaces concerned are 
said to be perfectly smooth. If, on the other hand, only pure rolling without 
sliding is possible, and the friction in rolling Ca!l be neglected, the surfaces 
are said to be perfectly rough. 

In both these cases the frictional forces do not appear explicitly in the pro­
blem, which is therefore purely one of mechanics. If, on the other hand, the 
properties of the friction play an essential part in determining the motion, 
then the latter is not a purely mechanical process (cf. §25). 

Contact between two bodies reduces the number of their degrees 0~ freedom 
. h f f . H" h . discussmg such as compared Wit the case o ree motwn. It erto, m 
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problems, we have taken this reduction into account by using co-ordinates 
which correspond directly to the actual number of degrees of freedom. In 
rolling, however, such a choice of co-ordinates may be impossible. 

The condition imposed on the motion of rolling bodies is that the velocities 
of the points in contact should be equal; for example, when a body rolls on a 
fixed surface, the velocity of the point of contact must be zero. In the general 
case, this condition is expressed by the equations of constraint, of the form 

(38.2) 

where the Cat are functions of the co-ordinates only, and the suffix ex denumer­
ates the equations. If the left-hand sides of these equations are not the total 
time derivatives of some functions ·of the co-ordinates, the equations cannot 
be integrated. In other words, they cannot be reduced to relations between the 
co-ordinates only, which could be used to express the position of the bodies 
in terms of fewer co-ordinates, corresponding to the actual number of degrees 
of freedom. Such constraints are said to be non-holonomic, as opposed to 
holonomic constraints, which impose relations between the co-ordinates only. 

Let us consider, for example, the· rolling of a sphere on a plane. As usual, 
we denote by V the translational velocity (the velocity of the centre of the 
sphere), and by Q the angular velocity of rotation. The velocity of the point 
of contact with the plane is found by putting r = -an in the general formula 
v = V + Q x r; a is the radius of the sphere and n a unit vector along the 
normal to the plane. The required condition is that there should be no sliding 
at the point of contact, i.e. 

V-aS'2xn = 0. (38.3) 

This cannot be integrated: although the velocity V is the total time derivative 
of the radius vector of the centre of the sphere, the angular velocity is not in 
general the total time derivative of any co-ordinate. The constraint (38.3) is 
therefore non-holonomic. t 

Since the equations of non-holonomic constraints cannot be used to reduce 
the number of co-ordinates, when such constraints are present it is necessary 
to use co-ordinates which are not all independent. To derive the correspond­
ing L"agrange's equations, we return to the principle of least action. 

The existence of the constraints (38.2) places certain restrictions on the 
possible values of the variations of the co-ordinates: multiplying equations 
(38.2) by St, we find that the variations Sq1 are not independent, but are 
related by 

(38.4) 

t It rnay be noted that the similar constraint in the rolling of a cylinder is holonomic. In 
that case the axis of rotation has a fixed direction in space, and hence n = d<f>/dt is the total 
derivative of _the angle </> of rotation of the cylinder aboUt its mds. The condition (38.3) can 
therefore be integrated, and gives a relation between the angle <f> and the co-ordinate of the 
centre of rnass. 
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This must be -taken into account in varying the action. According to 
Lagrange's method of finding conditional extrema, we must add to the inte­
grand in the variation of the action 

ss = J ~sq, [oL -~(o~)] dt f oq, dt oq, 
the left-hand sides of equations (38.4) multiplied by undetermined coeffici­
ents Aa (functions of the co-ordinates), and then equate the integral to zero. 
In so doing the variations Sq, are regarded as entirely independent, and the 
result is 

~(oL) _ oL = 2:A.acai· 
dt oqt oq, a 

(38.5) 

These equations, together with the constraint equations (38.2), form a com­
plete set of equations for the unknowns q, and Aa. 

The reaction forces do not appear in this treatment, and the contact of 
the bodies is fully allowed for by means of the constraint equations. There 
is, however, another method of deriving the equations of motion for bodies in 
contact, in which the reactions are introduced explicitly. The essential feature 
of this method, which is sometimes called d' Alembert' s principle, is to write 
for each of the bodies in contact the equations. 

dP/dt = 2: f, dM/dt = 2: r xf, (38.6) 

wherein the forces f acting on each body include the reactions. The latter 
are initially unknown and are determined, together with the motion of the 
body, by solving the equations. This method is equally applicable for both 
holonomic and non-holonomic constraints. 

PROBLEMS 

PROBLEM 1. Using d' Alembert's principle, find the equations of motion of a homogeneous 
sphere rolling on a plane under an external force F and torque K. 

SOLUTION. The constraint equation is (38.3). Denoting the reaction force at the point of 
contact between the sphere and the plane by R, we have equations (38.6) in the form 

p. dV/dt = F +R, 

I cln/dt = K-an xR, 

(1) 

(2) 

where we have used the facts that P = p.V and, for a spherical top, M = IQ. Differentiating 
the constraint equation (38.3) with respect to time, we have V =an xn. Substituting in 
equation (1) and eliminating Q by means of (2), we obtain -(I/ap.)(F+R) = Kxn-aR+ 
+an(n • R), which relates R, F and K. Writing this equation in components and substitut­
ing I = fp.a 2 ( §32, Problem 2(b)), we have 

5 2 
R 11 = - -Kz- -Fy R, = -F,, 

7a 7 ' 
• . b • • h sions in (1), we where the plane IS taken as the .xy-plane. Frnally, su strtutrng t ese expreS 
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obtain the equations of motion involving only the given external force and torque: 

dVz = ~(Fz+ K11 
). 

dt 7p. a 

dV11 
= ~(Fu- Kz )· 

dt 7p. a 

The components f.!..,, f.l 11 of the angular velocity are given in terms of Vz, V 11 by the constraint 
equation (38.3); for f.!, we have the equation fp.a2 df.l./dt = K,, the z-component of equa­
tion (2). 

PROBLEM 2. A unifom1 rod BD of weight P and length l rests against a wall as shown in 
Fig. 52 and its lower end B is held by a string AB. Find the reaction of the wall and the ten­
sion in the string. 

I T 
_l --

A '// 

B 
FIG. 52 

SoLUTION. The weight of the rod can be represented by a force P vertically downwards, 
applied at its midpoint. The reactions RB and Rc are respectively vertically upwards and 
perpendicular to the rod; the tension T in the string is directed from B to A. The solution 
of the equations of equilibrium wves Rc = (Pl/4h) sin2a, RB = P-Rcsin a, T = Rccos a. 

PRoDLEJ\1 3. A rod of ~eight p' has one end A on a vertical plane and the other end B on 
a horizontal plane (Fig. 53), and is held in position by two horizontal strings AD and BC, 

FIG. 53 
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the latter being in the same vertical plane as AB. Determine the reactions of the planes and 
the tensions in the strings. 

SOLUTION. The tensions T A and Tn are from A to D and from B to C respectively. The 
reactions RA and Rn are perpendicular to the corresponding planes. The solution of the 
equations of equilibrium gives Rn = P, Tn = !P cot a:, RA = Tn sin {3, T A = Tn cos (3. 

PRODLE!II 4. Two rods of length l and negligible weight are hinged together, and their ends 
'lre connected by a string llB (Fig. 54). They stand on a plane, and a force F is applied 
at the midpoint of one rod. Determine the reactions. 

t Ra 
I 
I 
I 

~==T~d __ 
A B 

FIG. 54 

SOLUTIO:-:. The tension T acts at l1 from A to B, and at B from B to A. The reactions RA 
and Rn at l1 and B are perpendicular to the plane. Let R c be the reaction on the rod AC at 
the hinge; then a reaction - R c acts on the rod BC. The condition that the sum of the moments 
of the forces Rn, Tand -Rc acting on the rod BC should be zero shows that Rc acts along 
BC. The remaining conditions of equilibrium (for the two rods separately) give RA = ~F. 
Rn = !F, Rc = !F cosec a, T = !F cot a:, where a is the angle CAB. 

§39. Motion in a non-inertial frame of reference 

Up to this point we have always used inertial frames of reference in discuss­
ing the motion of mechanical systems. , For example, the Lagrangian 

Lo = !mvo2 - U, (39.1) 

and the corresponding equation of motion m dv0fdt - - o Ufor, for a single 
particle in an external field are valid only in an inertial frame. (In this section 
the suffix 0 denotes quantities pertaining to an inertial frame.) 

Let us now consider what the equations of motion will be in a non-inertial 
frame of reference. The basis of the solution of this problem is again the 
principle of least action, whose validity does not depend on the frame of 
reference chosen. Lagrange's equations 

~( oL) _ cL <39_2) 
dt ov cr 

are likewise valid, but the Lagrangian is no longer of the form (39.l), _andLto 
derive it v-e must carrv out the necessary transformation of the functiOn o. 
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This transformation is done in two steps. Let us first consider a frame of 
reference K' :which moves with a translational velocity V(t) relative to the. 
inertial frame Ko. The velocities vo and v' of a particle in the frames K 0 and 
K' respectively are related by · 

vo = v' + V(t). (39.3) 

Substitution of this in (39.1) gives the Lagrangian in K': 

L' = !mv'2+mv'· V +imV2- U. 

Now V2(t) is a given function of time, and can be written as the total deriva­
tive with respect to t of some other fllnction; the third term in L' can there­
fore be omitfed. Next, v' = dr' fdt, where r' is the radius vector of the par-

' tide in the frame K'. Hence 

mV(t)·v' = mV ·dr'fdt = d(mV · r')/dt-mr' · dV/dt. 

Substituting in the Lagrangian and again omitting the total time derivative, 
we have finally 

L' = ~mv'2-mW(t)·r'- U, (39.4) 

where W = dVfdt is the translational acceleration of the frame K'. 
The Lagrange's equation derived from (39.4) is 

dv' oU 
m- = ---mW(t). 

dt cr' (39.5) 

Thus an accelerated translational motion of a frame of reference is equivalent, 
as regards its effect on the equations of motion of a particle, to the application 
of a uniform field of force equal to the mass of the particle multiplied by the 
acceleration W, in the direction opposite to this acceleration. 

Let us now bring in a further frame of reference K, whose o~igin coincides 
with that of K', but which rotates relative to K' with angular velocity Q(t). 
Thus K executes both a translational and a rotational motion relative to the 
inertial frame Ko. 

The velocity v' of the particle relative to K' is composed of its velocity v 
relative to K and the velocity Q x r of its rotation with K: v' = v + Q X r 
(since the radius vectors rand r' in the frames K and K' coincide). Substitut­
ing this in the Lagrangian (39.4), we obtain 

(39.6) 

This is the general form of the i.agrangian of a particle in an arbitrary, not 
necessarily inertial, frame crf reference. The rotation of the frame leads to the 
appearance in the Lagranf;ian of a term linear in the velocity of the particle. 

To calculate the deriv'ltiYcs appearing in Lagrange's equation, we write 
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the total differential 

dL = mv·dv+mdv·S'2xr+mv·S'2xdr+ 

+m(Q xr)·(s-2 xdr)-mW·dr-(oUfor)·dr 

= mv·dv+mdv·s-2 xr+mdr·v xs-2+ 

+m(Q xr) xS'2·dr-mW·dr-(oUfor)·dr. 

The terms in dv and dr give 

oLfov = mv+ ms-2 xr, 

oLfor = mvxS2+m(S'2 xr) xs-2-mW- oUfor. 

Substitution of these expressions in (39.2) gives the required equation of 
motion: 

mdvfdt = -oUfJr-mW+mrxQ+2mvxS'2+mS'2x(rxS'2). (39.7) 

We see that the "inertia forces" due to the rotation of the frame consist 
of three terms. The force mrx Q is due to the !!on-uniformity of the rotation, 
but the other two terms appear even if the rotation is uniform. The force 
2mvxS'2 is called the Coriolis force; unlike any other (non-dissipative) force 
hitherto considered, it depends on the velocity of the particle. The force 
mS'2x(rxQ) is called the centrifugal force. It lies in the plane through rand 
s-2, is perpendicular to the axis of rotation (i.e. to s-2), and is directed away 
from the axis. The magnitude of this force is mpD.2, where p is the distance 
of the particle from the axis of rotation. 

Let us now consider the particular case of a uniformly rotating frame with 
no translational acceleration. Putting in (39.6) and (39.7) Q = constant, 
W = 0, we obtain the Lagrangian 

L = !mv2+ mv·s-2 xr+!m(s-2 xr)2- U (39.8) 

and the equation of motion 

mdv/dt = - oUf&+2mv xS'2+mS'2 x(r xs-2). (39.9) 

The energy of the particle in this case is obtained by substituting 

p = oLfov = mv+ ms-2 xr (39.10) 

in E = p· v- L, which gives 

E = !mv2 -l~(Q xr)2 + U. (39.11) 

It should be noticed that the energy contains no term linear in the velocity. 
The rotation of the frame simply adds to the energy a term depending only 
on the co-ordinates of the particle arid proportional to the square of the 
angular velocity. This additional term - !m(Q x r)2 is called the centrifugal 
pot.ential energy. 

The velocity v of the particle relative to the uniformly rotating frame of 
reference is related to its velocity v0 relative to the inertial frame Ko by 

" (39.12) vo = v+ .... xr. 
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The momentum p (39.10) of the particle in the frame K is therefore the same 
as its momentum po = mvo in the frame Ko. The angular momenta 
M 0 = rxpo and M = rxp are likewise equal. The energies of the particle 
in the two frames are not the same, however. Substituting v from (39.12) in 
(39.11), we obtain E= !mvo2-mvo·S'2xr+U= fmvo2 +U-mrxv0 .Q. 

The first two terms are the energy Eo in the frame Ko. Using the angular 
momentum M, we have 

E = Eo-M·s-2. (39.13) 

This formula gives the law of transformation of energy when we change to a 
uniformly rotating frame. Although it has been derived for a single particle, 
the derivation can evidently be g~neralised immediately to any system of 
particles, and the same formula (39.13) is obtained. 

PROBLEMS 

PROBLEM 1. Find the deflection of a freely falling body from the vertical caused by the 
Earth's rotation, assuming the angular velocity of this rotation to be small. 

SOLUTION, In a gravitational field U = -mg· r, where g is the gravity acceleration 
vector; neglecting the centrifugal force in equation (39.9) as containing the square of .Q, we 
have the equation of motion 

(1) 

This equation may be solved by successive approximations. To do so, we put v = Vt +v2, 
where Vtis the solution of the equation i>'t = g, i.e. VI = gt +vo (vo being the initial velocity). 
Substituting v ~ VI+ v2 in (1) and retaining only Vt on the right, we have for V2 the equation 
V2 = 2vtx.Q = 2tgx.Q+2voxn. Integration gives 

(2) 

Vl"here h is the initial radius vector of the particle. 
Let the z-axis be vertically upwards, and the x-axis towards the pole; then gz = g 11 = 0, 

g, = -g; !l~- = n cos.\, f.ly = 0, n. = n sin.\, where ,\ is the latitude (which for definite­
ness we take to be north). Putting Vo = 0 in (2), we find x = 0, y = -!t3gf.l cos.\. Substitu­
tion of the time offall t ~ v (2hfg) gives finally x = 0, y = - !(2h fg)3 12 gf.l cos .\, the negative 
value indicating an eastwa1d deflection. 

PROBLEM 2. Determine the deflection from coplanarity of the path of a particle thrown 
from the Earth's surface with velocity vo. 

SOLUTION. Let the xz-plane be such as to .contain the velocity vo. The initial altitude 
h = 0. The lateral deviation is given by (2), Problem 1: y = -lt3g!lz+t2(!lxvoz-!lzvoz) 
or, substituting the time of flight t ~ 2voz/g, y = 4voz2(lvoz!lx-t•ox!lz)/g2• 

PROBLEM 3. Determine the effect of the Earth's rotation on small oscillations of a pendulum 
(the problem of Foucault's pendulum). 

SoLuTION. Neglecting the vertical displacement of the pendulum, as being a quantity 
of the second order of smallness, we can regard the motion as taking place in the horizontal 
xy-p!ane .. Omitting terms In f.12, we have the equations of motion x + w 2x = 2!l,y, ji + w 2y 
= -2f.lzX, whero; w i;; the frequency of oscillation of the pendulum if the Earth's rotation _is 
neglected· Multtplyrng the second equation by i and adding, we obtain a single equation 
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.. . 
t'+2iflzt'+w2t' = 0 for the complex quantity {; = x+iy. For flz ~ w, the solution of this 
equation is 

t' = exp( -lflzl) [AI exp(iwt) +A2 <'Xp( -i "'t)] 

or 

x +iy = (xo+iyo) exp( -iflzl), 

where the functions xo(t), yo(t) give the path of the pendulum when the Earth's rotation is 
neglected. The effect of this rotation is therefore to turn the path about the venical with 
angular velocity n •. 



CHAPTER VII 

THE CANO!\ICAL EQUATIOI'\St 

§40. Hamilton's equations 

THE formulation of the laws of mechanics in terms of the Lagrangian, and 
of Lagrange's equations derived from it, presupposes that the mechanical 
state of a system is described by specifying its generalised co-ordinates and 
velocities. This is not the only pos~ible mode of description, however. A 
number of advantages, especially in the study of certain general problems of 
mechanics, attach to a description in terms of the generalised co-ordinates 
and momenta of the system. The question therefore arises of the form of 
the equations of motion corresponding to that formulation of mechanics. 

The passage from one set of independent variables to another can be 
effected by means of what is called in mathematics Legendre's transformation. 
In the present case this transformation is as follows. The total differential 
of the Lagrangian as a function of co-ordinates and velocities IS 

"" cL "" cL dL = L-n-dqi+ L-.- dqj. 
i cqi i ClJi 

This e».l>ression may be written 

dL = 2: Pi dqt + 2: Pi dqi, (40.1) 

since the derivatives cLfcqi are, by definition, the generalised momenta, and 
oLf OlJi = Pi by Lagr~nge's equations. \\"riting the second term in ( 40.1) as 
"2:.pi dqi = d(:£Pitli)- :Sqt dpi, taking the differential d('"22Pitli) to the left-hand 
side, and reversing the signs, we obtain from ( 40.1) · 

d(_2Pitli-L) = - _2Pi dqi+ ~ tli dpi. 

The argument of the differential is the energy of the system ( cf. §6); 
expressed in terms of co-ordinates and momenta, it is called the Hamilton's 
function or Hamiltonian of the system: 

H(p, q, t) = 2 Pitli- L. ( 40.2) 
i 

t The reader nlay find useful the following table showing certain differences between the 
nomenclature used in this book and that which is generally used in the English literature. 

Here 
Principle of least action 

I\1aupertuis' principle 

Action 
Abbreviated action 
-Trans/ a tors. 

ElseKhere 
Hamilton's principle 

{
Principle of least action 
1\!Iaupertuis' principle 
Hamilton's principal function 
Action 
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From the equation in differentials 

dH = - LPi dqi+ 2 qi dpi, (40.3) 

in which the independent Yariables arc the co-ordinates and momenta, we 
have the equations 

(40.4) 

These are the required equations of n:otion in the variables p and q, and 
are called Hamilton's equations. They form a set of 2s first-order differential 
equations for the 2s unknown functions Pi(t) and qi(t), replacing the s second­
order equations in the Lagrangian treatment. Because of their simplicity and 
symmetry of form, they arc also called canonical equations. 

The total time dcrivatiYe of the Hamiltonian is 

dH DH L cH . L oH . 
-- = --+ ---;:--<}i + --pi· 

dt ct cq1 cpi 

Substitution of qi and Pi from equations ( 40.4) shows that the last two terms 
cancel, and so 

dH/dt = UI,fct. (40.5) 

In particular, if the Hamiltonian does not depend explicitly on time, then 
dHfdt = 0, and we have the law of conservation of energy. 

As "ell as the dynamical Yariables q, q or q, p, the Lagrangian and the 
Hamiltonian involve various parameters which relate to the properties of the 
mechanical system itself, or to the external forces on it. Let A be one such 
parameter. Regarding it as a variable, we have instead of (40.1) 

dL = )p·· dq·+ )p. dq··+(cVc>..) d>.. L....,l l..f_,t t l , 

and ( 40.3) becomes 

dH = - "5_ Pi dqi + > qi dp1- (cL,tc>..) d>... 

Hence 

(ell. c,\)p,q = - (cLfcA.}iJ,q, (40.6) 

which relates the deriYatives of the Lagrangian and the Hamiltonian with 
respect to the parameter A. The suffixes to the dcriv::~.tives show the quantities 
which are to be kept constant in the di!Terentiation. 

This result can be put in ::~.nothcr way. Let the Lagrar.gian be of the form 
L = Lo +L', where L' is a smail correction to the function Lo. Then the 
corresponding addition H' in the Hamiltonian H =· H 0 + H' is related to L' 
by 

(lf')p,q= -(L')riq· (40.7) 

It may be noticed that, in transforming (-l-0.1) into (40.3), we didl not 
• • 1 1. · t" dcpen( ence 
mcluclc a term in dt to take account of a poss1b.c cxp ICit unc-
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of the Lagrangian, since the time would there be only a parameter which 
would not be involved in the transformation. Analogously to formula ( 40.6), 
the partial time derivatives of L and H are related by 

(oHfct)p,q = - (oLfot)q,q· (40.8) 

PROBLEMS 

PROBLEM 1. Find the Hamiltonian for a single particle in Canesian, cylindrical and 
spherical Co-ordinates. 

SoLUTION. In Cartesian co-ordinates x, y, :::, 

in cylindrical co-ordinates r, </>, z, 

1 ( P-1>2 ) H = 2m p,2+ 7 +pz2 + U(r, </>, z); 

in sp,herical co-ordinates r, 8, </>, 

1 ( pe2 P-1>2 ) 
H = -2- p,2+ -2- + r2 . "B +U(r, 8, </>). 

m r sm-

PROBLEM 2. Find the Hamiltonian for a particle in a uniformly rotating frame of reference. 

Sou;noN. Expressing the velocity v in the energy (39.11) in terms of the momentum p 
by (39.10), we have H = p2f2m-n• rxp+U. 

PROBLEM 3. Find the Hamiltonian for a system comprising one particle of mass M and n 
panicles each of mass m, excluding the motion of the centre of mass (see §13, Problem). 

SOLUTION. The energy E is obtained from the Lagrangian found in §13, Problem, by 
changing the sign of U. The generalised momenta are 

Hence 

Substitution in E gives 

§41. The Routhian 

Pa = cLfova 

= mva- (m2 fp.) 2 v •. 

a 

LPa = m L Va - (nm2 fp.) .L Va 

= (mMfp.) L Va, 

Va = Pafm + (1/M) 2 Pc• 

1 1 ( )2 
II = - '""' Pa

2 + - ~ Pa + U. 
2m L 21~·1 

a a 

In some cases it is convenient, in changing to new var'iables, to replace 
only some, and not all, of the generalised velocities by momenta. The trans­
formation is entirely similar to that given in §40. 

To simplify the formulae, let us at first suppose that there are only two 
co-ordin<:tcs q and g, say, and transform from the variables q, ~' cj, ~ to 
q, g, p, g, where p. is the generalised momentum corresponding to the co­
ordinate q. 
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The differential of the Lagrangian L(q, ~' tj, ~) is 
dL . (oLfoq) dq+(oLfoq) dtj+(oLfc~) d~+(cLfcg) dt 

whence 
= p dq+p dq+(oLfo~) d~+(oLfot) dt, 

d(L-pq) = pdq-q dp+(cLfc~ d~+(cLfct) d( 

If we define the Routhian as 

R(q, p, ~' t) = ptj- L, 

§42 

(41.1) 

in which the velocity tj is expressed in terms of the momentum p by means 
of the equation p = eLf ctj, then its differential is 

dR = -P dq+ti dp-(oLfo~) M-(oLfog) d( 
Hence 4 = oRfop, p = - oRfoq, 

oLfo~ = -oRfo~, oLJot = -oRfo( 

(41.2) 

(41.3) 

(41.4) 

Substituting these equations in the Lagrangian for the co-ordinate ~, we have 

d (oR) cR 
dt J{ =Jf. (41.5) 

Thus the Routhian is a Han1iltonian with respect to the co-ordinate q 
(equations ( 41.3}) and a Lagrangian with respect to the co-ordinate ~ (equation 
( 41.5}). 

According to the general definition the energy of the system is 

E = 4 oLfoq+t oLfot-L = N+t oLJo~-L. 
In terms of the Routhian it is 

E = R- ~ oRJct, (41.6) 

as we find by substituting (41.1) and (41.4). 
The generalisation of the above formulae to the case of several co-ordinates 

q and ~ is evident. 
The use of the Routhian may be convenient, in particular, when some of 

the co-ordinates are cyclic. If the co-ordinates q are cyclic, they do.not appear 
in the Lagrangian, nor therefore in the Routhian, so that the latter is a func­
tion of p, ~ and ( The momenta p corresponding to cyclic co-ordinates are 
constant, as follows also from the second equation (41.3), which in this sense 
contains no new information. When the momenta p are replaced by their 
given constant values, equations (41.5)(dfdt) oR(p, ~'~)jog = oR(p, ~' ~)fo~ 
become equations containing only the co-ordinates ~, so that the cyclic co­
ordinates are entirely eliminated. If these equations are solved for the func­
tions ~(t}, substitution of the latter on the right-hand sides of the equations 
q = oR(p, ~'~)fop gives the functions q(t) by direct integration. 

PROBLEM 

Find the Routhian for a symmetrical ~op in an external field U(t/>, 8), eliminating the cychc 
co-ordinate 1/J (where 1/J, </>, 0 are Eulerian angles). 
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SoLUTION. The Lagrangian is L = !/'l(ll2 +.,62 sin28)+!/a(~+.,bcos 8)2 -U(,P, 8); see 
§35, Problem 1. The Routhian is 

R = pq;/;-L = pq-
2 

-p<V'f. cos 8-!1'1(/}2+.,62 sin28)+U(,P, 8); 
2/a 

the first term is a constant and may be omitted. 

§42. Poisson brackets 

Let f (p, q, t) be some function of co-ordinates, momenta and time. Its 
total time derivative is 

df of (of. of.) 
di = Tt+ L oqkqk+ op!k · 

k 

Substitution of the values of tik ana Pk given by Hamilton's equations (40.4) 
leads to the expression 

dffdt = offot+[H,f], 
where 

( 
oH of oH of) 

[H,f] = L opk oqk - oqk opk · 
k 

This expression is called the Poisson bracket of the quantities H and f. 

( 42.1) 

(42.2) 

Those functions of the dynamical variables which remain constant during 
the motion of the system are, as we know, called integrals of the motion. 
We see from (42.1) that the condition for the quantity fto be an integral of 
the motion (dffdt = 0) can be written 

offot+ [H,f] = o. (42.3) 

If the integral of the motion is not explicitly dependent on the time, then 

[H,f] = 0, (42.4) 

i.e . .the Poisson bracket of the integral and the Hamiltonian must be zero. 
For any two quantities f and g, the Poisson bracket is defined analogously 

to ( 42.2): oif o oif a 
[j,g] = ""(-___!!__ __ ___!!_)· (42.5) f opk oqk oqk opk 

The Poisson bracket has the following properties, which are easily derived 
from its definition. 

If the two functions are interchanged, tlie bracket changes sign; if one of 
the functions is a constant c, the bracket is zero: 

_\}so 

[f,g]= -[g,f], 

[f, c] = 0. 

[/I+!z,g] = [/l,g]+[/2,g], 

[ftfz, g] = /1 [/2, g] + /2[/It g]. 

(42.6) 

(42.7) 
(42.8} 

(42.9) 

Taking the partial derivative of (42.5) with respect to time, we obtain 

o [of ] [ og] 21[/, g] = Tt'g + f, 21- . (42.10) 
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If one of the functions f and g is one of the momenta or co-ordinates, the 
Poisson bracket reduces to a partial derivative: 

[f, qk] = off op~:, 

[f, Pk] = - offoqk. 

(42.11) 

(42.12) 

Formula (42.11), for example, may be obtained by putting g = qk in (42.5}; 
the sum reduces to a single term, since oqkfoqz = Skz and oqkfopz = 0. Put­
ting in ( 42.11) and ( 42.12) the function f equal to qi and Pf we have, in parti­
cular, 

(42.13) 

The relation 

[!, [g,h]]+[g, [h,f]]+[h, [f,g]] = 0, (42.14) 

known as Jacobi's identity, holds between the Poisson brackets formed from 
three functions j, g and h. To prove it, we first note the following result. 
According to the definition ( 42.5}, the Poisson bracket [f, g] is a bilinear 
homogeneous function of the first derivatives off and g. Hence the bracket 
[h, [J, g ]], for example, is a linear homogeneous function of the second 
derivatives off and g. The left-hand side of equation {42.14) is therefore a 
linear homogeneous function of the second derivatives of all three functions 
j, g and h. Let us collect the terms involving the second derivatives of f. 
The first bracket contains no such terms, since it involves only the first 
derivatives of f. The sum of the second and third brackets may be symboli­
cally written in terms of the linear differential operators D1 and D2, defined by 
D1{4>) = [g, 4>], D2(4>) = [h, 4>]- Then 

[g, [h,f]]+[h, [f,g]] = [g, [h,f]]-[h, [g,J]] 

= Dl[D2(f)]-D2[D1(f)] 

= {D1D2-D~1)f. 

It is easy to see that this combination of linear differential operators cannot 
involve the second derivatives off. The general form of the linear differential 
operators is 

where gk and 'YJk are arbitrary functions of the variables XI, x2, ..•• Then 

L ()2 2: 07]l () 
D1D2 = ek'YJZ;:. + gk---, 

oxkoxz oxk o.xz k,l k,l 

' o
2 

' oez 0 D~1 = L 'YJkgz
0 

v + L 'YJk-
0 
--

0
-, 

k,l Xk Xz k,l Xk Xz 
and the difference of these, 
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D1D2-DzD1 = ""'(6: OTJz -TJk 
0~)_!__, 

L OXk OXk oxz 
k.Z· 

is again an operator involving only single differentiations. Thus the terms in 
the second derivatives off on the left-hand side of equation (42.14} cancel 
and, since the san1e is of course true of g and h, the whole expression is identi­
cally zero. 

An important property of the Poisson bracket is that, iff and g are two 
integrals of the motion, their Poisson bracket is likewise an integral of the 
motion: 

[f, g] = constant. (42.15) 

This is Poisson's theorem. The proof is very simple iff and g do not depend 
explicitly on the time. Putting h = H in Jacobi's identity, we obtain 

[H, [j,g]] + [f, [g, H]] + [g, [H,j]] = 0. 

Hence, if [H,g] = 0 and [H,f] = 0, then [H, [f,g]] = 0, which is the 
required result. 

If the integrals f and g of the motion are explicitly time-dependent, we 
put, from ( 42.1 ), 

d 0 
dt[f,g] = Jt[f,g]+[H, [f,g]]. 

Usjng formula ( 42.1 0) and expressing the bracket [H, [j, g ]] in terms of two 
others by means of Jacobi's identity, we find 

:t[f, g] = [ ~ ,g] + [1. ~~]- [f, [g, H]]- [g, [H,j]] 

[ ~ +[H,j],g] + [f, ~~ +[H,g]] 

[ ~ , g] + [:t. ~~ ] , 
which evidently proves Poisson's theorem. 

(42.16) 

Of course, Poisson's theorem does not always supply further integrals of 
the motion, since there are only 2s-1 of these (s being the number of degrees 
of freedom). In some cases the result is trivial, the Poisson bracket being a 
constant. In other cases the integral obtained is simply a function of the ori­
ginal integrals f and g. If neither of these two possibilities occurs, however, 
then the Poisson bracket is a further integral of the motion. 

PROBLEMS 

PROBLEM 1. Determine the Poisson brackets formed from the Cartesian components of 
the momentum p and the angular mop1entum M = r X p of a particle. 

SoLUTION. Formula (42.12) gives [Mz, P11l = -oMz/oy = -o(yp,-zp11)/(}y = -p,, 
and similarly [Mz, Pz] = 0, [Mz, P•l = p11• The remaining brackets are obtained by cyclically 
permuting the suffixes x, y, z. 
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PROBLEM 2. Determine the Poisson brackets formed from the components of M. 

SOLUTION. A direct calculation from formula (42.5) gives [Mz, M 11 ] = -M,, [M11 , Mz] 
= -Mz, [M,, Mz] = -M~~. 

Since the momenta and co-ordinates of different particles are mutually independent variables, 
it is easy to see that the formulae derived in Problems 1 and 2 are valid also for the total 
momentum and angular momentum of any system of particles. 

PROBLEM 3. Show that [</>, M,] = 0, where 4> is any function, spherically symmetrical 
about the origin, of the co-ordinates and momentum of a particle. 

SoLUTION. Such a function </> can depend on the components of the vectors r and p only 
through the combinations r2, p 2, r• p. Hence 

ot/> ot/> ct/> 
ar = o(r2) • 2r+ o(p • r) · p, 

and similarly for ot/>fop. The required relation may be verified "by direct calculation from 
formula (42.5), using these formulae for the partial derivatives. 

PROBLEM 4. Show that [f, Mz] = f•xn, where f is a vector function of the co-ordinates 
and momentum of a particle, and n is a unit vector parallel to the z-axis. 

SOLUTION. An arbitrary vector f(r, p) may be written as f = rt/>1 +Pt/>2+r X Pt/>a, where 
t/>1, t/>2, t/>3 are scalar functions. The required relation may be verified by direct calculation 
from formulae (42.9), (42.11), (42.12) and the formula of Problem 3. 

§43. The action as a function of the co-ordinates 

In formulating the principle of least action, we have considered the integral 

(43.1) 

taken along a path between two given positions q<ll and q<2> which the system 
occupies at given instants t1 and t2. In varying the action, we compared the 
values of this integral for neighbouring paths with the same values of q(t1) 
and q(t2). Only one of these paths corresponds to the actual motion, namely 
the path for which the integral S has its minimum value. 

Let us now consider another aspect of the concept of action, regarding S 
as a quantity characterising the motion along the actual path, and compare 
the values of S for paths having a common beginning at q(t1) = qU>, but 
passing through different points at time t2. In other words, we consider the 
action integral for the true path as a function of the co-ordinates at the upper 
limit of integration. 

The change in the action from one path to a neighbouring path is given 
(if there is one degree of freedom) by the expression (2.5): 

t2 

ss = [ o~ sq]t
2 

+ J( :L-~ oi: )sq dt. 
oq t1 oq dt oq 

tl 

Since the paths of actual motion satisfy Lagrange's equations, the integral 
in SS is zero. In the first term we put Sq(t1) = 0, and denote the value of 
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Sq(t2) by Sq simply. Replacing oLfoq by p, we have finally SS = pSq or, in 
the general case of any number of degrees of freedom, 

(43.2) 

From this relation it follows that the partial derivatives of the action with 
respect to the co-ordinates are equal to the corresponding momenta: 

(43.3) 

The action may similarly be regarded as an explicit function of time, by 
considering paths starting at a given instant t1 and at a given point q!l>, and 
ending at a given point q<2> at various times t2 = t. The partial derivative 
oSfot thus obtained may be found by an appropriate variation of the integral. 
It is simpler, however, to use fommla ( 43.3), proceeding as follows. 

From the definition of the action, its total time derivative along the path is 

dSfdt = L. (43.4) 

Next, regarding S as a function of co-ordinates and time, in the sense des­
cribed above, and using formula (43.3), we have 

dS oS oS oS 

dt = J!+ L oq/' = ot + LP'4'· 
f f 

A comparison gives oSfot = L-L,p,qi or 

oSfot = -H. 

Formulae (43.3) and (43.5) may be represented by the expression 

dS = LPi dqi-H dt 
i 

(43.5) 

(43.6) 

for the total differential of the action as a function of co-ordinates and time 
at the upper limit of integration in ( 43.1 ). Let us now suppose that the co­
ordinates (and time) at the beginning of the motion, as well as at the end, 
are variable. It is evident that the corresponding change in S will be given 
by the difference of the expressions (43.6) for the beginning and end of the 
path, i.e. 

(43.7) 

This relation shows that, whatever the external forces on the system during 
its motion, its final state cannot be an arbitrary function of its initial state; 
only those motions are possible for which the expression on the right-hand 
si~e ?f equation ( 43. 7) is a perfect differential. Thus the existence of the 
p~mciple of least action, quite apart from any particular form of the Lagran­
gian, 1I?P_oses certain restrictions on the range of possible motions. In parti­
ct;lar, It IS possible to derive a number of general properties, independent 
of the external fields, for beams of particles diverging from given points in 
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space. The study of these properties forms a part of the subject of geometrical 
optics."! 

It is of interest to note that Hamilton's equations can be formally <;lerived 
from the condition of minimum action in the form 

s = I <2: Pi dq,- H dt), 
i 

( 43.8) 

which follows from ( 43.6), if the co-ordinates and momenta are varied inde­
pendently. Again assuming for simplicity that there is only one co-ordinate 
and momentum, we write the variation of the action as 

ss = I [Sp dq+p dSq-(oHfoq)Sq dt-(oHfop)Sp dt]. 

An integration by parts in the second term gives 

ss = I Sp{dq- (oHfop) dt}+ [poq]- f Sq{dp+(ol-Ifoq) dt}. 

At the limits of integration we must put Sq = 0, so that the integrated term 
is zero. The remaining expression can be zero only if the two integrands 
vanish separately, since the variations Sp and Sq are independent and arbitrary: 
dq = (oHfop)dt, dp = -(ol-Ifoq)dt, which, after division by dt, are 
Han1ilton's equations. 

§44. Maupertuis' principle 
The motion of a mechanic.1.l system is entirely determined by the principle 

of least action: by solving the equations of motion which follow from that 
principle, we can find both the form of the path and the position on the path 
as a function of time. 

If the problem is the nH>re restricted one of determining only the path, 
without reference to time, a simplified form of the principle of least action 
may be used. \Ve assume that the Lagrangian, and therefore the Hamilton­
ian, do not involve the time explicitly, so that the energy of the system is 
conserved: H(p, q) = E = constant. According to the principle of least action, 
the variation of the action, for given initial and final co-ordinates and times 
(to and t, say), is zero. If, however, we allow a variation of the final time t, 
the initial and final co-ordinates remaining fixed, we have (cf.(43.7)) 

SS = -l-ISt. (44.1) 

We now compare, not all virtual motions of the system, but only those 
which satisfy the law of conservation of energy. For such paths we can 
replace H in (44.1) by a constant E, which gives 

8S+ESt = 0. (44.2) 

t See The Classical Theory of Fields, Chapter 7, Pergamon Press, Oxford 1975 · 
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Writing the action in the form (43.8) and again replacing H byE, w_e have 

The first term in this expression, 

So= J 2Pi dq,, 
i 

is sometimes called the abbreviated action. 
Substituting (44.3) in (44.2), we find that 

.SSo = 0. 

(44.3) 

(44.4} 

(44.5) 

Thus the abbreviated action has a minimum with respect to all paths which 
satisfy the law of conservation of mergy and pass through the final point 
at any instant. In .order to use such a variational principle, the momenta 
(and so the whole integrand in (44.4)) must be expressed in terms of the 
co-ordinates q and their differentials dq. To do this, we use the definition of 
n1on1entun1: 

0 ( dq) Pt = -.L q,-
oqi dt 

(44.6) 

' 
and the law of conservation of energy: 

E(q. ~~) =E. (44.7) 

Expressing the differential dt in terms of the co-ordinates q and their differen­
tials dq by means of (44.7) and substituting in (44.6}, we have the momenta 
in terms of q and dq, with the energy E as a parameter. The variational prin­
ciple so obtained determines the path of the system, and is usually called 
Maupertuis' principle, although its precise formulation is due to EULER and 
LAGRANGE. 

The above calculations may be carried out explicitly when the Lagrangian 
takes its usual form (5.5) as the difference of the kinetic and potential energies: 

The momenta are 

and the energy is 

L = i 2 aik(q}qiq~r.- U(q). 
i,k 

Pt = oLf oqi = 2 aik(q)qk> 
k 

E = l L aik(q)cjtcik + V(q). 
i,k 

The last equation gives 

(44.8) 
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substituting this in 

The Canonical Equations 

dqk LPi dq, = L aik-- dqi, 
i i,k dt 

we find the abbreviated action: 

So = I v'[ 2(E- U) 2. aik dq, dqk]· 
i,k 

§44 

(44.9) 

In particular, for a single particle the kinetic energy is T = ! m(dlfdt)2, 
where m is the mass of the particle and dl an element of its path; the variational 
principle which determines the path is 

S I v'[2m(E- U)] dl = 0, (44.10} 

where the integral is taken between two given points in space. This form is 
due to }ACOBI. 

In free motion of the particle, U = 0, and (44.10) gives the trivial result 
S J dl = 0, i.e. the particle moves along the shortest path between the two 
given points, i.e. in a straight line. 

Let us return now to the expression (44.3) for the action and vary it with 
respect to the parameter E. We have 

cSo 
SS = - SE- (t- t0)SE- ESt· 

oE ' 

substituting in ( 44.2), we obtain 

oSofoE = t- to. (44.11) 

When the abbreviated action has the form (44.9}, this gives 

(4:4.12) 

which is just the integral of equation ( 44.8). Together with the equation of 
the path, it entirely determines the motion. 

PROBLEM 

Derive the differential equation of the path from the variational princip1e (44.10). 

SOLUTION. Effecting the variation, we have 

8Jv(E-U)dl= -J{ au· l1r dl-v(E-V~·d8r}. 
or 2v(E-U) dl 

In the second term we have used the fact that d[2 = dr2 and therefore dl d8l = dr· dllr­
Integrating this term by parts and then equating to zero the coefficient of 8r in the integrand, 
we obtain the differential equation of the path: 

d [ dr] 2vCE-U>- v(E-U)- = -oU/or. 
dl dl 
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Expanding the derivative on the left-hand side and putting the force F = -oUfar gives 

d2rfdl2 = [F -(F • t)t]/2(E- U), 

where t = dr/dl is a unii: vector tangential to the path. The difference F -(F • t)t is the com­
ponent Fn of the force normal to the path. The derivative d2rfd.l2 = dt/dl is known from 
differential geometry to be n/R, where R is the radius of curvature of the path and n the unit 
vector along the principal normal. Replacing E- U by !ntv2, we have (t7(1J2/R)n = Fn, in 
agreement with the familar expression for the normal acceleration in motion in a curved 
path. 

§45. Canonical transformations 

The choice of the generalised co-ordinates q is subject to no restriction; 
they may be any s quantities which uniquely define the position of the system 
in space. The formal appearance of Lagrange's equations (2.6) does not 
depend on this choice, and in that-sense the equations may be said to be 
invariant with respect to a transformation from the co-ordinates q1, q2, ••• 

to any other independent quantities Q1, Q2, .... The new co-ordinates Q are 
functions of q, and ~e shall assume that they may explicitly depend on the 
time,- i.e. that the transformation is of the form 

g, = Q,(q, t) (45.1} 

(sometimes called a point transformation). 
Since Lagrange's equations are unchanged by the transformation (45.1), 

Hamilton's equations (40.4) are also unchanged. The latter equations, how­
ever, in fact allow a much wider range of transformations. This is, of course, 
because in the Han1iltonian treatment the momenta p are variables inde­
pendent of and on an equal footing with the co-ordinates q. Hence the trans­
formation may be extended to include all the 2s independent variables p 
and q: 

(45.2} 

This enlargement of the class of possible transfom1ations is one of the im­
portant advantages of the Hamiltonian treatment. 

The equations of motion do, not, however, retain their canonical form 
under all transformations of the form ( 45.2). Let us derive the conditions 
which must be satisfied if the equations of motion in the new variables P, Q 
are to be of the form 

(45.3) 

with some Han1iltonian H'(P,Q). Among these transformations, there is a 
particularly important class called carwnicaltransformations. 

The formulae for canonical transformations can be obtained as follows. It 
has been shown at the end of §43 that Hamilton's equations can be derived 
from the principle of least action in the form 

(45.4) 
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in which the variation is applied to all the co-ordinates and momenta inde­
pendently. If the new variables P and Q also satisfy Hamilton's equations, 
the principle of least action 

S f<2 Pi dQ,-H' dt) = 0 (45.5) 
i 

must hold. The two forms (45.4) and (45.5) are certainly equivalent if their 
integrands are the same apart from the total differential of some function F 
of co~ordinates, momenta and time. The difference between the two integrals 
is then a constant, namely the difference of the values of F at the limits of 
integration, which does not affect the variation. Thus we will take 

2 Pt dq,- H dt = 2 Pt dQ,- H' dt + dF. 

Transformations which satisfy this condition are said to be canonical.t Each 
canonical transformation is characterised by a particular function F, called the 
generating function of the transformation. 

Writing this relation as 

dF = 2 Pi dq,- 2 Pi d·Q,+(H' -H) dt, (45.6) 

we see that 

Pi= oFfoq,, H' = H+oFJot; (45.7) 

here it is assumed that the generating function is given as a function of the 
old and new co-ordinates and the time: F = F(q, Q, t). When F is known, 
formulae ( 45. 7) give the relation between p, q and P, Q as well as the new 
Hamiltonian. 

It may be convenient to express the generating function not in terms of the 
variables q and Q but in terms of the old co-ordinates q and the new momenta 
P. To derive the formulae for canonical transformations in this case, we must 
effect the appropriate Legendre's transformation in ( 45.6), rewriting it as 

d(F+ 2 PtQt) = LPt dqt+ 2 Q, dPt+(H' -H) dt. 

The argument of the differential on the left-hand side, expressed in terms of 
the variables q and P, is a new generating function <I>(q, P, t), say. Then! 

H' = H + oci>Jot. ' (45.8) 

We can similarly obtain the formulae for canonical transformations in­
volving generating functions which depend on the variables p and Q, or 
p and P. 

t The canonical form of the equations of motion is preserved not only by the canonical 
transformations but also by transformations in which'the integrands in (45.4) and (45.5) differ by a 
constant factor. An example is the transformation P, = ap, Q, = q, H' = aH, with any constant a. 

t If the generatinl:{ function is <I> = ~J;(q, t)P1, where the/; are arbitrary functions, we 
obtain a transformation in which the new co-ordinates are Q, = J,(q, t), i.e. are exprco:sed 
in terms of the old co-ordinates only (and not the momenta). This is a point transformation, 
and is of course a particular canonical transformation. 



§45 Canonical transformations 145 

The relation between the two Hamiltonians is always of the same form: 
the difference H' - H is the partial derivative of the generating functi9n with 
respect to time. In particular, if the generating function is independent of 
time, then H' = H, i.e. the new Hamiltonian is obtained by simply substitut­
ing for p, q in H their values in terms of the new variables P, Q. 

The wide range of the canonical transformations in the Hamiltonian treat­
ment deprives the generalised co-ordinates and momenta of a considerable 
part of their original meaning. Since the transformations (45.2) relate each 
of the quantities P, Q to both the co-ordinates q and the momenta p, the 
variables Q are no longer purely spatial co-ordinates, and the distinction 
between Q and P becomes essentially one of nomenclature. This is very 
clearly seen, for example, from the transformationt Q, = p,, P, = - q~,, 
which obviously does not affect the canonical form of the equations and 
amounts simpl,y to calling the co-"ordinates momenta and vice versa. 

On account of this arbitrariness of nomenclature, the variables p and q in 
the Hamiltonian tJ:eatment are often called simply canonically conjugate 
quantities. The conditions relating such quantities Cl'!n be expressed in terms 
of Poisson brackets. To do this, we shall first prove a general theorem on the 
invariance of Poisson brackets with respect to canonical transformations. 

Let [!, g]p,q be the Poisson bracket, for two quantities f and g, in which 
the differentiation is with respect to the variables p and q, and [!, g]P,Q that 
in which the differentiation is with respect toP and Q. Then 

[f,g]p,q = [f,g]P,Q· (45.9) 

The truth of this statement can be seen by direct calculation, using the for­
mulae of the canonical transformation. It can also be demonstrated by the 
following argument. 

First of all, it may be noticed that the time appears as a parameter in the 
canonical transformations (45.7) and (45.8). It is therefore sufficient to prove 
( 45. 9) for quantities which do not depend explicitly on time. Let us now 
formally regard g as the Hamiltonian of some fictitious system. Then, by 
formula ( 42.1 ), [J, g]p,q = - dfldt. The derivative dj;dt can depend only on 
the properties of the motion of the fictitious system, and not on the particular 
choice of variables. Hence the Poisson bracket [!, g] is unaltered by the 
passage from one set of canonical variables to another. 

Formulae (42.13) and (45.9) give 

[Q~,, Qk]p,q = 0, [Pt, Pk]p,q = 0, [P~,, Qk]p,q = Stk· (45.10) 

These are the conditions, written in terms of Poisson brackets, which must 
be satisfied by the new variables if the transformation p, q --+ P, Q is canonical. 

It is of interest to observe that the change in the quantities p, q during the 
motion may itself be regarded as a senes of canonical transformations. The 
meaning of this statement is as follows. Let qe. Pt be the values of the canonical 

t Whose generating function is F = !:.q<Qt. 
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variables at timet, and qt+.,., Pt+r their values at another time t +-r. The latter 
are some functions of the former (and involve T as a parameter): 

qt+T = q(qe, Pt, t,T), Pt+T =.p(qe, Pe. t,-T). 
If these formulae are regarded as a transformation from the variables qe, Pt 
to qt+n Pt+n then this transformation is canonical. This is evident from the 
expression dS = ~(Pthdqt+7 -ptdqt) -(Ht+7 -Re)dt for the differential of the 
action S(qt+T, qt, t, -r), taken along the true path, passing through the points qt 
and qt+T at times t and t +T for a given T (cf. (43.7)). A comparison of this 
formula with (45.6) shows that -Sis the generating function of the trans­
formation. 

§46. Liouville's theorem 
For the. geometrical interpretation of mechanical phenomena, u~e is often 

made of phase space. This is a space of 2s dimensions, whose co-ordinate axes 
correspond to the s generalised co-ordinates and s momenta of the system 
concerned. Each point in phase space corresponds to a definite state of the 
system. \Vhen the system moves, the point representing it describes a curve 
called the phase path. · 

The product of differentials dr = dq1 ... dq8dpt ... dp 8 may be regarded 
as an element of volume in phase space. Let us now consider the integral 
f dr taken over some region of phase space, and representing the volume of 
that region. We shall show that this integral is invariant with respect to 
canonical transformations; that is, if the variables p, q are replaced by 
P, Q by a canonical transformation, then the volumes of the corresponding 
regions of the spaces of p, q and P, Q are equal: 

J ···f dql··· dqs dPl··· dPs = I ... I dQl··· dQ8 dPt··· dP8 • (46.1) 

The transformation of variables in a multiple integral is effected by the 
formula f ... f dQt ... dQ8 dPt ... dP8 = f ... f Ddq1 ... dq8 dp1 ... dp8, 

where 
o(Qt. ... , Qs, Pt. ... , Ps) D=-:..:....__...:...::._ ___ _ 
o(qt. ... , qs, Pt • ... , Ps) 

(46.2) 

is the Jacobian of the transformation. The proof of ( 46.1) therefore amounts 
to proving that the Jacobian of every canonical transformation is unity: 

D = 1. (46.3) 

We shall use a well-known property of Jacobians whereby they can be 
treated somewhat like fractions. "Dividing numerator and denominator" by 
o(qt. ... , q8, Pt, ... , P 8), we obtain 

D = o(Qt, ... , Qs. Pt, ... , Ps) I o(qt, ... , qs, Pt. ... , Ps). 

o(qt. ... , qs, Pt. ... , Ps) c(qt, ... , qs, Pt. ... , Ps) 
Another property of Jacobians is that, when the same quantities appear in 
both the partial differentials, the Jacobian reduces to one in fewer variables, 
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in which these repeated quantities are regarded as constant in carrying out 
the differentiations. Hence 

{ 
o(Qt, ... , Qs) } /{ o(pt, ... , Ps) } 

D = o(qt. ... , qs) P=cons~ant o(Pl, ... , Ps) q=constant. 
(46.4) 

The Jacobian in the numerator is, by definition, a determinant of order s 
whose element in the ith row and kth column is oQi/ oqk. Representing the 
canonical transformation in terms of the generating function <ll(q, P) as in 
(45.8), we have oQ~,foqk = o2<l>foqkoP~,. In the same way we find that the 
ik-element of the determinant in the denominator of (46.4) is o2<tlfoq,oPk. 
This means that the two determinants differ only by the interchange of rows 
and columns; they are therefore equal, so that the ratio (46.4) is equal to 
unity. This completes the proof. 

Let us now suppose that each point in the region of phase space considered 
moves in the course of time in accordance with the equations of motion of the 
mechanical system. The region as a whole therefore moves also, but its volume 
remains unchanged: 

J dr = constant. (46.5) 

This result, known as Liouville's theorem, follows at once from the invariance 
of the volume in phase space under canonical transformations and from the 
fact that the change in p and q during the motion may, as we showed at the end 
of §45, be regarded as a canonical transformation. 

In an entirely similar manner the integrals 

in which the integration is over manifolds of two, four, etc. dimensions in 
phase space, may be shown to be invariant. 

§47. The Hamilton-Jacobi equation 
In §43 the action has been considered as a function of co-ordinates and 

time, and it has been shown that the partial derivative with respect to time 
of this function S(q, t) is related to the Hamiltonian by 

oSfot+H(q,p, t) = o, 
and its partial derivatives with respect to the co-ordinates are the momenta. 
Accordingly replacing the momenta p in the Hamiltonian by the derivatives 
oSjoq, we have the equation 

oS +H(q., ... , qs; oS, ... , cS; t) = 0 (47.1) 
ot oql oqs 

which ~ust be ~ati~fied by the function S(q, t). This first-order partial 
differential equatwn Is called the Hamilton-jacobi equation. 
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Like Lagrange's equations and the canonical equations, the Hamilton­
Jacobi equation is the basis of a general method of integrating the equations 
of motion: 

Before describing this method, we should recall the fact that every first­
order partial differential equation has a solution depending on an arbitrary 
function; such a solution is called the general integral of the equation. In 
mechanical applications, the general integral of the Hamilton-Jacobi equation 
is less important than a complete integral, which contains as many independent 
arbitrary constants as there are independent variables. 

The independent variables in the Hamilton-Jacobi equation are the time 
and the co-ordinates. For a system with s degrees of freedom, therefore, a 
complete integral of this equation must contain s + 1 arbitrary constants. 
Since the function S enters the equation only through its derivatives, one 
of these constants is additive, so that a complete integral of the Hamilton-
} acobi equation is · 

S = f(t, qt, ... , q8 ; 01:1, ••• , a:8)+A, (47.2) 

where Ol:lJ ••• , 01: 8 and A are arbitrary constants. t 
Let us now ascertain the relation between a complete integral of the 

Hamilton-J acob_i equation and the solution of the equations of motion which 
is of interest. To do this, we effect a canonical transformation from the 
variables q, p to new variables, taking the function f (t, q; 01:) as the 
generating function, and the quantities 01:1, 01:2, ••• , 01: 8 as the new momenta. 
Let the new co-ordinates be {31, {32, •.. , {3 8• Since the generating function 
depends on the old co-ordinates and the new momenta, we use formulae 
(45.8): p, = Ojfoqt,, f3i = ojfo<Xf, H' = H+Offot. But since the function f 
satisfies the Hamilton-Jacobi equation, we see that the new Hamiltonian is 
zero: H' = H +Of jot = H + oS jot = 0. Hence the canonical equations in 
the new variables are <Xi = 0, /31 = 0, whence 

01:1 = constant, f3t = constant. (47.3) 

By means of the s equations ojjo01:1 = {31, the s co-ordinates q can be expressed 
in terms of the time and the 2s constants 01: and {3. This gives the general 
integral of the equations of motion. 

t Although the general integral of the Hamilton-Jacobi equation is not needed here, we 
may show how it can be found from a complete integ~:al. To do this, we regard A as an arbi­
trary function of the remaining constants: S = f(t, q1, ... , q,; a1 , ••• , a.) +A(ar, ... , a,)_ Re­
placing the at by functions of co-ordinates and time given by the s conditions ast aac = 0, 
we obtain the general integral in terms of the arbitrary function A(a1, ... ,a.). For, when the 
function S is obtained in this manner, we have 

as ( as) 2:( as) crxk ( cs) 
aq~ = aq~ "' + k oak o Eqt = cq, "'. 

Th · · ("'Sf"' · f h H "I J b" · · h function S(t, q; "') e quantities c; uq1)u saus y t e arn1 ton- aco 1 equauon, smce t e h efore sat" f 
- f . Th . - "S 'C!q• t er •s y is asstuned to be a complete mtegral o that equauon. e quanuues v 1 .. . 



§48 Separation of the variables 
• 

149 

Thus the solution of the problem of the motion of a mechanical system by 
the Hamilton-Jacobi method proceeds as follows. From the Hamiltonian, 
we form the Hamilton-Jacobi equation, and find its complete integral (47.2). 
Differentiating this with respect to the arbitrary constants 01: and equating 
the derivatives to new constants {3, we obtain s algebraic equations 

(47.4) 

whose solution gives the co-ordinates q as functions of time and of the 2s 
arbitrary constants. The momenta as functions of time may then be found 
from the equations p1 = oS Joq~,. 

If we have an incomplete integral of the Hamilton-Jacobi equation, depend­
ing on fewer than s arbitrary constants, it cannot give the general integral 
of the equations of motion, but it can be used to simplify the finding of the 
general integral. For example, if a function S involving one arbitrary con­
stant 01: is known, the relation oSjo01: = constant gives one equation between 
qt. ... , q8 and t. 

The Hamilton-Jacobi equation takes a somewhat simpler form if the func­
tion H does not involve the time explicitly, i.e. if the system is conservative. 
The time-dependence of the action is given by a term - Et: 

S = So(q)-Et (47.5) 

(see ~44), and substitution in (47.1) gives for the abbreviated action So(q) 
the Hamilton-Jacobi equation in the form 

H(l]l, ... , qs; oSo, ... , oSo) = E. 
Ol]l oqs 

(47.6) 

§48. Separation of the variables 
In a number of important cases, a complete integral of the Hamilton­

Jacobi equation can be found by "separating the variables", a name given to 
the following method. 

Let us assume that some co-ordinate, q1 say, and the corresponding 
derivative oSfoq1 appear in the Hamilton-Jacobi equation only in some 
combination cfo(qh oSJoq1) which does not involve the other co-ordinates, time, 
or derivatives, i.e. the equation is of the form 

{ 
as as ( as)} 

<ll q,, t, oq, ' --at· cfo lJl, oq1 = 
0' (48.1) 

where qc denotes all the co-ordinates except q1. 
We seek a solution in the form of a sum: 

S = S'(q,, t) + S1(q1); (48.2) 
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substituting this in equation ( 48.1 ), we obtain 

oS' oS' dS1 
<D{ q,, t, oq, , ot , 4> ( qh dqJ} = o. (48.3) 

Let us suppose that the solution ( 48.2) has been found. Then, when it is 
substituted in equation (48.3), the latter must become an identity, valid (in 
particular) for any value of the co-ordinate q1. When q1 changes, only the 
function 4> is affected, and so, if equation ( 48.3) is an identity, 4> must be a 
constant. Thus equation ( 48.3) gives the two equations 

4>(% dS1Idq1) = 01:1. 

<I>{q,, t, oS' 1 cq,, oS' 1 ct; 01:1} = o, 
(48.4) 

(48.5) 

where 01:1 is an arbitrary constant. The first of these is an ordinary differential 
equation, and the function S1(q1) is obtained from it by simple integration. 
The remaining partial differential equation ( 48.5) involves fewer independent 
variables. 

If we can successively separate in this way all the s co-ordinates and the 
time, the finding of a complete integral of the Hamilton-} acobi equation is 
reduced to quadratures. For a conservative system we have in practice to 
separate only s variables (the co-ordinates) in equation (47.6), and when this 
separation is complete the required integral is 

S = L Sk(qk; 01:1, 01:2, ... , Ol:s}- E(01:1, ... , Ol:s)t, (48.6) 
k 

where each of the functions S k depends on only one co-ordinate; the energy 
E, as a function of the arbitrary constants 01:1, ... , 01: 8 , is obtained by substituting 
So = ~Sk in equation (47.6). 

A particular case is the separation of a cyclic variable. A cyclic co-ordinate 
q1 does not appear explicitly in the Hamiltonian, nor therefore in the Hamilton­
Jacobi equation. The function cl>(qt. oSioq1) reduces to oSioq1 simply, and 
from equation (48.4) we have simply s1 = Ol:1qt, so that 

(48.7) 

The constant 01:1 is just the constant value of the momentum PI = oSioq1 
corresponding to the cyclic co-ordinate. 

The appearance of the time in the term - Et for a conservative system 
corresponds to the separation of the "cyclic variable" t. 

Thus all the cases previously considered of the simplification of the integra­
tion of the equations of motion by the use of cyclic variables are embraced 
by the method of separating the variables in the Hamilton-Jacobi equation. 
To those cases are added others in which the variables can be separated even 
though they are not cyclic. The Hamilton-Jacobi treatment is conse'!uently 
the most powerful method of finding the general integral of the equattons of 
motion. 
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To make the variables separable in the Hamilton-Jacobi equation the 
co-ordinates must be appropriately chosen. We shall consider some examples 
of separating the variables in different co-ordinates, which may be of 
physical interest in connection with problems of the motion of a particle in 
various external fields. 

(1) Spherical co-ordinates. In these co-ordinates (r, 0, cfo), the Hamiltonian is 

1 ( Pi P.l ) H = -2 Pr2+-2-+ 2 . 2(J + U(r, 0, cfo), 
m r r stn 

and the variables can be separated if 

b(O) c(cfo) 
U = a(r)+""'"2+ 2 . 

20
, 

r r sin 

where a(r), b(O), c(cfo) are arbitrary functions. The last term in this expression 
for U is unlikely to be of physical interest, and we shall therefore take 

U = a(r)+b(O)fr2. (48.8) 

In this case the Hamilton-Jacobi equation for the function So is 

_I_(oS0
)

2 
+a(r)+-1-[(oSo)

2 
+Zmb(O)] + 1 (oSo)

2 
=E. 

2m or 2mr2 ()(} 2mr2 sin2(J ocfo 

Since the co-ordinate cP is cyclic, we seek a solution in the form So 
= p9cfo +S1(r) + S2(0), obtaining for the functiorts S1(r) andS 2(0)the equations 

( ~~2 ) 2 + 2mb(O) + s~::(J = {3, 

_1_( dSt )\a(r)+ {3 = E. 
2m dr 2mr2 

Integration gives finally 

s = - Et + P9cP +I v[f3- Zmb(O)-Pifsin20] d(J + 

+ jv{2m[E-a(r)]-{3fr2} dr. 
(48.9) 

The arbitrary constants in (48.9) are p9, {3 and E; on differentiating with 
respect to these and equating the results to other constants, we have the 
general solution of the equations of motion. 

(2) Parabolic co-ordinates. The passage from cylindrical co-ordinates 
(here denoted by p, cfo, z) to parabolic co-ordinates ~. 7], cP is effected by the 
formulae 

p = v(~7J>· (48.10) 

The co-ordinates e and 7J take values from 0 to oo; the surfaces of constant 
f and 7J are easily seen to be two families of paraboloids of revolution, with 
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the z-axis as the axis of symmetry. The equations (48.10) can also be written, 
in terms of 

(48.11) 

(i.e. the radius in spherical co-ordinates), as 

~ = r+z, 7} = r-z. (48.12) 

Let us now derive the Lagrangian of a particle in the co-ordinates g, 7], cfo. 
Differentiating the expressions ( 48.10) with respect to time and substituting 
i11 the Lagrangian in cylindrical co-ordinates 

L = !m(p-2+p2~2+z2)- U(p, cfo, z), 

we obtain 

(48.13) 

The momenta are P€ = !m(g+'l})gfg,p"' = !m(g+'l})i]/'I},P¢> = mgrfl>, and 
the Hamiltonian is 

(48.14) 

The physically interesting cases of separable variables in these co-ordinates 
correspond to a potential energy of the form 

(48.15) 

The equation for So is 

The cyclic co-ordinate cP can be separated ~sa term P¢>cP· Multiplying the equa­
tion by m(g + 7}) and rearranging, we then have 

~ - +ma(~)-mEg+_.l.._+27} - +mb(7])-mE7]+_.l.._ = 0. (
os0)2 p 2 (oS0)2 p 2 

~ ~ ~ ~ 

Putting So = P¢>cP + S1(~) + S2( 7]), we obtain the two equations 

( 
dS1 )2 p 2 

2t ~ +ma(g)-mE~+ ~ = {3, 

27] -- +mb(71)-mE71 +__!!_ = -~, (
dS2)2 p 2 
d7} 27) 
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integration of which gives finally 

IJ[ f3 ma(fl 
S = -Et+p9cfo+ fmE+ ~- ~ 

(48.16) 

Here the arbitrary constants are p9, {3 and E. 
(3) Elliptic co-ordinates. These are g, 7], cfo, defined by 

p = uy[(~2-1)(1-7]2)], z = ug7]. (48.17) 

The constant a is a parameter of the transformation. The co-ordinate ~ takes 
values from 1 to oo, and 7} from - 1 to + 1. The definitions which are geo­
metrically clearestt are obtained in terms of the distances r1 and r2 to points 
A1 and A2 on the z-axis for which z = ±u: r1 = v[(z-u)2+p2], 
r2 =v[(z+u)2+p2]. Substitution of (48.17) gives 

r1 = u(~-7]), r2 = a{g+7]), 
\ 

~ = (r2 + rt)/2u, 7} = (r2- rl)/2u. 
(48.18) 

Transforming the Lagrangian from cylindrical to elliptic co-ordinates, we 
find 

(48.19) 

H = 2ma2(;2_'YJ2) [c~2-1)p€2+ (1-'YJ2)p.l+ ( g2~ 1 + 1 ~'YJ2)Pl] + 

+ U(~. 'YJ• cfo). (48.20) 

The physically interesting cases of separable variables correspond to a 
potential energy 

U = a(fl+b('YJ) =~(a( r2+r1) +b( r2-r1 )}. 
~2 -7}2 r1r2 2u 2u 

(48.21) 

where a(~) and b( 'YJ) are arbitrary functions. The result of separating the 
variables in the Hamilton-Jacobi equation is 

IJ [ f3- 2mu2a(~) 
S = -Et+p9cfo+ 2mu2E+ ~- 1 

+ J J[zmu2E- ~+::~('YJ)- (1 ~"'22)2] d7]. 
7} 7} ( 48.22) 

f 'J'he surfa~es of constant fare the ellipsoids z2fa1f2+p2/a2(f!~1) = 1, of which A1 and 
As are the foe•; the surfaces of constant "' are the hyperboloids z2fai.,S-p2fa2(1-.,t) = 1, 
also with foci A1 and Aa. 
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PROBLEMS 

§49 

PtmiiLE:\1 1. Fmd a complete integral of the Hamilton-Jacobi equation for motion of a 
particle in a field U = rx'r - Fz (a combination of a Coulomb field and a uniform field), and 
fmd a consern~d function of the co-ordinates and momenta that is specific to this motion. 

SoLUTION. Tht field is of the type (-1-8.15), with a(~) = rx - ~F~2 , b(q) = rx + ~Fq2 • 
The complete integral of the Hamilton-Jacobi equation is given by ( 48.16) with these functions 
a(~) and I>( q). To determine the significance of the constant P. we write the equations 

?.fpf i ma(~) ml:t + ~P~tt = {3, 

"!.1/p;f -t mb(,/) - mf:,, + ~p~!lJ ' - {3. 

Suhtractmg, and expressing the momenta p~ = l1Sfill; and p,1 = l'Sfl1'1 in terms of the 
momenta p = l1SI<1 p and p= = l1S/llz in cylindrical co-ordinates, we obtain after a simple 

calculation 

The expression in the brackets is an integral of the motion that is specific to the pure Coulomb 
field (the ;;;-component of the \"ector (15.17)). 

PROBLEM 2. The same as Problem 1, but for a field U = rx1 /r1 + rx2/r2 (the Coulomb 
field of two fixed points at a distance 2a apart). 

SOLUTION. Thisfieldisofthetype(48.21),witha(~) = (rx 1 + rx 2)~ 1 a,b(q) = (rx,- rx 2)qfa. 
The actionS(~. q, lfl, t) is obtained by substituting these expressions in (48.22). The signifi­
cance of the constant p is found in a manner similar to that in Problem 1; in this case it 
expresses the conservation of the quantity 

{3 = a~ (P~ + ~~) - _lP + 2ma(a1 co~ 01 + a~ cos 0~) . 

• 11" = (r x pf 

and 01 and 02 are the angles shown in Fig. 55. 

FIG. 55 

§49. Adiabatic invariants 
Let us consider a mechanical system executing a finite motion in one dimen­

sion and characterised by some parameter A which specifies the properties of 
the system or of the external field in which it is placed, t and let us suppose that 
A varies slowly (adiabatically) with time as the result of some external action; 
by a "slow" variation we mean one in which A varies only slightly during the 
period T of the motion: 

T <L\fdt ~.A. (49.1) 

t To simplify the formulae, we assume that there is only one such pararr1eter, but all the 
results remain valid for any number of parameters. 
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If A. were constant, the system would be closed and would execute a 
strictly periodic motion with a constant energy E and a fixed period T(E). 
When the parameter A. is variable, the system is not closed and its energy is 
not conserved. However, since A. is assumed to vary only slowly, the rate of 
change E of the energy will also be small. If this rate is averaged over the 
period T and the "rapid" oscillations of its value are thereby smoothed out, 
the resulting value E determines the rate of steady sl9w variation of the 
energy of the system, and this rate will be proportional to the rate of change ). 
of the parameter. In other words, the slowly varying quantity E, taken in 
this sense, will hehave as some function of A.. The dependence of E on A. 
can be expressed as the constancy of some combination of E and A.. This 
quantity, which remains constant during the motion of a system with slowly 
varying parameters, is called an adiabatic invariant. 

Let H(q, p; A.} be the Hamiltonian of the system, which depends on the 
parameter A.. According to formula (40.5), the rate of change of the energy 
of the system is 

dF oH oHdA. 
( 49.2) --==-=--

dt ot oA. dt. 

The expression on the right depends not only on the slowly varying quantity 
A. but also on the rapidly varying quantities q and p. To ascertain the steady 
variation of the energy we must, according to the above discussion, average 
(49.2) over the period of the motion. Since A. and therefore A. vary only 
slowly, we can take ). outside the averaging: 

dE dA. iJH 
dt = dt a;· (49.3) 

and in the function oHfoA. being averaged we can regard only q and p, and 
not A., as variable. In other words, the averaging is taken over the motion 
which would occur if A. remained constant. 

The averaging may be explicitly written 

- T 

aH = J_faH dt. 
oA. T oA. 

0 

According to Hamilton's equation q = oHiop, or dt = dq_,_ (oHfop). The 
integration with respect to time can therefore be replaced by one with respect 
to the co-ordinate, with the period T written as 

T 

r = f dt = f dq + (oHfop); (49.4) 
0 
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here the f sign denotes an integration over the complete range of variation 
("there and back") of the co-ordinate during the period.t Thus (49.3) becomes 

dE dA ~ (oH,tolt) dqf(oHfop) 
-

dt dt ~ dqf(oHfop) 
(49.5) 

As has already been mentioned, the integrations in this formula must be 
taken over the path for a giYen constant value of A. Along such a path the 
Hamiltonian has a constant value E, and the momentum is a definite function 
of the variable co-ordinate q and of the two independent constant parameters 
E and A. Putting therefore p = p(q; E, A) and differentiating with respect 
to A the equation H(q,p,A.) = E, we have iJHfolt + (oHfop)(opfo>..) = 0, or 

oHfo>.. op 

(IHfcp 

Substituting this in the numerator of (49.5) and writing the integrand in the 
denominator as opfoE, we obtain 

dE dAHopfo>..) dq 
-

dt dt ~ (cpfoE) dq 

or 
,e ( op dE epdA' 
J oE Tt+ cit dt) dq = o. 

Finally, this may be written as 

dlfdt = 0, (49.6) 

where 
I = f p dqf27T, (49.7) 

the integral being taken over the path for given E and A. This shows that, in 
the approximation here considered, I remains constant when the parameter A 
varies, i.e. I is an adiabatic invariant. 

The quantity I is a function of the energy of the system (and of the para­
meter A.). The partial derivative with respect to energy determines the period 
of the motion: from (49.4), 

2n of = J: ap dq = T 
aE J' aE 

(49.8) 

t If h · f h · · d h d" · ngle of rotation A t e motton o t e system ts a rotatton, an t e co-or tnate q ts an a . f m 0 '1', 

h • . • h A b k " I . n" ' e. ro to 21T t e tntegratton wtt respect to 'I' mUst e ta en over a comp ete rotatto • · · 
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or 
aEtai = w, (49.9) 

where w = 2nfT is the vibration frequency of the system. 
The ,integral (49.7) has a geometrical significance in terms of the phase 

path of the system. In the case considered (one degree of freedom), the phase 
space reduces to a two-dimensional space (i.e. a plane) with co-ordinates 
p, q, and the phase path of a system executing a periodic motion is a closed 
curve in the plane. The integral ( 49. 7) taken round this curve is the area 
enclosed. It can be written also as the area integral 

I = JJ dp dqf2n. (49.10) 

As an example, let us determine the adiabatic invartant for a one-dimen­
sional oscillator. The Hamiltonian is 

(49.11) 

where w is the eigenfrequency of the oscillator. The equation of the phase 
path is given by the 'law of conservation of energy H(p, q) = E. The path 
is an ellipse with semi-axes v(2mE) and v(2Efmw 2), and its area, divided 
by 2n, is 

I= Efw. (49.12) 

The adiabatic invariance of I signifies that, when the parameters of the 
oscillator vary slowly, the energy is proportional to the frequency. 

§50. Canonical variables 

Now let the parameter A. be constant, so that the system in question is 
closed. Let us effect a canonical transformation of the variables q and p, 
taking I as the new "momentum". The generating function is the abbreviated 
action S0 , expressed as a function of q and I. For S0 is defined as the integral 

S 0 (q, E; A.) = Jp(q, E; A.) dq, (50.1) 

taken for a given energy E and parameter A.. For a closed system, however, 
I is a function of the energy alone, and so S0 can equally well be written as a 
function S0 (q, I; A.), and the partial derivative (iJS0 fcq)E is the same as the 
derivative (iJS0 foq)1 for constant I. Hence 

p = iJS0 (q, I; A.)jcq, (50.2) 

corresponding to the first of the formulae ( 45.8) for a canonical transforma­
tion. The second of these formulae gives the new "co-ordinate", which we 
denote by w: 

w = aS0 (q, I; A.)fci. (50.3) 

The variables I and w are called canonical <L·.miables; I is called the action 
variable and w the angle variable. 
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Since the generating function So(q, I; .A) does not depend explicitly on 
time, the new Hamiltonian H' is just H expressed in terms of the new 
variables. In other words, H' is the energy E(l), expressed as a function of 
the action variable. Accordingly, Hamilton's equations in canonical variables 
are 

I= 0, w = dE(l)/dl. (50.4) 
The first of these shows that I is constant, as it should be; the energy is 
constant, and I is so too. From the second equation we see that the angle 
variable is a linear function of time: 

dE 
w = -t + constant = w(l)t + constant; 

dl 

it is the phase of the oscillations. 

(50.5) 

The action S 0(q, I) is a many-valued function of the co-ordinates. During 
each period this function increases by 

~So = 2m!, (50.6) 

as is evident from (50.1) and the definition of I (49.7). During the same time 
the angle variable increases by 

~w = ~(oSofol) = o(~So)/ol = 2n. (50. 7) 

Conversely, if we express q and p, or any one-valued function F(q, p) of 
them, in terms of the canonical variables, then they remain unchanged when 
w increases by 2n (with I constant). That is, any one-valued function F(q, p ), 
when expressed in terms of the canonical variables, is a periodic function of w 
with period 2'1T. 

The equations of motion can also be formulated in canonical variables for 
a system that is not closed, in which the parameter ). is time-dependent. 
The transformation to these variables is again effected by formulae ( 50.2), 
(50.3), with a generating function S0 given by the integral (50.1) and ex­
pressed in terms of the variable I given by the integral ( 49. 7). The indefinite 
integral (50.1) and the definite integral (49.7) are calculated as if the para­
meter ).(t) had a given fixed value; that is, S0 (q, I; ).(t)) is the previous 
function with the constant). finally replaced by the specified function 2(t).t 

Since the generating function is now; like the parameter A., an explicit 
function of the time, the new Hamiltonian H' is different from the old one, 
which was the energy E(I). According to the general formulae of the canonical 
transformation (45.8), we have 

H' = E(I; A.) + oS0 j(Jt 

= E(I; A.) + Ai, (50.8) 

· h fi · S h d · d · not the true t lt must be emphasised, however, t at the unctiOn o t us eterrmne ts 
abbre\"iated action for a system \\ith a time-dependent Hamiltonian. 
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with the notation 
(50.9) 

here A must be expressed in terms of I and w by (50.3) after the differentiation 
with respect to A.. 

Hamilton's equations now become 
oH' 1= --= ow -- A. (

().A) . 
OW J,). , 

. oH' (o.A) . w = - = w(J· A.) + - A. 
oi ' oi ' w,J. 

(50.10) 

(50.11) 

where w = (oEfol);. is the oscillation frequency, again calculated as if A. were 
constant. 

PROBLEM 
Write down the equations of motion in canonical variables for a harmonic oscillator (whose 

Hamiltonian is ( 49.11 )) with time-dependent frequency. 
SoLUTION. Since all the operations in (50.1}--(50.3) are for constant A (A being in this case 

the frequency co itself), the relation of q and p tow has the same form as for constant frequency 
with w =cot: · 

2E . 21 . 
q = _f-9 Stn u: = - stn u•, 

'J mw - \t mlo 

p = v(2I<"Jm) cos w. 

Hence 

and 

.I = (''So) = (~) (cw) = _!_sin 2w. 
t<"J q,I {u· 1 (w • 2<·J 

Equations (50.10) and (50.11) then become 

i = -I(<" <'J) cos 2rc, rl: = w + (l;J,2<>J) sin 2w. 

§51. Accuracy of conservation of the adiabatic invariant 
The equation of motion in the form (50.10) allows a further proof that the 

action variable is an adiabatic invariant. 
The function S 0 (q, I;}.) is not a single-valued function of q: when the 

co-ordinate returns to its original value, S0 increases by an integral multiple 
of 2nl. The derivative (50.9}, however, is single-valued, since the differentia­
tion is at constant I and the increments of S0 disappear. The function A, like 
any single-valued function, is a periodic function when expressed in terms 
of the angle variable w. The mean value, over the period, of the derivative 
c£1jcw of a periodic function is zero. Hence, on averaging (50.10) and taking 
). outside the mean value (when }. "aries only slowly), we have 

as was to be proved. 
(51.1) 

The equations of motion (50.10) and (50.11) enable us to consider the 
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accuracy with which the adiabatic invariant is conserved. The question may 
be stated as follows: let the parameter A(t) tend to constant limits A_ and A+ 
as t --+ - oo and t --+ + oo; given the initial ( t --+ - oo) value L of the adiabatic 
invariant, find the change in it, 11/ = I+ - I- as t --+ + oo. 

From (50.10), 

f
oo aA . 

M =- -Adt. 
aw 

-oo 

(51.2) 

As shown above, A is a periodic function of w, with period 2n; let us expand 
it as a Fourier series 

00 

A= L eilw AI. (~1.3) 
I= -oo 

Since A is real, the expansion coefficients are such that A_1 = Aj. Hence 

aA = I i[eilw AI 
aw 1=-oo 

00 

= 2 re L i[eilw A1• 
1=1 

(51.4) 

When i is sufficiently small, w is positive (its sign being the same as that 
of w; see (50.11)), i.e. w is a monotonic function of the time t. When we 
change from integration over t to integration over w in (51.2), the limits are 
unaltered: 

D.!= 

00 

-IoAdA ~dw. 
· ow dtdw 
-oo 

(51.5) 

Substituting (51.4), we can transform the integral by formally treating w 
as a complex variable. We assume that the integrand has no singularities for 
real w, and displace the path of integration off the real axis into the upper 
half-plane of this complex variable. The contour is then "caught up" at the 
singularities of the integrand, and forms loops round them, as shown 
schematically in Fig. 56. Let w0 be the singularity nearest the real axis, i.e. 

FIG. 56 
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the one with the smallest (positive) imaginary part. The principal contribu­
tion to the integral (51.5) comes from the neighbourhood of this point, and 
each term in the series (51.4) gives a contribution containing a factor 
exp( -lim w 0 ). Again retaining only the term with the negative exponent of 

• • • I 
smallest magmtude (t.e. the term wtth l = 1 ), we findt 

!1I ,....., exp(- im w0 ). (51.6) 

Let t0 be the (complex) "instant" corresponding to the singularity w0 : 

w(t0 ) = w0 • In general, it0 1 has the same order of magnitude as the charac­
teristic time r of variation of the parameters of the system.! The order of 
magnitude of the exponent in (51.6) is 

imw0 ,...., wr,...., rfT. (51.7) 

Since we assume that r }> T, this exponent is large. Thus the difference 
I+ - I_ decreases exponentially as the rate of variation of the parameters 
of the system decreases. II 

To determine w 0 in the first approximation with respect to Tf-r (i.e. 
retaining only the term ,...., (T/r)- 1 in the exponent), we can omit from (50.11) 
the small term in i: 

dwfdt = w(I, A.(t)), (51.8) 

and the argument I of the function w(I, A.) is taken to have a constant value, 
say L. Then 

'• 
w 0 = I w(I, A.(t)) dt;_ (51.9) 

the lower limit may be taken as any real value of t, since it does not affect the 
required imaginary part of w0 .§ 

The integral (51.5) with w from (51.8) (and with one term from the series 
(51.4) as oAfow) becomes 

A I .. idw tJ.I ,....., re ze•w • 
w(I, A.) 

(51.10) 

' 
Hence we see that the singularities that are in question as regards the nearest 
to the real axis are the singularities (poles and branch points) of the functions 

t In special cases it may happen that the expansion (51.4) does not include a term with 
l = 1 (see, for example, Problem 1 at the end of this section); in every case, we must take 
the term with the lowest value of l present in the series. 

t If the slowness of variation of the parameter A. is expressed by its depending on t only 
through a ratio ~ = tf'r: with 1: large, then t 0 = 1:~ 0, where ~0 is a singularity of A.(~) that is 
independent of 1:. 

II Note that. if the initial and final values of A.(t) are the same (A.+ = A._), then not only 
the diffe~nce AI but also the difference liE = E+ - E_ of the final and initial energies are 
exponentially s~all: from (49.9), AE = ro AI in that case. 

§ A more deta•l.-d proof of th 1 · f · f · 
6) · ·

1 
e b A ese statements, and a calcu attOn o the coefficient o the exponenttal 

• (51 ' IS g v -n y • A. Slutsk" - • 
tn • In, Somet Phys1cs JETP 18, 676, 1964. 
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A(t) and 1/w(t). Here it should be remembered that the conclusion that !11 is 
exponentially small depends on the hypothesis that these functiflns have no 
real singularities. 

PROBLEMS 
PROBLEM 1. Estimate ,1/ for a harmonic oscillator with a frequency that varies slowly according to 

I + aerJ.r 
w 2 = (JJ 2 --,--,--,-

0 I + e"' 

from ro_ = w 0 fort= -CO to OJ+ = yqw0 fort= co (a> 0, a ~w0).t 

SOLUTION. Taking as the parameter A. the frequency co itself, we have 

).,(a 1) 
~ = 2a e tc ·1- a - e :xr + I . 

This function has poles for e-at= -1 and e-at= -a. Calculating the integral fw dt, 

we find that the smallest value of im rc0 comes from one of the poles cxt 0 = -log (-a), 

and is 
im u•0 = oJ0 n1·a for a > I, 

= l·J0 nva "for a < 1. 

For a harmonic oscillator, A ~ sin 2u (see §SO, Problem), so that the series (51.3) reduces 
to two terms (with l = ± 2). Thus, for a harmonic oscillator, 

:0./ ~ exp (- 2 im «"o). 

PROBLEM 2. A particle oscillates in a potential well. Determine how its energy varies under a 
frictional force f.= -cx.X with a small coefficient a (x being a Cartesian co-ordinate). 

SOLUTION. We average (25.13) over the oscillation period, neglecting damping in the first 
approximation. Then 

dE ::1 a 
-=-a,=--
dt T iT a f 2na _ i·2 dt=- - .i d1·= --l!E), 

0 7 m7 

where /(E) is the adiabatic invariant and m the mass of the particle. Expressing the oscillation period 
Tin terms of I by (49.8) gives 

d/ 
= -a!/m. 

dE dt 

lntegrating, we have 

/(E)=J(£0) exp(-at/m) 

This formula implicitly determines E(t). For a harmonic oscillator, it becomes (25.5). The solution 
is valid ifaTfm<< 1. 

§52. Conditionally periodic motion 

Let us consider a system with any number of degrees of freedom, executing 
a mot\on finite in all the co-ordinates, and assume that the variables can be 
completely separated in the Hamilton-Jacobi treatment. This means that, 

t The harmonic naturt: of the oscillator is shown by the fact that the osci!lanon frequency 
is independent of the energy. 
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when the co-ordinates are appropriately chosen, the abbreviated action 
can be written in the form 

So = L Si(qt). (52.1) 
i 

as a sum of functions each depending on only one co-ordinate. 
Since the generalised momenta are Pt = oSofoqt = dStfdqt, each function 

St can be written 

(52.2) 

These are many-valued functions. Since the motion is finite, each co-ordinate 
can take values only in a finite range. When qt varies "there and back" in this 
range, the action increases by 

(52.3) 

where 

(52.4) 

the integral being taken over the variation of qi just mentioned t 
Let us now effect a canonical transformation similar to that used in §50, 

for the case of a single degree of freedom. The new variables are "action vari­
ables" It and "angle variables" 

wt = oSo(q, I)Joii = 2: oSk(qk.I)foh (52.5) 
k 

where the generating function is again the action expressed as a function of 
the co-ordinates and the- h The equations of motion in these variables are 
i; = 0, w,. = iJE(I)fiJI, which give 

It = constant, 

Wt = [oE(l)/oit]t +constant. 

(52.6} 

(52.7) 

We also find, analogously to (50.7), that a variation' "there and back" of 
the co-ordinate qt corresponds to a change of 2'1T in Wi: 

(52.8) 

In other words, the quantities Wt(q, I) are many-valued functions of the co­
ordinates: when the latter vary and return to their original values, the Wt 

t It should be emphasised, however, that this refers to the formal variation of the co­
ordinate 9• over the whole possible range of values, not to its variation during the period of 
the actual motion as in the case of motion in one dimension. An actual finite motion of a 
system with s-:veral degrees of freedom not only is not in general periodic as a whole, but 
does not even •nvolve a periodic time variation of each co-ordinate separately (see below). 
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may vary by any integral multiple of 2'1T. This property may also be formulated 
as a property of the function wi(p, q), expressed in terms of the co-ordinates 
and momenta, in the phase space of the system. Since the J,,, expressed in 
terms of p and q, are one-valued functions, substitution of Ii(p, q) in wi(q, I) 
gives a function wi(p, q) which may vary by any integral multiple of 2'1T 
(including zero) on passing round any closed path in phase space. 

Hence it follows that any one-valued function t F(p, q) of the state of the 
system, if expressed in terms of the canonical variables, is a periodic function 
of the angle variables, and its period in each variable is 2'1T. It can be expanded 
as a multiple Fourier series; 

co 00 

F = L . . . L Al1lcl• exp(i(hw1 + ... + lsws)}, 
l,=-X> l,=-«> 

where h, l2, ... , ls are integers. Substituting the angle variables as functions 
of time, we find that the time dependence of F is given by a sum of the form 

co co { ( oE oE)} F = 2: . . . 2: A1112 •• -l. exp it lr-+ . .. + ls- : 
l,~-«> l,=-«> oh ois 

(52.9) 

Each term in this sum is a periodic function of time, with frequency 

l 1w 1 + ... + l,w,, (52.10) 

which is a sum of integral multiples of the fundamental frequencieS 

w,. = aEfai,.. (52.11) 

Since the frequencies (52.10) are not in general commensurable, the sum 
itself is not a periodic function, nor, in particular, are the co-ordinates q and 
momenta p of the system. 

Thus the motion of the system is in general not strictly periodic either as a 
whole or in any co-ordinate. This means tha.t, having passed through a given 
state, the system does not return to that state in a finite time. We can say, 
however, that in the course of a sufficient time the system passes arbitrarily 
close to the given state. For this reason such a motion is said to be conditionally 
periodic. 

In certain particular cases, two or more of the fundamental frequencies 
w,. are commensurable for arbitrary values of the I,.. This is called degeneracy, 
and if all s frequencies are commensurable, the motion of the system is said 
to be completely degenerate. In the latter case the motion is evidently periodic, 
and the path of every particle is closed. 

t Rotational co-ordinates </>(see the second footnote to §49) are not in one-to-one relation 
with the state of the system, since the position of the latter is the same for all values of </> 
differing by an integr-al multiple of 27T. If the co-ordinates q include such angles, therefore, 
these can appear in the function F(p, q) only in such expressions as cos 4> and sin ¢>, which 
are in one-to-one relation with the state of the system. 
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The existence of degeneracy leads, first of all, to a reduction in the number 
of independent quantities It on which the energy of the system depends. 
If two frequencies w1 and w2 are such that 

(52.12) 

where n1 and n2 are integers, then it follows that hand h appear in the energy 
only as the sum n2h + nd2. 

A very important property of degenerate motion is the increase in the 
number of one-valued integrals of the motion over their number for a general 
non-degenerate system with the same number of degrees of freedom. In the 
latter case, of the 2s-1 integrals of the motion, only s functions of the state 
of the system are one-valued; these may be, for example, the s quantities h 
The remaining s- 1 integrals may be written as differences 

(52.13) 

The constancy of these quantities follows immediately from formula (52.7), 
but they are not one-valued functions of the state of the system, because the 
angle variables are not one-valued. 

When there is degeneracy, the situation is different. For example, the rela­
tion (52.12) shows that, although the integral 

(52.14) 

is not one-valued~ it is so except for the addition of an arbitrary integral 
multiple of 2'1T. Hence we need only take a trigonometrical function of this 
quantity to obtain a further one-valued integral of the motion. 

An example of degeneracy is motion in a field U = - cxfr (see Problem). 
There is consequently a further one-valued integral of the motion (15.17) 
peculiar to this field, besides the two (since the motion is two-dimensional) 
ordinary one-valued integrals, the angular momentum M and the energy E, 
which hold for motion in any central field. 

It may also be noted that the existence of further one-valued integrals 
leads in turn to another property of degenerate motions; they allow a complete 
separation of the variables for several (and not only onet) choices of the co­
ordinates. For the quantities J,, are one-valued integrals of the motion in 
co-ordinates which allow separation of the variables. When degeneracy occurs, 
the number of one-valued integrals exceeds s, and so the choice of those 
which are the desired 11 is no longer unique. 

As an example, we may again mention Keplerian motion, which allows 
separation of the variables in both spherical and parabolic co-ordinates. 

t We ignore such trivial cl . h d" , '( ) , '( ) ~anges 1 n t e co-or mates as ql = q1 q1 , q2 = q2 q2 . 
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In §49 it has been shown that, for finite motion in one dimension, the 
action variable is an adiabatic invariant. This statement holds also for systems 
with more than one degree of freedom. It can be proved, ih the general case, 
by a direct generalisation of the method given at the beginning of §51. 

For a multi-dimensional system with a variable parameter A(t), the equa­
tions of motion in canonical variables give for the rate of variation of each 
action variable I; an expression analogous to (50.10): 

. aA. 
]. =--A· 

I a ~· W· I 

(52.15) 

where, as before, A = (aS0 (aA}I. This equation is to be averaged over a time 
interval large compared with the fundamental periods of the system but 
small compared with the time of variation of A(t). The quantity .A is again 
taken outside the mean value, and the derivatives aAJaw.- are averaged as 
if the motion took place at constant A, as a conditionally periodic motion. 
Then A is a unique periodic function of the angle variables w;, and the mean 
values of its derivatives aAJaw.- are zero. 

Finally, we--may briefly discuss the properties of finite motion of closed 
systems with s degrees of freedom in the most general case, where the vari­
ables in the Hamilton-Jacobi equation are not assumed to be separable. 

The fundamental property of systems with separable variables is that the 
integrals of the motion h whose number is equal to the number of degrees 
of freedom, are one-valued. In the general case where the variables are not 
separable, however, the one-valued integrals of the motion include only 
those whose constancy is derived from the homogeneity a.<d isotropy of space 
and time, namely energy, momentum and angular momentum. 

The phase path of the system traverses those regions of phase space which 
are defined by the given constant values of the one-valued integrals of the 
motion. For a system with separable variables anJ s one-valued integrals, 
these conditions define an s-dimensional manifold in phase space. During a 
sufficient time, the path of the system passes arbitrarily close to every point 
on this hypersurface. 

In a system where the variables are not ·separable, however, the number 
of one-valued integrals is less than s, and the phase path occupies, completely 
or partly, a manifold of more than s dimensions in phase space. 

In degenerate systems, on the other hand, which have more than s integrals 
of the motion, the phase path occupies a manifold of fewer than s dimensions. 

If the Hamiltonian of the system differs only by small terms from one which 
allows separation of the variables, then the properties of the motion are close 
to those of a conditionally periodic motion, and the difference between the 
two is of a much higher order of smallness than that of the additional terms in 
the Hamiltonian. 



§52 Conditionally periodic motion 

PROBLEM 

Calculate the action variables for elliptic motion in a field U = - afr. 

SOLUTION. In polar co-ordinates r, </>in the plane of the motion we have 
2" 

It~> = L I P9 d</> = M, 
0 

= -M+av(m/21£1). 
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Hence the energy, expressed in terms of the action variables, is E = -ma2f2(Ir+I~2• It 
depends only on the sum Ir+II/>, and the motion is therefore degenerate; the two funda­
mental frequencies (in r and in </>) coincide. 

The parameters p and e of the orbit (see (15.4)) are related to Ir and II/> by 

( 
It~> )2 

e2 = 1- It~>+Ir • 

Since Ir and II/> are adiabatic invariants, when the coefficient a or the mass m varies slowl: 
the eccentricity of the orbit remains unchanged, while its dimensions vary in inverse propor· 
tion to a and to m. 
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Oscillations, see Small oscillations 
Oscillator 

one-dimensional, 58n. 
Rpace, 32, 70 

Particle, 1 
Pendulums, 11£., 26, 33ff., 61, 70, 95, 

102£., 129f. 
compound, 102£. 
conical, 34 
Foucault's, 129f. 
spherical, 33£. 

Perihelion, 36 
movement of, 40 

Phase, 59 
path, 146 
space, 146 

Point transformation, 143 
Poisson brackets, 135ff. 
Poisson's theorem, 137 
Polhodes, 11 7n. 
Potential energy, 8, 15 

centrifugal, 32, 128 
effective, 32, 94 
from period of oscillation, 27ff. 

Potential well, 26, 54£. 
Precession, regular, 107 

Rapidly oscillating field, motion in, 93fl 
Reactions, 122 
Reduced mass, 29 
Resonance, 62, 79 

in non-linear os.cillations, 87ff. 
parametric, 80ff. 

Rest, system at, I 7 
Reversibility of motion, 9 
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Rigid bodies, 96 
angular momentum of, 1 05ff. 
in contact, 122ff. 
equations of motion of, 107ff. 
motion of (VI), 96ff. 

Rolling, 122 
Rotator, 101, 106 
Rough surface, 122 
Routhian, 134f. 
Rutherford's fonnula, 53f. 

Scattering, 48ff. 
cross-section, effective, 49ff. 
Rutherford's formula for, 53f. 
small-angle, 55ff. 

Sectorial velocity, 31 
Separation of variables, 149ff. 
Similarity, mechanical, 22ff. 
Sliding, 122 
Small oscillations, 22, (V) 58ff. 

anhannonic, 84ff. 
damped, 74ff. 
forced, 61ff., 77ff. 
free, 58ff., 65ff. 
linear, 84 
non-linear, 84ff. 
nom1al, 68 

Smooth surface, 122 

Index 

Space 
homogeneity of, 5, 15 
isotropy of, 5, 18 

Space oscillator, 32, 70 

Time 
homogeneity of, 5, 13ff. 
isotropy of, Sf. 

Top 
asy.;nmetncat, 100, 116ff. 
"fast", 113f. 
spherical, 100, 106 
symmetrical, 100, 1 06f., 111f. 

Torque, 108 
Turning points, 25, 32 
Two-body problem, 29 

Unifonn field, 10 

Variation, 2, 3 
first, 3 

Velocity, 1 
angular, 97f. 
sectorial, 31 
translational, 97 

Virial, 23n. 
theorem, 23f. 

Well, potential, 26, 54f. 


