

Μη Ελαστική σκέδαση ν=ν₀±ν' (Raman, νετρόνια)

	Abbreviation	Wavelength
Near-Infrared	NIR	0.75–1.5 μm
Mid-Infrared	MIR	1.5–15 μm
Far-Infrared	FIR	15–1000 μm

Φασματοσκοπικές Μέθοδοι Χαρακτηρισμού Υλικών

MΔE 2023-24

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Spectral intensity and width

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Magnetic Dipole

Spectral intensity and width

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Material "quantity" (light path length, scattering volume)

Spectral intensity and width

Full width at half maximum-FWHM

Lineshape functions

Spectral resolution

Homogeneous vs inhomogeneous broadening

Multi-peak fitting

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

εллнпікн днмократіа Εдνικόν και Καποδιστριακόν Πανεπιστήμιον Αдηνών

Electron Paramagnetic (Spin) Resonance

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r}$

Field modulation (100 kHz): absorption derivative dP/dH - Increase of S/N

Electron Paramagnetic (Spin) Resonance

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Σκέδαση Raman: Κλασική ερμηνεία

Ένταση ακτινοβολίας ανα μονάδα στερεάς γωνίας

$$I(t) = \frac{1}{4\pi c^{3}} \sin^{2} \theta | \ddot{M}(t) |^{2} = A | \ddot{M}(t) |^{2}$$

$$I(t) = AE_{0}^{2} [k_{0}^{2} \cos^{2} \omega_{0}t + k_{1}^{2} \cos^{2} (\omega_{0} - \omega_{j})t + k_{2}^{2} \cos^{2} (\omega_{0} + \omega_{j})t + ...$$

$$k_{0}^{2} = \alpha_{0}^{2} \omega_{0}^{4} \qquad k_{1}^{2} = \frac{1}{4} \left(\frac{\partial \alpha}{\partial Q}\right)_{0}^{2} Q_{0}^{2} (\omega_{0} - \omega_{j})^{4} \quad k_{2}^{2} = \frac{1}{4} \left(\frac{\partial \alpha}{\partial Q}\right)_{0}^{2} Q_{0}^{2} (\omega_{0} + \omega_{j})^{4}$$

$$\Phi \dot{\alpha} \sigma \mu \alpha I \sigma \chi \dot{\omega} \varsigma \qquad P(\omega) = A \lim_{r \to \infty} \frac{2}{\tau} \left| \int_{-\frac{7}{2}}^{\frac{7}{2}} \ddot{M}(t) e^{-it\omega} dt \right|^{2}$$

$$P(\omega) = \pi A E_{0}^{2} \{k_{0}^{2} \delta(\omega - \omega_{0}) + k_{1}^{2} \delta[\omega - (\omega_{0} - \omega_{j})] + k_{2}^{2} \delta[\omega - (\omega_{0} + \omega_{j})] \}$$

$$\frac{I_{Stokes}}{I_{Anti-Stokes}} = \frac{(\omega_{0} - \omega_{j})^{4}}{(\omega_{0} + \omega_{j})^{4}} < 1$$

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Απορρόφηση Υπερύθρου (IR)

Πιθανότητα μετάβασης

 $R_{\nu} = \int \psi_{\nu}^{*} \mu \psi_{\nu}^{'} dx$

Μόνιμη διπολική ροπή

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

$$\mu = \mu_e + \left(\frac{\partial \mu}{\partial x}\right)_e x + \frac{1}{2!} \left(\frac{\partial^2 \mu}{\partial x^2}\right)_e x^2 + \dots$$

 $x = r - r_0$ η μετατόπιση της διατομικής απόστασης από την ισορροπία

$$R_{\nu} = \mu_{e} \int \psi_{\nu}^{**} \psi_{\nu}^{"} dx + \left(\frac{\partial \mu}{\partial x}\right)_{e} \int \psi_{\nu}^{**} x \psi_{\nu}^{"} dx + \dots$$
$$R_{\nu} = \left(\frac{\partial \mu}{\partial x}\right)_{e} \int \psi_{\nu}^{**} x \psi_{\nu}^{"} dx + \dots$$

Ενεργό φορτίο

$$\eta = \frac{\partial \mu}{\partial x} \neq 0$$

Ταλάντωση ενεργή κατά IR

Σκέδαση Raman: Κβαντική ερμηνεία

H/M ακτινοβολία = $\phi \omega$ τό νια ενέργειας $E_i = \hbar \omega_i$, ορμής $\vec{p}_i = \hbar \vec{k}_i$, όπου $\omega_i = ck_i \kappa \alpha \iota k_i = 2\pi / \lambda_i$

 $\Phi\omega \textit{v}\acute{o}\textit{v}\textit{i}\alpha \textit{ ev}\acute{e}\rho\textit{y}\textit{e}\textit{i}\alpha \varsigma E_0 = \hbar\omega_0, \textit{o}\rho\mu\acute{\eta}\varsigma \vec{p}_0 = \hbar\vec{q}_0, \acute{o}\pi\textit{o}\upsilon \omega_0 = \omega(q)$

χ = ηλεκτρική επιδεκτικότητα

Kavovaς Fermi

$$\vec{P} = \varepsilon_0 \left(\tilde{\chi}_0 + \frac{\partial \tilde{\chi}}{\partial Q} Q \right) \vec{E} \qquad H = -\int_V \vec{P} \cdot \vec{E} \, d^3 r \qquad \frac{1}{\tau} = \frac{2\pi}{\hbar} \sum_f \left| \left\langle f \left| H_{Raman} \right| i \right\rangle \right|^2 \delta \left(E_f - E_i \right)$$

Διατήρηση Ενέργειας

$$\hbar\omega_i = \hbar\omega_S \pm \hbar\omega_0$$

Διατήρηση ορμής

$$\hbar \vec{k}_i = \hbar \vec{k}_S \pm \hbar \vec{q}_0$$

 $\vec{k_i} \equiv incident \ wavevector \ \vec{k_s} \equiv scattered \ wavevector \ \vec{q_0} \equiv phonon \ wavevector$

Σκέδαση Raman: Κβαντική ερμηνεία

Διατήρηση Ενέργειας

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Σκέδαση Raman: Κβαντική ερμηνεία

Incident Laser in the visible range λ_i =514 nm

Absorption, Raman Scattering, and Resonant Raman Scattering

Absorption, Raman Scattering, and Fluorescence

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Raman Scattering vs Fluorescence

Laurence J. Hardwicket al., Phys.Chem.Chem.Phys., 2019,21, 23833

Ελλειψοειδές πολωσιμότητας $r_i \sim 1/\sqrt{a_i}$

Τανυστής Raman

$$= a\vec{E} \Rightarrow M_{\rho} = \sum_{\rho} a_{\rho\sigma} E_{\sigma} \Rightarrow \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix} = \begin{pmatrix} a_{xx} & a_{xy} & a_{xz} \\ a_{yx} & a_{yy} & a_{yz} \\ a_{zx} & a_{zx} & a_{zz} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix}$$
$$a_{\rho\sigma} = \alpha_{\rho\sigma}^{(0)} + \sum_{j} \alpha_{\rho\sigma,j} Q_{j} + \frac{1}{2} \sum_{jj^{*}} \alpha_{\rho\sigma,j^{*}j^{*}} Q_{j} Q_{j^{*}} + \dots$$
$$\Delta \alpha_{\rho\sigma} = \alpha_{\rho\sigma,j} Q_{j} = \left(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_{j}}\right)_{0} Q_{j}$$
$$\alpha_{\rho\sigma,j} = \left(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_{j}}\right)_{0} \qquad \delta \alpha^{(j)} = \begin{pmatrix} \alpha_{xx,j} & \alpha_{xy,j} & \alpha_{xz,j} \\ \alpha_{yx,j} & \alpha_{yy,j} & \alpha_{xz,j} \\ \alpha_{zx,j} & \alpha_{zy,j} & \alpha_{zz,j} \end{pmatrix}$$

$$\left(P_{scatt}\right)_{i} \sim \sum_{j=x,y,z} \left(\frac{\partial \chi_{ij}}{\partial Q}\right)_{Q=0} E_{j}, \quad i=x,y,z \qquad \qquad R_{ij,Q} \equiv \left(\frac{\partial \chi_{ij}}{\partial Q}\right)_{Q=0}$$

Διατομικό μόριο π.χ. Η2

Ετεροπυρηνικά διατομικά μόρια (π.χ. HF, HCl): $\partial \alpha / \partial Q \neq 0$ (Raman) και $\partial \mu / \partial Q \neq 0$ (IR)

Γραμμικό τριατομικό μόριο π.χ. CO₂

Μη Γραμμικό τριατομικό μόριο π.χ. Η₂Ο

• Αριθμός κανονικών τρόπων ταλάντωσης

3Ν – 6 (γενικά) ή 3Ν - 5 (γραμμικά μόρια)

- Κανόνες επιλογής

Αρχή αμοιβαίου αποκλεισμού (∃ κέντρο συμμετρίας) Συμμετρική = ενεργός Raman - Αντισυμμετρική = ενεργός IR

	H ₂ O
$ \begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	Raman + IR: 3657 cm^{-1} Raman + IR: 3756 cm^{-1} Raman + IR: 1594 cm^{-1}

IR vs Raman

◊ Συχνότητες δόνησης → Ταυτοποίηση χημικών δεσμών

Η συμμετρία καθορίζει αν ένας τρόπος ταλάντωσης είναι ενεργός/ανενεργός κατά Raman ή IR (Συμπληρωματικότητα μεθόδων)

diatomic chain

Acoustic phonon: \mathbf{u}_1 , \mathbf{u}_2 , in-phase Optical phonon: \mathbf{u}_1 , \mathbf{u}_2 , out-of-phase

phonon dispersion: $\omega_{ac}(\mathbf{q}) \neq \omega_{op}(\mathbf{q})$, for $q \approx 0$, $\omega_{op} > \omega_{ac}$

3D crystal with N atoms per cell :
3 acoustic and 3N – 3 optical phonons induced dipole moment ⇒ interact with light

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi$

1 Longitudinal: wave polarization $(\mathbf{u}) \parallel$ wave propagation (\mathbf{q}) **2 Transverse**: wave polarization $(\mathbf{u}) \perp$ wave propagation (\mathbf{q})

εллнпікн днмократіа Εдνικόν και Καποδιστριακόν Πανεπιστήμιον Αдηνών

Isolated TO₄ group \longrightarrow Crystal: Pb₃(PO₄)₂, $R\bar{3}m$

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Raman-active

Raman-active

IR-active

Pb₂

IR-active

c Pb1 Ot

IR-active

Σκέδαση Raman: Πόλωση

Raman intensity

 $I \propto (lpha_{lphaeta})^2$

Directions of the propagation of incident (i) and scattered (s) light

Directions of the polarisation of incident (i) and scattered (s) light

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

εллнпікн днмократіа Εдνικόν και Καποδιστριακόν Πανεπιστήμιον Αдηνών

180° backscattering geometry

 $I_{Raman} \propto \alpha_{\alpha\beta}^{2}$

Σκέδαση Raman: Πόλωση

$$I \sim \left| \hat{e}_i^{\mu} \cdot \vec{R}_{ij} \cdot \hat{e}_S^{\nu} \right|^2 \ \mu, \nu = x, y, z$$

 $\mathbf{k}_i \equiv$ propagating vector of the incident laser beam $\mathbf{k}_S \equiv$ propagating vector of the scattered laser beam $\mathbf{e}_i \equiv$ incident unit polarization vector $\mathbf{e}_i \equiv$ scattered unit polarization vector

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Porto's notation: A(BC)D

A, D - directions of the propagation of incident (\mathbf{k}_i) and scattered (\mathbf{k}_s) light, B, C – directions of the polarization incident (\mathbf{E}_i) and scattered (\mathbf{E}_s) light

Institute of Physical Chemistry

Polarized micro-Raman scattering Crystallite's orientation

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Institute of Physical Chemistry

Crystallographic orientation of anatase crystallites in

TiO₂ nanotubes

Sample Preparation

> Phosphate short (0.5 μ m, 1.0 μ m) tubes \Rightarrow Partial crystallographic orientation (occasional highly polarized spectra)

> Ethylene glycol + RBA tubes \Rightarrow Random orientation similar to nanoparticulate films

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Επιπρόσθετο ηλεκτρικό πεδίο λόγω πολικού /ιοντικού δεσμού στη διαμήκη ταλάντωση (LO: U+E), αντίθετα με την εγκάρσια (TO: U) \rightarrow ενίσχυση δύναμης επαναφοράς $\rightarrow \omega(LO) > \omega(TO)$

ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

Dispersive Raman spectrometer

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Laser

Rayleigh Rejection filter

Diffraction grating

Detector (CCD)

Diffraction grating- spectral resolution proportional to grating density and focal length

ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

ΠΕΙΡΑΜΑΤΙΚΕΣ ΤΕΧΝΙΚΕΣ

Triple spectrometer

Dispersive Raman spectrometer

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Laser

- Rayleigh Rejection filter
- Diffraction grating
- Detector (CCD)

Higher energy \Rightarrow Higher Raman intensity: $I_{Raman} \sim (\omega_{scattered})^4 \Rightarrow \dots$ Fluorescence!!!

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Williamson, Bowling, McCreery, ; *Applied Spectros.* **1989**, *43*, 372 Allred, McCreery, *Applied Spectroscopy* **1990**, *44*, 1229.

- Laser
- Rayleigh Rejection filter
- Diffraction grating
- Detector (CCD)

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Edge

Notch

Fourier transform (FT) – infrared (IR) spectrometer

Michelson interferometer

$I(x) = S(\overline{v})\cos(2\pi\overline{v}x)$

Michelson interferometer

 $\delta (= 2[OM - OS])$

Intensity

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

Interferograms

Dichromatic

V1 V2

Frequency

Movable Mirror Delay

Unmodified Interferogram (red in Fig 2) Interferogram With Absorbing Sample

Movable Mirror Delay

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

21 2

Wavenumber/cm⁻¹

FT-IR spectrum

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

FT-IR spectrum

FT-IR spectrometer

DANIEL C. HARRIS, ΠΟΣΟΤΙΚΗ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΤΟΜΟΣ ΙΙ, ΠΕΚ 2010

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

NE

FT-IR spectrometer

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

HE

Near Infrared Table

N B

Sources

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

13

Detectors

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

13

Beamsplitters

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

N S

FT-IR reflection techniques

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Attenuated Total Reflection (ATR

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

Attenuated Total Reflection (ATR

Δείγμα

$$d_p = \frac{\lambda}{2\pi n_p (\sin^2\theta - n_{sp}^2)^{1/2}}$$

Material	Refr. Index	Depth of Penetration (μ)	
ZnSe	2.4	1.66	
AMTIR	2.5	1.46	
Ge	4.0	0.65	
Si	3.4	0.84	
KRS-5	2.37	1.73	

Attenuated Total Reflection (ATR

Material	Refractive Index at 1000 cm ⁻¹	Spectral Range (cm ⁻¹)	Safe pH
Zinc Selenide	2.4	20000-630	5-9
AMTIR (As/Se/Ge)	2.5	11000-630	1-9
Germanium	4.0	5500-780	1-14
Silicon	3.4	8300-1500	1-12
KRS-5	2.37	17900-400	5-8

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

PIKE

Detector

Spectrometer

FT-Raman disadvantages

Three classes of compound prove intractable to FT-Raman analysis:

- Aqueous phase samples. These may strongly absorb both the exciting laser radiation and the Raman scattered light
- Samples at elevated temperatures. Above 250 °C intense black body emission can mask the Raman signal
- **Black samples.** These can strongly absorb, heat up, and produce intense background emission, or even degrade

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Silicon detectors (i.e. CCDs) are not sensitive to light beyond ~1100 nm,

Combine a 1064 nm laser with a dispersive spectrograph and specialized InGaAs array detector (DeltaNu/Intevac)

Captain Morgan Rum

Most popular and efficient choice nowadays Single grating **micro-Raman** spectrometer

Raman imaging

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$

Aspirin, paracetamol, caffeine, cellulose

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

Corrosion properties of [C_nmim][C(CN)₃] by micro-Raman spectroscopy

Immersion of mild steel (MS) in [C₂mim] [C(CN)₃] at 80 °C for 1 and 10 days

CCS Conference 2013

Raman shift (cm⁻¹)

Immersion at 80 °C for 10 days

Mild steel in [C₄mim] [C(CN)₃]

Mild steel in [C₈mim] [C(CN)₃]

Institute of Physical Chemistry

Micro-Raman spectroscopy: Phase Identification- crystallinity of nanomaterials

Ethylene glycol TiO₂ nanotubes

RBA TiO₂ nanotubes

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Micro-Raman on Hybrid Nanostructures

Institute of Physical Chemistry

Micro-Raman at variable laser excitation wavelengths (Resonance Raman) can do it !!!

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Micro-Raman on Hybrid Nanostructures

Institute of Physical Chemistry

Phase transformation of the iron-oxide nanoparticles upon thermal treatment

In-situ local heating through the laser beam

In-situ Raman monitoring of the phase transformation by increasing the laser power at 514 nm, where the γ -Fe₂O₃ NPs absorb strongly. Heating is performed through the focusing objective on the Raman microscope stage. Local temperature: anti-Stokes

Ex-situ Raman measurements after thermal treatment at 500 °C

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Hybrid dye/semiconductor interfaces

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Institute of Physical Chemistry

Hybrid amorphous carbon/polymer interfaces

Diamond-like carbon (DLC) on polyethylene terephthalate (PET) films Deposited by plasma enhanced chemical vapour deposition PECVD at different bias voltages

G mode: Bond stretching of sp^2 carbon atoms in both aromatic rings and chains

Use of different **objectives** and the **confocal** mode to resolve the very thin DLC layers deposited on PET under the lowest bias voltage

Advanced school on hybrid nanostructures for photovoltaic applications, 9-11th March (Valencia-Spain)

Optical parameters for the lateral spatial resolution

Diffraction limited resolution *d* given by the Rayleigh criterium

 $d = \frac{0.61 \lambda}{n \sin \alpha} = \frac{0.61 \lambda}{NA}$ e. g. with 633nm HeNe laser and x100 objective with NA = 0,9

d = 430 nm

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Collection optics

- Depending on the experiment and the sample different collecting optics are used
- Therefore micro Raman instruments are equipped with different objectives with different numerical aperture

Objective	N.A.	Working distance [mm]
x100	0.90	0.21
x50	0.75	0.38
x10	0.25	10.6
x100 LWD	0.80	3.4
x50 LWD	0.50	10.6

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

Collection optics

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)$

Increasing lateral resolution...

Rayleigh Criterion: Diffraction limit of the far field microscopy is of the order of the wavelength of the incident light. **Resolution> 500 nm**.

E.H. Synge, Phil.Mag. 6, 356, 1928, D.W. Pohl et al., Appl.Phys.Lett. 44, 651, 1984

Aperture scanning near field microscopy is a technique that allows for arbitrarily small details to be resolved. Lateral resolution ~ aperture size.

FIELD ENHANCEMENT MICROSCOPY

Instead of using a small aperture, a metal tip is used to provide a local electric field enhancement (**TERS**). Lateral resolution is the size of the tip.

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n)=e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}$

H. Furukawa and S. Kawata, Opt. Commun.**148**, 221, 1998 L. Novotny et al., Ultramicroscopy **71**, 21, 1998

Near-field scanning optical microscopy (NSOM/SNOM)

Tip-Enhanced Raman Scattering (TERS)

Apertureless SNOM

Aperture SNOM Modes of operation

Transmission – Reflection – Collection

Tip-Enhanced Raman Scattering

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εδνικόν και Καποδιστριακόν Πανεπιστήμιον Αδηνών

 $\Psi_{\vec{k}}(\vec{r}+\vec{R}_n) = e^{i\vec{k}\cdot\vec{R}_n}\Psi_{\vec{k}}(\vec{r})$