the mathematical representation of putting in the atomic electron screening

around a nucleus. Modifying the potential by putting in a screening factor of
e~%/a _y ¢=%/2 where a is a distance of order a Bohr radius, the final integral

becomes

27r/ds(c(iq_'/“)’ — elia=/asy fiq, (44)
. (ia-1/a) (~ig-1/a)
2 ig—1/a)s —ig—1/a)s
L ( o e ) (15)
ig \(ig—1/a) (—iqg—1/a)
which with integration limits of 0 to oo evaluates to
2T -1 -1
_—i — . 46
(@) e
Simplifying,
2r  2ig Aw (47)

g +a? ¢+a?

Now we can pull together an expression for the matrix element
Ze2F( ) ir  Ze*F(q)

ar Ve ta? @+a?

For intermediate and high energy energy scattering, momentum transfers are
usually 1 or more fm~!. The range parameter a, being about a Bohr radius,
would give 1/a? ~ 1078m~2. Since ¢> >> 1/a?, we may drop the latter
term. Thus

(48)

Vii=

Ze*F(q
The expression for the transition probability becomes
21 Z%*F*(q
W = 2nV}p(Es) = —q‘i—(—)P(Ef) (50)

4 F(q)

Above we showed that the cross section directly measures the form factor
(squared), which can be calculated from the charge distribution as

(o) = [ & Rp(f)ee™. (51)

8


https://v3.camscanner.com/user/download

We also pointed out that a point particle has a constant (or “hard”) form

factor,

1(q) / B (R)e T = py / d*i5(1) = (21)po. (52)

Ihe form factor is constant; since it does not deerease with momentum trans-
for. it is reforred to as a “hard” form factor.

Usually the charge distribution is spherically symmetric, p(ll) = p(R).
In this case, the Fourier integral can be converted into an integral over R,
cos 0, and an azimuthal angle, as was done above in the previous discussion.
Similarly, by integrating over the two angle variables, we can reduce the
Fourier integral to

o0 1 ,

1'(q) =/ /)(11’,)1{2(111’.2%/ d cos Oct1tcon?, (53)
0 -1
which becomes
00 2 1qll c—lqR
(q) = { 54
F(q) = 2r /0 p(R)R2RE i (54)
Pa)=Ar [ p(R)R? Rt (55)
0 qR

The latter form looks nicer, but the earlier form is often nicer for integration.
In the following sections, we are generally going to leave out the integration
limits for simplicity of notation, but we will evaluate the definite integrals in

the end.

4.1 Yukawa distribution

There exist other charge distributions for which the Fourier transform can
be calculated analytically. An algebraically simple example is the Yukawa
distribution,

p(R) = poe ™™ /R. (56)
The constant pg is found by normalizing the distribution to unity:
A7 po / RdRe~ "M/ = 1 (57)
47 po / RdRe Mo = 1, (58)
)
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Integrate by parts, letting u I, du dIt, dv e Mg, and v =
Roe "% I'hen

RIRge /Mo / Roe "Mod 1t — 1 JAmp, (59)
leading to
Ritge ™Mo 20 WMo 0 — 1 [ A py. (60)
The upper limit at oo leads to 0 from the exponential, while the limit at 0
removes the first term, Thus
I3 = 1/Ampy, (61)
and
Py = 1/47[']((2, (62)

The rms (root mean square) charge radius is messier, since it starts from
the integral
<12 >=dmp, / RidRe ", (63)

We will have a series of integrations by parts, in which we know that the uv
term will cancel when taking the limits. The progression is

<> = Anpy(3R / REdRe~""o 64

(
<rt> = Ampo(31% (21?4))/1?.(!1{(3_R/"'0 65
( 66

67

< 7‘2 > = ’17!'/)() 3]?0 (21{())(1{{))/{l[{c—ll/llo

)
)
)
<rt> = /171'/)0(31?() (21?0)(112())(1?0) )

) (
) (
) (
) (

Putting in po = 1/4m 12, we sce that < 72 >= 612, and < r? >/?= \/6R,.
The Fourier transform is best done using the exponential form given
above,

(,iqlt —e —iqR

Fl) = 2mpy [(e 0 /R)R2AR———— 68

(9) T [ (e [R)ICdR iR (68)
lia=1/Ro)R _ o(~ia=1/Ro)R

Iq) = 27r/)(,/(llf, " (69)

10
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The integration yields

v ) clia—1/Ro)R e(—ia—1/Ro)R -
@) = 2GRy ia(—ia— 1/R) 0
P _ e—R/Ro eiqR e—iqR -
@ = 2mw=—y <iq_1/R0+,-q+1/Ro)' )

The exponential e ®/Fo drives the expression to 0 at the limit of co, so we
only need to work out its value at R = 0, at which all the exponentials go to
1, and there is an overall minus sign from the subtraction. Thus,

1 1 1
Flo) = —2m (i ). (72

The fraction within the parentheses can be simplified, leading to

B 1 (ig+1/Ry+ig—1/Ry

F(q) = 27rp0iq ( ey ; (73)

and furthermore to 5

F(qg)=2 —_—

(g) = 2mpo (q2 m 1/Rg) ; (74)

Again substituting with py = 1/47R2, we get
Flg) =~y (75)

=1y eRy

which is a monopole form factor. We can express this also in terms of the
rms charge radius as

1
7(g) = 76
F(a) 1+q2<r2> /6 (76)
and expand, at least for small ¢2, as
Fl@)=1-¢><r?> /6+0(q"). (77)

11
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4.2 I(q) for small ¢

It is possible to show that the form given above holds for any form factor
at low momentum transfer. 'The technique is to expand the integrand in a
Taylor series before doing the Fourier integral. Start from the expression

1°(q) = dn / p(n)m(uzii:Tf’r-. (78)

The Taylor series for sina/x is
sinz/x = -ﬂl—_al{l&— =1—-z2/3 4 (79)

The Fourier transform becomes
F(q) = Am / p(R)R2AR(1 — (qR)2/6 + - ). (80)

The first constant term is just the normalization integral, so it is “obviously”
unity. The second term is

2
—(
Fy(g) = /lw—ﬁL / p(R)R2dRR. (81)
Except for the factor —g?/6, this is just the integral we used to determine
the rms radius squared, < R? >. Thus, the Fourier transform becomes:

_q2<R2>
G )

as we aimed to show. The factor of 6 comes from the coefficient of the second
term in the expansion of sin .

I(q) =1 (82)

4.3 Hard sphere distribution

As another example, let’s consider a distribution of charge that is constant
up to a radius r, and 0 outside that radius. The distribution, with unit
normalization, is
3
p(R) = —O(r — R). (83)

,11”.3
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The rms charge radius is calculated from

3 00
2 5 — Y — RR*R%
<R >= i /0 O(r — R)R*R*dR, (84)
which becomes 5 5
2 _f_ _ 9.2
<R >=ge=ert (85)

Now let’s carry out the Fourier integration. The © function acts to change
the limits of integration so that

. 3 00 singR
P(o) = 4r—— /0 O(r ~ R)RdR—_p= (86)
becomes
F(q) = pc / dRRsin(qR). (87)

Integrate by parts, with u = R, du = dR, dv = sin(¢qR)dR, and v =
cos(qR)/(—q). This gives

po =2 (B - [Careostamy/-a)) o
Pl0) = 25 (22 om0 ) (59)
Pl = 5 (2 i) (1) (90)
Pl = 5 (cosar) - 2200 o1

This expression is not obviously finite at the origin, so we expand the
sinusoids to get

F(q)=(q‘f)2 (t=@n?/2+- =1+ @)P/6=-+),  (92)
leading to
") = -3 [—(qr)? .
P =g (55) + %
13
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which you can see is equal to unity in leading order! This is exactly what
we should get for the leading order term, if we have normalized the charge
distribution to unity. The next to leading order term should give —¢? <
R? > /6 = —q?r?/10, where again r is the radius of the charge distribution.

We close this section with the comment that, experimentally, one can
measure the cross section and determine I7(¢q). Then, by performing the in-
verse Fourier transform, the charge distribution can be calculated. This pro-
cedure has been followed for many nuclei. Instead of this “model-independent”
procedure, one may also use a parameterized form for the charge distribu-
tion, such as a Gaussian or Fermi function, and then fit parameters of that
model.

5 p(Ey)

The density of states is the number of states at a total energy in the final
state of E;. One of the nicer discussions I have seen on this topic is in the
old Frauenfelder and Henley.

For a single particle, we recall from statistical mechanics that there is one
state per (27)3 volume in phase space - neglecting spin degrees of freedom
and recalling we are in units of h = 2rh = 2m. Then the density of states for
an energy Er is

— dN 2
W(ED) = g5 (ZW WiE / p*dpdQ2. (94)

We are free to choose the volume V for normalization, since it must cancel
in the end. For simplicity, we choose V = 1. Using E? = p? + m?, we see
that EdE = pdp, or (—i% = f— The momentum derivative will cancel the
integration, leaving

p(Ef) = (27r)3—p2dQ = (27r)3d(2. (95)

For a relativistic particle, we may further assume that £ = p.

The calculation above is appropriate for a single particle, which implies
a potential scattering problem, or a very heavy non-recoiling target. For two
particles with the target recoiling, a similar derivation can be simply done in
the center of mass of the reaction.
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