ФY乏IKH III

H＾EKTPOMAГNHTIKA KYMATA

 2021－2022
Kuиatıкŋ́ סıáס̄oon

$\xi=f(u), \quad u=x \pm \mathrm{v} t \Rightarrow\left\{\begin{array}{l}\frac{\partial^{2} \xi}{\partial x^{2}}=\frac{d^{2} \xi}{d u^{2}} \\ \frac{\partial^{2} \xi}{\partial t^{2}}=\mathrm{v}^{2} \frac{d^{2} \xi}{d u^{2}}\end{array}\right\} \Rightarrow \frac{\partial^{2} \xi}{\partial x^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \xi}{\partial t^{2}}$
Гعvıки́ 入úđŋ:

$$
\begin{aligned}
\xi=f_{1}(x-\mathrm{v} t)+f_{2}(x+\mathrm{v} t) \quad \xi & =A \cos (x-\mathrm{v} t)+B \sin (x+\mathrm{v} t) \\
& =A \cos [(k x-\omega t) \cdot \lambda /(2 \pi)]+B[\sin (k x+\omega t) \cdot \lambda /(2 \pi)] \\
k & =2 \pi / \lambda \quad \omega=2 \pi \mathrm{v} / \lambda=2 \pi \nu=2 \pi / T
\end{aligned}
$$

$\Sigma \varepsilon$ т $\rho \varepsilon ı \varsigma ~ \delta ı a \sigma т a ́ \sigma \varepsilon ı \varsigma ~ п а i ́ \rho v o u \mu \varepsilon ~ т \eta v ~ \varepsilon \xi i ́ \sigma \omega \sigma \eta ~ D ’ ~ A l e m b e r t: ~$

$$
\mathbf{u}=\mathbf{r} \pm \mathbf{v} t \quad \Rightarrow \quad \nabla^{2} \xi=\frac{1}{v^{2}} \frac{\partial^{2} \xi}{\partial t^{2}} \quad \mathbf{a}=\mathbf{f}(\mathbf{u}), \quad \mathbf{u}=\mathbf{r} \pm \mathbf{v} t \quad \Rightarrow \quad \nabla^{2} \mathbf{a}=\frac{1}{v^{2}} \frac{\partial^{2} \mathbf{a}}{\partial t^{2}}
$$

$$
\begin{aligned}
& \mathbf{E}=\hat{\mathbf{y}} E_{0} \sin (k x-\omega t) \\
& \mathbf{B}=\hat{\mathbf{z}} B_{0} \sin (k x-\omega t)
\end{aligned}
$$

Пعסía ка́Өєта $\mu \varepsilon т а \xi u ́ ~ t o u c ~ k a ı ~$ otך סוعúӨuvon סıáסooņ.

$$
\begin{equation*}
\nabla \times \mathbf{E}=\hat{\mathbf{z}} \frac{\partial E_{y}}{\partial x}=\hat{\mathbf{z}} k E_{0} \cos (k x-\omega t) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \mathbf{E}}{\partial t}=-\hat{\mathbf{y}} \omega E_{0} \cos (k x-\omega t) \tag{2}
\end{equation*}
$$

$$
\Rightarrow \quad \frac{1}{\mu_{0} \varepsilon_{0}}=\left(\frac{\omega}{k}\right)^{2} \Rightarrow c^{2}=\mathrm{v}^{2} \quad \Rightarrow \quad \mathrm{v}= \pm c \quad \Rightarrow \quad \frac{E_{0}}{B_{0}}=c
$$

$u=\frac{\varepsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}=\frac{\varepsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B}$
Пuкvótŋта $\varepsilon v \varepsilon ́ \rho ү \varepsilon ı a \varsigma ~ H / M ~ п \varepsilon \delta i ́ o u . ~$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathbf{E}+\frac{1}{\mu_{0}} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{B}=\frac{1}{\mu_{0}}(\nabla \times \mathbf{B}) \cdot \mathbf{E}-\frac{1}{\mu_{0}}(\nabla \times \mathbf{E}) \cdot \mathbf{B} \\
& \nabla \cdot(\mathbf{a} \times \mathbf{b})=(\nabla \times \mathbf{a}) \cdot \mathbf{b}-(\nabla \times \mathbf{b}) \cdot \mathbf{a} \\
& \Rightarrow \quad \frac{\partial u}{\partial t}=-\frac{1}{\mu_{0}} \nabla \cdot(\mathbf{E} \times \mathbf{B}) \\
& \mathbf{S} \equiv \frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}} \\
& \text { \} } \\
& \Rightarrow \quad \frac{\partial u}{\partial t}+\nabla \cdot \mathbf{S}=0
\end{aligned}
$$

Eદıஎબંఠદાৎ "бuvદ́Xદાaৎ".

Мєтачора́ ориŋ́s каı отрочории́s атто́ H／М ки́цата

$$
d U=-\mathbf{F} \cdot d \mathbf{r}=-\frac{d \mathbf{p}}{d t} \cdot d \mathbf{r}=-d \mathbf{p} \cdot \frac{d \mathbf{r}}{d t}=-\mathbf{v} \cdot d \mathbf{p}=-c d p
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=-\nabla \cdot \mathbf{S} \Rightarrow \frac{d U}{d t}=-\int \nabla \cdot \mathbf{S} d \tau=-\int_{a} \mathbf{S} \cdot d \mathbf{a} \Rightarrow \\
& d U=-\int_{a} \mathbf{S} \cdot d \mathbf{a} d t=-\int_{a} S_{z} d x d y d t \Rightarrow c d p=\int_{a} S_{z} d x d y d t \Rightarrow c \frac{d z}{d t} \frac{d^{3} p}{d x d y d z}=c^{2} g_{z}=S_{z}
\end{aligned}
$$

$$
\mathbf{g}=\frac{1}{c^{2}} \mathbf{S}
$$

$$
\mathbf{l}=\mathbf{r} \times \mathbf{g}=\frac{\mathbf{r} \times \mathbf{S}}{c^{2}}
$$

’Eviабף актıvoßo入ías

 aphovikoú kú $\mu a t o c$.

H $\varepsilon v \varepsilon ́ \rho ү \varepsilon ı a ~ \varepsilon п i ́ п \varepsilon \delta o u ~ H / M ~ к u ́ \mu a t o ৎ ~ к a ́ Ө \varepsilon т о u ~ \sigma \varepsilon ~ \varepsilon п i ́ п \varepsilon \delta \eta ~ \varepsilon п ı ф a ́ v \varepsilon ı a ~ \varepsilon \mu ß a \delta o u ́ ~ A ~ \varepsilon i ́ v a ı ~ \eta ~$ avtiӨetn anó autń поu $\mu \varepsilon \tau а ф \varepsilon ́ \rho \varepsilon t a ı ~ \sigma т \eta v ~ \varepsilon ா ı ф a ́ v \varepsilon ı a: ~$

$$
\begin{aligned}
& d U=\int_{A} \mathbf{S} \cdot d \mathbf{a} d t \Rightarrow \quad \frac{d U}{d t}=S A \quad \Rightarrow \quad \frac{1}{A}\left\langle\frac{d U}{d t}\right\rangle=\langle S\rangle \quad \Rightarrow \quad I=\frac{\langle E B\rangle}{\mu_{0}}=\frac{\left\langle E^{2}\right\rangle}{c \mu_{0}} \\
&\left\langle E^{2}\right\rangle=\frac{1}{T} \int_{0}^{T} E^{2}(x=0, t) d t=\frac{E_{0}^{2}}{T} \int_{0}^{T} \sin ^{2} \frac{2 \pi t}{T} d t=\frac{E_{0}^{2}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \xi d \xi \\
&=\frac{E_{0}^{2}}{4 \pi} \int_{0}^{2 \pi}(1-\cos 2 \xi) d \xi=\frac{E_{0}^{2}}{4 \pi} 2 \pi=\frac{E_{0}^{2}}{2} \quad \Rightarrow \quad I=\frac{E_{0}^{2}}{2 c \mu_{0}}=\frac{1}{2} c \varepsilon_{0} E_{0}^{2}
\end{aligned}
$$

Пízбך актıvoßo入ías

$\Delta U=\frac{\Delta U}{A \Delta t} A \Delta t=I A \Delta t \quad$ о́mou：$\quad I=\frac{1}{A} \frac{d U}{d t}$

$$
\text { Гعvıка́: } \quad \frac{I}{c} \leq P \leq 2 \frac{I}{c}
$$

Пó入 $\omega \sigma \eta$

（a）

Vertically polarized

（b）
$\Sigma \varepsilon \varepsilon$ ह́va $\mu \eta$ по $\lambda \omega \mu \varepsilon ́ v o ~ H / M ~ \eta ~ \eta \lambda \varepsilon к т \rho ı к \eta ́ ~ \sigma u v ı \sigma т \omega ́ \sigma a, ~ \sigma \varepsilon ~ \delta ı a ф о \rho \varepsilon т ı к о u ́ \varsigma ~ x \rho o ́ v o u ৎ, ~$

 катá $\mu \varepsilon ́ \tau \rho о ~ ఇ \lambda \varepsilon к т \rho ı к \varepsilon ́ \varsigma ~ \sigma u v i \sigma t \omega ் \sigma ६ \varsigma . ~ A v ~ т a ~$ $\mu \varepsilon ́ t \rho a ~ t o u c ~ \varepsilon i ́ v a l ~ a ́ v ı \sigma a, ~ t o ~ \sigma u \mu ß о \lambda ı \zeta o ́ ~ \mu \varepsilon v o ~$ кú μ а عívaı $\mu \varepsilon \rho ı к а ́ ~ п о \lambda \omega \mu \varepsilon ́ v o . ~$

Unpolarized light headed toward you－the electric fields are in all directions in the plane．

（a）

Пó入 $\omega \sigma \eta$

The sheet's polarizing axis is vertical, so only vertically polarized light emerges.

The sheet's polarizing
axis is vertical, so
only vertical
components of the electric fields pass.

 ки́ца, $I=I_{0}\left\langle\cos ^{2} \theta\right\rangle=\frac{I_{0}}{\pi} \int_{0}^{\pi} \cos ^{2} \theta d \theta=\frac{I_{0}}{2 \pi} \int_{0}^{\pi}(1+\cos 2 \theta) d \theta \Rightarrow I=\frac{I_{0}}{2}$.
 (при்то фі̀тро) пои по入ஸ́vєı то пробпітоv ки́циа каı દ́vav

 a६óv $\omega v \mathrm{v} \tau \omega \mathrm{v}$ סúo фìtт $\rho \omega \mathrm{v}$.

The sheet's polarizing axis is tilted, so only a fraction of the intensity passes.

Aváк入aoŋ Kaı ठıáӨ入aбך

Nó μ oı avák $\lambda a \sigma \eta \varsigma ~ k a ı ~ \delta ı a ́ \theta \lambda a \sigma \eta ̧: ~$

$$
\begin{gathered}
\theta_{1}{ }^{\prime}=\theta_{1} \\
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
\text { (Nó ơ tou Snell) }
\end{gathered}
$$

 opí̧etaı ω с：

Some Indexes of Refraction ${ }^{a}$

Medium	Index	Medium	Index
Vacuum	Exactly 1	Typical crown glass	1.52
Air $(\text { STP })^{b}$	1.00029	Sodium chloride	1.54
Water $\left(20^{\circ} \mathrm{C}\right)$	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80%)	1.49	Diamond	2.42

${ }^{a}$ For a wavelength of 589 nm （yellow sodium light）．
${ }^{b}$ STP means＂standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure（ 1 atm ）．＂

Aváк入aoŋ Kaı ठıáӨ入aбך

(a) If the indexes match, there is no direction change.

${ }^{(b)}$ If the next index is greater, the ray is bent toward the normal.

(c) If the next index is less, the ray is bent away from the normal.

$$
n_{1} \sin \theta_{c}=n_{2} \sin 90^{\circ} \Rightarrow \theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

Пó入 $\omega \sigma \eta$ aтó avákлaoŋ

 عívaı $\mu \varepsilon \rho ı к а ́ ~ п о \lambda \omega \mu \varepsilon ́ v o ~ п а \rho a ́ \lambda \lambda \eta \lambda a ~ \mu \varepsilon ~ т \eta v ~ \varepsilon п ı ф a ́ v \varepsilon ı a ~$

 ovo $\dot{́} \zeta \varepsilon \tau a ı ~ ү \omega v i ́ a ~ B r e w s t e r ~ к a ı ~ т о ~ a v a к \lambda \omega ́ \mu \varepsilon v o ~ к u ́ \mu a ~ \varepsilon i ́ v a ı ~$
 H ү ω vía Brewster пробסıорi̧६таı aпó то vó μ о tou Brewster：

$\left.\begin{array}{l}\theta_{B}+\theta_{r}=90^{\circ} \\ n_{1} \sin \theta_{B}=n_{2} \sin \theta_{r}\end{array}\right\} \Rightarrow n_{1} \sin \theta_{B}=n_{2} \sin \left(90^{\circ}-\theta_{B}\right)=n_{2} \cos \theta_{B} \quad \Rightarrow \quad \theta_{B}=\tan ^{-1} \frac{n_{2}}{n_{1}}$

 vó u ou tou Brewster：

$$
\theta_{B}=\tan ^{-1} n
$$

