ФY乏IKH III

O NOMO乏 TOY GAUSS
 2021－2022

$$
I=\frac{d N}{d t}=\frac{N}{V} \frac{d x}{d t} a=\underset{\rho_{\text {Poń }}^{v a}}{\uparrow}
$$

'Otav та $\sigma \omega \mu a$ тíסı α кıvoúvtaı тарá $\lambda \lambda \eta \lambda \alpha \mu \varepsilon$ т η v $\varepsilon ா เ \varphi \alpha ́ v \varepsilon ı \alpha:$

$$
I=\frac{0}{d t}=0
$$

'Otav та $\sigma \omega \mu$ атíסı α кıvoúvtaı

$I=\frac{d N}{d t}=\frac{N}{V} \frac{d x}{d t} a \cos \theta=\rho v a \cos \theta=\rho \overline{\mathbf{v}} \cdot \mathbf{a}$

 $\varepsilon \pi i ́ m \varepsilon \delta \omega v, ~ \varepsilon ா เ \varphi a v \varepsilon ı \omega ́ v . ~$

$$
\Phi=\sum_{j} \mathbf{E}_{j} \cdot \mathbf{a}_{j} \longrightarrow \oint_{S} \mathbf{E} \cdot d \mathbf{a}
$$

O vónos tou Gauss

 $\beta a \theta \mu o ́ ~ \sigma u \mu \mu \varepsilon т \rho i ́ a s . ~$

 avámтu६ŋ tou $\eta \lambda \varepsilon к т \rho о \mu \alpha ү v \eta т ו \sigma \mu о и ́ . ~$

H $\sigma \chi \varepsilon ́ \sigma \eta$ twv vó $\mu \omega v$ Coulomb кaı Gauss

 vó μ оu ठúva бтоv отоі́о uтव́үعтаı каı о vó μ оऽ тои Coulomb：

$$
\Phi=E \cdot A=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \cdot 4 \pi r^{2}=\frac{q}{\varepsilon_{0}} \quad \longrightarrow \quad \begin{aligned}
& \text { Poń av } \begin{array}{l}
\text { amó тท̃ akтíva } \\
\text { Tņ opaípas. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& d \Phi_{(a)}=\mathbf{E}_{(r)} \cdot \mathbf{a}=E_{(r)} a \\
& d \Phi_{(A)}=\mathbf{E}_{(R)} \cdot \mathbf{A}=E_{(R)} A \cos \theta \quad \square d \Omega=\frac{a}{r^{2}}=\frac{A \cos \theta}{R^{2}} \\
& E_{(R)} A \cos \theta=\left[E_{(r)}\left(\frac{r}{R}\right)^{2}\right]\left[a\left(\frac{R}{r}\right)^{2}\right]=E_{(r)} a \\
& \Longrightarrow d \Phi_{(a)}=d \Phi_{(A)} \Longrightarrow \oint_{\text {sphere }} d \Phi_{(a)}=\oint_{\text {generic }} d \Phi_{(A)}=\frac{q}{\varepsilon_{0}}
\end{aligned}
$$

 биниєтрі́а.

$$
\begin{aligned}
& \Phi=E A=E \cdot 2 \pi r h=\frac{q}{\varepsilon_{0}}=\frac{\lambda h}{\varepsilon_{0}} \Longrightarrow E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \\
& \text { 'Evtaon tou } \eta \text { пкктрıкои́ тєठíou } \\
& \text { бє ато́бтабף } r \text { атó тף } \rho \alpha ́ ß \delta о .
\end{aligned}
$$

Етıл
 $\alpha \lambda \lambda \eta \lambda$ oavaıpoúvtaı). \Rightarrow Tẃpa umápxモı poń μ óvo $\mu \varepsilon ́ \sigma \alpha ~ \alpha ד o ́ ~$ tis β व́бعIS tou ku入ívס̄pou.

There is flux only
(a) through the two end faces.

(b)
Δ úo тара́ $\lambda \lambda \eta \lambda \varepsilon \varsigma ~ \alpha ү \omega ́ ү ı \mu \varepsilon \varsigma ~ т л \alpha ́ к \varepsilon \varsigma ~ \mu \varepsilon ~ \alpha v т i ́ \theta \varepsilon т \alpha ~ \varphi о р т i ́ \alpha: ~$

 Tıऽ દఓ $\omega \tau \varepsilon \rho І К \varepsilon ́ \varsigma ~ \pi \lambda \varepsilon u \rho \varepsilon ́ \varsigma . ~$

$$
E=\frac{\sigma_{1}}{\varepsilon_{0}}+\frac{\sigma_{1}}{\varepsilon_{0}}=\frac{2 \sigma_{1}}{\varepsilon_{0}} \Longrightarrow E=\frac{\sigma}{\varepsilon_{0}}
$$

O vó μ оऽ tou Gauss үıа $\sigma \varphi \alpha ı \rho ı к \eta ́ ~ \sigma u \mu \mu \varepsilon т \rho i ́ \alpha ~$

$$
E_{1}=\frac{Q \text { inside } S_{1}}{4 \pi \varepsilon_{0} r_{1}^{2}}
$$

 عívaı то íठıо $\mu \varepsilon$ то пєठío ódou tou 甲ортíou тПऽ бчaípaऽ бuүкєvтр $\omega \mu \varepsilon ́ v o u ~ \sigma т о ~ к \varepsilon ́ v т \rho о ~$ TクS．

To пєठío $\mu \varepsilon ́ \sigma \alpha ~ \sigma т \eta ~ \sigma \varphi a i ́ p a ~ \varepsilon i ́ v a ı ~ т о ~ i ́ \delta ı о ~ \mu \varepsilon ~$

$$
E_{2}=\frac{Q \text { inside } S_{2}}{4 \pi \varepsilon_{0} r_{2}^{2}}
$$ то тєठío óлои тои чортíou $\sigma \varepsilon \mu$ ккоо́тєрף

 То чортío $\sigma \varepsilon \mu \varepsilon ү \alpha \lambda u ́ т \varepsilon \rho \eta ~ а к т i ́ v а ~ \delta \varepsilon \vee ~$ бuvદıఠழદ́рદı бто тєठío．

 катаvoни́ чортíou ρ ：

$$
\begin{array}{ll}
E(r)=\frac{\left(4 \pi R^{3} / 3\right) \rho}{4 \pi \varepsilon_{0} r^{2}}=\frac{\rho R^{3}}{3 \varepsilon_{0} r^{2}} & (r \geq R) \\
E(r)=\frac{\left(4 \pi r^{3} / 3\right) \rho}{4 \pi \varepsilon_{0} r^{2}}=\frac{\rho r}{3 \varepsilon_{0}} & (r \leq R)
\end{array}
$$

$\Delta ı \propto \varphi о \rho ı к \mathfrak{~ \mu о р \varphi ŋ ́ ~ т о u ~ v o ́ \mu о u ~ т о u ~ G a u s s ~}$

Aтó то $\theta \varepsilon \omega ́ \rho \eta \mu \alpha$ tou Gauss:

$$
\begin{aligned}
& \oint_{S} \mathbf{E} \cdot d \mathbf{a}=\int_{V(S)} \operatorname{div} \mathbf{E} d \tau \\
& \oint_{S} \mathbf{E} \cdot d \mathbf{a}=\frac{Q_{\text {inside } S}}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}} \int_{V(S)} \rho d \tau \quad \forall S \\
& \Longrightarrow \quad \operatorname{div} \mathbf{E} \equiv \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}
\end{aligned}
$$

Ató то vó μ о тоu Gauss $\sigma \varepsilon$ олоклпрштіки́ $\mu о \rho \varphi \eta ́:$

 $\varepsilon \pi เ \varphi a ́ v \varepsilon ı \alpha ~ п о u ~ т \varepsilon р ı к \lambda \varepsilon i ́ \varepsilon ı ~ т \alpha ~ \varphi о р т i ́ \alpha-п \eta ү \varepsilon ́ \varsigma . ~$

Poń σ Tף ठı\＆úӨuvoŋn $x: \quad E_{x}(B) d y d z-E_{x}(A) d y d z=\left[E_{x}(A)+\frac{\partial E_{x}}{\partial x} d x-E_{x}(A)\right] d y d z=\frac{\partial E_{x}}{\partial x} d x d y d z$ Poń oTף ठıєúӨuvon y ：$\quad \frac{\partial E_{y}}{\partial y} d x d y d z$
Poń đTn סıєúӨuvon $z: \quad \frac{\partial E_{z}}{\partial z} d x d y d z$
¿uvo入ıкท́ $\rho \circ n ̃: ~\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right) d x d y d z \stackrel{d \Phi=d q / \varepsilon_{0}}{=} \frac{\rho d x d y d z}{\varepsilon_{0}} \Longrightarrow \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\frac{\rho}{\varepsilon_{0}}$

$$
\Longrightarrow \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}
$$

