ФYミIKH III

£TATIKA HへEKTPIKA ПEDIA
 2021－2022

То Плектрıко́ тгঠठío

 тєठíou $\varepsilon \varphi \alpha ́ т т є т \alpha ı ~ \sigma т \eta ~ ү р а \mu \mu \eta ́ . ~$

Aדо́ то vó μ о тоu Coulob:

$$
\mathbf{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Ато́ тףv $\alpha \rho \times \eta ́ ~ т \eta \varsigma ~ \varepsilon \pi \alpha \lambda \lambda \eta \lambda i ́ \alpha \varsigma: ~$

$$
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}+\mathbf{E}_{3}+\ldots=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q_{1}}{r_{1}^{2}} \hat{\mathbf{r}}_{1}+\frac{Q_{2}}{r_{2}^{2}} \hat{\mathbf{r}}_{2}+\frac{Q_{3}}{r_{3}^{2}} \hat{\mathbf{r}}_{3}+\ldots\right)
$$

$$
\mathbf{E}(x, y, z)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \hat{\mathbf{r}} d x^{\prime} d y^{\prime} d z^{\prime}}{r^{2}}
$$

ウ́

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right) \hat{\mathbf{r}} d^{3} \mathbf{r}^{\prime}}{r^{2}}
$$

 ато́ то олокли́р $\omega \mu \alpha$ ）．

 $\mu o ́ v \eta \mu \eta \mu \eta \delta \varepsilon v i \kappa \eta ́ ~ \sigma u v i \sigma T \omega ́ \sigma \alpha \eta E_{z}(\kappa \alpha ́ \theta \varepsilon \tau \eta$

$$
\begin{aligned}
d E_{z} & =\frac{\rho d^{3} \mathbf{r}^{\prime}}{4 \pi \varepsilon_{0} r^{2}} \cos \theta=\frac{\rho r^{2} d r \sin \theta d \theta d \phi}{4 \pi \varepsilon_{0} r^{2}} \cos \theta \underset{\rho d \phi}{ } \frac{\rho d r \sin \theta \cos \theta d \theta}{2 \varepsilon_{0}}=\frac{\rho d r \sin (2 \theta) d \theta}{4 \varepsilon_{0}} \\
\Longrightarrow \quad E_{z} & =\frac{\rho}{4 \varepsilon_{0}} \int_{0}^{R} d r \int_{0}^{\pi / 2} \sin (2 \theta) d \theta=\frac{\rho R}{4 \varepsilon_{0}} \frac{1}{2} \int_{0}^{\pi} \sin \psi d \psi=\frac{\rho R}{4 \varepsilon_{0}} \frac{-(\cos \pi-\cos 0)}{2}=\frac{\rho R}{4 \varepsilon_{0}}
\end{aligned}
$$

 пикvóтŋта чорті́ои бто (лєптто́) ठакти́入ıо عívaı $\lambda=Q /(2 \pi R)$.
 components just cancel but the parallel components add.

$$
d E=\frac{d Q}{4 \pi \varepsilon_{0} r^{2}}=\frac{\lambda d s}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)}
$$

conporictio aua.

$$
\cos \theta=\frac{z}{r}=\frac{z}{\left(z^{2}+R^{2}\right)^{1 / 2}}
$$

$$
d E_{z}=d E \cos \theta=\frac{z \lambda}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} d s
$$

$$
\Longrightarrow \quad E_{z}(z)=\frac{z \lambda}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} \int_{0}^{2 \pi R} d s=\frac{z \lambda(2 \pi R)}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}}=\frac{Q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

 лєाтढ́v ठактu入íwv．
$d Q=\sigma d A=\sigma \cdot 2 \pi r d r \quad$ Фортío عvóऽ ठакти入íou．
$d E=\frac{z \sigma 2 \pi r d r}{4 \pi \varepsilon_{0}\left(z^{2}+r^{2}\right)^{3 / 2}}=\frac{\sigma z}{4 \varepsilon_{0}} \frac{2 r d r}{\left(z^{2}+r^{2}\right)^{3 / 2}}$
Пропүoú $\mu \varepsilon$ vo атотє́ $\lambda \varepsilon \sigma \mu \alpha$.
$\Longrightarrow \quad E(z)=\frac{\sigma z}{4 \varepsilon_{0}} \int_{0}^{R}\left(r^{2}+z^{2}\right)^{-3 / 2} 2 r d r=\frac{\sigma z}{4 \varepsilon_{0}} \int_{0}^{R^{2}}\left(x+z^{2}\right)^{-3 / 2} d x$ $=\frac{\sigma z}{4 \varepsilon_{0}}\left[\frac{\left(x+z^{2}\right)^{-(3 / 2)+1}}{-(3 / 2)+1}\right]_{0}^{R^{2}}=\frac{\sigma z}{4 \varepsilon_{0}}\left[\frac{\left(r^{2}+z^{2}\right)^{-1 / 2}}{-1 / 2}\right]_{0}^{R}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)$

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

То ŋлєктрıко́ ठі́ттоло

$$
\begin{aligned}
\mathbf{E} & =\frac{Q}{4 \pi \varepsilon_{0} r_{1}^{2}} \hat{\mathbf{r}}_{1}-\frac{Q}{4 \pi \varepsilon_{0} r_{2}^{2}} \hat{\mathbf{r}}_{2} \quad(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\cdots \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{|\mathbf{r}-\mathbf{a}|^{2}}-\frac{1}{|\mathbf{r}+\mathbf{a}|^{2}}\right) \hat{\mathbf{r}}+\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{\hat{\mathbf{r}_{1}-\hat{\mathbf{r}}}}{|\mathbf{r}-\mathbf{a}|^{2}}-\frac{\hat{\mathbf{r}}_{2}-\hat{\mathbf{r}}}{|\mathbf{r}+\mathbf{a}|^{2}}\right)=E_{r} \hat{\mathbf{r}}+E_{\theta} \hat{\mathbf{u}}_{\theta}
\end{aligned}
$$

$$
E_{r}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{1}{1-(2 a / r) \cos \theta+(a / r)^{2}}-\frac{1}{1+(2 a / r) \cos \theta+(a / r)^{2}}\right) \quad \text { каı о́таv } a \ll r:
$$

$$
\approx \frac{Q}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{1}{1-(d / r) \cos \theta}-\frac{1}{1+(d / r) \cos \theta}\right) \approx \frac{Q}{4 \pi \varepsilon_{0} r^{2}}\left[\left(1+\frac{d}{r} \cos \theta\right)-\left(1-\frac{d}{r} \cos \theta\right)\right]
$$

$$
=\frac{2 Q d \cos \theta}{4 \pi \varepsilon_{0} r^{3}}=\frac{Q \mathbf{d} \cdot \hat{\mathbf{r}}}{2 \pi \varepsilon_{0} r^{3}}=\frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{2 \pi \varepsilon_{0} r^{3}} \quad \Longrightarrow \quad E_{r} \approx \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{2 \pi \varepsilon_{0} r^{3}}
$$

То Плєктрıко́ ठі́ттоло

$$
\begin{aligned}
& \hat{\mathbf{r}}_{1}-\hat{\mathbf{r}}=\frac{\mathbf{r}_{1}}{r_{1}}-\frac{\mathbf{r}}{r}=\frac{\mathbf{r}-\mathbf{a}}{|\mathbf{r}-\mathbf{a}|}-\frac{\mathbf{r}}{r}=\frac{\mathbf{r}-\mathbf{a}}{r}\left(1-\frac{2 a}{r} \cos \theta+\frac{a^{2}}{r^{2}}\right)^{-1 / 2}-\frac{\mathbf{r}}{r} \quad \text { каı о́т } \alpha \vee ~ a \ll r: \\
& \approx\left(\frac{\mathbf{r}}{r}-\frac{\mathbf{a}}{r}\right)\left(1+\frac{a}{r} \cos \theta\right)-\frac{\mathbf{r}}{r}=-\frac{\mathbf{a}}{r}+\frac{a \mathbf{r}}{r^{2}} \cos \theta-\frac{a \mathbf{a}}{r^{2}} \cos \theta \approx \frac{a}{r}(\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{a}}) \\
& \hat{\mathbf{r}}_{2}-\hat{\mathbf{r}}=\frac{\mathbf{r}_{2}}{r_{2}}-\frac{\mathbf{r}}{r}=\frac{\mathbf{r}+\mathbf{a}}{|\mathbf{r}+\mathbf{a}|}-\frac{\mathbf{r}}{r}=\frac{\mathbf{r}+\mathbf{a}}{r}\left(1+\frac{2 a}{r} \cos \theta+\frac{a^{2}}{r^{2}}\right)^{-1 / 2}-\frac{\mathbf{r}}{r} \\
& \approx\left(\frac{\mathbf{r}}{r}+\frac{\mathbf{a}}{r}\right)\left(1-\frac{a}{r} \cos \theta\right)-\frac{\mathbf{r}}{r}=\frac{\mathbf{a}}{r}-\frac{a \mathbf{r}}{r^{2}} \cos \theta-\frac{a \mathbf{a}}{r^{2}} \cos \theta \approx-\frac{a}{r}(\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{a}}) \\
& \Longrightarrow \quad E_{\theta} \hat{\mathbf{u}}_{\theta}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{1}{1-(2 a / r) \cos \theta+(a / r)^{2}}+\frac{1}{1+(2 a / r) \cos \theta+(a / r)^{2}}\right) \frac{a}{r}(\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{a}}) \\
& \left(\frac{1}{\ldots}+\frac{1}{\ldots}\right) \approx \frac{1}{1-(d / r) \cos \theta}+\frac{1}{1+(d / r) \cos \theta} \approx\left(1+\frac{d}{r} \cos \theta\right)+\left(1-\frac{d}{r} \cos \theta\right)=2 \\
& (\hat{\mathbf{r}} \cos \theta-\hat{\mathbf{a}})^{2}=\cos ^{2} \theta+1-2 \hat{\mathbf{r}} \cdot \hat{\mathbf{a}} \cos \theta=\cos ^{2} \theta+1-2 \cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta \\
& \Longrightarrow \hat{\mathbf{r}} \cos \theta-\hat{\mathbf{a}}=\hat{\mathbf{u}}_{\theta} \sin \theta \quad \Longrightarrow \quad E_{\theta} \approx \frac{p \sin \theta}{4 \pi \varepsilon_{0} r^{3}}
\end{aligned}
$$

$\tau=F x \sin \theta+F(d-x) \sin \theta=F d \sin \theta=E q d \sin \theta=p E \sin \theta$

$$
\boldsymbol{\tau}=\mathbf{p} \times \mathbf{E}
$$

$$
U=W=\int_{90^{\circ}}^{\theta} \tau d \theta^{\prime}=\int_{90^{\circ}}^{\theta} p E \sin \theta^{\prime} d \theta^{\prime}=-p E \cos \theta \quad \Rightarrow \quad U=-\mathbf{p} \cdot \mathbf{E}
$$

