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Gauss’s Law 
 
 
4.1  Electric Flux 
 
In Chapter 2 we showed that the strength of an electric field is proportional to the number 
of field lines per area.  The number of electric field lines that penetrates a given surface is 
called an “electric flux,” which we denote as EΦ . The electric field can therefore be 
thought of as the number of lines per unit area.  
 

 
 

Figure 4.1.1   Electric field lines passing through a surface of area A. 
 
Consider the surface shown in Figure 4.1.1. Let ˆA=A n  be defined as the area vector 
having a magnitude of the area of the surface, A , and pointing in the normal direction, 

. If  the surface is placed in a uniform electric field En̂  that points in the same  direction 
as , i.e., perpendicular to the surface A, the flux through the surface is  n̂
 
 ˆE A EAΦ = ⋅ = ⋅ =E A E n  (4.1.1) 
 
On the other hand, if the electric field E  makes an angle θ with (Figure 4.1.2), the 
electric flux becomes  

n̂

 
 ncosE EA E AθΦ = ⋅ = =E A  (4.1.2) 
 
where is the component of En ˆE = ⋅E n perpendicular to the surface. 
 

 
Figure 4.1.2 Electric field lines passing through a surface of area A whose normal makes 
an angle θ with the field. 
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Note that with the definition for the normal vector , the electric flux  is positive if 
the electric field lines are leaving the surface, and negative if entering the surface. 

n̂ EΦ

 
In general, a surface S can be curved and the electric field E  may vary over the surface. 
We shall be interested in the case where the surface is closed. A closed surface is a 
surface which completely encloses a volume. In order to compute the electric flux, we 
divide the surface into a large number of infinitesimal area elements ˆi i iA∆ = ∆A n , as 
shown in Figure 4.1.3. Note that for a closed surface the unit vector  is chosen to point 
in the outward normal direction. 

ˆ in

 

 
 
Figure 4.1.3 Electric field passing through an area element i∆A , making an angle θ  with 
the normal of the surface. 
 
The electric flux through  is  i∆A
 
 cosE i i i iE A θ∆Φ = ⋅∆ = ∆E A  (4.1.3) 
 
The total flux through the entire surface can be obtained by summing over all the area 
elements. Taking the limit  and the number of elements to infinity, we have 0i∆ →A
 
 

0
limE i ii S
A

d
∆ →

Φ = ⋅ = ⋅d∑ ∫∫E A E A  (4.1.4) 

 
where the symbol

S

∫∫ denotes a double integral over a closed surface S. In order to 

evaluate the above integral, we must first specify the surface and then sum over the dot 
product . d⋅E A
 
 
4.2  Gauss’s Law 
 
Consider a positive point charge Q located at the center o  a sphere of radius r, as shown 
in Figure 4.2.1. The electric field due to the charge Q is 

f
r2

0 ˆ( / 4 )Q rπε=E , which points 
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in the radial direction. We enclose the charge by an imaginary sphere of radius r called 
the “Gaussian surface.” 
 

 
 

Figure 4.2.1   A spherical Gaussian surface enclosing a charge Q . 
 

ates, a small surface area element on the sphere is given by (Figure 
.2.2) 

 

 In spherical coordin
4
 

2 ˆsin   d r d dθ θ φ=A r  (4.2.1) 
 

 
Figure 4.2.2 A small area element on the surface of a sphere of radius r.   

Thus, the net electric flux through the area element is 
 

 

( )2 2
04E r 0

1 sin   = sin  
4

Q Qd d E dA r d d d dθ θ φ θ θ φ
πε

⎛ ⎞
Φ = ⋅ = = ⎜ ⎟E A  (4.2.2) 

he total flux through the entire surface is  

πε⎝ ⎠
 
T
 

2

0 0
0 04E

S

sin   =Q Qd d d
π π

θ θ φ
πε ε

 Φ = ⋅ =∫∫ ∫ ∫E A  (4.2.3) 

 
us r has a surface area The same result can also be obtained by noting that a sphere of radi

24A rπ= , and since the magnitude of the electric field at any point on the spherical 
surface is 2

0/ 4E Q rπε= ,  the electric flux through the surface is  
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 2
2

0 0

1 4
4E

S S

Q Qd E dA EA r
r

π
πε ε

⎛ ⎞
Φ = ⋅ = = = =⎜ ⎟

⎝ ⎠
∫∫ ∫∫E A  (4.2.4) 

 
In the above, we have chosen a sphere to be the Gaussian surface. However, it turns out 
that the shape of the closed surface can be arbitrarily chosen. For the surfaces shown in 
Figure 4.2.3, the same result ( 0/E Q εΦ = ) is obtained. whether the choice is  or 

.  
1S , 2S

3S

 
Figure 4.2.3   Different Gaussian surfaces with the same outward electric flux. 

 
The statement that the net flux through any closed surface is proportional to the net 
charge enclosed is known as Gauss’s law. Mathematically, Gauss’s law is expressed as 
 

enc

0
E

S

qd
ε

Φ = ⋅ =∫∫ E A     (Gauss’s law)            (4.2.5) 

 
where encq  is the net charge inside the surface. One way to explain why Gauss’s law 
holds is due to note that the number of field lines that leave the charge is independent of 
the shape of the imaginary Gaussian surface we choose to enclose the charge. 
 
To prove Gauss’s law, we introduce the concept of the solid angle. Let 1 1 ˆA∆ = ∆A r  be 
an area element on the surface of a sphere  of radius , as shown in Figure 4.2.4. 

 
1S 1r

 
 

Figure 4.2.4 The area element A∆  subtends a solid angle . 

gle  subtended by 

∆Ω

 
The solid an ∆Ω 1 1 ˆA∆ = ∆A r  at the center of the sphere is defined as  
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 1
2

1

A
r
∆

∆Ω ≡  (4.2.6) 

 
Solid angles are dimensionless quantities measured in steradians (sr). Since the surface 
rea of  the sphere  is  1S 2

14 rπa , the total solid angle subtended by the sphere is 

 

 
2

1
2

1

4 4r
r
π πΩ = =  (4.2.7) 

 
The concept of solid angle in three dimensions is analogous to the ordinary angle in two 

imensions. As illustrated in Figure 4.2.5, an and gle ϕ∆  is the ratio of the length of the 
arc to the radius  of a circle: 
 

 

r

s
r

ϕ ∆
∆ =  (4.2.8) 

 
 

s∆  subtends an angle ϕ∆ . Figure 4.2.5 The arc 
 

2s rπ=Since the total length of the arc is , the total angle subtended by the circle is  
 

 2 2r
r
πϕ π= =  (4.2.9) 

 
In Figure 4.2.4, the area element 2∆A  makes an angle θ  with the radial unit vector 

en the solid angle subtended by
r̂ , 

 2A∆th  is 
 

 2 2 2nˆ cosA Aθ∆ ⋅ ∆ ∆
∆Ω = = =

A r
2 2 2

2 2 2r r r
 (4.2.10) 

 
where 2n 2 cosA A θ∆ = ∆  is the area of the radial projection of 2A∆  onto econd hera s  sp e 

ic with 
 

S of radius 2r , concentr 1S . 2

As shown in Figure 4.2.4, the solid angle subtended is the same for both A∆ and A∆ : 1 2n
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 1 2
2 2

1 2

cosA A
r r

θ∆ ∆
∆Ω = =  (4.2.11) 

 
Now suppose a point charge Q is placed at the center of the concentric spheres. The 
lectric field strengths  at the center of the ar

oulomb’s law: 
e ea elements 1A∆ and 2A∆ are 
related by C

1 2 and E E

 
2

2 1
2 2

0 1 2

      
4i

i

E rQ
r E rπε

⇒ =  (4.2.12) 

he electric flux through  on S1 is  

1

1E = 

 
 1A∆T

 

1 1 1E A∆Φ = ⋅∆ = ∆E A  (4.2.13) 

n the other hand, the electric flux through
 
O  2A∆  on is  2S
 

 
2 2

1 2
2 2 2 2 2 1 1 1 1 12 2

2 1

cos r rE A E A E A
r r

θ
⎛ ⎞ ⎛ ⎞

∆Φ = ⋅∆ = ∆ = ⋅ = ∆ = Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠

that possess certain symmetry, 
amely, systems with cylindrical, planar and spherical symmetry. In the table below, we 

giv mples of in which licable ining 
ele ith the c  Gaussia
 

Symmetry System Gaussian Surface Examples 

⎝ ⎠
E A  (4.2.14) 

  
Thus, we see that the electric flux through any area element subtending the same solid 
angle is constant, independent of the shape or orientation of the surface. 
  
In summary, Gauss’s law provides a convenient tool for evaluating electric field. 
However, its application is limited only to systems 
n

e some exa systems Gauss’s law is app  for determ
ctric field, w orresponding n surfaces: 

Cylindrical Infinite rod Coaxial Cylinder Example 4.1 
Planar Infinite plane Gaussian “Pillbox” Example 4.2 

Spherical Sphere, Spherical shell Concentric Sphere Examples 4.3 & 4.4 

 
The following steps may be useful when applying Gauss’s law:  
 
1) Identify the symmetry associated with the charge distribution. (

 
(2) Determine the direction of the electric field, and a “Gaussian surface” on which the 
magnitude of the electric field is constant over portions of the surface.  
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(3) Divide the space into different regions associated with the charge distribution. For 
each re  calculate , the charge enclosed by the Gaussian surface. 

) Calculate the electric flux  through the Gaussian surface for each region. 
  

encqgion,
 
(4 EΦ

(5) Equate EΦ  with enc 0/q ε , and deduce the magnitude of the electric field. 

m Charge Density 

ly long rod of negligible radius has a uniform charge density

 
 
Example 4.1: Infinitely Long Rod of Unifor
 

λAn infinite . Calculate the 

ngth, and the electric 
eld must be point radially away from the symmetry axis of the rod (Figure 4.2.6). 

The m gnitude of the electric field is constant on cylindrical surfaces of radius . 
Therefore, we choose a coaxial cylinder as our Gaussian surface.   
 

electric field at a distance r  from the wire.   
 
Solution: 
 
We shall solve the problem by following the steps outlined above.   
 
(1) An infinitely long rod possesses cylindrical symmetry.   
 
(2) The charge density is uniformly distributed throughout the le

E  
a r

fi

 
 

Figure 4.2.6 Field lines for an infinite uniformly charged rod (the symmetry axis of the 
rod and the Gaussian cylind erp er are p endicular to plane of the page.) 

(3) The amount of charge enclosed by the Gaussian surface, a cylinder of radius  and 
length  (Figure 4.2.7), is 

 
r

encq λ= . 
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Figure 4.2.7 Gaussian surface for a uniformly charged rod.  
 
(4) As indicated in Figure 4.2.7, the Gaussian surface consists of three parts: a two ends 

 and plus the curved side wall . The flux through the Gaussian surface is  

1 1 2 2 3 3

3 3                        0 0

E
S S S

d d d d

E A

Φ = ⋅ = ⋅ + ⋅ + ⋅

= + + =

∫∫ ∫∫ ∫∫ ∫∫E A E A E A E A

1S 2S 3S
 

 
( )

3

2
S

E rπ
 (4.2.15) 1 2

 
where we have set 3E E= . As can be seen from the figure, no flux passes through the 

ends since the area vectors 1dA  and 2dA are perpendicular to the electric field which 
points in the radial direction.  
 

( ) 02 /E rπ λ ε= (5) Applying Gauss’s law gives , or 
 

 
02

E
r

λ
πε

=  (4.2.16)  

 
he result is in complete agreement with that obtained in Eq. (2.10.11) using Coulomb’s 

law. N n  only 
epends on the inverse of the distance  from the symmetry axis. The qualitative 
ehavior of

T
otice that the result is independent of the length  of the cylinder, a d

d  r
b  E  as a function of  is plotted in Figure 4.2.8. r
 

 
 

Figure 4.2.8 Electric field due to a uniformly charged rod as a function of r  
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Example 4.2: Infinite Plane of Charge 
 

onsider an infinitely large non-conducting plane in the C
c

xy-plane with uniform surface 
harge density σ . Determine the electric field everywhere in space.  

 
 Solution:  
 
(1) An infinitely large plane possesses a planar symmetry.  
 
(2) Since the charge is uniformly distributed on the surface, the electric field  must 
point perpendicularly away from the plane, 

E
ˆE=E k . The magnitude of the electric field 

 constant on planes parallel to the non-conducting plane. 
 
is

 
 

Figure 4.2.9 Electric field for uniform plane of charge 
 
We choose our Gaussian surface to be a cylinder, which is often referred to as a “pillbox” 
(Figure 4.2.10). The pillbox also consists of three parts: two end-caps  and , and a 
curved side .  

1S 2S
 3S

 
 

 A Gaussian “pillbox” for calculating the electric field du
 

) Since the surface charge distribution on is uniform, the charge enclosed by the 
Gaussian “pillbox” is 

Figure 4.2.10 e to a large plane. 

(3
encq Aσ= , where 1 2A A A= =  is the area of the end-caps.  
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(4) The total flux through the Gaussian pillbox flux is 
 

  (4.2.17) 
1 2 3

1 1 2 2 3

1 1 2 2

3

0
( )

E
S S S S

d d d d

E A E A
E E A

Φ = ⋅ = ⋅ + ⋅ + ⋅

= + +
= +

∫∫ ∫∫ ∫∫ ∫∫E A E A E A E A

Since the two ends are at the same distance om the plane, by symmetry, the magnitude 
f the electric field must be the same

1 2

 
fr

: 1 2E E E= = .o  H

2

ence, the total flux can be rewritten 
as 
 
 E EAΦ =  (4.2.18) 

(5) By applying Gauss’s law, we obtain 
 

 

enc

0 0

2 q AEA σ
ε ε

= =   

 
hich gives 

 

w

02
E σ

ε
=  (4.2.19) 

 

 
In unit-vector notation, we have  
 

0

0

ˆ , 0
2

ˆ , 0
2

z

z

σ
ε
σ
ε

⎧ >⎪⎪= ⎨
⎪− <
⎪⎩

k
E

k
 (4.2.20) 

 
Thus, we see that the electric field due to an infinite large non-conducting plane is 
uniform in space. The result, plotted in Figure 4.2.11, is the same as that obtained in Eq. 
(2.10.21) using Coulomb’s law.  
 

 
 

Figure 4.2.11 Electric field of an infinitely large non-conducting plane. 
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Note again the discontinuity in electric field as we cross the plane: 
 

 
0 0 02 2z z zE E E σ σ σ
ε ε ε+ −

⎞
∆ = − = − − =⎜

⎝

⎛
⎟
⎠

 (4.2.21) 

A thin spherical shell of radius has 

 
 
Example 4.3: Spherical Shell 
 

a charge Qa  +  evenly distributed over its surface. 
nd the electric field both inside and outside the shell. Fi

 
Solutions: 
 
The charge distribution is spherically symmetric, with a surface charge density 

2/ / 4sQ A Q aσ π= = , where 24sA aπ= is the surface area of the sphere. The electric field 
must be radially symmetric and directed outward (Figure 4.2.12). We treat the regions 

 and separately. 
E  
r a≤ r a≥

 
 

Figure 4.2.12 Electric field for uniform spherical shell of charge 
 
Case 1: 
 
We choose our Gaussian surface to be a sphere of radius 

r a≤  

r a≤ , as shown in Figure 
4.2.13(a).  
 

(a) (b) 
 
F ged spherical shell for (a) r a< , and igure 4.2.13 Gaussian surface for uniformly char

)(b  r a≥  
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he charge enclosed by the Gaussian surface is 0q =  since all the charge is located on T  enc

the surface of the shell. Thus, from Gauss’s law, enc 0/E q εΦ = , we conclude 
 

0, E r a= <  (4.2.22)  

ase 2:

re of radius , as shown in Figure 
.2.13(b). Since the radius of the “Gaussian sphere” is greater than the radius of the 

spherical shell, all the charge is enclosed: 

 
 r a≥  C

 
n this case, the Gaussian surface is a spheI

4
r a≥

 
 encq Q=    

ince the flux through the Gaussian surface is 
 
S
 

2(4 )E d EA E rπΦ = ⋅ = =∫∫ E A
S

 

 
by applying Gauss’s law, we obtain 
 

2 2
0

,
4 e

Q QE k r
r rπε

a= = ≥  (4.2.23) 

  
Note that the field outside the sphere is the same as if all the charges were concentrated at 
the center of the sphere. The qualitative behavior of E  as a function of r is plotted in 
Figure 4.2.14.  
 

 
 

Figure 4.2.14 Electric field as a function of r due to a uniformly charged spherical shell.  

 E as we 
uter to the inner surface, is given by 

 
As in the case of a non-conducting charged plane, we again see a discontinuity in 
cross the boundary at r a= . The change, from o
 

2
0 0

0
4

QE E E
a

σ
πε ε+ −∆ = − = − =  
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Example 4.4: Non-Conducting Solid Sphere  
 
An electric charge Q+  is uniformly distributed throughout a non-conducting solid
of radius a . Determine the electric field everywhere inside and outside the sphere. 

 sphere 

olution: 

 
 
 
S
 
The charge distribution is spherically symmetric with the charge density given by 
 

3(4/3)
Q Q
V a

ρ
π

= =  (4.2.24) 

s the volume of the sphere. In this case, the electric field  is radially 
mmetric and directed outward. The magnitude of the electric field is constant on 

spherical surfaces of radius . The regions 

 
where V i E
sy

r r a≤  and shall be studied separately. 
 
Case 1: 
 
We choose our Gaussian surface to be a sphere of radius 

r a≥

r a≤ . 

r a≤ , as shown in Figure 
4.2.15(a). 
 

    

             (a)  (b) 
 

igure 4.2.15 Gaussian surface for uniformly charged solid sphere, for (a) , and (b) 

The flux through the Gaussian surface is 

d EA E rπΦ = ⋅ = =∫∫ E A

F r a≤
r a> . 
 

 
2(4 )E 

S

  

 uniform ch tion, the charge enclosed is 
 
With arge distribu
 

 
3

3

rQ
⎛ ⎞

= ⎜ ⎟  (4.2.25) 3
enc

4
3V

q dV V r
a

ρ ρ ρ π⎛ ⎞= = = ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
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which is proportional to the volume enclosed by the Gaussian surface. Applying Gauss’s 

w enc 0/E q εΦ =la , we obtain 
 

( )2 3

0

44
3

E r rρπ π
ε
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   

 
or  

 3
0

,
3 4

r Qr

0

E r
a

aρ
ε πε

= = ≤  (4.2.26) 

:

, as shown in Figure 
.2.15(b). Since the radius of the Gaussian surface is great

 enclosed in our Gaussian surface: 

 
Case 2  r a≥ . 
 
In this case, our Gaussian surface is a sphere of radius r a≥
4 er than the radius of the sphere 

encq Q=all the charge is .  With the electric flux 
through the Gaussian surface given by 2(4 )E E rπΦ = , upon applying Gauss’s law, we 
obtain 2

0(4 ) /E r Qπ ε= , or  
 

2 2
0

,
4 e

Q QE k r
r rπε

a= = >  (4.2.27) 

  
The field outside the sphere is the same as if all the charges were concentrated at the 
center of the sphere. The qualitative behavior of E  as a function of is plotted in Figure 
4.2.16. 

r  

 

 
 

Figure 4.2.16 Electric field due to a uniformly charged sphere as a function of r . 
 
 
4.3  Conductors 
 
An insulator such as glass or paper is a material in which electrons are attached to some 
particular atoms and cannot move freely. On the other hand, inside a conductor, electrons 
are free to move around. The basic properties of a conductor are the following: 
 
(1) The electric field is zero inside a conductor.  
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If we place a solid spherical conductor in a constant external field 0E , the positive and 
negative charges will move tow r regions of the sphere (the regions on the left ard the pola
nd right of the sphere in Figure 4.3.1 below), thereby inducing an electric field a ′E . 

Inside the conductor, points in the opposite direction of ′E  0E . Since charges are mobile, 
they will continue to move until ′E  completely cancels 0E  inside the conductor. At 
electrostatic equilibrium, must vanish inside a conductor. Outside the conductor, the 
electric field due to the induced charge distribution corresponds to a dipole field, and 
the total elec ield is simply 

E  
 ′E
tric f 0 .′= +E E E  The field lines are depicted in Figure 4.3.1.     

 

 
Figure 4.3.1 Placing a conductor in a uniform electric field 

(2) Any net charge must reside on the surface.  
 
If there were a net charge inside the conductor, then by Gauss’s law (Eq. 4.3.2),  would 
no longer be zero there. Therefore, all the net excess charge must flow to the surface of 
the conductor. 
 

0E . 
 

E

 
 

Figure 4.3.2 Gaussian surface inside a conductor. The enclosed charge is zero. 
 

ponent of E is zero on the surface of a conductor. (3) The tangential com
 
We have already seen that for an isolated conductor, the electric field is zero in its 
interior. Any excess charge placed on the conductor must then distribute itself on the 
surface, as implied by Gauss’s law.  
 
Consider the line integral around a closed path shown in Figure 4.3.3: 
 

d⋅∫ E s
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ctr ld  is c ve, the li

 

Figure 4.3.3 Normal and tangential components of electric field outside the conductor 
 

Since the ele ic fie onservati ne integral around the closed path abcda 
vanishes: 

 

 E

 ( ) ( ') 0( ') ( ) 0t n nabcda
d E l E x l E x⋅ = ∆ − ∆ + ∆ + ∆ =∫ E s  

where Et and En are the tangential and the normal components of the electric field, 
respectively, and we have oriented the segment ab so that it is parallel to Et. In the limit 
where both x∆ and ' 0,x∆ → we have tE l 0.∆ = o ever, since the length element ∆l is H w

nite, we conclude that the tangential component of the electric field on the surface of a 
onductor vanishes: 

fi
c
 
 0tE = (on the surface of a conductor)  (4.3.1) 
 

pThis im lies that the surface of a conductor in electrostatic equilibrium is an 
quipotential surface. To verify this claim, consider two points A and B on the surface of e

a conductor. Since the tangential component 0,tE =  the potential difference is 
 

 0
B

B A A
V V d− = − ⋅ =∫ E s  

 
because is perpendicular to E d s .  Thus, points A and B are at the same potential with 

.A BV V=   
 
(4)  is normal to the surface just outside the conductor.  
 
If the tangential component of

E

 E  is initially non-zero, charges will then move around 
until it vanishes. Hence, only the normal com ives.  
 

ponent surv
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Figure 4.3.3 Gaussian “pillbox” for computing the el
 

o compute the field strength just outside the conductor, consider the Gaussian pillbox 

ectric field outside the conductor.  

T
drawn in Figure 4.3.3. Using Gauss’s law, we obtain 
 

0

(0)E n
S

Ad E A A σ
ε

Φ = ⋅ = + ⋅ =∫∫ E A  (4.3.2) 

 
or 
 

 
0

nE σ
ε

=  (4.3.3) 

 
The above result holds for a conductor of arbitrary shape. The pattern of the electric field 
line directions for the region near a conductor is shown in Figure 4.3.4.  
 

 
 

Figure 4.3.4 Just outside the conductor, E is always perpendicular to the surface. 

iscontinuity at the boundary: 
 

 
As in the examples of an infinitely large non-conducting plane and a spherical shell, the 
normal component of the electric field exhibits a d

( ) ( )

0 0

0n n nE E E σ σ
ε ε

+ −∆ = − = − =  

 
 

Example 4.5: Conductor with Charge Inside a Cavity 
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Consider a hollow conductor shown in Figure 4.3.5 below. Suppose the net charge 
carried by the conductor is +Q. In addition, there is a charge q inside the cavity. What is 
the charge on the outer surface of the conductor? 

 

 
 

Figure 4.3.5 Conductor with a cavity 
 
Since the electric field inside a conductor must be zero, the net charge enclosed by the 

aussian surface shown in Figure 4.3.5 must be zero. This implies that a charge –q must 
r itself has a charge +Q, the 

amount of charge on the outer surface of the conductor must be 

G
have been induced on the cavity surface. Since the conducto

.Q q+  
 
 
Example 4.6: Electric Potential Due to a Spherical Shell 

 
Consider a metallic spherical shell of radius a and charge Q, as shown in Figure 4.3.6.  
 

 
 

f radius a and charge Q. 

) Find the electric potential everywhere. 

) Calculate the potential energy of the system. 

Solution: 

) In Example 4.3, we showed that the electric field for a spherical shell of is given by 
 

Figure 4.3.6 A spherical shell o
 
(a
 
(b
 
 

 
(a
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The electric potential may be calculated by using Eq. (3.1.9): 
 

B

B A A
V V d− = − ⋅∫ E s  

 
For r > a, we have  
 

2
0 0

1( ) ( )
4 4

r
e

Q QV r V dr k
r rπε πε∞

′− ∞ = − = =
′∫ Q

r
 (4.3.4) 

 

where we have chosen as our reference point. On the other hand, for r < a, the 
otential becomes 

)( ) drE r a E r a
∞

∞ = − > − <∫

 
( ) 0V ∞ =  

p
 

( )
a

V r V− ( ) (
 

2
0 0

1
4 4

a

a

e
Q Q Qdr k

r a aπε πε∞
= − = =

∫

∫
 (4.3.5) 

 
A plot of the electric potential is shown in Figure 4.3.7. Note that the potential is 
constant inside a conductor. 
 

r

 V

 
 

ne to build 
 infinity 

nd deposit it onto the surface of the sphere. 

ulated on the sphere at some instant is 
rface of the sphere is then

Figure 4.3.7 Electric potential as a function of r for a spherical conducting shell 
 

(b) The potential energy U can be thought of as the work that needs to be do
p the system. To charge up the sphere, an external agent must bring charge fromu

a
 
Suppose the charge accum q. The potential at the 

 0/ 4V q aπε=su . The amount of work that must be done by an 
re is external agent to bring charge dq  from infinity and deposit it on the sphe
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qdW Vdq dq
aπε

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 (4.3.6)  

 

                                            

Therefore, the total amount of work needed to charge the sphere to Q is 
 

 
2

ext 0
0 04

  
8 a

Q q QW dq
aπε

= =∫
 
πε

                                        (4.3.7) 

Since 0/ 4V Q aπε=  and ex tW U= , the above expression is simplified to  
 

 
1
2

U QV=  (4.3.8) 

h the case of a point charge. The work required to bring a 
oint charge Q from infinity to a point where the electric potential due to other charges is 

V would be V . Therefore, for a point charge Q, the potential energy is U=QV.  
 
Now, suppose two metal spheres with radii  and are connected by a thin conducting 
wire, as shown in Figure 4.3.8. 

 
The result can be contrasted wit
p

extW Q=

1r 2r  

 

 
 

Figure 4.3.8 Two conducting spheres connected by a wire. 

harge will continue to flow until equilibrium is establis ch that both spheres are at 
e same potential Suppose the charges on the spheres at equilibrium are 

. Neglecting the effect of the wire that connects the two spheres, the equipotential 
ondition implies 

 
C hed su

1 2 .V V V= =  1q  th

2qand 
c

1 2

0 1 0 2

1 1
4 4

q qV
r rπε πε

= =           

  
or  

1 2

1 2

q q
r r
=  (4.3.9) 

ssuming that the two spheres are very far apart so that the charge distributions on the 

 

 
a
surfaces of the conductors are uniform. The electric fields can be expressed as 
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 1 1 2
1 22 2

0 1 0

21 1,
4

q qE E
r 0 2 04 r

σ σ
πε ε

= = = =  (4.3.10) 

 
here

πε ε

w  1σ  and 2σ  are the surface charge densities on spheres 1 and 2, respectively. The 
two equations can be combined to yield 
 

 1 1 2

2 2 1

E r
E r

σ
σ

= =  (4.3.11) 

sity being inversely proportional to the radius, we conclude 
 

ith the surface charge denW
that the regions with the smallest radii of curvature have the greatest σ . Thus, the 
electric field strength on the surface of a conductor is greatest at the sharpest point. The 
design of a lightning rod is based on this principle. 
 
4.4  Force on a Conductor 
 
We have seen that at the boundary surface of a conductor with a uniform charge density 
σ, the tangential component of the electric field is zero, and hence, continuous, while the 
normal component of the electric field exhibits discontinuity, with 0/nE σ ε∆ = . Consider 
a small patch of charge on a conducting surface, as shown in Figure 4.4.1.  
 

 
 

conductor Figure 4.4.1 Force on a 
 
What is the force experienced by this patch? To answer this question, let’s write the total 
electric field anywhere outside the surface as 
 
 patch ′+E = E E  (4.4.1) 

where 
 

patchE is the electric field due to charge on the patch, and ′E is the electric field due 
 all other charges. Since by Newton’s third law, the patc

ust come solely from
to h cannot exert a force on itself, 
the force on the patch m  ′E . Assuming the patch to be a flat su
from Gauss’s law, the electric field due to the patch is 

rface, 
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E  (4.4.2) 

y superposition principle, the electric field above the c

0

 
B onducting surface is 
 

 above
02ε

ˆσ⎛ ⎞
′+⎜ ⎟

⎝ ⎠
E = k E

cting surface, the electric field is   

 (4.4.3) 

 
Similarly, below the condu
 

below
0

ˆ
2
σ
ε

⎛ ⎞
′− +⎜ ⎟

⎝ ⎠
E = k E  (4.4.4) 

otice tha is continuous across the boundary. This is due to the fact that if the patch 
ere removed, the field in the remaining “hole” exhibits no discontinuity. Using the two 

quations above, we find 

 

 
t ′EN

w
e
 

( )above below avg
1
2

′ = +E E E = E  (4.4.5) 

 the case of a conductor, with

 

 
 above 0

ˆ( / )σ ε=E k  and E 0=In , we have below

 

 avg
0 0

ˆ ˆ0
2 2
1 σ σ

ε ε
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

E k = k  (4.4.6) 

 
Thus, the force acting on the patch is  
 

2

avg
ˆ ˆ( )

2 2
Aq A σ σσ

ε ε
= =F E k = k  (4.4.7) 

0 0

 

 
here A is the area of the patch.  This is precisely the force n

on the surface of a conductor to an equilibrium state where the electric field just outside 
e conductor takes on the value

w eeded to drive the charges 

 0/σ ε  th and vanishes inside. Note that irrespective of the 

sing the result obtained above, we may define the electrostatic pressure on the patch as 

sign of σ, the force tends to pull the patch into the field.   
 
U
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 (4.4.8) 

here E is the magnitude of the field just above the patch. The pressure is being 
ansmitted via the electric field. 

4.5

• The electric flux that passes through a sur

 
w
tr
 
 

 Summary 
 

face characterized by the area vector 
ˆA=A n  is  

 
 

cosE EA θΦ = ⋅ =E A  
 
 where θ  is the angle between the electric field E and the unit vector n̂ .  
 

• In general, the electric flux through a surface is 
 
 E d

S

Φ = ⋅∫∫E A   

 
• Gauss’s law states that the electric flux through any closed Gaussian surface is 

l to the total charge enclosed by the surface: proportiona
 

 enc

0
E

S

qd
ε

Φ = ⋅ =∫∫ E A   

Gauss’s law can be used to calculate the electric field for a system that possesses 
planar, cylindrical or spherical symmetry.  

  
 

 
• The normal component of the electric field exhibits discontinuity, with 

0/nE σ ε∆ = , when crossing a boundary with surface charge density σ.  

 
• The basic properties of a conductor are (1) The electric field inside a conductor is 

zero; (2) any net charge must reside on the surface of the conductor; (3) the 
surface of a conductor is an equipotential surface, and the tangential component 

 is zero; and (4) just outside the conductor, the 
electric field is normal to the surface.  

is 

of the electric field on the surface

 
• Electrostatic pressure on a conducting surface 
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at face. From Faraday’s field theory perspective, we would 
ay that the field on that face transmits a tension along itself across the face, thereby 

resulting in an upward pull, just as if we had attached a string under tension to that face 
to pull it upward.  Similarly, if we look at the bottom face of the imaginary box, the field 
on that face is anti-parallel to the outward normal of the face, and according to Faraday’s 
interpretation, we would again say that the field on the bottom face transmits a tension 
along itself, giving rise to a downward pull, just as if a string has been attached to that 
face to pull it downward.  (The actual determination of the direction of the force requires 
an advanced treatment using the Maxwell’s stress tensor.) Note that this is a pull parallel 
to the outward normal of the bottom face, regardless of whether the field is into the 
surface or out of the surface.  

ε ε
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 

 
4.6 Appendix: Tensions and Pressures 
 
In Section 4.4, the pressure transmitted by the electric field on a conducting surface was 
derived. We now consider a more general case where a closed surface (an imaginary box) 
is placed in an electric field, as shown in Figure 4.6.1.  
 
If we look at the top face of the imaginary box, there is an electric field pointing in the 
utward normal direction of tho

s

 

 

the imaginary box, the field on that face is perpendicular to the outward 
ormal of the face, and the field would transmit a pressure perpendicular to itself.  In this 

case, there is a push to the left.   
 

Figure 4.6.1 An imaginary box in an electric field (long orange vectors).  The short 
vectors indicate the directions of stresses transmitted by the field, either pressures (on the 
left or right faces of the box) or tensions (on the top and bottom faces of the box). 
 
For the left side of the imaginary box, the field on that face is perpendicular to the 
outward normal of that face, and Faraday would have said that the field on that face 
transmits a pressure perpendicular to itself, causing a push to the right.   Similarly, for the 
right side of 
n
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Note that the term “tension” is used when the stress transmitted by the field is parallel (or 
anti-parallel) to the outward normal of the surface, and “pressure” when it is 

 tensions on 
e various faces of the imaginary surface in Figure 4.6.1 is given by for the 

as th

perpendicular to the outward normal.  The magnitude of these pressures and
2

0 / 2Eε  th
electric field.  This quantity has units of force per unit area, or pressure.  It is also the 
energy density stored in the electric field since energy per unit volume h e same units 
as pressure.   
 

 

Animation 4.1:

ted by electric fields, and of the interchange of 
nergy between fields and particles, consider a positive electric charge  moving in a 

constant electric field.  
 
Suppose the charge is initially moving upward along the positive z-axis in a constant 
background field . Since the charge experiences a constant downward force 

k , it eventually comes to rest (say, at the origin z = 0), and then moves 
back down the negative z-axis.   motion and the fields that accompany it are shown 

 Figure 4.6.2, at two different t .   

  Charged Particle Moving in a Constant Electric Field 
 
As an example of the stresses transmit
e  0q >

0
ˆE= −E k

0
ˆ

e q qE= = −F E
This
imesin

 
 

 (a)  (b) 
 
Figure 4.6.2 A positive charge moving in a constant electric field which points 
downward.  (a) The total field configuration when the charge is still out of sight on the 
negative z-axis.  (b) The total field configuration when the charge comes to rest at the 
origin, before it moves back down the negative z-axis.   
 
How do we interpret the motion of the charge in terms of the stresses transmitted by the 
fields?  Faraday would have described the downward force on the charge in Figure 
4.6.2(b) as follows: Let the charge be surrounded by an imaginary sphere centered on it, 
as shown in Figure 4.6.3. The field lines piercing the lower half of the sphere transmit a 
tension that is parallel to the field. This is a stress pulling downward on the charge from 
below. The field lines draped over the top of the imaginary sphere transmit a pressure 
perpendicular to themselves. This is a stress pushing down on the charge from above. The 
total effect of these stresses is a net downward force on the charge.  
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Figure 4.6.3 An electric charge in a constant downward electric field.  We surround the 
charge by an imaginary sphere in order to discuss the stresses transmitted across the 
surface of that sphere by the electric field. 

 
Viewing the animation of Figure 4.6.2 greatly enhances Faraday’s interpretation of the 
stresses in the static image.  As the charge moves upward, it is apparent in the animation 
that the electric field lines are generally compressed above the charge and stretched 
below the charge. This field configuration enables the transmission of a downward force 
to the moving charge we can see as well as an upward force to the charges that produce 
the constant field, which we cannot see. The overall appearance of the upward motion of 
the charge through the electric field is that of a point being forced into a resisting 

ediumm , with stresses arising in that medium as a result of that encroachment.  

the animation of 
ation. 

panied by a stress pushing upward on the 
harges generating the constant field.   

 

 
The kinetic energy of the upwardly moving charge is decreasing as more and more 
energy is stored in the compressed electrostatic field, and conversely when the charge is 
moving downward. Moreover, because the field line motion in the animation is in the 
direction of the energy flow, we can explicitly see the electromagnetic energy flow away 
from the charge into the surrounding field when the charge is slowing. Conversely, we 
see the electromagnetic energy flow back to the charge from the surrounding field when 
the charge is being accelerated back down the z-axis by the energy released from the 

eld. fi
 
Finally, consider momentum conservation.  The moving charge in 

igure 4.6.2 completely reverses its direction of motion over the course of the animF
How do we conserve momentum in this process?  Momentum is conserved because 
momentum in the positive z-direction is transmitted from the moving charge to the 
charges that are generating the constant downward electric field (not shown).   This is 
bvious from the field configuration shown in Figure 4.6.3.  The field stress, which o

pushes downward on the charge, is accom
c

 
Animation 4.2: Charged Particle at Rest in a Time-Varying Field 
 
As a second example of the stresses transmitted by electric fields, consider a positive 
point charge sitting at rest at the origin in an external field which is constant in space but 
varies in time.  This external field is uniform varies according to the equation 
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2 ˆsin tE
T
π⎛ ⎞= − ⎜ ⎟

⎝ ⎠
E k  (4.6.1) 

 

 the field configuration in Figure 4.6.4(b) as 

e can estimate the magnitude of the force on the charge in Figure 4.6.4(b) as follows.  
t the time shown in Figure 4.6.4(b), the distanc

electric field of the charge is equal and opposite to the constant electric field is 
etermined by the equation 

  
Figure 4.6.4 Two frames of an animation of the electric field around a positive charge 
sitting at rest in a time-changing electric field that points downward.  The orange vector 
is the electric field and the white vector is the force on the point charge.   
 
Figure 4.6.4 shows two frames of an animation of the total electric field configuration for 
this situation.  Figure 4.6.4(a) is at t = 0, when the vertical electric field is zero.  Frame 
4.6.4(b) is at a quarter period later, when the downward electric field is at a maximum.  

s in Figure 4.6.3 above, we interpretA
indicating a net downward force on the stationary charge.  The animation of Figure 4.6.4 
shows dramatically the inflow of energy into the neighborhood of the charge as the 
external electric field grows in time, with a resulting build-up of stress that transmits a 
downward force to the positive charge.   
 
W
A e 0r  above the charge at which the 

d
 

 0 2
0 04

qE
rπ ε

=  (4.6.2) 

 
here of this radius is 2The surface area of a sp 00 04 /A r q Eπ ε= = .  

(4.4.8) the pressure (force per unit area) and/o
his sphere sur

Now according to Eq. 
r tension transmitted across the surface of 

rounding the charge is of the order of .  Since the electric field on  2
0 / 2Eεt

the surface of the sphere is of order 0E , the total force transmitted by the field is of order 
2

0 0 / 2Eε  times the area of the sphere, or 2 2 2
0 0 0 0 0 0 0 0( / 2)(4 ) ( / 2)( / )E r E q E qEε π ε ε= ≈ , as 

we expect.     
 
Of course this net force is a combination of a pressure pushing down on the top of the 
sphere and a tension pulling down across the bottom of the sphere.  However, the rough 
estimate that we have just made demonstrates that the pressures and tensions transmitted 
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 (a)  (b) 



across the surface of this sphere surrounding the charge are plausibly of order , as 2
0 / 2Eε

we claimed in Eq. (4.4.8). 
 
 
Animation 4.3: Like and Unlike Charges Hanging from Pendulums 
Consider two charges hanging from pendulums whose supports can be moved closer or 

rther apart by an external agent.  First, suppose the charges both have the same sign, 
and therefore repel.   
 

fu

 
 

Figure 4.6.5 Two pendulums from which are suspended charges of the same sign.   
 
Figure 4.6.5 shows the situation when an external agent tries to move the supports (from 
which the two positive charges are suspended) together.  The force of gravity is pulling 
the charges down, and the force of electrostatic repulsion is pushing them apart on the 
radial line joining them.  The behavior of the electric fields in this situation is an example 
of an electrostatic pressure transmitted perpendicular to the field.  That pressure tries to 
keep the two charges apart in this situation, as the external agent controlling the 
pendulum supports tries to move them together. When we move the supports together the 
charges are pushed apart by the pressure transmitted perpendicular to the electric field.  

ior of the electric fields in this situation is an example of the 
nsion transmitted parallel to the field.  That tension tries to pull the two unlike charges 

together in this situation. 
 

We artificially terminate the field lines at a fixed distance from the charges to avoid 
visual confusion.   
 
In contrast, suppose the charges are of opposite signs, and therefore attract.  Figure 4.6.6 
shows the situation when an external agent moves the supports (from which the two 
positive charges are suspended) together.  The force of gravity is pulling the charges 
down, and the force of electrostatic attraction is pulling them together on the radial line 
joining them.  The behav
te

 

 28Figure 4.6.6
 
Two pendulums with suspended charges of opposite sign.



are pulled together by the tension 
ansmitted parallel to the electric field.  We artificially terminate the field lines at a fixed 
istance from the charges to avoid visual confusion. 

In this chapter, we have shown how electric field can be computed using Gauss’s law: 
 

 
When we move the supports together the charges 
tr
d
 
 
4.7 Problem-Solving Strategies 
 

enc

0
E

S

qd
ε

Φ = ⋅ =∫∫ E A  

 we summarize how the above 
procedures can be employed to compute the electric field for a line of charge, an infinite 
plane of charge and a uniformly charged solid sphere.  

 
The procedures are outlined in Section 4.2. Below
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System Infinite line of 
charge 

Infinite plane of 
charge 

Uniformly charged 
solid sphere 

           Figure 

 

Identify the 
symmetry  Cylindrical Planar Spherical 

Determine the 
direction of  E

 
Divide the space 
into different 
regions 

0r >  0z >  and 0z <  r a≤  and  r a  ≥

Choose Gaussian 
surface 

 
Coaxial cylinder 

 

 
Gaussian pillbox 
 

 
 

Concentric sphere 
 

Calculate electric 
flux (2 )E E rlπΦ =  2E EA EA EAΦ = + =  2(4 )E E rπΦ =  

Calculate enclosed 
charge  inq encq lλ=  encq Aσ=  

3

enc
( / )   
             

Q r a r a
q

Q r
⎧

a
≤

= ⎨
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Apply Gauss’s law 

in 0/E q εΦ = to 
find E 02

E
r

λ
πε

=  
02

E σ
ε

=  
3

0

2
0
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4
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4

Qr r a
a

E
Q r a

r

πε
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⎧ ≤⎪⎪= ⎨
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4.8  Solved Problems 
 
 
4.8.1 Two Parallel Infinite Non-Conducting Planes  
 
Two parallel infinite non-conducting planes lying in the xy-plane are separated by a 
distance . Each plane is uniformly charged with equal but opposite surface charge 
densities, as shown in Figure 4.8.1. Find the electric field everywhere in space. 

d

 

 
 

Figure 4.8.1 Positive and negative uniformly charged infinite planes 
 
Solution: 
 
The electric field due to the two planes can be found by applying the superposition 
principle to the result obtained in Example 4.2 for one plane. Since the planes carry equal 
but opposite surface charge densities, both fields have equal magnitude: 
 

 
02

E E σ
ε+ −= =   

 
The field of the positive plane points away from the positive plane and the field of the 
negative plane points towards the negative plane (Figure 4.8.2) 
 

 
 

Figure 4.8.2 Electric field of positive and negative planes 
 
Therefore, when we add these fields together, we see that the field outside the parallel 
planes is zero, and the field between the planes has twice the magnitude of the field of 
either plane. 
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Figure 4.8.3 Electric field of two parallel planes 
 
The electric field of the positive and the negative planes are  given by  
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Adding these two fields together then yields  
 

 
0

ˆ0 , / 2

ˆ , / 2 /

ˆ0 , / 2

z d

d z d

z d

σ
ε

⎧ >
⎪
⎪= − > > −⎨
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k

E k

k

2  (4.8.1)  

 
Note that the magnitude of the electric field between the plates is 0/E σ ε= , which is 
twice that of a single plate, and vanishes in the regions / 2z d> and / 2z d< − . 
 
 
4.8.2 Electric Flux Through a Square Surface 
 
(a) Compute the electric flux through a square surface of edges 2l due to a charge +Q 
located at a perpendicular distance l from the center of the square, as shown in Figure 
4.8.4.  
 

 
 

Figure 4.8.4 Electric flux through a square surface 
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(b) Using the result obtained in (a), if the charge +Q is now at the center of a cube of side 
2l (Figure 4.8.5), what is the total flux emerging from all the six faces of the closed 
surface?  
 

 
 

Figure 4.8.5 Electric flux through the surface of a cube  
 
Solutions:    
 
(a) The electric field due to the charge +Q is 
 

 2 2
0 0

1 1=
4 4

ˆ ˆ ˆQ Q x yˆ
r r rπε πε

⎛ ⎞+ +
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⎝ ⎠

i z
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where  in Cartesian coordinates. On the surface S,  and the area 
element is . Since 

2 2 2 1/(r x y z= + + 2)
)j

y l=

(ˆ ˆd dA dx dz= =A j 0ˆ ˆ ˆ ˆ⋅ ⋅ =i j = j k and 1ˆ ˆ⋅j j = , we have 
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Thus, the electric flux through S is 
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where the following integrals have been used: 
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(b) From symmetry arguments, the flux through each face must be the same. Thus, the 
total flux through the cube is just six times that through one face: 
 

 
0 0

6
6E
Q Q
ε ε

⎛ ⎞
Φ = =⎜ ⎟

⎝ ⎠
  

    
The result shows that the electric flux EΦ  passing through a closed surface is 
proportional to the charge enclosed. In addition, the result further reinforces the notion 
that  is independent of the shape of the closed surface.  EΦ
 
 
4.8.3 Gauss’s Law for Gravity 
 
What is the gravitational field inside a spherical shell of radius  and mass ? a m
 
Solution:  
 
Since the gravitational force is also an inverse square law, there is an equivalent Gauss’s 
law for gravitation: 
 
 enc4g GmπΦ = −  (4.8.2)  
 
The only changes are that we calculate gravitational flux, the constant 01/ 4 Gε π→ − , 
and . For , the mass enclosed in a Gaussian surface is zero because the 
mass is all on the shell. Therefore the gravitational flux on the Gaussian surface is zero. 
This means that the gravitational field inside the shell is zero! 

enc encq m→ r a≤

 
 
4.8.4 Electric Potential of a Uniformly Charged Sphere 
 
An insulated solid sphere of radius a  has a uniform charge density ρ. Compute the 
electric potential everywhere.  
 
Solution: 
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Using Gauss’s law, we showed in Example 4.4 that the electric field due to the charge 
distribution is  
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             Figure 4.8.6 
 
The electric potential at  (indicated in Figure 4.8.6) outside the sphere is 1P
 

 1 2
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1( ) ( )
4 4
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On the other hand, the electric potential at  inside the sphere is given by 2P
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A plot of electric potential as a function of r is given in Figure 4.8.7: 
 

 
 
Figure 4.8.7  Electric potential due to a uniformly charged sphere as a function of r. 
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4.9 Conceptual Questions 
 
1. If the electric field in some region of space is zero, does it imply that there is no 

electric charge in that region?   
 
2. Consider the electric field due to a non-conducting infinite plane having a uniform 

charge density.  Why is the electric field independent of the distance from the plane?  
Explain in terms of the spacing of the electric field lines. 

 
3. If we place a point charge inside a hollow sealed conducting pipe, describe the 

electric field outside the pipe. 
 
4. Consider two isolated spherical conductors each having net charge . The 

spheres have radii a and b, where b>a. Which sphere has the higher potential?  
0Q >

 
 
4.10 Additional Problems 
 
4.10.1 Non-Conducting Solid Sphere with a Cavity 
 
A sphere of radius 2R is made of a non-conducting material that has a uniform volume 
charge density ρ . (Assume that the material does not affect the electric field.)  A 
spherical cavity of radius R is then carved out from the sphere, as shown in the figure 
below. Compute the electric field within the cavity. 
 

 
 

Figure 4.10.1 Non-conducting solid sphere with a cavity 
 
 
4.10.2 P-N Junction 
 
When two slabs of N-type and P-type semiconductors are put in contact, the relative 
affinities of the materials cause electrons to migrate out of the N-type material across the 
junction to the P-type material. This leaves behind a volume in the N-type material that is 
positively charged and creates a negatively charged volume in the P-type material. 
 
Let us model this as two infinite slabs of charge, both of thickness  with the junction 
lying on the plane     . The N-type material lies in the range 

 a
z = 0   0 < z< a and has uniform 
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charge density   +ρ0 . The adjacent P-type material lies in the range  and has 
uniform charge density   −

    −a < z< 0
ρ0 . Thus: 
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(a) Find the electric field everywhere. 
 
(b) Find the potential difference between the points  and . The point is located on a 
plane parallel to the slab a distance  from the center of the slab. The point  is 
located on plane parallel to the slab a distance 

  P1   P2.     P1.

  z1 > a   P2.

  z2 < −a  from the center of the slab. 
 
 
4.10.3 Sphere with Non-Uniform Charge Distribution 
 
A sphere made of insulating material of radius R  has a charge density arρ =  where  
is a constant. Let  be the distance from the center of the sphere. 

a
r

 
(a) Find the electric field everywhere, both inside and outside the sphere.  
 
(b) Find the electric potential everywhere, both inside and outside the sphere. Be sure to 
indicate where you have chosen your zero potential. 
 
(c) How much energy does it take to assemble this configuration of charge? 
 
(d) What is the electric potential difference between the center of the cylinder and a 
distance  inside the cylinder? Be sure to indicate where you have chosen your zero 
potential. 

r

 
4.10.4 Thin Slab 
 
Let some charge be uniformly distributed throughout the volume of a large planar slab of 
plastic of thickness d .  The charge density is ρ .  The mid-plane of the slab is the y-z 
plane.   
 
(a) What is the electric field at a distance  from the mid-plane when x | | 2x d< ?  
 
(b) What is the electric field at a distance  from the mid-plane when x | | 2x d> ? 
[Hint:  put part of your Gaussian surface where the electric field is zero.] 
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4.10.5 Electric Potential Energy of a Solid Sphere 
 
Calculate the electric potential energy of a solid sphere of radius R filled with charge of 
uniform density ρ.  Express your answer in terms of , the total charge on the sphere. Q
 
 
4.10.6 Calculating Electric Field from Electrical Potential  
 
Figure 4.10.2 shows the variation of an electric potential V with distance z.  The potential 
V does not depend on x or y.  The potential V in the region  1m 1mz− < <   is given in 
Volts by the expression . Outside of this region, the electric potential 
varies linearly with z, as indicated in the graph. 

2( ) 15 5V z z= −

 

                  Figure 4.10.2 
 
(a)  Find an equation for the z-component of the electric field, , in the region 

.    
zE

1m 1mz− < <
 
(b)  What is  in the region  z  > 1 m?  Be careful to indicate the sign of . zE zE
 
(c)  What is  in the region  z  < −1 m?  Be careful to indicate the sign of . zE zE
 
(d) This potential is due a slab of charge with constant charge per unit volume 0ρ .  
Where is this slab of charge located (give the z-coordinates that bound the slab)?  What is 
the charge density 0ρ  of the slab in C/m3?  Be sure to give clearly both the sign and 
magnitude of 0ρ .     
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